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Welcome to the first edition of Object-Oriented Data Structures using Java.
This book has been written to present the algorithmic, programming, and
structuring techniques of a traditional data structures course in an object-

oriented context. You’ll find that all of the familiar topics of lists, stacks, queues,
trees, graphs, sorting, searching, Big-O complexity analysis, and recursion are still
here, but covered from an object-oriented point of view using Java. Thus, our struc-
tures are defined with Java interfaces and encapsulated as Java classes. We use
abstract classes and inheritance, as appropriate, to take advantage of the relation-
ships among various versions of the data structures. We use design aids, such as
Class-Responsibility-Collaborator (CRC) Cards and Universal Modeling Language
(UML) diagrams, to help us model and visualize our classes and their interrelation-
ships. We hope that you enjoy this modern and up-to-date approach to the tradi-
tional data structures course.

Abstract Data Types

Over the last 16 years, the focus of the data structures course has broadened consid-
erably.  The topic of data structures now has been subsumed under the broader topic
of abstract data types (ADTs)—the study of classes of objects whose logical behavior
is defined by a set of values and a set of operations.

The term abstract data type describes a domain of values and set of operations
that are specified independently of any particular implementation. The shift in
emphasis is representative of the move towards more abstraction in computer science
education.  We now are interested in the study of the abstract properties of classes of
data objects in addition to how the objects might be represented in a program.  

The data abstraction approach leads us, throughout the book, to view our data
structures from three different perspectives: their specification, their application, and
their implementation.  The specification describes the logical or abstract level.  This
level is concerned with what the operations are and what they do.  The application
level, sometimes called the user level, is concerned with how the data type might be
used to solve a problem.  This level is concerned with why the operations do what



they do.  The implementation level is where the operations are actually coded.  This
level is concerned with the how questions.

Using this approach, we stress computer science theory and software engineering
principles, including modularization, data encapsulation, information hiding, data
abstraction, stepwise refinement, visual aids, the analysis of algorithms, and software
verification methods.  We feel strongly that these principles should be introduced to
computer science students early in their education so that they learn to practice good
software techniques from the beginning.

An understanding of theoretical concepts helps students put the new ideas they
encounter into place, and practical advice allows them to apply what they have learned.
To teach these concepts we consistently use intuitive explanations, even for topics that
have a basis in mathematics, like the analysis of algorithms. In all cases, our highest
goal has been to make our explanations as readable and as easily understandable as
possible.

Prerequisite Assumptions

In this book, we assume that readers are familiar with the following Java constructs.

• Built-in simple data types
• Control structures while, do, for, if, and switch
• Creating and instantiating objects
• Basic user-defined classes

• variables and methods
• constructors, method parameters, and the return statement
• visibility modifiers

• Built-in array types
• Basic string operations

We have included a review within the text to refresh the student’s memory concerning
some of the details of these topics (for example, defining/using classes and using
strings).  

Input/Output

It is difficult to know what background the students using a data structures textbook
will have in Java I/O. Some may have learned Java in an environment where the Java
input/output statements were “hidden” behind a package provided with their introduc-
tory textbook. Others may have learned graphical input/output techniques, but never
learned how to do file input/output. Some have learned how to create graphical inter-
faces using the Java AWT; others have learned Swing; others have learned neither.
Therefore, we have taken the following approach to I/O:

We assume the student has very little background.
We establish our “standard” I/O approach early—in the test driver developed at the

end of the first chapter. The test driver uses command line parameters for input, basic
text file input and output, and simple screen output based on Java’s Swing classes.
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Except for the case studies, we restrict our use of I/O throughout the text to the set of
techniques used in the test driver.

We explain the I/O techniques used in the test driver in the Java Input/Output I fea-
ture section at the end of Chapter 1.

The only places in the text where more advanced I/O approaches are used are in the
case studies. Beginning with Chapter 3, we develop case studies as examples of “real”
programs that use the data structures we are studying. These case studies use progres-
sively more advanced graphical interfaces, and are accompanied by additional feature
sections as needed to explain any new constructs. Therefore, the case studies not only
provide examples of object-oriented design and uses of data structures, they progres-
sively introduce the student to user interface design techniques.

Content and Organization

We like to think that the material in Chapters 1 and 2 is a review for most students.
However, the concepts in these two chapters are so crucial to the future of any and all
students that we cannot rely on their having seen the material before. Even students
who are familiar with the topics in these chapters can benefit from a review of the
material since it is usually beneficial to see things from more than one perspective.

Here is a chapter-by-chapter overview of the textbook contents:

Chapter 1 outlines the basic goals of high-quality software and the basic principles of
software engineering for designing and implementing programs to meet these goals.
Abstraction, stepwise refinement, and object-oriented design are discussed. Some princi-
ples of object-oriented programming—encapsulation and inheritance—are introduced
here. The UML class diagram is used as a tool for visualizing class characteristics and
relationships. CRC cards are used in an introductory design example. This chapter also
addresses what we see as a critical need in software education: the ability to design and
implement correct programs and to verify that they are actually correct. Topics covered
include the concept of “life-cycle” verification; designing for correctness using precon-
ditions and postconditions; the use of deskchecking and design/code walk-throughs and
inspections to identify errors before testing; debugging techniques, data coverage (black
box), and code coverage (clear or white box) approaches; and test plans. As we develop
ADTs in subsequent chapters, we discuss the construction of an appropriate test plan for
each. The chapter culminates with the development of a test driver to aid in the testing
of a simple programmer-defined class. The test driver has the additional benefit of
introducing the basic I/O techniques used throughout the rest of the text.

Chapter 2 presents data abstraction and encapsulation, the software engineering con-
cepts that relate to the design of the data structures used in programs.  Three perspec-
tives of data are discussed: abstraction, implementation, and application. These
perspectives are illustrated using a real-world example (a library), and then are applied
to built-in data structures that Java supports: primitive types, classes, interfaces, and
arrays. The Java class type is presented as the way to represent the abstract data types
we examine in subsequent chapters.  We also look at several useful Java library classes,
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including exceptions, wrappers, and strings. A feature section warns of the pitfalls of
using references, which are the only means available to us for manipulating objects in
Java. 

Chapter 3 introduces a fundamental abstract data type: the list.  The chapter begins
with a general discussion of lists and then presents lists using the framework with
which all of the other data structures are examined: a presentation and discussion of the
specification, a brief application using the operations, and the design and coding of the
operations.  Both the unsorted and the sorted lists are presented with an array-based
implementation.  The binary search is introduced as a way to improve the performance
of the search operation in the sorted list.  Because there is more than one way to solve a
problem, we discuss how competing solutions can be compared through the analysis of
algorithms, using Big-O notation.  This notation is then used to compare the operations
in the unsorted list and the sorted list. The chapter begins with the presentation of an
unsorted string list ADT. However, by the end of the chapter we have introduced
abstract classes to allow us to take advantage of the common features of sorted and
unsorted lists, and interfaces to enable us to implement generic lists. The chapter case
study takes a simple real estate database, demonstrates the object-oriented design
process, and concludes with the actual coding of a problem in which the sorted list is
the principal data object. The development of the code for the case study introduces the
use of interactive frame-based input.

Chapter 4 presents the stack and the queue data types. Each data type is first considered
from its abstract perspective, and the idea of recording the logical abstraction in an ADT
specification as a Java interface is stressed. The Stack ADT is implemented in Java using
both an array-based approach and an array-list based approach. The Queue ADT is
implemented using the array-based approach. A feature section discusses the options of
implementing data structures “by copy” or “by reference.” Example applications using
both stacks (checking for balanced parenthesis) and queues (checking for palindromes),
plus a case study using stacks (postfix expression evaluator) are presented. The chapter
also includes a section devoted to the Java library’s collection framework; that is, the
lists, stacks, queues and so on that are available in the standard Java library.

Chapter 5 reimplements the ADTs from Chapters 3 and 4 as linked structures. The tech-
nique used to link the elements in dynamically allocated storage is described in detail
and illustrated with figures.  The array-based implementations and the linked imple-
mentations are then compared using Big-O notation.  The chapter culminates with a
review of our list framework, as it evolved in Chapters 3, 4, and 5, to use two interfaces,
two abstract classes, and four concrete classes.

Chapter 6 looks at some alternate approaches for lists: circular linked lists, doubly
linked lists, and lists with headers and trailers. An alternative representation of a linked
structure, using static allocation (an array of nodes), is designed. The case study uses a
list ADT developed specifically to support the implementation of large integers.

Chapter 7 discusses recursion, first providing an intuitive view of the concept, and then
showing how recursion can be used to solve programming problems. Guidelines for
writing recursive methods are illustrated with many examples. After demonstrating that
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a by-hand simulation of a recursive routine can be very tedious, a simple three-question
technique is introduced for verifying the correctness of recursive methods. Because
many students are wary of recursion, the introduction to this material is deliberately
intuitive and nonmathematical. A more detailed discussion of how recursion works
leads to an understanding of how recursion can be replaced with iteration and stacks. 

Chapter 8 introduces binary search trees as a way to arrange data, giving the flexibility
of a linked structure with O(log2N) insertion and deletion time. We build on the previous
chapter and exploit the inherent recursive nature of binary trees, by presenting recursive
algorithms for many of the operations. We also address the problem of balancing binary
search trees and implementing them with an array. The case study discusses the process
of building an index for a manuscript and implements the first phase.

Chapter 9 presents a collection of other ADTs: priority queues, heaps, and graphs.  The
graph algorithms make use of stacks, queues, and priority queues, thus both reinforcing
earlier material and demonstrating how general these structures are. The chapter ends
with a section discussing how we can store objects (that could represent data structures)
in files for later use.

Chapter 10 presents a number of sorting and searching algorithms and asks the ques-
tion: which are better? The sorting algorithms that are illustrated, implemented, and
compared include straight selection sort, two versions of bubble sort, insertion sort,
quick sort, heap sort, and merge sort. The sorting algorithms are compared using Big-O
notation. The discussion of algorithm analysis continues in the context of searching.
Previously presented searching algorithms are reviewed and new ones are described.
Hashing techniques are discussed in some detail.

Additional Features

Chapter Goals A set of goals presented at the beginning of each chapter helps the
students assess what they have learned.  These goals are tested in the exercises at the
end of each chapter.

Chapter Exercises Most chapters have 30 or more exercises, organized by chapter
sections to make it easy to assign the exercises.  They vary in levels of difficulty,
including short and long programming problems, the analysis of algorithms, and
problems to test the student’s understanding of concepts.  Approximately one-third of
the exercises are answered in the back of the book.  

Chapter Summaries Each chapter concludes with a summary section that reviews the
most important topics of the chapter and ties together related topics.

Chapter Summary of Classes and Support Files The end of each chapter also includes
a table showing the set of author-defined classes/interfaces and support files introduced
in the chapter and another table showing the set of Java library classes/interfaces/
methods used in the chapter for the first time.
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Sample Programs There are many sample programs and program segments illustrating
the abstract concepts throughout the text.

Case Studies There are four major case studies.  Each includes a problem description,
an analysis of the problem input and required output, and a discussion of the
appropriate data structures to use.  The case studies are completely coded and tested. 

Appendices The appendices summarize the Java reserved word set, operator
precedence, primitive data types, and the ASCII subset of Unicode.

Web Site Jones and Bartlett has designed a web site to support this text. At
http://oodatastructures.jbpub.com, students will find a glossary and most of the source
code presented in the text. Instructors will find teaching notes, in-class activity
suggestions, answers to those questions that are not in the back of the book, and
PowerPoint presentations for each chapter. To obtain a password for this site, please
contact Jones and Bartlett at 1-800-832-0034. Please contact the authors if you have
material related to the text that you would like to share with others.

Acknowledgments

We would like to thank the following people who took the time to review this manu-
script:  John Amanatides, York University; Ric Heishman, North Virginia Community
College; Neal Alderman, University of Connecticut; and Vladan Jovanovic, University of
Detroit Mercy

Also, thanks to John Lewis and Maulan Bryon, both of Villanova University. John
was always happy to discuss interesting design and coding problems and Maulan helped
with programming. 

A virtual bouquet of roses to the people who have worked on this book: Mike and
Sigrid Wile along with the many people at Jones and Bartlett who contributed so much,
especially J. Michael Stranz, Amy Rose, and Tara McCormick. 

Nell thanks her husband Al, their children and grandchildren too numerous to
name, and their dogs Maggie and Bear.

Dan thanks his wife Kathy for putting up with the extra hours of work and the dis-
ruption in the daily routine. He also thanks Tom, age 11, for helping with proofreading
and Julie, age 8, for lending her gel pens for use during the copyediting process. 

Chip thanks Lisa, Charlie, and Abby for being understanding of all the times he has
been late for dinner, missed saying goodnight, couldn’t stop to play, or had to skip a
bike ride. The love of a family is fuel for an author.

N. D.
D. J.
C. W.

x | Preface

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



1 Software Engineering 1
1.1 The Software Process 2

Goals of Quality Software 4
Specification: Understanding the Problem 6

1.2 Program Design 8
Tools 9
Object-Oriented Design 14

1.3 Verification of Software Correctness 30
Origin of Bugs 33
Designing for Correctness 36
Program Testing 41
Testing Java Data Structures 46
Practical Considerations 59

Summary 60
Summary of Classes and Support Files 62
Exercises 64

2 Data Design and Implementation 69
2.1 Different Views of Data 70

Data Types 70
Data Abstraction 71
Data Structures 74
Data Levels 75
An Analogy 75



2.2 Java’s Built-In Types 79
Primitive Data Types 80
The Class Type 81
Interfaces 88
Arrays 90
Type Hierarchies 92

2.3 Class-Based Types 98
Using Classes in Our Programs 100
Sources for Classes 103
The Java Class Library 106
Building Our Own ADTs 118

Summary 131
Summary of Classes and Support Files 133
Exercises 133

3 ADTs Unsorted List and Sorted List 139
3.1 Lists 140
3.2 Abstract Data Type Unsorted List 141

Logical Level 141
Application Level 146
Implementation Level 147

3.3 Abstract Classes 162
Relationship between Unsorted and Sorted Lists 162
Reuse Options 163
An Abstract List Class 164
Extending the Abstract Class 166

3.4 Abstract Data Type Sorted List 169
Logical Level 169
Application Level 170
Implementation Level 170

3.5 Comparison of Algorithms 181
Big-O 183
Common Orders of Magnitude 184

3.6 Comparison of Unsorted and Sorted List ADT Algorithms 189
Unsorted List ADT 189
Sorted List ADT 190

xii | Contents



3.7 Generic ADTs 193
Lists of Objects 193
The Listable Interface 194
A Generic Abstract List Class 196
A Generic Sorted List ADT 200
A Listable Class 204
Using the Generic List 205

Case Study: Real Estate Listings 206
Summary 237
Summary of Classes and Support Files 238
Exercises 241

4 ADTs Stack and Queue 249
4.1 Formal ADT Specifications 250
4.2 Stacks 255

Logical Level 255
Application Level 264
Implementation Level 272

4.3 The Java Collections Framework 281
Properties of Collections Framework Classes 281
The Legacy Classes 282
Java 2 Collections Framework Interfaces 283
The AbstractCollection Class 284
What Next? 285

4.4 Queues 286
Logical Level 286
Application Level 289
Implementation Level 297

Case Study: Postfix Expression Evaluator 304
Summary 325
Summary of Classes and Support Files 325
Exercises 327

5 Linked Structures 341
5.1 Implementing a Stack as a Linked Structure 342

Self Referential Structures 342
The LinkedStack Class 347

Contents | xiii



The push Operation 348
The pop Operation 350
The Other Stack Operations 353
Comparing Stack Implementations 355

5.2 Implementing a Queue as a Linked Structure 356
The Enqueue Operation 358
The Dequeue Operation 360
The Queue Implementation 362
A Circular Linked Queue Design 363
Comparing Queue Implementations 364

5.3 An Abstract Linked List Class 366
Overview 366
The LinkedList Class 369

5.4 Implementing the Unsorted List as a Linked Structure 380
Comparing Unsorted List Implementations 384

5.5 Implementing the Sorted List as a Linked Structure 386
Comparing Sorted List Implementations 394

5.6 Our List Framework 395
Summary 398
Summary of Classes and Support Files 398
Exercises 399

6 Lists Plus 405
6.1 Circular Linked Lists 406

The CircularSortedLinkedList Class 407
The Iterator Methods 409
The isThere Method 410
Deleting from a Circular List 411
The insert Method 413
Circular Versus Linear 417

6.2 Doubly Linked Lists 417
The Insert and Delete Operations 418
The List Framework 420

6.3 Linked Lists with Headers and Trailers 422
6.4 A Linked List as an Array of Nodes 423

Why Use an Array? 423
How Is an Array Used? 425

xiv | Contents



6.5 A Specialized List ADT 434
The Specification 434
The Implementation 436

Case Study: Large Integers 441
Summary 462
Summary of Classes and Support Files 462
Exercises 465

7 Programming with Recursion 475
7.1 What is Recursion? 476

A Classic Example of Recursion 477
7.2 Programming Recursively 480

Coding the Factorial Function 480
Comparison to the Iterative Solution 482

7.3 Verifying Recursive Methods 483
The Three-Question Method 483

7.4 Writing Recursive Methods 484
A Recursive Version of isThere 485
Debugging Recursive Methods 488

7.5 Using Recursion to Simplify Solutions—Two Examples 488
Combinations 489
Towers of Hanoi 491

7.6 A Recursive Version of Binary Search 496
7.7 Recursive Linked-List Processing 498

Reverse Printing 498
The Insert Operation 501

7.8 How Recursion Works 505
Static Storage Allocation 505
Dynamic Storage Allocation 508

7.9 Removing Recursion 514
Iteration 514
Stacking 516

7.10 Deciding Whether to Use a Recursive Solution 518
Summary 520
Summary of Classes and Support Files 521
Exercises 522

Contents | xv



8 Binary Search Trees 529
8.1 Trees 530

Binary Trees 532
Binary Search Trees 534
Binary Tree Traversals 536

8.2 The Logical Level 538
The Comparable Interface 538
The Binary Search Tree Specification 540

8.3 The Application Level 542
A printTree Operation 543

8.4 The Implementation Level—Declarations and Simple Operations 544
8.5 Iterative Versus Recursive Method Implementations 546

Recursive numberOfNodes 546
Iterative numberOfNodes 550
Recursion or Iteration? 552

8.6 The Implementation Level—More Operations 553
The isThere and retrieve Operations 553
The insert Operation 556
The delete Operation 562
Iteration 568
Testing Binary Search Tree Operations 572

8.7 Comparing Binary Search Trees to Linear Lists 574
Big-O Comparisons 574

8.8 Balancing a Binary Search Tree 576
8.9 A Nonlinked Representation of Binary Trees 581

Case Study: Word Frequency Generator 585
Summary 597
Summary of Classes and Support Files 597
Exercises 598

9 Priority Queues, Heaps, and Graphs 611
9.1 Priority Queues 612

Logical Level 612
Application Level 614
Implementation Level 614

xvi | Contents



9.2 Heaps 615
Heap Implementation 619
The enqueue Method 621
The dequeue Method 624
Heaps Versus Other Representations of Priority Queues 628

9.3 Introduction to Graphs 629
Logical Level 633
Application Level 635
Implementation Level 647

9.4 Storing Objects/Structures in Files 654
Saving Object Data in Text Files 655
Saving Structures in Text Files 658
Serialization of Objects 660

Summary 663
Summary of Classes and Support Files 663
Exercises 665

10 Sorting and Searching Algorithms 673
10.1 Sorting 674

A Test Harness 675
10.2 Simple Sorts 677

Straight Selection Sort 678
Bubble Sort 682
Insertion Sort 687

10.3 0(N log2N) Sorts 689
Merge Sort 690
Quick Sort 698
Heap Sort 704

10.4 More Sorting Considerations 710
Testing 710
Efficiency 710
Sorting Objects 712

10.5 Searching 720
Linear Searching 721
High-Probablilty Ordering 722
Key Ordering 722
Binary Searching 723

Contents | xvii



10.6 Hashing 723
Collisions 727
Choosing a Good Hash Function 734
Complexity 738

Summary 738
Summary of Classes and Support Files 739
Exercises 740

Appendix A Java Reserved Words 749
Appendix B Operator Precedence 750
Appendix C Primitive Data Types 751
Appendix D ASCII Subset of Unicode 752
Answers to Selected Exercises 753
Index 793

xviii | Contents



Measurable goals for this chapter include that you should be able to

describe software life cycle activities

describe the goals for “quality” software

explain the following terms: software requirements, software specifications, algorithm, infor-
mation hiding, abstraction, stepwise refinement

describe four variations of stepwise refinement

explain the fundamental ideas of object-oriented design

explain the relationships among classes, objects, and inheritance and show how they are imple-
mented in Java

explain how CRC cards are used to help with software design

interpret a basic UML state diagram

identify sources of software errors

describe strategies to avoid software errors

specify the preconditions and postconditions of a program segment or method

show how deskchecking, code walk-throughs, and design and code inspections can improve soft-
ware quality and reduce effort

explain the following terms: acceptance tests, regression testing, verification, validation, functional
domain, black box testing, white box testing

state several testing goals and indicate when each would be appropriate

describe several integration-testing strategies and indicate when each would be appropriate

explain how program verification techniques can be applied throughout the software develop-
ment process

create a Java test driver program to test a simple class
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At this point you have completed at least one semester of computer science course
work. You can take a problem of medium complexity, design a set of objects that work
together to solve the problem, code the method algorithms needed to make the objects
work, and demonstrate the correctness of your solution.

In this chapter, we review the software process, object-oriented design, and the ver-
ification of software correctness.

1.1 The Software Process

When we consider computer programming, we immediately think of writing code in
some computer language. As a beginning student of computer science, you wrote pro-
grams that solved relatively simple problems. Much of your effort went into learning
the syntax of a programming language such as Java or C++: the language’s reserved
words, its data types, its constructs for selection and looping, and its input/output
mechanisms.

You learned a programming methodology that takes you from a problem descrip-
tion all the way through to the delivery of a software solution. There are many design
techniques, coding standards, and testing methods that programmers use to develop
high-quality software. Why bother with all that methodology? Why not just sit down at
a computer and enter code? Aren’t we wasting a lot of time and effort, when we could
just get started on the “real” job?

If the degree of our programming sophistication never had to rise above the level of
trivial programs (like summing a list of prices or averaging grades), we might get away
with such a code-first technique (or, rather, a lack of technique). Some new program-
mers work this way, hacking away at the code until the program works more or less
correctly—usually less!

As your programs grow larger and more complex, you must pay attention to other
software issues in addition to coding. If you become a software professional, you may
work as part of a team that develops a system containing tens of thousands, or even
millions, of lines of code. The activities involved in such a software project’s whole “life
cycle” clearly go beyond just sitting down at a computer and writing programs. These
activities include:

• Problem analysis Understanding the nature of the problem to be solved
• Requirements elicitation Determining exactly what the program must do
• Software specification Specifying what the program must do (the functional

requirements) and the constraints on the solution approach (nonfunctional
requirements, such as what language to use)

• High- and low-level design Recording how the program meets the require-
ments, from the “big picture” overview to the detailed design

• Implementation of the design Coding a program in a computer language
• Testing and verification Detecting and fixing errors and demonstrating the

correctness of the program
• Delivery Turning over the tested program to the customer or user (or instructor)
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1.1 The Software Process | 3

• Operation Actually using the program
• Maintenance Making changes to fix operational errors and to add or modify

the function of the program

Software development is not simply a matter of going through these steps sequen-
tially. Many activities take place concurrently. We may be coding one part of the solu-
tion while we’re designing another part, or defining requirements for a new version of a
program while we’re still testing the current version. Often a number of people work on
different parts of the same program simultaneously. Keeping track of all these activities
requires planning.

We use the term software engineering to
refer to the discipline concerned with all
aspects of the development of high-quality
software systems. It encompasses all varia-
tions of techniques used during the software
life cycle plus supporting activities such as
documentation and teamwork. A software
process is a specific set of inter-related soft-
ware engineering techniques used by a person
or organization to create a system.

What makes our jobs as programmers or
software engineers challenging is the tendency of software to grow in size and com-
plexity and to change at every stage of its development. Part of a good software process
is the use of tools to manage this size and complexity. Usually a programmer has sev-
eral toolboxes, each containing tools that help to build and shape a software product.

Hardware
One toolbox contains the hardware itself: the computers and their peripheral devices
(such as monitors, terminals, storage devices, and printers), on which and for which we
develop software.

Software
A second toolbox contains various software tools: operating systems, editors, compilers,
interpreters, debugging programs, test-data generators, and so on. You’ve used some of
these tools already.

Ideaware
A third toolbox is filled with the knowledge that software engineers have collected over
time. This box contains the algorithms that we use to solve common programming prob-
lems, as well as data structures for modeling
the information processed by our programs.
Recall that an algorithm is a step-by-step
description of the solution to a problem.

Ideaware contains programming method-
ologies, such as object-oriented design, and

Software engineering The discipline devoted to the
design, production, and maintenance of computer pro-
grams that are developed on time and within cost esti-
mates, using tools that help to manage the size and
complexity of the resulting software products

Software process A standard, integrated set of soft-
ware engineering tools and techniques used on a proj-
ect or by an organization

Algorithm A logical sequence of discrete steps that
describes a complete solution to a given problem com-
putable in a finite amount of time and space
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software concepts, including information hiding, data encapsulation, and abstraction. It
includes aids for creating designs such as CRC (Classes, Responsibilities, and Collabora-
tions) cards and methods for describing designs such as the UML (Unified Modeling Lan-
guage). It also contains tools for measuring, evaluating, and proving the correctness of our
programs. We devote most of this book to exploring the contents of this third toolbox.

Some might argue that using these tools takes the creativity out of programming,
but we don’t believe that to be true. Artists and composers are creative, yet their inno-
vations are grounded in the basic principles of their crafts. Similarly, the most creative
programmers build high-quality software through the disciplined use of basic program-
ming tools.

Goals of Quality Software

Quality software is much more than a program that accomplishes its task. A good pro-
gram achieves the following goals:

1. It works.

2. It can be modified without excessive time and effort.

3. It is reusable.

4. It is completed on time and within budget.

It’s not easy to meet these goals, but they are all important.

Goal 1: Quality Software Works
A program must accomplish its task, and it must do it correctly and completely. Thus,
the first step is to determine exactly what the program is required to do. You need to

have a definition of the program’s requirements. For
students, the requirements often are included in the
instructor’s problem description. For programmers on
a government contract, the requirements document
may be hundreds of pages long.

We develop programs that meet the requirements
by fulfilling software specifications. The specifications
indicate the format of the input and output, details
about processing, performance measures (how fast?
how big? how accurate?), what to do in case of errors,

and so on. The specifications tell what the program does, but not how it is done. Some-
times your instructor provides detailed specifications; other times you have to write
them yourself, based on a problem description, conversations with your instructor, or
intuition.

How do you know when the program is right? A program has to be

• complete: it should “do everything” specified
• correct: it should “do it right”
• usable: its user interface should be easy to work with
• efficient: at least as efficient as “it needs to be”

Requirements A statement of what is to be provided
by a computer system or software product

Software specification A detailed description of the
function, inputs, processing, outputs, and special
requirements of a software product. It provides the
information needed to design and implement the
product.
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For example, if a desktop-publishing program cannot update the screen as rapidly as the
user can type, the program is not as efficient as it needs to be. If the software isn’t effi-
cient enough, it doesn’t meet its requirements, and thus, according to our definition, it
doesn’t work correctly.

Goal 2: Quality Software Can Be Modified
When does software need to be modified? Changes occur in every phase of its existence.

Software is changed in the design phase. When your instructor or employer gives you
a programming assignment, you begin to think of how to solve the problem. The next
time you meet, however, you may be notified of a change in the problem description.

Software is changed in the coding phase. You make changes in your program
because of compilation errors. Sometimes you see a better solution to a part of the
problem after the program has been coded, so you make changes.

Software is changed in the testing phase. If the program crashes or yields wrong
results, you must make corrections.

In an academic environment, the life of the software typically ends when a program
is turned in for grading. When software is developed for actual use, however, many
changes can be required during the maintenance phase. Someone may discover an error
that wasn’t uncovered in testing, someone else may want to include additional func-
tionality, a third party may want to change the input format, and a fourth party may
want to run the program on another system.

The point is that software changes often and in all phases of its life cycle. Knowing
this, software engineers try to develop programs that are easy to modify. Modifications
to programs often are not even made by the original authors but by subsequent mainte-
nance programmers. Someday you may be the one making the modifications to some-
one else’s program.

What makes a program easy to modify? First, it should be readable and understand-
able to humans. Before it can be changed, it must be understood. A well-designed,
clearly written, well-documented program is certainly easier for human readers to
understand. The number of pages of documentation required for “real-world” programs
usually exceeds the number of pages of code. Almost every organization has its own
policy for documentation.

Second, it should be able to withstand small changes easily. The key idea is to par-
tition your programs into manageable pieces that work together to solve the problem,
yet are relatively independent. The design methodologies reviewed later in this chapter
should help you write programs that meet this goal.

Goal 3: Quality Software Is Reusable
It takes time and effort to create quality software. Therefore, it is important to receive as
much value from the software as possible.

One way to save time and effort when building a software solution is to reuse pro-
grams, classes, methods, and so on from previous projects. By using previously designed
and tested code, you arrive at your solution sooner and with less effort. Alternatively,
when you create software to solve a problem, it is sometimes possible to structure that
software so it can help solve future, related problems. By doing this, you are gaining
more value from the software created.
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Creating reusable software does not happen automatically. It requires extra effort
during the specification and design of the software. Reusable software is well docu-
mented and easy to read, so that it is easy to tell if it can be used for a new project. It
usually has a simple interface so that it can easily be plugged into another system. It is
modifiable (Goal 2), in case a small change is needed to adapt it to the new system.

When creating software to fulfill a narrow, specific function, you can sometimes
make the software more generally useable with a minimal amount of extra effort. There-
fore, you increase the chances that you will reuse the software later. For example, if you
are creating a routine that sorts a list of integers into increasing order, you might general-
ize the routine so that it can also sort other types of data. Furthermore, you could design
the routine to accept the desired sort order, increasing or decreasing, as a parameter.

One of the main reasons for the rise in popularity of object-oriented approaches is
that they lend themselves to reuse. Previous reuse approaches were hindered by inap-
propriate units of reuse. If the unit of reuse is too small, then the work saved is not
worth the effort. If the unit of reuse is too large, then it is difficult to combine it with
other system elements. Object-oriented classes, when designed properly, can be very
appropriate units of reuse. Furthermore, object-oriented approaches simplify reuse
through class inheritance, which is described later in this chapter.

Goal 4: Quality Software Is Completed on Time and within Budget
You know what happens in school when you turn your program in late. You probably
have grieved over an otherwise perfect program that received only half credit—or no
credit at all—because you turned it in one day late. “But the network was down for five
hours last night!” you protest.

Although the consequences of tardiness may seem arbitrary in the academic world,
they are significant in the business world. The software for controlling a space launch
must be developed and tested before the launch can take place. A patient database sys-
tem for a new hospital must be installed before the hospital can open. In such cases, the
program doesn’t meet its requirements if it isn’t ready when needed.

“Time is money” may sound trite but failure to meet deadlines is expensive. A com-
pany generally budgets a certain amount of time and money for the development of a
piece of software. If part of a project is only 80% complete when the deadline arrives,
the company must pay extra to finish the work. If the program is part of a contract with
a customer, there may be monetary penalties for missed deadlines. If it is being devel-
oped for commercial sales, the company may be beaten to the market by a competitor
and be forced out of business.

Once you know what your goals are, what can you do to meet them? Where should
you start? There are many tools and techniques that software engineers use. In the next
few sections of this chapter, we focus on a review of techniques to help you understand,
design, and code programs.

Specification: Understanding the Problem

No matter what programming design technique you use, the first steps are the same.
Imagine the following situation. On the third day of class, you are given a 12-page
description of Programming Assignment 1, which must be running perfectly and turned
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in by noon, a week from yesterday. You read the assignment and realize that this pro-
gram is three times larger than any program you have ever written. Now, what is your
first step?

The responses listed here are typical of those given by a class of students in such a
situation:

1. Panic and do nothing 39%

2. Panic and drop the course 30%

3. Sit down at the computer and begin typing 27%

4. Stop and think 4%

Response 1 is a predictable reaction from students who have not learned good pro-
gramming techniques. Students who adopt Response 2 find their education progressing
rather slowly. Response 3 may seem to be a good idea, especially considering the dead-
line looming. Resist the temptation, though, to immediately begin coding; the first step
is to think. Before you can come up with a program solution, you must understand the
problem. Read the assignment, and then read it again. Ask questions of your instructor
to clarify the assignment. Starting early affords you many opportunities to ask ques-
tions; starting the night before the program is due leaves you no opportunity at all.

One problem with coding first and thinking later is that it tends to lock you into the
first solution you think of, which may not be the best approach. We have a natural ten-
dency to believe that once we’ve put something in writing, we have invested too much
in the idea to toss it out and start over.

Writing Detailed Specifications
Many writers experience a moment of terror when faced with a blank piece of paper—
where to begin? As a programmer, however, you should always have a place to start.
Using the assignment description, first write a complete definition of the problem,
including the details of the expected inputs and outputs, the processing and error han-
dling, and all the assumptions about the problem. When you finish this task, you have a
specification—a definition of the problem that tells you what the program should do. In
addition, the process of writing the specification brings to light any holes in the require-
ments. For instance, are embedded blanks in the input significant or can they be
ignored? Do you need to check for errors in the input? On what computer system(s) is
your program to run? If you get the answers to these questions at this stage, you can
design and code your program correctly from the start.

Many software engineers make use of operational scenarios to understand require-
ments. A scenario is a sequence of events for one execution of the program. Here, for
example, is a scenario that a designer might consider when developing software for a
bank’s automated teller machine (ATM).

1. The customer inserts a bankcard.

2. The ATM reads the account number on the card.

3. The ATM requests a PIN (personal identification number) from the customer.

4. The customer enters 5683.

5. The ATM successfully verifies the account number and PIN combination.
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6. The ATM asks the customer to select a transaction type (deposit, show balance,
withdrawal, or quit).

7. The customer selects show balance.

8. The ATM obtains the current account balance ($1,204.35) and displays it.

9. The ATM asks the customer to select a transaction type (deposit, show balance,
withdrawal, or quit).

10. The customer selects quit.

11. The ATM returns the customer’s bankcard.

Scenarios allow us to get a feel for the behavior expected from the system. A single
scenario cannot show all possible behaviors, however, so software engineers typically
prepare many different scenarios to gain a full understanding of the requirements.

Sometimes details that are not explicitly stated in the requirements may be handled
according to the programmer’s preference. In some cases you have only a vague
description of a problem, and it is up to you to define the entire software specification;
these projects are sometimes called open problems. In any case, you should always doc-
ument assumptions that you make about unstated or ambiguous details.

The specification clarifies the problem to be solved. However, it also serves as an
important piece of program documentation. Sometimes it acts as a contract between a
customer and a programmer. There are many ways in which specifications may be
expressed and a number of different sections that may be included. Our recommended
program specification includes the following sections:

• processing requirements
• sample inputs with expected outputs
• assumptions

If special processing is needed for unusual or error conditions, it too should be specified.
Sometimes it is helpful to include a section containing definitions of terms used. It is
also useful to list any testing requirements so that verifying the program is considered
early in the development process. In fact, a test plan can be an important part of a spec-
ification; test plans are discussed later in this chapter in the section on verification of
software correctness.

1.2 Program Design

Remember, the specification of the program tells what the program must do, but not
how it does it. Once you have clarified the goals of the program, you can begin the
design phase of the software life cycle. In this section, we review some ideaware tools
that are used for software design and present a review of object-oriented design con-
structs and methods.
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Tools

Abstraction
The universe is filled with complex systems. We learn about such systems through mod-
els. A model may be mathematical, like equations describing the motion of satellites
around the earth. A physical object such as a model airplane used in wind-tunnel tests
is another form of model. Only the characteristics of the system that are essential to the
problem being studied are modeled; minor or irrelevant details are ignored. For exam-
ple, although the earth is an oblate ellipsoid, globes (models of the earth) are spheres.
The small difference in shape is not important to us in studying the political divisions
and physical landmarks on the earth. Similarly, in-flight movies are not included in the
model airplanes used to study aerodynamics.

An abstraction is a model of a complex
system that includes only the essential details.
Abstractions are the fundamental way that we
manage complexity. Different viewers use dif-
ferent abstractions of a particular system.
Thus, while we see a car as a means of transportation, the automotive engineer may see
it as a large mass with a small contact area between it and the road (Figure 1.1).

What does abstraction have to do with software development? The programs we
write are abstractions. A spreadsheet program used by an accountant models the books
used to record debits and credits. An educational computer game about wildlife models
an ecosystem. Writing software is difficult because both the systems we model and the
processes we use to develop the software are complex. One of our major goals is to con-
vince you to use abstractions to manage the complexity of developing software. In
nearly every chapter, we make use of abstractions to simplify our work.

Abstraction A model of a complex system that
includes only the details essential to the perspective of
the viewer of the system

Figure 1.1 An abstraction includes the essential details relative to the perspective of the viewer

f=ma
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Information Hiding
Many design methods are based on decomposing a problem’s solution into modules. By
“module” we mean a cohesive system subunit that performs a share of the work. In
Java, the primary module mechanism is the class. Decomposing a system into modules
helps us manage complexity. Additionally, the modules can form the basis of assign-
ments for different programming teams working separately on a large system.

Modules act as an abstraction tool. The complexity of their internal structure can be
hidden from the rest of the system. This means that the details involved in implement-

ing a module are isolated from the details of the rest
of the system. Why is hiding the details desirable?
Shouldn’t the programmer know everything? No!
Information hiding helps manage the complexity of a
system since a programmer can concentrate on one
module at a time.

Of course, a program’s modules are interrelated, since they work together to solve
the problem. Modules provide services to each other through a carefully defined inter-
face. The interface in Java is usually provided by the public methods of a class. Program-
mers of one module do not need to know the internal details of the modules it interacts
with, but they do need to know the interfaces. Consider a driving analogy—you can start
a car without knowing how many cylinders are in the engine. You don’t need to know
these lower-level details of the car’s power subsystem in order to start it. You just have to
understand the interface; that is, you only need to know how to turn the key.

Similarly, you don’t have to know the details of other modules as you design a spe-
cific module. Such a requirement would introduce a greater risk of confusion and error
throughout the whole system. For example, imagine what it would be like if every time
we wanted to start our car, we had to think, “The key makes a connection in the igni-
tion switch that, when the transmission safety interlock is in “park,” engages the starter
motor and powers up the electronic ignition system, which adjusts the spark and the
fuel-to-air ratio of the injectors to compensate for. . . ”.

Besides helping us manage the complexity of a large system, abstraction and infor-
mation hiding support our quality goals of modifiability and reusability. In a well-
designed system, most modifications can be localized to just a few modules. Such
changes are much easier to make than changes that permeate the entire system. Addi-
tionally, a good system design results in the creation of generic modules that can be
used in other systems.

To achieve these goals, modules should be good abstractions with strong cohesion;
that is, each module should have a single purpose or identity and the module should
stick together well. A cohesive module can usually be described by a simple sentence. If
you have to use several sentences or one very convoluted sentence to describe your
module, it is probably not cohesive. Each module should also exhibit information hiding
so that changes within it do not result in changes in the modules that use it. This inde-
pendent quality of modules is known as loose coupling. If your module depends on the
internal details of other modules, it is not loosely coupled.

But what should these modules be and how do we identify them? That question is
addressed in the subsection on object-oriented design later in this chapter.

Information hiding The practice of hiding the details
of a module with the goal of controlling access to the
details from the rest of the system
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1Grady Booch, Object Oriented Design with Applications (Redwood City, CA: Benjamin Cummings, 1991).

Stepwise Refinement
In addition to concepts such as abstraction and information hiding, software developers
need practical approaches to conquer complexity. Stepwise refinement is a widely appli-
cable approach. It has many variations such as top-down, bottom-up, functional
decomposition and even “round-trip gestalt design.” Undoubtedly, you have learned a
variation of stepwise refinement in your studies, since it is a standard method for
organizing and writing essays, term papers, and books. For example, to write a book an
author first determines the main theme and the major subthemes. Next, the chapter top-
ics can be identified, followed by section and subsection topics. Outlines can be pro-
duced and further refined for each subsection. At some point the author is ready to add
detail—to actually begin writing sentences.

In general, with stepwise refinement, a problem is approached in stages. Similar
steps are followed during each stage, with the only difference being the level of detail
involved. The completion of each stage brings us closer to solving our problem. Let’s
look at some variations of stepwise refinement:

• Top-down: First the problem is broken into several large parts. Each of these
parts is in turn divided into sections, then the sections are subdivided, and so on.
The important feature is that details are deferred as long as possible as we move
from a general to a specific solution. The outline approach to writing a book is a
form of top-down stepwise refinement.

• Bottom-up: As you might guess, with this approach the details come first. It is
the opposite of the top-down approach. After the detailed components are identi-
fied and designed, they are brought together into increasingly higher-level com-
ponents. This could be used, for example, by the author of a cookbook who first
writes all the recipes and then decides how to organize them into sections and
chapters.

• Functional decomposition: This is a program design approach that encourages
programming in logical action units, called functions. The main module of the
design becomes the main program (also called the main function), and subsec-
tions develop into functions. This hierarchy of tasks forms the basis for func-
tional decomposition, with the main program or function controlling the
processing. Functional decomposition is not used for overall system design in the
object-oriented world. However, it can be used to design the algorithms that
implement object methods. The general function of the method is continually
divided into sub-functions until the level of detail is fine enough to code. Func-
tional decomposition is top-down stepwise refinement with an emphasis on
functionality.

• Round-trip gestalt design: This confusing term is used to define the stepwise
refinement approach to object-oriented design suggested by Grady Booch,1 one
of the leaders of the object movement. First, the tangible items and events in the
problem domain are identified and assigned to candidate classes and objects.
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2The official definition of the UML is maintained by the Object Management Group. Detailed information can
be found at http://www.omg.org/uml/.

Next the external properties and relationships of these classes and objects are
defined. Finally, the internal details are addressed, and unless these are trivial,
the designer must return to the first step for another round of design. This
approach is top-down stepwise refinement with an emphasis on objects and data.

Good designers typically use a combination of the stepwise refinement techniques
described here.

Visual Aids
Abstraction, information hiding, and stepwise refinement are inter-related methods for
controlling complexity during the design of a system. We will now look at some tools
that we can use to help us visualize our designs. Diagrams are used in many profes-
sions. For example, architects use blueprints, investors use market trend graphs, and
truck drivers use maps.

Software engineers use different types of diagrams and tables. Here, we introduce the
Unified Modeling Language (UML) and Class, Responsibility, and Collaboration (CRC)
cards, both of which are used throughout this text.

The UML is used to specify, visualize, construct, and document the components of a
software system. It combines the best practices that have evolved over the past several
decades for modeling systems, and is particularly well-suited to modeling object-ori-
ented designs. UML diagrams are another form of abstraction. They hide implementa-
tion details and allow us to concentrate only on the major design components. UML
includes a large variety of interrelated diagram types, each with its own set of icons and
connectors. It is a very powerful development and modeling tool.

Covering all of UML is beyond the scope of this text.2 We use only one UML dia-
gram type, detailed class diagrams, to describe some of our designs. Examples are
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Figure 1.2 A blank CRC card

Class Name: Superclass: Subclassess:

Responsibilities

Primary Responsibility

Collaborations

3Beck and Cunningham: http://c2.com/doc/oopsla89/paper.html.

shown beginning on page 16. The notation of the class diagrams is introduced as
needed throughout the text.

UML class diagrams are good for modeling our designs after we have developed
them. In contrast, CRC cards help us determine our designs in the first place. CRC cards
were first described by Beck and Cunningham3 in 1989 as a means of allowing object-
oriented programmers to identify a set of cooperating classes to solve a problem.

A programmer uses a physical 4" � 6" index card to represent each class that has
been identified as part of a problem solution. Figure 1.2 shows a blank CRC card. It con-
tains room for the following information about a class:

1. Class name

2. Responsibilities of the class—usually represented by verbs and implemented by pub-
lic methods

3. Collaborations—other classes/objects that are used in fulfilling the responsibilities

Thus the name CRC card. We have added fields to the original design of the card for the
programmer to record superclass and subclass information, and the primary responsibil-
ity of the class.
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4The Java library includes a Date class, java.util.Date. However, the familiar properties of dates
make them a natural example to use in explaining object-oriented concepts. So we ignore the existence of the
library class, as if we must design our own Date class.

CRC cards are a great tool for refining an object-oriented design, especially in a
team programming environment. They provide a physical manifestation of the building
blocks of a system, allowing programmers to walk through user scenarios, identifying
and assigning responsibilities and collaborations. The example in the next subsection
demonstrates the use of CRC cards for design.

Object-Oriented Design

Review
Before describing approaches to object-oriented design, we present a short review of
object-oriented programming. We use Java code to support this review.

The object-oriented paradigm is founded on three inter-related constructs: classes,
objects, and inheritance. The inter-relationship among these constructs is so tight that it
is nearly impossible to describe them separately. Objects are the basic run-time entities
in an object-oriented system. An object is an instantiation of a class; or alternately, a
class defines the structure of its objects. Classes are organized in an “is-a” hierarchy
defined by inheritance. The definition of an object’s behavior often depends on its posi-
tion within this hierarchy. Let’s look more closely at each of these constructs, using
Java code to provide a concrete representation of the concepts. Java reserved words
(when used as such), user-defined identifiers, class and method names, and so on appear
in this font throughout the entire textbook.

Classes A class defines the structure of an object or a set of objects. A class definition
includes variables (data) and methods (actions) that determine the behavior of an object.
The following Java code defines a Date class that can be used to manipulate Date
objects, for example, in a course scheduling system. The Date class can be used to
create Date objects and to learn about the year, month, or day of any particular Date
object.4 Within the comments the word “this” is used to represent the current object.

public class Date
{
protected int year;
protected int month;
protected int day;
protected static final int MINYEAR = 1583;

public Date(int newMonth, int newDay, int newYear)
// Initializes this Date with the parameter values



1.2 Program Design | 15

{
month = newMonth;
day = newDay;
year = newYear;
}

public int yearIs()
// Returns the year value of this Date
{
return year;

}

public int monthIs()
// Returns the month value of this Date
{
return month;

}

public int dayIs()
// Returns the day value of this Date
{
return day;

}
}

The Date class demonstrates two kinds of variables: instance variables and class
variables. The instance variables of this class are year, month, and day. Their values
vary for each different instance of an object of the class. Instance variables represent the
attributes of an object. MINYEAR is a class variable because it is defined to be static. It is
associated directly with the Date class, instead of with objects of the class. A single copy
of a static variable is maintained for all the objects of the class.

Remember that the final modifier states that a variable is in its final form and
cannot be modified; thus MINYEAR is a constant. By convention, we use only capital let-
ters when naming constants. It is standard procedure to declare constants as static vari-
ables. Since the value of the variable cannot change, there is no need to force every
object of a class to carry around its own version of the value. In addition to holding
shared constants, static variables can also be used to maintain information that is com-
mon to an entire class. For example, a Bank Account class may have a static variable
that holds the number of current accounts.

In the above example, the MINYEAR constant represents the first full year that the
widely used Gregorian calendar was in effect. The idea here is that programmers should
not use the class to represent dates that predate that year. We look at ways to enforce
this rule in Chapter 2.

The methods of the class are Date, yearIs, monthIs, and dayIs. Note that the
Date method has the same name as the class. Recall that this means it is a special type
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of method, called a class constructor. Constructors are
used to create new instances of a class—to instantiate
objects of a class. The other three methods are classi-
fied as observer methods since they “observe” and
return instance variable values. Another name for

observer methods is “accessor” methods.
Once a class such as Date has been defined, a program can create and use objects

of that class. The effect is similar to expanding the language’s set of standard types to
include a Date type—we discuss this idea further in Chapter 2. The UML class diagram
for the Date class is shown in Figure 1.3. Note that the name of the class appears in the
top section of the diagram, the variables appear in the next section, and the methods
appear in the final section. The diagram includes information about the nature of the
variables and method parameters; for example, we can see at a glance that year,
month, and day are all of type int. Note that the variable MINYEAR is underlined,
which indicates that it is a class variable rather than an instance variable. The diagram
also indicates the visibility or protection associated with each part of the class (+ is pub-
lic, # = protected)—we discuss visibility and protection in Chapter 2.

Objects Objects are created from classes at run-time. They can contain and manipulate
data. You should view an object-oriented system as a set of objects, working together
by sending each other messages to solve a problem.

To create an object in Java we use the new operator, along with the class construc-
tor as follows:

Date myDate = new Date(6, 24, 1951);
Date yourDate = new Date(10, 11, 1953);
Date ourDate = new Date(6, 15, 1985);

We say that the variables myDate, yourDate, and ourDate reference “objects of the
class Date” or simply “objects of type Date.” We could also refer to them as “Date
objects.”

Observer A method that returns an observation on
the state of an object.

Figure 1.3 UML class diagram for the Date class

Date

#year:int
#month:int
#day:int
#MINYEAR:int = 1583

+Date(in newMonth:int, in newDay:int, in newYear:int)
+yearIs():int
+monthIs():int
+dayIs():int
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In Figure 1.4 we have extended the standard UML class diagram to show the rela-
tionship between the instantiated Date objects and the Date class.

As you can see, the objects are concrete instantiations of the class. Notice that the
myDate, yourDate, and ourDate variables are not objects, but actually hold references to
the objects. The references are shown by the pointers from the variable boxes to the
objects. In reality, references are memory addresses. The memory address of the instanti-
ated object is stored in the memory location assigned to the variable. If no object has been
instantiated for a particular variable, then its memory location holds a null reference.

Object methods are invoked through the object upon which they are to act. For
example, to assign the value of the year variable of ourDate to the integer variable
theYear, a programmer would code

theYear = ourDate.yearIs();

Inheritance The object-oriented paradigm provides a powerful reuse tool called
inheritance, which allows programmers to create a new class that is a specialization of
an existing class. In this case, the new class is called a subclass of the existing class,
which in turn is the superclass of the new class.

A subclass “inherits” features from its superclass. It adds new features, as needed,
related to its specialization. It can also redefine inherited features as necessary. Contrary
to the intuitive meaning of super and sub, a subclass usually has more variables and
methods than its superclass. Super and sub refer to the relative positions of the classes

Figure 1.4 Extended UML class diagram showing Date objects

Date
#year:int
#month:int
#day:int
#MINYEAR:int = 1583

+Date(in newMonth:int, in newDay:int, in newYear:int)
+yearIs():int
+monthIs():int
+dayIs():int

ourDate:Date

year:int = 1985
month:int = 6
day:int = 15

ourDate

yourDate:Date

year:int = 1953
month:int = 10
day:int = 11

yourDate

myDate:Date

year:int = 1951
month:int = 6
day:int = 24

myDate
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in a hierarchy. A subclass is below its superclass, and a superclass is above its sub-
classes.

Suppose we already have a Date class as defined above, and we are creating a new
application to manipulate Date objects. Suppose also that in the new application we are
often required to “increment” a Date variable—to change a Date variable so that it rep-
resents the next day. For example, if the Date object represents 7/31/2001, it would
represent 8/1/2001 after being incremented. The algorithm for incrementing the date is
not trivial, especially when you consider leap-year rules. But in addition to developing
the algorithm, we must address another question: where to implement the algorithm.
There are several options:

• Implement the algorithm within the new application. The code would need to
obtain the month, day, and year from the Date object using the observer meth-
ods, calculate the new month, day, and year, instantiate a new Date object to
hold the updated month, day, and year, and assign it to the same variable. This
might appear to be a good approach, since it is the new application that requires
the new functionality. However, if future applications also need this functional-
ity, their programmers have to reimplement the solution for themselves. This
approach does not support our goal of reusability.

• Add a new method, called increment, to the Date class. The code would use
the incrementing algorithm to update the month, year, and day values of the
current object. This approach is better than the previous approach because it
allows any future programs that use the Date class to use the new functionality.
However, this also means that every application that uses the Date class can use
this method. In some cases, a programmer may have chosen to use the Date
class because of its built-in protection against changes to the object variables.
Such objects are said to be immutable. Adding an increment method to the
Date class undermines this protection, since it allows the variables to be
changed.

• Use inheritance. Create a new class, called IncDate, that inherits all the features
of the current Date class, but that also provides the increment method. This
approach resolves the drawbacks of the previous two approaches. We now look
at how to implement this third approach.

We often call the inheritance relationship an is a relationship. In this case we would say
that an object of the class IncDate is also a Date object, since it can do anything that
a Date object can do—and more. This idea can be clarified by remembering that inheri-
tance typically means specialization. IncDate is a special case of Date, but not the
other way around.

To create IncDate in Java we would code:

public class IncDate extends Date
{
public IncDate(int newMonth, int newDay, int newYear)
// Initializes this IncDate with the parameter values



1.2 Program Design | 19

{
super(newMonth, newDay, newYear);
}

public void increment()
// Increments this IncDate to represent the next day, i.e.,
// this = (day after this)
// For example if this = 6/30/2003 then this becomes 7/1/2003
{
// Increment algorithm goes here

}
}

Note: sometimes in code listings we emphasize the sections of code most pertinent to
the current discussion by underlining them.

Inheritance is indicated by the keyword extends, which shows that IncDate
inherits from Date. It is not possible in Java to inherit constructors, so IncDate must
supply its own. In this case, the IncDate constructor simply takes the month, day, and
year parameters and passes them to the constructor of its superclass; it passes them to
the Date class constructor using the super reserved word.

The other part of the IncDate class is the new increment method, which is classi-
fied as a transformer method, because it
changes the internal state of the object.
increment changes the object’s day and
possibly the month and year values. The
increment transformer method is invoked
through the object that it is to transform. For example, the statement

ourDate.increment();

transforms the ourDate object.
Note that we have left out the details of the increment method since they are not

crucial to our current discussion.
A program with access to both of the date classes can now declare and use both

Date and IncDate objects. Consider the following program segment. (Assume output
is one of Java’s PrintWriter file objects.)

Date myDate = new Date(6, 24, 1951);
IncDate aDate = new IncDate(1, 11, 2001);

output.println("mydate day is:   " + myDate.dayIs());
output.println("aDate day is:    " + aDate.dayIs());

aDate.increment();
output.println("the day after is: " + aDate.dayIs());

Transformer A method that changes the internal
state of an object
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This program segment instantiates and initializes myDate and aDate, outputs the values
of their days, increments aDate and finally outputs the new day value of aDate. You
might ask, “How does the system resolve the use of the dayIs method by an IncDate
object when dayIs is defined in the Date class?” Understanding how inheritance is sup-
ported by Java provides the answer to this question. The extended UML diagram in Fig-
ure 1.5 shows the inheritance relationships and captures the state of the system after the
aDate object has been incremented. This figure helps us investigate the situation.

The compiler has available to it all the declaration information captured in the
extended UML diagram. Consider the dayIs method call in the statement:

output.println("aDate day is:    " + aDate.dayIs());

To resolve this method call, the compiler follows the reference from the aDate variable
to the IncDate class. Since it does not find a definition for a dayIs method in the
IncDate class, it follows the inheritance link to the superclass Date, where it finds, and
links to, the dayIs method. In this case, the dayIs method returns an int value that

Figure 1.5 Extended UML class diagram showing inheritance
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#MINYEAR:int = 1583
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+Object():Object
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+toString():String
+etc....()

IncDate
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represents the day value of the aDate object. During execution, the system changes the
int value to a String, concatenates it to the string “aDate day is:   ” and prints it to
output.

Note that because of the way method calls are resolved, by searching up the inheri-
tance tree, only objects of the class IncDate can use the increment method. If you tried
to use the increment method on an object of the class Date, such as the myDate object,
there would be no definition available in either the Date class or any of the classes above
Date in the inheritance tree. The compiler would report a syntax error in this situation.

Notice the Object class in the diagram. Where did it come from? In Java, any class
that does not explicitly extend another class implicitly extends the predefined Object
class. Since Date does not explicitly extend any other class, it inherits directly from
Object. The Date class is a subclass of Object. The solid arrows with the hollow
arrowheads indicate inheritance in a UML diagram.

All Java classes can trace their roots back to the Object class, which is so general
that it does almost nothing; objects of the class Object are nearly useless by them-
selves. But Object does define several basic methods: comparison for equality
(equals), conversion to a string (toString), and so on. Therefore, for example, any
object in any Java program supports the method toString, since it is inherited from
the Object class.

Just as Java automatically changes an integer value to a string in a statement like

output.println("aDate day is:    " + aDate.dayIs());

it automatically changes an object to a string in a statement like

output.println("tomorrow: " + aDate);

If you use an object as a string anywhere in a Java program, then the Java compiler
automatically looks for a toString method for that object. In this case, the toString
method is not found in the IncDate class, nor is it found in its superclass, the Date
class. However, the compiler continues looking up the inheritance hierarchy, and finds
the toString method in the Object class. Since all classes trace their roots back to
Object, the compiler is always guaranteed to find a toString method eventually.

But, wait a minute. What does it mean to “change an object to a string”? Well, that
depends on the definition of the toString method that is associated with the object.
The toString method of the Object class returns a string representing some of the
internal system implementation details about the object. This information is somewhat
cryptic and generally not useful to us. This is an example of where it is useful to rede-
fine an inherited method. We generally override the default toString method when
creating our own classes, to return a more relevant string. For example, the following
toString method could be added to the definition of the Date class:

public String toString()
{
return(month + "/" + day + "/" + year);

}



22 | Chapter 1:  Software Engineering

Figure 1.6 Output from program segment

Now, when the compiler needs a toString method for a Date object (or an
IncDate object), it finds the method in the Date class and returns a more useful string.
Figure 1.6 shows the output from the following program segment.

Date myDate = new Date(6, 24, 1951);
IncDate currDate = new IncDate(1, 11, 2001);

output.println("mydate:   " + myDate);
output.println("today:    " + currDate);

currDate.increment();
output.println("tomorrow: " + currDate);

The results on the left show the output generated if the toString method of the
Object class is used by default; and on the right if the toString method above is
added to the Date class:

One last note: Remember that subclasses are assignment compatible with the superclasses
above them in the inheritance hierarchy. Therefore, in our example, the statement

myDate = currDate;

would be legal, but the statement

currDate = myDate;

would cause an “incompatible type” syntax error.

Design
The object-oriented design (OOD) methodology originated with the development of pro-
grams to simulate physical objects and processes in the real world. For example, to sim-
ulate an electronic circuit, you could develop a class for simulating each kind of
component in the circuit and then “wire-up” the simulation by having the modules pass
information among themselves in the same pattern that wires connect the electronic
components.
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Identifying Classes The key task in designing object-oriented systems is identification
of classes. Successful class identification and organization draws upon many of the
tools that we discussed earlier in this chapter. Top-down stepwise refinement
encourages us to start by identifying the major classes and gradually refine our system
definition to identify all the classes we need. We should use abstraction and practice
information hiding by keeping the interfaces to our classes narrow and hiding
important design decisions and requirements likely to change within our classes. CRC
cards can help us identify the responsibilities and collaborations of our classes, and
expose holes in our design. UML diagrams let us record our designs in a form that is
easy to understand.

When possible, we should organize our classes in an inheritance hierarchy, to bene-
fit from reuse. Another form of reuse is to find prewritten classes, possibly in the stan-
dard Java library, that can be used in a solution.

There is no foolproof technique for identifying classes; we just have to start brain-
storming ideas and see where they lead us. A large program is typically written by a
team of programmers, so the brainstorming process often occurs in a team setting. Team
members identify whatever objects they see in the problem and then propose classes to
represent them. The proposed classes are all written on a board. None of the ideas for
classes are discussed or rejected in this first stage.

After the brainstorming, the team goes through a process of filtering the classes.
First they eliminate duplicates. Then they discuss whether each class really represents an
object in the problem. (It’s easy to get carried away and include classes, such as “the
user,” that are beyond the scope of the problem.) The team then looks for classes that
seem to be related. Perhaps they aren’t duplicates, but they have much in common, and
so they are grouped together on the board. At the same time, the discussion may reveal
some classes that were overlooked.

Usually it is not difficult to identify an initial set of classes. In most large problems
we naturally find entities that we wish to represent as classes. For example, in designing
a program that manages a checking account, we might identify checks, deposits, an
account balance, and account statements as entities. These entities interact with each
other through messages. For example, a check could send a message to the balance
entity that tells it to deduct an amount from itself. We didn’t list the amount in our ini-
tial set of objects, but it may be another entity that we need to represent.

Our example illustrates a common approach to OOD. We begin by identifying a set
of objects that we think are important in a problem. Then we consider some scenarios in
which the objects interact to accomplish a task. In the process of envisioning how a sce-
nario plays out, we identify additional objects and messages. We keep trying new sce-
narios until we find that our set of objects and messages is sufficient to accomplish any
task that the problem requires. CRC cards help us enact such scenarios.

A standard technique for identifying classes and their methods is to look for objects
and operations in the problem statement. Objects are usually nouns and operations are
usually verbs. For example, suppose the problem statement includes the sentence: “The
student grades must be sorted from best to worst before being output.” Potential objects
are “student” and “grade,” and potential operations are “sort” and “output.” We propose
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that on a printed copy of your requirements you circle the nouns and underline the verbs.
The set of nouns are your candidate objects, and the verbs are your candidate methods. Of
course, you have to filter this list, but at least it provides a good starting point for design.

Recall that in our discussion of abstraction and information hiding we stated that
program modules should display strong cohesion. A good way to validate the cohesive-
ness of an identified class is to try to describe its main responsibility in a single coher-
ent phrase. If you cannot do this, then you should reconsider your design. Some
examples of cohesive responsibilities are:

• maintain a list of integers
• handle file interaction
• provide a date type

Some examples of “poor” responsibilities are:

• maintain a list of integers and provide special integer output routines
• handle file interaction and draw graphs on the screen

In summation, we have discussed the following approaches to identifying classes:

1. Start with the major classes and refine the design.

2. Hide important design decisions and requirements likely to change within a class.

3. Brainstorm with a group of programmers.

4. Make sure each class has one main responsibility.

5. Use CRC cards to organize classes and identify holes in the design.

6. Walk through user scenarios.

7. Look for nouns and verbs in the problem description.

Design Choices When working on design, keep in mind that there are many different
correct solutions to most problems. The techniques we use may seem imprecise,
especially in contrast with the precision that is demanded by the computer. But the
computer merely demands that we express (code) a particular solution precisely. The
process of deciding which particular solution to use is far less precise. It is our human
ability to make choices without having complete information that enables us to solve
problems. Different choices naturally lead to different solutions to a problem.

For example, in developing a simulation of an air traffic control system, we might
decide that airplanes and control towers are objects that communicate with each other.
Or we might decide that pilots and controllers are the objects that communicate. This
choice affects how we subsequently view the problem, and the responsibilities that we
assign to the objects. Either choice can lead to a working application. We may simply
prefer the one with which we are most familiar.

Some of our choices lead to designs that are more or less efficient than others. For
example, keeping a list of names in alphabetical rather than random order makes it pos-
sible for the computer to find a particular name much faster. However, choosing to
leave the list randomly ordered still produces a valid (but slower) solution, and may
even be the best solution if you do not need to search the list very often.



1.2 Program Design | 25

Other choices affect the amount of work that is required to develop the remainder
of a problem solution. In creating a program for choreographing ballet movements, we
might begin by recognizing a dancer as the important object and then create a class for
each dancer. But in doing so, we discover that all of the dancers have certain common
responsibilities. Rather than repeat the definition of those responsibilities for each class
of dancer, we can change our initial choice and define a class for a generic dancer that
includes all the common responsibilities and then develop subclasses that add responsi-
bilities specific to each individual.

The point is, don’t hesitate to begin solving a problem because you are waiting for
some flash of genius that leads you to the perfect solution. There is no such thing. It is
better to jump in and try something, step back, and see if you like the result, and then
either proceed or make changes. In the example below we show how the CRC card tech-
nique helps you explore different design choices and keep track of them.

Design Example
In this subsection we present a sample object-oriented design process that might be fol-
lowed if we were on a small team of software engineers. Our purposes are to show the
classes that might be identified for an object-oriented system, and to demonstrate the
utility of CRC cards. We assume that our team of engineers has been given the task of
automating an address book. A user should be able to enter and retrieve information
from the address book. We have been given a sample physical address book on which to
base their product.

First our team studies the problem, inspects the physical address book, and brain-
storms that the application has the following potential objects:

Cover
Pages
Address
Name
Home phone number
Work phone number
E-mail
Fax number
Pager number
Cell-phone number
Birthday
Company name
Work Address
Calendar
Time-zone map
Owner information
Emergency number
User
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Then we enter the filtering stage. Our application doesn’t need to represent the
physical parts of an address book, so we can delete Cover and Pages. However, we
need something analogous to a page that holds all the same sort of information. Let’s
call it an Entry. The different telephone numbers can all be represented by the same
kind of object. So we can combine Home, Work, Fax, Pager, and Cell-phone into a
Phone number class. In consultation with the customer, we find that the electronic
address book doesn’t need the special pages that are often found in a printed address
book, so we delete Calendar, Time-zone map, Owner information, and Emergency
number.

Further thought reveals that the User isn’t part of the application, although this
does point to the need for a User interface that we did not originally list. A Work
Address is a specific kind of address that has additional information, so we can make it
a subclass of Address. Company names are just Strings, so there is no need to distin-
guish them, but Names have a first, last, and middle part. Our filtered list of classes now
looks like this.

For each of these classes we create a CRC card. In the case of Work Address, we list
Address as its Superclass, and on the Address card we list Work Address in its Sub-
classes space.

In doing coursework, you may be asked to work individually rather than in a col-
laborative team. You can still do your own brainstorming and filtering. However, we
recommend that you take a break after the brainstorming and do the filtering once you
have let your initial ideas rest for a while. An idea that seems brilliant in the middle of
brainstorming may lose some of its attraction after a day or even a few hours.

Initial Responsibilities Once you (or your team) have identified the classes and created
CRC cards for them, go over each card and write down its primary responsibility and an
initial list of resultant responsibilities that are obvious. For example, a Name class
manages a “Name” and has a responsibility to know its first name, its middle name, and
its last name. We would list these three responsibilities in the left column of its card, as
shown in Figure 1.7. In an implementation, they become methods that return the
corresponding part of the name. For many classes, the initial responsibilities include
knowing some value or set of values.

Entry
Name
Address
Work address
Phone number
E-mail
Birthday
User interface
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A First Scenario Walk-Through To further expand the responsibilities of the classes
and see how they collaborate, we must pretend to carry out various processing
scenarios by hand. This kind of role-playing is known as a walk-through. We ask a
question such as, “What happens when the user wants to find an address that’s in the
book?” Then we answer the question by telling how each object is involved in
accomplishing this task. In a team setting, the cards are distributed among the team
members. When an object of a class is doing something, its card is held in the air to
visually signify that it is active.

With this particular question, we might pick up the User Interface card and say, “I
have a responsibility to get the person’s name from the user.” That responsibility gets
written down on the card. Once the name is input, the User Interface must collaborate
with other objects to look up the name and get the corresponding address. What object
should it collaborate with? There is no identified object class that represents the entire
set of address book entries.

We’ve found a hole in our list of classes! The Entry objects should be organized into
a Book object. We quickly write out a Book CRC card. The User Interface card-holder
then says, “I’m going to collaborate with the Book class to get the address.” The collab-
oration is written in the right column of the card, and it remains in the air. The owner
of the Book card holds it up, saying, “I have a responsibility to find an address in the
list of Entry objects that I keep, given a name.” That responsibility gets written on the

Figure 1.7 A CRC card with initial responsibilities

Class Name: Superclass: Subclassess:

Responsibilities

Primary Responsibility:  

Collaborations

Manage a Name

Know first

Know middle

Know last

Name
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Figure 1.8 A scenario walk-through in progress

Book Card. Then the owner says, “I have to collaborate with each Entry to compare its
name with the name sent to me by the User Interface.” Figure 1.8 shows a team in the
middle of a walk-through.

Now comes a decision. What are the responsibilities of Book and Entry for carrying
out the comparison? Should Book get the name from Entry and do the comparison, or
should it send the name to Entry and receive an answer that indicates whether they are
equal? The team decides that Book should do the comparing, so the Entry card is held in
the air, and its owner says, “I have a responsibility to provide the full name as a string.
To do that I must collaborate with Name.” The responsibility and collaboration are
recorded and the Name card is raised.

Name says, “I have the responsibilities to know my first, middle, and last names.
These are already on my card, so I’m done.” And the Name card is lowered. Entry says,
“I concatenate the three names into a string with spaces between them, and return the
result to Book, so I’m done.” The Entry card is lowered.

Book says, “I keep collaborating with Entry until I find the matching name. Then I
must collaborate with Entry again to get the address.” This collaboration is placed on its
card and the Entry card is held up again, saying “I have a responsibility to provide an
address. I’m not going to collaborate with Address, but am just going to return the
object to Book.” The Entry card has this responsibility added and then goes back on the
table. Its CRC card is shown in Figure 1.9.

The scenario continues until the task of finding an address in the book and report-
ing it to the user is completed. Reading about the scenario makes it seem longer and
more complex than it really is. Once you get used to role playing, the scenarios move
quickly and the walk-through becomes more like a game. However, to keep things mov-
ing, it is important to avoid becoming bogged-down with implementation details. Book
should not be concerned with how the Entry objects are organized on the list. Address
doesn’t need to think about whether the zip code is stored as an integer or a String.
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Figure 1.9 The CRC card for Entry

Class Name: Superclass: Subclassess:

Responsibilities

Primary Responsibility:

Collaborations

Manage a ’page‘ of information

Provide name as a string Get first from Name

Get middle from Name

Get last from Name

NoneProvide Address

Entry

Only explore each responsibility far enough to decide whether a further collaboration is
needed, or if it can be solved with the available information.

The next step is to brainstorm some additional questions that produce new scenar-
ios. For example, here is list of some further scenarios.

We walk through each of the scenarios, adding responsibilities and collaborations
to the CRC cards as necessary. After several scenarios have been tried, the number of

What happens when the user
     • asks for a name that‘s not in the book?
     • wants to add an entry to the book?
     • deletes an entry?
     • tries to delete an entry that isn‘t in the book?
     • wants a phone number?
     • wants a business address?
     • wants a list of upcoming birthdays?
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additions decreases. When one or more scenarios take place without adding to any of
the cards, then we brainstorm further to see if we can come up with new scenarios
that may not be covered. When all of the scenarios that we can envision seem to be
doable with the existing classes, responsibilities, and collaborations, then the design
is done.

The next step is to implement the responsibilities for each class. The implementa-
tion may reveal details of a collaboration that weren’t obvious in the walk-through. But
knowing the collaborating classes makes it easy to change their corresponding responsi-
bilities. The implementation phase should also include a search of available class
libraries to see if any existing classes can be used. For example, the java.util.Cal-
endar class represents a date that can be used directly to implement Birthday.

Enhancing CRC Cards with Additional Information The CRC card design is informal.
There are many ways that the card can be enhanced. For example, when a responsibility
has obvious steps, we can write them below its name. Each step may have specific
collaborations, and we write these beside the steps in the right column. We often
recognize that certain data must be sent as part of the message that activates a
responsibility, and we can record this in parentheses beside the calling collaboration and
the responding responsibility. Figure 1.10 shows a CRC card that includes design
information in addition to the basic responsibilities and collaborations.

To summarize the CRC card process, we brainstorm the objects in a problem and
abstract them into classes. Then we filter the list of classes to eliminate duplicates. For
each class, we create a CRC card and list any obvious responsibilities that it should sup-
port. We then walk through a common scenario, recording responsibilities and collabo-
rations as they are discovered. After that we walk through additional scenarios, moving
from common cases to special and exceptional cases. When it appears that we have all
of the scenarios covered, we brainstorm additional scenarios that may need more
responsibilities and collaborations. When our ideas for scenarios are exhausted, and all
the scenarios are covered by the existing CRC cards, the design is done.

1.3 Verification of Software Correctness

At the beginning of this chapter, we discussed some characteristics of good programs.
The first of these was that a good program works—it accomplishes its intended function.
How do you know when your program meets that goal? The simple answer is, test it.

Let’s look at testing as it relates to the rest of the
software development process. As programmers, we
first make sure that we understand the requirements,
and then we come up with a general solution. Next we
design the solution in terms of a system of classes,

using good design principles, and finally we implement the solution, using well-struc-
tured code, with classes, comments, and so on.

Testing The process of executing a program with
data sets designed to discover errors
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Figure 1.10 A CRC card that is enhanced with additional information

Class Name: Superclass: Subclassess:

Responsibilities

Primary Responsibility:

Collaborations

Manage a ’page‘ of information

Provide name as a string

Get first name

Get middle name

Get last name

Change Name (name string)

Break name into first, middle, last

Update first name

Update middle name

Update last name

Name

Name

Name

None

String

Name, changeFirst(first)

Name, changeMiddle(middle)

Name, changeLast(last)

Provide Address

Entry

Once we have the program coded, we compile it repeatedly until the syntax errors
are gone. Then we run the program, using
carefully selected test data. If the program
doesn’t work, we say that it has a “bug” in it.
We try to pinpoint the error and fix it, a
process called debugging.

Notice the distinction between testing and debugging. Testing is running the pro-
gram with data sets designed to discover errors; debugging is removing errors once they
are discovered.

Debugging The process of removing known errors
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5B. W. Boehm, Software Engineering Economics (Englewood Cliffs, N.J.: Prentice-Hall, 1981).

When the debugging is completed, the software is put into use. Before final deliv-
ery, software is sometimes installed on one or more customer sites so that it can be
tested in a real environment with real data. After passing this acceptance test phase, the
software can be installed at all of the customer sites. Is the verification process now fin-
ished? Hardly! More than half of the total life-cycle costs and effort generally occur
after the program becomes operational, in the maintenance phase. Some changes are
made to correct errors in the original program; other changes are introduced to add new
capabilities to the software system. In either case, testing must be done after any pro-
gram modification. This is called regression testing.

Testing is useful for revealing the presence of bugs in a program, but it doesn’t
prove their absence. We can only say for sure that the program worked correctly for the
cases we tested. This approach seems somewhat haphazard. How do we know which
tests or how many of them to run? Debugging a whole program at once isn’t easy. And

fixing the errors found during such testing can some-
times be a messy task. Too bad we couldn’t have
detected the errors earlier—while we were designing
the program, for instance. They would have been
much easier to fix then.

We know how program design can be improved by
using a good design methodology. Is there something
similar that we can do to improve our program verifica-
tion activities? Yes, there is. Program verification activ-
ities don’t need to start when the program is completely
coded; they can be incorporated into the whole soft-
ware development process, from the requirements phase
on. Program verification is more than just testing.

In addition to program verification—fulfilling the
requirement specifications—there is another important task for the software engineer:
making sure the specified requirements actually solve the underlying problem. There
have been countless times when a programmer finishes a large project and delivers the
verified software, only to be told, “Well, that’s what I asked for, but it’s not what I need.”

The process of determining that software accomplishes its intended task is called
program validation. Program verification asks, “Are we doing the job right?” Program
validation asks, “Are we doing the right job?”5

Can we really “debug” a program before it has ever been run—or even before it has
been written? In this section, we review a number of topics related to satisfying the cri-
terion “quality software works.” The topics include:

• designing for correctness
• performing code and design walk-throughs and inspections
• using debugging methods
• choosing test goals and data
• writing test plans
• structured integration testing

Acceptance tests The process of testing the system
in its real environment with real data

Regression testing Re-execution of program tests
after modifications have been made in order to ensure
that the program still works correctly

Program verification The process of determining the
degree to which a software product fulfills its specifi-
cations

Program validation The process of determining the
degree to which software fulfills its intended purpose
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Origin of Bugs

When Sherlock Holmes goes off to solve a case, he doesn’t start from scratch every
time; he knows from experience all kinds of things that help him find solutions. Sup-
pose Holmes finds a victim in a muddy field. He immediately looks for footprints in the
mud, for he can tell from a footprint what kind of shoe made it. The first print he finds
matches the shoes of the victim, so he keeps looking. Now he finds another, and from
his vast knowledge of footprints, he can tell that it was made by a certain type of boot.
He deduces that such a boot would be worn by a particular type of laborer, and from
the size and depth of the print, he guesses the suspect’s height and weight. Now, know-
ing something about the habits of laborers in this town, he guesses that at 6:30 P.M. the
suspect might be found in Clancy’s Pub.

In software verification we are often expected to play detective. Given certain clues,
we have to find the bugs in programs. If we know what kinds of situations produce pro-
gram errors, we are more likely to be able to detect and correct problems. We may even
be able to step in and prevent many errors entirely, just as Sherlock Holmes sometimes
intervenes in time to prevent a crime that is about to take place.

Let’s look at some types of software errors that show up at various points in pro-
gram development and testing and see how they might be avoided.

Specifications and Design Errors
What would happen if, shortly before you were supposed to turn in a major class
assignment, you discovered that some details in the professor’s program description
were incorrect? To make matters worse, you also found out that the corrections were
discussed at the beginning of class on the day you got there late, and somehow you
never knew about the problem until your tests of the class data set came up with the
wrong answers. What do you do now?

Writing a program to the wrong specifications is probably the worst kind of soft-
ware error. How bad can it be? Most studies indicate that it costs 100 times as much to
correct an error discovered after software delivery then it does if it is discovered early in
the life cycle. Figure 1.11 shows how fast the costs rise in subsequent phases of software
development. The vertical axis represents the relative cost of fixing an error; this cost
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might be in units of hours, or hundreds of dollars, or “programmer months” (the amount
of work one programmer can do in a month). The horizontal axis represents the stages
in the development of a software product. As you can see, an error that would have
taken one unit to fix when you first started designing might take a hundred units to
correct when the product is actually in operation!

Many specification errors can be prevented by good communication between the
programmers (you) and the party who originated the problem (the professor, manager,
or customer). In general, it pays to ask questions when you don’t understand something
in the program specifications. And the earlier you ask, the better.

A number of questions should come to mind as you first read a programming
assignment. What error checking is necessary? What algorithm or data structure is sup-
posed to be used in the solution? What assumptions are reasonable? If you obtain
answers to these questions when you first begin working on an assignment, you can

Figure 1.11 Cost of a specification error based on when it is discovered
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incorporate them into your design and implementation of the program. Later in the pro-
gram’s development, unexpected answers to these questions can cost you time and
effort. In short, in order to write a program that is correct, you must understand pre-
cisely what it is that your program is supposed to do.

Compile-Time Errors
In the process of learning your first programming language, you probably made a num-
ber of syntax errors. These resulted in error messages (for example, “TYPE MISMATCH,”
“ILLEGAL ASSIGNMENT,” “SEMICOLON EXPECTED,” and so on) when you tried to
compile the program. Now that you are more familiar with the programming language,
you can save your debugging skills for tracking down important logical errors. Try to
get the syntax right the first time. Having your program compile cleanly on the first
attempt is a reasonable goal. A syntax error wastes computing time and money, as well
as programmer time, and it is preventable.

As you progress in your college career or move into a professional computing job,
learning a new programming language is often the easiest part of a new software
assignment. This does not mean, however, that the language is the least important part.
In this book we discuss data structures and algorithms that we believe are language-
independent. This means that they can be implemented in almost any general-purpose
programming language. The success of the implementation, however, depends on a
thorough understanding of the features of the programming language. What is consid-
ered acceptable programming practice in one language may be inadequate in another,
and similar syntactic constructs may be just different enough to cause serious trouble.

It is, therefore, worthwhile to develop an expert knowledge of both the control and
data constructs and the syntax of the language in which you are programming. In gen-
eral, if you have a good knowledge of your programming language—and are careful—
you can avoid syntax errors. The ones you might miss are relatively easy to locate and
correct. Once you have a “clean” compilation, you can execute your program.

Run-Time Errors
Errors that occur during the execution of a program are usually harder to detect than
syntax errors. Some run-time errors stop execution of the program. When this happens,
we say that the program “crashed” or “abnormally terminated.”

Run-time errors often occur when the programmer makes too many assumptions.
For instance,

result = dividend / divisor;

is a legitimate assignment statement, if we can assume that divisor is never zero. If
divisor is zero, however, a run-time error results.

Run-time errors also occur because of unanticipated user errors. If a user enters the
wrong data type in response to a prompt, or supplies an invalid filename to a routine,
most simple programs report a runtime error and halt; in other words, they crash.
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Well-written programs should not crash. They should
catch such errors and stay in control until the user is
ready to quit.

The ability of a program to recover when an error
occurs is called robustness. If a commercial program
is not robust, people do not buy it. Who wants a word

processor that crashes if the user says “SAVE” when there is no disk in the drive? We
want the program to tell us, “Put your disk in the drive, and press Enter.” For some
types of software, robustness is a critical requirement. An airplane’s automatic pilot sys-
tem or an intensive care unit’s patient-monitoring program just cannot afford to crash.
In such situations, a defensive posture produces good results.

In general, you should actively check for error-creating conditions rather than let
them abort your program. For instance, it is generally unwise to make too many
assumptions about the correctness of input, especially interactive input from a key-
board. A better approach is to check explicitly for the correct type and bounds of such
input. The programmer can then decide how an error should be handled (request new
input, print a message, or go on to the next data) rather than leave the decision to the
system. Even the decision to quit should be made by a program that is in control of its
own execution. If worse comes to worst, let your program die gracefully.

This does not mean that everything that the program inputs must be checked for
errors. Sometimes inputs are known to be correct—for instance, input from a file that
has been verified. The decision to include error checking must be based upon the
requirements of the program.

Some run-time errors do not stop execution but produce the wrong results. You
may have incorrectly implemented an algorithm or initialized a variable to an incorrect
value. You may have inadvertently swapped two parameters of the same type on a
method call or used a less-than sign instead of a greater-than sign. These logical errors
are often the hardest to prevent and locate. Later we talk about debugging techniques to
help pinpoint run-time errors. We also discuss structured testing methods that isolate
the part of the program being tested. But knowing that the earlier we find an error the
easier it is to fix, we turn now to ways of catching run-time errors before run time.

Designing for Correctness

It would be nice if there were some tool that would locate the errors in our design or
code without our even having to run the program. That sounds unlikely, but consider an
analogy from geometry. We wouldn’t try to prove the Pythagorean theorem by proving
that it worked on every triangle; that would only demonstrate that the theorem works
for every triangle we tried. We prove theorems in geometry mathematically. Why can’t
we do the same for computer programs?

The verification of program correctness, independent of data testing, is an impor-
tant area of theoretical computer science research. The goal of this research is to estab-
lish a method for proving programs that is analogous to the method for proving
theorems in geometry. The necessary techniques exist, but the proofs are often more
complicated than the programs themselves. Therefore, a major focus of verification

Robustness The ability of a program to recover fol-
lowing an error; the ability of a program to continue to
operate within its environment
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6We do not go into this subject in detail here. If you are interested in this topic, you might start with David
Gries’ classic, The Science of Programming (NewYork: Springer-Verlag, (1981)).

research is to attempt to build automated program provers—verifiable programs that
verify other programs. In the meantime, the formal verification techniques can be car-
ried out by hand.6

Preconditions and Postconditions
Suppose we want to design a module (a logical chunk of the program) to perform a spe-
cific operation. To ensure that this module fits into the program as a whole, we must
clarify what happens at its boundaries—what must be true when we enter the module
and what is true when we exit.

To make the task more concrete, picture the design module as it is usually coded, as
a method that is exported from a class. To be able to invoke the method, we must know
its exact interface: the name and the parameter list, which indicates its inputs and out-
puts. But this isn’t enough: We must also
know any assumptions that must be true for
the operation to function correctly.

We call the assumptions that must be
true when invoking the method
preconditions. The preconditions are like a
product disclaimer:

For example, the increment method of the IncDate class, described in the previous
section, might have preconditions related to legal date values and the start of the Gre-
gorian calendar. The preconditions should be listed with the method declaration:

public void increment()
// Preconditions: Values of day, month, and year represent a valid date
//                The represented date is not before minYear

Previously we discussed the quality of program robustness, the ability of a program
to catch and recover from errors. While creating robust programs is an important goal,

WARNING
If you try to execute this operation

when the preconditions are not true, 
the results are not guaranteed.

Preconditions Assumptions that must be true on
entry into an operation or method for the postcondi-
tions to be guaranteed
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it is sometimes necessary to decide at what level errors are caught and handled. Using
preconditions for a method is similar to a contract between the programmer who creates
the method and the programmers who use the method. The contract says that the pro-
grammer who creates the method is not going to try to catch the error conditions
described by the preconditions, but as long as the preconditions are met, the method
works correctly. It is up to the programmers who use the method to ensure that the
method is never called without meeting the preconditions. In other words, the robust-
ness of the system in terms of the method’s preconditions is the responsibility of the
programmers who use the class, and not the programmer who creates the class. This

approach is sometimes called “programming by con-
tract.” It can save work because trapping the same
error conditions at multiple levels of a hierarchical
system is redundant and unnecessary.

We must also know what conditions are true
when the operation is complete. The postconditions
are statements that describe the results of the opera-

tion. The postconditions do not tell us how these results are accomplished; they merely
tell us what the results should be.

Let’s consider what the preconditions and postconditions might be for another sim-
ple operation: a method that deletes the last element from a list. (We are using “list” in
an intuitive sense; we formally define it in Chapter 3.) Assuming the method is defined
within a class with the responsibility of maintaining a list, the specification for
RemoveLast is as follows:

void RemoveLast()

Effect: Removes the last element in this list.
Precondition: This list is not empty.
Postcondition: The last element has been removed from this list.

What do these preconditions and postconditions have to do with program verifica-
tion? By making explicit statements about what is expected at the interfaces between
modules, we can avoid making logical errors based on misunderstandings. For instance,
from the precondition we know that we must check outside of this operation for the
empty condition; this module assumes that there is at least one element.

Experienced software developers know that misunderstandings about interfaces to
someone else’s modules are one of the main sources of program problems. We use
preconditions and postconditions at the method level in this book, because the infor-
mation they provide helps us to design programs in a truly modular fashion. We can
then use the classes we’ve designed in our programs, confident that we are not intro-
ducing errors by making mistakes about assumptions and about what the classes actu-
ally do.

Postconditions Statements that describe what
results are to be expected at the exit of an operation or
method, assuming that the preconditions are true
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Design Review Activities
When an individual programmer is designing
and implementing a program, he or she can
find many software errors with pencil and
paper. Deskchecking the design solution is a
very common method of manually verifying a
program. The programmer writes down essential data (variables, input values, parame-
ters, and so on) and walks through the design, marking changes in the data on the
paper. Known trouble spots in the design or code should be double-checked. A checklist
of typical errors (such as loops that do not terminate, variables that are used before they
are initialized, and incorrect order of parameters on method calls) can be used to make
the deskcheck more effective. A sample checklist for deskchecking a Java program
appears in Figure 1.12. A few minutes spent deskchecking your designs can save lots of

Deskchecking Tracing an execution of a design or
program on paper

The Design

1. Does each class in the design have a clear function or purpose?
2. Can large classes be broken down into smaller pieces?
3. Do multiple classes share common code? Is it possible to write more general classes to

encapsulate the commonalities and then have the individual classes inherit from that gen-
eral class?

4. Are all the assumptions valid? Are they well documented?
5. Are the preconditions and postconditions accurate assertions about what should be happen-

ing in the method they specify?
6. Is the design correct and complete as measured against the program specification? Are there

any missing cases? Is there faulty logic?
7. Is the program designed well for understandability and maintainability?

The Code

1. Has the design been clearly and correctly implemented in the programming language? Are
features of the programming language used appropriately?

2. Are methods coded to be consistent with the interfaces shown in the design?
3. Are the actual parameters on method calls consistent with the parameters declared in the

method definition?
4. Is each data object to be initialized set correctly at the proper time? Is each data object set

correctly before its value is used?
5. Do all loops terminate?
6. Is the design free of “magic” values? (A magic value is one whose meaning is not immediately

evident to the reader. You should use constants in place of such values.)
7. Does each constant, class, variable, and method have a meaningful name? Are comments

included with the declarations to clarify the use of the data objects?

Figure 1.12 Checklist for deskchecking programs
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time and eliminate difficult problems that would otherwise surface later in the life cycle
(or even worse, would not surface until after delivery).

Have you ever been really stuck trying to debug a program and showed it to a class-
mate or colleague who detected the bug right away? It is generally acknowledged that
someone else can detect errors in a program better than the original author can. In an
extension of deskchecking, two programmers can trade code listings and check each other’s
programs. Universities, however, frequently discourage students from examining each
other’s programs for fear that this exchange leads to cheating. Thus, many students become
experienced in writing programs but don’t have much opportunity to practice reading them.

Most sizable computer programs are developed by
teams of programmers. Two extensions of deskcheck-
ing that are effectively used by programming teams
are design or code walk-throughs and inspections.
These are formal team activities, the intention of
which is to move the responsibility for uncovering
bugs from the individual programmer to the group.
Because testing is time-consuming and errors cost
more the later they are discovered, the goal is to iden-
tify errors before testing begins.

In a walk-through, the team performs a manual simulation of the design or program
with sample test inputs, keeping track of the program’s data by hand on paper or a black-
board. Unlike thorough program testing, the walk-through is not intended to simulate all
possible test cases. Instead, its purpose is to stimulate discussion about the way the pro-
grammer chose to design or implement the program’s requirements.

At an inspection, a reader (never the program’s author) goes through the require-
ments, design, or code line by line. The inspection participants are given the material in
advance and are expected to have reviewed it carefully. During the inspection, the par-
ticipants point out errors, which are recorded on an inspection report. Many of the
errors have been noted by team members during their preinspection preparation. Other
errors are uncovered just by the process of reading aloud. As with the walk-through, the
chief benefit of the team meeting is the discussion that takes place among team mem-
bers. This interaction among programmers, testers, and other team members can
uncover many program errors long before the testing stage begins.

If you look back at Figure 1.11, you see that the cost of fixing an error is relatively
inexpensive up through the coding phase. After that, the cost of fixing an error
increases dramatically. Using the formal inspection process can clearly benefit a project.

Exceptions
At the design stage, you should plan how to handle
exceptions in your program. Exceptions are just what
the name implies: exceptional situations. They are situa-
tions that alter the flow of control of the program, usu-
ally resulting in a premature end to program execution.
Working with exceptions begins at the design phase:

What are the unusual situations that the program should recognize? Where in the program
can the situations be detected? How should the situations be handled if they occur?

Walk-through A verification method in which a
team performs a manual simulation of the program or
design

Inspection A verification method in which one mem-
ber of a team reads the program or design line by line
and the others point out errors

Exception Associated with an unusual, often unpre-
dictable event, detectable by software or hardware,
that requires special processing. The event may or may
not be erroneous.
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Where—indeed whether—an exception is detected depends on the language, the soft-
ware package design, the design of the libraries being used, and the platform, that is, on
the operating system and hardware. Where an exception should be detected depends on
the type of exception, on the software package design, and on the platform. Where an
exception is detected should be well documented in the relevant code segments.

An exception may be handled any place in the software hierarchy—from the place
in the program module where the exception is first detected through the top level of the
program. In Java, as in most programming languages, unhandled built-in exceptions
carry the penalty of program termination. Where in an application an exception should
be handled is a design decision; however, exceptions should be handled at a level that
knows what the exception means.

An exception need not be fatal. For non-fatal exceptions, the thread of execution may
continue. Although the thread of execution can continue from any point in the program, the
execution should continue from the lowest level that can recover from the exception. When
an error occurs, the program may fail unexpectedly. Some of the failure conditions may
possibly be anticipated and some may not. All such errors must be detected and managed.

Exceptions can be written in any language. Java (along with some other languages)
provides built-in mechanisms to manage exceptions. All exception mechanisms have
three parts:

• Defining the exception
• Generating (raising) the exception
• Handling the exception

Once your exception plan is determined, Java gives you a clean way of implementing
these three phases using the try-catch and throw statements. We cover these statements
at the end of Chapter 2 after we have introduced some additional Java constructs.

Program Testing

Eventually, after all the design verification, deskchecking, and inspections have been
completed, it is time to execute the code. At last, we are ready to start testing with the
intention of finding any errors that may still remain.

The testing process is made up of a set of test cases that, taken together, allow us to
assert that a program works correctly. We say “assert” rather than “prove” because test-
ing does not generally provide a proof of program correctness.

The goal of each test case is to verify a particular program feature. For instance, we
may design several test cases to demonstrate that the program correctly handles various
classes of input errors. Or we may design cases to check the processing when a data struc-
ture (such as an array) is empty, or when it contains the maximum number of elements.

Within each test case, we must perform a series of component tasks:

• We determine inputs that demonstrate the goal of the test case.
• We determine the expected behavior of the program for the given input.
• We run the program and observe the resulting behavior.
• We compare the expected behavior and the actual behavior of the program. If

they are the same, the test case is successful. If not, an error exists, either in the
test case itself or in the program. In the latter case, we begin debugging.
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For now we are talking about test cases at a class,
or method, level. It’s much easier to test and debug
modules of a program one at a time, rather than try-
ing to get the whole program solution to work all at

once. Testing at this level is called unit testing.
How do we know what kinds of unit test cases are appropriate, and how many are

needed? Determining the set of test cases that is sufficient to validate a unit of a program
is in itself a difficult task. There are two approaches to specifying test cases: cases based
on testing possible data inputs and cases based on testing aspects of the code itself.

Data Coverage
In those limited cases where the set of valid inputs, or
the functional domain, is extremely small, one can
verify a program unit by testing it against every possi-
ble input element. This approach, known as exhaustive
testing, can prove conclusively that the software meets

its specifications. For instance, the functional domain of the following method consists
of the values true and false.

public void PrintBoolean(boolean boolValue)
// Prints the Boolean value to the output
{
if (boolValue)
output.println("true");

else
output.println("false");

}

It makes sense to apply exhaustive testing to this method, because there are only
two possible input values. In most cases, however, the functional domain is very large,
so exhaustive testing is almost always impractical or impossible. What is the functional
domain of the following method?

public void PrintInteger(int intValue)
// Prints the integer value intValue to the output
{
output.println(intValue);

}

It is not practical to test this method by running it with every possible data input; the
number of elements in the set of int values is clearly too large. In such cases, we do
not attempt exhaustive testing. Instead, we pick some other measurement as a testing
goal.

You can attempt program testing in a haphazard way, entering data randomly until
you cause the program to fail. Guessing doesn’t hurt, but it may not help much either. This

Unit testing Testing a class or method by itself

Functional domain The set of valid input data for a
program or method
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approach is likely to uncover some bugs in a program, but it is very unlikely to find them
all. Fortunately, however, there are strategies for detecting errors in a systematic way.

One goal-oriented approach is to cover general classes of data. You should test at
least one example of each category of inputs, as well as boundaries and other special
cases. For instance, in method PrintInteger there are three basic classes of int data:
negative values, zero, and positive values. So, you should plan three test cases, one for
each of these classes. You could try more than three, of course. For example, you might
want to try Integer.MAX_VALUE and Integer.MIN_VALUE, but because all the pro-
gram does is print the value of its input, the additional test cases don’t accomplish much.

There are other cases of data coverage. For example, if the input consists of com-
mands, you must test each command and varying sequences of commands. If the input
is a fixed-sized array containing a variable number of values, you should test the maxi-
mum number of values; this is the boundary condition. A way to test for robustness is
to try one more than the maximum number of values. It is also a good idea to try an
array in which no values have been stored or one that contains a single element. Testing
based on data coverage is called black-box
testing. The tester must know the external
interface to the module—its inputs and
expected outputs—but does not need to con-
sider what is being done inside the module
(the inside of the black box). (See Figure 1.13)

Black-box testing Testing a program or method
based on the possible input values, treating the code as
a “black box”

Figure 1.13 Testing approaches
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Code Coverage
A number of testing strategies are based on the concept of code coverage, the execution
of statements or groups of statements in the program. This testing approach is called

clear (or white) box testing. The tester must look
inside the module (through the clear box) to see the
code that is being tested.

One approach, called statement coverage, requires
that every statement in the program be executed at
least once. Another approach requires that the test
cases cause every branch, or code section, in the pro-
gram to be executed. A single test case can achieve
statement coverage of an if-then statement, but it
takes two test cases to test both branches of the state-
ment.

A similar type of code-coverage goal is to test
program paths. A path is a combination of branches
that might be traveled when the program is executed.
In path testing, we try to execute all the possible pro-

gram paths in different test cases.

Test Plans
Deciding on the goal of the test approach—data coverage, code coverage, or (most often) a
mixture of the two, precedes the development of a test plan. Some test plans are very infor-

mal—the goal and a list of test cases, written by hand on
a piece of paper. Even this type of test plan may be more
than you have ever been required to write for a class
programming project. Other test plans (particularly those
submitted to management or to a customer for approval)
are very formal, containing the details of each test case

in a standardized format.
For program testing to be effective, it must be planned. You must design your test-

ing in an organized way, and you must put your design in writing. You should deter-
mine the required or desired level of testing, and plan your general strategy and test
cases before testing begins. In fact, you should start planning for testing before writing
a single line of code.

Debugging
In the previous section we talked about checking the output from our test and
debugging when errors were detected. We can debug “on the fly” by adding output
statements in suspected trouble spots when problems are found. For example, if you
suspect an error in the IncDate increment method, you could augment the method
as follows:

Clear (white) box testing Testing a program or
method based on covering all of the branches or paths
of the code

Branch A code segment that is not always executed;
for example, a switch statement has as many branches
as there are case labels

Path A combination of branches that might be tra-
versed when a program or method is executed

Path testing A testing technique whereby the tester
tries to execute all possible paths in a program or
method

Test plan A document showing the test cases
planned for a program or module, their purposes,
inputs, expected outputs, and criteria for success
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public void increment()
{
// For debugging
output.println("IncDate method increment entered.");
output.println("year = " + year);
output.println("month = " + month);
output.println("day = " + day);

// Increment algorithm goes here
// It updates the year, month, and day values

// For debugging
output.println("IncDate method increment exiting.");
output.println("year = " + year);
output.println("month = " + month);
output.println("day = " + day);
output.println("IncDate method increment terminated.");

}

Note that the new output is only for debugging; these output lines are meant to be
seen only by the tester, not by the user of the program. But it’s annoying for debugging
output to show up mixed with your application’s real output, and it’s difficult to debug
when the debugging output isn’t collected in one place. One way to separate the debug-
ging output from the “real” program output is to declare a separate file to receive these
debugging lines.

Usually the debugging output statements are removed from the program, or “com-
mented out,” before the program is delivered to the customer or turned in to the profes-
sor. (To “comment out” means to turn the statements into comments by preceding them
with // or enclosing them between /* and */.) An advantage of turning the debugging
statements into comments is that you can easily and selectively turn them back on for
later tests. A disadvantage of this technique is that editing is required throughout the
program to change from the testing mode (with debugging) to the operational mode
(without debugging).

Another popular technique is to make the debugging output statements dependent
on a Boolean flag, which can be turned on or off as desired. For instance, a section of
code known to be error-prone may be flagged in various spots for trace output by using
the Boolean value debugFlag:

// Set debugFlag to control debugging mode
static boolean debugFlag = true;
.
.
.
if (debugFlag)
debugOutput.println("method Complex entered.");
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This flag may be turned on or off by assignment, depending on the programmer’s
need. Changing to an operational mode (without debugging output) merely involves
redefining debugFlag as false and then recompiling the program. If a flag is used,
the debugging statements can be left in the program; only the if checks are executed
in an operational run of the program. The disadvantage of this technique is that the
code for the debugging is always there, making the compiled program larger and
slower. If there are a lot of debugging statements, they may waste needed space and
time in a large program. The debugging statements can also clutter up the program,
making it harder to read. (This is another example of the tradeoffs we face in develop-
ing software.)

Some systems have online debugging programs that provide trace outputs, making
the debugging process much simpler. If the system at your school or workplace has a
run-time debugger, use it! Any tool that makes the task easier should be welcome, but
remember that no tool replaces thinking.

A warning about debugging: Beware of the quick fix! Program bugs often travel in
swarms, so when you find a bug, don’t be too quick to fix it and run your program
again. As often as not, fixing one bug generates another. A superficial guess about the
cause of a program error usually does not produce a complete solution. In general, the
time that it takes to consider all the ramifications of the changes you are making is time
well spent.

If you constantly need to debug, there’s a deficiency in your design process. The
time that it takes to consider all the ramifications of the design you are making is time
spent best of all.

Testing Java Data Structures

The major topic of this textbook is data structures: what they are, how we use them, and
how we implement them using Java. This chapter has been an overview of software
engineering. In Chapter 2 we begin our concentration on data and how to structure it. It
seems appropriate to end this section about verification with a look at how we test the
data structures we implement in Java.

In Chapter 2, we implement a data structure using a Java class, so that many differ-
ent application programs can use the structure. When we first create the class that mod-
els the data structure, we do not necessarily have any application programs ready to use
it. We need to test it by itself first, before creating the applications.

Every data structure that we implement supports a set of operations. For each struc-
ture, we would like to create a test driver program that allows us to test the operations
in a variety of sequences. How can we write a single test driver that allows us to test
numerous operation sequences? The solution is to separate the specific set of operations
that we want to test from the test driver program itself. We list the operations, and the
necessary parameters, in a text file. The test driver program reads the operations from
the text file one line at a time, performs the listed operation by invoking the methods of
the class being tested, and reports the results to an output file. The test program also
reports its general results on the screen.
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Figure 1.14 Model of test architecture
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The testing approach described here allows us to easily change our test case—we
just have to change the contents of the input file. However, it would be even easier if
we could dynamically change the name of the input file, whenever we run the program.
Then we could organize our test cases, one per file, and easily rerun a test case when-
ever we needed. Therefore, we construct our test driver to accept the name of the input
file as a command line parameter; we do the same for the output file. Figure 1.14 dis-
plays a model of our test architecture.
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Obtain the names of the input and output files from the command line
Open the input file for reading and the output file for writing
Read the first line from the input file
Print “Results “ plus the first line of the input file to the output file
Print a blank line to the output file
Read a command line from the input file
Set numCommands to 0
While the command read is not ‘quit’

Execute the command by invoking the public methods of the data structure
Print the results to the output file
Print the data structure to the output file (if appropriate)
Increment numCommands by 1
Read the next command from the input file

Close the input and output files.
Print “Command “ + numCommands + “ completed” to the screen
Print “Testing completed” to the screen

Our test drivers all follow the same basic algorithm; here is a pseudocode description:

This algorithm provides us with maximum flexibility for minimum extra work when we
are testing our data structures. Once we implement the algorithm by creating a test
driver for a specific data structure, we can easily create a test driver for a different data
structure by changing only three steps.

Notice that the third and fourth commands copy a “header line” from the input test
file to the output file. This helps us manage our test cases by allowing us to label each
test case file with an identifying string on its first line; the same string always begins
the corresponding output file.

Suppose we want to test the IncDate class that was defined earlier in this chapter.
We first create a test plan. Let’s use a goal-oriented approach. We first test the construc-
tor and each of the observer methods. Next we test the transformer method increment.
To test increment we identify general categories of dates, with respect to the effect of
the increment method. We test dates that represent each of these categories, with spe-
cial attention given to the boundaries of the categories. Thus, we test some dates in the
middle of months, and at the beginning and end of months. We test the end of years
also. We pay careful attention to testing how the method handles leap years, by includ-
ing tests concentrated at the end of February in many different years. Several more test
cases, besides those listed below, would be needed to ensure that the increment method
works correctly.
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After identifying a test plan, we create a test driver using our algorithm. Then we
use the test driver to carry out our plan. The IncDate class supports five operations:
IncDate (the constructor), yearIs, monthIs, dayIs, and increment. We represent
these operations in the test input file simply by using their names. In that file, the word
IncDate is followed by three lines, each containing an integer, to supply the three int
parameters of the constructor. Figure 1.15 shows an example of a test input file, the
resulting output file, and the screen information that would be generated.

Study the test driver program on page 51 to make sure you understand our testing
approach. You should be able to follow the control logic of the program. Note that we
assume the inclusion of a reasonable toString method in the Date class, as described
at the end of the Object-Oriented Design section. (The Date.java file on our web site
includes a toString method.)

Operation to be Tested
and Description of
Action Input Values Expected Output

Constructor

IncDate 5, 6, 2000

print 5/6/2000

Observers

print monthIs 5

print dayIs 6

print yearIs 2000

Transformer

increment and print 5/7/2000

IncDate 5,30,2000

increment and print 5/31/2000

IncDate 5,31,2000

increment and print 6/1/2000

IncDate 6,30,2000

increment and print 7/1/2000

IncDate 2,28,2002

increment and print 3/1/2002

etc.



50 | Chapter 1:  Software Engineering

We realize that the students using this textbook come from a wide variety of Java
backgrounds, especially with respect to the Java I/O approach. You may have learned
Java in an environment where the Java input/output statements were “hidden” behind
a package provided with your introductory textbook. Or you may have learned graphi-
cal input/output techniques, but never learned how to do file input/output. You may
not be familiar with “command-line parameters;” or you might have been using com-
mand-line parameters since the first week you studied Java. You may have learned how
to use the Java AWT; you may have learned Swing; you may have learned neither. Our
approach to testing requires only simple file input and output, in addition to screen
output. It does not require any direct user input during execution, which can be com-
plicated in Java.

The feature section on Java Input/Output (after the following code) introduces the
input/output techniques used for our test drivers. We use these same techniques in test
drivers and example programs throughout the rest of the text, so it is a good idea for you
to study them carefully now. The only places in the text where more advanced I/O
approaches are used are in the chapter Case Studies. Beginning with Chapter 3, we
develop case studies as examples of real programs that use the data structures you are
studying. These case studies use progressively more advanced graphical interfaces, and
are accompanied by additional feature sections as needed to explain any new constructs.

Figure 1.15 Example of a test input file and resulting output file

IncDate Test Data A
IncDate
5
6
2000
monthIs
dayIs
increment
dayIs
quit

Results IncDate Test Data A
 
Constructor invoked with 5 6 2000
theDate: 5/6/2000
Month is 5
theDate: 5/6/2000
Day is 6
theDate: 5/6/2000
increment invoked
theDate: 5/7/2000
Day is 7
theDate: 5/7/2000

File: TestDataA

File: TestOutputA

Command: java TDIncDate TestDataA TestOutputA

Screen
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Therefore, the case studies not only provide examples of object-oriented design and uses
of data structures, but they also progressively introduce you to user interface techniques.

Within the following test driver code we have emphasized, with underlining, all the
commands related to input/output. As you can see, these statements make up a large
percentage of the program; this is not unusual.

//----------------------------------------------------------------------------
// TDIncDate.java             by Dale/Joyce/Weems                    Chapter 1
// 
// Test Driver for the IncDate class
//----------------------------------------------------------------------------

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import IncDate.*;

// Test Driver for the IncDate class
public class TDIncDate
{
public static void main(String[] args) throws IOException
{
String testName  = "IncDate";
String command   = null;
int numCommands  = 0;
IncDate  theDate = new IncDate(0,0,0);
int month, day, year;

//Get file name arguments from command line as entered by user
String dataFileName = args[0];
String outFileName  = args[1];

//Prepare files
BufferedReader dataFile = new BufferedReader(new FileReader(dataFileName));
PrintWriter outFile     = new PrintWriter(new FileWriter(outFileName));

//Get test file header line and echo print to outFile
String testInfo = dataFile.readLine();
outFile.println("Results " + testInfo);
outFile.println();
command = dataFile.readLine();

//Process commands
while(!command.equals("quit"))
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{
if (command.equals("IncDate"))
{
month  = Integer.parseInt(dataFile.readLine());
day    = Integer.parseInt(dataFile.readLine());
year   = Integer.parseInt(dataFile.readLine());
outFile.println("Constructor invoked with " + month + " "

+ day + " " + year);
theDate = new IncDate(month, day, year);

}
else if (command.equals("yearIs"))

{
outFile.println("Year is " + theDate.yearIs());

}
else if (command.equals("monthIs"))

{
outFile.println("Month is " + theDate.monthIs());

}
else if (command.equals("dayIs"))

{
outFile.println("Day is " + theDate.dayIs());

}
else if (command.equals("increment"))

{
theDate.increment();
outFile.println("increment invoked ");

}

outFile.println("theDate: " + theDate);
numCommands++;
command = dataFile.readLine();

}

//Close files
dataFile.close();
outFile.close();

//Set up output frame
JFrame outputFrame = new JFrame();
outputFrame.setTitle("Testing " + testName);
outputFrame.setSize(300,100);
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
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// Instantiate content pane and information panel
Container contentPane = outputFrame.getContentPane();
JPanel infoPanel      = new JPanel();

// Set layout
infoPanel.setLayout(new GridLayout(2,1));

// Create labels
JLabel countInfo = new JLabel(numCommands + " commands completed.  ");
JLabel finishedInfo = new JLabel("Testing completed. "

+ "Close window to exit program.");

// Add information
infoPanel.add(countInfo);
infoPanel.add(finishedInfo);
contentPane.add(infoPanel);

// Show information
outputFrame.show();

}
}

Note that the test driver gets the test data and calls the methods to be tested. It also
provides written output about the effects of the method calls, so that the tester can
check the results. Sometimes test drivers are used to test hundreds or thousands of test
cases. In such situations it is best if the test driver automatically verifies whether or not
the test cases were handled successfully. Exercise 36 asks you to expand this test driver
to include automatic test-case verification.

This test driver does not do any error checking to make sure that the inputs are
valid. For instance, it doesn’t verify that the input command code is really a legal com-
mand. Furthermore, it does not handle possible I/O exceptions; instead it just throws
them out to the run-time environment (exception handling is discussed in Chapter 2).
Remember that the goal of the test driver is to act as a skeleton of the real program, not
to be the real program. Therefore, the test driver does not need to be as robust as the
program it simulates.

Java Input/Output I
The Java class libraries provide varied and robust mechanisms for input and output. Hundreds
of classes related to the user interface provide programmers with a multitude of options. I/O is
not the topic of this textbook. We use straightforward I/O approaches that support the study of
data structures.

In this feature section, we examine the I/O commands used in the TDIncDate program (we
examine more I/O commands as needed later in the text). The relevant commands are highlighted
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in the program text. As modeled in Figure 1.14, this program uses screen output and file input and
output. The program also uses command-line arguments to obtain the names of the files—this is a
form of input. Figure 1.15 shows an example of an input file, the resultant output file, the screen
output, and the corresponding command line. If you’re interested in learning more, you might
begin by studying the documentation provided on the Sun Microsystems Inc. web site of the vari-
ous classes and methods we use.

Command-Line Input

A simple way to pass string information to a Java program is with command-line arguments.
Command-line arguments are read by the program each time it is run; a different set of argu-
ments will invoke different behavior from the program. For example, suppose you want to run
the TDIncDate program using a file called TestDataA as the input file and a file called
TestOutputA as the output file. If you are working from the command line, you invoke the
Java interpreter, asking it to “execute” the TDIncDate.class file using as arguments the
strings “TestDataA” and “TestOutputA” by entering:

java TDIncDate TestDataA TestOutputA

The program runs; it takes its input from the TestDataA file; a small output window appears
on your screen informing you when the program is finished; and the TestOutputA file holds
the results of the test. You end the program by closing the output window. Now, if you want the
program to run again using different input and output files, say, TestDataB and TestOut-
putB, you simply invoke the interpreter with a different command line:

java TDIncDate TestDataB TestOutputB

Note that if you are using an integrated development environment, instead of working from the
command line, you compile and run your program using a pull-down menu or a shortcut key.
Consult your environment’s documentation to learn how to pass command-line arguments in
this situation.

How do you access the command-line arguments within your program? Through the main
method’s array of strings parameter. By convention, this parameter is usually called args, to
represent the command-line arguments. In our example, args[0] references the string “Test-
DataA” and args[1] references the string “TestOutputA”. We use these string values to initial-
ize string variables that represent the input and output files of the program:

String dataFileName = args[0];
String outFileName = args[1];

With this approach, we can change the test input and output files each time we run the pro-
gram by simply entering a different command on the command line.
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File Output

Java provides a stream output model. As an abstract concept, a stream is just a sequence of
bytes. A Java program can direct an output stream to a file, a network connection, or even a
specific block of memory. We use files.

The Java class library supports more than 60 different stream types. We use classes that
inherit from the abstract class Writer. Abstract classes are discussed in Chapter 3. For now, all
you need to know is that you cannot instantiate objects of abstract classes, but you can extend
the classes. In our program we use the PrintWriter class and the FileWriter class, both of
which are library subclasses of Writer. To make these classes available within our program, we
must include the import statement:

import java.io.*;

The Writer class and its subclasses allow us to perform text output in a standard environment.
You may recall from your previous studies that Java uses the Unicode character set as its base
character set. A Unicode character uses 16 bits; therefore, the Unicode character set can repre-
sent 65,536 unique characters. This large character set helps make Java suitable as a program-
ming language around the world, since there are many languages that do not use the standard
Western alphabet. However, most of our environments do not yet support the Unicode character
set. For example, text files, which we often use to provide input to a program or output from a
program, are based on the much smaller ASCII character set. The Writer class provides meth-
ods to translate the Unicode characters used within a Java program to the ASCII characters
required by text files.

To perform stream output using ASCII characters, we instantiate an object of the class
PrintWriter. The PrintWriter class provides methods for printing all of Java’s primitive
types, strings, generic objects (using the object’s toString method), and arrays of characters.
It also provides a method to close the output stream (close), methods to check and set errors
(checkError and setError), and a method to flush the stream (flush). The flush method
is used to force all of the current output to go immediately to the file. In TDIncDate we only
use PrintWriter, println, and close methods. The println method sends a textual rep-
resentation of its parameter to the output stream, followed by a linefeed. For example, the code:

outFile.println("Month is " + theDate.monthIs());

transforms the int returned by the monthIs method into a string, concatenates that string to
the string “Month is”, transforms the entire string into an ASCII representation, appends a line-
feed character, and sends the whole thing to the output stream. You can see many other uses of
the println method throughout the rest of the program. The close method is invoked when
processing is finished:

outFile.close();

Invoking close informs the system that we are finished using the file. It is important for system
efficiency and stability for a program to close files when it is finished using them.
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So far in this discussion, we have referred to sending textual information to the “output
stream.” But how is this output stream associated with the correct file? The answer to this ques-
tion is found by looking at the declaration of the PrintWriter object used in the program:

PrintWriter outFile = new PrintWriter(new FileWriter(outFileName));

Embedded within the PrintWriter declaration is an invocation of a FileWriter con-
structor:

new FileWriter(outFileName)

The FileWriter class is another subclass of Writer. The code invokes the FileWriter con-
structor and instantiates an object of the class Writer that is associated with the file repre-
sented by the variable outFileName. Recall that outFileName is the name of the output file
that was passed to the program as a command-line argument. By embedding this code within
the PrintWriter declaration, we associate the PrintWriter object outFile with the text
file represented by outFileName. In our example above this is the OutFileA file. Therefore, a
command such as:

outFile.println("Month is " + theDate.monthIs());

sends its output to the OutFileA file.

File Input

Most of the previous discussion about file output can be applied to file input. Instead of using the
abstract class Writer we use the abstract class Reader; instead of PrintWriter we use
BufferedReader; instead of the println method we use the readLine method; instead of
the FileWriter class we use the FileReader class. We leave it to the reader to look over the
TDIncDate program to see how the various file reading statements interact with each other. We
do, however, briefly discuss the readLine method.

The BufferedReader readLine method returns a string that holds the next line of char-
acters from the input stream. Therefore, a statement such as:

command = dataFile.readLine();

sets the string variable command to reference the next line of characters from the file associ-
ated with the object dataFile. In some cases we need to transform this line of characters into
an integer. To do this we use the parseInt method of the Integer wrapper class:

day = Integer.parseInt(dataFile.readLine());



1.3 Verification of Software Correctness | 57

An alternate approach is to use the intValue method of the String class, and the valueOf
method of the Integer wrapper class as follows:

day = Integer.valueOf(dataFile.readLine()).intValue;

Wrapper classes are discussed in Chapter 2.

Frame Output

We really cannot do justice to the topic of graphical user interfaces (GUIs) in this textbook. The
topic is a nontrivial, important area of computing and deserves serious study. Nevertheless,
modern programming approaches demand the use of GUIs and we make moderate use of them
in our programs. So, without trying to explain all of the underlying concepts and supporting
classes, we look at the purpose of each of the statements related to frame output. (Figure 1.15
shows the displayed frame.)

Note that our TDIncDate class includes the following import statements:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

The first statement imports classes from the Java library awt package; the second imports
classes related to event handling, also from the Java library awt package; the third imports the
classes of the Java swing package. The AWT (Abstract Window Toolkit) was the set of graphical
interface tools included with the original version of Java. Developers found that this set of tools
was too limited for professional program development, so the Java designers included a new set
of graphical components, called the “Swing” components, when they released the Java Founda-
tion Classes in 1997. The Swing components are more portable and flexible than their AWT
counterparts. We use Java Swing components throughout the text. Note that Java Swing is built
on top of Java AWT, so we still need to import AWT classes.

The code related to the frame output begins with the comment:

//Set up output frame

and continues to the end of the program listing. First, let’s address the set-up of the frame itself.
A frame is a top-level window with a title, a border, a menu bar, a content pane, and more. We
declare our frame with the statement:

JFrame outputFrame = new JFrame();

JFrame is the Java Swing frame component (you can recognize Java Swing components since
they begin with the letter “J” to differentiate them from their AWT counterparts). Therefore, our
outputFrame object is a JFrame, and can be manipulated with the library methods defined
for JFrames.
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We immediately make use of three of these methods to set up our frame:

outputFrame.setTitle("Testing " + testName);
outputFrame.setSize(300,100);
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

These statements set the title and size for the instantiated frame, and define how the frame
should react to the user closing the frame’s window. Setting the title and size are very straight-
forward. The title of our frame is “Testing IncDate,” since the variable testname was set to
“IncDate” at the beginning of the main method. The size of the frame is set to 300 pixels wide
by 100 pixels tall.

Defining how the frame reacts to the user closing the frame’s window is a little more com-
plicated. When the frame is eventually displayed, it appears in its own window. Normally, when
you define a window from within a Java program, you must define how the window reacts to
various events: closing the window, resizing the window, activating the window, and so on. You
must define methods to handle all of these events. However, in our program we want to handle
only one of these events, the window-closing event. Java provides a special method, just for
handling this event; the setDefaultCloseOperation method. This method tells the
JFrame what to do when its window is closed, as long the action is one of a small set of com-
mon choices. The JFrame class provides the following class constants that name these choices:

JFrame.DISPOSE_ON_CLOSE
JFrame.DO_NOTHING_ON_CLOSE
JFrame.HIDE_ON_CLOSE
JFrame.EXIT_ON_CLOSE

In our program we use the EXIT_ON_CLOSE option, so the program disposes of the window
and exits when the user closes the window.

The following two lines set up our frame output:

Container contentPane = outputFrame.getContentPane();
JPanel infoPanel      = new JPanel();

The first line provides us a “handle” for the content pane of the new frame. Remember that
frames have many parts; the part where we display information is called the “content pane.” We
now have access to the content pane of our frame through the contentPane variable. This
variable is an object of the class Container, which means we can place other objects into it
for display purposes. What can we place into it? We can place almost anything: buttons, labels,
drawings, text boxes; but to help us organize our interfaces we prefer to place yet another con-
tainer object, called a panel, into content panes. The second line instantiates a JPanel object
(the Swing version of a panel) called infoPanel. It is here where we place the information we
want to display.

We next set a particular layout scheme for the infoPanel panel with the command:

infoPanel.setLayout(new GridLayout(2,1));
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When we add items to the panel, they are organized according to the layout scheme defined in
the above statement. We have chosen to use the grid layout scheme with 2 rows and 1 column.
The Java Library provides many other layout schemes.

Next we create a new “label,” containing information we wish to display on the screen. A
label is a component that can hold one line of text; nothing fancy, just a line of text. That is all
we need here. This is accomplished by the statements:

JLabel countInfo = new JLabel(numCommands + " commands completed.  ");
JLabel finishedInfo = new JLabel("Testing completed. "

+ "Close window to exit program.");

Finally, we add our information to the panel and display it with:

infoPanel.add(countInfo);
infoPanel.add(finishedInfo);
contentPane.add(infoPanel);
outputFrame.show();

The first two add method invocations add the labels to the infoPanel. The third add method
invocation adds the infoPanel to the contentPane (which is already associated with the
outputFrame). The show method displays the outputFrame on the monitor. That’s it.

In summation, to perform frame output, the TDIncDate program does the following:

1. Imports classes from the awt and swing packages
2. Instantiates a new JFrame object
3. Obtains the content pane of the new frame
4. Creates a panel to hold information
5. Defines the layout of the panel
6. Instantiates labels with the information to display
7. Adds these labels to the panel
8. Adds the panel to the content pane
9. Shows the frame

Using this frame output approach allows us to use window output without getting bogged down
in too much detail. When we run our test driver program, it reads data from the input file and
writes results to the output file. It then creates an output frame as a separate program thread
and reports summary information about the test results there. Note that when the main thread
of the program finishes, the frame thread is still running. It will run until the user closes the
frame’s window, activating the window-closing event that we defined through the set-
DefaultCloseOperation method.

Practical Considerations

It is obvious from this chapter that program verification techniques are time-consuming
and, in a job environment, expensive. It would take a long time to do all of the things
discussed in this chapter, and a programmer has only so much time to work on any par-
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ticular program. Certainly not every program is worthy of such cost and effort. How can
you tell how much and what kind of verification effort is necessary?

A program’s requirements may provide an indication of the level of verification
needed. In the classroom, your professor may specify the verification requirements as
part of a programming assignment. For instance, you may be required to turn in a writ-
ten, implemented test plan. Part of your grade may be determined by the completeness
of your plan. In the work environment, the verification requirements are often specified
by a customer in the contract for a particular programming job. For instance, a contract
with a customer may specify that formal reviews or inspections of the software product
be held at various times during the development process.

A higher level of verification effort may be indicated for sections of a program that
are particularly complicated or error-prone. In these cases, it is wise to start the verifica-
tion process in the early stages of program development in order to prevent costly errors
in the design.

A program whose correct execution is critical to human life is obviously a candidate
for a high level of verification. For instance, a program that controls the return of astro-
nauts from a space mission would require a higher level of verification than a program
that generates a grocery list. As a more down-to-earth example, consider the potential for
disaster if a hospital’s patient database system had a bug that caused it to lose information
about patients’ allergies to medications. A similar error in a database program that man-
ages a Christmas card mailing list, however, would have much less severe consequences.

Summary
How are our quality software goals met by the strategies of abstraction and information
hiding? When we hide the details at each level, we make the code simpler and more
readable, which makes the program easier to write, modify, and reuse. Object-oriented
design processes produce modular units that are also easier to test, debug, and maintain.

One positive side effect of modular design is that modifications tend to be localized
in a small set of modules, and thus the cost of modifications is reduced. Remember that
whenever we modify a module we must retest it to make sure that it still works correctly
in the program. By localizing the modules affected by changes to the program, we limit
the extent of retesting needed.

Finally, we increase reliability by making the design conform to our logical picture
and delegating confusing details to lower levels of abstraction. By understanding the
wide range of activities involved in software development—from requirements analysis
through the maintenance of the resulting program—we gain an appreciation of a disci-
plined software engineering approach. Everyone knows some programming wizard who
can sit down and hack out a program in an evening, working alone, coding without a
formal design. But we cannot depend on wizardry to control the design, implementa-
tion, verification, and maintenance of large, complex software projects that involve the
efforts of many programmers. As computers grow larger and more powerful, the prob-
lems that people want to solve on them also become larger and more complex. Some



Summary | 61

Analysis Make sure that requirements are completely understood.

Understand testing requirements.

Specification Verify the identified requirements.

Perform requirements inspections with your client.

Design Design for correctness (using assertions such as preconditions and postconditions).

Perform design inspections.

Plan testing approach.

Code Understand programming language well.

Perform code inspections.

Add debugging output statements to the program.

Write test plan.

Construct test drivers.

Test Unit test according to test plan.

Debug as necessary.

Integrate tested modules.

Retest after corrections.

Delivery Execute acceptance tests of complete product.

Maintenance Execute regression test whenever delivered product is changed to add new function-
ality or to correct detected problems.

Figure 1.16 Life-cycle verification activities

people refer to this situation as a software crisis. We’d like you to think of it as a soft-
ware challenge.

It should be obvious by now that program verification is not something you begin
the night before your program is due. Design verification and program testing go on
throughout the software life cycle.

Verification activities begin when we develop the software specifications. At this
point, we formulate the overall testing approach and goals. Then, as program design
work begins, we apply these goals. We may use formal verification techniques for parts
of the program, conduct design inspections, and plan test cases. During the implementa-
tion phase, we develop test cases and generate test data to support them. Code inspec-
tions give us extra support in debugging the program before it is ever run. Figure 1.16
shows how the various types of verification activities fit into the software development
cycle. Throughout the life cycle, one thing remains the same: the earlier in this cycle we
can detect program errors, the easier (and less costly in time, effort, and money) they
are to remove. Program verification is a serious subject; a program that doesn’t work
isn’t worth the disk it’s stored on.
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Classes and Support Files Defined in Chapter 1

File First Ref. Notes

Date.java page 14 Example of a Java class with instance and class vari-
ables.

Unlike the original code in the text, the code on our
web site includes a toString method.

IncDate.java page 18 Demonstrates inheritance.

The code for the increment command is not included
(see Exercise 34).

TDIncDate.java page 51 Example of a test driver; test driver for the IncDate
class.

In Exercise 36 we ask the student to enhance the code
to include automated test verification.

TestDataA page 50 Input file for TDIncDate.

Summary of Classes and Support Files
In this section at the end of each chapter we summarize, in tabular form, the classes
defined in the chapter. The classes are listed in the order in which they appear in the
text. We also include information about any other files, such as test input files, that
support the material. The summary includes the name of the file, the page on which the
class or support file is first referenced, and a few notes. The notes explain how the class
or support file was used in the text, followed by additional notes if appropriate. The
class and support files are available on our web site. They can be found in the ch01
subdirectory of the bookFiles subdirectory.

We also include in this summary section a list of any Java library classes that were
used for the first time for the classes defined in the chapter. For each library class we
list its name, its package, any of its methods that are explicitly used, and the name of
the program/class where they are first used. The classes are listed in the order in which
they are first used. Note that in some classes the methods listed might not be defined
directly in the class; they might be defined in one of its superclasses. With the classes
we also list constructors, if appropriate. For more information about the library classes
and methods, check the Sun Java documentation.
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Library Classes Used in Chapter 1 for the First Time

Class Name Package Overview Methods Used Where Used

JFrame swing Manages a graphical addWindowListener, TDIncDate
window getContentPane, show, 

setSize, setTitle

String lang Creates and parses strings equals, String TDIncDate

BufferedReader io Provides a buffered stream BufferedReader, readLine, TDIncDate
of character data close

FileReader io Allows reading of FileReader TDIncDate
characters from a file

PrintWriter io Outputs a buffered stream PrintWriter, println, close TDIncDate
of character data

FileWriter io Allows reading of FileWriter TDIncDate
characters from a file

Container awt Provides a container that add TDIncDate
can hold other containers

Jpanel swing Provides a container for add, JPanel, setLayout TDIncDate
organizing display 
information

GridLayout awt Creates a rectangular grid GridLayout TDIncDate
scheme for output

JLabel swing Holds one line of text for JLabel TDIncDate
display

WindowAdapter awt Provides null methods for WindowAdapter TDIncDate
window events

System lang Various system-related exit TDIncDate
methods

Integer lang Wraps the primitive int parseInt TDIncDate
type
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Exercises
1.1 The Software Process

1. Explain what we mean by “software engineering.”

2. List four goals of quality software.

3. Which of these statements is always true?

a. All of the program requirements must be completely defined before design
begins.

b. All of the program design must be complete before any coding begins.

c. All of the coding must be complete before any testing can begin.

d. Different development activities often take place concurrently, overlapping in
the software life cycle.

4. Explain why software might need to be modified

a. in the design phase.

b. in the coding phase.

c. in the testing phase.

d. in the maintenance phase.

5. Goal 4 says, “Quality software is completed on time and within budget.”

a. Explain some of the consequences of not meeting this goal for a student
preparing a class programming assignment.

b. Explain some of the consequences of not meeting this goal for a team devel-
oping a highly competitive new software product.

c. Explain some of the consequences of not meeting this goal for a programmer
who is developing the user interface (the screen input/output) for a spacecraft
launch system.

6. Name three computer hardware tools that you have used.

7. Name two software tools that you have used in developing computer programs.

8. Explain what we mean by “ideaware.”

1.2 Program Design
9. For each of the following, describe at least two different abstractions for differ-

ent viewers (see Figure 1.1).

a. A dress d. A key

b. An aspirin e. A saxophone

c. A carrot f. A piece of wood

10. Describe four different kinds of stepwise refinement.

11. Explain how to use the nouns and verbs in a problem description to help iden-
tify candidate design classes and methods.

12. Find a tool that you can use to create UML class diagrams and recreate the dia-
gram of the Date class shown in Figure 1.3.



Exercises | 65

13. What is the difference between an object and a class? Give some examples.

14. Describe the concept of inheritance, and explain how the inheritance tree is tra-
versed to bind method calls with method implementations in an object-oriented
system.

15. Make a list of potential objects from the description of the automated-teller-
machine scenario given in this chapter.

16. Given the definition of the Date and IncDate classes in this chapter, and the
following declarations:

int temp;
Date date1 = new Date(10,2,1989);
Date date2 = new Date(4,2,1992);
IncDate date3 = new IncDate(12,25,2001);

indicate which of the following statements are illegal, and which are legal.
Explain your answers.

a. temp = date1.dayIs();

b. temp = date3.yearIs();

c. date1.increment();

d. date3.increment();

e. date2 = date1;

f. date2 = date3;

g. date3 = date2;

1.3 Verification of Software Correctness

17. Have you ever written a programming assignment with an error in the specifica-
tions? If so, at what point did you catch the error? How damaging was the error to
your design and code?

18. Explain why the cost of fixing an error is increasingly higher the later in the
software cycle the error is detected.

19. Explain how an expert understanding of your programming language can reduce
the amount of time you spend debugging.

20. Explain the difference between program verification and program validation.

21. Give an example of a run-time error that might occur as the result of a program-
mer making too many assumptions.

22. Define “robustness.” How can programmers make their programs more robust by
taking a defensive approach?

23. The following program has two separate errors, each of which would cause an
infinite loop. As a member of the inspection team, you could save the programmer
a lot of testing time by finding the errors during the inspection. Can you help?
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import java.io.PrintWriter;
public class TryIncrement
{
static PrintWriter output = new PrintWriter(System.out,true);

public static void main(String[] args) throws Exception
{
int count = 1;
while(count < 10)
output.println(" The number after " + count);   /* Now we will
count = count + 1;                            add 1 to count */
output.println(" is " + count);

}
}

24. Is there any way a single programmer (for example, a student working alone on
a programming assignment) can benefit from some of the ideas behind the
inspection process?

25. When is it appropriate to start planning a program’s testing?

a. During design or even earlier

b. While coding

c. As soon as the coding is complete

26. Describe the contents of a typical test plan.

27. Devise a test plan to test the increment method of the IncDate class.

28. A programmer has created a module sameSign that accepts two int parameters
and returns true if they are both the same sign, that is, if they are both positive,
both negative, or both zero. Otherwise, it returns false. Identify a reasonable set
of test cases for this module.

29. Explain the advantages and disadvantages of the following debugging techniques:

a. Inserting output statements that may be turned off by commenting them out

b. Using a Boolean flag to turn debugging output statements on or off

c. Using a system debugger

30. Describe a realistic goal-oriented approach to data-coverage testing of the
method specified below:

public boolean FindElement(list, targetItem)

Effect: Searches list for targetItem.
Preconditions: Elements of list are in no particular

order; list may be empty.
Postcondition: Returns true if targetItem is in list; oth-

erwise, returns false.
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31. A program is to read in a numeric score (0 to 100) and display an appropriate
letter grade (A, B, C, D, or F).

a. What is the functional domain of this program?

b. Is exhaustive data coverage possible for this program?

c. Devise a test plan for this program.

32. Explain how paths and branches relate to code coverage in testing. Can we
attempt 100% path coverage?

33. Explain the phrase “life-cycle verification.”

34. Create a Date class and an IncDate class as described in this chapter (or copy
them from the web site). In the IncDate class you must create the code for the
increment method, since that was left undefined in the chapter. Remember to fol-
low the rules of the Gregorian calendar: A year is a leap year if either (i) it is divisi-
ble by 4 but not by 100 or (ii) it is divisible by 400. Include the preconditions and
postconditions for increment. Use the TDIncDate program to test your program.

35. You should experiment with the frame output of the TDIncDate program. Fol-
low the directions and record the results:

a. Create a test input file called MyTest.dat.

b. Run the program using MyTest.dat as the test input file, and MyTest.out as
the output file.

c. Change the TestDriverFrame.java class so that it sets the frame size to
500 � 300, and run the program again.

d. Change the grid layout statement from a grid of 2,1 to a grid of 1,2, and run
the program again.

e. Experiment with other layout managers; use the available resources for infor-
mation about them.

36. Enhance the TDIncDate program to include automatic test-case verification. For
each of the commands that can be listed in the test-input file, you need to identify
a test-result value, to be used to verify that the command was executed properly.
For example, the constructor command IncDate can be verified by comparing the
resultant value of the IncDate object to the date represented by the parameters of
the command; the observer command monthIs can be verified by checking the
value returned by the monthIs method to the expected month. The values needed
to verify each command should follow the command and its parameters in the test
input file. For example, a test input file could look like this:

IncDate Test Data B
IncDate
10
5
2002
10/5/2002
monthIs
10
quit
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The test driver should read a command, read the command’s parameters if nec-
essary, execute the command by invoking the appropriate method, and then
validate that the command completed successfully by comparing the results of
the command to the test result value from the input file. The results of the test
(pass or fail) should be written to the output file, and a count of the number of
test cases passed and failed should be written to the screen.

37. Create a new program that uses the same basic architecture as the test driver
program modeled in Figure 1.14, and that uses the same set of Java I/O state-
ments as TDIncDate(readLine, setLayout, and so on). This is an open prob-
lem; your program can do whatever you like. For example, the input file could
contain a list of student names plus three test grades for each student:

Smith
100
90
80
Jones
95
95
95

And the corresponding output file could contain the student’s names and aver-
ages:

Smith
90
Jones
95

Finally, the output frame could contain summary information: for example, the
number of students, the total average, the highest average, and so on. Remember
to design your program so that the user can indicate the input and output file
names through command-line parameters.



Measurable goals for this chapter include that you should be able to

describe the benefits of using an abstract data type (ADT)

explain the difference between a primitive type and a composite type

describe an ADT from three perspectives: logical level, application level, and implementation level

explain how a specification can be used to document the design of an ADT

describe, at the logical level, the component selector, and describe appropriate applications for
the Java built-in types: class and array

create code examples that demonstrate the ramifications of using references

describe several hierarchical types, including aggregate objects and multidimensional arrays

use packages to organize Java compilation units

use the Java Library classes String and ArrayList

identify the scope of a Java variable in a program

explain the difference between a deep copy and a shallow copy of an object

identify, define, and use Java exceptions when creating an ADT

list the steps to follow when creating ADTs with the Java class construct

Data Design and
Implementation

G
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This chapter centers on data and the language structures used to organize data. When
problem solving, the way you view the data of your problem domain and how you
structure the data that your programs manipulate greatly influence your success. Here
you learn how to deal with the complexity of your data using abstraction and how to
use the Java language mechanisms that support data abstraction.

In this chapter, we also cover the various data types supported by Java: the primi-
tive types (int, float, and so on), classes, interfaces, and the array. The Java class
mechanism is used to create data types beyond those directly provided by the language.
We review some of the class-based types that are provided in the Java Class Library and
show you how to create your own class-based types. We use the Java class mechanism
to encapsulate the data structures you are studying, as ADTs, throughout the textbook.

2.1 Different Views of Data

Data Types

When we talk about the function of a program, we usually use words like add, read,
multiply, write, do, and so on. The function of a program describes what it does in terms
of the verbs in the programming language. The data are the nouns of the programming

world: the objects that are manipulated, the informa-
tion that is processed by a computer program.

Humans have evolved many ways of encoding
information for analysis and communication, for
example letters, words, and numbers. In the context of
a programming language, the term data refers to the
representation of such information, from the problem
domain, by the data types available in the language.

A data type can be used to characterize and
manipulate a certain variety of data. It is formally
defined by describing:

1. the collection of elements that it can represent.

2. the operations that may be performed on those elements.

Most programming languages provide simple data types for representing basic informa-
tion—types like integers, real numbers, and characters. For example, an integer might
represent a person’s age; a real number might represent the amount of money in a bank
account. An integer data type in a language would be formally defined by listing the
range of numbers it can represent and the operations it supports, usually the standard
arithmetic operations.

The simple types are also called atomic types or primitive types, because they can-
not be broken into parts. Languages usually provide ways for a programmer to combine
primitive types into more complex structures, which can capture relationships among
the individual data items. For example, a programmer can combine two primitive inte-

Data The representation of information in a manner
suitable for communication or analysis by humans or
machines

Data type A category of data characterized by the
supported elements of the category and the supported
operations on those elements

Atomic or primitive type A data type whose ele-
ments are single, nondecomposable data items
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ger values to represent a point in the x-y
plane or create a list of real numbers to repre-
sent the scores of a class of students on an
assignment. A data type composed of multi-
ple elements is called a composite type.

Just as primitive types are partially
defined by describing their domain of values,
composite types are partially defined by the relationship among their constituent values.

Composite data types come in two forms: unstructured and structured. An unstruc-
tured composite type is a collection of components that are not organized with respect
to one another. A structured composite type is an organized collection of components in
which the organization determines the means of accessing individual data components
or subsets of the collection. In addition to describing their domain of values, primitive
types are defined by describing permitted operations. With composite types, the main
operation of interest is accessing the elements that make up the collection.

The mechanisms for building composite types in the Java language are called refer-
ence types. (We see why in the next section.) They include arrays and classes, which
you are probably familiar with, and interfaces. We review all of these mechanisms in
the next section.

In a sense, any data processed by a computer, whether it is primitive or composite,
is just a collection of bits that can be turned on or off. The computer itself needs to have
data in this form. Human beings, however, tend to think of information in terms of
somewhat larger units like numbers and lists, and thus we want at least the human-
readable portions of our programs to refer to data in a way that makes sense to us. To
separate the computer’s view of data from our own, we use data abstraction to create
another view.

Data Abstraction

Many people feel more comfortable with things that they perceive as real than with
things that they think of as abstract. Thus, data abstraction may seem more forbidding
than a more concrete entity like integer. Let’s take a closer look, however, at that very
concrete—and very abstract—integer you’ve been using since you wrote your earliest pro-
grams. Just what is an integer? Integers are physically represented in different ways on
different computers. In the memory of one machine, an integer may be a binary-coded
decimal. In a second machine, it may be a sign-and-magnitude binary. And in a third
one, it may be represented in two’s-complement binary notation. Although you may not
be familiar with these terms, that hasn’t stopped you from using integers. (You can learn
about these terms in an assembly language or computer organization course, so we do
not explain them here.) Figure 2.1 shows some different representations of an integer.

The way that integers are physically represented determines how the computer
manipulates them. As a Java programmer, however, you don’t usually get involved at
this level; you simply use integers. All you need to know is how to declare an int type
variable and what operations are allowed on integers: assignment, addition, subtraction,
multiplication, division, and modulo arithmetic.

Composite type A data type whose elements are
composed of multiple data items

Data abstraction The separation of a data type’s log-
ical properties from its implementation
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Consider the statement

distance = rate * time;

It’s easy to understand the concept behind this statement. The concept of multiplication
doesn’t depend on whether the operands are, say, integers or real numbers, despite the
fact that integer multiplication and floating-point multiplication may be implemented
in very different ways on the same computer. Computers would not be very popular if
every time we wanted to multiply two numbers we had to get down to the machine-rep-
resentation level. But we don’t have to: Java has provided the int data type for us, hid-
ing all the implementation details and giving us just the information we need to create
and manipulate data of this type.

We say that Java has encapsulated integers for us. Think of the capsules surround-
ing the medicine you get from the pharmacist when you’re sick. You don’t have to
know anything about the chemical composition of the medicine inside to recognize the

big blue-and-white capsule as your antibiotic or the
little yellow capsule as your decongestant. Data
encapsulation means that the physical representation
of a program’s data is hidden by the language. The
programmer using the data doesn’t see the underlying
implementation, but deals with the data only in terms
of its logical picture—its abstraction.

But if the data are encapsulated, how can the programmer get to them? Operations
must be provided to allow the programmer to create, access, and change the data. Let’s
look at the operations Java provides for the encapsulated data type int. First of all, you
can create variables of type int using declarations in your program. Then you can
assign values to these integer variables by using the assignment operator and perform
arithmetic operations on them using +, -, *, /, and %. Figure 2.2 shows how Java has
encapsulated the type int in a nice neat black box.

Figure 2.1 The decimal equivalents of an 8-bit binary number

153 –25 –102 –103 99

Unsigned Sign and
magnitude

One's
complement

Two's
complement

Binary-coded
decimal

Decimal:

Representation:

10011001Binary:

Data encapsulation The separation of the represen-
tation of data from the applications that use the data
at a logical level; a programming language feature that
enforces information hiding
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The point of this discussion is that you have been dealing with a logical data
abstraction of integer since the very beginning. The advantages of doing so are clear:
you can think of the data and the operations in a logical sense and can consider their
use without having to worry about implementation details. The lower levels are still
there—they’re just hidden from you.

Remember that the goal in design is to reduce complexity through abstraction. We
extend this goal with another: to protect our data abstraction through encapsulation.
We refer to the set of all possible values (the
domain) of an encapsulated data “object,”
plus the specifications of the operations that
are provided to create and manipulate the
data, as an abstract data type (ADT for short).

In effect, all the Java built-in types are
ADTs. A Java programmer can declare variables of those types without understanding
the underlying implementation. The programmer can initialize, modify, and access the
information held by the variables using the provided operations.

In addition to the built-in ADTs, Java programmers can use the Java class mecha-
nism to build their own ADTs. For example, the Date class defined in Chapter 1 can be
viewed as an ADT. Yes, it is true that the programmers who created it need to know
about its underlying implementation; for example, they need to know that a Date is
composed of three int instance variables, and they need to know the names of the
instance variables. The application programmers who use the Date class, however, do
not need this information. They only need to know how to create a Date object and
how to invoke the exported methods to use the object.

Figure 2.2 A black box representing an integer

T ype

int

Value range: –2147483648 . . +2147483647

Operations
identity
negation
addition
subtraction
multiplication
division
remainder (modulo)
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+ prefix
- prefix
+ infix
- infix
* infix
/ infix

% infix
Relational Operators infix

(inside)

Representation of

int

(for example, 32 bits
two's complement)

+

Implementations of
Operations

Abstract data type (ADT) A data type whose proper-
ties (domain and operations) are specified independ-
ently of any particular implementation
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Data Structures

A single integer can be very useful if we need a counter, a sum, or an index in a pro-
gram. But generally, we must also deal with data that have many parts and complex
interrelationships among those parts. We use a language’s composite type mechanisms

to build structures, called data structures, which mir-
ror those interrelationships. Note that the data ele-
ments that make up a data structure can be any
combination of primitive types, unstructured compos-
ite types, and structured composite types.

When designing our data structures we must con-
sider how the data is used because our decisions about
what structure to impose greatly affect how efficient it
is to use the data. Computer scientists have developed

classic data, such as lists, stacks, queues, trees, and graphs, through the years. They
form the major area of focus for this textbook.

In languages like Java, that provide an encapsulation mechanism, it is best to
design our data structures as ADTs. We can then hide the detail of how we implement
the data structure inside a class that exports methods for using the structure. For exam-
ple, in Chapter 3 we develop a list data structure as an ADT using the Java class and
interface constructs.

As we saw in Chapter 1, the basic operations that are performed on encapsulated
data can be classified into categories. We have already seen three of these: constructor,
transformer, and observer. As we design operations for data structures, a fourth category
becomes important: iterator. Let’s take a closer look at what each category does.

• A constructor is an operation that creates a new instance (object) of the data
type. A constructor that uses the contents of an existing object to create a new
object is called a copy constructor.

• Transformers (sometimes called mutators) are operations that change the state of
one or more of the data values, such as inserting an item into an object, deleting
an item from an object, or making an object empty.

• An observer is an operation that allows us to observe the state of one or more of
the data values without changing them. Observers come in several forms: predi-
cates that ask if a certain property is true, accessor or selector methods that
return a value based on the contents of the object, and summary methods that
return information about the object as a whole. A Boolean method that returns
true if an object is empty and false if it contains any components is an exam-
ple of a predicate. A method that returns a copy of the last item put into a struc-
ture is an example of an accessor method. A method that returns the number of
items in a structure is a summary method.

• An iterator is an operation that allows us to process all the components in a data
structure sequentially. Operations that return successive list items are iterators.

Data structures have a few features worth noting. First, they can be “decomposed”
into their component elements. Second, the organization of the elements is a feature of

Data structure A collection of data elements whose
logical organization reflects a relationship among the
elements. A data structure is characterized by access-
ing operations that are used to store and retrieve the
individual data elements.
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the structure that affects how each element is accessed. Third, both the arrangement of
the elements and the way they are accessed can be encapsulated.

Note that although we design our data structures as ADTs, data structures and ADTs
are not equivalent. We could implement a data structure without using any data encapsu-
lation or information hiding whatsoever (but we won’t!). Also, the fact that a construct is
defined as an ADT does not make it a data structure. For example, the Date class defined
in Chapter 1 implements a Date ADT, but that is not considered to be a data structure in
the classical sense. There is no structural relationship among its components.

Data Levels

An ADT specifies the logical properties of a data type. Its implementation provides a spe-
cific representation such as a set of primitive variables, an array, or even another ADT.
A third view of a data type is how it is used in a program to solve a particular problem;
that is, its application. If we were writing a program to keep track of student grades, we
would need a list of students and a way to record the grades for each student. We might
take a by-hand grade book and model it in our program. The operations on the grade
book might include adding a name, adding a grade, averaging a student’s grades, and so
forth. Once we have written a specification for our grade-book data type, we must
choose an appropriate data structure to use to implement it and design the algorithms to
implement the operations on the structure.

In modeling data in a program, we wear many hats. We must determine the abstract
properties of the data, choose the representation of the data, and develop the operations
that encapsulate this arrangement. During this process, we consider data from three dif-
ferent perspectives, or levels:

1. Logical (or abstract) level: An abstract view of the data values (the domain) and the
set of operations to manipulate them. At this level, we define the ADT.

2. Application (or user) level: A way of modeling real-life data in a specific context;
also called the problem domain. Here the application programmer uses the ADT to
solve a problem.

3. Implementation level: A specific representation of the structure to hold the data
items, and the coding of the operations in a programming language. This is how we
actually represent and manipulate the data in memory: the underlying structure and
the algorithms for the operations that manipulate the items on the structure. For the
built-in types, this level is hidden from the programmer.

An Analogy

Let’s look at a real-life example: a library. A library can be decomposed into its compo-
nent elements: books. The collection of individual books can be arranged in a number of
ways, as shown in Figure 2.3. Obviously, the way the books are physically arranged on
the shelves determines how one would go about looking for a specific volume. The partic-
ular library we’re concerned with doesn’t let its patrons get their own books, however; if
you want a book, you must give your request to the librarian, who gets the book for you.

The library “data structure” is composed of elements (books) with a particular inter-
relationship; for instance, they might be ordered based on the Dewey decimal system.
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Figure 2.3 A collection of books ordered in different ways
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Accessing a particular book requires knowledge of the arrangement of the books. The
library user doesn’t have to know about the structure, though, because it has been
encapsulated: Users access books only through the librarian. The physical structure and
abstract picture of the books in the library are not the same. The online catalog provides
logical views of the library—ordered by subject, author, or title—that are different from
its underlying representation.

We use this same approach to data structures in our programs. A data structure is
defined by (1) the logical arrangement of data elements, combined with (2) the set of
operations we need to access the elements. Let’s see what our different viewpoints mean
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in terms of our library analogy. At the application level, there are entities like the
Library of Congress, the Dimsdale Collection of Rare Books, the Austin City Library, and
the North Amherst branch library.

At the logical level, we deal with the “what” questions. What is a library? What
services (operations) can a library perform? The library may be seen abstractly as “a col-
lection of books” for which the following operations are specified:

• Check out a book.
• Check in a book.
• Reserve a book that is currently checked out.
• Pay a fine for an overdue book.
• Pay for a lost book.

How the books are organized on the shelves is not important at the logical level,
because the patrons don’t actually have direct access to the books. The abstract viewer
of library services is not concerned with how the librarian actually organizes the books
in the library. The library user only needs to know the correct way to invoke the desired
operation. For instance, here is the user’s view of the operation to check in a book: Pre-
sent the book at the check-in window of the library from which the book was checked
out, and receive a fine slip if the book is overdue.

At the implementation level, we deal with the answers to the “how” questions. How
are the books cataloged? How are they organized on the shelf? How does the librarian
process a book when it is checked in? For instance, the implementation information
includes the fact that the books are cataloged according to the Dewey decimal system
and arranged in four levels of stacks, with 14 rows of shelves on each level. The librar-
ian needs such knowledge to be able to locate a book. This information also includes the
details of what happens when each of the operations takes place. For example, when a
book is checked back in, the librarian may use the following algorithm to implement the
check-in operation:

CheckInBook
Examine due date to see whether the book is late.
if book is late

Calculate fine.
Issue fine slip.

Update library records to show that the book has been returned.
Check reserve list to see if someone is waiting for the book.
if book is on reserve list

Put the book on the reserve shelf.
else

Replace the book on the proper shelf, according to the library’s shelf arrangement scheme.
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Figure 2.4 Communication between the application level and implementation level
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All this, of course, is invisible to the library user. The goal of our design approach is to
hide the implementation level from the user.

Picture a wall separating the application level from the implementation level, as
shown in Figure 2.4. Imagine yourself on one side and another programmer on the
other side. How do the two of you, with your separate views of the data, communicate
across this wall? Similarly, how do the library user’s view and the librarian’s view of
the library come together? The library user and the librarian communicate through
the data abstraction. The abstract view provides the specification of the accessing
operations without telling how the operations work. It tells what but not how. For
instance, the abstract view of checking in a book can be summarized in the following
specification:

float CheckIn (book)

Effect: Accesses book and checks it into this library.
Returns a fine amount (0 if there is no fine).

Preconditions: Book was checked out of this library; book is
presented at the check-in desk.

Postconditions: return value = (amount of fine due); contents of
this library is the original contents + book

Exception: This library is not open
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The only communication from the user into the implementation level is in terms of
input specifications and allowable assumptions—the preconditions of the accessing rou-
tines. The only output from the implementation level back to the user is the transformed
data structure described by the output specifications, or postconditions, of the routines, or
the possibility of an exception being raised. Remember that exceptions are extraordinary
situations that disrupt the normal processing of the operation. The abstract view hides the
underlying structure but provides functionality through the specified accessing operations.

Although in our example there is a clean separation, provided by the library wall,
between the use of the library and the inside organization of the library, there is one
way that the organization can affect the users—efficiency. For example, how long does a
user have to wait to check out a book? If the library shelves are kept in an organized
fashion, as described above, then it should be relatively easy for a librarian to retrieve a
book for a customer and the waiting time should be reasonable. On the other hand, if
the books are just kept in unordered piles, scattered around the building, shoved into
corners and piled on staircases, the wait time for checking out a book could be very
long. But in such a library it sure would be easy for the librarian to handle checking in
a book—just throw it on the closest pile!

The decisions we make about the way data are structured affect how efficiently we
can implement the various operations on that data. One structure leads to efficient
implementation of some operations, while another structure leads to efficient implemen-
tation of other operations. Efficiency of operations can be important to the users of the
data. As we look at data structures throughout this textbook we discuss the benefits and
drawbacks of various design structure decisions. We often study alternative organiza-
tions, with differing efficiency ramifications.

When you write a program as a class assignment, you often deal with data at each
of our three levels. In a job situation, however, you may not. Sometimes you may pro-
gram an application that uses a data type that has been implemented by another pro-
grammer. Other times you may develop “utilities” that are called by other programs. In
this book we ask you to move back and forth between these levels.

2.2 Java’s Built-In Types

Java’s classification of built-in data types is shown in Figure 2.5. As you can see, there
are eight primitive types and three composite types; of the composite types, two are
unstructured and one is structured. You are probably somewhat familiar with several of
the primitive types and the composite types class and array.

In this section, we review all of the built-in types. We discuss them from the point of
view of two of the levels defined in the previous section: the logical (or abstract) level and
the application level. We do not look at the implementation level for the built-in types,
since the Java environment hides it and we, as programmers, do not need to understand
this level in order to use the built-in types. (Note, however, that when we begin to build
our own types and structures, the implementation view becomes one of our major con-
cerns.) For the built-in types we can interpret the remaining two levels as follows:

• The logical or abstract level involves understanding the domain of the data type
and the operations that can be performed on data of that type. For the composite
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Figure 2.5 Java data types
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types, the main operation of concern is how to access the various components of
the type.

• The application level—in other words, the view of how we use the data types—
includes the rules for declaring and using variables of the type, in addition to
considerations of what the type can be used to model.

Primitive Data Types

Java’s primitive types are boolean, byte, char, double, float, int, long, and
short. These primitive types share similar properties. We first look closely at the int
type from our two points of view, and then we give a summary review of all the others.
We understand that you are already familiar with the int type; we are using this oppor-
tunity to show you how we apply our two levels to the built-in types.

Logical Level
In Java, variables of type int can hold an integer value between �2147483648 and
2147483647. Java provides the standard prefix operations of unary plus (+) and unary
minus (-). Also, of course, the infix operations of addition (+), subtraction (-), multipli-
cation (*), division (/), and modulus (%). We are sure you are familiar with all of these
operations; remember that integer division results in an integer, with no fractional part.

Application Level
We declare variables of type int by using the keyword int, followed by the name of
the variable, followed by a semicolon. For example

int numStudents;

You can declare more than one variable of type int, by separating the variable names
with commas, but we prefer one variable per declaration statement. You can also pro-
vide an initial value for an int variable by following the name of the variable with an
“= value” expression. For example

int numStudents = 50;
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If you do not initialize an int variable, the system initializes it to the value 0.
However, many compilers refuse to generate Java byte code if they determine that you
could be using an uninitialized variable, so it is always a good idea to ensure that your
variables are assigned values before they are used in your programs.

Variables of type int are handled within a program “by value.” This means the
variable name represents the location in memory of the value of the variable. This infor-
mation may seem to belong in a subsection on implementation. However, it does
directly affect how we use the variables in our programs, which is the concern of the
application level. We treat this topic more completely when we reach Java’s composite
types, which are not handled by value.

For completeness sake, we should mention what an int variable can be used to
model: Essentially anything that can be characterized by an integer value in the range
stated above. Programs that can be modeled with an integer between negative two bil-
lion and positive two billion include the number of students in a class, test grades, city
populations, and so forth.

We could repeat the analysis we made above of the int type for each of the primi-
tive data types, but the discussion would quickly become redundant. Note that byte,
short, and long types are also used to hold integer values, char is used to store Uni-
code characters, float and double are used to store “real” numbers, and the boolean
type represents either true or false. Appendix C contains a table showing, for each
primitive type, the kind of value stored by the type, the default value, the number of
bits used to implement the type, and the possible range of values.

Let’s move on to the composite types.

The Class Type

Primitive data types are the building blocks for composite types. A composite type gath-
ers together a set of component values, sometimes imposing a specific arrangement on
them (see Figure 2.6). If the composite type is a built-in type such as an array, the
accessing mechanism is provided in the syntax of the language. If the composite type is

Figure 2.6 Atomic (simple) and composite data types
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a user-defined type, such as the Date class defined in Chapter 1, the accessing mecha-
nism is built into the methods provided with the class.

You are already familiar with the Java class construct from your previous courses
and from the review in Chapter 1. The class can be a mechanism for creating composite
data types. A specific class has a name and is composed of named data fields (class and
instance variables—sometimes called attributes) and methods. The data elements and
methods are also known as members of the class. The members of a class can be
accessed individually by name. A class is unstructured because the meaning is not
dependent on the ordering of the members within the source code. That is, the order in
which the members of the class are listed can be changed without changing the function
of the class.

In object-oriented programming, classes are usually defined to hold and hide data
and to provide operations on that data. In that case, we say that the programmer has
used the class construct to build his or her own ADT—and that is the focus of this
textbook. However, in this section on built-in types, we use the class strictly to hold
data. We do not hide the data and we do not define any methods for our classes. The
class variables are public, not private. We use a class strictly to provide unstructured
composite data collections. This type of construct has classically been called a record.
The record is not available in all programming languages. FORTRAN, for instance,
historically has not supported records; newer versions may. However, COBOL, a
business-oriented language, uses records extensively. C and C++ programmers are
able to implement records. Java classes provide the Java programmer with a record
mechanism.

Many textbooks that use Java do not present this use of the Java class construct,
since it is not considered a pure object-oriented construct. We agree that when practic-
ing object-oriented design you should not use classes in the manner presented in this
section. However, we present the approach for several reasons:

1. Other languages support the record mechanism, and you may find yourself working
with those languages at some time.

2. Using this approach allows us to address the declaration, creation, and use of
objects without the added complexity of dealing with class methods.

3. Later, when we discuss using classes to hide data, we can compare the information-
hiding approach to the approach described here. The benefits of information hiding
might not be as obvious if you hadn’t seen any other approach.

In the following discussion, to differentiate the simple use of the class construct used
here, from its later use to create ADTs, we use the generic term record in place of class.

Logical Level
A record is a composite data type made up of a finite collection of not necessarily
homogeneous elements called fields. Accessing is done directly through a set of named
field selectors.

We illustrate the syntax and semantics of the component selector within the con-
text of the following program:

TE
AM
FL
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Team-Fly® 
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public class TestCircle
{
static class Circle
{
int xValue;      // Horizontal position of center
int yValue;      // Vertical position of center
float radius;
boolean solid;   // True means circle filled

}

public static void main(String[] args)

{
Circle c1 = new Circle();
c1.xValue = 5;
c1.yValue = 3;
c1.radius = 3.5f;
c1.solid = true;

System.out.println("c1:   " + c1);
System.out.println("c1 x: " + c1.xValue);

}
}

The above program declares a record structure called Circle. The main method
instantiates and initializes the fields of the Circle record c1, and then prints the record
and the xValue field of the record to the output. The output looks like this:

c1:   TestCircle$Circle[at]111f71
c1 x: 5

The Circle record variable (the circle object) c1 is made up of four components (or
fields, or instance variables). The first two, xValue and yValue, are of type int. The
third, radius, is a float number. The fourth, solid, is a boolean. The names of the
components make up the set of member selectors.

The syntax of the component selector is the record variable name, followed by a
period, followed by the member selector for the component you are interested in:

If this expression is on the left-hand side of an assignment statement, a value is being
stored in that member of the record; for example:

c1.xValue = 5;

c1.xValue

member
selector

periodstruct
variable
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If it is used somewhere else, a value is being extracted from that place; for example:

output.println("c1 x: " + c1.xValue);

Application Level
Records are useful for modeling objects that have a number of characteristics. Records
allow us to associate various types of data with each other in the form of a single item.
We can refer to the composite item by a single name. We also can refer to the different
members of the item by name. You probably have seen many examples of records used
in this way to represent items.

We declare and instantiate a record the same way we declare and instantiate any
Java object; we use the new command:

Circle c1 = new Circle();

Notice that we did not supply a constructor method in our definition of the Circle
class in the above program. When using the class as a record mechanism it is not neces-
sary to provide a constructor, since the record components are not hidden and can be
initialized directly from the application. Of course, you can provide your own construc-
tor if you like, and that may simplify the use of the record. If no constructor is defined,
Java provides a default constructor that initializes the constituent parts of the record to
their default values.

In the previous section we discussed how primitive types such as ints are handled
“by value.” This is in contrast to how all nonprimitive types, including records or any
objects, are handled. The variable of a primitive type holds the value of the variable,
whereas a variable of a nonprimitive type holds a reference to the value of the variable.
That is, the variable holds the address where the system can find the value of the vari-
able. We say that the nonprimitive types are handled “by reference.” This is why, in
Java, composite types are known officially as reference types. Understanding the ramifi-
cations of handling variables by reference is very important, whether we are dealing with
records, other objects, or arrays.

The differences between the ways “by value” and “by reference” variables are han-
dled is seen most dramatically in the result of a simple assignment statement. Figure 2.7
shows the result of the assignment of one int variable to another int variable, and the
result of the assignment of one Circle object to another Circle object. Actual circles
represent the Circle objects in the figure.

When we assign a variable of a primitive type to another variable of the same type,
the latter becomes a copy of the former. But, as you can see from the figure, this is not
the case with reference types. When we assign object c2 to object c1, c1 does not
become a copy of c2. Instead, the reference associated with c1 becomes a copy of the
reference associated with c2. This means that both c1 and c2 now reference the same
object. The feature section below looks at the ramifications of using references from
four perspectives: aliases, garbage, comparison, and use as parameters.
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Figure 2.7 Results of assignment statements
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Java includes a reserved word null that indicates an absence of reference. If a ref-
erence variable is declared without being assigned an instantiated object, it is automati-
cally initialized to the value null. You can also assign null to a variable, for example:

c1 = null;

And you can use null in a comparison:

if (c1 == null)
output.println("The Circle is not instantiated");

Ramifications of Using References

Aliases

The assignment of one object to another object, as shown in Figure 2.7, results in both object
variables referring to the same object. Thus, we have two names for the same object. In this
case we say that we have an “alias” of the object. Good programmers avoid aliases because
they make programs hard to understand. An object’s state can change, even though it appears
that the program did not access the object, when the object is accessed through the alias. For
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example, consider the IncDate class that was defined in Chapter 1. If date1 and date2 are
aliases for the same IncDate object, then the code

output.println(date1);
date2.increment();
output.println(date1);

would print out two different dates, even though at first glance it would appear that it should
print out the same date twice. This type of behavior can be very confusing for a maintenance
programmer and lead to hours of frustrating testing and debugging.

Garbage

It would be fair to ask in the situation depicted in the lower half of Figure 2.7, what happens to
the space being used by the larger circle? After the assignment statement, the program has lost
its reference to the large circle, and so it can no longer be accessed. Memory space like this, that
has been allocated to a program but that can no longer be accessed by a program, is called
garbage. There are other ways that garbage can be created in a Java program. For example, the
following code would create 100 objects of class Circle; but only one of them can be accessed
through c1 after the loop is finished executing:

Circle c1;
for (n = 1; n <= 100; n++)
{
Circle c1 = new Circle();
// code to initialize and use c1 goes here

}

The other 99 objects cannot be reached by the pro-
gram. They are garbage.

When an object is unreachable, the Java run time
system marks it as garbage., The system regularly per-
forms an operation known as garbage collection, in
which it finds unreachable objects and deallocates
their storage space, making it once again available in
the free pool for the creation of new objects.

This approach, of creating and destroying objects
at different points in the application by allocating and
deallocating space in the free pool is called dynamic
memory management. Without it, the computer
would be much more likely to run out of storage space
for data.

Comparing Objects

The fact that nonprimitive types are handled by reference impacts the results returned by the ==
comparison operator. Two variables of a nonprimitive type are considered identical, in terms of

Garbage The set of currently unreachable objects

Garbage collection The process of finding all
unreachable objects and deallocating their storage
space

Deallocate To return the storage space for an object
to the pool of free memory so that it can be reallo-
cated to new objects

Dynamic memory management The allocation and
deallocation of storage space as needed while an appli-
cation is executing
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Figure 2.8 Comparing primitive and nonprimitive variables
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the == operator, only if they are aliases for one another. This makes sense when you consider
that the system compares the contents of the two variables. That is, it compares the two refer-
ences that those variables contain. So even if two variables of type Circle have the same
xValue values, the same yValue values, the same radius values, and the same solid val-
ues, they are not considered equal. Figure 2.8 shows the results of using the comparison opera-
tor in various situations.

Parameter Passing

When methods are invoked, they are often passed information (arguments) through their
parameters. Some programming languages allow the programmer to control whether arguments
are passed by value (a copy of the argument’s value is used) or by reference (a copy of the argu-
ment’s memory location is used). Java does not allow such control. Whenever a variable is
passed as an argument, the value stored in that variable is copied into the method’s correspon-
ding parameter. All Java arguments are passed by value. Therefore, if the variable is of a primi-
tive type, the actual value (int, double, and so on) is passed to the method; and if it is a
reference type, then the reference that it contains is passed to the method.

Notice that passing a reference variable as an argument causes the receiving method to
receive an alias of the object that is referenced by the variable. If it uses the alias to make
changes to the object, then when the method returns, an access via the variable finds the object
in its modified state.

We return many times to these subtle, but important, considerations.
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Interfaces

The word interface means a common boundary shared by two interacting systems. We
use the term in many ways in computer science. For example, the user interface of a
program is the part of the program that interacts with the user, and the interface of an
object’s method is its set of parameters and the return value it provides.

In Java, the word interface has a very specific meaning. In fact, interface is a
Java keyword. We look briefly at interfaces in this subsection. Throughout the textbook
we find places to use the Java interface mechanism, at which times we expand our cov-
erage of the topic.

Logical Level
A Java interface looks very similar to a Java class. It can include data, that is, variable
declarations, and methods. However, all variables declared in an interface must be
final, static variables; in other words, they must be constants. And only the inter-

face descriptions of methods are included; no method
bodies or implementations are allowed. Perhaps this is
why the language designers decided to call this con-
struct an interface. Methods that are declared without
bodies are called abstract methods.

Here is an example of an interface, with one constant, Pi, and three abstract meth-
ods, perimeter, area, and weight:

public interface FigureGeometry
{
public static final float Pi = 3.14;

public abstract float perimeter();
// Returns perimeter of current object

public abstract float area();
// Returns area of current object

public abstract int weight(int scale);
// Returns weight of current object

}

Java provides the keyword abstract that we must use when declaring an abstract
method in a class. But we do not need to use it when defining the methods in an inter-
face. Its use is redundant, since all methods of an interface must be abstract. We could
have omitted it from the above code segment, but chose to show how it may optionally
be used, as added documentation, to remind us that the methods are abstract.

At the logical level we look at the domain of values of a data type and the available
operations to manipulate them. The domain of values for an interface is made up of
classes! Interfaces are used by being “implemented” by classes. For example, a program-

Abstract method A method declared in a class or an
interface without a method body
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mer has a Circle class implement the FigureGeometry interface by using the follow-
ing line to begin the Circle class:

public class Circle implements FigureGeometry

When a class implements an interface, it receives access to all of the constants
defined in the interface. It must provide an implementation, that is, a body, for all the
abstract methods declared in the interface. So, the Circle class and any other class that
implements the FigureGeometry interface, would be required to repeat the declarations
of the three methods and also provide code for their bodies. Classes that implement an
interface are not constrained to only implementing the abstract methods; they can also
add data fields and methods of their own.

There are some other issues with interfaces (relationship to abstract classes, use of
subinterfaces) that we address, when needed, later in the text.

Application Level
Interfaces are a versatile and powerful programming construct. They can be used in the
following ways.

As a contract If we have an abstract view of a class that can have several different
implementations, we can capture our abstract view in an interface. Then we can have
separate classes implement the interface, with each class providing one of the alternate
implementations. This way we are sure that all of the classes provide the same
abstraction; we should be able to use them interchangeably in our application
programs.

To share constants If there is a set of constant values that we want to use in several
different classes, we can define the constants in an interface and have each of the
classes implement the interface. Implementing the interface provides access rights to the
constants.

To replace multiple inheritance Some languages allow classes to inherit from more
than one superclass. This is called multiple inheritance. Java does not support multiple
inheritance because it can lead to obtuse programs and would greatly complicate the
underlying Java environment. However, there are many situations for which we would
like to relate the definition of a new class to more than one previously defined class. In
these cases, in Java, we use interfaces. A class can extend one superclass, but it can
implement many interfaces. So for example, we might see a declaration such as:

public class Circle extends Figure implements FigureGeometry, Comparable

Circle inherits methods and data from the Figure class, and must implement any
abstract classes defined in the FigureGeometry and Comparable interfaces. The prime
benefit of this is that objects of type Circle can be used as if they were objects of type
Figure, FigureGeometry, or Comparable.
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To provide a generic type mechanism We can design and build ADTs to help us organize
data of a specific type. For example, in Chapter 3 we implement an ADT that provides a list
of strings. This ADT, and any ADT, would be more reusable if we did not limit it to a
specific contained type, in this case, strings. It would be better to have an ADT that lets us
manipulate lists of anything. Then, at our discretion, we could use it for lists of letters or
lists of integers or whatever. We call such ADTs generic structures. In the latter part of
Chapter 3 you learn how to use the Java interface construct to provide generic structures.

Arrays

Classes provide programmers a way to collect into one construct several different attrib-
utes of an entity and refer to those attributes by name. Many problems, however, have so
many components that it is difficult to process them if each one must have a unique
name. An array—the last of Java’s built-in types—is the data type that allows us to solve
problems of this kind. We are sure that you have studied and used arrays in your previous
work. Here we revisit arrays, using the terminology and views established in this chapter.

In general terminology, an array differs from a class in three fundamental ways:

1. An array is a homogeneous structure (all components in the structure are of the
same data type), whereas classes are heterogeneous structures (their components
may be of different types).

2. A component of an array is accessed by its position in the structure, whereas a
component of a class is accessed by an identifier (the name).

3. Because array components are accessed by position, an array is a structured com-
posite type.

Logical Level
A one-dimensional array is a structured composite data type made up of a finite, fixed-
size collection of ordered homogeneous elements to which there is direct access. Finite
indicates that there is a last element. Fixed size means that the size of the array must be
known at compile time, but it doesn’t mean that all of the slots in the array must con-
tain meaningful values. Ordered means that there is a first element, a second element,
and so on. (It is the relative position of the elements that is ordered, not necessarily the
values stored there.) Because the elements in an array must all be of the same type, they
are physically homogeneous; that is, they are all of the same data type. In general, it is
desirable for the array elements to be logically homogeneous as well—that is, for all of
the elements to have the same purpose. (If we kept a list of numbers in an array of inte-
gers, with the length of the list—an integer—kept in the first array slot, the array ele-
ments would be physically, but not logically, homogeneous.)

The component selection mechanism of an array is direct access, which means we can
access any element directly, without first accessing the preceding elements. The desired
element is specified using an index, which gives its relative position in the collection.

The semantics (meaning) of the component selector is “Locate the element associ-
ated with the index expression in the collection of elements identified by the array
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name.” Suppose, for example, we are using an array of integers, called numbers, with
10 elements. The component selector can be used in two ways:

1. It can be used to specify a place into which a value is to be copied, such as

numbers[2] = 5;

2. It can be used to specify a place from which a value is to be retrieved, such as

value = numbers[4];

If the component selector is used on the left-hand side of the assignment statement, it is
being used as a transformer: the storage structure is changing. If the component selector
is used on the right-hand side of the assignment statement, it is being used as an
observer: It returns the value stored in a place in the array without changing it. Declar-
ing an array and accessing individual array elements are operations predefined in nearly
all high-level programming languages.

In addition to component selection, there is one other “operation” available for our
arrays. In Java, each array that is instantiated has a public instance variable, called
length, associated with it that contains the number of components in the array. You
access the variable using the same syntax you use to invoked object methods: You use
the name of the object followed by a period, followed by the name of the instance vari-
able. For the numbers example, the expression:

numbers.length

would have the value 10.

Application Level
A one-dimensional array is the natural structure for the storage of lists of like data ele-
ments. Some examples are grocery lists, price lists, lists of phone numbers, and lists of
student records. You have probably used one-dimensional arrays in similar ways in
some of your programs.

The declaration of a one-dimensional array is similar to the declaration of a simple
variable (a variable of a primitive data type), with one exception. You must indicate that
it is an array by putting square brackets next to the type:

int[] numbers;

Alternately, the brackets can go next to the name of the array:

int numbers[];

We prefer the former approach to declaring arrays, since it is more consistent with the
way we declare other variables in Java.

Arrays are handled by reference, just like classes. This means they need to be
treated carefully, just like classes, in terms of aliases, comparison, and their use as



92 | Chapter 2:  Data Design and Implementation

parameters. And like classes, in addition to being declared, an array must be instanti-
ated. At instantiation you specify how large the array is to be:

numbers = new int[10];

As with objects, you can both declare and instantiate arrays with a single command:

int[] numbers = new int[10];

A few more questions you may have about arrays:

• What are the initial values in an array instantiated by using new? If the array
components are primitive types, they are set to their default value. If the array
components are reference types, the components are set to null.

• Can you provide initial values for an array? An alternate way to create an array
is with an initializer list. For example, the following line of code declares, instan-
tiates, and initializes the array numbers:

int numbers[] = {5, 32, –23, 57, 1, 0, 27, 13, 32, 32};

• What happens if we try to execute the statement

numbers[n] = value;

when n is less than 0 or when n is greater than 9? The result is that a memory
location outside the array would be accessed, which causes an error. This error is
called an out-of-bounds error. Some languages, C++ for instance, do not check
for this error, but Java does. If your program attempts to use an index that is not
within the bounds of the array, an ArrayIndexOutOfBoundsException is
thrown. Rather than trying to catch this error, you should write your code to pre-
vent it. Exceptions are covered in more detail later in this chapter.

Type Hierarchies

In all of our examples of composite types, notably with records and arrays, we have
used composite types whose components have been primitive types. We looked at a
record, Circle, that had four primitive type fields, and an array, numbers, of the prim-
itive int type. We used this approach to simplify the discussion; it allowed us to con-
centrate on the structuring mechanism without introducing unnecessary complications.
In practice, however, the components of these types can be any Java type or class:
built-in primitive types like we have used so far, built-in nonprimitive types, or even
user-defined types.

In this subsection we introduce several ways of combining our built-in types and
classes into versatile hierarchies.

Aggregate Objects
The instance variables of our objects can themselves be references to objects. In fact, this
is a very common approach to the organization of objects in our world. For example, a
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page object might be part of a book object that is part of a shelf that is part of a library,
and so on.

Consider the example from the section entitled The Class Type, of a class modeling
a circle that includes variables for horizontal and vertical positions. Instead of these two
instance variables, we could have defined a Point class to model a point in two-dimen-
sional space, as follows:

public class Point
{
public int xValue;
public int yValue;

}

Then, we could define a new circle class as:

public class NewCircle
{
public Point location;
public float radius;
public boolean solid;

}

An object of class NewCircle has three
instance variables, one of which is an object
of class Point, which in turn has two
instance variables. An object, like
NewCircle, made up of other objects is
called an aggregate object. We call the rela-
tionship between the classes NewCircle and
Point a “has a” relationship, as in “a NewCircle object has a Point object” as an
instance variable. The has a relationship is depicted in UML with a diamond on the
composite end of a link between the two classes, as shown in Figure 2.9.

When we instantiate and initialize an object of type NewCircle, we must remember
to also instantiate the composite Point object. For example, to create a solid circle at
position <5, 7> with a radius of 2.5, we would have to code:

NewCircle myNewCircle = new NewCircle();
myNewCircle.location = new Point();
myNewCircle.location.xValue = 5;
myNewCircle.location.yValue = 3;
myNewCircle.radius = 2.5f;
myNewCircle.solid = true;

Although this is a syntactically correct approach to structuring data, the use of compos-
ite objects in this fashion quickly becomes tedious for the application programmer. It is

Aggregate object An object whose class definition
includes variables that are themselves references to
classes.
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Figure 2.9 UML diagram showing has a relationship

New Circle

+location:Point
+radius:float
+solid:boolean

Point

+xvalue:int
+yvalue:int

1 1

much easier if we define methods, such as a constructor method, to access and manipu-
late our objects. That is the approach we take below in the section on user-defined
types, when we move from using classes as records to using classes to create true ADTs.

Arrays of Objects
Although arrays with atomic components are very common, many applications require
a collection of composite objects. For example, a business may need a list of parts
records or a teacher may need a list of students in a class. Arrays are ideal for these
applications. We simply define an array whose components are objects.

Let’s define an array of NewCircle objects. Declaring and creating the array of
objects is exactly like declaring and creating an array in which the components are
atomic types:

NewCircle[] allCircles = new NewCircle[10];

allCircles is an array that can hold ten references to NewCircle objects. What are
the locations and radii of the circles? We don’t know yet. The array of circles has been
instantiated, but the NewCircle objects themselves have not. Another way of saying
this is that allCircles is an array of references to NewCircle objects, which are set to
null when the array is instantiated. The objects must be instantiated separately. The
following code segment initializes the first and second circles. It assumes that a New-
Circle object myNewCircle has been instantiated and initialized as described in the
preceding section, Aggregate Objects.

NewCircle[] allCircles = new NewCircle[10];
allCircles[0] = new NewCircle();
allCircles[0] = myNewCircle;
allCircles[1] = new NewCircle();
allCircles[1].location = new Point();
allCircles[1].location.xValue = 6;
allCircles[1].location.yValue = 6;
allCircles[1].radius = 1.3f;
allCircles[1].solid = false;

Normally an array like this would be initialized using a for loop and a constructor
method, but we used the above approach so that we could demonstrate several of the
subtleties of the construct. Figure 2.10 shows what the array looks like with values in it.
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Figure 2.10 The allCircles array
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Study the code above and Figure 2.10. In particular, notice how we must instantiate
each element in the array with the new command. Also, notice that myNewCircle and
allCircles[0] are aliases.

Keep in mind that an array name with no brackets is the array object. An array
name with brackets is a component. The component can be manipulated just like any
other variable of that type. The following table demonstrates these relationships:

Expression Class/ Type

allCircles An array
allCircles[1] A NewCircle
allCircles[1].location A Point
allCircles[1].location.xValue An int

Two-Dimensional Arrays
A one-dimensional array is used to represent items in a list or a sequence of values. A
two-dimensional array is used to represent items in a table with rows and columns, pro-
vided each item in the table is of the same type or class. A component in a two-dimen-
sional array is accessed by specifying the row and column indexes of the item in the
array. This is a familiar task. For example, if you want to find a street on a map, you
look up the street name on the back of the map to find the coordinates of the street,
usually a number and a letter. The number specifies a row, and the letter specifies a col-
umn. You find the street where the row and column meet.
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Figure 2.11 alpha array

[0] [1] [2] [3] [4] [5] [6] [7] [8]

[0]

[1]

alpha

Row 0, column 5

[3]

[98]

[99]
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Figure 2.11 shows a two-dimensional array with 100 rows and 9 columns. The rows
are accessed by an integer ranging from 0 through 99; the columns are accessed by an
integer ranging from 0 through 8. Each component is accessed by a row–column pair—
for example, [0][5].

A two-dimensional array variable is declared in exactly the same way as a one-
dimensional array variable, except that there are two pairs of brackets. A two-dimen-
sional array object is instantiated in exactly the same way, except that sizes must be
specified for two dimensions.
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The following code fragment would create the array shown in Figure 2.11, where
the data in the table are floating-point numbers.

double[][] alpha;
alpha = new double[100][9];

The first dimension specifies the number of rows, and the second dimension specifies
the number of columns.

To access an individual component of the alpha array, two expressions (one for
each dimension) are used to specify its position. We place each expression in its own
pair of brackets next to the name of the array:

Note that alpha.length would give the number of rows in the array. To obtain the
number of columns in a row of an array, we access the length attribute for the specific
row. For example, the statement

rowLength = alpha[30].length;

stores the length of row 30 of the array alpha, which is 9, into the int variable
rowLength.

The moral here is that in Java each row of a two-dimensional array is itself a one-
dimensional array. Many programming languages directly support two-dimensional
arrays; Java doesn’t. In Java, a two-dimensional array is an array of references to array
objects. Because of the way that Java handles two-dimensional arrays, the drawing in
Figure 2.11 is not quite accurate. Figure 2.12 shows how Java actually implements the
array alpha. From the Java programmer’s perspective, however, the two views are syn-
onymous in the majority of applications.

Multilevel Hierarchies
We have just looked at various ways of combining Java’s built-in type mechanisms to
create composite objects, arrays of objects, and two-dimensional arrays. We do not have
to stop there. We can continue along these lines to create whatever sort of structure best
matches our data. Classes can have arrays as variables, aggregate objects can be made
from other aggregate objects, and we can create arrays of three, four, or more dimensions.

Consider, for example, how a programmer might structure data that represents stu-
dents for a professor’s grading program. This professor grades each test with both a
numerical grade and a letter grade. Therefore, the programmer decides to represent a
test as a record, called test, with two fields: score of type int and grade of type
char. Each student takes a sequence of tests—these are represented by an array of
test called marks. A student also has a name and an attendance record. So a student

alpha[0][5] = 36.4;

Row
number

Column
number
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Figure 2.12 Java implementation of the alpha array
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could be represented by a record with three fields: name of type String, marks of
type array of test, and attendance of type int. Since the professor has many stu-
dents in a course, the programmer creates another array, called course, that is an
array of student. Wow! We have an array of records of three fields, one of which is
itself an array of records of two fields. See Figure 2.13 for a logical view of this multi-
level structure.

The idea is to use the built-in typing mechanisms to model the real world structure
of the data. This makes it easier for us to organize our processing of the data.

In the next section we look at how we can extend Java’s built-in types by encapsu-
lating composite types with programmer-defined methods, to simplify their access and
manipulation. When we do this we are creating our own ADTs.

2.3 Class-Based Types

The class construct sits at the center of the Java programming world. In the previous
section, you learned how the Java class could be used to structure data into records. As
we stated then, that is not a proper use of the class construct when practicing object-
oriented design. In this section, you learn how to use classes to implement ADTs. This is
the correct way to use the class construct.
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Figure 2.13 Logical view of array of student records

course

name:

marks: score

grade

score

grade

score

grade

.   .   .

attendance:

name:

marks: score

grade

score

grade

score

grade

.   .   .

attendance:

name:

marks: score

grade

score

grade

score

grade

.   .   .

attendance:



100 | Chapter 2:  Data Design and Implementation

Meaning of “Type”
The Java language specification reserves the word type to mean those abstract data types (ADTs)
that are built into the language, such as int, double, char, array, and class. Every ADT
that we design and implement as a class in Java is considered by the language to be a member
of the same type, which is the Java class type.

More generally, the word type is often used to refer to an ADT and its implementation in what-
ever programming language is being used. Thus, there is a potential for some minor confusion with
respect to Java’s use of the term and the use of the term in general. Wherever we use the word
type, and the context of the usage does not clarify the meaning, we modify the term to provide
clarification. Thus, we may use “Java type,” “built-in type,” or “primitive type” to indicate that we
are using the term in the strict Java sense. Elsewhere, we use the term in its more general sense, for
example, to refer to the implementation of a programmer defined ADT. Thus, we may refer to the
Date type or the Circle type.

Using Classes in Our Programs

Once a programmer has defined a class, objects of the class type can be declared,
instantiated, and used in many other classes. For purposes of this discussion, we call the

class being used the tool class, and the class using it
the client class. The client class could be an applica-
tion, that is, a class with a main method that would be
executed when we invoke the Java interpreter. For the
client class to use the tool class, the definition of the
tool class must be visible to the Java compiler/inter-
preter, when the client class is compiled or inter-
preted. There are several ways you can ensure this:

1. Insert the tool class code directly into the client class file. In this case, we call the
tool class an inner class. There are some situations, especially with respect to
dynamic event handling, where inner classes provide an elegant solution to difficult
problems. Usually, however, their use is too restrictive.

2. Computer systems that support Java have a well-defined set of subdirectories to search
when a Java class is needed. Usually an environment variable called ClassPath
defines this set of subdirectories. Place the tool class file in one of these subdirectories.

3. The Java package construct is used by programmers to collect into a single unit a
group of related classes. Put the tool class in a package and import the package into
the client that uses it. Note that the compiler/interpreter must be able to find the
package, so it must be located in an appropriate subdirectory on the ClassPath.
The feature section below describes the details of using Java packages.

Inner class A class defined as a member of another
class

Package A set of related classes, grouped together to
provide efficient access and use



2.3 Class-Based Types | 101

Java Packages
Java lets us group related classes together into a unit called a package. Packages provide several
advantages:

• They let us organize our files.
• They can be compiled separately and imported into our programs.
• They make it easier for programs to use common class files.
• They help us avoid naming conflicts (two classes can have the same name if they are in different

packages).

Package Syntax

The syntax for a package is extremely simple. All we have to do is to specify the package name
at the start of the file containing the class. The first noncomment nonblank line of the file must
contain the keyword package followed by an identifier and a semicolon. By convention, Java
programmers start a package identifier with a lowercase letter to distinguish package names
from class names:

package someName;

After this we can write import declarations, to make the contents of other packages available to
the classes inside the package we are defining, and then one or more declarations of classes.
Java calls this file a compilation unit. The classes defined in the file are members of the package.
Note that the imported classes are not members of the package.

Although we can declare multiple classes in a compilation unit, only one of them can be
declared public. The others are hidden from the world outside the package. (We investigate visi-
bility topics later in this section.) If a compilation unit can hold at most one public class, how do
we create packages with multiple public classes? We have to use multiple compilation units, as
we describe next.

Packages with Multiple Compilation Units

Each Java compilation unit is stored in its own file. The Java system identifies the file using a
combination of the package name and the name of the public class in the compilation unit. Java
restricts us to having a single public class in a file so that it can use file names to locate all pub-
lic classes. Thus, a package with multiple public classes must be implemented with multiple
compilation units, each in a separate file.

Using multiple compilation units has the further advantage that it provides us with more
flexibility in developing the classes of a package. Team programming projects would be very
cumbersome if Java made multiple programmers share a single package file.
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We split a package among multiple files simply by placing its members into separate compi-
lation units with the same package name. For example, we can create one file containing the
following code (the . . . between the braces represents the code for each class):

package someName;
public class One{ ... }
class Two{ ... }

and a second file containing:

package someName;
class Three{ ... }
public class Four{ ... }

with the result that the package someName contains four classes. Two of the classes, One and
Four are public, and so are available to be imported by application code. The two file names
must match the two public class names; thus the files must be named One.java and
Four.java.

Many programmers simply place every class in its own compilation unit. Others gather the
nonpublic classes into one unit, separate from the public classes. How you organize your pack-
ages is up to you, but you should be consistent to make it easy to find a specific member of a
package among all of its files.

How does the Java compiler manage to find these pieces and put them together? The
answer is that it requires that all compilation unit files for a package be kept in a single direc-
tory or folder that matches the name of the package. For our preceding example, a Java system
would store the source code in files called One.java and Four.java, both in a directory
called someName.

The import Statement

In order to access the contents of a package from within a program, you must import it into
your program. You can use either of the following forms of import statements:

import packagename.*;
import packagename.Classname;

An import declaration begins with the keyword import, the name of a package and a dot
(period). Following the period you can either write the name of a class in the package, or an
asterisk (*). The declaration ends with a semicolon. If you know that you want to use exactly
one class in a particular package, then you can simply give its name in the import declaration.
More often, however, you want to use more than one of the classes in a package, and the aster-
isk is a shorthand notation to the compiler that says, “Import whatever classes from this pack-
age that this program uses.”
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Packages and Subdirectories

Many computer platforms use a hierarchical file system. The Java package rules are defined to
work seamlessly with such systems. Java package names may also be hierarchical; they may
contain periods separating different parts of the name, for example, ch03.stringLists. In
such a case, the package files must be placed underneath a set of subdirectories that match the
separate parts of the package name. Following the same example, the package files should be
placed in a directory named stringLists that is a subdirectory of a directory named ch03.
You can import the entire package into your program with the following statement:

import ch03.stringLists.*;

As long as the directory that contains the ch03 directory is on the ClassPath of your system,
the compiler will be able to find the package you requested. The compiler automatically looks in
all the directories listed in the ClassPath. In this case it will actually look in the ClassPath
directories for a subdirectory named ch03 that contains a subdirectory named stringLists,
and upon finding such a subdirectory, it will import all of the members of the
ch03.stringLists package that it finds there.

Many of the files created to support this textbook are organized into packages. They are
organized exactly as described above and can be found on our web site. All the files are found in
a directory named bookFiles. It contains a separate subdirectory for each chapter of the book:
ch01, ch02, ..., ch10. Where packages are used, you will find the corresponding subdirectories
underneath the chapter subdirectories. For example, the ch03 subdirectory does indeed contain
a subdirectory named stringLists that contains four files that define Java classes related to
a string list ADT. Each of the class files begins with the statement

package ch03.stringLists;

Thus, they are all in the ch03.stringLists package. If you write a program that needs to use
these files you simply need to import the package into your program and make sure the parent
directory of the ch03 directory, i.e., the bookFiles directory, is included in your computer’s
ClassPath.

We suggest that you copy the entire bookFiles directory to your computer’s hard drive,
ensuring easy access to all the book’s files and maintaining the crucial subdirectory structure
required by the packages. Also, make sure you extend your computer’s ClassPath to include
your new bookFiles dirctory. See the Preface for more information.

Sources for Classes

Java programs are built using a combination of the basic language and pre-existing
classes. In effect, the pre-existing classes act as extensions to the basic language; this
extended Java language is large, complex, robust, powerful and ever changing. Java
programmers should never stop learning about the nuances of the extended language—
an exciting prospect for those who like an intellectual challenge.
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When designing a Java-based system to solve a problem, we first determine what
classes are needed. Next we determine if any of these classes already exist; and if not,
we try to discover classes that do exist that can be used to build the needed classes.
Additionally, we often create our own classes, “helper” classes that are used to build the
needed classes.

Where do the classes come from? There are three sources:

1. The Java Class Library—The Java language is bundled with a class library that
includes hundreds of useful classes. We look at the library in a subsection below.

2. Build your own—Suppose you determine that a certain class would be useful to aid
in solving your programming problem, but the class does not exist. Therefore, you
create the needed class, possibly using pre-existing classes in the process. The new
class becomes part of the extended language, and can be used on future projects.
We look at how to build our own classes in a later section, and throughout the rest
of the textbook.

3. Off the shelf—Software components, such as classes or packages of classes, which
are obtained from third party sources, are called off-the-shelf components. When
they are bought, we call them “commercial off-the-shelf” components, or COTS.
Java components can be bought from software shops, or even found free on the
web. When you obtain software, or anything else, from the web for your own use,
you should make sure you are not violating a copyright. You also need to use care
in determining that free components work correctly and do not contain viruses or
other code that could cause problems.

As our study of data structures, abstract data types, and Java continues, we some-
times investigate how to build a class that mirrors the functionality of a pre-existing
class, for example a class in the Java Class Library. There are two reasons we may do

Programmer

Basic Java Language

Java Class Library

Off the Shelf Components
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this: convenience and computer science content. It may be that the class provides a
good, convenient example of a language construct or programming approach—for
example, our use of the Date example throughout the first two chapters—even though
the library provides ways of creating and using Date objects. Alternately, it may be that
the study of the class is crucial to the content of this textbook—classic data structures.
For example, in Chapter 4 we study how to implement a Stack ADT, even though a
Stack ADT is provided in the library. Understanding the possible implementations of
stacks, and the ramifications of implementation choices, is considered crucial for serious
students of computing.

There are other reasons that a programmer might want to create his or her own
class that mimic the functionality of a library class: simplicity and control. The Java
developers designed library classes to provide robust functionality. Robustness is an
important quality for library classes. Sometimes, however, the robustness of a class
equates to complexity or inefficiency. Addi-
tionally, you must remember that the Java
Class Library is not a static construct. The
changes to the library are usually in the form
of enhancements, but there have also been
cases where features of the library have been
deprecated. A deprecated feature is one that
may not be supported in future versions of
the library. Deprecation acts as a warning to programmers—use this construct at your
own risk; it works now, but might not work later!

Consider the history of dates in Java. In the original public release of Java, JDK 1.0
in 1995, the library included a Date class that allowed a programmer to represent dates
and times. This class could be used to specify and manipulate a date/time in two forms:
the number of milliseconds between the date/time and January 1, 1970, midnight, or by
using discrete attributes of the date/time, such as month, day, year, hour. As you can
imagine, for most purposes the latter form was easier to use. Nevertheless, the latter
form of use was deprecated with the release of JDK 1.1 in 1996 because it did not sup-
port Java’s goal of internationalization. Although many countries use the Gregorian cal-
endar that the Date class is based on, there are other calendars in use around the world,
for example the Chinese calendar.

The Calendar class was introduced in Java 1.1 to support all kinds of calendars. It
provided features to replace the deprecated functionality of Date. The Calendar class is
well designed and very useful; but it is not trivial to use. The Calendar class cannot be
directly instantiated; programmers must use its getInstance method to obtain a local
instance of a calendar, and instantiate this local instance as a subclass of Calendar. To
use the “standard” solar calendar, with years numbered from the birth of Christ, a pro-
grammer would use the GregorianCalendar subclass of Calendar. The Gregorian-
Calendar class exports 28 methods and defines 42 constants for use with the methods
of the class.

Considering all of this, it is no wonder that programmers who need a simple date
class—perhaps one that allows a month, day, and year to be passed to the constructor,
provides three simple observer methods, and provides methods to increment a date and
compare two dates—might decide to implement their own class.

Deprecated A Java construct is deprecated when the
Java developers have decided that the construct might
not be supported in future releases of the language;
use of deprecated features is discouraged.
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1http://java.sun.com/j2se/1.3/docs/api/index.html

The Java Class Library

Programming with an object-oriented language depends heavily on the use of classes
from the language’s standard library. The Java standard class library includes over 70
packages and subpackages, with hundreds of classes and interfaces, and thousands of
exported methods and constants. It is not our goal in this textbook to teach the stan-
dard library. However, we do encourage the reader to begin to learn about the library,
and to continue studying the library.

Sun Microsystems, Inc., the developers of Java, maintains a public web site1 where
they have provided extensive documentation about the class libraries. The list below
briefly describes some of the prominent packages and subpackages found on the Sun
site. Visit their site for more information. In this subsection, we review some of the most
important classes, especially with respect to the goals of this textbook. Throughout the
text, as we reach places where we need to use library constructs in a new way, we
expand on this coverage. 

Some Important Library Packages

java.awt (Abstract Windowing Toolkit) Contains tools for creating user
interfaces, graphics, and images.

java.awt.event Provides interfaces and classes for handling the different types of
events created by AWT components.

java.io System input and output through data streams, serialization, and
the file system.

java.lang Provides basic classes for use in creating Java programs.
java.math Provides classes for performing mathematical operations.
java.text Provides classes and interfaces for handling text, dates, numbers,

and messages.
java.util Contains the collections framework, legacy collection classes, event

model, date and time facilities, internationalization, and miscella-
neous utility classes (a string tokenizer, a random-number genera-
tor, and a bit array).

java.util.jar Provides classes for reading and writing the JAR (Java ARchive)
file format, which is based on the standard ZIP file format.

Some Useful General Library Classes
As we are studying data structures with the Java language, we use various utility classes
that are available in the Java library. In this subsection, we introduce some of these
classes.
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The System class The System class is part of the java.lang package. All of the
System class’s methods and variables are class methods and variables. They are defined
to be static—they are unique to the class, rather than to objects of the class. We simply
use the System class methods and variables directly in our programs; we access them
through the class name rather than through the name of an instantiated object. For
example, in the TestCircle program listed above in Section 2.2, we used the System
variable out as a destination for our output:

System.out.println("c1:   " + c1);

We can also use the System class to obtain current system properties, such as the
amount of available memory.

The Random class The Random class is part of the util package. Programmers use it
to generate a list of random numbers. Random numbers are useful when creating
simulations, or models of real-world situations, with our programs. We use the Random
class in Chapter 10 to generate lists of random numbers for sorting.

The DecimalFormat class The DecimalFormat class is part of the java.text
package. To use it a programmer calls one of its constructors to define a format pattern.
Then this instance can be used to format numbers for output. In Chapter 4 we use the
DecimalFormat class to format numbers so that output columns line up nicely.

The Throwable and Exception Classes We introduced the concept of exceptions in
Chapter 1. Recall that an exception is associated with an unusual, often unpredictable
event, detectable by software or hardware,
that requires special processing. One system
unit raises or throws an exception, and
another unit catches the exception and
processes it. Processing an exception is also
called handling the exception.

When a part of a Java system determines
that an exception has occurred, it “announces”
the exception using the Java throw statement.
This can occur within the Java interpreter, within a library method, or within our own
code. (We discuss how to define, and how to determine when to throw our own excep-
tions, in the section below about building our own ADTs. For now, we look at predefined
exceptions.) When an exception is thrown, it must either be caught and handled by the
surrounding block of code, or thrown again to the next outer block of code. If an excep-
tion is thrown all the way out of a method, it propagates to the calling method. An excep-
tion that is continually thrown until it makes it all the way up the chain of calling
methods and is thrown by the main method to the Java interpreter, is handled by the
interpreter: An error message is printed along with some system information (a system
stack trace) and the program exits.

Throw an exception Interrupt the normal processing
of a program to raise an exception that must be han-
dled or rethrown by the surrounding block of code

Catch an exception Code that is executed to handle
a thrown exception is said to catch the exception
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All exceptions in Java are subclasses of the java.lang.Throwable class. Only
objects or instances of this class (or subclasses of this class) are thrown within a Java
system. The Throwable class provides several methods related to exceptions, notably
the getMessage method that returns the error message associated with the Throwable
object, and the printStackTrace method that prints a trace of the sequence of system
calls that led to the throw statement.

The Throwable class has two standard subclasses: java.lang.Error and
java.lang.Exception. The former is used for defining catastrophic exceptional situa-
tions that are best handled by simple program termination. We are concerned with the
latter subclass, the Exception class, which is used for defining exceptional situations
from which we may be able to recover. The Exception class extends the Throwable
class with two methods, both constructors:

Method Name Parameter Type Returns Operation Performed

Exception (none) Exception Constructs an exception with no
specified message.

Exception String Exception Constructs an exception with the
specified message.

Exceptions are defined by extending the Exception class. If you look at the Java
library information you see dozens of predefined subclasses of the Exception class,
each of which might also have many subclasses. The result is that there are hundreds of
exceptions defined in the Java library.

Let’s look at a few examples of throwing and handling predefined exceptions.
Review the IncDate test driver program, IDTestDriver, developed at the end of

Chapter 1. Notice the heading of the program’s main method:

public static void main(String[] args) throws IOException

As you can see, in the declaration of the main method we have told the system that this
method can throw the predefined IOException exception. Where would IOException
be raised in the program? This program uses the readLine method defined in the
BufferedReader class. A quick look at the documentation of the readLine method
shows that it throws an IOException “if an I/O error occurs.” Since it is possible for
that exception to be thrown by the readLine method, the surrounding code (the main
method), must either catch and handle the exception, or throw the exception. In this
case, we have decided to just throw the exception out to the interpreter, which would
terminate the program. Note that this is a perfectly valid option; in fact, if there is not
enough information to properly handle an exception at one level of a program, the best
approach is to throw the exception out to the next level, where it may be handled more
properly.

If we decided to handle the exception within the test driver program itself we would
surround the section of the program where the exception can be raised with a try-catch
statement. For example:
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try
{
month = Integer.parseInt(dataFile.readLine());
day = Integer.parseInt(dataFile.readLine());
year = Integer.parseInt(dataFile.readLine());

}
catch (IOException readExcp)
{
outFile.println("There was trouble reading in month, day, year.");
outFile.println("Exception: " + readExcp.getMessage());
System.exit();

}

Now, if the IOException exception is raised by any of the readLine methods
within the try block, it is handled by the code in the catch block. Notice the rather
unusual syntax of the catch statement:

catch (ExceptionClassName varName)

If the exception class referenced in the catch statement is thrown by any of the state-
ments in the try block, the catch statement defines a new object of that exception class,
and that object becomes equated with the thrown exception. So in this example, the
variable readExcp represents the exception that is caught. Because readExp is an
instantiation of a subclass of Throwable, it has a getMessage method. In the catch
block we can use readExcp.getMessage() to print the message associated with the
exception.

In this example, we are handling the exception by printing our own brief error mes-
sage, then printing the error message associated with the exception, and then terminat-
ing the program. Realistically, there is not much more we can do in this situation. Since
this is essentially the same action the interpreter does for us anyway, it is probably bet-
ter to just throw the exception. Besides, as we explained when we developed the test
driver program, it is not important that the test driver be robust, since we are only using
it to test another class; the test driver is not delivered to a customer.

There are some other nuances involved with handling predefined exceptions—for
example, the use of Java’s finally clause, and the option of handling and still
rethrowing the exception. It could quickly become confusing if we tried to cover all of
these topics at once, so we put off a discussion of other options until we reach an exam-
ple that requires their use.

One last note about predefined exceptions. The java.lang.RunTimeException
class is treated uniquely by the Java environment. Exceptions of this class are thrown
during the normal operation of the Java Virtual Machine when a standard run-time pro-
gram error occurs. Examples of run-time errors are division by zero and array-index-
out-of-bounds situations. Since run-time exceptions can happen in virtually any method
or segment of code, we are not required to explicitly handle these exceptions. If it were
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required, our programs would become unreadable because of all the necessary try, catch,
and throw statements. These exceptions are classified as unchecked exceptions.

Wrappers There are situations where a Java programmer wants to use a variable of
class Object to reference many different kinds of objects. This is possible, since

Object is a superclass of all other classes. This
feature provides a powerful tool; however, it does
suffer from one limitation—the variable of class
Object cannot reference primitive type values, since
the primitive types are not objects. To resolve this
deficiency, the Java Class Library includes a wrapper
class for each of the primitive types. To store a
primitive value in the Object variable, the
programmer first “wraps” it in the appropriate
wrapper class. These classes are known as wrapper
classes since they literally wrap a primitive valued

variable in an object’s structure, as shown in Figure 2.14. The following table lists the
primitive types and the built-in class to which each corresponds.

Primitive Type Object Type

boolean Boolean

byte Byte

char Character

double Double

float Float

int Integer

long Long

short Short

As you can see, the general rule is that the class name is the same as the name of
the built-in type, except that its first letter is capitalized. The two cases that differ are
that the class corresponding to int is called Integer and the class corresponding to
char is Character.

The wrapper classes are a part of the java.lang package.
In addition to allowing us to treat a primitive type as an object, the wrapper classes

provide many useful conversion and utility methods related to their associated primitive
type. For example, we used the Integer wrapper class method parseInt in the
IDTestDriver program in Chapter 1:

month = Integer.parseInt(dataFile.readLine());
day = Integer.parseInt(dataFile.readLine());
year = Integer.parseInt(dataFile.readLine());

Unchecked exception An exception of the Run-
TimeException class, it does not have to be
explicitly handled by the method within which it might
be raised.

Wrapper class A Java class that wraps a primitive
type, letting it be manipulated as an object, and pro-
viding some useful utility methods related to the type.
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The parseInt method accepts a string as a parameter and transforms it into the corre-
sponding integer. For example if it is passed the string “27” it returns the int value 27.
Since the BufferedReader datafile we defined in the IDTestDriver program
returns all input in the form of strings, the parseInt method allows us to transform the
input into a more useful form.

Some Class Library ADTs
In addition to the utility classes just described, the Java Class Libraries include some
ADTs that are pertinent to your study. A class provides an ADT if its basic purpose is to
allow the programmer to store data in an abstract structure, hiding the implementation
of the structure from the programmer but allowing the programmer to access the data
through various exported methods.

In some sense the wrapper classes described at the end of the previous section provide
ADTs—but the main way we use those classes is to access their general utility class meth-
ods, such as the parseInt method of Integer. Such methods are not really acting on an
object; parseInt accepts a string parameter and returns a primitive int. It is invoked
through the Integer class and not through a specific object of the class.

Figure 2.14 The integer value 5 as an int variable value, and an Integer object value

value

value 5 as an int

value 5 as an Integer

5

value:Integer

hidden value holder:int = 5

value
Integer

–hidden value holder:int

+Integer(in num:int)
+intValue():int
+parseInt(in str:String):int
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In this section we look at the Java Class Library ADTs String and ArrayList from
the logical-level and application-level viewpoints. For array lists we also take a peek at
the implementation level, since it is instructive to do so.

Strings The Java String class is part of the java.lang package. Remember that this
package provides classes that are fundamental to the design of the Java programming
language. In fact, this package is automatically imported into every Java program.

Strings are a fundamental building block for many programs. We have already been
using them extensively in this textbook, for input and output to our programs and to
indicate file names within our test drivers. We assume you have some experience using
strings in your previous programming. Nevertheless, we provide a brief review of the
Java String class here.

Logical Level The first thing we want to remind you about strings is that they are
immutable. If an object doesn’t have any methods that can change its state, it is

immutable. A string is an immutable object; we can
only retrieve its contents. There is no way to change a
string object. We can only assign a new reference to a
String variable. In other words, a String variable
references a String object. Once created, that object

cannot be changed; however, we can change the String variable so that it references a
different String object.

The Java String class provides operations for joining strings, copying portions of
strings, changing the case of letters in strings, converting numbers to strings, and con-
verting strings to numbers. Their use is straightforward and we leave it to you to review
them. Notice that, due to the immutability of strings, any operation that appears to
change a string, for example the toUpperCase method, actually returns a new String
object rather than changing the current string. For example, if the string objectnameB
has an associated value “Adam”, the statement

nameA = nameB.toUpperCase();

creates a new String object with value “ADAM”, assigns its reference to the nameA
string variable, but leaves the nameB string variable and object unchanged.

You cannot compare strings using the relational operators. Syntactically, Java lets
you write the comparisons for equality (==) and inequality (!=) between values of class
String, but the comparison that this represents is not what you typically want. Since
String is a reference type, when you compare two strings this way, Java checks to see
that they have the same address. It does not check to see whether they contain the same
sequence of characters.

Rather than using the relational operators, we compare strings with a set of value-
returning instance methods that Java supplies as part of the String class. Because they

Immutable object An object whose state cannot be
changed once it is created
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are instance methods, the method name is written following a String object, separated
by a dot. The string that the method name is appended to is one of the strings in the
comparison, and the string in the parameter list is the other. The two most useful com-
parison methods are summarized in the following table.

Method Name Parameter Type Returns Operation Performed

equals String boolean Tests for equality of string contents.

compareTo String int Returns 0 if equal, a positive integer
if the string in the parameter comes
before the string associated with the
method, and a negative integer if the
parameter comes after it.

For example, if lastName is a String variable, you can use

lastName.equals("Olson")

to test whether lastName equals “Olson.”

Application Level Since the use of strings in programs is so prevalent, the Java
language provides a few shortcuts for using the String class that differentiate it from
all the other classes in the Java library. We saw one of these in Chapter 1 when we
noted how a toString method is automatically applied to an object that is being used
as a string. Let’s look at two more special conventions for strings, string literals, and the
concatenation operator.

String Literals Just as Java provides literals for all of its primitive types (for example
–154 is a literal of type int and true is a literal of type boolean), it provides a literal
string mechanism. To indicate a literal string, you simply enclose the sequence of
characters between double quotation marks. For example:

"this is a literal string"

A literal string actually represents an object of class String. Enclosing a sequence of
characters in the double quotation marks is equivalent to declaring and instantiating a
new String object. Therefore, the following two code sequences are equivalent:

String myString;
myString = new String ("The Cat in the Hat");
---------------------------------------------
String myString = "The Cat in the Hat";
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The String Concatenation Operator The String class exports a method concat that
allows a programmer to concatenate two strings together to form a third string.
However, this operation is so prevalent in Java programs that the language designers
provide us with a shortcut, the + string operation. The result of concatenating two
strings is a new string containing the characters from both strings. For example, given
the statements

String first = "The Cat in the Hat";
String second = "Comes Back";
String third = first + second;
output.println(third);

the string “The Cat in the HatComes Back” appears in the output stream. Notice that
the system does not automatically insert blanks between two concatenated strings.

Concatenation works only with values of type String. However, if we try to
concatenate a value of one of Java’s built-in types to a string, Java automatically
converts the value into an equivalent string and performs the concatenation. In fact,
we can concatenate an object of any class to a string; the system looks for the
object’s toString operation to transform the object into a string before the concate-
nation.

Array Lists The ArrayList class is part of the java.util package. The functionality
of the ArrayList class is similar to that of the array. In fact, the array is the
underlying implementation structure used in the class. In contrast to an array, however,
an array list can grow and shrink; its size is not fixed for its lifetime.

The ArrayList class was added to the library with the release of Java 1.2. It
provides essentially the same functionality as the original library’s Vector class,
with which you may be familiar from a previous course. However, the Vector class
supports concurrent programming; that is, it supports programs that have more than
one active thread. A thread is a flow of control in a program. Advanced Java pro-
grams can have multiple control flows that execute simultaneously and interact
with each other. The support that is necessary to enable concurrent programming
requires extra processing whenever a Vector method is invoked, even when we
aren’t using multiple threads. The extra processing makes the Vector class a poor
choice for use with single-threaded programs, such as the programs of this text-
book. For single-threaded programs, you should use the ArrayList class instead of
the Vector class.

Logical Level We approach the logical view of array lists by comparing and
contrasting them with arrays. Like an array, an array list is a structured composite data
type, made up of a collection of ordered elements. As with an array, we can access an
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element of an array list directly by specifying an index. However, arrays and array lists
differ in many ways:

1. Arrays can be declared to hold data of a specific type; array lists hold variables of
type Object. Therefore, every array list can hold virtually any type of data, even a
primitive type if it is contained within a wrapper object.

2. An array remains at a fixed capacity throughout its lifetime; the capacities of array
lists grow and shrink, depending on need.

3. An array has a length; an array list has a size, indicating how many objects it is
currently holding, and a capacity, indicating how many elements the underlying
implementation could hold without having to be increased.

The following table describes some of the interesting ArrayList operations.

Method Name Parameter Type Returns Operation Performed

ArrayList (none) Constructs an empty array list of
capacity 10.

ArrayList int Constructs an empty array list of
the capacity indicated by the
parameter.

add int, Object void Inserts the specified Object at the
specified position; shifts all subse-
quent elements to the right one
place.

add Object void Inserts the specified Object at the
end.

ensureCapacity int void Increases the capacity of the array
list to at least the specified capac-
ity, if it is currently less than the
specified capacity.

get int Object Returns the element at the specified
position.

isEmpty (none) boolean Returns true if the array list is
empty, false otherwise.

remove int Object Removes the element at the speci-
fied position, shifts all subsequent
elements to the left one place, and
returns the removed element.

size (none) int Returns current size.
trimToSize (none) void Trims the capacity of the array list

to its size.
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Implementation Level It is not necessary to peek at the underlying implementation of
array lists in order to use them in our programs. Nevertheless, it is an instructive
exercise, and helps us understand when to choose an array list structure over an array
and vice versa.

We can imagine a Java array list consisting of an array and two integer variables
that hold the capacity (length) and size (number of current elements) of the array. The
underlying array is always “left-justified;” in other words, any empty slots are at higher
indices then the slots being used.

It is easy to see how observer methods, like get, isEmpty, and size are imple-
mented; the appropriate information is simply calculated and returned. But what about
operations that change the contents of the array list; for example, the add operation?
These are more interesting.

First, we consider a “standard” add operation, one that does not require a change in
the size of an array list. Suppose we have an array list letters that we are using to hold
characters. Suppose its capacity is 8 and it has a current size of 6. (See the “Before” section
of Figure 2.15, which represents this situation. In the figure we follow several simplifying
conventions: we show characters inside the array locations rather than show each of them
as separate objects; we label the underlying array with the name of the array list.)

Now suppose we perform the operation

letters.add(2, 'X');

To make room for the addition of the character 'X' at index 2, the underlying imple-
mentation would first copy the elements at positions 5 down to 2 into locations 6 down
to 3. That frees location 2 so that the 'X' can be copied into it. Additionally, the size
variable would need to be updated. (See the “Processing” section of Figure 2.15, which
represents the activity taking place during the add operation, and the “After” section,
which represents the state of the array list after the operation is completed.)

Notice that inserting one element into the array list requires many steps; depending
on where the element is inserted, it could require shifting the entire contents of the
underlying array (if inserted at index 0), or it could require no shifting whatsoever (if
inserted at location size).

The processing becomes even more complicated if we try to add an element to an
array list that is already at its capacity. In this case, the underlying implementation cre-
ates a new array to hold the array list information—an array that is larger than the cur-
rent array list. It then copies the contents of the old array into the new array, leaving an
empty slot for the additional element. Finally, it copies the new element into the appro-
priate location of the new array and updates the capacity and size variables. The
new array is now the array list; the old array is garbage and is eventually reclaimed by
the run-time garbage-collection process.

There is actually more that goes on behind the scenes than we have described here;
however, we think we have covered enough for you to get the point. With an array,
memory is reserved ahead of time to hold the array elements; with an array list,
memory can be allocated “on the fly,” as needed. Array lists can be a useful construct
for saving space, but the space savings might be at the expense of extra processing
time. Time/space tradeoffs are common in computer programming.
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Figure 2.15 Array list implementation
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Application Level Due to the similarities between arrays and array lists, we can use an
array list in place of an array in virtually any application. However, the differences
between arrays and array lists often mean that for a specific application, one or the
other of these structures is the appropriate choice. It is impossible to list definite rules on
when to choose one approach over the other, since there can be multiple factors to
consider, and since each application has its own requirements. Nevertheless, we offer the
following short set of guidelines:

Use an array when

1. space is not an issue.

2. execution time is an issue.

3. the amount of space required does not change much from one execution of the pro-
gram to the next.

4. the actively used size of the array does not change much during execution.

5. the position of an element in the array has relevance to the application. (For
example, the value in location n represents the profits for day n of a business
period.)

Use an array list when

1. space is an issue.

2. execution time is not an issue.

3. the amount of space required changes drastically from one execution of the pro-
gram to the next.

4. the actively used size of the array list changes a great deal during execution.

5. the position of an element in the array list has no relevance to the application.

6. most of the insertions and deletions to the array list take place at the size index.
(Therefore, no extra overhead is incurred by these operations.)

We use an array list in Chapter 4 to implement a Stack ADT.

Building Our Own ADTs

In Chapter 1 we emphasized that the central task in the object-oriented design of soft-
ware is the identification of classes. Once we identify the logical properties of the
classes that we use to solve our problem, we must either find pre-existing versions of
the classes or build them ourselves. Designing and building classes as ADTs allows us to
take advantage of the benefits of abstraction and information hiding.

Remember that ADTs can be considered at three levels: The logical level specifies
the interface and functionality, the implementation level is where the coding details
take place, and the application level is where the ADT is used. Sometimes one program-
mer is involved in all three levels of an ADT—the same individual describes it, builds it,
and uses it. At other times the design might come from one programmer, the implemen-
tation from another, and a third might be the one to use it. In the course of our discus-
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sions, we typically assume that the designer and implementer are the same person; we
call this person the programmer. We also assume that the same person, or perhaps other
people, are the ones to use the ADT at the application level; in that role we call them the
application programmers. Finally, there are the people who use the application pro-
grams; we call them the users.

To help us understand what makes a class an ADT, we return to two previous
examples, Circle and Date. Figure 2.16 lists a version of each of these, side by side,
so that you can easily compare their implementations. Circle is an example of a
record structure. It is not an ADT since its instance variables are not hidden. Date is
an ADT. Its instance variables are hidden and cannot be directly accessed from out-
side the class.

the Circle record the Date ADT
public class Circle public class Date
{ {
public int xValue; protected int year;
public int yValue; protected int month;
public float radius; protected int day;
public boolean solid; protected static final int MINYEAR = 1583;

}
public Date(int newMonth, int newDay, int newYear)
{
month = newMonth;
day = newDay;
year = newYear;

}

public int yearIs()
{
return year;

}

public int monthIs()
{
return month;

}

public int dayIs()
{
return day;

}
}

Figure 2.16 Circle and Date implementations
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Access Modifiers
The difference in visibility of the Circle data and the Date data is due to the access
modifiers used in the declaration of the data. Java allows a wide spectrum of access
control, as summarized in the following table:

Modifier Visibility

public Within the class, subclasses in the same package, subclasses in other
packages, everywhere

protected Within the class, subclasses in the same package, subclasses in other
packages

package Within the class, subclasses in the same package
private Within the class

The public access modifier used in Circle makes its data “publicly” available;
any code that can “see” an object of the class can access and change its data. Addition-
ally, any class derived from the Circle class inherits its public parts.

Public access sits at one end of the access spectrum, allowing open access to the
data. At the other end of the spectrum is private access. When a programmer declares a
class’s variables and methods as private, they can be used only inside the class itself
and they are not inherited by subclasses. We often use private access within our ADTs
to hide their data. However, if we intend to extend our ADTs with subclasses, we may
want to use the protected or package access instead.

The protected access modifier used in Date is similar to private access, only
slightly less rigid. It “protects” its data from outside access, but allows it to be accessed
from within its own class or from any class derived from its class. You may recall that
in Chapter 1 we created a subclass of Date called IncDate that included a transformer
method increment. The increment method required access to the instance variables of
Date, since it would update the represented date to the next day. Therefore, the Date
instance variables were assigned protected access. (An even better approach might have
been to include Date and IncDate in the same package, perhaps a Calendar package,
and use package access as described in the next paragraph.)

The remaining type of access is called package access. A variable or method of a
class defaults to package access if none of the other three modifiers are used. Package
access means that the variable or method is accessible to any other class in the same
package; also the variable or method is inherited by any of its subclasses that are in the
same package.

Note that the same rules for visibility and inheritance described above for instance
variables apply equally well to the methods, constants, and inner classes of a class.

Exported Methods
If we hide the data of our ADTs, then how can other classes use the data? The answer is
through publicly available methods of the class. By restricting access of the data of a
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class to the methods of the class, we reap the benefits of abstraction and information
hiding that were described in Chapter 1.

Consider once again the implementation of the Date ADT in Figure 2.16. The year,
month, and day variables are all protected from outside access. This particular ADT pro-
vides one constructor method, Date, which accepts three integer parameters and initial-
izes the variables of the Date object accordingly. The Date ADT also provides three
observer methods: yearIs, monthIs, and dayIs. Using the constructor and observer
methods, another class can create Date objects and “observe” the constituent data.

It is not hard to imagine creating some more interesting methods for the Date class.
For example, as was suggested before, we could include a transformer method called
increment that would change the value of the Date to the next day. We could also
create a method that operates on more than one Date object—for example, a differ-
ence method that returns the number of days between two dates. The method could
accept one date as a parameter and use the Date instance through which it is invoked
as the other date. Its declaration might look something like this:

public int difference(Date inDate);

In that case, the following program segment would assign the value 5 to the variable
daysLeft.

Date holiday = new Date (12, 25, 2002);
Date today = new Date (12, 20, 2002);
int daysLeft;

daysLeft = holiday.difference(today);

Copying Objects
In the course of using an ADT, an application programmer might need to make a copy
of the ADT object. Since ADTs are implemented as classes, they are handled by refer-
ence; if you simply use Java’s assignment operator (=) to perform the copy, you end up
with an alias of the copied object. For example, suppose oneDate and twoDate are
both Date objects, representing the dates 10/2/1989 and 4/12/1992, respectively:

Then the statement

oneDate = twoDate;

10/2/1989

4/12/1992

oneDate

twoDate
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would create aliases, and garbage, as follows:

To create a true copy, and not just an alias, a programmer could use the Date con-
structor and observer methods as follows:

oneDate = new Date (twoDate.monthIs(), twoDate.dayIs(), twoDate.yearIs());

This approach would create a new Date object with the same variable values as the
twoDate object. The result of the operation would look like this:

This approach eliminates the creation of an alias. Now, oneDate and twoDate are
separate objects, and changes to one do not affect the other.

Since creating a copy of an ADT is a common operation, it is appropriate to include
a special constructor for an ADT, called a copy constructor, which encapsulates the
above operation. We pass the copy constructor an instance of the ADT and it creates a
new instance of the ADT that is a copy of the argument. For the Date class the copy
constructor would be:

public Date (Date inDate)
{
year = inDate.year;
month = inDate.month;
day = inDate.day;

}

Notice that within the copy constructor the system has direct access to the instance
variables of the Date parameter inDate, even though those variables were declared as
protected. This works because this code resides inside the Date class and therefore has

4/12/1992

4/12/1992

10/2/1989 Garbage

oneDate

twoDate

10/2/1989

4/12/1992

GarbageoneDate

twoDate
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access to the private and protected members. Using the copy constructor, we can now
create a true copy as follows:

oneDate = new Date (twoDate);

Creating the copy constructor for the Date class was fairly straightforward. We
simply had to copy the variables of the Date parameter to the fields of the new Date
object. This approach works fine for a simple ADT like Date. However, we must be more
careful when working with composite ADTs.

Previously in this chapter, in the section about Aggregate Objects, we listed the fol-
lowing definitions of the Point and NewCircle classes:

public class Point public class NewCircle
{ {
public int xValue; public Point location;
public int yValue; public float radius;

} public boolean solid;
}

As you can see, an object of the class NewCircle is a composite object, since one of its
instance variables is an object of the class Point. Consider the following code that
implements a copy constructor for NewCircle in the same straightforward manner that
was used for the Date class above:

public NewCircle (NewCircle inNewCircle)
// This code is incorrect
{
location = inNewCircle.location;
radius = inNewCircle.radius;
solid = inNewCircle.solid;

}

At first glance this seems as if it would provide a reasonable copy of a Circle
object. However, upon closer scrutiny, we see that there is a hidden alias that has been
created. The line in the constructor that copies the location variable

location = inNewCircle.location;

is using the standard assignment statement on an object. Since all objects are handled
by reference, what is actually copied is the
reference to that object, rather than the con-
tents of the object. We end up with two sepa-
rate Circle objects that are both referencing
the same Point object. The NewCircle copy
constructor above is an example of a shallow
copy. Shallow copying is rarely useful.

Shallow copy An operation that copies a source class
instance to a destination class instance, simply copying
all references so that the destination instance contains
duplicate references to values that are also referred to
by the source.
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To rectify the problems created with a shallow copy, we need to create new
instances of any nonprimitive variables of the object that we are copying. This approach
results in a deep copy. The correct code for the copy constructor for NewCircle is:

public NewCircle (NewCircle inNewCircle)
{
location = new Point;
location.xValue = inNewCircle.location.xValue;
location.yValue = inNewCircle.location.yValue;
radius = inNewCircle.radius;
solid = inNewCircle.solid;

}

The key statement in the code above is the first
statement where we use the new command to create a
new instance of a Point object.

Notice that in this example, since the classes we
are using have public instance variables, we were able
to just directly access the x and y values of the loca-
tion variables of the inNewCircle parameter. If we
were dealing with ADTs we would have to use the

appropriate observer methods. Alternately, if the Point class included its own copy
constructor, we could use it to create the new Point object:

location = new Point(inNewCircle.location);

Figure 2.17 summarizes our discussion of copying objects. It shows the results of all
three approaches to copying a Circle object: using a simple assignment statement,
using a shallow copy, and using a deep copy. In the figure, both oneCircle and
twoCircle are objects of type NewCircle.

Exceptions
When creating our own ADTs it is possible to identify exceptional situations that
require special processing. If it is the case that the special processing cannot be deter-
mined ahead of time. It is application dependent; we should use the Java exception
mechanism to throw the problem out of the ADT and force application programmers to
handle the exceptional situation on their own. On the other hand, if handling the excep-
tional situation can be hidden within the ADT, then there is no need to burden the
application programmers with the task of handling exceptions.

For an example of an exception created to support a programmer-defined ADT, let’s
return to our Date class. As currently defined, a Date constructor could be used to cre-
ate dates with nonexistent months—for example, 15/15/2000 or even �5/15/2000. We
could avoid the creation of such dates by checking the legality of the month argument

Deep copy An operation that copies one class
instance to another, using observer methods as neces-
sary to eliminate nested references and copy only the
primitive types that they refer to. The result is that the
two instances do not contain any duplicate references.
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Figure 2.17 Copying objects
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passed to the constructor. But what should our constructor do if it discovers an illegal
argument? Some options:

• Write a warning message to the output stream. That’s not a very good option
because within the Date ADT we don’t really know what output stream is being
used by the application.

• Instantiate the new Date object to some default date, perhaps 0/0/0. The problem
with this approach is that the application program may just continue processing
as if nothing is wrong, and produce erroneous results. In general it is better for a
program to “bomb” then to produce erroneous results that may be used to make
bad decisions.

• Throw an exception. This way, normal processing is interrupted and the construc-
tor does not have to return a new object; instead, the application program is forced
to acknowledge the problem and either handle it or throw it out to the next level.

Once we have decided to handle the situation with an exception, we must decide
whether to use one of the library’s predefined exceptions, or to create one of our own. A
study of the library in this case reveals a candidate exception called DataFormatEx-
ception, to be used to signal data format errors. We could use that exception but we
decide it doesn’t really fit, since its not the format of the data that is the problem in this
case, it is the values of the data.

So, we decided to create our own exception, DateOutOfBounds. We could call it
“MonthoutofBounds” but we decide that we want to use the exception to indicate
other potential problems with dates, and not just problems with the month value. For
example, in the Date class we defined a class variable MINYEAR (set to 1583), repre-
senting the first complete year in which the Gregorian calendar was in use. Applica-
tion programmers should not use our Date class to represent dates earlier than that
year. The idea is that date calculations get very complicated if you allow dates before
1583. For one thing, leap year rules were different; for another, there were 10 days
that were skipped in the middle of 1582. We are imagining that we have added meth-
ods to the class that would be affected by such things, for example a method that
returns the number of days between two dates. Therefore, we wish to disallow such
dates.

We create our DateOutOfBounds exception by extending the library Exception
class. It is customary when creating your own exceptions to define two constructors, mir-
roring the two constructors of the Exception class. In fact, the easiest thing to do is define
the constructors so that they just call the corresponding constructors of the superclass:

public class DateOutOfBoundsException extends Exception
{
public DateOutOfBoundsException()
{
super();

}
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public DateOutOfBoundsException(String message)
{
super(message);

}
}

The first constructor is used to create an exception without an associated message;
the second constructor creates an exception with a message equal to the string argu-
ment passed to the constructor.

Next we need to consider when, within our Date ADT, we throw the exception.
All places within our ADT where a date value is created or changed should be exam-
ined to see if the resultant value could be an illegal date. If so, we should create an
object of our exception class with an appropriate message, and throw the exception.
Here is how we might write a Date constructor to check for legal months and years.
(Checking for legal days is much more complicated and we leave that as an ex-
ercise.)

public Date(int newMonth, int newDay, int newYear) throws DateOutOfBound-
sException
{
if ((newMonth <= 0) || (newMonth > 12))
throw new DateOutOfBoundsException("month must be in range 1 to 12");

else
month = newMonth;

day = newDay;

if (newYear < MINYEAR)
throw new DateOutOfBoundsException("year " + newYear +

" is too early");
else
year = newYear;

}

Notice that the message defined for each throws clause pertains to the problem dis-
covered at that point in the code. This should help the application program that is han-
dling the exception, or at least provide pertinent information to the user of the program
if the exception is propagated all the way out to the user level.

Finally, let’s see how an application program might now use the Date class. Con-
sider a program called UseDates that prompts the user for a month, day, and year, and
create a Date object based on the user’s responses. In the following code we ignore the
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details of how the prompt and response are handled, to concentrate on the topics of our
current discussion:

public class UseDates
{
public static void main(String[] args) throws DateOutOfBoundsException
{
Date theDate;
// Program prompts user for a date
// M is set equal to user’s month
// D is set equal to user’s day
// Y is set equal to user’s year
theDate = new Date(M, D, Y);

// Program continues
}

}

When this program runs, and the user responds with a legal month, day, and
year, there is no problem. However, if the user responds with an illegal value—for
example, a year value of 1051—the DateOutOfBoundsException is thrown by the
Date constructor; since it is not caught within the program, it is thrown out to the
interpreter. The interpreter stops execution of the program after displaying a message
like this:

Exception in thread "main" DateOutOfBoundsException: year 1051 is too early
at Date.<init>(Date.java:18)
at UseDates.main(UseDates.java:57)

The interpreter’s message includes the name and message string of the exception, and a
trace of what calls were made leading up to the exception being thrown.

Alternately, the UseDates class could be defined to catch and handle the exception
itself, rather than throwing it to the interpreter. The application programmer could
reprompt for the date in the case of the exception being raised. Then UseDates might
be written as follows (again we ignore the user interface details):

public class UseDates
{
public static void main(String[] args)
{
Date theDate;
boolean DateOK = false;

while (!DateOK)
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{
// Program prompts user for a date
// M is set equal to user’s month
// D is set equal to user’s day
// Y is set equal to user’s year
try
{
theDate = new Date(M, D, Y);
DateOK = true;

}
catch(DateOutOfBoundsException OB)
{
output.println(OB.getMessage());

}
}

// Program continues
}

}

If the new statement executes without any trouble, meaning the Date constructor
did not throw an exception, then the DateOK variable is set to true and the while loop
terminates. On the other hand, if the DateOutOfBounds exception is thrown by the
Date constructor, it is caught by the catch statement. This in turn prints out the message
associated with the exception and the while loop is re-executed, again prompting the
user for a date. The program repeatedly prompts for date information until it is given a
legal date.

Notice that the main method no longer throws DateOutOfBoundsException, since
it handles the exception itself.

There are several factors to consider when determining how to use exceptions when
creating our own ADTs. First of all, we should decide what types of events can trigger
exceptions. Remember that exceptions can be used to signal any out-of-the-ordinary
event that requires special processing—there is no language-based rule that says the
event must be error related. For example, it would be possible to break out of an input
loop in reaction to an exception you raise when you try to read past the end of a file.
Reading the end-of-file marker is not really an error; it is something we expect to hap-
pen eventually when we read files. It is, in a sense, an exceptional condition, and we
can use Java’s exception mechanisms to help us handle its occurrence.

To simplify our ADT definitions, and to support a common approach to the way we
define our ADTs, we throw programmer-defined exceptions from our ADTs only in situ-
ations involving errors. For example, unexpected date values being passed to a method
or illegal sequencing of methods calls are errors. However, this does not mean we
always use exceptions in these cases.
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When dealing with error situations within our ADT methods, we have several options:

1. We can detect and handle the error within the method itself. This is the best
approach if the error can be handled internally and if it does not greatly compli-
cate design.

2. We can throw an exception related to the error and force the calling method to either
handle the exception or to rethrow it. If it is not clear how to handle a particular error
situation, the best approach might be to throw it out to a level where it can be handled.

3. We can ignore the error situation. Recall the “programming by contract” discussion,
related to preconditions, in the Designing for Correctness section of Chapter 1. If the
preconditions of a method are not met, the method is not responsible for the conse-
quences. This approach is best if we are confident that the contract is usually met
by the application classes.

Therefore, when we define our ADTs, we partition potential error situations into
three sets: those to be handled internally to the ADT, those to be thrown as an
exception back to the calling process, and those that are assumed not to occur. We
document this third approach in the preconditions of the appropriate methods. We
attempt to strike a balance between the complexity required to handle all possible
error situations internally, and the lack of safety involved with handling everything
by contract.

As a general rule, an exceptional situation should be handled at the lowest level that
“knows” how to handle it. If the information needed to handle the exception is not avail-
able at a level, then the exception should be thrown. As we create ADTs to be used in
applications we see that quite often it is the application level that can best handle the
exceptions raised within the ADTs. We see examples of this as we proceed through the text.

The feature section below suggests a sequence of steps to follow when designing and
creating ADTs. The steps include many of the techniques introduced in this subsection.

Designing ADTs
When you design and create your own ADTs you can follow these steps:

1. Determine the general purpose of the ADT; determine how the application programmers use
the ADT to help solve their problems in a general sense.

2. List the specific types of operations the application program performs with the ADT. If possi-
ble, note how often the different operations are used, that is, the expected relative fre-
quency of operation calls.

3. Identify a set of public methods to be provided by the ADT class that allow the application
program to perform the desired operations. Note that there might not be a one-to-one cor-
respondence between the desired operations and the exported methods. It may be that a
single operation requires several method invocations. For example, in Chapter 3 we define a
list ADT with methods lengthIs, reset, and getNextItem. An application program
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must use all three of these methods to implement a “Print List” operation. In addition, a
specific method might be needed for more than one operation. For example, the lengthIs
list method might be used by a “Print List” operation and by a “Report List Size” operation.

4. Identify other public methods, based on experience and general guidelines, which help make
the ADT generally usable. For example, the copy constructor described in the earlier section
titled Copying Objects is usually a good method to include. You might organize all your
identified methods into constructors, observers, transformers, and iterators.

5. Identify potential error situations and classify into
a. Those that are handled by throwing an exception
b. Those that are handled by contract
c. Those that are ignored

6. Define the needed exception classes.
7. Decide how to structure the data to best support the needed operations and identified

methods. Remember that alternate organizations may support some operations better than
others. This is where the frequency of operation information may be useful.

8. Decide on a protection level for the identified data. Hide the data as much as possible.
9. Identify private structures and methods that support the required public methods. Func-

tional decomposition of the required actions of the public methods may help identify com-
mon requirements that can be supported by shared private methods.

10. Implement the ADT, possibly collecting all related files into a single package.
11. Create a test driver like the one at the end of Chapter 1 and test your ADT with a wide vari-

ety of operations.

Note that the classic data structures, modeled as ADTs created in the remainder of this text have
evolved over the last 50 years. Therefore, we can draw from a great deal of previous research
and experience when designing these structures, instead of analyzing specific problem situations
as suggested above.

Summary
We have discussed how data can be viewed from multiple perspectives, and we have
seen how Java encapsulates the implementations of its predefined types and allows us
to encapsulate our own class implementations.

As we create data structures, using built-in data types such as arrays and classes to
implement them, we see that there are actually many levels of data abstraction. The
abstract view of an array might be seen as the implementation level of the program-
mer-defined data structure List, which uses an array to hold its elements. At the log-
ical level, we do not access the elements of List through their array indexes but
through a set of accessing operations defined especially for objects of List type. A
data type that is designed to hold other objects is called a container or collection
type. Moving up a level, we might see the abstract view of List as the implementa-
tion level of another programmer-defined data type, ProductInventory, and so on.
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What do we gain by separating the views of the data? First, we reduce complexity
at the higher levels of the design, making the program easier to understand. Second,
we make the program more easily modifiable: The implementation can be completely
changed without affecting the program that uses the data structure. We use this
advantage in this text, developing various implementations of the same objects in
different chapters. Third, we develop software that is reusable: The structure and its
accessing operations can be used by other programs, for completely different appli-
cations, as long as the correct interfaces are maintained. You saw in the first chapter
of this book that the design, implementation, and verification of high-quality com-
puter software is a very laborious process. Being able to reuse pieces that are already
designed, coded, and tested cuts down on the amount of work we have to do.

In the chapters that follow we extend these ideas to build other container classes:
lists, stacks, queues, priority queues, trees, and graphs. While the Java Class Library
provides many of these data structures (along with generic algorithms and iterator
structures), the techniques for building these structures is so important in computer sci-
ence that we believe you should learn them now.

We consider these data structures from the logical view. What is our abstract picture
of the data, and what accessing operations can we use to create, assign to, and manipu-
late the data elements? We express our logical view as an abstract data type (ADT) and
record its description in a data specification.

Next, we take the application view of the data, using an instance of the ADT in a
short example.

Finally, we change hats and turn to the implementation view of the ADT. We con-
sider the Java type declarations that represent the data structure, as well as the design
of the methods that implement the specifications of the abstract view. Data structures
can be implemented in more than one way, so we often look at alternative representa-
tions and methods for comparing them. In some of the chapters, we include a longer
Case Study in which instances of the ADT are used to solve a problem.

Perspectives on Data

Application or user view Logical or abstract view Implementation view

Product Inventory List Array

List Array Row major access function

Array Row major access function 32-bit words
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Classes Defined in Chapter 2

File First Ref. Notes

TestCircle.java page 83 Illustrates records and record component selection.

FigureGeometry.java page 88 An example of an interface.

Point.java page 93 Very small class; it is used to build an example of
an aggregate object.

NewCircle.java page 93 Example of a class that defines aggregate objects.
NewCircle includes an instance variable of the
class Point.

Summary of Classes and Support Files
Here are the classes defined in Chapter 2. The classes are listed in the order in which
they appear in the text. The summary includes the name of the class file, the page on
which the file is first referenced, and a few notes. The notes explain how the class was
used in the text, followed by additional notes if appropriate. Note that we do not include
classes defined within other classes (inner classes), such as the Circle class that was
defined within the TestCircle class, in the table. The class files are available on our
web site in the ch02 subdirectory.

Other than the Exception class, which was discussed in Section 2.3, no Java Library
Classes were used in any examples for the first time in this text within this chapter. Of
course, many library classes were discussed; but they were not used in programs.

Exercises
2.1 Different Views of Data

1. Why are primitive types sometimes called atomic types?

2. Explain what we mean by data abstraction.

3. What is data encapsulation? Explain the programming goal “to protect our data
abstraction through encapsulation.”

4. Describe the four categories of operations that can be performed on encapsulated
data. Give an example of each operation using a Library analogy.

5. Name three different perspectives from which we can view data. Using the logi-
cal data structure “a list of student academic records,” give examples of what
each perspective might tell us about the data.

6. Consider the abstract data type GroceryStore.

a. At the application level, describe GroceryStore.

b. At the logical level, what grocery store operations might be defined for the
customer?
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c. Specify (at the logical level) the operation CheckOut.

d. Write an algorithm (at the implementation level) for the operation CheckOut.

e. Explain how parts (c) and (d) represent information hiding.

2.2 Java’s Built-in Types
7. What primitive types are predefined in the Java language?

8. What composite types are predefined in the Java language?

9. Describe the component selector for classes, when they are used as records.

10. Define a toString method for the circle class listed on the following pages:

a. page 83

b. page 93

11. What is an alias? Show an example of how it is created by a Java program.
Explain the dangers of aliases.

12. Assume that date1 and date2 are objects of type IncDate as defined in Chap-
ter 1. What would be the output of the following code?

date1 = new IncDate(5, 5, 2000);
date2 = date1;
System.out.println(date1);
System.out.println(date2);
date1.increment();
System.out.println(date1);
System.out.println(date2);

13. Assume that date1 and date2 are objects of type IncDate as defined in Chap-
ter 1. What would be the output of the following code?

date1 = new IncDate(5, 5, 2000);
date2 = new IncDate(5, 5, 2000);
if (date1 == date2)
System.out.println("equal");

else
System.out.println("not equal");

date1 = date2;
if (date1 == date2)
System.out.println("equal");

else
System.out.println("not equal");

date1.increment();
if (date1 == date2)
System.out.println("equal");

else
System.out.println("not equal");
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14. What is garbage? Show an example of how it is created by a Java program.

15. What is an abstract method?

16. What sorts of constructs can be declared in a Java interface?

17. Briefly describe four uses for Java interfaces.

18. What are the fundamental differences between classes and arrays?

19. Describe the component selectors for one-dimensional arrays.

20. Write a program that declares a ten-element array of int, uses a for loop to ini-
tialize each element to the value of its index squared, and then uses another for
loop to print the contents of the array, one integer per line.

21. Define a three-dimensional array at the logical level.

22. Suggest some applications for three-dimensional arrays.

23. Indicate which Java types would most appropriately model each of the following
(more than one may be appropriate for each):

a. A chessboard

b. Information about a single product in an inventory-control program

c. A list of famous quotations

d. The casualty figures (number of deaths per year) for highway accidents in
Texas from 1954 to 1974

e. The casualty figures for highway accidents in each of the states from 1954 to
1974

f. The casualty figures for highway accidents in each of the states from 1954 to
1974, subdivided by month

g. An electronic address book (name, address, and phone information for all
your friends)

h. A collection of hourly temperatures for a 24-hour period

2.3 Class-Based Types
24. What Java construct is used to represent abstract data types?

25. Explain the difference between using a Java class to create a record and to cre-
ate an ADT

26. Explain how packages are used to organize Java files.

27. List and briefly describe the contents of five Java library packages.

28. List the eight Java Library “wrapper” classes that support the objectification of
Java’s primitive types.

29. List and describe five Java Library classes that are not described in this chapter.

30. Research the Java Library Random class. Use it in a program to do the following.

a. Generate a sequence of 10,000 random integers between 1 and 100 and out-
put the average value generated



136 | Chapter 2:  Data Design and Implementation

b. Play the high/low guessing game with the user; the program generates a ran-
dom integer between 1 and 100,000. The user must repeatedly guess the
number until it is correct. After each guess, the program informs the user if
the secret number is higher or lower than the guess.

Be sure to carefully test your program(s).

31. Write a program that declares a ten-element array of Integer, uses a for loop to
initialize each element to the value of its index squared, and then uses another
for loop to print the contents of the array, one integer per line.

32. Describe the output of the following code that uses String variables S1, S2, and
S3.

S1 = "Alex";
S2 = "Bob";
S3 = S1 + S2;
System.out.println(S3);
S2 = S1.toUpperCase();
System.out.println(S2);
S3 = "Chris".
if (S1.compareTo(S3) < 0)
System.out.println("less than zero");

else
System.out.println("not less than zero");

33. Explain the differences between arrays and array lists.

34. For each of the following situations, state whether it is best to use an array list or
an array.

a. To hold student test grades, where the size of the class of students is always
between 15 and 20

b. To hold student test grades, where the size of classes varies widely

c. To hold the number of miles traveled each day of a month

d. To hold a list of items, where you need to repeatedly insert elements into ran-
dom locations in the list

e. To hold a list of items, where you insert and remove items only from the far
end of the list.

35. Describe each of the four levels of visibility provided by Java’s visibility modi-
fiers.

36. Illustrate with a figure the difference between a shallow copy and a deep copy of
an aggregate object.

37. Consider an ADT SquareMatrix. (A square matrix can be represented by a two-
dimensional array with n rows and n columns.)
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a. Write the specification for the ADT, assuming a maximum size of 50 rows
and columns. Include the following operations:

MakeEmpty(n), which sets the first n rows and columns to zero

StoreValue(i, j, value), which stores value into the position at row i,
column j

Add, which adds two matrices together

Subtract, which subtracts one matrix from another

Copy, which copies one matrix into another

b. Convert your specification to a Java class declaration.

c. Implement the member methods.

d. Write a test plan for your class.

38. Expand your solution to Exercise 34 of Chapter 1, where you implemented
the Date and IncDate classes, to include the appropriate throwing of the
DateOutOfBoundsException, as described in this chapter.

39. Write a class Array that encapsulates an array and provides bounds
checked access. The private instance variables should be int index and 
int array[10]. The public members should be a default constructor and meth-
ods (signatures shown below) to provide read and write access to the array:

void insert(int location, int value);

int retrieve(int location);

If the location is within the correct range for the array, the insert method
should set that location of the array to the value. Likewise, if the location is
within the correct range for the array, the retrieve method should return
the value of that location of the array. In either case, if the location is not
within the correct range, the method should throw an exception of type
ArrayoutofBoundsException. Write a driver to check the array accesses.
Your driver should assign values to the array by using the insert method,
using the retrieve method to read these values back from the array. It
should also try calling both methods with illegal location values. Catch any
exceptions thrown by placing the calls in a try block with an appropriate
catch block following.

40. Describe the steps to follow when designing your own ADTs and implementing
them with the Java class mechanism.





Measurable goals for this chapter include that you should be able to

describe the List ADT at a logical level

classify list operations into the categories constructor, iterator, observer, and transformer

identify the pre- and postconditions of a given list operation

use the list operations to implement utility routines such as the following application-level tasks:

Print the list of elements

Create a list of elements from a file of element information

Store a list of elements on a file

implement the following list operations for both unsorted lists and sorted lists:

Create a list

Determine whether the list is full

Determine the size of the list

Insert an element

Retrieve an element

Delete an element

Reset the list and repeatedly return the next item from the list

explain the use of Big-O notation to describe the amount of work done by an algorithm

compare the unsorted list operations and the sorted list operations in terms of Big-O approximations

describe uses of Java’s abstract class and interface constructs with respect to defining ADTs

design and create classes for use with a generic list

use a List ADT as a component of a solution to an application problem

ADTs Unsorted List
and Sorted List

G
oals
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This chapter centers on the List ADT: its definition, its implementation, and its use in
problem solving. In addition to learning about this important data structure, this mate-
rial should help you understand the relationships among the logical, application, and
implementation levels of an ADT. In the course of the exploration of these topics, sev-
eral Java constructs for supporting abstraction are introduced. Seeing how these con-
structs are used should enhance your appreciation for the power of abstraction. We also
introduce in this chapter an analysis tool, Big-O notation, which allows us to compare
the efficiency of different ADT implementations.

3.1 Lists

We all know intuitively what a list is; in our everyday lives we use lists all the time—
grocery lists, lists of things to do, lists of addresses, lists of party guests.

In computer programs, lists are very useful abstract data types. They are members of
a general category of abstract data types called containers; containers hold other objects.
There are languages in which the list is a built-in structure. In Lisp, for example, the list
is the main data type provided in the language. Although list classes are provided in the
Java Class Library, the techniques for building lists and other abstract data types are so

important that we show you how to design and write
your own.

From a programming point of view, a list is a
homogeneous collection of elements, with a linear rela-
tionship between its elements. A linear relationship
means that, at the logical level, each element on the list
except the first one has a unique predecessor and each
element except the last one has a unique successor. (At
the implementation level, there is also a relationship
between the elements, but the physical relationship may
not be the same as the logical one.) The number of
items on the list, which we call the length of the list, is
a property of a list. That is, every list has a length.

Lists can be unsorted—their elements may be placed
into the list in no particular order—or they can be sorted.
For instance, a list of numbers can be sorted by value, a

list of strings can be sorted alphabetically, and a list of grades can be sorted numerically.
When the elements in a sorted list are of composite types, we can define their logi-

cal order in many different ways. For example, suppose we have a list of student infor-
mation, with each student represented by their first name, last name, identification
number, and three test scores. Some of the ways we can sort such a list are:

• by last name, alphabetically
• by last name, alphabetically, and then by first name, alphabetically (in other

words, the first name is used to determine relative ordering if two or more last
names are identical)

• by identification number
• by average test score

Linear relationship Each element except the first has
a unique predecessor, and each element except the last
has a unique successor

Length The number of items in a list; the length can
vary over time

Unsorted list A list in which data items are placed in
no particular order; the only relationship between data
elements is the list predecessor and successor relation-
ships

Sorted list A list that is sorted by the value in the
key; there is a semantic relationship among the keys of
the items in the list
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If the sort order is determined directly by
using the student information, such as in the
first three approaches, we say that that infor-
mation represents the key for the list element.
In the first approach, the <last name> is the
key; in the second approach, the combination of <last name – first name> is the key;
and in the third approach, the <identification number> is the key. If a list cannot con-
tain items with duplicate keys, it is said to have a unique key. In this example, the best
candidate for use as a unique key is the identification number, since it is likely to have
a unique value for each student in a school.

This chapter deals with many kinds of lists. We make the assumption that our lists
are composed of unique elements. We point out the ramifications of dropping this
assumption on our list abstractions and implementations at various places within the
chapter. When sorted, our lists are sorted from smallest to largest key value, though it is
certainly possible to sort them largest to smallest should your application need this.

There are two basic approaches to implementing container structures such as lists:
the “by copy” approach and the “by reference” approach. For our lists in this chapter,
we use the “by copy” approach. This means that when a client program inserts an item
into our lists, it is actually a copy of the item that is placed on the list. In addition,
when an item is retrieved from our list by a client program, it is a copy of the item on
the list that is returned to the program. We use the alternate approach, storing and
returning references to the items instead of copies of the items, for other container
structures starting in Chapter 4. At that point we discuss more thoroughly the important
differences between the two approaches.

Progressing through the chapter, we develop unsorted and sorted lists of strings,
sorted lists of generic elements, and in the case study, a sorted list of house informa-
tion for a real estate application. As we progress, we introduce both the Java abstract
class mechanism and the Java interface mechanism to help refine our list ADTs and
make them more generally usable. Each time we implement a new form of list, we
include the corresponding UML diagram. Each figure that displays a UML diagram
includes all of the previous diagrams, so that you easily can compare the implementa-
tion approaches.

3.2 Abstract Data Type Unsorted List

Logical Level

There are many different operations that programmers can provide for lists. For differ-
ent applications we can imagine all kinds of things users might need to do to a list of
elements. In this chapter we formally define a list and develop a set of general-purpose
operations for creating and manipulating lists. By doing this, we are building an
abstract data type.

To create the definition of a list as an abstract data type, we must identify a set of
operations that allow us to access and manipulate the list. In this section we design the
specifications for a List ADT where the items on the list are unsorted; that is, there is no

Key The attributes that are used to determine the
logical order of the items on a list
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semantic relationship between an item and its predecessor or successor. They simply
appear next to one another on the list.

Abstract Data Type Operations
Designing an ADT to be used by many applications is not the same as designing an
application program to solve a specific problem. In the latter case we can use CRC cards
to enact scenarios of the application’s use, allowing us to identify and fix holes in our
design before turning to implementation. Identifying scenarios for use of a general ADT
is not as straightforward. We must stand back and consider what operations every user
of the data type would want it to provide.

Recall that there are four categories of operations: constructors, transformers,
observers, and iterators. We begin by reviewing each category and considering which
List ADT operations fit into the respective categories.

Constructors A constructor creates a new instance of the data type. In Java, it is a
public method with the same name as the ADT’s class name. There is one piece of
information that our ADT needs from the client to construct an instance of the list
data type: the maximum number of items to be on the list. As this information varies
from application to application, it is logical for the client to have to provide it. We can
also define a default list size to be used in case the client does not provide the
information.

At the end of the previous chapter we suggested that it is a good idea to include a
copy constructor when defining an ADT. A copy constructor accepts an instance of the
ADT as a parameter and creates a copy of it. Copy constructors are most appropriate
when the ADT implements an unstructured composite type, such as the Date and Cir-
cle examples of the previous chapters. Although there can be situations in which a
copy constructor can be helpful for an application programmer who is using a struc-
tured composite type such as a list, these situations are rare. We do not define a copy
constructor for our List ADTs.

Transformers Transformers are operations that change the content of the structure in
some way. A common transformer is one that makes the structure empty. However, in
Java, the constructor methods associate a new, empty structure with the current
instance of the ADT, effectively making it empty. Therefore, we do not need another
method for making the list empty. We do need transformers to put an item into the
structure, or to remove a specific item from the structure. For our Unsorted List ADT,
let’s call these transformers insert and delete.

Note that, since we implement our operations as object methods, the list is the
object through which the method is invoked, and therefore the list itself is available to
the method for manipulation. The insert and delete methods need an additional
parameter: the item to be inserted or deleted. For this Unsorted List ADT, let’s assume
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1A method that returns a boolean value defined on a set of objects is sometimes called a predicate, with the
term observer used for methods that inquire about an instance variable of an object.

that the item to be inserted is not currently on the list and the item to be deleted is on
the list.

A transformer that takes two sorted lists and merges them into one sorted list or
appends one list to another is a binary transformer. The specification for such an opera-
tion is given in the exercises, where you are asked to implement it.

Observers Observers also come in several forms. They ask true/false questions1 about
the ADT (Is the structure empty?). They select or access a particular item (Give me a
copy of the last item.). Or they return a property of the structure (How many items are
in the structure?). The Unsorted List ADT needs at least two observers: isFull and
lengthIs. The isFull observer method returns true if the list is full, false
otherwise; lengthIs tells us how many items are on the list, as opposed to the
maximum capacity of the list.

If an abstract data type places limits on the component type, we could define other
observers. For example, if we know that our abstract data type is a list of numerical val-
ues, we could define statistical observers such as minimum, maximum, and average.
Here, at the logical level, we are interested in generality; we know nothing about the
type of the items on the list, so we use only general observers.

If we make the client responsible for checking for error conditions, we must make
sure that the ADT gives the user the tools with which to check for the conditions. The
operations that allow the client to determine whether an error condition occurs are
observers. Since we are assuming that our list does not include duplicate elements, we
should provide an observer that searches the list for an item with a particular key and
returns whether or not the item has been found. Let’s call this one isThere. The appli-
cation programmer can use the isThere observer to prevent insertion of a duplicate
item into the list. For example:

if (!list.isThere(item)) list.insert(item);

Iterators Iterators are used with composite types to allow the user to process an entire
structure, component by component. To give the user access to each item in sequence,
we provide two operations: one to initialize the iteration process (analogous to Reset or
Open with a file) and one to return a copy of the “next component” each time it is
called. The user can then set up a loop that processes each component. Let’s call these
operations reset and getNextItem. Note that reset is not an iterator, but is an
auxiliary operation that supports the iteration. Another type of iterator is one that takes
an operation and applies it to every element on the list.

Element Types Before we can formalize the specification for the Unsorted List ADT,
we must consider the type of items to be held on the list. Later in the chapter we
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learn how to define a generic list—a list that can hold elements of many different
types. For now, so that we can concentrate on the definition and implementation of
the list operations, we limit ourselves to working with a list of strings. Therefore, we
call our ADT UnsortedStringList. In order to keep our analysis as generally
applicable as possible, we still refer to list components as “elements” or “items,”
rather than as “strings,” and we call our ADT the Unsorted List ADT in much of our
discussion.

Unsorted List ADT Specification

Structure:

The list elements are Strings. The list contains unique elements;
i.e., no duplicate elements as defined by the key of the list. The
list has a special property called the current position—the posi-
tion of the next element to be accessed by getNextItem during
an iteration through the list. Only reset and getNextItem
affect the current position.

Definitions (provided by user):
maxItems: An integer specifying the maximum number of

items to be on this list.

Operations (provided by Unsorted List ADT):

void UnsortedStringList (int maxItems)

Effect: Instantiates this list with capacity of maxItems
and initializes this list to empty state.

Precondition: maxItems > 0
Postcondition: This list is empty.

void UnsortedStringList ()

Effect: Instantiates this list with capacity of 100 and
initializes this list to empty state.

Postcondition: This list is empty.

boolean isFull ()

Effect: Determines whether this list is full.
Postcondition: Return value = (this list is full)

int lengthIs ()

Effect: Determines the number of elements on this
list.

Postcondition: Return value = number of elements on this list
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boolean isThere (String item)

Effect: Determines whether item is on this list.
Postcondition: Return value = (item is on this list)

void insert (String item)

Effect: Adds copy of item to this list.
Preconditions: This list is not full.

item is not on this list.
Postcondition: item is on this list.

void delete (String item)

Effect: Deletes the element of this list whose key
matches item ’s key.

Precondition: One and only one element on this list has a
key matching item ’s key.

Postcondition: No element on this list has a key matching the
argument item ’s key.

void reset ()

Effect: Initializes current position for an iteration
through this list.

Postcondition: Current position is first element on this list.

String getNextItem ()

Effect: Returns a copy of the element at the current
position on this list and advances the value of
the current position.

Preconditions: Current position is defined.
There exists a list element at current position.
No list transformers have been called since
most recent call to reset.

Postconditions: Return value = (a copy of element at current
position)
If current position is the last element then cur-
rent position is set to the beginning of this list;
otherwise, it is updated to the next position.

In this specification, the responsibility of checking for error conditions is put on the
user through the use of preconditions that prohibit the operation’s call if these condi-
tions exist. Recall that we call this approach programming “by contract.” We have
given the user the tools, such as the isThere operation, with which to check for the
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conditions. Another alternative would be to define an error variable, have each opera-
tion record whether an error occurs, and provide operations that test this variable. A
third alternative would be to let the operations detect error conditions and throw
appropriate exceptions. We use programming by contract in this chapter so that we
can concentrate on the list abstraction and the Java constructs that support it, without
having to address the extra complexity of formally protecting the operations from mis-
use. We use other error-handling techniques in later chapters.

The specification of the list is somewhat arbitrary. For instance, the overall assump-
tion about the uniqueness of list items could be dropped. This is a design choice. If we
were designing a specification for a specific application, then the design choice would
be based on the requirements of the problem. We made an arbitrary decision not to
allow duplicates. Allowing duplicates in this ADT implies changes in several operations.
For example, instead of deleting an element based on its value, we might require a
method that deletes an element based on its position on the list. This, in turn, might
require a method that returns the position of an item on the list based on its key value.

Additionally, assumptions about specific operations could be changed—for example,
we specified in the preconditions of delete that the element to be deleted must exist on
the list. It would be just as legitimate to specify a delete operation that does not require
the element to be on the list and leaves the list unchanged if the item is not there. Per-
haps that version of the delete operation would return a boolean value, indicating
whether or not an element had been deleted. We could even design a list ADT that pro-
vided both kinds of delete operations. In the exercises you are asked to explore and
make some of these changes to the List ADTs.

Application Level

The set of operations that we are providing for the Unsorted List ADT may seem rather
small and primitive. However, this set of operations gives you the tools to create other
special-purpose routines that require knowledge of what the items on the list represent.
For instance, we have not included a print operation. Why? We don’t include it because
in order to write a good print routine, we must know what the data members represent.
The application programmer (who does know what the data members look like) can use
the lengthIs, reset, and getNextItem operations to iterate through the list, printing
each data member in a form that makes sense within the application. In the code that
follows, we assume the desired form is a simple numbered list of the string values. We
have emphasized the lines that use the list operations.

void printList(PrintWriter outFile, UnsortedStringList list)
// Effect: Prints contents of list to outFile
// Pre:    List has been instantiated
//         outFile is open for writing
// Post:   Each component in list has been written to outFile
//         outFile is still open
{
int length;
String item;
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list.reset();
length = list.lengthIs();
for (int counter = 1; counter <= length; counter++)
{
item = list.getNextItem();
outFile.println(counter + ". " + item);

}
}

For example, if the list contains the strings “Anna Jane,” “Joseph,” and “Elizabeth,” then
the output would be:

1. Anna Jane

2. Joseph

3. Elizabeth

Note that we defined a local variable length, stored the result of list.lengthIs() in
it, and used the local variable in the loop. We could have just used the method call
directly in the loop:

for (int counter = 1; counter <= list.lengthIs(); counter++)

We used the other approach for efficiency reasons. That way the lengthIs method is
called only once, saving the overhead of extra method calls.

In the printList method, we made calls to the list operations specified for the
Unsorted List ADT, printing a list without knowing how the list is implemented. At an
application level, the operations we used (reset, lengthIs, and getNextItem) are
logical operations on a list. At a lower level, these operations are implemented by Java
methods, which manipulate an array or other data-storing medium that holds the list’s
elements. There are many functionally correct ways to implement an abstract data type.
Between the user picture and the eventual representation in the computer’s memory,
there are intermediate levels of abstraction and design decisions. For instance, how is
the logical order of the list elements reflected in their physical ordering? We address
questions like this as we now turn to the implementation level of our ADT.

Implementation Level

There are two standard ways to implement a list. We look at a sequential array-based
list implementation in this chapter. The distinguishing feature of this implementation is
that the elements are stored sequentially, in adjacent slots in an array. The order of the
elements is implicit in their placement in the array.

The second approach, which we introduce in Chapter 5, is a linked-list implementa-
tion. In a linked implementation, the data elements are not constrained to be stored in
physically contiguous, sequential order; rather, the individual elements are stored
“somewhere in memory,” and their order is maintained by explicit links between them.
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Before we go on, let’s establish a design terminology for our list algorithms that’s
independent of the implementation and type of items stored on the list. Doing this
allows us to describe algorithms that are valid no matter which of the standard
approaches we use.

• List Design Terminology Assuming that location “accesses” a particular list element,

location.node( ) Refers to all the data at location, including implementation-specific
data.

location.info( ) Refers to the application data at location.
last.info( ) Refers to the application data at the last location on the list.
location.next( ) Gives the location of the node following location.node( ). If location

is the end of the list, it gives the first location of the list.

•
A few clarifications are needed. What is meant by “all the data” at a location, and “the
application data” at a location? Remember that although we are currently dealing with
lists of strings, we eventually expand the kinds of elements we can use to any kind of
data. The “application data” refers to the data from the application associated with a list
element. In addition to the application data, a list element might have certain informa-
tion associated with it, related to the implementation of the list; for example, a variable
holding the location of the next list element. By “all the data” we mean the application
data plus the implementation data, if there is any.

What then is location? For an array-based implementation, location is an index,
because we access array slots through their indexes. For example, the design state-
ment

Print location.info( )

means “Print the application data in the array slot at index location;” eventually it
might be coded in Java within the array-based implementation as

outFile.println(list.info[location]);

When we look at the linked implementation in Chapter 5, the code implementing the
design statement is quite different, but the design statement itself remains the same.
Thus, using this design notation, we define implementation-independent algorithms for
our Unsorted List ADT. Hopefully, we can design our list algorithms just once using the
design notation and then implement them using either of the implementation
approaches.

What does location.next( ) mean in an array-based sequential implementation? To
answer this question, consider how we access the next list element stored in an array:
We increment the location index. The design statement

Set location to location.next()
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might be coded in Java within the array-based implementation as

if (location == numItems – 1)      // Location is an array index
location = 0;

else
location++;

We have not introduced this list design terminology just to force you to learn the syn-
tax of another computer language. We simply want to encourage you to think of the
list, and the parts of the list elements, as abstractions. At the design stage, the imple-
mentation details can be hidden. There is a lower level of detail that is encapsulated in
the “methods” node, info, and next. Using this design terminology, we hope to record
algorithms that can be coded for both array-based and linked implementations.

Instance Variables
In our implementation, the elements of a list are stored in an array of String objects.

String[] list;

There are two size-related attributes of the list: capacity and current length. The capac-
ity of the list is the maximum number of elements that can be stored on the list. We do
not need an instance variable to hold the capacity of the list since we can use the array
attribute length to determine the capacity of the list at any point within our implemen-
tation. In other words, the capacity of our list is the length of the underlying array:
list.length.

However, we do need an instance variable to keep track of the current number of
items we have stored in the array (also known as the current length of the list). We name
this variable numItems. This variable can also be used to record where the last item was
stored. Because the list items are unsorted, when we put the first item into the list, we place
it into the first slot; the second item goes in the second slot, and so forth. Because our lan-
guage is Java, we must remember that the first slot is indexed by 0, the second slot by 1,
and the last slot by list.length – 1. Now we know where the list begins—in the first
array slot. Where does the list end? The array ends at the slot with index list.length –
1, but the list ends in the slot with index numItems – 1. For example, if the list currently
holds 5 items, they are kept in array locations 0 through 4; the value of the numItems
instance variable is 5; and the next array location to insert a new item is also 5.

Is there any other information about the list that we must include? Both operations
reset and getNextItem refer to a “current position.” What is this current position? It
is the index of the last element accessed in an iteration through the list. We need an
instance variable to keep track of the current position. Let’s call it currentPos. The
method reset initializes currentPos to 0. The method getNextItem returns the value
in list[currentPos] and increments currentPos. The ADT specification states that
only reset and getNextItem affect the current position. Figure 3.1 illustrates the
instance variables of our class UnsortedStringList. Here is the beginning of the class
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file, which includes the variable declarations. Note that it also includes an introductory
comment and a package statement. The UnsortedStringList class is the first of sev-
eral string list classes we develop. We collect all these classes together into a single
package called ch03.stringLists (the class files can be found in the subdirectory
stringLists or in the subdirectory ch03 of the directory bookFiles on our web site).

//----------------------------------------------------------------------------
// UnsortedStringList.java         by Dale/Joyce/Weems               Chapter 3
//
// Defines all constructs for an array-based list of strings that is not
// kept sorted
//----------------------------------------------------------------------------

package ch03.stringLists;

public class UnsortedStringList 
{
protected String[] list;    // Array to hold list elements
protected int numItems;     // Number of elements on this list
protected int currentPos;   // Current position for iteration

�

Figure 3.1 Instance variables of Unsorted List ADT
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Notice that we use the protected visibility modifier for each of the variables. Recall
that this means that the variables can be “seen” only by the methods of the
UnsortedStringList class or its subclasses. We use this approach because we create a
subclass later in this chapter that needs access to the variables. This type of visibility
still protects the variables from direct access by the applications that use the class.

A design choice we wish to point out, but choose not to use, is to write an
ArrayList-based class for use here. Since the ArrayList class provides a variable-
sized array, we could allow the underlying implementation to shrink and grow to mirror
the changes in the size of the list. We would not have to deal with a “max items” con-
straint, so we would not need to list preconditions such as “list is not full.” You are
asked to investigate this alternative in the exercises.

Constructors
Now let’s look at the operations that we have specified for the Unsorted List ADT. The
first two operations are constructors that create empty lists. Remember that a class con-
structor is a method having the same name as the class, but having no return type. A
constructor’s purpose is to instantiate an object of the class, to initialize variables and, if
necessary, to allocate resources (usually memory) for the object being constructed. Like
any other method, a constructor has access to all variables and methods of the class. A
new list is created empty; that is, the number of items is 0.

Our first constructor requires a positive integer parameter, which indicates the size
for the underlying array.

public UnsortedStringList(int maxItems)
// Instantiates and returns a reference to an empty list object with
// room for maxItems elements
{
numItems = 0;
list = new String[maxItems];

}

The code for this constructor is straightforward and requires no further explanation. We
have decided not to include a restatement of the method preconditions and postcondi-
tions, established in the ADT specification, when listing our code. In some cases we pro-
vide multiple versions of the same method, and we believe repeated listing of these
conditions is redundant and would make for tedious reading. Therefore, we list these
conditions only when we define the logical-level view of our ADTs. Nevertheless, we
encourage you to always include preconditions and postconditions in comments at the
beginning of your methods. Code that is meant to be used needs such documentation,
but in this text, where we’re already explaining the code in great detail, the comments
aren’t as necessary.

Our second constructor does not have a parameter. In this case, the default size of
the underlying array is 100.
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public UnsortedStringList()
// Instantiates and returns a reference to an empty list object
// with room for 100 elements
{
numItems = 0;
list = new String[100];

}

Notice that these two methods have the same name: UnsortedStringList.
How is this possible? Remember that in the case of methods, Java uses more than

just the name to identify them; it also uses the
parameter list. A method’s name, the number and
type of parameters that are passed to it, and the
arrangement of the different parameter types within
the list, combine into what Java calls the signature
of the method.

Java allows us to use the name of a method as
many times as we wish, as long as each one has a dif-
ferent signature. When we use a method name more
than once, we are overloading its identifier. The Java

compiler needs to be able to look at a method call and determine which version of the
method to invoke. The two constructors in class UnsortedStringList both have dif-
ferent signatures: One takes no arguments, the other takes an int. Java decides which
version to call according to the arguments in the statement that invokes Unsorted-
StringList.

Simple Observers
The first nonconstructor operation, isFull, just checks to see whether the current num-
ber of items on the list is equal to the length of the array.

public boolean isFull()
// Returns whether this list is full
{
return (list.length == numItems);

}

The body of the observer object method lengthIs is also just one statement.

public int lengthIs()
// Returns the number of elements on this list
{
return numItems;

}

Signature The distinguishing features of a method
heading. The combination of a method name with the
number and type(s) of its parameters in their given
order

Overloading The repeated use of a method name
with a different signature
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So far, we have not used our special design terminology. The algorithms have all been
straightforward. The next operation, isThere, is more complex.

isThere Operation
The isThere operation allows the application programmer to determine whether a list
item with a specified key exists on the list. In the case of the string list, the key is sim-
ply the string value. This string value is input to the method in the parameter item. A
boolean value is returned by the method—if the string item matches a string on the
list, true is returned; otherwise, false is returned.

Because the list items are unsorted, we must use a linear search. We begin at the
first component on the list and loop until either we find a component equal to the
parameter or there are no more strings to examine. Recall from Chapter 2 that we have
two ways to see if two strings are the same; we could use the equals method of the
String class or the compareTo method of the String class. We choose to use the
compareTo method, since we also use it in other parts of the list implementation. Recall
that this method returns a 0 if the strings are equal. Therefore, we can code

if (item.compareTo(list[location]) == 0)
found = true;

But how do we know when to stop searching if we do not find the string? If we have
examined the last element of the list, we can stop. Thus, in our design terminology, we
keep looking as long as we have not examined last.info( ).We summarize these observa-
tions in the algorithm below.

isThere (item): returns boolean

Initialize location to position of first list element
Set found to false
Set moreToSearch to (have not examined last.info())

while moreToSearch AND NOT found
if item.compareTo(location.info()) == 0
Set found to true

else
Set location to location.next()
Set moreToSearch to (have not examined last.info())

return found
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Before we code this algorithm, let’s look at the cases where we find the item on the
list and where we examine last.info( ) without finding it. We represent these cases in Fig-
ure 3.2 in an Honor Roll list. We first retrieve Sarah (see Figure 3.2(a)). Sarah is on the
list, so when the search is completed, moreToSearch is true, found is true, and
location is 3. The loop is exited because found became true when item was equal
to the contents of location 3. Next, we retrieve Susan (see Figure 3.2(b)). Susan is not on
the list, so when the search is completed moreToSearch is false, found is false, and
location is equal to numItems. The loop is exited because moreToSearch became
false after we examined the last information on the list.

Now we are ready to code the algorithm replacing the general design notation with
the equivalent array notation. The substitutions are straightforward except for initializ-
ing location and determining whether we have examined last.info( ). To initialize
location in an array-based implementation in Java, we set it to 0. We know we have
not examined last.info( ) as long as location is less than numItems. Be careful:
Because Java indexes arrays from 0, the last item on the list is at index numItems – 1.
Here is the coded algorithm.
public boolean isThere (String item)
// Returns true if item is on this list, otherwise returns false
{
boolean moreToSearch;
int location = 0;
boolean found = false;

Figure 3.2 Retrieving an item in an unsorted list.
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moreToSearch = (location < numItems);

while (moreToSearch && !found) 
{
if (item.compareTo(list[location]) == 0)  // If they match
found = true;

else
{
location++;
moreToSearch = (location < numItems);

}
}

return found;
}

insert Operation
Because the list elements are not sorted by value, we can put the new item anywhere. A
straightforward strategy is to place the item in the numItems position and increment
numItems.

This algorithm is translated easily into Java.

public void insert (String item)
// Adds a copy of item to this list
{
list[numItems] = new String(item);
numItems++;

}

delete Operation
The delete method takes an item whose value indicates which item to delete. There are
clearly two parts to this operation: finding the item to delete and removing it. We can
use the isThere algorithm to search the list. When compareTo returns a nonzero
value, we increment location; when compareTo returns 0, we exit the loop and
remove the element. Because the preconditions for delete state that an item with the
same key is definitely on the list, we do not need to test for reaching the end of the list.

insert (item)
Set numItems.info() to copy of item
Increment numItems
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reset

Initialize currentPos to position of first list element

getNextItem: returns String

Set next to currentPos.info()
Set currentPos to currentPos.next()
return copy of next

How do we remove the element from the list? Let’s look at the example in Figure
3.3. Removing Sarah from the list is easy, for hers is the last element on the list (see
Figures 3.3a and 3.3b). If Bobby is deleted from the original list, however, we need to
move up all the elements that follow to fill in the space—or do we? See Figure 3.3(c). If
the list is sorted by value, we would have to move all the elements up as shown in Fig-
ure 3.3(c), but because the list is unsorted, we can just swap the item in the numItems –
1 position with the item being deleted (see Figure 3.3(d)). In an array-based implementa-
tion, we do not actually remove the element; instead, we cover it up with the elements
that previously followed it (if the list is sorted) or the element in the last position (if the
list is unsorted). Finally, we decrement numItems.

public void delete (String item)
// Deletes the element that matches item from this list
{
int location = 0;

while (item.compareTo(list[location]) != 0)
location++;

list[location] = list[numItems - 1];
numItems--;

}

Iterator Operations
The reset method is analogous to the Open operation for a file in which the file pointer
is positioned at the beginning of the file so that the first input operation accesses the first
component of the file. Each successive call to an input operation gets the next item in the
file. Therefore, reset must initialize currentPos to indicate the first item on the list.

The getNextItem operation provides access to the next item on the list by returning
currentPos.info( ) and incrementing currentPos. To do this, it must first “record” current-
Pos.info( ), then increment currentPos, and finally return the recorded information.
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Figure 3.3 Deleting an item in an unsorted list

numItems
list

[list.length()-1]

[0]
[1]
[2]
[3]

logical
garbage

4

Bobby
Judy
June
Sarah

[0]
[1]
[2]
[3]

logical
garbage

3

Bobby
Judy
June
Sarah

(a) Original list (b) Deleting Sarah

[0]
[1]
[2]
[3]

logical
garbage

3

Judy
June
Sarah
Sarah

[0]
[1]
[2]
[3]

logical
garbage

3

Sarah
Judy
June
Sarah

(c) Deleting Bobby (move up) (d) Deleting Bobby (swap)

numItems
list

[list.length()-1]

numItems
list

[list.length()-1]

numItems
list

[list.length()-1]



158 | Chapter 3:  ADTs Unsorted List and Sorted List

The currentPos value always indicates the next item to be processed in an iteration.
To be safe, we decided to reset it automatically, in the getNextItem method, when the
end of the list is reached. Therefore, there are two places where currentPos can be set
to 0: in the reset method, and in the getNextItem method when the end of the list is
reached. The code for the iteration operations is as follows:

public void reset()
// Initializes current position for an iteration through this list
{
currentPos  = 0;

}

public String getNextItem ()
// Returns copy of the next element on this list
// And advances the current position 
{
String next = list[currentPos];
if (currentPos == numItems-1)
currentPos = 0;

else
currentPos++;

return new String(next);
}

The getNextItem method could also be implemented using the modulus operation:

currentPos = (currentPos++) % (numItems – 1);

The getNextItem method returns a String variable. That means that it returns a
reference to a string object. Notice that we have elected to create a new string object
using the String class’s copy constructor, and to return a reference to the new object,
rather than a reference to the string object that is actually on the list. As we stated
before, we implement our lists “by copy.” Why did we do this? The answer is that we
wish to maintain information hiding. If we return a reference into the list, we have
given the application an alias of a hidden list element. So, rather than do that, we create
a copy of the string, and return a reference to the copy. The list user is never allowed to
directly see or manipulate the contents of the list. These details of the list implementa-
tion are encapsulated by the ADT.

In this case we are being overly protective; since strings are immutable objects there
would be no potential harm in returning a reference to the actual string that is on the
list. The application program cannot change the string, so in this case the work of copy-
ing the list object is unnecessary. Nevertheless, we wish to emphasize the need for care
when returning values from within our ADTs. As mentioned previously, in Chapter 4 we
follow the alternate approach, namely, returning references to the objects contained in
our ADTs, and consider the strengths and drawbacks of each approach.
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Consider how the application programmer might use the list iteration methods. The
programmer can use the length of the list to control a loop asking to see each item in
turn. What happens if the program inserts or deletes an item in the middle of an itera-
tion? Nothing good, you can be sure! Adding and deleting items changes the length of
the list, making the termination condition of the iteration-counting loop invalid.
Depending on whether an addition or deletion occurs before or after the iteration point,
our iteration loop could end up skipping or repeating items.

We have several choices of how to handle this possibly dangerous situation. The list
can throw an exception, the list can reset the current position when inserting or delet-
ing, or the list can disallow transformer operations while an iteration is taking place.
We choose the latter here by way of a precondition in the documentation.

The UML class diagram in Figure 3.4 represents our UnsortedStringList
implementation.

Test Plan
To test our Unsorted List ADT, we create a test driver program similar to the one we cre-
ated at the end of Chapter 1 to test the IncDate ADT. That test driver accepted a
sequence of instructions from an input file that indicated which method of IncDate to
invoke next. The test input also included any parameter values required by the IncDate
methods. Results of the method invocations were printed to an output file. Meanwhile, a
final count of the number of test cases was indicated in an output window.

As we planned when we created that test driver, it is not difficult to transform it into a
test driver for a different ADT. To use it to test our Unsorted List ADT, we simply change the
value assigned to the testname variable near the start of the program, change the declara-
tion of the variables to appropriate ones for testing our list ADT, and rewrite the sequence
of if-else statements to invoke and report on the list methods instead of the date methods.

We do not go into all the details of the code for the test driver. Note that since there are
two constructors for the Unsorted List we must assign them two separate “code names” for
our test input file. We simply chose to use “UnsortedStringList1” and “Unsorted-
StringList2”. Here is the beginning of the main processing loop within the test driver:

Figure 3.4 UML diagram of UnsortedStringList
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// Process commands
while(!command.equals("quit"))
{  
if (command.equals("UnsortedStringList1"))

{
size = Integer.parseInt(dataFile.readLine());
list = new UnsortedStringList(size);
outFile.println("The list is instantiated with size " + size);

}
else
if (command.equals("UnsortedStringList2"))
{
list = new UnsortedStringList();;
outFile.println("The list is instantiated with default size");

}
else
if (command.equals("isFull"))
{
outFile.println("The list is full is " + list.isFull());

}
.
.
.

You can study the entire TDUnsortedStringList.java program (it’s on our web site).
What is important for us now is planning how to use the test driver to test our ADT.

The constructors UnsortedStringList (int maxItems) and UnsortedString-
List () can be exercised throughout our tests every time we create an Unsorted
StringList object.

lengthIs, insert, and delete can be tested together. That is, we insert several
items and check the length; we delete several items and check the length. How do we
know that insert and delete work correctly? We can make calls to the reset and
getNextItem methods to examine the structure of the list; a good approach would be to
use reset and getNextItem to create a “print list” test method (such as defined in the
application-level subsection), that could be called many times during the testing process.
A PrintList method is included in the TDUnsortedStringList.java program.

To test the isFull operation, we can instantiate a list of size 5, insert four items
and print the result of the test, and then insert the fifth item and print the result of the
test. To test isThere, we must search for items that we know are on the list and for
items that we know are not on the list.

How do we organize our test plan? We should classify our test possibilities. For
example, an item can be in the first position on the list, in the last position on the list,
or somewhere else on the list. So we must be sure that our delete can correctly delete
items in these positions. We must also check that isThere can find items in these same
positions. We should also check the lengthIs method at the boundary cases of an
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empty list and a full list. Notice that this test plan is mostly a black-box strategy. We
are looking at the list as described in the interface, not in the code.

These observations are summarized in the following test plan, which concentrates on
the observer methods and the insert method. To be complete the plan must be expanded
to use both constructors, to test the delete method, to test various combinations of
insert and delete, and, if program robustness is desired, to test how the software
responds to situations precluded by the method preconditions—for example, insertion into
a full list. The tests are shown in the order in which they should be implemented.

Operation to be Tested
and Description of
Action Input Values Expected Output

UnsortedStringList
print lengthIs 0
print isFull false
print isThere(“Tom”) false
Print List empty list

UnsortedStringList 5
insert Tom
print lengthIs 1
print isFull false
print isThere Tom true
Print List Tom

insert Julie
insert Nora
insert Maeve
print lengthIs 4
print isFull false
print isThere Tom true
print isThere Julie true
print isThere Maeve true
print isThere Kevin false
Print List Tom, Julie, Nora, Maeve

insert Kevin
print lengthIs 5
print isFull true
print isThere Tom true
print isThere Julie true
print isThere Kevin true
Print List Tom, Julie, Nora, Maeve, Kevin

etc.
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The file testlist1.dat, that accompanies the program file on our web site, pro-
vides an example of a set of test data. It is not a complete test. The file testout1.dat
shows the results of the following program invocation:

java TDUnsortedStringList testlist1.dat testout1.dat

The key to properly testing any software is in the plan: It must be carefully thought
out and it must be written. We have discussed the basic approach needed for testing the
Unsorted List ADT, listed a partial test plan, and provided a test driver (in the file
TDUnsortedStringList.java). We leave the creation of the complete written test plan
as an exercise.

3.3 Abstract Classes

We have just completed the design and implementation of an Unsorted List ADT. In the
next section we follow the same basic approach to create a Sorted List ADT. However,
before we do that we take a look at Java’s abstract class mechanism. We can use an abstract
class to take advantage of the similarities between the Unsorted and Sorted List ADTS.

Relationship between Unsorted and Sorted Lists

Suppose you are given the task of creating a Sorted List ADT. The first step you might
take is to identify the logical operations that you need to include. As you start to iden-
tify the operations, you might have the feeling that you have done this exercise before.
Let’s see, you’ll need constructors to create your list. You’ll need some way to put things
onto the list, so you need an insert method. Of course, you might want to remove
things from the list, so you need a delete method.

Sound familiar? As you think about it, you realize that all of the logical operations
we defined for the Unsorted List ADT are also needed for your Sorted List ADT. The log-
ical definition of those operations did not rely on whether or not the list was sorted. If
you look at the Unsorted List ADT specification, you can see that the entire specification
may be reused. The only changes that need to be made are to the preconditions and
postconditions of the transformer methods insert and delete: They must specify that
the list is sorted. insert and delete are the only two methods that affect the underly-
ing ordering of the list items. The condition

“The list is sorted.”

can be added to both their preconditions and postconditions, and you are all set.
Since you were able to reuse most of the specification of the Unsorted List ADT to

specify your Sorted List ADT, maybe you can also reuse some of the implementation. In
fact, assuming you again wish to use an array-based implementation, you can reuse the
entire class except the implementations of the insert and delete methods. We look at
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the implementations of these methods in the next subsection. We also look at a variant
of the isThere method. Although you can just reuse the isThere method of the
Unsorted List ADT, we are able to create a more efficient version of the method under
the assumption that the list is sorted.

Reuse Options

There are several ways we could reuse the code of the Unsorted List ADT to create the
code for the Sorted List ADT. Let’s look at three approaches: Cut and Paste, Direct Inher-
itance, and Abstract Classes.

Cut and Paste
We could create a Sorted List class completely independent of the Unsorted List ADT
class. Just create a new file called SortedStringList.java, “cut and paste” the code
that we are able to reuse into the new file, rename the constructors to match the file
name, and create the new code for the three methods that we want to change. Once we
are finished there is no longer any formal link between the two classes: Cut and paste,
direct inheritance, and abstract classes.

However, this lack of connection between the two classes can be detrimental. Con-
sider, for example, if someone using the Sorted List class discovers an error in the getNex-
Item method. Suppose they fix the method but do not realize that a “copy” of the method
exists in another class? This means that although a bug has been detected, and a solution
devised and implemented, the same bug is still plaguing another class. If we could some-
how formally link the two classes together, so that the code for the common methods only
appears in one place, then both classes would share any updates made to these methods.

Direct Inheritance
Since the Sorted List ADT class can use several of the methods of the Unsorted List
class, maybe we should make the former a subclass of the latter:

public class SortedStringList extends UnsortedStringList
...

Within the Sorted List class we can redefine the three methods that need to be changed.
With this approach we do create a formal link between the two classes, and changes to
the shared methods would affect both classes.

While this approach is probably better than the previous approach, it still has some
problems. The main problem is that the inheritance relationship just doesn’t make sense.
Recall that in Chapter 1 we stated that the inheritance relationship usually represents an
“is a” relationship. In the example in Chapter 1, an IncDate is a Date; an IncDate
object was a special kind of Date object. Here, that relationship doesn’t make sense.
Saying that a sorted list is a unsorted list sounds like nonsense.

Just because the is a relationship does not make sense doesn’t mean that you can’t
use inheritance. It does, however, often mean that using inheritance might lead to prob-
lems later. For example, due to Java’s rules for assignment of object variables, it would
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be possible for an application program to include the following code, assuming that the
Sorted List ADT inherited from the Unsorted List ADT:

UnsortedStringList unsorted;
SortedStringList sorted = new SortedStringList(10);
unsorted = sorted;

This creates the rather confusing situation in which an Unsorted List variable is refer-
encing a Sorted List object. This is completely legal in the world of Java—and it usually
makes sense if the is a relationship makes sense. But as you can see, in this case it
seems illogical. So, although using inheritance solves the problems identified in the pre-
vious subsection, another approach might be more appropriate.

Abstract Classes
Java offers another construct, called an abstract class, which resolves the deficiencies of
both of the previous approaches.

An abstract method is one that is declared without a method body. For the sake of
this discussion, let’s call a normal method that is declared with a body a concrete method.

We discussed abstract methods in Chapter 2 when we looked at the Java interface
construct. You may recall that a Java interface was not allowed to contain any concrete
methods; it could only contain abstract methods. An abstract class, on the other hand,
can contain both concrete methods and abstract methods. It must contain at least one
abstract method. To indicate that a class is abstract, we use the Java keyword abstract
in its definition. You’ll see an example of this syntax in the next subsection. An abstract
class cannot be instantiated. It must be extended by another class, which provides the
missing implementations of the abstract methods.

We previously pointed out that it does not make sense to say that a sorted list is a
unsorted list. Similarly, it doesn’t make sense to reverse that; it does not make sense to
say an unsorted list is a sorted list. What then is the relationship between a sorted list
and an unsorted list? Easy, they are both lists! We can use an abstract class to model
this relationship.

We first create an abstract list class; its concrete methods provide the operations
that our two list ADTs share in common and its abstract methods provide the operations
that are not shared. We can then create two concrete classes that extend the abstract
list class, one that implements an unsorted list and the other that implements a sorted
list. With this approach we maintain the common code for the shared methods and we
create a reasonable is a inheritance structure: an unsorted list is a list and a sorted list
is a list.

An Abstract List Class

Our abstract list class is very straightforward. It is based on the UnsortedStringList
class developed in the previous section. We simply change the name of the class, and the
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constructor, to StringList, add the keyword abstract to the header line, and remove
the method bodies from the insert, delete, and isThere methods. We now declare
these three methods as abstract, and end their declaration lines with a semicolon. You
should also notice that we have only retained one of the constructors, the one which
accepts an integer parameter maxItems. The other constructor is redundant in this
scheme, as you see when we extend this class with the concrete classes in the next sec-
tion. Finally, notice that we place StringList in the same package as we placed
UnsortedStringList.

//----------------------------------------------------------------------------
// StringList.java             by Dale/Joyce/Weems                   Chapter 3
//
// Defines all constructs for an array-based list that do not depend
// on whether or not the list is sorted
//----------------------------------------------------------------------------

package ch03.stringLists;

public abstract class StringList
{
protected String[] list;            // Array to hold this list’s elements
protected int numItems;             // Number of elements on this list
protected int currentPos;          // Current position for iteration

public StringList(int maxItems)
// Instantiates and returns a reference to an empty list object 
// with room for maxItems elements
{
numItems = 0;
list = new String[maxItems];

}

public boolean isFull()
// Returns whether this list is full 
{
return (list.length == numItems);

}

public int lengthIs()
// Returns the number of elements on this list 
{
return numItems;

}
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public abstract boolean isThere (String item);
// Returns true if item is on this list; otherwise, returns false

public abstract void insert (String item);
// Adds a copy of item to this list 

public abstract void delete (String item);
// Deletes the element that matches item from this list. 

public void reset()
// Initializes current position for an iteration through this list 
{
currentPos  = 0;

}

public String getNextItem ()
// Returns copy of the next element on this list
{
String next = list[currentPos];
if (currentPos == numItems-1)
currentPos = 0;

else
currentPos++;

return new String(next);
}

}

Extending the Abstract Class

Now we can create an Unsorted List ADT class by extending the abstract list class. To
differentiate this Unsorted List class from the one developed in the previous section, we
call it UnsortedStringList2. Since constructors cannot be inherited, we must imple-
ment our own constructors for this class. Notice how our code for the two constructors
both use the single constructor provided in the abstract list class. Additionally, we must
complete the definitions of the three abstract classes. We simply reuse the code from the
previous implementations. The code for the new unsorted string list is shown below.

//----------------------------------------------------------------------------
// UnsortedStringList2.java        by Dale/Joyce/Weems               Chapter 3
//
// Completes the definition of the StringList class under the assumption
// that the list is not kept sorted
//----------------------------------------------------------------------------

package ch03.stringLists;
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public class UnsortedStringList2 extends StringList 
{
public UnsortedStringList2(int maxItems)
// Instantiates and returns a reference to an empty list object 
// with room for maxItems elements
{
super(maxItems);

}

public UnsortedStringList2()
// Instantiates and returns a reference to an empty list object 
// with room for 100 elements
{
super(100);

}

public boolean isThere (String item)
// Returns true if item is on this list; otherwise, returns false
{
boolean moreToSearch;
int location = 0;
boolean found = false;

moreToSearch = (location < numItems);

while (moreToSearch && !found) 
{
if (item.compareTo(list[location]) == 0)  // if they match
found = true;

else
{
location++;
moreToSearch = (location < numItems);

}
}

return found;
}

public void insert (String item)
// Adds a copy of item to this list 
{
list[numItems] = new String(item);
numItems++;

}
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public void delete (String item)
// Deletes the element that matches item from this list 
{
int location = 0;

while (item.compareTo(list[location]) != 0)
location++;

list[location] = list[numItems - 1];
numItems--;

}
}

The UML class diagram in Part (b) of Figure 3.5 models both the abstract StringList
class and the UnsortedStringList2 class. Note that the diagram displays the isThere,
insert, and delete methods defined in the StringList class, and the name of the class
itself, in an italic font to indicate that they are abstract classes. Part (a) of the diagram
models our original UnsortedStringList class, to allow comparison.

Figure 3.5 UML diagrams for our list implementations
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3.4 Abstract Data Type Sorted List

At the beginning of this chapter, we said that a list is a linear sequence of items; from
any item (except the last) you can access the next one. We looked at the specifications
and implementation for the operations that manipulate a list and guarantee this property.

We now want to add an additional property: The key member of any item (except
the last) comes before the key member of the next one. We call a list with this property
a sorted list.

Logical Level

When we defined the specifications for the Unsorted List ADT, we made no requirements
with respect to the order in which the list elements are stored and maintained. Now, we
have to change the specifications to guarantee that the list is sorted. As was noted in the
section Relationship between Unsorted and Sorted Lists of Section 3.3, we must add pre-
conditions and postconditions to those operations for which order is relevant. The only
ones that must be changed are insert and delete.

We call our new class the SortedStringList class. We must define new construc-
tors, since their names are directly related to the name of the class.

Sorted List ADT Specification (partial)

Structure:

The list elements are Strings. The list contains unique elements,
i.e., no duplicate elements as defined by the key of the list. The
strings are kept in alphabetical order. The list has a special prop-
erty called the current position—the position of the next element
to be accessed by getNextItem during an iteration through the
list. Only reset and getNextItem affect the current position.

Definitions (provided by user):
maxItems: An integer specifying the maximum number of

items to be on this list.

Operations (provided by Sorted List ADT):

void SortedStringList (int maxItems)

Effect: Instantiates this list with capacity of maxItems
and initializes this list to empty state.

Precondition: maxItems > 0
Postcondition: This list is empty.

void SortedStringList ( )

Effect: Instantiates this list with capacity of 100 and
initializes this list to empty state.

Postcondition: This list is empty.
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void insert (String item)

Effect: Adds item to list.
Preconditions: List is not full.

item is not on the list.
List is sorted.

Postconditions: item is on the list.
List is still sorted.

void delete (String item)

Effect: Deletes the element whose key matches item’s
key.

Preconditions: One and only one element in list has a key
matching item’s key.
List is sorted.

Postconditions: No element in list has a key matching the
argument item’s key.
List is still sorted.

The remaining operations use the same definitions as the Unsorted
List ADT.

Application Level

The application level for the Sorted List ADT is the same as for the Unsorted List ADT.
As far as the user is concerned, the interfaces are the same. The only functional differ-
ence is that when getNextItem() is called in the Sorted List ADT, the element returned
is the next one in order by key.

Implementation Level

We continue to use the generic list design terminology, created to describe the algo-
rithms for the Unsorted List ADT operations, to describe the algorithms in this section.

insert Operation
To add an element to a sorted list, we must first find the place where the new element
belongs, which depends on the value of its key. We use an example to illustrate the
insertion operation. Let’s say that Becca has made the Honor Roll. To add the element
Becca to the sorted list pictured in Figure 3.6(a), maintaining the alphabetic ordering,
we must accomplish three tasks:

1. Find the place where the new element belongs.

2. Create space for the new element.

3. Put the new element on the list.

The first task involves traversing the list comparing the new item to each item on the list
until we find an item where the new item (in this case, Becca) is less. Recall from Chapter 2
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that the String method compareTo takes a string as a parameter and returns 0 if the
parameter string and the object string are equal, returns a positive integer if the parameter
string is “less than” the object string, and returns a negative integer if the parameter string
is “greater than” the object string. Therefore, we set moreToSearch to false when we
reach a point where item.compareTo(location.info()) is negative. At this point,
location is where the new item should go (see Figure 3.6b). If we don’t find a place

Figure 3.6 Inserting into a sorted list
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insert (item)
Initialize location to position of first element
Set moreToSearch to (have not examined last.info())
while moreToSearch
if (item.compareTo(location.info()) < 0)
Set moreToSearch to false

else
Set location to location.next()
Set moreToSearch to (have not examined last.info())

for index going from numItems DOWNTO location + 1
Set index.info() to (index-1).info()

Set location.info() to copy of item
Increment numItems

where item.compareTo(location.info()) is negative, then the item should be put at
the end of the list. This is true when location equals numItems.

Now that we know where the element belongs, we need to create space for it.
Because the list is sequential, Becca must be put into the list at location.info( ). But this
position may be occupied. To “create space for the new element,” we must move down
all the list elements that follow it, from location through numItems – 1. Now we just
assign item to location.info( ) and increment numItems. Figure 3.6(c) shows the resulting
list.

Let’s summarize these observations in algorithmic form before we write the code.

Remember that the preconditions on insert state that item does not exist on the list, so
we do not need to check whether the compareTo method returns a zero. Translating the
design notation into the array-based implementation gives us the following method.

public void insert (String item)
// Adds a copy of item to this list 
{
int location = 0;
boolean moreToSearch = (location < numItems);

while (moreToSearch) 
{
if (item.compareTo(list[location]) < 0)  // Item is less
moreToSearch = false;
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else                                    // Item is more
{
location++;
moreToSearch = (location < numItems);

}
}

for (int index = numItems; index > location; index--)
list[index] = list[index - 1];

list[location] = new String(item);
numItems++;

}

Does this method work if the new element belongs at the beginning or end of the list?
Draw a picture to see how the method works in each of these cases.

delete Operation
When discussing the method delete for the Unsorted List ADT, we commented that if
the list is sorted, we would have to move the elements up one position to cover the one
being removed. Moving the elements up one position is the mirror image of moving the
elements down one position. The loop control for finding the item to delete is the same
as for the unsorted version.

Examine this algorithm carefully and convince yourself that it is correct. Try cases
where you are deleting the first item and the last one.

public void delete (String item)
// Deletes the element that matches item from this list 
{
int location = 0;

delete (item)
Initialize location to position of first element
while (item.compareTo(location.info()) != 0)

Set location to location.next()
for index going from location + 1 TO numItems - 1
Set (index-1).info() to index.info()

Decrement numItems



174 | Chapter 3:  ADTs Unsorted List and Sorted List

while (item.compareTo(list[location]) != 0)   // while not a match
location++;

for (int index = location + 1; index < numItems; index++)
list[index - 1] = list[index];

numItems--;
}

Improving the isThere Operation
If the list is not sorted, the only way to search for an item is to start at the beginning
and look at each element on the list, comparing the key member of the item for which
we are searching to the key member of each element on the list in turn. This was the
algorithm used in the isThere operation in the Unsorted List ADT.

If the list is sorted by key value, there are two ways to improve the searching algo-
rithm. The first way is to stop searching when we pass the place where the item would be
if it were there. Look at Figure 3.7(a). If you are searching for Chris, a comparison with
Judy would show that Chris is less, that is, the compareTo method returns a positive inte-
ger. This means that you have passed the place where Chris would be if it were there. At
this point you can stop and return found as false. Figure 3.7(b) shows what happens
when you are searching for Susy: location is equal to 4, moreToSearch is false, and
found is false. In this case the search ends because there is nowhere left to look.

Figure 3.7 Retrieving in a sorted list
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If the item we are looking for is on the list, the search is the same for the unsorted
list and the sorted list. It is when the item is not there that this algorithm is better. We
do not have to search all of the elements to determine that the one we want is not there.
The second way to improve the algorithm, using a binary search approach, helps in both
the case when the item is on the list and the case when the item is not on the list.

Binary Search Algorithm
Think of how you might go about finding a name in a phone book, and you can get an
idea of a faster way to search. Let’s look for the name “David.” We open the phone book
to the middle and see that the names there begin with M. M is larger than (comes after)
D, so we search the first half of the phone book, the section that contains A to M. We
turn to the middle of the first half and see that the names there begin with G. G is larger
than D, so we search the first half of this section, from A to G. We turn to the middle
page of this section, and find that the names there begin with C. C is smaller than D, so
we search the second half of this section—that is, from C to G—and so on, until we are
down to the single page that contains the name “David.” This algorithm is illustrated in
Figure 3.8.

Figure 3.8 A binary search of the phone book
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isThere (item): returns boolean
Set first to 0
Set last to numItems – 1
Set found to false
Set moreToSearch to (first <= last)
while moreToSearch AND NOT found
Set midPoint to (first + last) / 2
compareResult = item.compareTo(midPoint.info())
if compareResult == 0 
Set found = true

else if compareResult < 0
Set last to midPoint – 1
Set moreToSearch to (first <= last)

else
Set first to midPoint + 1
Set moreToSearch to (first <= last)

return found

The algorithm presented here depends directly on the array-based implementation
of the list. This algorithm cannot be implemented with the linked implementation pre-
sented in Chapter 5. Therefore, in discussing this algorithm we abandon our generic list
design terminology in favor of using array-related terminology.

We begin our search with the whole list to examine; that is, our current search area
goes from list[0] through list[numItems – 1]. In each iteration, we split the cur-
rent search area in half at the midpoint, and if the item is not found there, we search the
appropriate half. The part of the list being searched at any time is the current search
area. For instance, in the first iteration of the loop, if a comparison shows that the item
comes before the element at the midpoint, the new current search area goes from index
0 through midpoint – 1. If the item comes after the element at the midpoint, the new
current search area goes from index midpoint + 1 through numItems – 1. Either
way, the current search area has been split in half. It looks as if we can keep track of the
boundaries of the current search area with a pair of indexes, first and last. In each
iteration of the loop, if an element with the same key as item is not found, one of these
indexes is reset to shrink the size of the current search area.

How do we know when to quit searching? There are two possible terminating con-
ditions: item is not on the list and item has been found. The first terminating condition
occurs when there’s no more to search in the current search area. Therefore, we only
continue searching if (first <= last). The second terminating condition occurs
when item has been found.
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Notice that when we look in the lower half or upper half, we can ignore the mid-
point because we know it is not there. Therefore, last is set to midPoint – 1, or
first is set to midPoint + 1. The coded version of our algorithm follows.

public boolean isThere (String item)
// Returns true if item is on this list; otherwise, returns false
{
int compareResult;
int midPoint;
int first = 0;
int last = numItems - 1;
boolean moreToSearch = (first <= last);
boolean found = false;

while (moreToSearch && !found) 
{
midPoint = (first + last) / 2;
compareResult = item.compareTo(list[midPoint]);

if (compareResult == 0)
found = true;

else if (compareResult < 0)  // Item is less than element at location
{
last = midPoint - 1;
moreToSearch = (first <= last);

}
else                         // Item is greater than element at location
{
first = midPoint + 1;
moreToSearch = (first <= last);

}
}

return found;
}

Let’s do a walk-through of the binary search algorithm. The item being searched for is
“bat”. Figure 3.9 (a) shows the values of first, last, and midpoint during the first
iteration. In this iteration, “bat” is compared with “dog,” the value in list[midpoint].
Because “bat” is less than (comes before) “dog,” last becomes midpoint – 1 and
first stays the same. Figure 3.9(b) shows the situation during the second iteration. This
time, “bat” is compared with “chicken,” the value in list[midpoint]. Because “bat” is
less than (comes before) “chicken,” last becomes midpoint – 1 and first again
stays the same.



178 | Chapter 3:  ADTs Unsorted List and Sorted List

Figure 3.9 Trace of the binary search algorithm
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In the third iteration (Figure 3.9c), midpoint and first are both 0. The item
“bat” is compared with “ant,” the item in list[midpoint]. Because “bat” is greater
than (comes after) “ant,” first becomes midpoint + 1. In the fourth iteration
(Figure 3.9d), first, last, and midpoint are all the same. Again, “bat” is com-
pared with the item in list[midpoint]. Because “bat” is less than “cat,” last
becomes midpoint –1. Now that last is less than first, the process stops; found
is false.

The binary search is the most complex algorithm that we have examined so far. The
following table shows first, last, midpoint, and list[midpoint] for searches of
the items “fish,” “snake,” and “zebra,” using the same data as in the previous example.
Examine the results of Table 3.1 carefully.

Notice that the loop never executes more than four times. It never executes more
than four times in a list of 11 components because the list is being cut in half each time
through the loop. Table 3.2 compares a linear search and a binary search in terms of the
average number of iterations needed to find an item.

If the binary search is so much faster, why not use it all the time? It is certainly
faster in terms of the number of times through the loop, but more computations are exe-
cuted within the binary search loop than in the other search algorithms. So if the num-
ber of components on the list is small (say, under 20), linear search algorithms are faster
because they perform less work at each iteration. As the number of components on the
list increases, the binary search algorithm becomes relatively more efficient. Remember,
however, that the binary search requires the list to be sorted and sorting takes time.

The UML diagram for the SortedStringList class is displayed in Figure 3.10,
along with the diagrams for the previous list implementations for comparison purposes.

Table 3.1 Trace of binary search algorithm
Terminating

Iteration first last midPoint list[midPoint] Condition

item: fish
First 0 10 5 dog
Second 6 10 8 horse
Third 6 7 6 fish found is true

item: snake
First 0 10 5 dog
Second 6 10 8 horse
Third 9 10 9 camel
Fourth 10 10 10 snake found is true

item: zebra
First 0 10 5 dog
Second 6 10 8 horse
Third 9 10 9 camel
Fourth 10 10 10 snake
Fifth 11 10 last < first
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Table 3.2 Comparison of linear and binary search

Average Number of Iterations

Length Linear Search Binary Search

10 5.5 2.9

100 50.5 5.8

1,000 500.5 9.0

10,000 5000.5 12.0

Figure 3.10 UML diagrams for our list implementations
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Figure 3.11 Map to Joe’s Diner
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Test Plan
We can use the same test plan that we used for the unsorted list, with the expected out-
puts changed to reflect the ordering. However, we should add some test cases to explic-
itly address the fact that the list is sorted. For example, we should insert a sequence of
strings in reverse alphabetical order and check if the ADT correctly orders them. Note
that the sorted list implementation described in this section can be found in the file
SortedStringList.java on our web site.

3.5 Comparison of Algorithms

As we have shown in this chapter, there is more than one way to solve most problems.
If you were asked for directions to Joe’s Diner (see Figure 3.11), you could give either of
two equally correct answers:

1. ”Go east on the big highway to the Y’all Come Inn, and turn left.”

2. ”Take the winding country road to Honeysuckle Lodge, and turn right.”

The two answers are not the same, but because following either route gets the traveler
to Joe’s Diner, both answers are functionally correct.

If the request for directions contained special requirements, one solution might be
preferable to the other. For instance, “I’m late for dinner. What’s the quickest route to
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Joe’s Diner?” calls for the first answer, whereas “Is there a scenic road that I can take to
get to Joe’s Diner?” suggests the second. If no special requirements are known, the
choice is a matter of personal preference—which road do you like better?

In this chapter, we have presented many algorithms. How we choose between two
algorithms that do the same task often depends on the requirements of a particular
application. If no relevant requirements exist, the choice may be based on the program-
mer’s own style.

Often the choice between algorithms comes down to a question of efficiency. Which
one takes the least amount of computing time? Which one does the job with the least
amount of work? We are talking here of the amount of work that the computer does.
Later we also compare algorithms in regard to how much work the programmer does.
(One is often minimized at the expense of the other.)

To compare the work done by competing algorithms, we must first define a set of
objective measures that can be applied to each algorithm. The analysis of algorithms is
an important area of theoretical computer science; in advanced courses students
undoubtedly see extensive work in this area. In this text you learn about a small part of
this topic, enough to let you determine which of two algorithms requires less work to
accomplish a particular task.

How do programmers measure the work that two algorithms perform? The first solu-
tion that comes to mind is simply to code the algorithms and then compare the execution
times for running the two programs. The one with the shorter execution time is clearly the
better algorithm. Or is it? Using this technique, we really can determine only that program
A is more efficient than program B on a particular computer at a particular time. Execution
times are specific to a particular computer, since different computers run at different
speeds. Sometimes they are dependent on what else the computer is doing in the back-
ground, for example if the Java run-time engine is performing garbage collection, it can
affect the execution time of the program. Of course, we could test the algorithms on many
possible computers at various times, but that would be unrealistic and too specific (new
computers are becoming available all the time). We want a more general measure.

A second possibility is to count the number of instructions or statements executed. This
measure, however, varies with the programming language used, as well as with the style of
the individual programmer. To standardize this measure somewhat, we could count the
number of passes through a critical loop in the algorithm. If each iteration involves a con-
stant amount of work, this measure gives us a meaningful yardstick of efficiency.

Another idea is to isolate a particular operation fundamental to the algorithm and
count the number of times that this operation is performed. Suppose, for example, that
we are summing the elements in an integer list. To measure the amount of work
required, we could count the integer addition operations. For a list of 100 elements,
there are 99 addition operations. Note, however, that we do not actually have to count
the number of addition operations; it is some function of the number of elements (N) on
the list. Therefore, we can express the number of addition operations in terms of N: For
a list of N elements, there are N � 1 addition operations. Now we can compare the
algorithms for the general case, not just for a specific list size.

Sometimes an operation so dominates an algorithm that the other operations fade
into the background “noise.” If we want to buy elephants and goldfish, for example, and
we are considering two pet suppliers, we only need to compare the prices of elephants;
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the cost of the goldfish is trivial in comparison. Suppose we have two files of integers,
and we want to create a new file of integers based on the sums of pairs of integers from
the existing files. In analyzing an algorithm that solves this problem, we could count
both file accesses and integer additions. However, file accessing is so much more expen-
sive than integer addition in terms of computer time, that the integer additions could be
a trivial factor in the efficiency of the whole algorithm; we might as well count only the
file accesses, ignoring the integer additions. In analyzing algorithms, we often can find
one operation that dominates the algorithm, effectively relegating the others to the
“noise” level.

Big-O

We have been talking about work as a function of the size of the input to the operation
(for instance, the number of elements on the list to be summed). We can express an
approximation of this function using a math-
ematical notation called order of magnitude,
or Big-O notation. (This is a letter O, not a
zero.) The order of magnitude of a function is
identified with the term in the function that
increases fastest relative to the size of the
problem. For instance, if

f(N) = N 4 + 100N 2+ 10N + 50

then f (N ) is of order N 4—or, in Big-O notation, O(N 4). That is, for large values of N,
some multiple of N 4 dominates the function for sufficiently large values of N.

How is it that we can just drop the low-order terms? Remember the elephants and
goldfish that we talked about earlier? The price of the elephants was so much greater
that we could just ignore the price of the goldfish. Similarly, for large values of N, N 4 is
so much larger than 50, 10N, or even 100N2 that we can ignore these other terms. This
doesn’t mean that the other terms do not contribute to the computing time; it only
means that they are not significant in our approximation when N is “large.”

What is this value N? N represents the size of the problem. Most of the rest of the
problems in this book involve data structures—lists, stacks, queues, and trees. Each
structure is composed of elements. We develop algorithms to add an element to the
structure and to modify or delete an element from the structure. We can describe
the work done by these operations in terms of N, where N is the number of elements in

Big-O notation A notation that expresses computing
time (complexity) as the term in a function that
increases most rapidly relative to the size of a problem
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Write List Elements
Open the file
while more elements in list 

Write the next element

the structure. Yes, we know. We have called the number of elements in a list the length
of the list. However, mathematicians talk in terms of N, so we use N for the length when
we are comparing algorithms using Big-O notation.

Suppose that we want to write all the elements in a list into a file. How much
work is that? The answer depends on how many elements are on the list. Our algo-
rithm is

If N is the number of elements on the list, the “time” required to do this task is

(N * time-to-write-one-element) + time-to-open-the-file

This algorithm is O(N) because the time required to perform the task is proportional to
the number of elements (N)—plus a little to open the file. How can we ignore the open
time in determining the Big-O approximation? If we assume that the time necessary to
open a file is constant, this part of the algorithm is our goldfish. If the list has only a
few elements, the time needed to open the file may seem significant, but for large val-
ues of N, writing the elements is an elephant in comparison with opening the file.

The order of magnitude of an algorithm does not tell you how long in microseconds
the solution takes to run on your computer. Sometimes we need that kind of informa-
tion. For instance, a word processor’s requirements state that the program must be able
to spell-check a 50-page document (on a particular computer) in less than 120 seconds.
For information like this, we do not use Big-O analysis; we use other measurements. We
can compare different implementations of a data structure by coding them and then
running a test, recording the time on the computer’s clock before and after. This kind of
“benchmark” test tells us how long the operations take on a particular computer, using
a particular compiler. The Big-O analysis, however, allows us to compare algorithms
without reference to these factors.

Common Orders of Magnitude

O(1) is called bounded time. The amount of work is bounded by a constant and is not
dependent on the size of the problem. Assigning a value to the ith element in an array
of N elements is O(l) because an element in an array can be accessed directly through its
index. Although bounded time is often called constant time, the amount of work is not
necessarily constant. It is, however, bounded by a constant.
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O(log2N ) is called logarithmic time. The amount of work depends on the log of the
size of the problem. Algorithms that successively cut the amount of data to be processed
in half at each step typically fall into this category. Finding a value in a list of sorted
elements using the binary search algorithm is O(log2N).

O(N) is called linear time. The amount of work is some constant times the size of the
problem. Printing all the elements in a list of N elements is O(N). Searching for a partic-
ular value in a list of unsorted elements is also O(N) because you must potentially
search every element on the list to find it.

O(N log2N) is called (for lack of a better term) N log2N time. Algorithms of this type
typically involve applying a logarithmic algorithm N times. The better sorting algo-
rithms, such as Quicksort, Heapsort, and Mergesort discussed in Chapter 10, have N
log2N complexity. That is, these algorithms can transform an unsorted list into a sorted
list in O(N log2N) time.

O(N 2) is called quadratic time. Algorithms of this type typically involve applying a
linear algorithm N times. Most simple sorting algorithms are O(N 2) algorithms. (See
Chapter 10.)

O(2N ) is called exponential time. These algorithms are extremely costly. An example
of a problem for which the best known solution is exponential is the traveling salesman
problem—given a set of cities and a set of roads that connect some of them, plus the
lengths of the roads, find a route that visits every city exactly once and minimizes total
travel distance. As you can see in Table 3.3, exponential times increase dramatically in
relation to the size of N. (It also is interesting to note that the values in the last column
grow so quickly that the computation time required for problems of this order may
exceed the estimated life span of the universe!)

Note that throughout this discussion we have been talking about the amount of
work the computer must do to execute an algorithm. This determination does not neces-
sarily relate to the size of the algorithm, say, in lines of code. Consider the following
two algorithms to initialize to zero every element in an N-element array.

Both algorithms are O(N), even though they greatly differ in the number of lines
of code.

Algorithm Init1 Algorithm Init2
items[0] = 0; for (index = 0; index < N; index++)
items[1] = 0; items[index] = 0;
items[2] = 0;
items[3] = 0;
.
.
.
items[N–1] = 0;
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Algorithm Sum1
sum = 0;
for (count = 1; count <= n; count++)

sum = sum + count;

Table 3.3 Comparison of rates of growth

N log2N N log2N N2 N3 2N

1 0 1 1 1 2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4,096 65,536

32 5 160 1,024 32,768 4,294,967,296

64 6 384 4,096 262,144 About 1 month’s worth

of instructions on a

supercomputer

128 7 896 16,384 2,097,152 About 1012 times

greater than the age

of the universe in 

nanoseconds (for a 6-billion-

year estimate)

256 8 2,048 65,536 16,777,216 Don’t ask!

Now let’s look at two different algorithms that calculate the sum of the integers
from 1 to N. Algorithm Sum1 is a simple for loop that adds successive integers to keep a
running total:
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Algorithm Sum2
sum = ((n + 1) * n) / 2;

That seems simple enough. The second algorithm calculates the sum by using a for-
mula. To understand the formula, consider the following calculation when N = 9.

1 +  2 +  3 +  4 +  5 +  6 +  7 +  8 +  9
+ 9 +  8 +  7 +  6 +  5 +  4 +  3 +  2 +  1

10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10  =  10 * 9 = 90

We pair up each number from 1 to N with another, such that each pair adds up to N + 1.
There are N such pairs, giving us a total of (N + 1)*N. Now, because each number is
included twice, we divide the product by 2. Using this formula, we can solve the prob-
lem: ((9 + 1 ) * 9)/2 = 45. Now we have a second algorithm:

Both of the algorithms are short pieces of code. Let’s compare them using Big-O nota-
tion. The work done by Sum1 is a function of the magnitude of N; as N gets larger, the
amount of work grows proportionally. If N is 50, Sum1 works 10 times as hard as when
N is 5. Algorithm Sum1, therefore, is O(N ).

To analyze Sum2, consider the cases when N = 5 and N = 50. They should take the
same amount of time. In fact, whatever value we assign to N, the algorithm does the
same amount of work to solve the problem. Algorithm Sum2, therefore, is O(1).

Does this mean that Sum2 is always faster? Is it always a better choice than Sum1?
That depends. Sum2 might seem to do more “work,” because the formula involves multi-
plication and division, whereas Sum1 is a simple running total. In fact, for very small
values of N, Sum2 actually might do more work than Sum1. (Of course, for very large
values of N, Sum1 does a proportionally larger amount of work, whereas Sum2 stays the
same.) So the choice between the algorithms depends in part on how they are used, for
small or large values of N.

Another issue is the fact that Sum2 is not as obvious as Sum1, and thus it is harder for
the programmer (a human) to understand. Sometimes a more efficient solution to a problem
is more complicated; we may save computer time at the expense of the programmer’s time.

So, what’s the verdict? As usual in the design of computer programs, there are
tradeoffs. We must look at our program’s requirements and then decide which solution
is better. Throughout this text we examine different choices of algorithms and data
structures. We compare them using Big-O, but we also examine the program’s require-
ments and the “elegance” of the competing solutions. As programmers, we design soft-
ware solutions with many factors in mind.
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Family Laundry: An Analogy
How long does it take to do a family’s weekly laundry? We might describe the answer to this
question with the function

f (N ) = c * N

where N represents the number of family members and c is the average number of minutes that
each person’s laundry takes. We say that this function is O(N ) because the total laundry time
depends on the number of people in the family. The “constant” c may vary a little for different
families—depending on the size of their washing machine and how fast they can fold clothes, for
instance. That is, the time to do the laundry for two different families might be represented with
these functions:

f (N ) = 100 * N
g (N ) = 90 * N

But overall, we describe these functions as O(N ).
Now what happens if Grandma and Grandpa come to visit the first family for a week or

two? The laundry time function becomes

f (N ) = 100 * (N + 2)

We still say that the function is O(N ). How can that be? Doesn’t the laundry for two extra people
take any time to wash, dry, and fold? Of course it does! If N is small (the family consists of
Mother, Father, and Baby Sierra), the extra laundry for two people is significant. But as N grows
large (the family consists of Mother, Father, 8 kids, and a dog named Waldo), the extra laundry for
two people doesn’t make much difference. (The family’s laundry is the elephant; the guest’s laun-
dry is the goldfish.) When we compare algorithms using Big-O, we are concerned with what hap-
pens when N is “large.”

If we are asking the question “Can we finish the laundry in time to make the 7:05 train?” we
want a precise answer. The Big-O analysis doesn’t give us this information. It gives us an approxi-
mation. So, if 100 * N, 90 * N, and 100 * (N + 2) are all O(N ), how can we say which is better? We
can’t—in Big-O terms, they are all roughly equivalent for large values of N. Can we find a better
algorithm for getting the laundry done? If the family wins the state lottery, they can drop all their
dirty clothes at a professional laundry 15 minutes’ drive from their house (30 minutes round trip).
Now the function is

f (N ) = 30

This function is O(1). The answer is not dependent on the number of people in the family. If they
switch to a laundry 5 minutes from their house, the function becomes

f (N ) = 10

This function is also O(1). In terms of Big-O, the two professional-laundry solutions are equiva-
lent: No matter how many family members or houseguests you have, it takes a constant amount
of the family’s time to do the laundry. (We aren’t concerned with the professional laundry’s time.)
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3.6 Comparison of Unsorted and Sorted List ADT Algorithms

In order to determine the Big-O notation for the complexity of these algorithms, we
must first determine the size factor. Here we are considering algorithms to manipu-
late items in a list. Therefore, the size factor is the number of items on the list:
numItems.

Many of our algorithms are identical for the Unsorted List ADT and the Sorted
List ADT. We capitalized on this fact in Section 3.4 when we brought the correspon-
ding methods together in our abstract list class. Let’s examine these first. The
lengthIs and isFull methods each contain only one statement: return numItems
and return (list.length == numItems). Since the number of statements executed
in these methods does not depend on the number of items on the list, they have O(1)
complexity. The reset method contains one assignment statement and getNext-
Item contains an assignment statement, an if-then-else statement, and a return
statement. Neither of these methods is dependent on the number of items on the list,
so they also have O(1) complexity. The other methods are different for the two
implementations.

Unsorted List ADT

The algorithm for isThere requires that the list be searched until an item is found or
the end of the list is reached. We might find the item in any position on the list, or we
might not find it at all. How many places must we examine? At best only one, at worst
numItems. If we took the best case as our measure of complexity, then all of the opera-
tions would have O(1) complexity. But this is a rare case. What we want is the average
case or worst case, which in this instance are the same: O(numItems). True, the average
case would be O(numItems/2), but when we are using order notation, O(numItems) and
O(numItems/2) are equivalent. In some cases that we discuss later, the average and the
worst cases are not the same.

The insert algorithm has two parts: find the place to insert the item and insert the
item. In the unsorted list, the item is put in the numItems position and numItems is
incremented. Neither of these operations is dependent on the number of items on the
list, so the complexity is O(1).

The delete algorithm has two parts: find the item to delete and delete the item.
Finding the item uses essentially the same algorithm as isThere. The only difference is
that since it is guaranteed that the item is on the list, we do not have to test for the end-
of-list condition. But that difference does not affect the number of times we may have
to traverse the search loop, so the complexity of that part is O(numItems). To delete the
item, we put the value in the numItems – 1 position into the location of the item to be
deleted and decrement numItems. This store and decrement are not dependent on the
number of items on the list, so this part of the operation has complexity O(1). The entire
delete algorithm has complexity O(numItems) because O(numItems) plus O(1) is
O(numItems). (Remember, the O(1) is the goldfish.)
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Figure 3.12 Comparison of linear and binary searches
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We looked at three different algorithms for isThere. We said that the Unsorted List
ADT algorithm would work for a sorted list but that there were two more efficient algo-
rithms: a linear search in the sorted list that exits when the place where the item would
be is passed and a binary search.

A linear search in a sorted list is faster than in an unsorted list when searching for
an item that is not on the list, but is the same when searching for an item that is on the
list. Therefore, the complexity of the linear search in a sorted list is the same as the
complexity in an unsorted list: O(numItems). Does that mean that we shouldn’t bother
taking advantage of the ordering in our search? No, it just means that the Big-O com-
plexity measures are the same.

What about the binary search algorithm? We showed a table comparing the number
of items searched in a linear search versus a binary search for certain sizes of lists. How
do we describe this algorithm using Big-O notation? To figure this out, let’s see how
many times we can split a list of N items in half. Assuming that we don’t find the item
we are looking for at one of the earlier midpoints, we have to divide the list log2N times
at the most, before we run out of elements to split. In case you aren’t familiar with logs,

2log2N = N

The definition of log2N is “the number that you raise 2 to, to get N”. So, if we raise 2 to
that number, 2log2N, the result is N. Consider, for example, that if N = 1024, log2N = 10,
and 210 = 1024. How does that apply to our searching algorithms? The sequential search
is O(N ); in the worst case, we would have to search all 1024 elements of the list. The
binary search is O(log2N ); in the worst case we would have to make log2N + 1, or 11,
search comparisons. A heuristic (a rule of thumb) tells us that a problem that is solved
by successively splitting it in half is an O(log2N ) algorithm. Figure 3.12 illustrates the
relative growth of the linear and binary searches, measured in number of comparisons.

The insert algorithm still has the same two parts: finding the place to insert the
item and inserting the item. Because the list must remain sorted, we must search for the
position into which the new item must go. Our algorithm used a linear search to find
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the appropriate location: O(numItems). Inserting requires that we move all those ele-
ments from the insertion point down one place in the array. How many items must we
move? At most numItems, giving us O(numItems). O(numItems) plus O(numItems) is
O(numItems) because we disregard the constant 2. Note, however, that the constant 2
does not actually occur here. We actually access each item on the list only once except
for the item at the insertion point: We access those to the place of insertion and we
move those items stored from numItems – 1 through that place. Therefore, only the
element in the insertion location is accessed twice: once to find the insertion point and
once to move it.

You may have thought of an even more efficient way to insert the item. You could
start at the end of the list and repeatedly test to see if that is where you need to put the
item. If the item is larger then the element at the end of the list, you just insert it fol-
lowing that element; if it is not you move the list element at the end of the list down
one array position, and check the next to last list element, repeating the same pattern of
compare and move. By the time you find out where to insert the item, you have already
shifted all of the elements that are greater than down one location in the array, and you
can just insert it into the open location. With this approach, on average, you only have
to access half of the elements in the array, instead of all of the elements. However, it is
still the same complexity as the other approach, since O(numItems/2) is equal to
O(numItems).

The delete algorithm also still has the same two parts: finding the item to
delete and deleting the item. The algorithm for finding the item is the mirror image
of finding the insertion point: O(numItems). Deleting the item in a sorted list
requires that all the elements from the deletion location to the end of the list must be
moved forward one position. This shifting algorithm is the reverse of the shifting
algorithm in the insertion and, therefore, has the same complexity: O(numItems).
Hence the complexities of the insertion and deletion algorithms are the same in the
Sorted List ADT.

Table 3.4 summarizes these complexities. We have replaced numItems with N, the
generic name for the size factor.

In the deletion operation, we could improve the efficiency by using the binary
search algorithm to find the item to delete. Would this change the complexity? No, it
would not. The find would be O(log2N ), but the removal would still be O(N ); since
O(log2N ) combined with O(N ) is O(N ) we have not changed the overall complexity of
the algorithm. (Recall that the term with the largest power of N dominates.) Does this
mean that we should not use the binary search algorithm? No, it just means that as the
length of the list grows, the cost of the removal dominates the cost of the find.

Think of the common orders of complexity as being bins into which we sort algo-
rithms (Figure 3.13). For small values of the size factor, an algorithm in one bin may
actually be faster than the equivalent algorithm in the next-more-efficient bin. As the
size factor increases, the differences among algorithms in the different bins get larger.
When choosing between algorithms within the same bin, you look at the constants to
determine which to use.



192 | Chapter 3:  ADTs Unsorted List and Sorted List

Table 3.4 Big-O comparison of list operations

Unsorted Sorted
Operation List List

length O(1) O(1)

isFull O(1) O(1)

reset O(1) O(1)

getNextItem O(1) O(1)

isThere O(N ) O(N )

O(log2 N ) binary search

insert

Find O(1) O(N )

Put O(1) O(N )

Combined O(1) O(N )

delete

Find O(N ) O(N )

Put O(1) O(N )

Combined O(N ) O(N )

Figure 3.13 Complexity bins
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3.7 Generic ADTs

So far in this chapter we have created several variations of list ADTs: a “standalone”
unsorted string list, an unsorted string list that extended an abstract list class, and a
sorted string list, that also extended the abstract list class. These string lists are very
useful to an application programmer who is creating a system that requires lists of
strings. But what if the programmer wanted some other kind of list: a list of integers, a
list of dates, a list of circles, a list of real estate information?

The list ADTs we have constructed so far have all been constrained to holding data
of one specific type, namely strings. While useful, think of how much more useful they
would be if they could hold any kind of
information. A generic data type is one for
which the operations are defined but the
types of the items being manipulated are not.
We can make our lists generic by using Java’s
interface construct. We limited ourselves to
lists of strings up until now, because we wanted to concentrate on the list operations
without dealing with the extra complexity of interfaces. Now, however, we are ready to
see how we can construct more generally usable ADTs.

We use a new package, ch03.genericLists, to organize our files related to
generic lists. As required, the files are placed in a subdirectory genericLists of the
subdirectory ch03 of the directory bookFiles. Additionally, each of the class files must
begin with the line

package ch03.genericLists;

Lists of Objects

One approach to creating generic ADTs is to have our ADTs use variables of type Object.
Since all Java classes ultimately inherit from Object, such an ADT should be able to “hold”
a variable of any class. If you try this approach, you soon see that it has severe limitations.

Consider what happens if you redefine our SortedStringList class to hold
objects instead of strings. If you edit the file containing the class, and change every
place where you see “String” with “Object”, you have created a SortedObjectList
class. At first glance this seems to have solved our problem. The list is implemented as
an array of objects. We can insert objects into the list and delete them. Many of the
methods, like isFull and reset, are not even affected by the change. However, when
you try to compile the file you discover a few errors. For example, the following line
from the insert method of the new file is flagged with a “method not found”
message:

if (item.compareTo(list[location]) < 0)

Generic data type A type for which the operations
are defined but the types of the items being manipu-
lated are not
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Do you see why? Remember that the item referred to in the code is now of class
Object. If you check the definition of the Object class you see that it does not include
a compareTo method. Therefore, this statement, along with several other statements in
the file, is syntactically illegal. The statement was OK when item was a string, since the
String class includes a compareTo method, but it is not a legal statement when item
is an object of the more general Object class.

The String class’s compareTo method returns information about the relative
ordering of two strings. Such a method is not defined for the Object class, since it
might not always make sense to talk about the ordering of two objects. We cannot have
a sorted list of just any type of objects. We can only have a sorted list of objects for
which a relative ordering has been defined.

There is one other kind of statement that is flagged by the compiler. This statement
also appears in the insert method:

list[location] = new Object(item);

You should recall that this statement is executed after the method has shifted the array val-
ues to make room for the new item and set the value of location to the insertion location.
The previous form of this statement used the String class’s copy constructor,
String(item), to create a new string object, which was then inserted into the list. The new
form of this statement attempts to use a copy constructor from the Object class, but no
such constructor exists. The reason we wish to insert a copy of the item into the list, instead
of just inserting the item itself, is to preserve the information hiding aspect of our ADT.

To solve these problems we create a Java interface with abstract classes for compar-
ing and copying objects.

The Listable Interface

To ensure that the objects that we place on our list support the necessary methods, we
create a Java interface. Recall from Chapter 2 that an interface can only include abstract
methods, that is, methods without bodies. Once the interface is defined we can create
classes that implement the interface by supplying the missing method bodies.

For our lists we create an interface with two abstract methods; one to compare ele-
ments so that we can support sorted lists and the isThere operation, and one to support
copying of list elements, so that we can maintain information hiding. We follow the
Java convention used in the String class by naming the former method compareTo
and by having it return integer values to indicate the result of the comparison. We call
the latter method copy. It does not need any parameters; it simply returns a copy of the
object on which it is invoked. Finally, we need a name for the interface itself. Let’s call it
Listable, since classes that implement this interface provide objects that can be listed.

Here is the code for the interface:

package ch03.genericLists;

public interface Listable
// Objects of classes that implement this interface can be used with lists
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{
public abstract int compareTo(Listable other);
// Compares this Listable object to "other". If they are equal, 0 is 
//   returned
// If this is less than the argument, a negative value is returned
// If this is more than the argument, a positive value is returned

public abstract Listable copy();
// Returns a new object with the same contents as this Listable object

}

Whatever data we intend to store on a list must be contained in a class that implements the
Listable interface. For example, to support a list of circles we might define a ListCircle
class as follows (some of the code that is not pertinent to this discussion has been left out):

package ch03.genericLists;

public class ListCircle implements Listable
{
private int xvalue;      // Horizontal position of center
private int yvalue;     // Vertical position of center
private float radius;
private boolean solid;   // True means circle filled

// Code for Constructors goes here

public int compareTo(Listable otherCircle)
{
ListCircle other = (ListCircle)otherCircle;
return (int)(this.radius – other.radius);

}

public Listable copy()
{
ListCircle result = new ListCircle(this.xvalue, this.yvalue, this.radius,

this.solid);
return result;

}

// More ListCircle methods as needed

} 
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Note the use of the cast operation (ListCircle) in the compareTo method:

ListCircle other = (ListCircle)otherCircle;

This is to ensure that the parameter otherCircle is a ListCircle. The method signa-
ture allows it to be any Listable type, yet on the following line we are assuming that
it is a ListCircle, when we access its radius instance variable.

Since ListCircle implements Listable, it can be used anywhere something of
type Listable is expected. In the next section we define a class that provides a list of
Listable objects. This class could therefore be used to provide a list of ListCircle
objects.

A Generic Abstract List Class

Now we can create our generic list ADT by defining a list of Listable elements; not
just strings, not just plain objects, but objects of classes that implement the Listable
interface. We can reuse the code from our previous list definitions, but we must replace
the use of the String class with the Listable interface throughout the code; we also
must replace the use of the String class’s copy constructor with statements that use the
copy method defined in the interface.

We no longer need to use the term “string” when defining our list classes, since
they are no longer constrained to providing only lists of strings. We call our new
abstract list class simply List. Below is the code for the abstract List class. There are
several things to notice about the code. First, note the use of the term Listable, in
place of a class or type name, throughout the code. Wherever Listable is used to rep-
resent a formal parameter, you can pass an object of a class that implements Listable,
as the actual parameter. For example, you could use objects of type ListCircle, which
was defined in the previous subsection. Alternately, if you have defined other classes
that implement the Listable interface, you could use objects of those classes—perhaps
a class of ListStrings or a class of ListStudents.

Also, note the invocation of the copy method on the next object, in the very last
statement of the class. The next object is of “type” Listable, that is, it is an object of
a class that implements Listable. Therefore, we can be assured that the creator of that
class has included a definition of the copy method within the class.

Finally, you should notice the addition of a new list method, retrieve, and some
small but important changes to the comments describing the effects of the methods
isThere and delete. The switch from supporting lists of strings to lists of Listable
objects means that we now can implement and use lists of composite elements. This
raises some interesting questions about how we compare elements, and what it means
for two elements to be “equal.” These questions are discussed following the code listing.

//----------------------------------------------------------------------------
// List.java                by Dale/Joyce/Weems                      Chapter 3
//
// Defines all constructs for an array based list that do not depend
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// on whether or not the list is sorted.
//----------------------------------------------------------------------------

package ch03.genericLists;

public abstract class List
{
protected Listable[] list;          // Array to hold this list’s elements
protected int numItems;             // Number of elements on this list
protected int currentPos;           // Current position for iteration

public List(int maxItems)
// Instantiates and returns a reference to an empty list object 
// with room for maxItems elements
{
numItems = 0;
list = new Listable[maxItems];

}

public boolean isFull()
// Returns whether this list is full
{
return (list.length == numItems);

}

public int lengthIs()
// Returns the number of elements on this list 
{
return numItems;

}

public abstract boolean isThere (Listable item);
// Returns true if an element with the same key as item is on this list; 
// otherwise, returns false

public abstract Listable retrieve(Listable item);
// Returns a copy of the list element with the same key as item

public abstract void insert (Listable item);
// Adds a copy of item to this list 

public abstract void delete (Listable item);
// Deletes the element with the same key as item from this list 

public void reset()
// Initializes current position for an iteration through this list
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C1 C2 C3 C4

xvalue 3 3 6 3

yvalue 4 4 12 4

radius 10 6 10 3

solid true false false true

{
currentPos  = 0;

}

public Listable getNextItem ()
// Returns copy of the next element on this list 
{
Listable next = list[currentPos];
if (currentPos == numItems-1)
currentPos = 0;

else
currentPos++;

return next.copy();
}

}

As mentioned above, the switch from supporting lists of strings to lists of
Listable objects means that we now can implement and use lists of composite ele-
ments. This affects how we can compare elements, and what it means for two elements
to be “equal.” Consider the following ListCircle objects C1, C2, C3, and C4:

Are any of the circles equal to each other? No, not in the strict sense of the word
“equal.” But what about equality as defined by the compareTo method of the ListCir-
cle class? There, ListCircle objects are compared strictly on the basis of their radii.
Based on that definition of equality, circles C1 and C3 are “equal.” Although it might
seem strange, this definition of equality could make perfect sense for a particular appli-
cation, where the only important criteria for comparing circles is their size.

Remember that we are following the convention that our lists consist of unique
objects. Are all of the circles in the table above unique? No, not in the “world” defined
by the ListCircle class, where two circles are considered identical if they have the
same radius. The compareTo method essentially defines the key for the list. In this
case, the key is the radius. We should not insert both C1 and C3 on the same list. That
would violate the precondition of the insert operation. Again, this seems like a strange
restriction but might make sense within a particular application. (Please remember that
the approach used here is not the only approach possible. For example, list ADTs could
be developed that separate the concepts of key values and sort values.)
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S1 S2 S3

first Jones Jones Adams

last David Mary Mark

IDnum 1234567 7654321 1111111

test1 89 92 100

test2 92 95 99

test3 95 89 100

Let’s look at another example. Earlier in this chapter we discussed different ways we
might wish to sort a list of student records, with each record containing fields for first
name, last name, identification number, and three test scores. For example, we could
sort the list by name, or we could sort the list by identification number. Here is a table
of values for student objects S1, S2, and S3.

In our approach, the field or fields that we use as a sorting criteria is the key for the
list. If we were to define a ListStudent class—a class that allows us to maintain a list
of students—then the definition of the compareTo operation in the ListStudent class
would effectively define the key for the list elements. What would be the best choice for
the key for a list of students? If we decide the last name is the key, then we are not able
to hold both S1 and S2 on our list. That does not seem reasonable. Perhaps we could
define the key to use the first name field as a tiebreaker when two last names are identi-
cal. That is better, but we could have two students who have identical first and last
names, in which case we would be in trouble again. For this information, assuming a
unique identification number has been assigned to each student, the IDnum field would
be the best key. Therefore, the compareTo method of the ListStudent class should
base its processing on a comparison of IDnum values.

Now it is clear why we changed the comment describing the effects of the isThere and
delete operations. For example, when we were just using a list of strings the effect of
isThere was “returns true if item is on the list . . . .” Now the effect is “returns true if an ele-
ment with the same key as item is on this list . . . .” When dealing with lists of noncomposite
elements, like strings, the entire element was in effect the key. That is no longer the case.

This brings us to the new list operation introduced in this section, the retrieve
operation. Its definition in the abstract List class is

public abstract Listable retrieve(Listable item);
// Returns a copy of the list element with the same key as item

The application passes retrieve a Listable object and retrieve searches the list to
find the element on the list that is “equal” (i.e., has the same key) to it. A copy of this
element is returned. The specification of retrieve is as follows.
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Listable retrieve (Listable item)

Effect: Returns a copy of the list element with the
same key as item.

Preconditions: An element with a key that matches item’s key
is on this list.

Postcondition: Return value = (copy of list element that
matches item)

Therefore, we can store information on a list and retrieve it later based on the item’s
key. For example, to retrieve student information about a student with an IDnum of
7654321, we instantiate a ListStudent object with dummy information for all of the
fields except the IDnum field, which we initialize to 7654321. Then we pass this object
to the retrieve operation, which returns a copy of the matching list element. This
copy contains all the valid information about the student.

A Generic Sorted List ADT

Next we list the code for the generic sorted list class that completes the definition of the
list class for the case of sorted lists. You can see that we use the binary search algorithm
to implement the isThere and retrieve operations (although with the retrieve
operation we do not need the moreToSearch variable because we know the item being
retrieved is on the list). Note the use of the term Listable throughout the class, the use
of the copy method invocation in the insert and retrieve methods, and several uses
of the compareTo method. We call our new sorted list class SortedList.

//----------------------------------------------------------------------------
// SortedList.java             by Dale/Joyce/Weems                   Chapter 3
//
// Completes the definition of the List class under the assumption
// that the list is kept sorted
//----------------------------------------------------------------------------

package ch03.genericLists;

public class SortedList extends List 
{
public SortedList(int maxItems)
// Instantiates and returns a reference to an empty list object 
// with room for maxItems elements
{
super(maxItems);

}
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public SortedList()
// Instantiates and returns a reference to an empty list object 
// with room for 100 elements
{
super(100);

}

public boolean isThere (Listable item)
// Returns true if an element with the same key as item is on this list; 
// otherwise, returns false
{
int compareResult;
int midPoint;
int first = 0;
int last = numItems - 1;
boolean moreToSearch = (first <= last);
boolean found = false;

while (moreToSearch && !found) 
{
midPoint = (first + last) / 2;
compareResult = item.compareTo(list[midPoint]);

if (compareResult == 0)
found = true;

else if (compareResult < 0)  // item is less than element at location
{
last = midPoint - 1;
moreToSearch = (first <= last);

}
else                         // item is greater than element at location
{
first = midPoint + 1;
moreToSearch = (first <= last);

}
}

return found;
}

public Listable retrieve (Listable item)
// Returns a copy of the list element with the same key as item
{
int compareResult;
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int first = 0;
int last = numItems - 1;
int midPoint = (first + last) / 2;
boolean found = false;

while (!found) 
{
midPoint = (first + last) / 2;
compareResult = item.compareTo(list[midPoint]);

if (compareResult == 0)
found = true;

else if (compareResult < 0)  // item is less than element at location
last = midPoint - 1;

else                         // item is greater than element at location
first = midPoint + 1;

}

return list[midPoint].copy();
}

public void insert (Listable item)
// Adds a copy of item to this list 
{
int location = 0;
boolean moreToSearch = (location < numItems);

while (moreToSearch) 
{
if (item.compareTo(list[location]) < 0)  // item is less
moreToSearch = false;

else                                     // item is more
{
location++;
moreToSearch = (location < numItems);

}
}

for (int index = numItems; index > location; index--)
list[index] = list[index - 1];

list[location] = item.copy();
numItems++;

}
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public void delete (Listable item)
// Deletes the element that matches item from this list 
{
int location = 0;

while (item.compareTo(list[location]) != 0)
location++;

for (int index = location + 1; index < numItems; index++)
list[index - 1] = list[index];

numItems--;
}

}

The UML diagrams for the List and SortedList classes, plus the Listable inter-
face, are displayed in Figure 3.14. Note the use of a dashed arrow labeled “uses,” with
an open arrowhead, to indicate the dependency of List and Listable. Although we

Figure 3.14 UML diagrams for our list framework

#list:Listable[]
#numItems:int
#currentPos:int

+List(in maxItems:int)
+isFull():boolean
+lengthIs():int
 isThere(in item:Listable):boolean
 retrieve(in item:Listable):Listable
 insert(in item:Listable):void
 delete(in item:Listable):void
+reset():void
+getNextItem():Listable

List

+UnsortedList(in maxItems:int)
+UnsortedList()
+isThere(in item:Listable):boolean
+retrieve(in item:Listable):Listable
+insert(in item:Listable):void
+delete(in item:Listable):void

UnsortedList

+SortedList(in maxItems:int)
+SortedList()
+isThere(in item:Listable):boolean
+retrieve(in item:Listable):Listable
+insert(in item:Listable):void
+delete(in item:Listable):void

SortedList

 compareTo(in other:Listable):int
+copy():Listable

<<interface>>
Listableuses
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did not develop it, the figure also shows an UnsortedList class that extends List.
This helps remind us that more than one class can extend the abstract list class. The
implementation of the UnsortedList class is left as an exercise.

A Listable Class

Now that we have defined a generic list, a sorted list of Listable elements, we have to
define a class that implements the Listable interface so that we have something to put
on our lists. To keep our example straightforward, we continue to work with a list of
strings. (In the case study of the next section, we provide a more complicated example
of a class that implements Listable.)

We used lists of strings in the early part of this chapter so that we could introduce
the reader gently to the topic of defining and implementing ADTs in Java. Knowing
what we know now, about how to use interfaces to create generic lists, we would not
have created a specific list implementation for lists of strings. Instead, we would use our
generic list. But how do we use our generic list to provide a list of strings? We need to
create a new class that hides a string variable and implements the Listable interface.
We call this class ListString, since it provides strings that can be placed on our
generic list.

Study the code for ListString below. Note that it contains a single object variable
key that holds a string. It provides a constructor, plus the two methods needed to
implement the Listable interface, the copy and compareTo methods. It also contains
one other method, a toString method, which makes it easy for the application pro-
grammer to use objects of the class ListString as strings. When a class implements an
interface, it must provide concrete methods for the abstract methods defined in the
interface. As you can see, it can also include definitions for other methods.

package ch03.genericLists;

public class ListString implements Listable
{
private String key;

public ListString(String inString)
{
key = new String(inString);

}

public Listable copy()
{
ListString result = new ListString(this.key);
return result;

}
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public int compareTo(Listable otherListString)
{
ListString other = (ListString)otherListString;
return this.key.compareTo(other.key); 
}

public String toString()
{
return(key);

}
}

Since ListString implements Listable, objects of class ListString can be
used anywhere a Listable object is expected. Therefore, an object of class List-
String can be passed to the insert method of the SortedList class. Furthermore, the
same object can be placed on the hidden array within the SortedList class. And so on.
We can use ListString objects with the SortedList class to provide a sorted list of
strings.

If we wished to have a list of something else we would need to create another class
that implements Listable. For example, if we wished to have a list of Circle objects
we could complete our definition of the class ListCircle. This class would also imple-
ment Listable; therefore, it would contain its own versions of the copy and com-
pareTo methods. What does it mean to compare circles? That depends on the intended
use of the list of circles. Perhaps the comparison would be based on the size of the cir-
cles or on their positions. The ListCircle class requires a constructor; but would it
require a toString method? Would it require any other methods? Again, the answers
depend on the intended use of the list of circles. Being able to reuse our generic list
ADT with list elements that have been defined for a specific application provides us
with a powerful programming tool.

Using the Generic List

To create a sorted list of strings in an application program you simply instantiate an
object of the class SortedList, using either of its constructors:

SortedList list1 = new SortedList();
SortedList list2 = new SortedList(size);

You also need to declare at least one object of class ListString, so that you have a
variable to use as a parameter with the various SortedList methods:

ListString aString;
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Once these declarations have been made you can instantiate ListString objects and
place them on the list. For example, to place the string “Amy” on the list you might code:

aString = new ListString("Amy");
list.insert(aString);

We are not going to list an entire application program that uses a sorted list of strings.
We did create a test driver (a form of application) that you can study and use; it is in the
TDSortedList.java file of the ch03 subdirectory of the bookFiles directory on our
web site. Notice that it is not part of the genericLists package—instead it uses the
package. So that the package classes are available to the test driver, it includes the fol-
lowing import statement:

import ch03.genericLists.*;

As long as the bookFiles directory is included on your computer’s ClassPath, the
compiler will know where to find the generic list files.

In the test driver you find uses of each of the sorted list methods with a
Listable object:

outFile.println("The list is full is " + list.isFull());
outFile.println("Length of the list is " + list.lengthIs());
outFile.println(aString + " is on the list: " +
list.isThere(aString));
bString = (ListString)list.retrieve(aString);
list.insert(aString);
list.delete(aString);
list.reset();
aString = (ListString)list.getNextItem();

SortedList.java should be thoroughly tested. This job is left as an exercise.
The case study presented next shows another example of using the sorted list ADT.

In the case study a list of real estate information is manipulated.

Case Study
Real Estate Listings

Problem Write a RealEstate program to keep track of a real estate company’s residential
listings. The program needs to input and keep track of all the listing information, which is
currently stored on 3 � 5 cards in a box in their office.

The real estate salespeople must be able to perform a number of tasks using this data: add
or delete a house listing, view the information about a particular house given the lot number,
and look through a sequence of house information sorted by lot number.

We use the same design approach we described in Chapter 1 for this problem.
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Write a program to keep track of a real estate company’s residential
listings. The program needs to input and keep track of all the listing
information, which is currently stored on 3 x 5 cards in a box in their
office.

The real estate salespeople must be able to perform a number of tasks using
this data: add or delete a house listing, view the information about a 
particular house given the lot number, and look through a sequence of house 
information sorted by lot number.  

Figure 3.15 Problem statement with nouns circled and verbs underlined

Brainstorming We said that nouns in the problem statement represent objects and that verbs
describe actions. Let’s approach this problem by analyzing the problem statement in terms of
nouns and verbs. Let’s circle nouns and underline verbs. The relevant nouns in the first paragraph
are listings, information, cards, box, and office: circle them. The verbs that describe possible
program actions are keep track, input, and stored: underline them. In the second paragraph, the
nouns are salespeople, data, listing, information, house, lot number, and sequence: circle them.
Possible action verbs are perform, add, delete, view, look through, and sorted: underline them.
Figure 3.15 shows the problem statement with the nouns circled and the verbs underlined.

We did not circle program or underline write because these are instructions to the pro-
grammer and not part of the problem to be solved. Now, let’s examine these nouns and verbs
and see what insights they give us into the solution of this problem.

Filtering The first paragraph describes the current system. The objects are cards that contain
information. These cards are stored in a box. Therefore, there are two objects in the office that
we are going to have to simulate: 3 � 5 cards and a box to put them in. In the second
paragraph, we discover several synonyms for the cards: data, listing, information, and house.
We model these with the same objects that represent the cards. We also see what processing
must be done with the cards and the box in which they are stored. The noun salespeople
represents the outside world interacting with the program, so the rest of the paragraph
describes the processing options that must be provided to the user of the program. In terms of
the box of cards, the user must be able to add a new card, delete a card, view the information
on the card given the lot number, and view a sequence of card information, sorted by lot
number.

We can represent the cards by a class whose data members are the information written
on the 3 � 5 cards. How do we represent the box of cards? We have just written several ver-
sions of the Abstract Data Type List. A list is a good candidate to simulate a box and the
information on the list can be objects that represent the 3 � 5 cards. Since these objects
represent the house information, and they should be kept on a list, let’s call the class that
models a card of house information ListHouse. We must make sure that our ListHouse
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class implements the Listable interface, since we wish to maintain a list of ListHouse
objects.

We now know that our program uses a list of ListHouse objects. But which version of a
list shall we use? The unsorted version or the sorted version? Because the user must be allowed
to look through the “house information sorted by lot number,” the sorted version is a better
choice. In the ListHouse class we base the definition of the compareTo method on the
house’s lot number. This ensures that the houses are kept sorted by lot number, just the way we
need them.

So far, we have ignored the noun office and the fact that the program should “input and keep
track” of the cards. A box of cards is stored permanently in the office. A list is a structure that
exists only as long as the program in which it is defined is running. But how do we keep track of
the information between runs of the program? That is, how do we simulate the office in which the
box resides? A file is the structure that is used for permanent storage of information. Hence, there
are two representations of the box of cards. When the program is running, the box is represented
as a list. When the program is not running, the box is represented as a file. The program must move
the information on the cards from a file to a list as the first action, and from a list to a file as the
last action. We relegate the responsibility of interacting with the file to a class called HouseFile.

The HouseFile class hides the file of house information from the rest of the program. In
this way, if the format of the file needs to be changed at a later time, the only part of the sys-
tem that is affected is the HouseFile class. Limiting the scope of potential future changes is
one of the main reasons we partition our systems into separate classes.

Let’s capture the decisions we have made so far on CRC cards. On each card we record the
main purpose of the class it represents, along with an initial set of responsibilities. Our cards
show that our classes are already fairly well defined. The following table captures the informa-
tion we record on the cards at this point (we display the final version of the cards after we fin-
ish the analysis section):

Class Purpose Responsibilities

RealEstate

ListHouse

SortedList

HouseFile

Main program

Hold the information about a
specific house.

Maintain a list of ListHouse
elements.

Manage the file of house
information.

Driver program, uses all the other classes to solve
the problem; provides graphical user interface;
implements actions represented by the interface
buttons

Know all of its information;
implement Listable; therefore, provide copy
and compareTo methods

See the List ADT specification.

Get house information from the file;
save house information to the file.
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User Interface Let’s assume that the information on the 3 � 5 cards includes the owner’s
first and last names, the lot number, price, number of square feet, and number of bedrooms.
The lot numbers are unique and therefore can be used as the key of the list. If an agent
attempts to add a listing that duplicates an existing lot number, an error message is printed to
the screen.

A review of the problem statement reveals that interaction with the user can take place
one “house” at a time. Therefore, we design our graphical interface to display information
about a house, and provide the user with buttons to initiate options related to that house (add,
delete, clear) or to the overall system (reset, next, find). A count of the number of data fields,
labels, and buttons needed, aided by some rough drafts drawn on scrap paper, leads us to a
9 � 2 grid layout for our interface. A sketch of our design is:

The user continues to manipulate the list of houses until he or she exits by closing the window.

Input Notice that there are three kinds of input: the file of houses saved from the last run of
the program, the commands, and the data entered from the keyboard into the text fields in
conjunction with the commands.

Output There are two kinds of output: the file of houses saved at the end of the run of the
program, and screen output directed by one or more of the commands.

Data Objects There are house objects, represented in the program as ListHouse class
objects. There are two container objects: the file of house objects retained from one run of the
program to the next and the list into which the house objects are stored when the program is
running (we call this object list). The collection of house listings is called our database.

Lot Number:

First Name:

Second Name:

Price:

Square Feet:

Number of Bedrooms:

Reset

Add

Clear

Next

Delete

Find

John

45678

96000

1200

3

Jones
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Figure 3.16 Data flow of case study
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We name the physical file in which we retain the house objects houses.dat.
The diagrams in Figures 3.16 and 3.17 show the general flow of the processing and what

the data objects look like. Note that we know the internal workings of the List ADT because we
have just written the code earlier in the chapter. When we wrote that we were acting as the
ADT programmer, creating a tool for use by application programmers. Now however, we are
changing hats; we are acting as the application programmer. We write the program only using
the interface as represented in the List ADT specification.

Scenario Analysis Where do we go from here? Scenario analysis lets us “test” our design.
Using our CRC cards we can walk through several scenarios that represent the typical expected
use of the system. This allows us to refine the responsibilities of our identified classes and
begin to add detailed information about method names and interfaces. During the course of
this analysis we may uncover holes in our identified classes or user interface.

We begin by working through a scenario in which a real estate salesperson runs the pro-
gram and tries to get information about the house on lot number 45678. We realize that the
first thing the system must do is to build the internal list of houses from the house information
contained in the file. We need to decide which class should have this responsibility. We could
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Figure 3.17 The high-level processing of the case study

houses.dat

Program processes
the menu choices

Reset Next
Add Delete
Clear Find

assign this task to the HouseFile class, since it is able to get the house information from the
file. However, we decide that such a task is outside its main purpose, which is to manage the
file of house information. Therefore, we decide that the RealEstate class should perform
this task. We add a notation to this effect to the list of responsibilities on its CRC card and
move ahead.

Now we must decide how the RealEstate class gets the house information from the
HouseFile class. Should the information be sent one field at a time or one house at a time?
We decide to use the latter approach, since we have already defined a class that encapsulates
house data, namely the ListHouse class. The HouseFile class can provide information to
the RealEstate class in the form of ListHouse objects. And vice versa at the end of the
program’s execution, the HouseFile class can receive information from the RealEstate
class in the form of ListHouse objects.
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As our scenario continues we imagine the RealEstate class requesting house infor-
mation from the HouseFile class. First it informs the HouseFile class that it wishes to
begin reading house data. A standard name for this method is reset. Next, as long as
there is more house data available, it asks the HouseFile class for data about another
house. Therefore, HouseFile must provide both a moreHouses method that returns a
boolean, and a getNextHouse method that returns an object of type ListHouse. A
similar analysis of how the data can be saved to the file at the end of the program run
leads to the identification of a rewrite method and a putToFile method. We also need
a method to inform the HouseFile class that we are finished with the file and it should
be closed. Finally, we decide to use our standard approach for reading from a file, so we
note that HouseFile must collaborate with Java’s BufferedReader, FileReader,
PrintWriter, and FileWriter classes. We update the CRC card for HouseFile, and
move ahead.

As the scenario unfolds we find that most of the operations needed for normal processing
have already been assigned to one of our classes. The user clicks on the Clear button and the
RealEstate class clears the information from the text fields; the user enters the lot number
45678 into the Lot Number text field and clicks on the Find button; the RealEstate class
creates a ListHouse object with 45678 as its lot number, uses the list isThere operation
to see if the house is on the list; if it is on the list then the list retrieve operation is used to
obtain all of the house information, which is subsequently displayed in the text fields.

But what if the house is not found on the list? When doing scenario analysis it is important
to consider all the variations of the scenario. In this case, the program should report to the user
that the house was not found. How does it do that? We have uncovered a hole in our interface
design. We need to include a way to communicate the results of operations to the user. So, we go
back and rework our draft of the interface to include a status box in the upper left corner of the
window. We decide we can use this status box to display a message in response to each option
selected by the user. For example, if the user selects the Add button and the house is successfully
added to the list, we display the message “House added to list.” Now our interface is a 10 � 2
grid.

The investigation of other scenarios is left to the reader. The final set of CRC cards, created
strictly for this application, is shown below. We do not include a card for the List ADT since that
was not created for this application. Also, we do not include a card for the RealEstate main
program, since that is the application that uses the classes represented by the other cards.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Case Study: Real Estate Listings | 213

Class Name: Superclass: Subclasses:

Responsibilities

Primary Responsibility:

Collaborations

Provide a house object to use with a list

ListHouse Object

Create itself (lastName, firstName,

lotNumber, price, squareFeet,

bedrooms)

Copy itself

return int

Compare itself to another ListHouse

(other ListHouse)

Know its information:

Know lastName, return String

Know firstName, return String

Know lotNumber, return int

Know price, return int

Know squareFeet, return int

Know bedrooms, return int

None

None

None

None

return Listable
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We now turn our attention to the design, implementation, and testing of the identified
classes. Note that the SortedList class that we use has already been created and tested, so
we can assume that it works properly. This is a prime benefit of creating ADTs—once created
and tested they can be used with confidence in other systems. We create a package,
ch03.houses, to hold the ListHouse and HouseFile classes. We use the package to hold
the “helper” classes only; therefore, we do not include the RealEstate class, which is an
application, as part of the package. You can find the RealEstate.java file in the ch03 sub-
directory of the bookFiles directory and the ListHouse.java and HouseFile.java files
in the houses subdirectory of the ch03 subdirectory. The files are available on our web site.

The ListHouse Class ListHouse must encapsulate house information and it must
implement the Listable interface, since ListHouse objects are placed on a list. Its
implementation is rather straightforward. It follows the same patterns established in the
ListCircle and ListString classes developed earlier in the chapter. We must implement
compareTo and copy, but we must also declare variables for all of the information about the
house. That is, we must have instance variables for the last name, the first name, the lot

Class Name: Superclass: Subclasses:

Responsibilities

Primary Responsibility:

Collaborations

Manage the file of house information

HouseFile Object

Set up for reading

return boolean

return ListHouse

Get the info about the next house from

the file

Set up for writing

Put info about a house to the file

(house)

PrintWriter

PrintWriter, FileWriter

Close the file

None

BufferedReader, FileReader

BufferedReader, Integer

BufferedReader, PrintWriter

know if there are more houses to read
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number, the price, the number of square feet, and the number of bedrooms. We also need to
have observer operations for each of these variables.

//----------------------------------------------------------------------------
// ListHouse.java             by Dale/Joyce/Weems                    Chapter 3
//
// Provides elements for a list of house information
//----------------------------------------------------------------------------

package ch03.houses;

import ch03.genericLists.*;

public class ListHouse implements Listable
{
// House information
private String lastName;
private String firstName;
private int lotNumber;
private int price;
private int squareFeet;
private int bedRooms;

public ListHouse(String lastName, String firstName, int lotNumber, 
int price, int squareFeet, int bedRooms )

{
this.lastName   = lastName;
this.firstName  = firstName;
this.lotNumber  = lotNumber;
this.price      = price;
this.squareFeet = squareFeet;
this.bedRooms   = bedRooms;

}

public Listable copy()
// Returns a copy of this ListHouse
{
ListHouse result = new ListHouse(lastName, firstName, lotNumber, price,

squareFeet, bedRooms);
return result;

}

public int compareTo(Listable otherListHouse)
// Houses are compared  based on their lot numbers
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{
ListHouse other = (ListHouse)otherListHouse;
return (this.lotNumber - other.lotNumber);
}

// Observers
public String lastName()
{
return lastName;

}

public String firstName()
{
return firstName;

}

public int lotNumber()
{
return lotNumber;

}

public int price()
{
return price;

}

public int squareFeet()
{
return squareFeet;

}

public int bedRooms()
{
return bedRooms;

}
}

We should test the ListHouse class by itself and integrated with the SortedList class.
We can test it by itself by creating a TDListHouse program, similar to the other test driver pro-
grams we have used. Our test cases first invoke the constructor, followed by calls to each of the
observer methods to ensure that they return the correct information. This could be followed by a
test of the copy operation, using it to create a copy of the original ListHouse and then repeat-
ing the observer method tests on the new object. Finally, the compareTo operation must be
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tested in a variety of situations: compare houses with lot numbers that are less than, equal to, or
greater than each other, compare a house to itself, compare a house to a copy of itself, and so on.

ListHouse can be tested with the SortedList class by repeating the sequence of tests
previously used to test our sorted list of strings, replacing the strings with house information.

The HouseFile Class
This class manages the houses.dat file. When requested, it pulls data from the file, encapsulates
the data into ListHouse objects, and returns the ListHouse objects to its client. Additionally, it
takes ListHouse objects from its client and saves the information to the houses.dat file.

There is no need to create numerous HouseFile objects. Since the class always deals
with the same file, we would not want to have several instances of the class interacting with
the file at the same time. If we allowed that the file could become corrupted and the system
could crash (for example if one instance of the class was trying to read from the file while
another instance of the class was trying to write to the file). Therefore, we do not support
objects of the class HouseFile. We code all of its methods as static methods. Recall that
this means that the methods are invoked directly through the class itself, as opposed to being
invoked through an object of the class. We also declare all of its variables to be static vari-
ables, that is, class variables as opposed to object variables.

A study of the CRC card for HouseFile combined with the analysis of the previous para-
graph leads to the following abstract specification of the HouseFile class:

House File Specification

Structure:

The house information is kept in a text file called houses.dat.
For each house the following information is kept, in the order
listed, one piece of information per line: last name (String),
first name (String), lot number (int), price (int), square feet
(int), and number of bedrooms (int).

Operations:

static void reset

Effect: Resets the file for reading
Throws: IOException

static void rewrite

Effect: Resets the file for writing
Throws: IOException

static boolean moreHouses

Effect: Determines whether there is still more house
information to be read

Postcondition: Return value = (there is more house informa-
tion)
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static ListHouse getNextHouse

Effect: Reads the next house information from the file
Postcondition: Return value = (a ListHouse object contain-

ing the next house information)
Throws: IOException

static void putToFile (ListHouse house)

Effect: Writes the house information to the file
Throws: IOException

static void close

Effect: Closes the file
Throws: IOException

Reading information from a file and writing information to a file was used in the TDInc-
Date program at the end of Chapter 1. The Java Input/Output feature section that accompa-
nied that program addresses the Java code used to provide those operations. That program
only needs to read and write information of type int. The HouseFile class also performs
input and output of String information. This is straightforward, since the methods provided
by the java.io class directly support strings:

firstName = inFile.readLine();       // Input of String
outFile.printLn(house.firstName());  // Output of String

The HouseFile class must keep track of whether or not the houses.dat file is closed
or opened, and if open, whether it is open for reading or open for writing. It must not allow
reading from the file when it is open for writing; nor writing to the file when it is open for
reading; nor reading or writing if the file is closed. The boolean class variables inFileOpen
and outFileOpen are used to keep track of the status of the file.

Here is the implementation:

//----------------------------------------------------------------------------
// HouseFile.java             by Dale/Joyce/Weems                    Chapter 3
//
// Manages file "houses.dat" of real estate information
//----------------------------------------------------------------------------

package ch03.houses;

import java.io.*;

public class HouseFile
// Manages file "houses.dat" of real estate information
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{
private static BufferedReader inFile;
private static PrintWriter outFile;
private static boolean inFileOpen = false;
private static boolean outFileOpen = false;
private static String inString ="";         // Holds "next" line from file

// Equals null if at end of file

public static void reset() throws IOException
// Reset file for reading
{
if (inFileOpen) inFile.close();
if (outFileOpen) outFile.close();
inFile = new BufferedReader(new FileReader("houses.dat"));
inFileOpen = true;
inString = inFile.readLine();

}

public static void rewrite() throws IOException
// Reset file for writing
{
if (inFileOpen) inFile.close();
if (outFileOpen) outFile.close();
outFile = new PrintWriter(new FileWriter("houses.dat"));
outFileOpen = true;

}

public static boolean moreHouses()
// Returns true if file open for reading and there is still more house 
// information available in it
{
if (!inFileOpen || (inString == null))
return false;

else return true;
}

public static ListHouse getNextHouse() throws IOException
// Gets and returns house information from the house info file
// Precondition: inFile is open and holds more house information
{
String lastName = "xxxxx";
String firstName = "xxxxx";
int lotNumber = 0;
int price = 0;
int squareFeet = 0;
int bedRooms =0;
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lastName = inString;      
firstName = inFile.readLine();
lotNumber = Integer.parseInt(inFile.readLine());
price = Integer.parseInt(inFile.readLine());
squareFeet = Integer.parseInt(inFile.readLine());
bedRooms = Integer.parseInt(inFile.readLine());

inString = inFile.readLine();

ListHouse house = new ListHouse(lastName, firstName, lotNumber, price, 
squareFeet, bedRooms);

return house;
}

public static void putToFile(ListHouse house) throws IOException
// Puts parameter house information into the house info file
// Precondition: outFile is open
{
outFile.println(house.lastName());
outFile.println(house.firstName());
outFile.println(house.lotNumber());
outFile.println(house.price());
outFile.println(house.squareFeet());
outFile.println(house.bedRooms());

}

public static void close() throws IOException
// Closes house info file
{
if (inFileOpen) inFile.close();
if (outFileOpen) outFile.close();
inFileOpen = false;
outFileOpen = false;

}
}

RealEstate Program We now look at the main program, the program that uses all of the
other classes to solve the problem. The main program includes the user interface code, in fact
that code makes up the majority of the program. Any input/output mechanisms used here
that have not yet been encountered in this text are addressed in the feature section, Java
Input/Output II that follows the case study. Here is a screen shot of the running program after
the user has selected the option to display the “next” house:
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Here is how the program reacts to an attempt to “find” a house that is not on the list:

This example shows what happens if the user tries to “add” a house with poorly formatted
information:
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The algorithm for the main program is as follows:

Processing begins by using the HouseFile class to obtain the house information from
the file, and using the SortList class to store the house information. This is accomplished
through the following steps:

Create a new list
Reset the house file for reading
while there are still more houses to read
Read the next house and
Insert it into the list

Get the house information from the HouseFile object and build the list of houses.
Present the initial frame
As long as the frame remains open
Listen for and respond to user choices
Reset – reset the list and display the first house from the list
Next – display the next house from the list
Add – if it is not already on the list, add the currently displayed house to the list
Delete – if it is on the list, remove the house that matches the currently displayed 

lot number from the list
Clear – clear the text fields
Find – display the house from the list that matches the currently displayed lot 

number, if possible
Send the information about the houses from the list to the HouseFile object
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The code that corresponds to this algorithm can be found in the main method, after the vari-
ous interface labels, text fields, and buttons have been set up, and the display frame has been
initialized.

So, that’s how we get the information from the file onto the list at the beginning of our
processing. How do we reverse this process? That is, how do we take the information from the
list and save it back to the file? Actually, the save algorithm is very similar:

Where should the code for this algorithm go in the program? We want this code to be one of
the last things that the program does. Remember, this is an event-driven program, so we can-
not just put the code at the end of the main method and expect it to be executed last. Instead,
we define our own WindowClosing event handler and place the corresponding code there. In
this way, when the user is finished and closes the application window, the information is saved.

Now that we have determined how we get the house information from the file to the list,
and vice versa, the only processing that remains is what occurs in response to the user press-
ing buttons in the interface. There are six buttons. The processing required by each button is
fairly well stated in the original algorithm above. Many of them require moving information
from the display (the set of text fields) to the list, or vice versa. This leads us to design three
helper methods

• showHouse – accepts a ListHouse object as a parameter and displays the informa-
tion about the object in the text fields

• getHouse – obtains the information from the textboxes, turns it into a ListHouse
object, and returns the object

• clearHouse – clears the information from the textboxes

The implementation of these methods is straightforward, and with their help we can
implement the button-processing routines without much difficulty. For example, the algorithm
to handle the Reset button is:

Reset the list
if the list is empty
clearHouse

else
Set house to the first house on the list
showHouse(house)

Report “List reset” through the status label

Reset the house file for writing
Rest the list
for each house on the list
Get the house from the list and
Store it in the file
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The code that corresponds to this algorithm is placed in the ActionHandler class, and asso-
ciated with the “Reset” event.

Study the code for the other event handlers to see how they use the helper methods to
perform their tasks. Note that each of the event handlers that depends upon the user entering
information into a text field, use Java’s exception handling mechanism to protect the applica-
tion from user input errors. For example, the algorithm for the Add event is:

Since four of the house fields require int data, if the system raises a NumberFormatException
it is because something other than an integer was listed in at least one of those fields. Therefore,
the message displayed through the status label is “Number?”, followed by an echo of the bad data.
The bad data value is available through the exception object’s getMessage method. You can see
that similar protection is provided for the Delete and Find event handlers in the code.

Here is the listing for the Real Estate application:

//----------------------------------------------------------------------------
// RealEstate.java             by Dale/Joyce/Weems                   Chapter 3
//
// Helps keep track of a company's real estate listings
//----------------------------------------------------------------------------

import java.awt.*;            
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import java.io.*;
import ch03.houses.*;
import ch03.genericLists.*;

public class RealEstate
{
// The list of house information
private static SortedList list = new SortedList();

// Text fields
private static JTextField lotText;             // Lot number field
private static JTextField firstText;            // First name field

try
Set house to getHouse
if house is already on the list
Report “Lot number already in use” through the status label

else
Insert house into the list
Report “House added to list” through the status label

catch NumberFormat Exception
Report a problem with the house data through the status label
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private static JTextField lastText;             // Last name field
private static JTextField priceText;            // Price field
private static JTextField feetText;             // Square feet field
private static JTextField bedText;             // Number of bedrooms field

// Status Label
private static JLabel statusLabel;              // Label for status info

// Display information about parameter house on screen
private static void showHouse(ListHouse house)
{
lotText.setText(Integer.toString(house.lotNumber()));
firstText.setText(house.firstName());                    
lastText.setText(house.lastName());                    
priceText.setText(Integer.toString(house.price()));                    
feetText.setText(Integer.toString(house.squareFeet()));
bedText.setText(Integer.toString(house.bedRooms()));

}

// Returns current screen information as a ListHouse
private static ListHouse getHouse()
{
String lastName;
String firstName;
int lotNumber;
int price;
int squareFeet;
int bedRooms;

lotNumber = Integer.parseInt(lotText.getText());
firstName = firstText.getText();                    
lastName = lastText.getText();                    
price = Integer.parseInt(priceText.getText()); 
squareFeet = Integer.parseInt(feetText.getText());
bedRooms = Integer.parseInt(bedText.getText());

ListHouse house = new ListHouse(lastName, firstName, lotNumber, price, 
squareFeet, bedRooms);

return house;
}

// Clears house information from screen
private static void clearHouse()
{
lotText.setText("");
firstText.setText("");                    
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lastText.setText("");                    
priceText.setText("");                    
feetText.setText("");
bedText.setText("");

}

// Define a button listener
private static class ActionHandler implements ActionListener 
{
public void actionPerformed(ActionEvent event)
// Listener for the button events
{
ListHouse house;

if (event.getActionCommand().equals("Reset"))
{ // Handles Reset event
list.reset();
if (list.lengthIs() == 0)
clearHouse();

else
{
house = (ListHouse)list.getNextItem();
showHouse(house);

}
statusLabel.setText("List reset"); 

}
else
if (event.getActionCommand().equals("Next"))
{ // Handles Next event
if (list.lengthIs() == 0)
statusLabel.setText("list is empty!");

else
{
house = (ListHouse)list.getNextItem();
showHouse(house);
statusLabel.setText("Next house displayed");

}
}
else
if (event.getActionCommand().equals("Add"))
{ // Handles Add event
try
{
house = getHouse();
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if (list.isThere(house))
statusLabel.setText("Lot number already in use"); 

else
{
list.insert(house);
statusLabel.setText("House added to list"); 

}
}
catch (NumberFormatException badHouseData)
{
// Text field info incorrectly formated
statusLabel.setText("Number? " + badHouseData.getMessage());

} 
}
else
if (event.getActionCommand().equals("Delete"))
{ // Handles Delete event
try
{
house = getHouse();
if (list.isThere(house))
{
list.delete(house);
statusLabel.setText("House deleted"); 

}
else
statusLabel.setText("Lot number not on list"); 

}
catch (NumberFormatException badHouseData)
{
// Text field info incorrectly formated
statusLabel.setText("Number? " + badHouseData.getMessage());

} 
}
else
if (event.getActionCommand().equals("Clear"))
{ // Handles Clear event
clearHouse();
statusLabel.setText(list.lengthIs() + " houses on list");

}
else
if (event.getActionCommand().equals("Find"))
{ // Handles Find event
int lotNumber;
try
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{
lotNumber = Integer.parseInt(lotText.getText());
house = new ListHouse("", "", lotNumber, 0, 0, 0);
if (list.isThere(house))
{
house = (ListHouse)list.retrieve(house);
showHouse(house);
statusLabel.setText("House found"); 

}
else
statusLabel.setText("House not found");

}
catch (NumberFormatException badHouseData)
{
// Text field info incorrectly formated
statusLabel.setText("Number? " + badHouseData.getMessage());

} 
}

}
}

public static void main(String args[]) throws IOException

{
ListHouse house;
char command;
int length;

JLabel blankLabel;        // To use up one frame slot

JLabel lotLabel;         // Labels for input fields
JLabel firstLabel;                            
JLabel lastLabel;
JLabel priceLabel;
JLabel feetLabel;
JLabel bedLabel;

JButton reset;             // Reset button
JButton next; // Next button
JButton add;              // Add button
JButton delete;            // Delete button
JButton clear;             // Clear button
JButton find;              // Find button
ActionHandler action;      // Declare listener
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// Declare/Instantiate/Initialize display frame
JFrame displayFrame = new JFrame();
displayFrame.setTitle("Real Estate Program");
displayFrame.setSize(350,400);
displayFrame.addWindowListener(new WindowAdapter()  // handle window 

//   closing
{
public void windowClosing(WindowEvent event)
{
ListHouse house;
displayFrame.dispose();                     // Close window
try 
{
// Store info from list into house file
HouseFile.rewrite();
list.reset();
int length = list.lengthIs();
for (int counter = 1; counter <= length; counter++)
{
house = (ListHouse)list.getNextItem();
HouseFile.putToFile(house);

}
HouseFile.close();

}
catch (IOException fileCloseProblem)
{
System.out.println("Exception raised concerning the house info file " 

+ "upon program termination");
}
System.exit(0);                          // Quit the program

}
});

// Instantiate content pane and information panel
Container contentPane = displayFrame.getContentPane();
JPanel infoPanel = new JPanel();

// Instantiate/initialize labels, and text fields
statusLabel = new JLabel("", JLabel.CENTER);
statusLabel.setBorder(new LineBorder(Color.red));
blankLabel = new JLabel("");    
lotLabel = new JLabel("Lot Number:  ", JLabel.RIGHT);
lotText = new JTextField("", 15);
firstLabel = new JLabel("First Name:  ", JLabel.RIGHT);
firstText = new JTextField("", 15);
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lastLabel = new JLabel("Last Name:  ", JLabel.RIGHT);
lastText = new JTextField("", 15);
priceLabel = new JLabel("Price:  ", JLabel.RIGHT);
priceText = new JTextField("", 15);
feetLabel = new JLabel("Square Feet:  ", JLabel.RIGHT);
feetText = new JTextField("", 15);
bedLabel = new JLabel("Number of Bedrooms:  ", JLabel.RIGHT);
bedText = new JTextField("", 15);

// Instantiate/register buttons
reset = new JButton("Reset");
next = new JButton("Next");
add = new JButton("Add");
delete = new JButton("Delete");
clear = new JButton("Clear");
find = new JButton("Find");

// Instantiate/register button listeners
action = new ActionHandler();
reset.addActionListener(action);
next.addActionListener(action);
add.addActionListener(action);
delete.addActionListener(action);
clear.addActionListener(action);
find.addActionListener(action);

// Load info from house file into list
HouseFile.reset();
while (HouseFile.moreHouses())
{
house = HouseFile.getNextHouse();
list.insert(house);

}

// If possible insert info about first house into text fields
list.reset();
if (list.lengthIs() != 0)
{
house = (ListHouse)list.getNextItem();
showHouse(house);

}

// Update status
statusLabel.setText(list.lengthIs() + " houses on list                ");
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// Add components to frame
infoPanel.setLayout(new GridLayout(10,2));
infoPanel.add(statusLabel);
infoPanel.add(blankLabel);
infoPanel.add(lotLabel);
infoPanel.add(lotText);
infoPanel.add(firstLabel);
infoPanel.add(firstText);
infoPanel.add(lastLabel);
infoPanel.add(lastText);
infoPanel.add(priceLabel);
infoPanel.add(priceText);
infoPanel.add(feetLabel);
infoPanel.add(feetText);
infoPanel.add(bedLabel);
infoPanel.add(bedText);
infoPanel.add(reset);
infoPanel.add(next);
infoPanel.add(add);
infoPanel.add(delete);
infoPanel.add(clear);
infoPanel.add(find);

// Set up and show the frame
contentPane.add(infoPanel);      
displayFrame.show();      

}
}

Test Plan We assume classes Listable and SortedList have been thoroughly tested. This
leaves classes ListHouse, HouseFile, and the Real Estate application program to test. To test
the two classes we could create test driver programs to call the various methods and display
results. But recall that these classes were created specifically for the Real Estate application.
Therefore, we can use the main application as the test driver to test them. In other words, we can
test everything together.

The first task is to create a master file of houses by using the Add command to input sev-
eral houses and quit. We then need to input a variety of commands to add more houses, delete
houses, find houses, and look through the list of houses with the Reset and Next buttons. We
should try the operations with good data and with bad data (for example, nonintegral lot num-
bers). We should try the operations in as many different sequences as we can devise. The pro-
gram must be run several times in order to test the access and preservation of the data base
(file houses.dat). We leave the final test plan as an exercise.

In the discussion of object-oriented design in Chapter 1, we said that the code responsible
for coordinating the objects is called a driver. Now, we can see why. A driver program in test-
ing terminology is a program whose role is to call various subprograms and observe their
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behavior. In object-oriented terminology, a program is a collection of collaborating objects.
Therefore, the role of the main application is to invoke operations on certain objects, that is,
get them started collaborating, so the term driver is appropriate. In subsequent chapters, when
we use the term driver, the meaning should be clear from the context.

Java Input/Output II
Let’s look at the graphical user interface of the Real Estate program. This interface is more com-
plicated than that used by the test driver program we saw in Chapter 1. The test driver displayed
only labels, whereas the Real Estate program displays labels, text fields, and buttons. However,
the biggest difference is in how the frame is used by the user of the program. The test driver
program simply displayed a few lines of information on its frame, and then waited for the user
to close the frame. The frame for the Real Estate program, on the other hand, is changed based
on actions performed by the user. It is truly interactive.

Throughout the following discussion, please review the code from the Real Estate program
that corresponds to the particular discussion topic.

The Frame

First let’s look at how the frame is constructed. The setup of the frame is similar to that per-
formed by the test driver program. However, handling window closing is more complicated here,
since we must perform some special processing (save the information from the list to the
houses.dat file) instead of just exiting the system. We name our frame displayFrame and
set its title and size as we did before.

JFrame displayFrame = new JFrame();
displayFrame.setTitle("Real Estate Program");
displayFrame.setSize(350,400);

Next we define the needed reaction to the window-closing event with the following commands
(see the main method, after a sequence of label and button declarations):

displayFrame.addWindowListener(new WindowAdapter()  // Handle window
//   closing

{
. . .
});

The actual code executed when the window is closed is represented by the “. . . ”; it saves the
current list of house information to the data file, and then exits the program. Let’s discuss the
addWindowListener method. As you know, when the frame is displayed, it appears in its own
window. Normally, when you define a window listener from within a Java program, you must
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define how the window reacts to various events: closing the window, resizing the window, acti-
vating the window, and so on. You must define methods to handle all of these events. However,
in our program we only want to handle one of these events, the window closing event. The code
above lets us directly handle the window closing event while we accept default “do nothing”
handlers for all the other window events. In effect, a WindowAdapter object is a window that
has “do nothing” events defined for all window events. We are adding a “window closing lis-
tener” to our frame that tells the program what processing to perform when someone closes the
window, overriding the default “do nothing” event handler in this case.

As was done for the test driver, we next instantiate the content pane, and an information
panel:

Container contentPane = displayFrame.getContentPane();
JPanel infoPanel = new JPanel();

Recall that the content pane is the part of a frame that is used to display information generated
by a program, and a panel is a container, capable of holding other constructs, where the pro-
gram organizes its information for display.

Components

Next we create components that are eventually added to our panel. We create labels, text fields,
and buttons. We look at each in turn, starting with labels. You are familiar with labels from the
Chapter 1 test driver. In the Real Estate program, we exploit a little more of the functionality
provided by the JLabel class. Consider the two statements that set up the status label—the
label used in the interface to display a message describing the result of a user action:

statusLabel = new JLabel("", JLabel.CENTER);
statusLabel.setBorder(new LineBorder(Color.red));

In addition to passing the JLabel constructor an initial string, we pass it the constant CENTER,
defined in the JLabel class. This sets the label so that it displays text centered in the area allo-
cated to it. That property persists until we change it with a call to the label’s setHorizontal-
Alignment method. We follow the instantiation of statusLabel with a message to it, to set
its border to a line border with the color red. Borders can be set for any Java Swing component
that extends the JComponent class; that is, for most Swing components. Swing supports eight
kinds of borders—we have elected to use the line border in this case. Note that we pass the
LineBorder constructor a constant of the Color class. Also note, that to use borders, we must
import javax.swing.border.* into the program. Finally, note that most of the labels used by
the program are declared at the beginning of the main method, but the statusLabel label is
declared outside the main method, since it needs to be visible to some of the helper methods.

Intermingled with the label instantiations are instantiations of text fields. This is a new
construct for us. A text field is a box that allows the user to enter a single line of text. In the
Real Estate program, we use them to both gather and present information to the user. An exam-
ple of a test field instantiation is:

lotText = new JTextField("", 15);
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The string parameter sets the initial text in the text field (in this case to the empty string); the
integer parameter sets the width of the text field. Since all of our text fields are accessed by
helper methods, they are all declared outside of the main method.

The text displayed in a text field can be changed with the setText method, as is done in
the showHouse helper method to display the information about a house on the interface. Of
course, the user can directly enter text into a text field box and change its contents. The get-
Text method is used by a program to obtain the current information in a text field. See the
getHouse helper method for examples of its use.

The final construct used in our interface is the button. Buttons are used to generate events,
when pressed by the user. Button definition is easy. Just invoke the button constructor, passing
it the string to be displayed on the face of the button, as follows:

reset = new JButton("Reset");

Although button-related events are handled by helper methods, the buttons themselves are only
used within the main method, so all button declarations are at the beginning of main. There are
six buttons altogether. The Real Estate program “listens” for its user to press one of the buttons,
performs processing related to the pressed button, updates the frame appropriately, and then
resumes listening. To understand how this works, and how we implement it, we must look at the
Java event model.

The Event Model

In an event-driven Java program, there are two important entities, event sources and event lis-
teners. The sources generate an event, usually due to some action by the user. The listeners are
waiting for certain events to occur, and when they do, they react to the event by performing
some related processing. In our program, the JButton object reset is an event source, and the
ActionHandler object action is an event listener. These objects are declared and instanti-
ated by the statements:

JButton reset;
reset = new JButton("Reset");

ActionHandler action;
action = new ActionHandler();

We have already examined the JButton statements. But, what is an ActionHandler? You
won’t find it defined in any Java library documentation because it is a class created just for the
Real Estate program. It is an inner class. You can find its definition in the program listing just
after the helper methods that manage the house information displayed on the screen. It looks
like this (with many lines deleted):

private static class ActionHandler implements ActionListener 
{
public void actionPerformed(ActionEvent event)
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// Listener for the button events
{
. . .
if (event.getActionCommand().equals("Reset"))
{ // Handles Reset event
. . .

}
else
if (event.getActionCommand().equals("Next"))
{ // Handles Next event
. . .

}
. . .

}

As you can see, ActionHandler implements the ActionListener interface. Therefore,
action is also an ActionListener. Action listeners are just one of several Java listener
types. Another example is window listeners, which we use to close our frames. We use action
listeners for our user interfaces. We return to the definition of ActionHandler below. First,
let’s see how we “connect” the event source and the event listener.

The action listener is registered with the reset button with the command

reset.addActionListener(action);

As you can see in the program code, the action listener is also registered with the other five but-
tons.

The registration of an event listener with an event source means that whenever an event
occurs to the event source, such as a button being pressed, an announcement of the event is
passed to the event listener. There are all sorts of events supported by Java. In our case we are
only interested in “action” events, a subset of the set of all potential events, so we use an
ActionListener listener.

How does the event source send “an announcement” of an event to the listener? Through a
call to one of the listener’s methods, of course. In the case of action events, the source calls the
listener’s actionPerformed method, and passes it an ActionEvent object that represents
the event that occurred. The ActionListener interface declares an abstract action-
Performed method, so we know that any class that implements ActionListener, like our
ActionHandler class, must provide an implementation of actionPerformed. You do not
see a call to the actionPerformed method anywhere in our program. We do not explicitly
invoke the method in our code; it is automatically called when a button is pressed by the user.
Such a method invocation is sometimes called an implicit invocation.

Let’s review. In the Real Estate program, we have six buttons that are event sources. We
have one event listener, action, which has been registered through addActionListener to all
six buttons. When any of the buttons are pressed the actionPerformed method of the
action object is invoked, and passed an event object that represents the button-pressed
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event. At that point, the actionPerformed method must respond to the event. How does it do
that?

Look again at the code listed above for the ActionHandler class. You can see that the
actionPerformed method is implemented as a series of if-else statements.

if (event.getActionCommand().equals("Reset"))
{ // Handles Reset event
...

}
else

Each if-block handles a different button being pressed. The boolean expressions use the getAc-
tionCommand method of the ActionEvent class to obtain a string signifying the specific real
event that the event object represents. In the case of button pressing events, this string is sim-
ply the string displayed on the face of the button. Therefore, when a button is pressed, the
appropriate if-block is executed. Take a minute to browse the code in the if-blocks to see how
the program handles each of the buttons being pressed.

Presenting the Interface

Now that we have created the frame, the labels, the text fields, the buttons and associated
actions with each of the buttons, we are ready to build and display the interface. We use the
same approach we did for the Chapter 1 test driver program. First, we set up a 10 � 2 grid in
our panel:

infoPanel.setLayout(new GridLayout(10,2));

Next we add all of our components to our panel, in the order we want them to appear (left to
right, top to bottom):

infoPanel.add(statusLabel);
infoPanel.add(blankLabel);
infoPanel.add(lotLabel);
infoPanel.add(lotText);
...
infoPanel.add(find);

Finally, we add the panel to the frame’s content pane, and show the frame:

contentPane.add(infoPanel);
displayFrame.show();



Summary | 237

Figure 3.18 Relationships among the views of data
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Summary
In this chapter, we have created two abstract data types that represent lists. The
Unsorted List ADT assumes that the list elements are not sorted by key; the Sorted List
ADT assumes that the list elements are sorted by key. We have viewed each from three
perspectives: the logical level, the application level, and the implementation level. The
extended Case Study uses the Sorted List ADT to help solve a problem. Figure 3.18
shows the relationships among the three views of the list data in the Case Study.

As we progressed through the chapter we expanded our use of Java constructs to
support the list abstractions. In the first part of the chapter, we worked through the fol-
lowing variations of lists:

• UnsortedStringList—an unsorted list of strings
• StringList—an abstract string list specification; valid for both sorted and unsorted

lists
• UnsortedStringList2—an extension of StringList
• SortedStringList—another extension of StringList

In order to make the software as reusable as possible, we learned how to use the Java
interface mechanism to create generic ADTs. The user of the ADT must prepare a class that
defines the objects to be in each container class. In the case of the list abstraction, objects
to be contained on a list must implement the Listable interface; therefore, they must
have an appropriate compareTo and a copy method associated with them. By requiring the
user to meet this standard for the objects on the list, the code of the ADTs is very general.
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The Unsorted List or Sorted List ADT can process items of any kind; they are completely
context independent. Within the chapter we saw examples of how to create lists of circles,
strings, and houses. The ability to create generic structures led to two more list variations:

• List—an abstract list specification, no longer tied to strings; includes a retrieve
operation

• SortedList—an extension of List

We compared the operations on the two ADTs using Big-O notation. Insertion into an
unsorted list is O(1); insertion into a sorted list is O(N ). Deletions from both are O(N ).
Searching in the unsorted list is O(N ); searching in a sorted list is order O(log2N ) if a
binary search is used.

We have also seen how to write test plans for ADTs.

Summary of Classes and Support Files
The classes and files are listed in the order in which they appear in the text. Inner
classes are not included. The package a class belongs to, if any, is listed in parentheses
under Notes. The class and support files are available on our web site. They can be
found in the ch03 subdirectory of the bookFiles directory.

Classes, Interfaces, and Support Files Defined in Chapter 3

File 1st Ref. Notes

UnsortedStringList.java page 150 (ch03.stringLists) Array-based implementation
of an unsorted string list ADT

TDUnsortedStringList.java page 160 Test driver for UnsortedStringList.java

StringList.java page 165 (ch03.stringLists) Abstract class—defines all
the constructs for an array based list of strings that
do not depend on whether or not the list is sorted

UnsortedStringList2.java page 166 (ch03.stringLists) Extends StringList under
the assumption that the list is not kept sorted

SortedStringList.java page 181 (ch03.stringLists) Extends StringList under
the assumption that the list is kept sorted

Listable.java page 194 (ch03.genericLists) Interface—objects used
with the following list classes must be derived from
classes that implement this interface

ListCircle.java page 195 (ch03.genericLists) Example of a class that
implements Listable

(continued on next page)
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The diagrams in Figure 3.19 show the relationships among the classes listed above.
Abstract classes are shown in (Italics) within parentheses, interfaces are shown within
<brackets>, and applications are boxed . Relationships are shown by arrows using
UML standard representations (solid arrow with hollow arrowhead represents the
inheritance relationship “extends,” dotted arrow with hollow arrowhead represents the
implements relationship between a class and an interface, and dotted arrow with open
arrowhead represents a “uses” relationship—the latter relationships are also labeled
“uses.”) Finally, the package groupings are indicated by “blue rectangles.”

File 1st Ref. Notes

List.java page 197 (ch03.genericLists) Abstract class—defines all
the constructs for an array-based generic list that do
not depend on whether or not the list is sorted; the
list stores objects derived from a class that imple-
ments Listable; includes a retrieve method,
that was not part of the previous lists

SortedList.java page 200 (ch03.genericLists) Extends List under the
assumption that the list is kept sorted

ListString.java page 204 (ch03.genericLists) Another example of a class
that implements Listable

TDSortedList.java page 206 Test driver for SortedList.java

ListHouse.java page 215 (ch03.houses) Implements Listable; provides
information about a house that can be stored on a
list

HouseFile.java page 218 (ch03.houses) Manages the houses.dat file

RealEstate.java page 224 The real estate application

testlist1.dat page 162 Test data for the TDUnsortedStringList pro-
gram

testout1.dat page 162 Results of using testlist1.dat as input to the
Unsorted String List test driver

testlist2.dat page 206 Test data for the TDSortedList program

testout2.dat page 206 Results of using testlist2.dat as input to the
Sorted List test driver
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On page 241 is a list of the Java Library Classes that were used in this chapter for the
first time in the textbook. The classes are listed in the order in which they are first used.
Note that in some classes the methods listed might not be defined directly in the class;
they might be defined in one of its superclasses. With the methods we also list construc-
tors, if appropriate. For more information about the library classes and methods the
reader can check Sun’s Java documentation.

Figure 3.19 Chapter 3 classes and their relationships
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Exercises
3.1 Lists

1. Give examples from the “real world” of unsorted lists, sorted lists, lists that per-
mit duplicate keys, and lists that do not permit duplicate keys.

2. Describe how the individuals in each of the following groups of people could be
uniquely identified; that is, what would make a good key value for each of the
groups.

a. Citizens of a country who are eligible to vote

b. Members of a sports team

c. Students in a school

d. E-mail users

e. Automobile drivers

f. Actors/actresses in a play

Library Classes Used in Chapter 3 for the First Time

Class Name Package Overview Methods Used Where Used

JTextField

ActionListener

ActionEvent

JButton

LineBorder

Color

RealEstate

RealEstate

RealEstate

RealEstate

RealEstate

RealEstate

getText,
JTextField,
setText

getActionCommand

ActionListener,
JButton,

LineBorder

Provides a container
for a single line of user
text

An interface for classes
that listen for and han-
dle action events

Provides objects for
passing event informa-
tion between event
sources and event lis-
teners

Provides a container
for an interface button

Sets a border for the
display of a component

Provides color con-
stants

swing

awt.event

awt.event

swing

swing

lang
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3.2 Abstract Data Type Unsorted List
3. Classify each of the Unsorted List ADT operations (UnsortedStringList,

isFull, lengthIs, isThere, insert, delete, reset, getNextItem) accord-
ing to operation type (Constructor, Iterator, Observer, Transformer).

4. The chapter specifies and implements an Unsorted List ADT (for strings).

a. Design an algorithm for an application-level routine printLast that accepts
a list as a parameter and returns a boolean. If the list is empty, the routine
prints “List is empty” and returns false. Otherwise, it prints the last item of
the list and returns true. The signature for the routine should be

boolean printLast(PrintWriter outfile, UnsortedStringList list)

b. Devise a test plan for your algorithm.

c. Implement and test your algorithm.

5. The chapter specifies and implements an Unsorted List ADT (for strings).

a. Design an algorithm for an application level routine that accepts two lists as
parameters, and returns a count of how many items from the first list are also
on the second list. The signature for the routine should be

int compareLists(UnsortedStringList list1, UnsortedStringList list2)

b. Devise a test plan for your algorithm.

c. Implement and test your algorithm.

6. What happens if the constructor for UnsortedStringList is passed a negative
parameter? How could this situation be handled by redesigning the constructor?

7. A friend suggests that since the delete operation of the Unsorted List ADT
assumes that the parameter element is already on the list, the designers may as
well assume the same thing for other operations since it would simplify things.
Your friend wants to add the assumption to both the isThere and the insert
operations! What do you think?

8. Describe the ramifications of each of the following changes to the chapter’s code
for the indicated UnsortedStringList methods.

a. isFull change “return (list.length == numItems);” to “return (list.length
= numItems);”

b. lengthIs change “return numItems;” to “return list.length;”

c. isThere change the second “moreToSearch = (location < numItems);” to
“moreToSearch = (location <= numItems);”

d. insert remove “numItems++;”

e. delete remove “numItems—;”

9. The test plan on page 161 for the UnsortedStringList class was not complete.

a. Complete the test plan.

b. Create a set of test input files that represents the completed test plan.

TE
AM
FL
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Team-Fly® 



Exercises | 243

c. Use the TDUnsortedStringList program, available with the rest of the
textbook’s programs, to run and verify your tests.

10. The Unsorted List ADT (for UnsortedStringList) is to be extended with a
boolean operation, isEmpty, which determines whether or not the list is empty.

a. Write the specifications for this operation.

b. Write a method to implement the operation.

11. The Unsorted List ADT (for UnsortedStringList) is to be extended with an
operation, smallest, which returns a copy of the “smallest” list element. It is
assumed that the operation will not be invoked if the list is empty.

a. Write the specifications for this operation.

b. Write a method to implement the operation.

12. Rather than enhancing the Unsorted List ADT by adding a smallest operation,
you decide to write a client method to do the same task.

a. Write the specifications for this method.

b. Write the code for the method, using the operations provided by the Unsorted
List ADT

c. Write a paragraph comparing the client method and the ADT method (Exer-
cise 11) for the same task.

13. The specifications for the Unsorted List ADT delete operation state that the
item to be deleted is in the list.

a. Create a specification for a new form of delete, called tryDelete, that leaves
the list unchanged if the item to be deleted is not in the list. The new delete
operation should return a boolean value true if the item was found and
deleted, false if the item was not on the list.

b. Implement tryDelete as specified in (a).

14. The specifications for the Unsorted List ADT state that the list contains unique
items. Suppose this assumption is dropped, and the list is allowed to contain
duplicate items.

a. How would the specification have to be changed?

b. Create a specification for a new form of delete for this new ADT, called
deleteAll, that deletes all list elements that match the parameter item’s key.
You should still assume that at least one matching item is on the list.

c. Implement deleteAll as specified in (b).

15. The text’s implementation of the delete operation for the Unsorted List ADT
(UnsortedStringList) does not maintain the order of insertions because the
algorithm swaps the last item into the position of the one being deleted and then
decrements length.

a. Would there be any advantage to having delete maintain the insertion
order? Justify your answer.
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b. Modify delete so that the insertion order is maintained. Code your algorithm,
and test it.

16. Change the specifications for the Unsorted List ADT so that insert throws an
exception if the list is full. Implement the revised specification.

17. Create a new implementation of the Unsorted List ADT (UnsortedStringList)
using the Java Library’s ArrayList class instead of plain arrays.

3.3 Abstract Classes
18. The abstract class StringList contains both abstract and concrete methods.

a. List the abstract methods.

b. List the concrete methods.

c. Explain the difference between an abstract method and a concrete method.

19. Suppose you wanted to add the operation isEmpty, as defined in Exercise 10, to
the StringList class. Would you make it an abstract method or a concrete
method? Justify your answer.

20. Suppose you wanted to add the operation smallest, as defined in Exercise 11,
to the StringList class. Would you make it an abstract method or a concrete
method? Justify your answer.

21. Consider the UML diagram in Figure 3.5.

a. What does the “+” symbol represent?

b. What does the “#” symbol represent?

c. What does the arrow represent?

d. Why are some of the method names italicized?

e. Why is the variables section of the class diagram for the Unsorted-
StringList2 class empty?

3.4 Abstract Data Type Sorted List
22. The Sorted List ADT (for SortedStringList) is to be extended with an opera-

tion, smallest, which returns a copy of the “smallest” list element. It is
assumed that the operation will not be invoked if the list is empty.

a. Write the specifications for this operation.

b. Write a method to implement the operation.

23. Rather than enhancing the Sorted List ADT by adding a smallest operation,
you decide to write a client method to do the same task.

a. Write the specifications for this method.

b. Write the code for the method, using the operations provided by the Sorted
List ADT.

c. Write a paragraph comparing the client method and the ADT method (Exer-
cise 22) for the same task.
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24. The algorithm for the Sorted List ADT insert operation starts at the beginning of the
list and looks at each item, to determine where the insertion should take place. Once
the insertion location is determined, the algorithm moves each list item between
that location and the end of the list, starting at the end of the list, over to the next
position. This creates space for the new item to be inserted. Another approach to
this algorithm is just to start at the last location, examine the item there to see if the
new item should be placed before it or after it, and shift the item in that location to
the next location if the answer is “before.” Repeating this procedure with the next
to last item, then the one next to that, and so on, will eventually move all the items
that need to be moved, so that when the answer is finally “after” (or the beginning
of the list is reached) the needed location is available for the new item.

a. Formalize this new algorithm with a pseudocode description, such as the
algorithms presented in the text.

b. Rewrite the insert method of the SortedStringList class to use the new
algorithm.

c. Test the new method.

25. The specifications for the Sorted List ADT delete operation state that the item
to be deleted is on the list.

a. Create a specification for a new form of delete, called tryDelete, that leaves
the list unchanged if the item to be deleted is not in the list. The new delete
operation should return a boolean value true if the item was found and
deleted, false if the item was not on the list.

b. Implement tryDelete as specified in (a).

26. The Sorted List ADT (for SortedStringList) is to be extended with an opera-
tion merge, which adds the contents of a list parameter to the current list.

a. Write the specifications for this operation. The signature for the routine
should be

void merge(SortedStringList list)

b. Design an algorithm for this operation.

c. Devise a test plan for your algorithm.

d. Implement and test your algorithm.

27. A String List ADT is to be extended by the addition of method trimList, which
has the following specifications:

trimList(String lower, String upper)

Effect: Removes all elements from the list that
are less than lower and greater than
upper

Postconditions: This list contains only items that are
between lower and upper inclusive
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a. Implement trimList as a method of UnsortedStringList.

b. Implement trimList as a member method of SortedStringList.

c. Compare the algorithms used in (a) and (b).

d. Implement trimList as a client method of UnsortedStringList.

e. Implement trimList as a client method of SortedStringList.

3.5 Comparison of Algorithms
28. Describe the order of magnitude of each of the following functions using Big-O

notation:

a. N 2 + 3N

b. 3N 2 + N

c. N 5 + 100N 3 + 245

d. 3N log2N + N 2

e. 1 + N + N 2 + N 3 + N 4

f. (N * (N � 1)) / 2

29. Give an example of an algorithm (other than the examples discussed in the chap-
ter) that is

a. O(1)

b. O(N )

c. O(N 2 )

30. Describe the order of magnitude of each of the following code sections using Big-O
notation:

a. count = 0;
for (i = 1; i <= N; i++)
count++;

b. count = 0;
for (i = 1; i <= N; i++)
for (j = 1; j <= N; j++)
count++;

c. value = N;
count = 0;
while (value > 1)
{
value = value / 2;
count++;

}

31. Algorithm 1 does a particular task in a “time” of N 3, where N is the number of
elements processed. Algorithm 2 does the same task in a “time” of 3N + 1000.

a. What are the Big-O requirements of each algorithm?



Exercises | 247

b. Which algorithm is more efficient by Big-O standards?

c. Under what conditions, if any, would the “less efficient” algorithm execute
more quickly than the “more efficient” algorithm?

3.6 Comparison of Unsorted and Sorted List ADT Algorithms
32. Assume that for each of the listed exercises an optimal algorithm was written

(optimal means that it is not possible under the circumstances to write a faster
algorithm). Give a Big-O estimate of the run time for the corresponding algo-
rithms. Unless otherwise stated, let N represent the size of the list.

a. Exercise 4a: printList for UnsortedStringList

b. Exercise 5a: compareLists for UnsortedStringList (N = size of the larger
list)

c. Exercise 10: isEmpty for UnsortedStringList

d. Exercise 11: smallest for UnsortedStringList

e. Exercise 12: smallest for UnsortedStringList client

f. Exercise 13: tryDelete for UnsortedStringList

g. Exercise 22: smallest for SortedStringList

h. Exercise 23: smallest for SortedStringList client

3.7 Generic ADTs
33. We did not devise a test plan for the SortedList class.

a. Create an appropriate test plan using the ListString class to provide
objects for storing on the list. Remember to include tests of the retrieve
operation.

b. Create a set of test input files that represents the completed test plan.

c. Use the TDSortedList program to run and verify your tests.

34. Create a new concrete class, UnsortedList, that extends the List class, as dis-
cussed at the end of the section, A Generic Sorted List ADT.

35. Consider a ListNumber class that implements the Listable interface. The class
defines two instance variables, one of primitive type int and the other of type
String. The former acts as the key. The idea is that objects of the class can hold
an integer value, for example, 5, and the corresponding string, “five”. The class
exports a constructor that accepts two parameters that are used to initialize the
hidden instance variables, two observer methods that return the values of the
hidden instance variables, a toString method that returns value, and of course
the required compareTo and copy methods.

a. Create the ListNumber class.

b. Test your ListNumber class by using it with the SortedList class.
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Case Study: Real Estate Listings
36. Devise and perform a thorough test of the Real Estate application program.

37. Explain how you would have to change the Real Estate program to handle each
of the following specification changes. For each case, indicate which program
units need to be changed and a general description of how the change could be
implemented.

a. The houses.dat file is redesigned to include the owner’s first name first, and
last name second, instead of vice versa.

b. In the interface “Lot numbers” are to be referred to as “Locations”.

c. The information for each house is augmented by a “Number of bathrooms”
attribute.

d. In a surprising and unconventional move, the company decides that each
house will have a unique price, and that houses should be listed in order of
price instead of lot numbers.

38. Expand the Real Estate program so that the “blank label” field of the interface is
used to always show the total number of houses on the list.

39. Expand the Real Estate program to include two more user interface buttons:
largest and smallest. If the list of houses is empty and the user clicks on either of
the new buttons, the message “List is empty” should appear in the status label
area. Otherwise, when the user clicks on the “largest” button, the program should
display the house information for the largest house in terms of square feet; and
when the user clicks on the “smallest” button, the program should display the
house information for the smallest house in terms of square feet.



Measurable goals for this chapter include that you should be able to

provide a formal specification of an ADT using a Java interface

explain the benefits of using a Java interface for a formal specification

describe a stack and its operations at a logical level

demonstrate the effect of stack operations using a particular implementation of a stack

implement the Stack ADT in an array-based implementation

implement the Stack ADT using the Java Library ArrayList class

use the Java exception mechanism within an ADT

describe the strengths and drawbacks of both the store “by reference” and store “by copy”
approaches to implementing data structures

explain the difference between the Java Library classes Vector and ArrayList.

define stack, queue, concrete class, subinterface

identify the Java Library class that most closely resembles the ADTs List, Stack, and Queue defined
in the textbook

describe a queue and its operations at a logical level

demonstrate the effect of queue operations using a particular implementation of a queue

implement the Queue ADT using an array-based implementation

use a Stack or Queue ADT as a component of a solution to an application problem

evaluate a Postfix expression “by hand”

describe an algorithm for evaluating Postfix expressions using a stack

ADTs Stack and Queue

G
oals
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In this chapter your toolkit of data structures is expanded to include two important new
ones, the stack and the queue. As with lists, we study these data structures as ADTs and
look at them from the logical, application and implementation levels. The case studies,
and several smaller examples, help you learn how to use the stack and the queue to
solve problems.

While learning about the stack and the queue, you continue to build your practical
knowledge of the Java language. You learn how to use the Java interface construct to
specify an ADT and you explore the differences between storing information “by copy”
and “by reference.” Finally, an overview of the Java Class Library’s collections frame-
work introduces you to the wealth of resources available in the library.

4.1 Formal ADT Specifications

In Chapter 3 we developed a specification for an Unsorted List ADT. The specification
describes the logical structure and the exported operations of the ADT. For each opera-
tion we listed its interface, plus a description of the effect of the operation and any pre-
conditions and postconditions. The specification acts as a contract created by the
designer of the ADT, relied upon by the application programmer who uses the ADT, and
fulfilled by the programmer who implements the ADT.

The Java language provides a construct, the interface, for formally capturing such a
specification. Recall that an interface may contain only constant values and abstract
methods. An abstract method consists of the method’s interface description only—no
method body.

Our Unsorted List ADT Specification included a description of the interfaces of the
public methods of the ADT. In the specification, these are presented as the method head-
ers of the Java code that is used to implement the operations. The Java interface con-
struct lets us collect together these method interfaces into a syntactic unit. Therefore,
from this point on we formalize the specification of our ADTs by using a Java interface.
The method interfaces of our specification are listed as Java code. All other parts of the
specification are presented as comments. Using the Java interface construct for our ADT
specifications produces several benefits:

1. We can formally check the syntax of our specification. When we compile the inter-
face, the compiler uncovers any syntactical errors in the method interface definitions.

2. We can formally verify the interface “contract.” As mentioned above, a specifica-
tion acts as a contract between the designer and the implementer of the ADT. The
code for the ADT should begin with the statement that it “implements the interface.”
When we compile the ADT implementation, the compiler enforces the contract, at
least as far as the information about method names, parameters, and return types.

3. We can assume a consistent interface among alternate implementations of the ADT.
We sometimes create alternate implementations for an ADT, perhaps to emphasize
differing design criteria. Some implementations may optimize the use of memory
space; others may emphasize the efficiency of a specific subset of the ADT opera-
tions. If all of the ADT implementations “implement” the same interface, then we
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are assured that they provide a consistent view to the client programs. We can sub-
stitute one implementation for another, without having to be concerned about the
syntax of their interfaces. Of course, syntactic correctness does not imply that the
functionality of an ADT implementation is correct.

For an example, we return to the List ADT developed in Chapter 3. Let’s first review
the way our approach to the List ADT evolved in that chapter:

• We developed the specification of an Unsorted List ADT and created an array based
implementation of a list of strings (Section 3.2, Abstract Data Type Unsorted List).

• We developed an abstract class StringList (concrete methods StringList,
isFull, lengthIs, reset, and getNextItem; abstract methods isThere,
insert, delete) and an UnsortedStringList class that extended the abstract
class, providing implementations for the abstract methods under the assumption
that the list was not kept sorted (Section 3.3, Abstract Classes).

• We developed a SortedStringList class that extended the abstract class
StringList, providing implementations for the abstract methods under the
assumption that the list was kept sorted (Section 3.4, Abstract Data Type Sorted List).

• We developed the Listable interface that defines the kinds of objects we could
henceforth use with our lists, a generic abstract list class, List, that used items of
type Listable instead of type String and that included a retrieve method,
and a SortedList class that extended List (Section 3.7, Generic ADTs).

Below we define an interface that captures our list model as it stood at the end of
Chapter 3. Therefore, our specification does not assume that the list is sorted or
unsorted; the list manipulates items of type Listable; and a retrieve operation is
included. When using an interface to specify an ADT we include the effect, precondi-
tion, postcondition, and exception information. Following the convention established in
Chapter 3, we do not repeat all of this information in each of the classes that implement
the interface, since the repetition would be monotonous in a textbook setting, although,
in a professional programming situation, where the interface and implementation may
be kept separate, it is common to repeat it.

We call the interface ListInterface. Note that it does not include any construc-
tors. This is because, just as for an abstract class, you cannot instantiate objects of an
interface. You implement the interface with a class and instantiate objects of that class.
The class that implements the interface provides appropriate constructors.

//----------------------------------------------------------------------------
// ListInterface.java            by Dale/Joyce/Weems                 Chapter 4
// 
// Interface for a class that implements a list of unique elements, i.e.,
// no duplicate elements as defined by the key of the list.
// The list has a special property called the current position -- the position
// of the next element to be accessed by getNextItem during an iteration 
// through the list. Only reset and getNextItem affect the current position.
//----------------------------------------------------------------------------

package ch04.genericLists;



252 | Chapter 4:  ADTs Stack and Queue

public interface ListInterface
{
public boolean isFull();
// Effect:        Determines whether this list is full
// Postcondition: Return value = (this list is full)

public int lengthIs();
// Effect:        Determines the number of elements on this list
// Postcondition: Return value = number of elements on this list

public boolean isThere (Listable item);
// Effect:        Determines if element matching item is on this list
// Postcondition: Return value = (element with the same key as item is on 
//                this list)

public Listable retrieve(Listable item);
// Effect:        Returns a copy of the list element with the same key as 
//                item
// Preconditions: Item is on this list
// Postcondition: Return value = (list element that matches item)

public void insert (Listable item);
// Effect:        Adds a copy of item to this list
// Preconditions: This list is not full
//                Element matching item is not on this list
// Postcondition: Copy of item is on this list

public void delete (Listable item);
// Effect:        Deletes the element of this list whose key matches item's 
//                key
// Preconditions: One and only one element on list has a key matching item's 
//                key
// Postcondition: No element on list has a key matching the argument item's 
//                key

public void reset();
// Effect:        Initializes current position for an iteration through this   
//                list
// Postcondition: Current position is first element on this list

public Listable getNextItem ();
// Effect:        Returns a copy of the element at the current position on 
//                this list and advances the value of the current position
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// Preconditions:  Current position is defined.
//                 There exists a list element at current position.
//                 No list transformers called since most recent call to 
//                 reset
// Postconditions: Return value = (a copy of element at current position)
//                 If current position is the last element then current 
//                 position is set to the beginning of this list, otherwise
//                 it is updated to the next position

}

We have created a new package, ch04.genericLists, that includes all the files from
the ch03.genericLists package, plus the ListInterface.java file. In this package,
the abstract class List (Section 3.7) is redefined so that its header reads

public abstract class List implements ListInterface

That associates the abstract List class with our new List interface, and therefore ties
together all of the files in the package.

The UML diagram in Figure 4.1 captures the relationships among the various code
units that implement our list approach. We say that this diagram models our list frame-
work. In the diagram, we show that the ListInterface interface “uses” the Listable
interface. Actually, the List, UnsortedList, and SortedList classes also all use the
Listable interface, but to keep the diagram from becoming too complicated, we dis-
play only the relationship for the component at the highest level of abstraction.

When client programs use an ADT, it is good practice for them to declare the ADT
at as abstract a level as possible. This makes it easier to change the choice of implemen-
tation at a later time. For example, if a program uses a variable called theList of type
SortedList, the variable should be declared as type ListInterface but instantiated
as type SortedList as follows:

ListInterface theList;
theList = new SortedList();

Alternately, these could be combined into the single statement

ListInterface theList = new SortedList();

In this way the instantiated type of theList can be changed to a different implementa-
tion of ListInterface by changing only one line of the program, the line where the
instantiation occurs.

If the programmer creates routines that are passed theList as an argument, the
routines should be written to accept parameters of type ListInterface, rather than of
type SortedList. For example, a routine to print the contents of the list might begin

public static void Print(ListInterface aList)
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Figure 4.1 UML class diagram for list approach
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In this way, the Print routine will work for any kind of list, as long as the list class implements
ListInterface.

In the next section we use a Java interface to specify a Stack ADT.
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4.2 Stacks

In Chapter 2, we looked at the built-in structures of Java from the logical view, the
application view, and the implementation view. We saw that at the language level, the
logical view is the syntax of the construct itself, and the implementation view is hidden
within the run-time environment. In Chapter 3, we defined the ADTs Unsorted List and
Sorted List. For these user-defined ADTs, the logical view is the class definition where
the exported methods become the interface between the client program and the ADT. In
Section 4.1 we saw how to formally capture this view using the Java interface construct.
We now examine two very useful data structures as ADTs: the stack and the Queue. We
place the files associated with the Stack ADT in a package named ch04.stacks, and
the ones for the Queue ADT in a package named ch04.queues. We begin with a discus-
sion of the stack.

Logical Level

Consider the items pictured in Figure 4.2.
Although the objects are all different, each
illustrates a common concept—the stack. At
the logical level, a stack is an ordered group
of homogeneous items or elements. The
removal of existing items and the addition of
new ones can take place only at the top of the stack. For instance, if your favorite blue
shirt is underneath a faded, old, red one in a stack of shirts, you must first remove the
red shirt (the top item) from the stack. Only then can you remove the desired blue shirt,
which is now the top item in the stack. The red shirt may then be replaced on the top of
the stack or thrown away.

The stack may be considered an “ordered” group of items because elements occur in
sequence according to how long they’ve been in the stack. The items that have been in

Stack A structure in which elements are added and
removed from only one end; a “last in, first out” (LIFO)
structure

Figure 4.2 Real-life stacks

A stack of
cafeteria trays

A stack
of pennies

A stack of
shoe boxes

A stack of
neatly folded shirts
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1Another common approach is to define a pop operation in the classical way, i.e., it removes and returns the
top element, and to define another operation, often called peek, that simply returns the top element.

the stack the longest are at the bottom; the most recent are at the top. At any time,
given any two elements in a stack, one is higher than the other. (For instance, the red
shirt was higher in the stack than the blue shirt.)

Because items are added and removed only from the top of the stack, the last ele-
ment to be added is the first to be removed. There is a handy mnemonic to help you
remember this rule of stack behavior: A stack is a LIFO (Last In, First Out) structure.

The accessing protocol for a stack is summarized as follows: Both to retrieve ele-
ments and to store new elements, access only the top of the stack.

Operations on Stacks
The logical picture of the structure is only half the definition of an abstract data type.
The other half is a set of operations that allows the user to access and manipulate the
elements stored in the structure. Given the logical view of a stack, what kinds of opera-
tions do we need in order to use a stack?

The operation that adds an element to the top of a stack is usually called push, and
the operation that removes the top element off the stack is referred to as pop. (Since we
are about to implement these operations as Java methods of the same names, we show
them in keyword font.) Classically the pop operation has both removed the top element
of the stack, and returned the top element to the client program that invoked pop. More
recently, programmers have been defining two separate operations to perform these
actions. Software engineers have discovered that implementing operations that do more
than one action can result in confusing programs. You should avoid creating methods
with side effects when possible. We follow the modern conventions and define an oper-
ation pop that removes the top element from a stack, and an operation top that returns
the top element of a stack.1 Our push and pop operations are transformers, and our top
operation is an observer. Figure 4.3 shows how a stack, envisioned as a stack of build-
ing blocks, is modified by several push and pop operations.

When we begin using a stack, it should be empty. In fact, this is true for all of the
ADTs that we define in this text. So from here on, we assume that each ADT we define
is implemented with at least one class constructor that sets it to the empty state.

Exceptional Situations
Now we ask if there are any exceptional situations with respect to using a stack that
require handling. We’ve identified the operations push, pop, and top and we also need
a constructor. The constructor simply initializes a new stack—there are no situations
where this action, in itself, causes an error.

The remaining operations, on the other hand, all present potential problem situa-
tions. The descriptions of the pop and top operations refer to manipulating the “top ele-
ment of the stack.” But what if the stack is empty? Then there is no top element to
manipulate. We handle this situation in two ways. First, we provide an additional stack
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Figure 4.3 The effects of push and pop operations
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observer operation called isEmpty, which returns a boolean value indicating whether
or not the stack is empty. The application program can use this operation to prevent
misuse of the pop and top operations:

if !myStack.isEmpty()
value = myStack.top();

We also define an exception, the StackUnderflowException, to be thrown by
both the pop and the top operations if they are called when the stack is empty. We
define this new exception to extend the standard Java RuntimeException, since it rep-
resents a situation that a programmer can avoid by properly using the stack. The Run-
timeException class is typically used in such situations. RuntimeException
exceptions are unchecked, i.e., they do not have to be explicitly caught by a program.
Here is the code for the StackUnderflowException class:

package ch04.stacks;

public class StackUnderflowException extends RuntimeException
{
public StackUnderflowException()
{
}
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public StackUnderflowException(String message)
{
super(message);

}
}

Now the application programmer can decide to prevent popping or accessing empty
stacks by using the isEmpty operation as a guard, or to blindly “try” the operations on
stacks and “catch and handle” the raised exception in the case of an empty stack. As
noted, since the StackUndeflowException extends RuntimeException, it is an
unchecked exception. If it is raised and not caught, it is eventually thrown out to the
run-time environment and the program displays an error message and halts.

A consideration of the push operation leads to a similar conclusion. As a logical
data structure, a stack is never conceptually “full,” but for a particular implementation
the space allocated for the stack may be completely used up, making the push operation
problematic. Again, we handle this situation in two ways. First, we provide an addi-
tional stack observer operation called isFull, which returns a boolean value indicat-
ing whether or not the stack is full. The application program can use this operation to
prevent misuse of the push operation. We also define an exception, the StackOver-
flowException, to be thrown by the push operation if it is called when the stack is
full. Here is the code for the StackOverflowException class:

package ch04.stacks;

public class StackOverflowException extends RuntimeException
{
public StackOverflowException()
{
}

public StackOverflowException(String message)
{
super(message);

}
}

As with the underflow situation, the application programmer can decide to prevent
pushing information onto a full stack through use of the isFull operation, or to “try”
the operation on a stack and “catch and handle” the raised exception in the case of a
full stack. The StackOverflowException is also an unchecked exception.

Stack Contents
We now have a logical picture of a stack and are almost ready to use the stack in a pro-
gram. The part of the program that uses the stack, of course, won’t be concerned with
how the stack is actually implemented—we want the implementation level to be hidden,
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or encapsulated. The accessing operations such as a push, pop, and top are the win-
dows into the stack encapsulation, through which the stack’s data are passed. But the
program does have to “know” what kinds of things can be put on the stack. Is it a stack
of integers, a stack of strings, a stack of circles?

Recall the discussion from Section 3.7, Generic ADTs. In order to implement a
generic list ADT we first considered if we could define a list of objects, i.e., of items of
class Object. Our analysis showed that this approach was not viable, because we
needed to be sure that we could compare and copy the items on our lists. Therefore, we
created the Listable interface, which specifies the methods (compareTo and copy)
that objects used with our lists must provide. This allows us to implement lists of
Listable objects, knowing that these objects can be manipulated by the list methods
successfully.

What methods must be available for objects that we wish to store and retrieve using
a stack? Must those objects support a compareTo operation? No, since we do not intend
to “order” the objects based on their values, and we do not need to support operations
such as isThere or retrieve, that depend upon matching a key value. Must those
objects support a copy operation? Yes, if we want to keep only copies of objects on the
stack, rather than the objects themselves. This is what we did with lists in Chapter 3.
However, the alternate approach is also viable—implement a stack of objects by storing
and retrieving references to the objects, rather than references to copies of the objects.
Since we believe it is important for you to see and understand both approaches, we use
the latter one in this chapter. The ramifications of this choice are discussed in the fea-
ture section: Implementing ADTs “by Copy” or “by Reference.”

Implementing ADTs “by Copy” or “by Reference”
When designing an ADT, such as for a list or a stack structure, we have a choice about how

to handle the elements—“by copy” or “by reference”. This feature section describes each
approach and discusses the ramifications of the design decision.

By Copy

With this approach, the ADT manipulates copies of the data used in the client program. When
the ADT is presented with a data element to store, it makes a copy of the element and stores the
copy. For example, code for a list insert operation might be

public void insert (Listable item)
// Adds a copy of item to this list
{
list[numItems] = item.copy();
numItems++;

}
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In Java, of course, if the list elements are objects, then it is really a reference to a copy of the
element that is stored—since all Java objects are manipulated by reference. The key distinc-
tion here is that it is a reference to a copy of the element, and not a reference to the ele-
ment itself, that is stored.

Similarly, when an ADT returns an element, it actually returns a reference to a copy of the
element. For example, code for a list getNextItem operation:

public Listable getNextItem ()
// Returns copy of the next element on this list
{
Listable next = list[currentPos];
if (currentPos == numItems---1)
currentPos = 0;

else
currentPos++;

return next.copy();
}

This approach provides strong information hiding. In effect, the ADT is providing a separate
repository for a copy of the client’s data. We used this approach for the list ADTs in Chapter 3.

By Reference

With this approach the ADT manipulates references to the actual elements passed to it by the
client program. For example, code for a list insert operation might be

public void insert (Listable item)
// Adds item to this list
{
list[numItems] = item;
numItems++;

}

Since the client program retains a reference to the element, whatever it passed as an argument
to the method, we say we have exposed the contents of the ADT to the client program. The ADT
still hides the way the data is organized—for example, that an array of objects is used—but it
allows direct access to the individual elements of the ADT by the client program through the
client program’s own references.

This approach is used by most Java textbooks and for the structures in the Java Class
Library. It has the benefit that it takes less time and space than the “by copy” method. Copy-
ing objects takes time, especially if the objects are large with complicated deep-copying
methods. Storing extra copies of objects also requires extra memory. So, the “by reference”
approach is an attractive approach—in fact it is the approach usually used in industry. In
effect, the ADT is providing an organization for the original client data. We use this approach
in this chapter.
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Remember, when you use the “by reference” approach, you create aliases of your elements,
and so you must deal with the potential problems associated with aliases. If your data elements
are immutable, then there are no problems. However, if the elements can be changed, problems
can arise. If an element is accessed and changed through one alias, it could disrupt the status of
the element when accessed through the other alias. This situation is especially dangerous if the
client program can use an alias to change an attribute of an element that is used by the ADT to
determine the underlying organization of the data elements. For example, if the client directly
changes the value of the key attribute in an object that’s stored on a sorted list, then the object
may no longer be in the proper place within the list. Because the client’s access to the object
was not through a method of the sorted list class, the class has no way of knowing that it
should correct this situation. A subsequent retrieve operation on this unsorted list would
likely fail.

An Example

The diagrams in Figure 4.4 show ramifications of both approaches. Suppose we have objects that
hold a person’s name and weight. Further suppose that we have a list of these objects sorted by
the “key” variable weight (not the best choice for a list key, but it helps us make our point in this
example). We insert three objects into the list, and then transform one of the objects with a diet
method, that changes the weight of the object. The left-hand side of the figure models the
approach of storing references to copies of the objects: the “by copy” approach. The right-hand
side models the approach of storing references to the original objects; the “by reference” approach.

The state of the models after the objects have been inserted into the lists, shown in the
middle of the page, clearly shows the differences in the underlying implementations. The “by
copy” approach creates copies and the list elements reference them; these copies take up
space that is not required in the “by reference” approach. It is also clear from the right side
of the figure that with the “by reference” approach we are creating aliases for the objects,
as we can see more than one reference to an object. Note that in both approaches the list
elements are sorted by weight.

The situation becomes more interesting as we modify one of the objects. When the per-
son represented by the S1 object loses some weight, the diet method is invoked to decrease
the weight of the object. In this scenario, both approaches display problems. In the “by copy”
approach we see that the S1 object has been updated. The copy of the S1 object maintained
on the list is clearly out-of-date. It holds the old weight value. A programmer must remember
that such a list stores only the values of objects as they existed at the time of the insert
operation and changes to those objects are not reflected in the objects stored on the list. The
programmer must design the programs to update the list, if appropriate.

In the “by reference” approach, the object referred to by the list contains the up-to-date
weight information, since it is the same object referred to by the S1 variable. However, the list is
no longer sorted by the weight attribute. Since the update to the weight took place without
any list activity, the list objects remain in the same order as before. The list structure is now cor-
rupt, and calls to the list methods may behave unpredictably. Instead of directly updating the S1
object, the program should have removed the object from the list, updated the object, and then
reinserted the object onto the list.
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Figure 4.4 Store “by copy” versus store “by reference”
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Summation

So, which approach is better?
That depends. If processing time and space is an issue, and if you are comfortable counting

on the application programs to behave properly, then the “by reference” approach is probably
best. If you are not too concerned about time and space (maybe your list objects are not too
large), but you are concerned with maintaining careful control over the access to and integrity of
your lists, then the “by copy” approach is probably best. The suitability of either approach
depends on what the list is used for.

In Chapter 3 we used the “by copy” approach to implement the list ADT. We wanted to
emphasize the importance of information hiding. In this chapter, we use the “by reference”
approach to implement stack and queue ADTs. We want you to explore both approaches.

Are there any other methods that must be supported by the objects to be stored
on the stack? The answer is no. Think about the stack operations we wish to support:
push, pop, top, isEmpty, and isFull. None of them require any specific operation
support from the objects being stored. If this is not clear at this point in the discus-
sion, it becomes clear as you work through the implementation of the Stack ADT.
Sometimes logical requirements are uncovered during the practical implementation
stage, and you have to “work backwards” to revise your logical requirements before
again “moving forwards” to work some more on the implementation. In this case, we
find that we can successfully implement the stack operations without having to per-
form any backtracking—they do not require any special operations. Therefore, our
stack elements are of the class Object.

The Stack ADT Specification
The interfaces to the accessing operations of our Stack ADT are described in the follow-
ing specification.

//----------------------------------------------------------------------------
// StackInterface.java           by Dale/Joyce/Weems                 Chapter 4
// 
// Interface for a class that implements a stack of Objects.
// A stack is a last-in, first-out structure
//----------------------------------------------------------------------------

package ch04.stacks;

public interface StackInterface
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{
public void push(Object item) throws StackOverflowException;
// Effect:         Adds item to the top of this stack
// Postconditions: If (this stack is full)
//                    an unchecked exception that communicates
//                    'push on stack full' is thrown
//                 else
//                    item is at the top of this stack

public void pop() throws StackUnderflowException;
// Effect:         Removes top item from this stack
// Postconditions: If (this stack is empty)
//                   an unchecked exception that communicates
//                   'pop on stack empty' is thrown
//                 else
//                   top element has been removed from this stack

public Object top() throws StackUnderflowException;
// Effect:         Returns a reference to the element on top of this stack
// Postconditions: If (this stack is empty)
//                    an unchecked exception that communicates
//                   'top on stack empty' is thrown
//                 else
//                   return value = (top element of this stack)

public boolean isEmpty();
// Effect:         Determines whether this stack is empty
// Postcondition:  Return value = (this stack is empty)

public boolean isFull();
// Effect:         Determines whether this stack is full
// Postcondition:  Return value = (stack is full)

}

This specification can be compiled to uncover any syntax errors in the method inter-
faces. Note that the interface documents effects, preconditions, and postconditions as
comments. Also note that some of the methods throw unchecked exceptions.

Application Level

Stacks are very useful ADTs. They are often used in situations in which we must process
nested components.

For example, programming language systems usually use a stack to keep track of
operation calls. The main program calls operation A, which in turn calls operation B,
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which in turn calls operation C. When C finishes, control returns to B; when B finishes,
control returns to A, and so on. The call and return sequence is essentially a last-in,
first-out sequence, so a stack is the perfect structure for tracking it. Recall that when an
exception is thrown all the way out to the Java run-time environment that an error
message is printed that includes “a system stack trace.” This trace shows the nested
sequence of method calls that ultimately led to the exception being thrown. These calls
were saved on the “system stack.”

Compilers often use stacks to perform syntax analysis of language statements. The
definition of a programming language usually consists of nested components—for
example, for loops can contain if-then statements that contain while loops that contain
for loops. As a compiler is working through such nested constructs, it “saves” informa-
tion about what it is currently working on in a stack; then when it finishes its work on
the innermost construct, it can “retrieve” its previous status from the stack and pick up
where it left off. Similarly, an operating system sometimes saves information about the
current executing process on a stack, so that it can work on a higher-priority interrupt-
ing process. And if that process is interrupted by an even higher priority process, its
information can also be pushed on the process stack. When the OS finishes its work on
the highest-priority process, it pops the information about the most recently stacked
process, and continues working on it.

Let’s look at a simpler problem, related to nested components—the problem of
determining if a set of grouping symbols is well formed. This is a classic problem for
which a stack is an appropriate data structure. The general problem is to determine if
a set of paired symbols is used appropriately. The specific problem is: Given a set of
different types of grouping symbols, determine if the open and close versions of
each type are used correctly. For our example we’ll consider pairs (), [], and {}. Any
number of other characters may appear in the input, but a closing symbol must
match the last unmatched opening symbol and all symbols must be matched when
the input is finished. Figure 4.5 shows examples of both well-formed and ill-formed
expressions.

For this problem, we follow the same input/output model we have been using for
our test drivers. An input file holds a separate expression on each line. A correspon-
ding output file is created, repeating each of the input lines and stating whether or
not it is a well-formed expression. If it is not a well-formed expression, an appropri-
ate error message should be written. The names of the input and output files are

Figure 4.5 Well-formed and ill-formed expressions

Well-Formed Expressions Ill-Formed Expressions

( xx ( xx ( ) ) xx )     ( xx ( xx ( ) ) xxx ) xxx)
[ ] ( ) { }      ] [
(  [  ]  { xxx } xxx (  )  xxx ) (  xx  [  xxx  )  xx  ]
( [ { [ ( ( [ { x } ] ) x ) ] } x ] ) ( [ { [ ( ( [ { x } ] ) x ) ] } x } )
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx {
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Main Algorithm
Initialize expression counts
Read first input line
while there are still lines to process

Increment the total number of expressions
Echo print the current expression to the output file
Create a new stack
Set balancedString to true
Get the first character from the current input line
while (there are still more characters to process AND the expression is still balanced)

Process the current character
Get the next character

if (!balancedString)
Increment the number of ill-formed expressions
Write an appropriate message to the output file

passed to the program on the command line. Summary statistics are written to an out-
put frame.

The program reads a line of input and processes its characters one at a time. For
each character, it does one of three tasks, depending on whether the character is an
open special symbol, a closing special symbol, or not a special symbol.

This last case is the easiest. If the character is not a special symbol, it is discarded
and another character is read. If the character is an open special symbol, it is saved on
the stack. If the character is a closing special symbol, it must be checked against the last
open special symbol. If they match, the character and the last open special symbol are
discarded and the next character is processed. If the closing special symbol does not
match the top of the stack, or if the stack is empty, then the expression is ill-formed.
The stack is the appropriate data structure in which to save the open special symbols
because we always need to examine the most recently saved one. When all of the char-
acters have been processed, the stack should be empty—otherwise, there were open spe-
cial symbols left over.

Now we are ready to write the main algorithm, assuming an instance of a Stack
ADT as defined by StackInterface. The basic flow of the algorithm is to continuously
read and handle the input lines. Handling an input line means to look at it character by
character following the actions described in the previous paragraph, until we reach the
end of the line or until we determine that the expression is ill-formed. To indicate that
we have discovered the expression is ill-formed, we set the boolean variable balanced-
String to false. If we reach the end of the line without discovering an imbalance, and
at that time the stack is empty, then we have a well-formed expression. Otherwise we
have an ill-formed expression.
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“Read” the first piece of information
while not finished processing information

Handle the current information
“Read” the next piece of information

else
Increment the number of well-formed expressions
Write an appropriate message to the output file

Read the next input line
Write summary information to the output frame

The above algorithm follows the basic pattern of:

It uses this processing pattern for both the lines of expressions and for the characters
within each line. It helps increase your programming proficiency to recognize such pat-
terns and reuse them when appropriate.

The only part of the above algorithm that may require expansion before moving on
to the coding stage is the “Process the current character” command. We previously
described how to handle each type of character. Here are those steps in algorithmic
form:

if (the character is an open symbol)
Push the character onto the stack

else if (the character is a closed symbol)
if the stack is empty

Set balancedString to false
else

Set openSymbol to the character at the top of the stack
Pop the stack
if character does not “match” with openSymbol

Set balancedString to false
else

Skip the character
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The code for the program Balanced is listed next. It assumes that a class
ArrayStack implements the StackInterface interface. There are several things to
note about the program. The code lines related to each of these issues are highlighted in
the program listing. We have also highlighted the calls to the stack operations.

1. We declare our stack to be of type StackInterface, but instantiate it as type
ArrayStack, following the convention suggested at the end of Section 4.1.

2. To organize our processing, we create methods openSet and closeSet that accept
a character argument and return a boolean value indicating whether or not the
character argument is in the corresponding set of characters.

3. We use the Character class as a wrapper. Since our Stack ADT handles objects, we
need to wrap the string characters as Character objects, before pushing them onto
the stack. We then use the Character class’s charValue method to turn them back
into primitive characters upon receiving them from the stack with the top operation.

4. We use the library’s DecimalFormat class to ensure consistency of the output
lines. The relevant lines are emphasized. First we import the DecimalFormat class
so that it is available for use:

import java.text.DecimalFormat;

Next we instantiate an object of the class called fmt, initializing it with the string
“00”. This string indicates that any number formatted with the fmt object must pro-
vide a digit for both the ten’s location and the unit location. If no significant digit
is needed, then a 0 should be used.

DecimalFormat fmt = new DecimalFormat(“00”);

Finally, on the line where the code echo prints the input lines, numbering them for
easy reference, we use the fmt object to format the string number:

outFile.println(“String “ + fmt.format(numStrings) + “: “ + line);

As you can see in the example output file, this ensures that the number uses up two
output spaces.

Why do we bother with this? For each input expression we have two output lines.
This approach lets us know exactly how many spaces are used for the first output line,
and therefore allows us to line up the second output line, through judicious use of blank
spaces, exactly with the relevant part of the first line. Note that this works only for the
first 99 expressions. If we typically expect more expressions than that, we could initial-
ize fmt with the string “000” instead of “00”. See the Java Class Library documentation
for more information about the DecimalFormat class.

//----------------------------------------------------------------------------
// Balanced.java              by Dale/Joyce/Weems                    Chapter 4
// 
// Checks for balanced special symbols
// Input file consists of a sequence of expressions, one per line
// Special symbol types (), [], and {}
// Output file contains, for each expression:
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//    A copy of the expression
//    Whether or not the expression is balanced
// Input and output file names are supplied by user through command-line 
// parameters
// Output frame supplies summary statistics
//----------------------------------------------------------------------------

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import ch04.stacks.*;
import java.text.DecimalFormat;

public class Balanced
{
public static boolean openSet(char ch)
// Returns true if ch is one of (, [, {
{
return (   (ch == '(')

 || (ch == '[')
 || (ch == '{'));

}

public static boolean closeSet(char ch)
// Returns true if ch is one of ), ], }
{
return (   (ch == ')')

  || (ch == ']')
  || (ch == '}'));

}

public static void main(String[] args) throws IOException
{
int numStrings = 0;              // Total number of strings processed
int wellFormed = 0;              // Number of well-formed strings found
int illFormed = 0;               // Number of ill-formed strings found

char currChar;                   // Current string character being studied
int  currCharIndex;              // Index of current character
int  lastCharIndex;              // Index of last character in the string

char openSymbol;                 // Open symbol character popped from stack

boolean balancedString;          // True as long as string is balanced



270 | Chapter 4:  ADTs Stack and Queue

StackInterface stack; // Holds unmatched open symbols

String line = null;              // Input line
String dataFileName = args[0];   // Name of input file
String outFileName = args[1];    // Name of output file

BufferedReader dataFile = new BufferedReader(new FileReader(dataFileName));
PrintWriter outFile = new PrintWriter(new FileWriter(outFileName));
DecimalFormat fmt = new DecimalFormat("00");

line = dataFile.readLine();      // Read the first input line.

while(line!=null)                // While haven't read all of the input 
// lines

{
numStrings++;
outFile.println("String " + fmt.format(numStrings) + ": " + line);
outFile.print("           ");

balancedString = true;
stack = new ArrayStack();

currCharIndex = 0;
lastCharIndex = line.length() - 1;

while (balancedString && (currCharIndex <= lastCharIndex))
{
currChar = line.charAt(currCharIndex);
outFile.print(currChar);

if(openSet(currChar)) // If the current character is one of [, {, (
{
// Wrap the character and push it onto the stack
Character openSymbolObject = new Character(currChar);
stack.push(openSymbolObject);

}
else
{
if(closeSet(currChar)) // If the current character is one of ], }, )
{
try                   // Try to pop a character off the stack
{
openSymbol = ((Character)stack.top()).charValue();
stack.pop();
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// If the popped character doesn't match
if ( !(  ((currChar == ')') && (openSymbol == '('))

||((currChar == ']') && (openSymbol == '['))
||((currChar == '}') && (openSymbol == '{'))))

balancedString = false;
}
catch(StackUnderflowException e) // Stack was empty
{
balancedString = false;

}
}

}
currCharIndex++;             // Set up processing of next character

}

if (!balancedString)
{
illFormed++;
outFile.println(" Unbalanced symbols ");

}
else
if (!stack.isEmpty())
{
illFormed++;
outFile.println(" Premature end of string");

}
else
{
wellFormed++;
outFile.println(" The string is balanced.");

}

outFile.println();
line = dataFile.readLine();    // Set up processing of next line

}
dataFile.close();
outFile.close();

//Set up output frame
JFrame outputFrame = new JFrame();
outputFrame.setTitle("Balanced Parenthesis");
outputFrame.setSize(300,200);
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
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// Instantiate content pane and information panel.
Container contentPane = outputFrame.getContentPane();
JPanel infoPanel      = new JPanel();

// Set layout.
infoPanel.setLayout(new GridLayout(4,1));

infoPanel.add(new JLabel("Total Number Of Strings "+ numStrings));
infoPanel.add(new JLabel("Total Number Of Well Formed Strings "+ 

wellFormed));
infoPanel.add(new JLabel("Total Number Of Ill Formed Strings "+ 

illFormed));
infoPanel.add(new JLabel("Program completed. Close window to exit"));
contentPane.add(infoPanel);

// Show information.
outputFrame.show();

}
}

Figure 4.6 shows a sample input file, with an associated output file and information
frame. The input file contains alternating well-formed and ill-formed expressions from
the examples listed previously in Figure 4.5.

Implementation Level

We now consider the implementation of our Stack ADT. After all, methods such as
push, pop, and top are not magically available to the Java application programmer. We
need to write these routines in order to include them in a program.

An Array-Based Implementation
Because all the elements of a stack are of the same class, Object, an array seems like a
reasonable structure to contain them. We can put elements into sequential slots in the
array, placing the first element pushed onto the stack into the first array position, the
second element pushed into the second array position, and so on. The floating “high-
water” mark is the top element in the stack. Why, this sounds just like our Unsorted List
ADT implementation!

Be careful: We are not saying that a stack is an unsorted list. A stack and an
unsorted list are two entirely different data structures. What we are saying is that we
can use the same implementation strategy.
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Figure 4.6 Sample run of the Balanced program

( xx ( xx ( ) ) xx )
( xx ( xx ( ) ) xxx ) xxx)
[ ] ( ) { }
] [
(  [  ]  { xxx } xxx (  )  xxx )
(  xx  [  xxx  )  xx  ]
( [ { [ ( ( [ { x } ] ) x ) ] } x ] )
( [ { [ ( ( [ { x } ] ) x ) ] } x } )
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx {

test1.in file

String 01: ( xx ( xx ( ) ) xx )
           ( xx ( xx ( ) ) xx ) The string is balanced.

String 02: ( xx ( xx ( ) ) xxx ) xxx)
           ( xx ( xx ( ) ) xxx ) xxx) Unbalanced symbols 

String 03: [ ] ( ) { }
           [ ] ( ) { } The string is balanced.

String 04: ] [
           ] Unbalanced symbols 

String 05: (  [  ]  { xxx } xxx (  )  xxx )
           (  [  ]  { xxx } xxx (  )  xxx ) The string is balanced.

String 06: (  xx  [  xxx  )  xx  ]
           (  xx  [  xxx  ) Unbalanced symbols 

String 07: ( [ { [ ( ( [ { x } ] ) x ) ] } x ] )
           ( [ { [ ( ( [ { x } ] ) x ) ] } x ] ) The string is balanced.

String 08: ( [ { [ ( ( [ { x } ] ) x ) ] } x } )
           ( [ { [ ( ( [ { x } ] ) x ) ] } x } Unbalanced symbols 

String 09: xxxxxxxxxxxxxxxxxxxxxxxxx
           xxxxxxxxxxxxxxxxxxxxxxxxx The string is balanced.

String 10: xxxxxxxxxxxxxxxxxxxxxx {
           xxxxxxxxxxxxxxxxxxxxxx { Premature end of string

test1.out file

Information Frame

Command: java Balanced test1.in test1.out
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Definition of Stack Class We implement our Stack ADT as a Java class that
implements the StackInterface interface. We call this class ArrayStack, to
differentiate it from another implementation approach we present in the next chapter.

What data members does our Stack ADT need? We need the stack items them-
selves and a variable indicating the top of the stack (which behaves similar to
numItems in the List ADT). We hold the stack in a private array of Objects called
stack and we hold the index of the top of the stack in a private integer variable
called topIndex. In the Unsorted List ADT, numItems indicated how many items
were on the list. In the Stack ADT, topIndex indicates which is the top element. So
our analogy to the List ADT is off by one. The topIndex instance variable is initial-
ized to –1 rather than 0, to indicate that nothing is stored on the stack. (That is, there
is no top item in stack[0].)

As was done for the list implementations, we provide two constructors for use by
clients of the Stack class. One allows the client to specify the maximum expected size
of the stack, and the other assumes a default maximum size of 100 elements.

The beginning of the ArrayStack.java file is:

//----------------------------------------------------------------------------
// ArrayStack.java             by Dale/Joyce/Weems                   Chapter 4
// 
// Implements StackInterface using an array to hold the stack items
//----------------------------------------------------------------------------

package ch04.stacks;

public class ArrayStack implements StackInterface
{
private Object[] stack;               // Array that holds stack elements
private int topIndex = -1;            // Index of top element in stack

// Constructors
public ArrayStack()
{
stack = new Object[100];

}

public ArrayStack(int maxSize)
{
stack = new Object[maxSize];

}

Definitions of Stack Operations The stack observer methods isEmpty and isFull are
very similar to their counterparts in the array list implementations. The only difference
relates to the difference between the stack’s topIndex and the list’s numItems. The
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isEmpty method should compare topIndex to �1 and isFull should compare
topIndex with one less than the size of the underlying array.

public boolean isEmpty()
// Checks if the stack is empty
{
if (topIndex == -1)
return true;

else
return false;

}

public boolean isFull()
// Checks if the stack is full
{
if (topIndex == (stack.length - 1))
return true;

else
return false;

}

Now, we have to write the method to push an item onto the top of the stack. If the
stack is already full when we invoke push, there is nowhere to put the item. This condi-
tion is called stack overflow. The specifica-
tions state that the method should throw the
StackOverflowException exception in this
case. We include a pertinent error message
when the exception is thrown. If the stack is
not full, push must increment topIndex and
store the new item into stack[topIndex]. The implementation of this method is
straightforward.

public void push(Object item)
// Adds an element to the top of this stack
{
if (!isFull())
{
topIndex++;
stack[topIndex] = item;

}
else
throw new StackOverflowException("Push attempted on a full

stack.");
}

Stack overflow The condition resulting from trying to
push an element onto a full stack
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Since the StackOverFlow exception extends Java’s RunTimeException class, it is an
unchecked exception; so calls to push do not have to handle the exception. But they
can. Here is an example showing what a client code might do with the exception.

try
{
// Code
myStack.push(item);
// More code

}
catch (StackOverFlowException error )
{
System.out.println(error.getMessage());
System.exit(1);

}

In this case, the client chooses to write the error message to System.out and then dis-
continue processing. By convention, the nonzero status code passed to the
System.exit method indicates abnormal termination.

The pop method is essentially the reverse of push: Instead of putting an item onto
the top of the stack, we remove the top item from the stack. This can be accomplished
by simply decrementing topIndex. However, it is good practice to also “null out” the
object reference of the array location associated with the current top of stack. Remem-
ber that the Java run-time engine reclaims space from objects that no longer have any
“live” references to them. Decrementing the topIndex removes the stack’s logical refer-
ence to the object; setting the array value to null removes the physical reference. It is
the physical reference that is important to the garbage collector. After all, it knows
nothing about the logical view of our stack. When all physical references to an object
by a program are removed, its space can be reused. Note that we did not follow this
convention in our List ADT implementations—we felt that there was already enough
language-related complexity being introduced during the study of lists without adding

this subtle consideration.
If the stack is empty when we invoke pop, there is

no top element to remove. This condition is called
stack underflow. As with the push method, the speci-
fications for the operation say to throw an exception.

public void pop()
// Removes an element from the top of this stack
{
if (!isEmpty())
{
stack[topIndex] = null;
topIndex--;

}

Stack underflow The condition resulting from trying
to remove or return an element from an empty stack
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else
throw new StackUnderflowException("Pop attempted on an empty stack.");

}

Finally, the top operation simply returns the top element of the stack, the element
indexed by topIndex. As with the pop operation, if we attempt to perform the top
operation on an empty stack, a stack underflow results.

public Object top()
// Returns the element on top of this stack
{
Object topOfStack = null;
if (!isEmpty())
topOfStack = stack[topIndex];

else
throw new StackUnderflowException("Top attempted on an empty stack.");

return topOfStack;
}

An ArrayList-Based Implementation
There are often many ways to implement an ADT. In this section, we present an alter-
nate implementation for the Stack ADT based on the ArrayList class of the Java Class
Library.

The ArrayList class was introduced in Section 2.3, Class-Based Types. The defin-
ing feature of the ArrayList class is that it can grow and shrink in response to the
program’s needs. This means our constructor no longer needs to declare a maximum
stack size. Additionally, in this stack implementation, the method isFull always
returns the value false. We do not have to handle stack overflows. One could argue
that if a program runs completely out of memory then the stack could be considered
full, and should throw the StackOverflowException. However, in that case the run-
time environment throws an “out of memory” exception anyway; we do not have to
worry about the exception going unnoticed. Furthermore, running out of system mem-
ory is a serious problem (hopefully a rare event), and cannot be handled the same as a
simple stack overflow.

The ArrayList class is a good choice for implementing our Stack ADT. Since
stacks only grow and shrink from one end, we do not have to worry about the execu-
tion overhead associated with inserting an element into the middle of an array list
(which requires shifting of multiple elements). And we no longer need to worry about
stack overflow. Finally, the array list’s size method can be used to keep track of the
top of our stack. The index of the top of the stack is always the size minus 1.

Review the set of ArrayList operations described in Chapter 2 and study the fol-
lowing code. Compare this implementation to the previous implementation. They are
similar: They both implement the StackInterface; yet they are different. One is based
directly on arrays and the other uses arrays indirectly through the ArrayList class.
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//----------------------------------------------------------------------------
// ArrayListStack.java           by Dale/Joyce/Weems                 Chapter 4
// 
// Implements StackInterface using an ArrayList to hold the stack items
//----------------------------------------------------------------------------

package ch04.stacks;

import java.util.*;
import java.util.ArrayList;

public class ArrayListStack implements StackInterface
{
private ArrayList stack;        // ArrayList that holds stack elements

// Constructor
public ArrayListStack()
{
stack = new ArrayList();

}

public void push(Object item)
// Adds an element to the top of this stack
{
stack.add(item);

}

public void pop()
// Removes an element from the top of this stack
{
if (!isEmpty())
{
stack.remove(stack.size() - 1);

}
else
throw new StackUnderflowException("Pop attempted on an empty stack.");

}

public Object top()
// Returns the top element from this stack
{
Object topOfStack = null;
if (!isEmpty())
topOfStack = stack.get(stack.size() - 1);
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else
throw new StackUnderflowException("Top attempted on an empty stack.");

return topOfStack;
}

public boolean isEmpty()
// Checks if this stack is empty
{
if (stack.size() == 0)
return true;

else
return false;

}

public boolean isFull()
// Checks if this stack is full
// Assumes stack is never full since ArrayList implementation can grow as 
// needed
{
return false;

}
}

Test Plan
The test plan for the Stack ADT is much like the test plan for the Unsorted List ADT.
Because we are testing the implementation of an abstract data type that we have just
written, we use a clear-box strategy, checking each operation. Unlike the Unsorted List
ADT, we do not have an iterator that allows us to cycle through the items and print
them. We must push items onto the stack, retrieve them with top and print them, and
then remove them with pop, rather than printing the contents of the stack. Note that the
items are output in reverse order.

We also must test the situation in which stack overflow and underflow occur. For
purposes of this test, we assume that the exception is handled so that the message is
displayed and then the program terminates. Of course, we cannot test for stack overflow
in the ArrayList based implementation (remember why?). The Expected Output col-
umn of our test plan below assumes the array-based implementation.

Because the type of data stored in the stack has no effect on the operations that
manipulate the stack, we can use objects of class Integer. We set the stack size to 5, to
keep our test cases manageable.
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Operation to be Tested
and Description of
Action Input Values Expected Output

ArrayStack 5
apply isEmpty immediately Stack is empty

push, pop, and top
push 4 items, top/pop and print 5,7,6,9 9,6,7,5
push with duplicates and
top/pop and print 2,3,3,4 4,3,3,2
interlace operations
push 5
pop
push 3
push 7
pop
top and print 3

isEmpty
invoke when empty Stack is empty
push and invoke Stack is not empty
pop and invoke Stack is empty

isFull
push 4 items and invoke Stack is not full
push 1 item and invoke Stack is full

throw StackOverflowException Outputs string:
push 5 items then ”Push attempted on a full stack.”
push another item Program terminates

throw StackUnderflowException Outputs string:
when stack is empty “Pop attempted on an empty stack.”
attempt to pop Program terminates

when stack is empty Outputs string:
attempt to top “Top attempted on an empty stack.”

Program terminates
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4.3 The Java Collections Framework

If you look in the documentation of the Java Class Library, you find a Stack class. It is
similar to the Stack ADT we developed in this chapter. The Java Library provides classes
that implement ADTs that are based on common data structures—stacks, lists, maps,
sets, and more.

Another term for a data structure is col-
lection. The Java developers refer to the set of
library classes that support data structures,
and the rules for using them, as the “collec-
tions framework.” This framework includes
interfaces, abstract classes, concrete classes,
and protocols for their use. Recall that an
abstract class is one that contains some
abstract methods, i.e., methods without
method bodies. By concrete class we mean a
class in which all of the methods have bodies.

In this section we introduce you to the collections framework. We briefly overview
the architecture of the framework and look at a few of the collection classes that are
related to the ADTs that you have already studied. As you progress through the text and
study additional ADTs, we point out the related library classes, as appropriate.

The collections framework is an extensive set of tools. It does more than just pro-
vide abstractions of data structures; it provides a foundation for more advanced pro-
gramming techniques. It is not our goal to cover all of the intricacies of the framework.
This textbook is about fundamental data structures and how we implement them, not
about how to use Java’s specific implementations of similar structures. Still, it is
instructive to see how other programmers have approached similar problems.

Thus, we’ll occasionally stop to explain how the library contents relate to the data
structures we are studying. We also want you to be able to use library classes, when
appropriate, to solve problems. In fact we have already used one of the library collec-
tion classes in this chapter. We used the ArrayList class to implement a Stack ADT in
Section 4.2.

Properties of Collections Framework Classes

Because the collection classes share a common framework, there are some properties
that they all have in common. All Java library collection implementation classes

• Allow a collection’s size to increase dynamically as needed.
• Are defined to hold items of class Object, to ensure the collections can use any

object as a component.
• Hold references to the actual objects provided by the client programs, rather than

references to copies of the objects.

Collection A collection is an object that holds other
objects. Typically we are interested in inserting, remov-
ing, and iterating through the contents of a collection

Concrete class A concrete class is a class that can
have instantiated objects. It does not contain any
abstract methods
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• Provide at least two constructors—one that creates an empty collection and one
that accepts as a parameter any other collection object and creates a new collec-
tion object that holds the same information.

Although all collection classes behave the same in some ways, there are also ways in
which they differ:

• The logical structure of the elements they contain
• The underlying implementation
• The efficiency of the various operations
• The set of supported operations
• Whether or not they allow duplicate elements
• Whether or not they support element “keys”
• Whether or not their elements are sorted in any way

The most appropriate collections framework class to be used to help solve any spe-
cific problem depends upon the qualities of the problem. In fact, it might be that no
appropriate collections framework class exists, and you have to define a new ADT to
best fit the situation.

The Legacy Classes

Prior to the release of Java 1.2 (also called the Java 2 platform), the standard class
library supported only a handful of collection classes: BitSet, HashTable, Stack, and
Vector. These classes continue to be supported in the more extensive Java 2 collections
framework, although some of them have improved counterparts in Java 2. We look at
each of these legacy classes briefly.

The Vector class provides a dynamically sized array. The Vector class’s methods
are designed to allow access by different program threads that are running at the same
time to a vector object (an advanced feature of Java, called concurrency). This is great
for concurrent programming; however, for all of our simple single-threaded programs, it
is not so good. The overhead involved in supporting concurrency makes access to vec-
tors very slow. In Java 2, the Vector class has been supplanted by the ArrayList
class, which provides the same functionality but without the concurrency support. Until
you learn about concurrent programming, you should not use the Vector class.

The BitSet class provides an array of bits. We usually think of a bit as something
that can store either the value 0 or the value 1. Since we can view a 0 as representing
the Boolean value false, and a 1 as representing the Boolean value true, we can think
of a bit set as being an array of Boolean values. In fact, each component of a library
BitSet has a Boolean value associated with it. The individual bits can be manipulated
(set, cleared, examined) and BitSet objects can be combined with various Boolean
operations (and, or, not). The BitSet class is useful if you need to store and manipulate
an array of Boolean values—for example, an array that indicates whether or not student
n attended class on a particular day.
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Just like the Vector class, the HashTable class supports synchronization. For non-
concurrent programs you should use Java 2’s HashMap class instead. We look at the
topic of hashing in Chapter 10.

The Stack class is very similar to our Stack ADT. It provides operations for push-
ing, popping, and testing if the stack is empty. The pop operation is defined in the clas-
sic tradition, that is, it both removes the top element from the stack and returns a
reference to the object that was in the top position. Recall that for our Stack ADT we
separated this functionality into two methods, pop that removed the top item without
returning it, and top that returned the top item without removing it. The library stack
provides a method analogous to our top method—it is called peek. The library stack
does not provide an operation to test when the stack is full. This is because the class is
implemented using the previously discussed Vector class, which provides dynamically
sized arrays. In fact, the library Stack class extends the Vector class. The performance
problems of the Vector class also plague the library’s Stack class. For this reason, our
implementation of a stack is probably more efficient than the library’s implementation.

Java 2 Collections Framework Interfaces

In Section 4.1 you saw how to use a Java interface to define a contract for all List ADT
implementations to fulfill. The Java library designers used the same approach when cre-
ating the collections framework. There are three fundamental interfaces for the collec-
tions framework: Collection, Map, and Iterator.

The Collection Interface
The Collection interface is used by collection classes that do not support a unique key
value. Examples include unkeyed lists and sets. The following table describes some of
the interesting operations listed in the Collection interface.

Method Name Parameter Type Returns Operation Performed

add Object boolean Ensures that this collection holds the parame-
ter element. If the collection was changed as a
result of the operation, true is returned. Oth-
erwise, false is returned.

addAll Collection boolean Adds all of the elements of the parameter col-
lection to this collection. If the collection was
changed as a result of the operation, true is
returned. Otherwise, false is returned.

contains Object boolean Returns true if this collection contains the
parameter element. Otherwise, returns false.

isEmpty (none) boolean Returns true if this collection is empty;
false otherwise
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The library does not provide any direct implemen-
tations of this interface. It does provide implementa-
tions of subinterfaces of this interface. What is a
subinterface? A subinterface is an interface that
extends another interface. Just as one Java class can
extend another Java class, creating a superclass—sub-
class inheritance relationship—so can one interface

extend another interface. In fact, unlike with classes that can only extend a single class,
there is no limit to the number of interfaces that can be extended by a particular inter-
face. We say that Java supports multiple inheritance of interfaces.

The library provides several subinterfaces of the Collection interface, including
the List interface. It is interesting to note that the List ADT we developed in Chapter 3
does not match well with the library structures related to the List interface. Since our
List ADT supported unique keys, it actually matches the library “map” structures more
closely than the “list” structures.

The Map Interface
The Map interface is used by library collection classes that map unique keys to values.
Like our List ADT, it defines a method to retrieve an object based on its key value. This
operation is not supported by the classes that implement the Collection interface.
Classes that implement the Map interface include AbstractMap, HashMap, and
Hashtable.

The Iterator Interface
The Iterator interface helps guarantee that client programs are able to iterate through
collections. It defines methods similar to those we defined for iterating through our lists
in Chapter 3. Rather than supplying a reset operation, Iterator objects are “reset”
when they are instantiated. They do provide a next operation that is analogous to our
list’s getNextItem operation. Unlike our list iterations, which “wrap around” if we try
to access past the end of the list, Iterator objects raise an exception in this case.
Therefore, Iterator objects support a boolean hasNext operation that the client can
use to see if there are any more objects available.

An Iterator object also allows a client program to remove an element from a col-
lection. The convention is that during an iteration, if the client calls the iterator’s
remove method, the element of the collection that was just visited by the iteration is
removed. This allows the client program to obtain an element during an iteration,
examine it, determine whether or not it should be removed, and if so, immediately have
it removed by the iterator.

A well-defined collection class includes a method that returns a new Iterator
object for its collections.

The AbstractCollection Class

The library’s AbstractCollection class is an abstract class that implements the Col-
lection interface. The Collection interface defines 15 operations. Some of these are

Subinterface A subinterface is an interface that
extends another interface.  It must list all of the
abstract methods in the interface it extends, plus it can
add more abstract methods of its own.
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fundamental operations, that is, they depend upon the particular implementation of the
collection. Others however, can be implemented in terms of the fundamental operations.
This is exactly what the AbstractCollection class does.

For example, the size method depends upon the underlying implementation, so in
the AbstractCollection class it is defined as an abstract method. But the isEmpty
method can be defined in terms of the size method:

public boolean isEmpty()
{
return (this.size() == 0);

}

By defining as many methods as possible in terms of the fundamental methods, the
AbstractCollection class reduces the work needed to implement a new collection class.
A programmer can extend the AbstractCollection class, provide the missing method
bodies for the fundamental methods, and the other methods are automatically taken care of.

What Next?

The abstraction and reuse built into the collections framework doesn’t stop there. Similar
to the Collection interface, the AbstractCollection class has no direct implemen-
tations; in other words, no concrete classes extend it. Instead, it is extended by two other
abstract classes: AbstractSet and AbstractList. Finally, these classes are extended
by concrete classes. For example, the ArrayList class extends the AbstractList class.
A look at the documentation for the ArrayList class shows that it also implements the
library’s List interface; which in turn, extends the Collection interface.

Whew!
We are not going to delve into any more details of the collections framework. Our

intention was to provide an overview, and to give you a taste of the complexity
involved in putting together a coherent group of generically reusable resources. The
Java library designers did a good job. The Java Class Library provides a great deal of
functionality, and compared to some of the program libraries of other popular lan-
guages, is relatively uncomplicated.

Remember that we can use the library without understanding all of its internal
details. We were able to use the ArrayList class without knowing any details about
the collections framework. We simply needed a logical view of the functionality of the
ArrayList class and a description of its operation interfaces.

If you are interested in learning more about the Java Library Classes, you can study
the extensive documentation available at the Sun Microsystems’ site. In particular, the
lists you studied in Chapter 3 are most closely related to the library’s Map and Sorted-
Map interfaces. Although the library’s List interface provides a similar structure, it
allows duplicate elements, does not support keys, and many of its implementations sup-
port additional features. The library’s maps, on the other hand, support keys and do not
allow elements with duplicate keys.

The stacks studied in this chapter are very closely related to the library’s legacy
Stack class.
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In the next section we look at queues. They have no counterpart in the library,
although they can be easily implemented on top of some of the library’s classes.

4.4 Queues

Logical Level

A stack is a structure with the special property that elements are always added to and
removed from the top. We know from experience that many collections of data elements
operate in the reverse manner: Elements are added at one end and removed from the
other. This data structure, called a FIFO (First In, First Out) queue, has many uses in
computer programs. As before, we consider the FIFO queue data structure as an ADT at
three levels: logical, implementation, and application. In the rest of this chapter, “queue”
refers to a FIFO queue. (Another queue-type data structure, the priority queue, is dis-
cussed in Chapter 9.)

A queue (pronounced like the letter Q) is an
ordered, homogeneous group of elements in which
new elements are added at one end (the “rear”) and
elements are removed from the other end (the “front”).
As an example of a queue, consider a line of students
waiting to pay for their textbooks at a university

bookstore (see Figure 4.7). In theory, if not in practice, each new student gets in line at

Queue A structure in which elements are added to
the rear and removed from the front; a “first in, first
out” (FIFO) structure

Figure 4.7 A FIFO queue

Rear of
Queue

Front of
Queue

next...

PAY HERE
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the rear. When the cashier is ready for a new customer, the student at the front of the
line is served.

To add elements to a queue, we access the rear of the queue; to remove elements
we access the front. The middle elements are logically inaccessible, even if, at the
implementation level, we store the queue elements in a random-access structure such
as an array. It is convenient to picture the queue as a linear structure with the front
at one end and the rear at the other end. However, we must stress that the “ends” of
the queue are abstractions; they may or may not correspond to any physical charac-
teristics of the queue’s implementation. The essential property of the queue is its
FIFO access.

Like the stack, the queue is a holding structure for data that we use later. We put a
data item onto the queue, and then when we need it, we remove it from the queue. If we
want to change the value of an element, we should take that element off the queue,
change its value, and then return it to the queue. We usually do not directly manipulate
the values of items that are currently in the queue.

Operations on Queues
The bookstore example suggests two operations that can be applied to a queue. First,
new elements can be added to the rear of the queue, an operation that we call
enqueue. We can also take elements off the front of the queue, an operation that we
call dequeue. Unlike the stack operations push and pop, the adding and removing
operations on a queue do not have standard names. The enqueue operation is some-
times called enq, enque, add, or insert; dequeue is also called deq, deque, remove, or
serve.

Another useful queue operation is checking whether the queue is empty. The
isEmpty method returns true if the queue is empty and false otherwise. We can only
dequeue when the queue is not empty. Theoretically, we can always enqueue, for in
principle a queue is not limited in size. We know from our experience with stacks, how-
ever, that certain implementations (an array representation, for instance) require that we
test whether the structure is full before we add another element. This real-world consid-
eration applies to queues as well, so we define an isFull method. Figure 4.8 shows
how a series of these operations would affect a queue.

The Queue ADT Specification
As we did with stacks, we define our queues to hold items of class Object. Also, as
with stacks, we do not worry about manipulating copies of the objects; the references
stored and returned from the Queue implementation are references to the original
objects. However, unlike with stacks, with queues we revert to the programming by con-
tract approach; the caller of enqueue and dequeue is responsible for checking for over-
flow and underflow before calling the methods. These methods do not raise any
exceptions. Below we capture our queue specification in a Java interface.
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Figure 4.8 The effects of queue operations
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ArrayQueue queue = new ArrayQueue(2);
queue.isEmpty( ) is true
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queue.enqueue(A);
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queue = new ArrayQueue(0);
queue.isEmpty( ) is true
queue.isFull( ) is true
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//----------------------------------------------------------------------------
// QueueInterface.java           by Dale/Joyce/Weems                 Chapter 4
// 
// Interface for a class that implements a queue of Objects.
// A queue is a first-in, first-out structure
//----------------------------------------------------------------------------

package ch04.queues;

public interface QueueInterface

{
public void enqueue(Object item);
// Effect:         Adds item to the rear of this queue
// Precondition:   This queue is not full
// Postcondition:  item is at the rear of this queue

public Object dequeue();
// Effect:         Removes front element from this queue and returns it
// Precondition:   This queue is not empty
// Postconditions: Front element has been removed from this queue
//                 Return value = (the removed element)

public boolean isEmpty();
// Effect:         Determines whether this queue is empty
// Postcondition:  Return value = (this queue is empty)

public boolean isFull();
// Effect:         Determines whether this queue is full
// Postcondition:  Return value = (queue is full)

}

Note that the dequeue operation has a side effect; it both removes and returns the ele-
ment at the front of the queue. In our discussion of the Stack ADT, we argued that oper-
ations with side effects should be avoided. However, in this case, the “remove and
return” approach is so common for queue implementations that we decided to stick with
the classic approach.

Application Level

We discussed how stacks can be used by operating systems and compilers. Similarly,
queues are often used for system programming purposes. For example, an operating
system often maintains a FIFO queue of processes that are ready to execute or that are
waiting for a particular event to occur. The programmer who creates the operating sys-
tem can use a Queue ADT to implement this.
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Computer systems must often provide a “holding area” for messages between two
processes, two programs, or even two systems. This holding area is usually called a
“buffer” and is often implemented as a FIFO queue. For example, if a large number of
mail messages arrive at a mail server at about the same time, the messages are held in a
buffer until the mail server can get around to processing them. It processes them in the
order they arrived—in “first in, first out” order. (Some mail servers may be designed to
handle the messages based on a priority system. In that case, the priority queue of
Chapter 9 would be a more appropriate data structure.)

To demonstrate the use of queues, we look at a simpler problem: identifying palin-
dromes. A palindrome is a string that reads the same forwards as backwards. While we
are not sure of their general usefulness, identifying them provides us with a good exam-
ple for the use of both queues and stacks. Besides, palindromes can be entertaining.
Some famous palindromes are:

• A tribute to Teddy Roosevelt, who orchestrated the creation of the Panama
Canal: “A man, a plan, a canal—Panama!”

• Allegedly muttered by Napoleon Bonaparte upon his exile to the island of Elba
(although this is hard to believe since Napoleon mostly spoke French!): “Able
was I ere, I saw Elba.”

• Overheard in a Chinese restaurant: “Won ton? Not now!”
• And possibly the world’s first palindrome: “Madam, I’m Adam.”
• Followed immediately by one of the world’s shorted palindromes: “Eve.”

As you can see, the rules for what is a palindrome are somewhat lenient. Typically,
we do not worry about punctuation, spaces, or matching the case of letters.

We again follow the input/output model we have established for our test drivers—
the same model used for the balanced parentheses example in the section on stacks.
An input file holds a separate string on each line. A corresponding output file is cre-
ated, repeating each of the input lines and stating whether or not it is a palindrome.
This program assumes that no input line is more than 180 characters in length. If an
input line is longer than that, it is skipped. The names of the input and output files are
passed to the program on the command line. Summary statistics are written to an out-
put frame.

The program reads a line of input and checks to see how long it is. If it is too long, it
moves on to the next line of input. Otherwise, it creates a new stack and a new queue,
and it repeatedly pushes each letter from the input line onto the stack, and also
enqueues it onto the queue. To simplify comparison later, the actual characters pushed
and enqueued are the lowercase versions of the characters in the string. When all of the
characters of the line have been processed, the program repeatedly pops a letter from the
stack and dequeues a letter from the queue. As long as these letters match each other for
the entire way through this process, we have a palindrome. Can you see why? Since the
queue is a “first in, first out” structure, the letters are returned from the queue in the
same order they appear in the string. But the letters taken from the stack, a “last in, first
out” structure, are returned in the opposite order from the way they appear in the string.
So, we are comparing the letters from the forward view of the string to the letters from
the backward view of the string.
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Main Algorithm
Initialize expression counts
Read first input line
while there are still lines to process

Increment the total number of strings
Echo print the current string to the output file
if the string is too long

Increment the number of overlong strings
Write “String too long” to the output file

else
Process the current string
if (!stillPalindrome)

Increment the count of non palindromes
Write “Not a palindrome” to the output file

else
Increment the count of palindromes
Write “Is a palindrome” to the output file

Write summary information to the output frame

Now we are ready to write the main algorithm assuming an instance of a Stack ADT
as defined by StackInterface and an instance of the Queue ADT as defined by
QueueInterface. The basic flow of the algorithm is to continuously read and handle
the input lines. Handling an input line means to treat it following the actions described
in the previous paragraph. For each line we repeatedly compare the characters from the
stack and the queue to each other until the structures become empty or we determine
that the string is not a palindrome. To indicate that we have discovered that the string is
not a palindrome we set the boolean variable stillPalindrome to false.

This top-level algorithm shows the basic flow of control and manipulation of the lines
of strings. But the details of how it is determined (whether or not the current string is a
palindrome) are hidden in the phrase “Process the current string”. Here is a description
of that algorithm:
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The only part of the above algorithm that may require expansion before moving on
to the coding stage is the determination of when “there are still more characters in the
structures.” This could be accomplished by using the isEmpty methods of the stack
and queue classes. Another approach also works, however. We can track the number of
letters we find in the current string. Remember, that it is only these letters that are
placed in the data structures. Then we can use a for loop, based on the number of letters
we found, to control how many times we remove and compare characters. We use this
second approach.

A few details require further explanation; the corresponding lines in the code are high-
lighted. Two static methods of the Character class, isLetter and toLowerCase are
used. Since these are static methods they are invoked through the name of the class, and
not through an object of the class. The isLetter method returns a boolean value indicat-
ing whether the character passed to it is a letter or not, in other words, if it is an alphabetic
character. It is used to let us skip over punctuation marks and spaces. The toLowerCase
method returns the lowercase version of its character argument; if the argument is already
lowercase, it simply returns the character unchanged. Its use ensures that all stored charac-
ters are lowercase; therefore, when we compare the characters, case is not an issue.

Just as we did with stacks, we use the Character class as a wrapper. Since our
queue ADT handles objects only, we need to wrap the characters as Character objects,
before passing them to the ADTs. This wrapping also allows us to use the Character
class’s equals method to compare the two characters.

The code for the program Palindrome is listed next. It uses our ArrayStack and
assumes a class ArrayQueue implements the QueueInterface interface.

Process the current string
Create a new stack
Create a new queue
For each character in the string

if the character is a letter
Change the character to lowercase
Push the character onto the stack
enqueue the character onto the queue

Set stillPalindrome to true
while (there are still more characters in the structures && the string can still be a palindrome)

Pop character1 from the stack
dequeue a character2 from the queue
if (character1 != character2)

Set stillPalindrome to false
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//----------------------------------------------------------------------------
// Palindrome.java             by Dale/Joyce/Weems                   Chapter 4
// 
// Checks for palindromes
// Input file consists of a sequence of strings, one per line
// Output file contains, for each string:
//    Whether or not the string is a palindrome ... blanks are ignored
// Input and output file names are supplied by user through command line 
// parameters
// Output frame supplies summary statistics
//----------------------------------------------------------------------------

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import java.text.DecimalFormat;
import ch04.stacks.*;
import ch04.queues.*;

public class Palindrome
{
public static void main(String[] args) throws IOException
{
final int maxStringSize = 180;   // Maximum size of an input line
int numStrings = 0;              // Total number of strings processed
int palindromes = 0;             // Number of palindromes found
int nonPalindromes = 0;          // Number of nonpalindromes found
int tooLong = 0;                 // Number of strings too long to process

char ch;                         // Current input string character being 
//   processed

int numLetters;                  // Number of letter characters in current 
//   string

int charCount;                   // Number of characters checked so far

Character fromStack; // Current Char object popped from stack
Character fromQueue; // Current Char object dequeued from queue
boolean stillPalindrome;         // True as long as the string might still

// be a palindrome

StackInterface stack;            // Holds nonblank string characters
QueueInterface queue;            // Also holds nonblank string characters
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String line = null;              // Input line
String dataFileName = args[0];   // Name of input file
String outFileName = args[1];    // Name of output file

BufferedReader dataFile = new BufferedReader(new FileReader(dataFileName));
PrintWriter outFile = new PrintWriter(new FileWriter(outFileName));
DecimalFormat fmt = new DecimalFormat("000");

outFile.println();             // Print a blank line
line = dataFile.readLine();    // Read the first input line

while(line!=null)              // while haven't read all of the input lines
{
numStrings = numStrings + 1;
outFile.println("String " + fmt.format(numStrings) + ": " + line);

if (line.length() > maxStringSize)
{
tooLong = tooLong + 1;
outFile.println("String too long - processing skipped");

}
else
{
// Check if line is a palindrome
stack = new ArrayStack(maxStringSize);
queue = new ArrayQueue(maxStringSize);
numLetters = 0;

for (int i = 0; i < line.length(); i++)
{
ch = line.charAt(i);
if (Character.isLetter(ch))
{
numLetters = numLetters + 1;
ch = Character.toLowerCase(ch);
stack.push(new Character(ch));
queue.enqueue(new Character(ch));

}
}

stillPalindrome = true;
charCount = 0;

while (stillPalindrome && (charCount < numLetters))
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{
fromStack = (Character)stack.top();
stack.pop();
fromQueue = (Character)queue.dequeue();
if (!fromStack.equals(fromQueue))
stillPalindrome = false;

charCount++;
}

if (!stillPalindrome)
{
nonPalindromes = nonPalindromes + 1;
outFile.println("            Not a palindrome ");

}
else
{
palindromes = palindromes + 1;
outFile.println("            Is a palindrome.");

}
}
outFile.println();
line = dataFile.readLine();    // Set up processing of next line

}
dataFile.close();
outFile.close();

// Set up output frame
JFrame outputFrame = new JFrame();
outputFrame.setTitle("Palindromes");
outputFrame.setSize(300,200);
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Instantiate content pane and information panel
Container contentPane = outputFrame.getContentPane();
JPanel infoPanel      = new JPanel();

// Set layout
infoPanel.setLayout(new GridLayout(5,1));

infoPanel.add(new JLabel("Total Number Of Strings "+ numStrings));
infoPanel.add(new JLabel("Number Of Strings too long for Processing " + tooLong));
infoPanel.add(new JLabel("Number Of Palindromes "+ palindromes));
infoPanel.add(new JLabel("Number Of Non Palindromes "+ nonPalindromes));
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Figure 4.9 Sample run of the Palindrome program

A man, a plan, a canal, Panama
amanaplanacanalpanama
This is not a palindrone!
aaaaaaaaaaa
a
aaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaa
aAaaaaaaaabaaaaaaAaaa
This string is too long 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxx 
xxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxx
bob
dan
Madam, I'm Adam.
eve
Eve

testP1.in 

String 001: A man, a plan, a canal, Panama
            Is a palindrome.

String 002: amanaplanacanalpanama
            Is a palindrome.

String 003: This is not a palindrone!
            Not a palindrome 

String 004: aaaaaaaaaaa
            Is a palindrome.

String 005: a
            Is a palindrome.

String 006: aaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaa
            Not a palindrome 

String 007: aAaaaaaaaabaaaaaaAaaa
            Is a palindrome.

testP1.out beginning

infoPanel.add(new JLabel("Program completed. Close window to exit."));
contentPane.add(infoPanel);

// Show information.
outputFrame.show();

}
}

Figure 4.9 shows a sample input file, with an associated output file and informa-
tion frame.
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Implementation Level

Now that we’ve had the opportunity to be queue users, let’s look at how a queue might
be implemented in Java. As with a stack, the queue can be stored in a static array with
its size fixed at compile time or in a dynamically allocated array (the ArrayList ver-
sion) with its size determined at run time. We look at the static implementation here.

Definition of Queue Class
We implement our Queue ADT as a Java class. We call this class ArrayQueue, to differ-
entiate it from another implementation approach we present in the next chapter.

Figure 4.9 (Continued)

Information Frame

Command: java Palindrome testP1.in testP1.out

String 008: This string is too long 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxx 
xxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxx
String too long - processing skipped

String 009: bob
            Is a palindrome.

String 010: dan
            Not a palindrome 

String 011: Madam, I'm Adam.
            Is a palindrome.

String 012: eve
            Is a palindrome.

String 013: Eve
            Is a palindrome.

testP1.out continued
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What data members does our Queue ADT need? We need the queue items them-
selves; they are the elements of the underlying array. To facilitate the isEmpty and
isFull operations we decide to use two instance variables, capacity and numItems.
The capacity variable holds the maximum number of items the queue can hold, and
the numItems variable holds the current number of items on the queue.

We still need some way of determining the front and rear items of the queue. There
are several alternatives possible. This design decision is also interrelated with the
approaches we use for implementing the queue operations.

We need to determine the relationship between the location of an item in the queue,
and the location of the item in the underlying array.

Fixed-Front Design Approach
In implementing the stack, we began by inserting an element into the first array posi-
tion and then we let the top float with subsequent push and pop operations. The bottom
of the stack, however, was fixed at the first slot in the array. Can we use a similar solu-
tion for a queue, keeping the front of the queue fixed in the first array slot and letting
the rear move down as we add new elements?

Let’s see what happens after a few enqueues and dequeues if we insert the first ele-
ment into the first array position, the second element into the second position, and so
on. After four calls to enqueue with arguments ‘A’, ‘B’, ‘C’, and ‘D’, the queue would
look like this:

Remember that the front of the queue is fixed at the first slot in the array, whereas
the rear of the queue moves down with each enqueue. Now we dequeue the front ele-
ment in the queue:

This operation deletes the element in the first array slot and leaves a hole. To keep
the front of the queue fixed at the top of the array, we need to move every element in
the queue up one slot:

Let’s summarize the queue operations corresponding to this queue design. The
enqueue operation would be the same as push. The dequeue operation would be more

    B C D

[0]       [1]       [2]        [3]      [4]

    B C D

[0]       [1]       [2]        [3]      [4]

A B C D

[0]       [1]       [2]        [3]      [4]
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complicated than pop, because all the remaining elements of the queue would have to
be shifted up in the array to move the new front of the queue up to the first array slot.

Before we go any further, we want to stress that this design would work. It may not
be the best design for a queue, but it could be successfully implemented. There are mul-
tiple functionally correct ways to implement the same abstract data type. One design
may not be as good as another (because it uses more space in memory or takes longer to
execute) and yet may still be correct.

Now let’s evaluate this design. Its strengths are its simplicity and ease of coding; it
is almost exactly as the stack implementation. Though the queue is accessed from both
ends rather than just one (as in the stack), we just have to keep track of the rear,
because the front is fixed. Only the dequeue operation is more complicated. What is the
weakness of the design? It’s the need to move all the elements up every time we
remove an element from the queue, which increases the amount of work needed to
dequeue.

How serious is this weakness? To make this judgment, we have to know something
about how the queue is to be used. If this queue is used for storing large numbers of
elements at one time, the processing required to move up all the elements after the
front element has been removed makes this solution a poor one. On the other hand, if
the queue generally contains only a few elements, all this data movement may not
amount to much processing. Further, we need to consider whether performance—how
fast the program executes—is of importance in the application that uses the queue.
Thus, the complete evaluation of the design depends on the requirements of the client
program.

In the real programming world, however, you don’t always know the exact uses
or complete requirements of client programs. For instance, you may be working on a
very large project with a hundred other programmers. Other programmers may be
writing the specific application programs for the project while you are producing
some utility programs that are used by all the different applications. If you don’t
know the requirements of the various users of your queue operations, you must design
general-purpose utilities. In this situation, the design described here is not the best
one possible.

Floating-Front Design Approach
The need to move the elements in the array was created by our decision to keep the
front of the queue fixed in the first array slot. If we keep track of the index of the front
as well as the rear, we can let both ends of the queue float in the array.

Figure 4.10 shows how several enqueue and dequeue operations would affect the
queue. The enqueue operations have the same effect as before; they add elements to
subsequent slots in the array and increment the index of the rear indicator. The
dequeue operation is simpler, however. Instead of moving elements up to the beginning
of the array, it merely increments the front indicator to the next slot.

Letting the queue elements float in the array creates a new problem when the rear
indicator gets to the end of the array. In our first design, this situation told us that the
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Figure 4.10 The effect of enqueue and dequeue

    A

[0]       [1]       [2]        [3]      [4]

    A B

[0]       [1]       [2]        [3]      [4]

    A B C

[0]       [1]       [2]        [3]      [4]

    B C

[0]       [1]       [2]        [3]      [4]

(a) queue.enqueue('A')

(b) queue.enqueue('B')

(c) queue.enqueue('C')

(d) item=queue.dequeue();

front = 0
rear = 0

front = 0
rear = 1

front = 0
rear = 2

front = 1
rear = 2

queue was full. Now, however, it is possible for the rear of the queue to reach the end of
the (physical) array when the (logical) queue is not yet full (Figure 4.11a).

Because there may still be space available at the beginning of the array, the obvious
solution is to let the queue elements “wrap around” the end of the array. In other words,
the array can be treated as a circular structure in which the last slot is followed by the
first slot (Figure 4.11b). To get the next position for the rear indicator, for instance, we
can use an if statement:

if (rear == (capacity - 1))
rear = 0;

else
rear = rear + 1;

Another way to reset rear is to use the modulo (%) operator:

rear = (rear + 1) % capacity;

We use this floating-front design approach with the wrap around.
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Figure 4.11 Wrapping the queue elements around

[0]       [1]       [2]        [3]      [4]

queue.enqueue('L')

front = 3
rear = 4

(a) Rear is at the bottom of the array

J K

[0]       [1]       [2]        [3]      [4]

front = 3
rear = 0

(b) Using the array as a circular structure, we can wrap the
     queue around to the top of the array

J KL

The Instance Variables and Constructors
From our analysis we see that we must add two instance variables to the class: front
and rear. The beginning of the ArrayQueue.java file is:

//----------------------------------------------------------------------------
// ArrayQueue.java             by Dale/Joyce/Weems                   Chapter 4
// 
// Implements QueueInterface using an array to hold the queue items
//----------------------------------------------------------------------------

package ch04.queues;

public class ArrayQueue implements QueueInterface
{
private Object[] queue;          // Array that holds queue elements
private int capacity;            // Size of the array (capacity of the queue)
private int numItems  = 0;       // Number of items on the queue
private int front = -1;          // Index of front of queue
private int rear = 0;            // Index of rear of queue

// Constructors
public ArrayQueue()
{
queue = new Object[100];
capacity = 100;

}

public ArrayQueue(int maxSize)
{
queue = new Object[maxSize];
capacity = maxSize;

}



302 | Chapter 4:  ADTs Stack and Queue

As you can see, we have included the two standard constructors: one for which the
client program specifies a maximum size for the queue, and one that defaults to a maxi-
mum size of 100 elements.

Definitions of Queue Operations
Given the discussion of the previous subsection, the implementation of our queue oper-
ations is straightforward. The enqueue method increments the front variable, “wrap-
ping it around” if necessary, inserts the parameter element into the front location, and
increments the numItems variable.

public void enqueue(Object item)
// Adds an element to the front of this queue
{
front = (front + 1) % capacity;
queue[front] = item;
numItems = numItems + 1;

}

The dequeue method is essentially the reverse of this—it returns the element indicated
by the rear variable, increments rear, also wrapping if necessary, and decrements
numItems. Note that this method starts by making a copy of the reference to the object
it eventually returns. It does this because during its next few steps, it removes the refer-
ence to the object from the array, and if it did not first make a copy, it would not be
able to return the required information.

public Object dequeue()
// Removes an element from the rear of this queue
{
Object toReturn = queue[rear];
queue[rear] = null;
rear = (rear + 1) % capacity;
numItems = numItems - 1;
return toReturn;

}

Note that dequeue, like the stack pop operation, actually sets the value of the array
location associated with the removed element to null. As explained before, this allows
the Java garbage collection process to work with up-to-date information.

The observer methods are very simple.
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public boolean isEmpty()
// Checks if this queue is empty
{
return (numItems == 0);

} 

public boolean isFull()
// Checks if this queue is full
{
return (numItems == capacity);

}

The entire ArrayQueue.java program is contained on the web site.

Test Plan
To make sure that you have tested all the necessary cases, make a test plan, listing all
the queue operations and what tests are needed for each, as we did for stacks. (For
example, to test the method isEmpty, you must call it at least twice, once when the
queue is empty and once when it is not.)

You want to enqueue elements until the queue is full and then to call methods
isEmpty and isFull to see whether they correctly judge the state of the queue. You
can then dequeue all the elements in the queue, printing them out as you go, to make
sure that they are correctly removed. At this point you can call the queue status meth-
ods again to see whether the empty condition is correctly detected. You also want to test
out the “tricky” part of the array-based algorithm: You enqueue until the queue is full,
dequeue an element, then enqueue again, forcing the operation to circle back to the
beginning of the array.

Comparing Array Implementations
The circular array solution is not nearly as simple or intuitive as our first queue design.
What did we gain by adding some amount of complexity to our design? By using a
more efficient dequeue algorithm, we achieved better performance. To find out how
much better, let’s analyze the first design. Because the amount of work needed to move
all the remaining elements is proportional to the number of elements, this version of
dequeue is a O(N ) operation. The second array-based queue design only requires
dequeue to perform a few simple operations. The amount of work never exceeds some
fixed constant, no matter how many elements are in the queue, so the algorithm is O(1).

All the other operations are O(1). No matter how many items are in the queue, they
do (essentially) a constant amount of work.
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Figure 4.12 A calculator that evaluates postfix expressions

2Postfix notation is also known as reverse Polish notation (RPN), so named after the Polish logician Jan
Lukasiewicz (1875–1956) who developed it.

Case Study
Postfix Expression Evaluator

Problem Postfix notation2 is a notation for writing arithmetic expressions in which the
operators appear after their operands. There are no precedence rules to learn, and parentheses
are never needed. Because of this simplicity, some popular hand-held calculators use postfix
notation to avoid the complications of the multiple parentheses required in nontrivial infix
expressions (Figure 4.12); it is also used by compilers for generating nonambiguous
expressions. You are to write a computer program that evaluates postfix expressions. In
addition to evaluating the expressions, your program must display some statistics about the
evaluation activity.

Discussion In elementary school you learned how to evaluate simple expressions that involve
the basic binary operators: addition, subtraction, multiplication, and division. (These are called
binary operators because they each operate on two operands.) It is easy to see how a child
would solve the following problem:

2 + 5 = ?
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As expressions become more complicated, the pencil and paper solutions require a little
more work. A number of tasks must be performed to solve the following problem:

(((13 � 1) / 2) * (3 + 5)) = ?

These expressions are written using a format known as infix notation. This same notation
is used for writing arithmetic expressions in Java. The operator in an infix expression is written
in between its operands. When an expression contains multiple operators such as the one
shown here, we need to use a set of rules to determine which operation to carry out first. You
learned in your mathematics classes that multiplication is done before addition. You learned
Java’s operator-precedence rules in your first Java programming course. In both situations, we
use parentheses to override the normal ordering rules. It is easy to make a mistake writing or
interpreting an infix expression containing multiple nested sets of parentheses.

Evaluating Postfix Expressions Postfix notation is another format for writing arithmetic
expressions. In this notation, the operator is written after the two operands. Here are some
simple postfix expressions and their results.

Postfix Expression Result

4 5 + 9
9 3 / 3
17 8 � 9

The rules for evaluating postfix expressions with multiple operators are much simpler than
those for evaluating infix expressions; simply evaluate the operations from left to right. Now,
let’s look at a postfix expression containing two operators.

6 2 / 5 +

We evaluate the expression by scanning from left to right. The first item, 6, is an operand,
so we go on. The second item, 2, is also an operand, so again we continue. The third item is
the division operator. We now apply this operator to the two previous operands. Which of
the two saved operands is the divisor? The one we saw most recently. We divide 6 by 2 and
substitute 3 back into the expression, replacing 6 2 /. Our expression now looks like this:

3 5 +

We continue our scanning. The next item is an operand, 5, so we go on. The next (and last) item is
the operator +. We apply this operator to the two previous operands, obtaining a result of 8.

Here’s another example.

4 5 + 7 2 � *
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If we scan from left to right, the first operator we encounter is +. Applying this to the two pre-
ceding operands, we obtain the expression

9 7 2 � *

The next operator we encounter is �, so we subtract 2 from 7, obtaining

9 5 *

Finally, we apply the last operator, *, to its two preceding operands and obtain our final
answer, 45.

Here are some more examples of postfix expressions containing multiple operators and
the results of evaluating them. See if you get the same results when you evaluate them.

Postfix Expression Result

4 5 7 2 + � * �16
3 4 + 2 * 7 / 2
5 7 + 6 2 � * 48
4 2 3 5 1 � + * + * not enough operands
4 2 + 3 5 1 � * + 18

Our task is to write a program that evaluates postfix expressions entered interactively
from the keyboard through a graphical user interface. In addition to computing and displaying
the value of an expression, our program must display error messages when appropriate (“not
enough operands,” “too many operands,” and “illegal symbol”) and display statistics about the
evaluation approach.

Before we specify our input and output exactly, let’s look at the data structure and algo-
rithm involved in the problem solution.

Postfix Expression Evaluation Algorithm As so often happens, our by-hand algorithm can
be used as a guideline for our computer algorithm. From the previous discussion, we see that
there are two basic items in a postfix expression: operands (numbers) and operators. We
access items (an operand or an operator) one at a time from the interface. When the item we
get is an operator, we apply it to the last two operands. Therefore, we must save previously
scanned operands in a container object of some kind. A stack is the ideal place to store the
previous operands, because the top item is always the most recent operand and the next item
on the stack is always the second most recent operand—just the two operands required when
we find an operator. The following algorithm uses a stack in this manner to evaluate a postfix
expression:
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EvaluateExpression

Each iteration of the while loop processes one operator or one operand from the expres-
sion. When an operand is found, there is nothing to do with it (we haven’t yet found the oper-
ator to apply to it), so we save it on the stack until later. When an operator is found, we get
the two topmost operands from the stack, do the operation, and put the result back on the
stack; the result may be an operand for a future operator.

Let’s trace this algorithm. Before we enter the loop, the input remaining to be processed
and the stack look like this:

After one iteration of the loop, we have processed the first operand and pushed it onto
the stack.

After the second iteration of the loop, the stack contains two operands.

5 7 + 6 2 – *

7
5

5 7 + 6 2 – *

5

5 7 + 6 2 – *

while more items exist
Get an item
if item is an operand

stack.push(item)
else

operand2 = stack.top()
stack.pop()
operand1 = stack.top()
stack.pop()
Set result to operand1 item operand2
stack.push(result)

result = stack.top()
stack.pop()
return result
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We encounter the + operator in the third iteration. We remove the two operands from the
stack, perform the operation, and push the result onto the stack.

In the next two iterations of the loop, we push two operands onto the stack.

When we find the � operator, we remove the top two operands, subtract, and push the
result onto the stack.

When we find the * operator, we remove the top two operands, multiply, and push the
result onto the stack.

Now that we have processed all of the items on the input line, we exit the loop. We
remove the result, 48, from the stack.

5 7 + 6 2 – *

Result

48

5 7 + 6 2 – *

48

5 7 + 6 2 – *

4
12

5 7 + 6 2 – *

2
6
12

5 7 + 6 2 – *

12
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Of course, we have glossed over a few “minor” details, such as how we recognize an oper-
ator and how we know when we are finished. All the input values in the example were one-
digit numbers. Clearly, this is too restrictive. We also need to handle invalid input. We discuss
these challenges when we develop the individual module algorithms.

Brainstorming and Filtering The specifications of our problem are listed in Figure 4.13.

Specification: Program Postfix Evaluation
Function
The program evaluates postfix arithmetic expressions containing integers and the operators +, �, *,
and /. In addition to displaying the result of the expression, the program displays some statistics
about the evaluation phase. 

Interface
The program presents a graphical user interface that includes a text box where the user can enter a
postfix expression. When the user presses an Evalulate button, the current expression is evaluated
and the result is displayed. Additionally, statistics about the evaluation phase are displayed. The
interface includes a Clear button. When it is pressed, the text box and previous results and statis-
tics, if any, are cleared.

Input
The input is a series of arithmetic expressions entered interactively from the keyboard into a text
box in postfix notation. The expression is made up of operators (the characters '+', '�', '*', and '/')
and integers (the operands). Operators and operands must be separated by at least one blank. Users
can also press two buttons, Evaluate and Clear. And, of course, they can close the application.

Data
All numbers input, manipulated, and output by the program are integers. 

Output
After the evaluation of each expression, the results are displayed on the interface:

“Result = value”

Also displayed are the following statistics related to the integers pushed onto the stack during the
processing of the expression: count (number of pushes), minimum (the smallest value pushed),
maximum (the largest value pushed), and average (the average value pushed). For example, if the
expression is   2  6 * then the numbers pushed during processing would be 2, 6, and 12, and the
statistics would be count = 3, minimum = 2, maximum = 12, and average = 6. Note that the
average is rounded down.

Figure 4.13 Specification for the postfix evaluator
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A study of them provides the following list of nouns that appear to be possibilities for classes:
postfix arithmetic expressions, operators, result, statistics about the evaluation phase,
operands, the stack, and error messages. Let’s look at each in turn.

• We already know that the “postfix arithmetic expressions” are entered into a text box;
therefore, an expression should be represented by a string.

• This means we can probably represent “operators” as strings also. Another possibility is to
hold the operators in an ADT that provides a “set” of characters. However, upon reflection,
we realize that all we really have to do is recognize the operator characters, and the built-
in string and character operations we already have at our disposal should be sufficient.

• The “result” of an evaluation is an interesting case. Where does the result come from?
We could evaluate it in our main program, but we already know that we are using a
graphical user interface—and following our standard approach, providing the interface
is the primary role of the main program. Therefore, we propose the creation of a sepa-
rate class PostFixEvaluator that provides a method that accepts a postfix expres-
sion as a string and returns the value of the expression. And we propose the creation of
the main program, PostFix, that provides the graphical interface and uses the other
classes to solve the problem.

Error Processing
The program should recognize illegal postfix expressions, and instead of displaying a value when
the Evaluate button is pressed, it should display error messages as follows:

Illegal symbol If an expression contains a symbol that is not an integer
or not one of “+”, “-“, “*”, and “/”

Too many operands—stack overflow If an expression requires more than 50 stack items

Too many operands—operands left over If there is more than one operand left on the stack after
the expression is processed; for example, the expression
5  6  7  +

Not enough operands—stack underflow If there are not enough operands on the stack when it is
time to perform an operation; for example, 5  6  7  +  +
+; and, for example, 5 + 5

Assumptions
1. The operations in expressions are valid at run time. This means that we do not try to divide by

zero. Also, we do not try to generate numbers outside of the range of the primitive Java int
type.

2. The stack used to process postfix expressions has a maximum size of 50.

Figure 4.13 (Continued)
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• Considering “statistics about the evaluation phase” a little more carefully, we realize it
is a perfect candidate for a separate class. Essentially, we have a set of numbers (the
numbers that are pushed onto the stack) that we generate while processing the postfix
expression. When we are finished evaluating the expression, we need to know some
information about these numbers. We propose an IntSetStats class (statistics about
a set of integers) to provide this service.

• The “operands” are integers.
• The “stack” is easy. We decide to use our ArrayStack class.
• The “error messages” we need to generate are all related to the evaluation of the post-

fix expression. Since we have proposed that the PostFixEvaluator class handles
the postfix expression as a string and evaluates it, we realize that the errors are discov-
ered within PostFixEvaluator. However, the error messages must be communi-
cated through the graphical user interface. Therefore, to facilitate the communication
of the error messages between PostFixEvaluator and the main program, we pro-
pose the creation of an exception class called PostFixException.

We leave it to you to create some CRC cards for the five classes we just identified (Post-
Fix, PostFixEvaluator, IntSetStats, ArrayStack, and PostFixException) and to
model some scenarios involving the use of the postfix expression evaluator.

We now move on to the design, implementation, and testing of the classes. Note that we
assume the ArrayStack class has already been thoroughly tested. Also note that we can test
the other three classes altogether, once they have all been created, by trying out a number of
postfix expressions (both legal and illegal).

Evolving a Program
We present our case study in an idealized fashion. We make a general problem statement; dis-
cuss it; define formal specifications; identify classes; design and code the classes; and then test
the system. In reality, however, an application like this would probably evolve gradually, with
small unit tests performed along the way. Especially during design and coding, it is sometimes
helpful to take smaller steps, and to evolve your program rather than trying to create the entire
thing at once. For example, for this case study you could:

1. Build a prototype of the graphical interface (PostFix), just to see if the layout is OK. The
prototype would just present the interface components—it would not support any processing.

2. Build a small part of PostFixEvaluator and see if you can pass it a string from the inter-
face when the Evaluate button is pressed.

3. Next, see if you can pass back some information, any information, about the string, from
PostFixEvaluator to PostFix and have it displayed on the interface. (For example, you
could display the number of tokens in the string.)

4. Upgrade PostFixEvaluator so that it recognizes operands and transforms them into
integers. Have it obtain an operand from the expression string, transform it into an integer,
push the integer onto a stack, retrieve it, and pass it back to PostFix for display. Test this
by entering a single operand expression into the text box and pressing the Evaluate button.
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5. Upgrade PostFixEvaluator to recognize operators and process expressions that are more
complicated. Test some legal expressions.

6. Add the “push statistics” portion and test again using legal expressions.
7. Add the error trapping and reporting portion and test using illegal expressions.

Devising a good program evolution plan is often the key to successful programming.

The IntSetStats Class We start with the simplest class. The key insight here is that we do not
have to store the integers. The required statistics can be calculated whenever needed, if we
simply keep track of the count, the sum, the minimum, and the maximum. We create a
register method that is used by the client to pass in integers. Its code simply updates the
four instance variables count, min, max, and total. We use a simple trick by initializing max
to the smallest integer possible, and initializing min to the largest integer possible. This
guarantees that the first integer “registered” with the set is recorded as being both the current
maximum and the current minimum. The observers return strings, since the information is
intended for display. The code is very straightforward:

//----------------------------------------------------------------------------
// IntSetStats.java            by Dale/Joyce/Weems                   Chapter 4
// 
// Keeps track of some statistics about a set of integers passed to it
//----------------------------------------------------------------------------

package ch04.stacks;

public class IntSetStats
{
private int count = 0;
private int max = Integer.MIN_VALUE;
private int min = Integer.MAX_VALUE;
private int total = 0;

public void register(int value)
{
count = count + 1;
if (value > max)
max = value;

if (value < min)
min = value;

total = total + value;
}
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public String getCount()
{
return Integer.toString(count);

}

public String getMax()
{
return Integer.toString(max);

}

public String getMin()
{
return Integer.toString(min);

}

public String getAverage()
{
if (count != 0)
return Integer.toString((total / count));

else
return "none";

}
}

The PostFixEvaluator Class The only purpose of this class is to provide a method that accepts
a postfix expression as a string and returns the value of the expression. We do not need any
objects of the class, just an evaluate method. Therefore, we implement the public evaluate
method as a static method. This means it is not associated with objects of the class and is
invoked through the class itself.

The evaluate method must take a postfix expression as a string parameter and return
the value of the expression. We decide to have the method return the value of the expression
as a string also; this makes for a balanced interface. Besides, we know that the client in this
example needs to have the result as a string in order to display it anyway.

The code for the class is listed on page 315. It follows the basic postfix expression algo-
rithm that we developed earlier. A few interesting features of the code are described next.

Push Statistics Recall that the client also needs to display information about the “push
statistics.” To provide this information to the client, we add a second parameter to the
evaluate method, a parameter of type IntSetStats. The client instantiates the
IntSetStats object and passes a reference to it, to the evaluate method. The evaluate
method uses that reference to “register” the various integers that are pushed onto the stack
during the processing of the expression. Since the client retains its own reference to the
IntSetStats object, the client is able to “observe” the desired statistics when needed.
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String Tokenizing The evaluate method needs to parse the expression string into
operands and operators. The Java library provides a useful tool, the StringTokenizer class,
to make this job easier. Since some readers may not be familiar with it, we briefly describe it in
the String Tokenizing feature section below.

String Tokenizing
The evaluate method of the PostFixEvaluator class parses the user’s input expres-

sion string into operands and operators. We use the Java library StringTokenizer class to
facilitate this processing. The corresponding lines of code in the PostFixEvaluator class are
emphasized.

A program instantiates a StringTokenizer object by passing its constructor a string, for
example:

StringTokenizer tokenizer = new StringTokenizer(expression);

In this case, expression is a string, for example “15 8 * 13 +”.
The StringTokenizer object tokenize can then be used to observe information about

the tokens of the string, and to obtain the tokens themselves. A token is a substring that is
delimited by special characters. A program can define its own special characters for its pur-
poses, or use the default characters (typical “white space” characters such as blanks and tabs).
In our program, we use the default delimiters. So for the sample string shown above, the tok-
enizer breaks the string into 5 tokens: “15”, “8”, “*”, “13”, and “+”. A call to
tokenizer.countTokens would return the value 5.

The StringTokenizer class includes a pair of methods (hasMoreTokens and nextTo-
ken) that can be used to iterate through all the tokens of a string. The nextToken method
returns a string equal to the next token—so the first time it is called in our example it returns
“15”; the second time it is called it returns “8”; etc. The hasMoreTokens method returns a
boolean indicating whether nextToken still has more tokens to return. See the emphasized code
in the PostFixEvaluator class for an example of how these methods are used to step through
the tokens of the postfix expression.

Error Message Generation Look through the code for the lines that throw Post-
FixException exceptions. You should be able to see that we cover all of the error conditions
required by the problem specification. As would be expected, the error messages directly
related to the stack processing are all protected by if-statements that check to see if the stack
is empty (not enough operands) or full (too many operands). The only other error trapping
occurs when attempting to transform a token (already determined not to be an operator) into
an integer. If the

value = Integer.parseInt(token);
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statement raises an exception because the token cannot be transformed into an integer, we
catch it and then throw our own customized PostFixException exception to the client
program with the message “Illegal symbol”.

//----------------------------------------------------------------------------
// PostFixEvaluator.java          by Dale/Joyce/Weems                Chapter 4
// 
// Provides a postfix expression evaluation
//----------------------------------------------------------------------------

package ch04.postfix;

import ch04.stacks.*;
import java.util.StringTokenizer;

public class PostFixEvaluator
{
public static String evaluate(String expression, IntSetStats pushInts)
{
ArrayStack stack = new ArrayStack(50);

int value;
Integer wrapValue;

int operand1;
int operand2;

int result = 0;
Integer wrapResult;

String token;

StringTokenizer tokenizer = new StringTokenizer(expression);

while (tokenizer.hasMoreTokens())
{
token = tokenizer.nextToken();
if (isNotOperator(token))
{
// Process operand
try
{
value = Integer.parseInt(token);
wrapValue = new Integer(value);

}
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catch (NumberFormatException badData)
{
throw new PostFixException("Illegal symbol: " + 

badData.getMessage());
}

if (stack.isFull())
throw new PostFixException("Too many operands - stack overflow");

stack.push(wrapValue);
pushInts.register(value);

}
else
{
// Process operator
if (stack.isEmpty())
throw new PostFixException("Not enough operands - stack underflow");

operand2 = ((Integer)stack.top()).intValue();
stack.pop();

if (stack.isEmpty())
throw new PostFixException("Not enough operands - stack underflow");

operand1 = ((Integer)stack.top()).intValue();
stack.pop();

if (token.equals("/"))
result = operand1 / operand2;

else
if(token.equals("*"))
result = operand1 * operand2;

else
if(token.equals("+"))
result = operand1 + operand2;

else
if(token.equals("-"))
result = operand1 - operand2;

wrapResult = new Integer(result);
stack.push(wrapResult);
pushInts.register(result);

}
}

if (stack.isEmpty())
throw new PostFixException("Not enough operands - stack underflow");

result = ((Integer)stack.top()).intValue();
stack.pop();
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// Stack should now be empty
if (!stack.isEmpty())
throw new PostFixException("Too many operands - operands left over");

return Integer.toString(result);
}

private static boolean isNotOperator(String testThis)
{
if(testThis.equals("/") || testThis.equals("*") ||

testThis.equals("-") || testThis.equals("+"))
return false;

else
return true;

}
}

The PostFix Class This class is the main driver for our application. It consists mostly of user
interface-related statements.

The main processing defined in this class takes place in the ActionPerformed method
of the ActionHandler class when the event getActionCommand returns a string indicat-
ing that the Evaluate button has been pressed. In this case, the program instantiates a new
IntSetStats object pushInts, and passes it and the current postfix expression (from the
text field) to the PostFixEvaluator’s evaluate method. It obtains the result of the
expression directly from the method as a return value. It obtains the required "push statistics”
by invoking the observers of pushInts. In the case that an exception is caught, result is set
to the exception’s message. In either case, result is displayed on the interface.

The rest of the code is concerned with displaying the interface. In this program we use a
new approach to laying out the interface, which is described in the Java Input/Output III fea-
ture section below. Here are a few screenshots from the running program. The first shows the
interface as originally presented to the user:
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Here’s the result of a successful evaluation:

Next, the Clear button is pushed:

Here’s what happens when the user enters an expression with too many operands:

And finally, what happens when an illegal operand is used:

As stated above, most of the code of PostFix deals with the user interface. To help you sort
things out, we have emphasized the code related to working with the other classes created for
this application: PostFixEvaluator, PostFixException, and IntSetStats. Note that



Case Study: Postfix Expression Evaluator | 319

the main driver does not directly use ArrayStack—it is used strictly by the PostFixEvalu-
ator class when evaluating an expression.

//----------------------------------------------------------------------------
// PostFix.java               by Dale/Joyce/Weems                    Chapter 4
// 
// Evaluates postfix expressions
//----------------------------------------------------------------------------

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import java.io.*;
import ch04.postfix.*;

public class PostFix
{
// Text field
private static JTextField expressionText;  // Text field for postfix 

// expression

// Status Label
private static JLabel statusLabel;         // Label for status/result info

// push statistics labels
private static JLabel countValue;
private static JLabel minimumValue;
private static JLabel maximumValue;
private static JLabel averageValue;

// To track "push" statistics
private static IntSetStats pushInts;

// Define a button listener
private static class ActionHandler implements ActionListener
{
public void actionPerformed(ActionEvent event)
// Listener for the button events
{
if (event.getActionCommand().equals("Evaluate"))
{ // Handles Evaluate event
String result;
try
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{
pushInts = new IntSetStats();
result = PostFixEvaluator.evaluate(expressionText.getText(), 

pushInts);
countValue.setText(pushInts.getCount());
minimumValue.setText(pushInts.getMin());
maximumValue.setText(pushInts.getMax());
averageValue.setText(pushInts.getAverage());

}
catch (PostFixException error)
{
result = error.getMessage();

}
statusLabel.setText("Result = " + result);

}
else
if (event.getActionCommand().equals("Clear"))
{ // Handles Clear event
statusLabel.setText("cleared");
countValue.setText("");
minimumValue.setText("");
maximumValue.setText("");
averageValue.setText("");
expressionText.setText("");

}
}

}

public static void main(String args[]) throws IOException
{
// Declare/instantiate/initialize display frame
JFrame displayFrame = new JFrame();
displayFrame.setTitle("PostFix Expression Evaluator Program");
displayFrame.setSize(400,150);
displayFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Text box for expression
expressionText = new JTextField("postfix expression goes here", 60);

// Status/Result label
statusLabel = new JLabel("status", JLabel.CENTER);
statusLabel.setBorder(new LineBorder(Color.red,3));

// Labels for "push" statistics output
JLabel headerLabel   = new JLabel("Push Statistics", JLabel.LEFT);
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JLabel blankLabel   = new JLabel("");
JLabel blankLabel2  = new JLabel("");
JLabel blankLabel3  = new JLabel("");
JLabel countLabel   = new JLabel("Count: ", JLabel.RIGHT);
JLabel minimumLabel = new JLabel("Minimum: ", JLabel.RIGHT);
JLabel maximumLabel = new JLabel("Maximum: ", JLabel.RIGHT);
JLabel averageLabel = new JLabel("Average: ", JLabel.RIGHT);
countValue   = new JLabel("", JLabel.LEFT);
minimumValue = new JLabel("", JLabel.LEFT);
maximumValue = new JLabel("", JLabel.LEFT);
averageValue = new JLabel("", JLabel.LEFT);

// Evaluate and clear buttons
JButton evaluate   = new JButton("Evaluate");
JButton clear       = new JButton("Clear");

// Button event listener
ActionHandler action = new ActionHandler();

// Register button listeners
evaluate.addActionListener(action);
clear.addActionListener(action);

// Instantiate content pane and information panels
Container contentPane = displayFrame.getContentPane();
JPanel expressionPanel = new JPanel();
JPanel buttonPanel = new JPanel();
JPanel labelPanel = new JPanel();

// Initialize expression panel
expressionPanel.setLayout(new GridLayout(2,1));
expressionPanel.add(expressionText);
expressionPanel.add(statusLabel);

// Initialize button panel
buttonPanel.setLayout(new GridLayout(1,2));
buttonPanel.add(evaluate);
buttonPanel.add(clear);

// Initialize label panel
labelPanel.setLayout(new GridLayout(3,4));
labelPanel.add(headerLabel);
labelPanel.add(blankLabel);
labelPanel.add(blankLabel2);
labelPanel.add(blankLabel3);
labelPanel.add(countLabel);
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labelPanel.add(countValue);
labelPanel.add(maximumLabel);
labelPanel.add(maximumValue);
labelPanel.add(averageLabel);
labelPanel.add(averageValue);
labelPanel.add(minimumLabel);
labelPanel.add(minimumValue);

// Set up and show the frame
contentPane.add(expressionPanel, "North");
contentPane.add(buttonPanel, "Center");
contentPane.add(labelPanel, "South");

displayFrame.show();
}

}

Testing Postfix Evaluator As mentioned before, we can test the classes created for our
case study all together. We run the Postfix Evaluator program and enter a sequence of
varied postfix expressions. We should test expressions that contain only additions,
subtractions, multiplications, and divisions, and expressions that contain a mixture of
operations. We should test expressions where the operators all come last, and other
expressions where the operators are intermingled with the operands. Of course, we must
evaluate all test expressions “by hand” in order to verify the correctness of the program’s
results. Finally, we must test that illegal expressions are correctly handled, as defined in the
specifications. This includes a test of stack overflow.

Java Input/Output III
The input/output approaches used for the Postfix Evaluator case study build on the

approaches used in the IncDate test driver of Chapter 1 and the Real Estate case study of
Chapter 3. Remember that the Java I/O tools are extremely robust, and the approaches used in
this text are not the only approaches possible.

Nested Containers

You have probably realized that the layout of the interface for the Postfix Evaluator is slightly
more complicated than that of the Real Estate program of Chapter 3. Although its true that the
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Real Estate program had more labels, text fields, and buttons, its layout was a single Grid layout,
defined by the statement

infoPanel.setLayout(new GridLayout(10,2));

For the Real Estate program, the layout manager presented the components in a 10-by-2 grid
(10 rows, 2 columns) of identically sized components.

For the PostFix Evaluator we do not want equal-sized components. At the top of our frame
we want two components that extend the width of the frame, one a text field for the user to
enter postfix expressions and the other a label used to report results and error messages. In the
middle of our frame we want two buttons, each spanning half the frame. And at the bottom of
our frame we want a 3-by-4 grid of labels for the push statistics. (We need four columns
because we display two statistic name-value pairs across a row.) How can we organize the dif-
ferent areas of our interface with different layouts? By using nested containers.

First we organize each of our identified sub-areas into their own containers (panels), each
following their own layout definition. We call these containers the expressionPanel, the
buttonPanel, and the labelPanel. They are instantiated with the following code:

JPanel expressionPanel = new JPanel();
JPanel buttonPanel = new JPanel();
JPanel labelPanel = new JPanel();

A quick study of our three subareas reveals that they can each be organized with the grid layout
approach we used in the Real Estate program. In the “top” area, the components span the
frame—so they should be in a single column. In the “middle” area, the two buttons require a sin-
gle row, but two columns. And in the “bottom” area, the labels require a 3-by-4 grid, as
explained above. Here is the code that defines the layouts used for each panel:

expressionPanel.setLayout(new GridLayout(2,1));
buttonPanel.setLayout(new GridLayout(1,2));
labelPanel.setLayout(new GridLayout(3,4));

Once the subcontainers are defined, we add them to the “overall” container. In this case, we can
add them directly to the content pane. Recall that the content pane is the part of the display
frame where we add content for display. The content pane is itself a Java Swing container. We
can define its layout, just as we define the layout of any container. We could define it as a 
3-row-by-1-column grid layout to achieve our desired results. However, in this case, we are able
to use its default layout, the Border layout, which gives a slightly better appearance to our
interface.

The Border layout divides a container into five areas as follows:
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With the Border layout, the programmer can choose which area to add specific components. The
layout manager keeps the component in that part of the interface. If the user changes the frame
size vertically, the West, Center, and East areas change in size proportionally; if the user changes
the frame size horizontally, the North, Center, and South areas are adjusted.

We complete our interface by adding our three frames to the appropriate area of the con-
tent pane, and then displaying the frame:

contentPane.add(expressionPanel, "North");
contentPane.add(buttonPanel, "Center");
contentPane.add(labelPanel, "South");

displayFrame.show();

Nested Grid and Border layouts provide a wide range of interface design possibilities. These
approaches are sufficient for the rest of the case studies developed in this text. For more sophis-
ticated layout management approaches, the reader is encouraged to study the other Java layout
managers, in particular the Grid Bag layout approach.

North

South

West Center East
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Summary
We have defined a stack at the logical level as an abstract data type, discussed its use in an
application, and presented two implementations, each encapsulated in a class. Though our
logical picture of a stack is a linear collection of data elements with the newest element
(the top) at one end and the oldest element at the other end, the physical representation of
the stack class does not have to recreate our mental image. The implementation of the
stack class must support the last in, first out (LIFO) property; how this property is sup-
ported, however, is another matter. For instance, the push operation could “time stamp”
the stack elements and put them into an array in any order. To pop, we would have to
search the array, looking for the newest time stamp. This representation is very different
from the stack implementations we developed in this chapter, but to the user of the stack
class they are all functionally equivalent. The implementation is transparent to the pro-
gram that uses the stack because the stack is encapsulated by the operations in the class
that surrounds it.

We also examined the definition and operations of a queue. We discussed some of
the design considerations encountered when an array is used to contain the elements of
a queue. Though the array itself is a random-access structure, our logical view of the
queue as a structure limits us to accessing only the elements in the front and rear posi-
tions of the queue stored in the array.

There usually is more than one functionally correct design for the same data struc-
ture. When multiple correct solutions exist, the requirements and specifications of the
problem may determine which solution is the best design.

In the design of data structures and algorithms, you find that there are often trade-
offs. A more complex algorithm may result in more efficient execution; a solution that
takes longer to execute may save memory space. A simple algorithm that is fast enough
is usually better than a faster, more difficult algorithm. As always, we must base our
design decisions on what we know about the problem’s requirements.

Summary of Classes and Support Files
The classes and files are listed in the order in which they appear in the text. Inner
classes are not included. The package a class belongs to, if any, is listed in parentheses
under Notes. The class and support files are available on our web site. They can be
found in the ch04 subdirectory of the bookFiles directory.
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Classes, Interfaces, and Support Files Defined in Chapter 4

File 1st Ref. Notes

ListInterface.java page 251 (ch04.genericLists) This interface speci-
fies our List ADT

List.java page 253 (ch04.genericLists) This abstract class
developed in Chapter 3 now “implements” the
ListInterface

StackUnderflowException.java page 257 (ch04.stacks) Used by the stack classes
developed in this chapter

StackOverflowException.java page 258 (ch04.stacks) Used by the stack classes
developed in this chapter

StackInterface.java page 263 (ch04.stacks) This interface specifies our
Stack ADT

Balanced.java page 268 Uses a stack to determine whether a string of
characters contains balanced parentheses

ArrayStack.java page 274 (ch04.stacks) Implements StackInter-
face using an array

ArrayListStack.java page 278 (ch04.stacks) Implements StackInter-
face using an ArrayList

QueueInterface.java page 289 (ch04.queues) This interface specifies our
Queue ADT

Palindrome.java page 293 Uses a queue to determine whether a string
of characters is a palindrome

ArrayQueue.java page 301 (ch04.queues) Implements QueueInter-
face using an array

IntSetStats.java page 312 (ch04.postfix) Used by the Postfix Expres-
sion Evaluator to maintain push statistics

PostFixEvaluator.java page 315 (ch04.postfix) Used by the Postfix Expres-
sion Evaluator to evaluate expressions

PostFix.java page 319 The Postfix Expression Evaluator program for
the case study

PostFixException.java (ch04.postfix) Used by the Postfix classes
developed in this chapter

test1.in page 273 Test data for the Balanced program

test1.out page 273 Test output from the Balanced program

testP1.in page 296 Test data for the Palindrome program

testP1.out page 296 Test output from the Palindrome program
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Library Classes Used in Chapter 4 for the First Time:

Class Name Package Overview Methods Used Where Used

DecimalFormat text

StringTokenizer util

Allows us to for-
mat numbers

Makes it easy to
break a string into
substrings of
tokens

DecimalFormat,
format

String-
Tokenizer,
hasMoreTokens,
nextToken

Balanced

PostFix-
Evaluator

Below is a list of the Java Library Classes that were used in this chapter for the first
time in the textbook. The classes are listed in the order in which they are first used. We
list only classes used in our programs, not classes just mentioned in the text. Note that
in some classes the methods listed might not be defined directly in the class; they might
be defined in one of its superclasses. With the methods we also list constructors, if
appropriate. For more information about the library classes and methods, the reader can
check Sun’s Java documentation.

Exercises
4.1 Formal ADT Specifications

1. Describe the benefits of using the Java interface construct to specify ADTs.

2. What happens if a Java interface specifies a particular method signature, and a
class that implements the interface provides a different signature for that
method? For example, suppose interface SampleInterface is defined as:

public interface SampleInterface
{
public int sampleMethod();

}

and the class SampleClass is

public class SampleClass implements SampleInterface
{
public boolean sampleMethod()
{
return true;

}
}

3. True or False? Explain your answers.

a. You can define constructors for a Java interface.

b. Classes implement interfaces.
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c. Classes extend interfaces.

d. A class that implements an interface can include methods that are not
required by the interface.

e. A class that implements an interface can leave out methods that are required
by an interface.

f. You can instantiate objects of an interface.

g. An interface definition can include concrete methods.

4.2 Stacks
4. Indicate whether a stack would be a suitable data structure for each of the fol-

lowing applications.

a. A program to evaluate arithmetic expressions according to a specific order of
operators

b. A bank simulation of its teller lines to see how waiting times would be
affected by adding another teller

c. A program to receive data that are to be saved and processed in reverse order

d. An address book to be built and maintained

e. A word processor to have a PF key that causes the preceding command to be
redisplayed. Every time the PF key is pressed, the program is to show the
command that preceded the one currently displayed

f. A dictionary of words used by a spelling checker to be built and maintained

g. A program to keep track of patients as they check into a medical clinic,
assigning patients to doctors on a first-come, first-served basis

h. A data structure used to keep track of the return addresses for nested func-
tions while a program is running

5. Show what is written by the following segments of code, given that item1,
item2, and item3 are int variables, and stack is an object of the class
ArrayStack. Assume that you can store and retrieve variables of type int on
stack.

a. item1 = 1;
item2 = 0;
item3 = 4;
stack.push(item2);
stack.push(item1);
stack.push(item1 + item3);
item2 = stack.top();
stack.push (item3*item3);
stack.push(item2);
stack.push(3);
item1 = stack.top();
stack.pop();
System.out.println(item1 + " " + item2 + " " + item3);
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while (!stack.isEmpty())
{
item1 = stack.top();
stack.pop();
System.out.println(item1);

}

b. item1 = 4;
item3 = 0;
item2 = item1 + 1;
stack.push(item2);
stack.push(item2 + 1);
stack.push(item1);
item2 = stack.top();
stack.pop();
item1 = item2 + 1;
stack.push(item1);
stack.push(item3);
while (!stack.isEmpty())
{
item3 = stack.top();
stack.pop();
System.out.println(item1);

}
System.out.println(item1 + " " + item2 + " " + item3);

6. A stack called stack is implemented as an object of a class that defines an
array of items, an instance variable indicating the index of the last item put on
the stack (top), and two boolean instance variables, underFlow and
overFlow, that are set appropriately after each stack modification, to indicate
whether the operation caused an overflow or underflow of the stack. The stack
items are characters and MAX_ITEM is 5. For each part of the exercise, the left
side of the figure represents the state of the stack before the specified opera-
tion. Show the result of the operation on the stack on the right side of the fig-
ure. Use ‘T’ or ‘F’ for true or false in the boolean instance variables.

a. stack.push(letter);

[0]

Mletter

[0]

stack.top

.overFlow

.underFlow

.items

letter

stack.top

.overFlow

.underFlow

.items
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b. stack.push(letter);

c. letter=stack.top();
stack.pop()

d. letter=stack.top();
stack.pop()

7. Write a segment of code to perform each of the following operations. Assume
myStack is an object of the class ArrayStack. You may call any of the public
methods of ArrayStack. You may declare additional stack objects.

a. Set secondElement to the second element in myStack, leaving myStack
without its original top two elements.

b. Set bottom equal to the bottom element in myStack, leaving myStack empty.

c. Set bottom equal to the bottom element in myStack, leaving myStack
unchanged.

d. Make a copy of myStack, leaving myStack unchanged.

[0] [1] [2] [3] [4]

A B X Y Z

4

X

[0] [1] [2] [3] [4]

letter

stack.top
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.overFlow

.underFlow
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[0] [1] [2] [3] [4]

A B C D E

0

X

[0] [1] [2] [3] [4]

letter

stack.top

.overFlow

.underFlow

.items

letter

stack.top

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

A B C D E

4

X

[0] [1] [2] [3] [4]

letter

stack.top

.overFlow

.underFlow

.items

letter

stack.top

.overFlow

.underFlow

.items



Exercises | 331

8. Two stacks of positive integers are needed, both containing integers with values
less than or equal to 1000. One stack contains even integers; the other contains
odd integers. The total number of elements in the combined stacks is never more
than 200 at any time, but we cannot predict how many are in each stack. (All the
elements could be in one stack, they could be evenly divided, both stacks could be
empty, and so on.) Can you think of a way to implement both stacks in one array?

a. Draw a diagram of how the stacks might look.

b. Write the definitions for such a double-stack structure.

c. Implement the push operation; it should store the new item into the correct
stack according to its value (even or odd).

9. In each plastic container of Pez candy, the colors are stored in random order. Your
little brother Phil only likes the yellow ones, so he painstakingly takes out all the
candies, one by one, eats the yellow ones, and keeps the others in order, so that he
can return them to the container in exactly the same order as before—minus the
yellow candies, of course. Write the algorithm to simulate this process. (You may
use any of the stack operations defined in the Stack ADT, but may not assume any
knowledge of how the stack is implemented.)

10. In compiler construction, we need an inspector member for our stack so that we can
examine stack elements based on their location in the stack (the top of the stack is
considered location 1, the second element from the top is location 2, etc.) This is
sometimes called (colloquially) a “glass stack” or (more formally) a “traversable
stack.” The definition of the stack is exactly as we specify in this chapter, except we
add a public method named inspector that accepts a parameter of type int indi-
cating the location we want to examine, and that returns the appropriate object.

a. Write pre- and postconditions for inspector. Throw an exception if index
is out of range.

b. Code this method and test it thoroughly.

11. In compiler construction, we need to be able to pop more than one element at a
time, discarding the items popped. To do this, we provide an int parameter
count for the pop method and change the behavior to remove the top count
items from the stack.

a. Write this operation as client code, using operations from StackInterface.

b. Write this operation as a new method of the ArrayStack class.

c. Write this operation as a new method of the ArrayListStack class.

12. The following code segment is a count-controlled loop going from 1 through 5. At
each iteration, the loop counter is either printed or put on a stack depending on the
boolean result returned by the method random. (Assume that random randomly
returns either a true or a false.) At the end of the loop, the items on the stack are
removed and printed. Because of the logical properties of a stack, this code segment
cannot print certain sequences of the values of the loop counter. You are given an
output and asked to determine whether the code segment could generate the out-
put. Assume that the stack is implemented as an ArrayStack.
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for (count = 1; count <= 5; count++)
{
if (random())
System.out.println(count);

else
stack.push(count);

while (!stack.isEmpty())
{
number = stack.top();
stack.pop();
System.out.println(number);

}

a. The following output is possible: 1 3 5 2 4

i) True ii) False iii) Not enough information

b. The following output is possible: 1 3 5 4 2

i) True ii) False iii) Not enough information

c. How would your answers to parts a and b change if you assume the stack is
implemented as an ArrayListStack?

13. Describe the benefits and drawbacks of implementing a “container” ADT

a. by copy.

b. by reference.

14. Suppose you are “desk tracing” a program. You see that the program inserts a
student record for a student with the ID of 55555 into a list. Later in the pro-
gram the list is observed with an isThere method, to see if a student with the
ID 55555 is on the list. Since no list methods have been invoked since the pre-
vious insert statement, you expect this isThere call to return true, but you
know from a print-out of results that it returns false. What might explain
this strange situation? What should you look for in the implementation of the
list ADT and in the client program to verify your hypothesis?

4.3 The Java Collections Framework
(Note: The questions in this section may require “outside” research.)

15. Describe the major differences between the Java Library’s Vector and
ArrayList classes.

16. Explain how the iterators in the Java Collections Framework are used.

17. What is the defining feature of the Java Library Set class?

18. Which classes of the Java Library implement the Collection interface?

4.4 Queues
19. Show what is written by the following segments of code, given that item1,

item2, and item3 are int variables, and queue is an object of the class
ArrayQueue. Assume that you can store and retrieve variables of type int in
queue.
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a. item1 = 1;

item2 = 0;
item3 = 4
queue.enqueue(item2);
queue.enqueue(item1);
queue.enqueue(item1 + item3);
item2 = queue.dequeue()
queue.enqueue(item3*item3);
queue.enqueue(item2);
queue.enqueue(3);
item1 = queue.dequeue();
System.out.println(item1 + " " + item2 + " " + item3);
while (!queue.isEmpty())
{
item1 = queue.dequeue();
System.out.println(item1);

}

b. item1 = 4;

item3 = 0;
item2 = item1 + 1;
queue.enqueue(item2);
queue.enqueue(item2 + 1);
queue.enqueue(item1);
item2 = queue.dequeue();
item1 = item2 + 1;
queue.enqueue(item1);
queue.enqueue(item3);
while (!queue.IsEmpty())
{
item1 = queue.dequeue();
System.out.println(item1);

}
System.out.println(item1 + " " + item2 + " " + item3);

20. The specifications for the Queue ADT have been changed. The class representing
the queue must check for overflow and underflow and throw an exception.
Rewrite the QueueInterface interface incorporating this change.

21. Write a segment of code to perform each of the following operations. Assume
myQueue is an object of the class ArrayQueue. You may call any of the public
methods of ArrayQueue. You may declare additional queue objects.

a. Set secondElement to the second element in myQueue, leaving myQueue
without its original front two elements.

b. Set last equal to the rear element in myQueue, leaving myQueue empty.
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c. Set last equal to the rear element in myQueue, leaving myQueue unchanged.

d. Make a copy of myQueue, leaving myQueue unchanged.

22. Indicate whether each of the following applications would be suitable for a queue.

a. An ailing company wants to evaluate employee records in order to lay off
some workers on the basis of service time (the most recently hired employees
are laid off first).

b. A program is to keep track of patients as they check into a clinic, assigning
them to doctors on a first-come, first-served basis.

c. A program to solve a maze is to backtrack to an earlier position (the last
place where a choice was made) when a dead-end position is reached.

d. An inventory of parts is to be processed by part number.

e. An operating system is to process requests for computer resources by allocat-
ing the resources in the order in which they are requested.

f. A grocery chain wants to run a simulation to see how average customer wait
time would be affected by changing the number of checkout lines in the stores.

g. A dictionary of words used by a spelling checker is to be initialized.

h. Customers are to take numbers at a bakery and be served in order when their
numbers come up.

i. Gamblers are to take numbers in the lottery and win if their numbers are picked.

23. Consider an operation on a queue that returns the number of items in the queue,
without changing the queue itself. Describe how you would implement this oper-
ation

a. as a client method, where the client is using our ArrayQueue class for queues.

b. as a public method of the ArrayQueue class.

24. The following code segment is a count-controlled loop going from 1 through 5. At
each iteration, the loop counter is either printed or put on a queue depending on
the boolean result returned by the method random. (Assume that random ran-
domly returns either a true or a false.) At the end of the loop, the items on the
queue are removed and printed. Because of the logical properties of a queue, this
code segment cannot print certain sequences of the values of the loop counter. You
are given an output and asked to determine whether the code segment could gener-
ate the output. Assume that the queue is implemented as an ArrayQueue.

for (count = 1; count <= 5; count++)
{
if (random())
System.out.println(count);

else
queue.enqueue(count);

while (!queue.isEmpty())
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{
number = queue.dequeue();
System.out.println(number);

}

a. The following output is possible: 1 2  3  4  5

i) True ii) False iii) Not enough information

b. The following output is possible: 1 3 5 4 2

i) True ii) False iii) Not enough information

c. The following output is possible: 1 3 5 2 4

i) True ii) False iii) Not enough information

4.5 Case Study: Postfix Expression Evaluator
25. Evaluate the following postfix expressions:

a. 5   7   8   *   +

b. 5   7   8   +   *

c. 5   7   +   8   *

d. 1   2   +   3   4   +  5   6   *   � *

26. Evaluate the following postfix expressions. Some of them may be ill-formed
expressions—in that case, identify the appropriate error message (too many
operands, too few operands).

a. 1   2    3    4    5  +   +   +

b. 1   2   +   +   5

c. 1   2   *   5   6   *

d. /  23  *  87

e. 4567  234  /   45372  231  *   +   34526  342  /  +   0   *

27. Revise and test the Postfix Expression Evaluator program to

a. use Flow layout exclusively.

b. use the ArrayListStack class instead of the ArrayStack class.

c. output the range of numbers pushed onto the stack during the evaluation of
an expression instead of the average of the numbers.

d. catch and handle the “divide by zero” situation that was assumed not to hap-
pen; for example, if the input expression is 5  3   3   � /   the result would
be the message “illegal divide by zero.”

e. support a new operation indicated by “^” that returns the larger of its
operands; for example, 5  7  ^ =  7.
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Programming Project
28. This problem requires you to write a program to convert an infix expression to

postfix format. The general form of your program should be similar to our test
drivers; i.e., similar to the Palindrome and Balanced programs in this chapter.
The main input is listed in a text file. Likewise, the results are sent to a text file.
The file names are passed to the program as command line parameters. An out-
put frame displays summary statistics (for example, the number of expressions
converted) and allows the user to end the program.

The evaluation of an infix expression such as A + B * C requires knowledge
of which of the two operations, + or *, should be performed first. In general, A +
B * C is to be interpreted as A + (B * C) unless otherwise specified. We say
that multiplication takes precedence over addition. Suppose that we would now
like to convert A + B * C to postfix. Applying the rules of precedence, we begin
by converting the first portion of the expression that is evaluated, namely the
multiplication operation. Doing this conversion in stages, we obtain

A + B * C Given infix form

A + B C * Convert the multiplication

A B C * + Convert the addition

(The part of the expression that has been converted is underlined.)
The major rules to remember during the conversion process are that the opera-

tions with highest precedence are converted first and that after a portion of an
expression has been converted to postfix, it is to be treated as a single operand.
Let us now consider the same example with the precedence of operators reversed
by the deliberate insertion of parentheses:

( A + B ) * C Given infix form

A B + * C Convert the addition

A B + C * Convert the multiplication

Note that in the conversion from “A B + * C” to “A B + C *”, “A B +” was
treated as a single operand. The rules for converting from infix to postfix are
simple, provided that you know the order of precedence.

We consider four binary operations: addition, subtraction, multiplication,
and division. These operations are denoted by the usual operators, +, 2, *, and
/, respectively. There are two levels of operator precedence. Both * and / have
higher precedence than + and 2. Furthermore, when unparenthesized opera-
tors of the same precedence are scanned, the order is assumed to be left to
right. Parentheses may be used in infix expressions to override the default
precedence.

As we discussed in this chapter, the postfix form requires no parentheses.
The order of the operators in the postfix expressions determines the actual order
of operations in evaluating the expression, making the use of parentheses
unnecessary.
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Input

The input file contains a collection of error-free infix arithmetic expressions, one
expression per line. Expressions are terminated by semicolons, and the final
expression is followed by a period. An arbitrary number of blanks and end-of-
lines may occur between any two symbols in an expression. A symbol may be an
operand (a single uppercase letter), an operator (+, 2, *, or /), a left parenthesis, or a
right parenthesis.

Sample Input:

A + B – C ;
A + B * C ;
(( A + B ) / ( C – D ) + E ) / ( F + G ) .

Output

Your output file should consist of each input expression, followed by its corre-
sponding postfix expression. All output (including the original infix expressions)
must be clearly formatted (or reformatted) and also clearly labeled.

Sample Output:

Infix: A + B – C ;
Postfix: A B + C -
Infix: A + B * C ;
Postfix: A B C * +
Infix: ( A + B ) / ( C – D ) ;
Postfix: A B + C D – /
Infix: ( ( A + B ) * ( C – D ) + E ) / ( F + G ) .
Postfix: A B + C D – * E + F G + /

Your frame output can simply state how many expressions were converted and
instruct the user to close the window to exit the program.

Discussion

In converting infix expressions to postfix notation, the following fact should be
taken into consideration: In infix form the order of applying operators is governed
by the possible appearance of parentheses and the operator precedence relations;
however, in postfix form the order is simply the “natural” order—in other words, the
order of appearance from left to right.

Accordingly, subexpressions within innermost parentheses must first be con-
verted to postfix, so that they can then be treated as single operands. In this fash-
ion, parentheses can be successively eliminated until the entire expression has
been converted. The last pair of parentheses to be opened within a group of nested
parentheses encloses the first subexpression within that group to be transformed.
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This last-in, first-out behavior should immediately suggest the use of a stack. Your
program may utilize any of the operations in the Stack ADT.

In addition, you must devise a Boolean method that takes two operators and
tells you which has higher precedence. This is helpful because in Rule 3 below you
need to compare the next input symbol to the top stack element. Question: What
precedence do you assign to ‘(’? You need to answer this question because ‘(’ may
be the value of the top element in the stack.

You should formulate the conversion algorithm using the following six rules:

Rule 1: Scan the input string (infix notation) from left to right. One pass is suf-
ficient.

Rule 2: If the next symbol scanned is an operand, it may be immediately
appended to the postfix string.

Rule 3: If the next symbol is an operator,

a. Pop and append to the postfix string every operator on the stack that

i) is above the most recently scanned left parenthesis, and

(ii) has precedence higher than or equal to that of the new operator symbol.

b. Then push the new operator symbol onto the stack.

Rule 4: When an opening (left) parenthesis is seen, it must be pushed onto the
stack.

Rule 5: When a closing (right) parenthesis is seen, all operators down to the
most recently scanned left parenthesis must be popped and appended
to the postfix string. Furthermore, this pair of parentheses must be dis-
carded.

Rule 6: When the infix string is completely scanned, the stack may still con-
tain some operators. (No parentheses at this point. Why?) All these
remaining operators should be popped and appended to the postfix
string.

Data Structure

You may use either stack implementation from the chapter. Outside of the Stack
ADT operations, your program may not assume knowledge of the stack imple-
mentation. If you need additional stack operations, you should specify and
implement them using the operations for the Stack ADT.

Examples

Here are two examples to help you understand how the algorithm works. Each
line on the following table demonstrates the state of the postfix string and the
stack when the corresponding next infix symbol is scanned. The rightmost sym-
bol of the stack is the top symbol. The rule number corresponding to each line
demonstrates which of the six rules was used to reach the current state from that
of the previous line.
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Example 1: Input expression is A + B * C / D - E

Next Symbol Postfix String Stack Rule

A A 2

+ A + 3

B A B + 2

* A B + * 3

C A B C + * 2

/ A B C * + / 3

D A B C * D + / 2

- A B C * D / + � 3

E A B C * D / + E � 2

A B C * D / + E � 6

Example 2: Input expression is (A + B * (C - D) ) / E

Next Symbol Postfix String Stack Rule

( ( 4

A A ( 2

+ A ( + 3

B A B ( + 2

* A B ( + * 3

( A B ( + * ( 4

C A B C ( + * ( 2

- A B C ( + * (- 3

D A B C D ( + * (- 2

) A B C D- ( + * 5

) A B C D – * + 5

/ A B C D – * + / 3

E A B C D – * + E / 2

A B C D – * + E / 6

Deliverables

• A listing of your source code files
• A listing of your implemented test plan





Measurable goals for this chapter include that you should be able to

define and use a self-referential class to build a chain of objects (a linked structure)

implement the Stack ADT as a linked structure

implement the Queue ADT as a linked structure

implement the Unsorted List ADT as a linked structure

implement the Sorted List ADT as a linked structure

compare alternative implementations of an abstract data type with respect to performance

describe our list framework, identifying the interfaces, abstract classes, and concrete classes

Linked Structures

G
oals
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In the last chapter, we implemented our Stack ADT and our Queue ADT using an array
to hold the elements. Our array-based implementations allow the size of the array to be
passed to the constructor at run time rather than requiring that it be known at compile
time. However, these implementations still require that the maximum stack or queue
size be known when the structure is instantiated.

We also implemented the Stack ADT using an object of the ArrayList class to
hold the elements. The ArrayList class manages memory for the underlying array by
allocating a larger array when necessary and copying the contents of the old array into
the new one. In this chapter, we employ another technique: We allocate space on the
stack or queue for each individual element as it is pushed or enqueued. We also apply
the same approach to our unsorted and sorted lists.

5.1 Implementing a Stack as a Linked Structure

We have implemented lists, stacks, and queues using arrays. These implementations all
suffer from the same drawback: the size of the structure must be determined when the
object is instantiated. For example, when we use a variable of class ArrayStack, the
maximum number of stack items is passed as an argument to the constructor, and an
array of that size is allocated. If we use fewer elements, space is wasted; if we need to
push more elements than the array can hold, we cannot. It would be nice if we could
just get space for stack elements as we need it.

Self Referential Structures

Java does supply an operation for dynamically allocating space, an operation we have been
using for all of our objects—the new operation. How can we use the new operation to
dynamically build lists, stacks, and queues? We do not want to create a new array each time
we add an element to one of these structures; we just want to create a new holder for the
reference to the element. The question is, where can we hold this reference? So far, we have
been collecting all of the references used in our structures in an array. What else can we do?

Let’s just consider stacks.
Figure 5.1 shows the internal and abstract views of the results of the following

sequence of stack operations using ArrayStack. (In the figures of this section we use the
same identifiers that we use in our implementations; assume A, B, and C represent objects.)

StackInterface myStack;
myStack = new ArrayStack(4);
myStack.push(A);
myStack.push(B);
myStack.push(C);

We would like to remove the array from that figure, and from the stack implementation.
Suppose we just get rid of the array and have the instance variable stack of the

ArrayStack object point to the object that is on top of the stack. That is the very object
that we want to return when the top operation is invoked, so it makes sense to keep a
reference to it. Figure 5.2 shows the result of the same code sequence using this new
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Figure 5.1 Results of stack operations using an array
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Figure 5.2 Results of stack operations without using an array—losing references
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approach. Do you see any problems with this approach? It is true that a top operation
could return a reference to object C, the current top of stack, but what happens if the
pop operation is invoked? The element C on the top of the stack would be removed
from the stack; but there is now no way to indicate the new top of stack. There is no
longer any reference to the objects B and A.
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What we need is a place to hold our references to A and B while C is on the top of
the stack. But without an array where can we hold them? Suppose that every time we
add a new element to the stack we create a reference to the previous top of the stack. If
we do not have an array to store this reference, the only other place we can store it is as
part of the new stack element. We do this by defining a class called StackNode. This
class contains two instance variables: info is a reference to an object on the stack, and
link is a reference to the StackNode that represents the next lower stack element. A
single StackNode is pictured in Figure 5.3. Pushing an element onto the stack adds
another link to the chain. Figure 5.4 shows the result of the previous code sequence
using this approach. It graphically demonstrates the dynamic allocation of space for the
references to the stack elements.

The StackNode class is defined as:

private class StackNode
// Used to hold references to stack nodes for the linked stack 
// implementation
{
private Object info;
private StackNode link;

}

StackNode is an example of a self-referential
class. We have emphasized the code related to
the self-referential aspects in the declaration
above. The StackNode class defines a vari-
able to reference any object (the info vari-
able) and a variable to reference another
StackNode (the link variable). That next StackNode can hold a reference to any
object and a reference to another StackNode. That next StackNode can hold a refer-
ence to any object and a reference to another StackNode. And so on until a particular
StackNode holds the value null in its link.

Note: The terms reference and link are used interchangeably when discussing data
structures. The ADT implementations presented in this chapter are therefore referred to
as “reference-based” or as “linked structures.”

Figure 5.3 A single node

info:

link:

User's
data

Another
node

Self-referential class A class that includes an
instance variable or variables that can hold a reference
to an object of the same class
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Figure 5.4 Results of stack operations using StackNode
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The LinkedStack Class

We call our new stack class the LinkedStack class, to differentiate it from the array-
based class of the previous chapter. Like the ArrayStack class, our new stack class
implements the StackInterface interface. Recall that when we defined that interface
our purpose was to provide a definition of a Stack ADT that did not depend on the
underlying implementation. The StackInterface interface is defined in the
ch04.stacks package, so we must import that package into the stack classes we define
in this chapter. Since we are organizing our files by chapter, we create a new stack-
related package, ch05.stacks, to hold the classes defined in this chapter related to
defining stacks.

As implied in Figure 5.4, we need to define only one instance variable in the
LinkedStack class. We use this variable to hold a reference to the top of the stack, so
we call it top. It is a reference to an object of the class StackNode.

We define the StackNode class itself
inside the LinkedStack class. This is an
example of an inner class. By doing this, we
allow the methods of the LinkedStack class
to directly access the attributes of the Stack-
Node class, while still hiding the information
in StackNode objects from every other class. Alternately, we could define the StackN-
ode class as a separate class and provide constructors, observers, and transformers to
allow us to manipulate objects of the class. We feel that in this case, since the only pur-
pose of StackNode is to provide nodes for the reference-based implementation of
stacks, the easiest approach is to define StackNode as an inner class of LinkedStack.
The use of inner classes can be tricky—lots of naming and reference issues arise. We
suggest you restrict your use of this construct to that shown here; that is, restrict your
use to that of creating self-referential structures, until you are able to spend some time
studying the semantics of inner classes more thoroughly.

When we instantiate an object of type LinkedStack, we must set the top of stack
variable to null. Therefore, we need to include a single-statement constructor in our
class. The beginning of the class definition looks like this:

//----------------------------------------------------------------------------
// LinkedStack.java            by Dale/Joyce/Weems                   Chapter 5
// 
// Implements StackInterface using a linked list to hold the stack items
//----------------------------------------------------------------------------

package ch05.stacks;

import ch04.stacks.*;

public class LinkedStack implements StackInterface

Inner class A class defined inside of another class.
The outer class can access the private variables of the
inner class



348 | Chapter 5:  Linked Structures

{
private class StackNode
// Used to hold references to stack nodes for the linked stack implementation
{
private Object info;
private StackNode link;

}

private StackNode top;   // Reference to the top of this stack

public LinkedStack()
// Constructor
{
top = null;

}

Let’s see how we might implement our stack operations using this approach.

The push Operation

We can modify the design of the push operation to allocate space for each new element
dynamically.

Figure 5.5 graphically displays the effect of each step of the algorithm, starting with
a stack that already contains A and B and showing what happens when C is pushed
onto it.

Let’s look at the algorithm line by line. Follow our progress through both the algo-
rithm and Figure 5.5 during this discussion. We begin by allocating space for a new
stack element using Java’s new operation:

StackNode newNode = new StackNode();

push (item)
Allocate space for new stack element
Set the element reference to item
Set the link reference to the previous top of stack
Set the top of stack to the new stack element
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Figure 5.5 Results of push operation
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So, newNode is a reference to an object that contains two attributes: info of class
Object and link of the class StackNode. Next we need to set the values of these
attributes:

newNode.info = item;
newNode.link = top;

Therefore, info references the item pushed onto the stack, and link references the
previous top of stack. Finally, we need to reset the top of the stack to reference the new
element:

top = newNode;

Putting it all together, the code for the push method is:

public void push(Object item)
// Adds an element to the top of this stack
{
StackNode newNode = new StackNode();
newNode.info = item;
newNode.link = top;
top = newNode;

}

Note that the order of these tasks is critical. If we changed the top variable before
setting the link of the new element, we would lose access to the stack nodes! This situ-
ation is generally true when we are dealing with a linked structure: you must be very
careful to change the references in the correct order, so that you do not lose access to
any of the data.

You have seen how the algorithm works on a stack that contains elements. What
happens if this method is called when the stack is empty? Let’s trace through it again.
Figure 5.6 shows graphically what occurs. Space is allocated for a reference to the new
element and the element is put into the space. Does the method correctly link the new
node to the top of an empty stack? The link of the new node is assigned the value of
top. What is this value when the stack is empty? It is null, which is exactly what we
want to put into the link of the last node of a linked stack. Then top is reset to point
to the new node. So this method works for an empty stack, as well as a stack that con-
tains elements.

The pop Operation

Recall that the pop operation is essentially the reverse of the push operation. Instead of
putting an item onto the top of the stack and “pushing” the other items down, we
remove the top item from the stack and “pull” the other items up.
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Figure 5.6 Results of push operation on an empty stack
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Of course we don’t do any actual “pushing” or “pulling,” but that is how we think
of the stack items behaving. In this case, “pulling” the other items up simply means
resetting the stack’s top variable to reference the next item. In fact, that is all we really
have to do. Resetting top to the next stack item effectively removes the top item from
the stack. See Figure 5.7. This only requires a single line of code:

top = top.link;

When this code is executed, top refers to the StackNode object that was previously
linked to from the link of attribute top. In other words, it refers to the “second” lowest
StackNode object. The stack can no longer be used to reference the “first” object, since
we overwrote our only reference to it. As indicated in the figure, we have removed the
system’s only reference to the “first” node object; the system garbage collector eventu-
ally reclaims the space it uses. If the info attribute of this object represents the only



352 | Chapter 5:  Linked Structures

Figure 5.7 Results of pop operation
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reference to the data object, represented in the figure by the “C”, it too is garbage and
its space will be reclaimed.

Are there any special cases to consider? Since we are removing an item from the
stack, we should be concerned with empty stack situations. What happens if we try to
pop an empty stack? In this case the top variable contains null and the assignment
statement “top = top.link;” results in a run-time error. The Java run-time system
raises a NullPointerException. To control this problem ourselves, we protect the
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assignment statement using the Stack ADT’s isEmpty operation. Therefore, the code for
our pop method is:

public void pop()
// Removes an element from the top of this stack
{
if (!isEmpty())
{
top = top.link;

}
else
throw new StackUnderflowException("Pop attempted on an empty stack.");

}

We use the same StackUnderflowException that we used in Chapter 4.
Are there any more special cases to consider? We’ve considered popping from an

empty stack, and popping from a stack with several elements. There is one more special
case—popping from a stack with only one element. We need to make sure that in this
case the stack is empty after the operation is performed. Let’s see. When our stack is
instantiated, the top variable is set equal to null. When an element is pushed onto the
stack, its link is set equal to the current top variable; therefore, when the first element
is pushed onto our stack, its link is set to null. Of course, the first element pushed
onto the stack is the last element popped off. This means that the last element popped
off the stack has a link value of null. Since the pop method sets top to the value of
this link attribute, after the last value is popped top again has the value null, just as
it did when the stack was first instantiated. We conclude that the pop method works for
a stack of one element. Figure 5.8 graphically depicts pushing a single element onto a
stack and then popping it off.

The Other Stack Operations

Recall that the top operation simply returns a reference to the top element of the stack.
At first glance this might seem very straightforward. Simply code

return top;

since top references the element on the top of the stack. However, remember that top
references a StackNode object. Whatever program is using the Stack ADT is not con-
cerned about StackNode objects. In fact, it doesn’t even “know” what a StackNode
object is, since the definition of StackNode is hidden inside the LinkedStack class.
The client program is only interested in the object that is referenced by the info vari-
able of the StackNode.

Let’s try again. To return the info of the top StackNode object we simply code:

return top.info;
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Figure 5.8 Results of push then pop on an empty stack
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That’s better, but we still need to do a little more work. What about the special case
when the stack is empty? In that case we need to throw an exception instead of return-
ing an object. The final code for the top method is:

public Object top()
// Returns the element on top of this stack
{
if (!isEmpty())
return top.info;

else
throw new StackUnderflowException("Top attempted on an empty stack.");

}
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That wasn’t bad; the isEmpty method is even easier. If we initialize an empty stack
by setting the top variable to null, then we can detect an empty stack by checking for
the value null.

public boolean isEmpty()
// Checks if this stack is empty
{
if (top == null)
return true;

else
return false;

}

An even simpler way of writing this is

return (top == null);

What about the isFull method? Using dynamically allocated nodes rather than an
array, we no longer have an explicit limit on the stack size. We can continue to get
more nodes until we run out of system memory. As we did when we used an
ArrayList to implement a Stack ADT in Chapter 4, we simply always return false for
the isFull method. The only way the stack could be full is if the program runs out of
system space. In this rare case the Java run-time system raises an exception anyway, so
we decide just to rely on the run-time system’s built-in mechanisms.

public boolean isFull()
// Checks if this stack is full
{

return false;
}

The linked implementation of the Stack ADT can be tested using the same test plan that
was written for the array-based version. It can also be used with the examples and case
studies presented in Chapter 4 for further verification.

Comparing Stack Implementations

Let’s compare the two different implementations of the Stack ADT, ArrayStack and
LinkedStack, in terms of storage requirements and efficiency of the algorithms. First
the storage requirements. An array variable of the maximum stack size takes the same
amount of memory, no matter how many array slots are actually used; we need to
reserve space for the maximum possible. The linked implementation, using dynamically
allocated storage, requires space only for the number of elements actually on the stack
at run time. Note, however, that the elements are larger because we must store the refer-
ence to the next element as well as the reference to the user’s data.

We compare the relative execution “efficiency” of the two implementations in
terms of Big-O notation. In both implementations, isFull and isEmpty clearly are
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1This statement is true only when implementing a stack “by reference.” If the stack is implemented “by copy,”
then a new statement is required for each push operation in the array-based implementation also.

O(1). They always take a constant amount of work. What about push, pop, and top?
Does the number of elements in the stack affect the amount of work done by these
operations? No, it does not. In both implementations, we directly access the top of
the stack, so these operations also take a constant amount of work. They too have
O(1) complexity.

Only the class constructor differs from one implementation to the other in terms of
the Big-O efficiency. In the array-based implementation, when the array is instantiated,
the system creates and initializes each of the array locations. Since in this case it is an
array of objects, each of the array slots is initialized to the value null. The number of
array slots is equal to the maximum number of possible stack elements. We call this N
and say that the array-based constructor is O(N). For the linked approach, the construc-
tor simply sets the top variable to null, so it is only O(1).

Overall the two stack implementations are roughly equivalent in terms of the
amount of work they do.

So which is better? The answer, as usual, is: It depends on the situation. The linked
implementation certainly gives more flexibility, and in applications where the number
of stack items can vary greatly, it wastes less space when the stack is small. Why then
would we ever want to use the array-based implementation? The reason is: It’s short,
simple, and efficient. If pushing occurs frequently, the array-based implementation exe-
cutes faster because it does not incur the run-time overhead of the new operation.1

When the maximum size is small and we can be sure that we do not need to exceed the
declared maximum size, the array-based implementation is a good choice. Also, if you
are programming in a language that does not support dynamic storage allocation, an
array implementation may be the only good choice.

5.2 Implementing a Queue as a Linked Structure

The major weakness of the array-based implementation of a FIFO queue is identical to
that of a stack: the need to create an array big enough for a structure of the maximum
expected size. This size is set once and cannot change. If a much smaller number of ele-
ments is actually needed, we have wasted space. If a larger number of elements is unex-
pectedly needed, we are in trouble. We cannot extend the size of the array. We would
have to allocate a larger array, copy the elements into it, and deallocate the smaller array.

We know, however, from our discussion of stacks, that we can get around this
problem by using dynamic storage allocation to get space for each queue element only
as needed. This implementation relies on the idea of linking the elements one to the
next to form a chain. We can use the same approach we used for stacks. We define an
inner class QueueNode within our Queue ADT implementation. Also as we did for
stacks, we create a separate Chapter 5 queue package to hold the queue class defined in
this chapter and we import the queue package defined for Chapter 4 into that class.
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In the array-based implementation of a queue, we decided to keep track of two
indexes that pointed to the front and rear boundaries of the data in the queue. In a
linked representation, we can use two references, front and rear, to mark the front
and the rear of the queue. When the queue is empty, both of these references should
equal null. Therefore, the constructor for the queue must initialize them both accord-
ingly. The beginning of our class definition looks like this:

//----------------------------------------------------------------------------
// LinkedQueue.java            by Dale/Joyce/Weems                   Chapter 5
// 
// Implements QueueInterface using a linked list to hold the queue items
//----------------------------------------------------------------------------

package ch05.queues;

import ch04.queues.*;

public class LinkedQueue implements QueueInterface
{
private class QueueNode
// Used to hold references to queue nodes for the linked queue implementation
{
private Object info;
private QueueNode link;

}

private QueueNode front;   // Reference to the front of this queue
private QueueNode rear;    // Reference to the rear of this queue

public LinkedQueue()
// Constructor
{
front = null;
rear = null;

}

Figure 5.9 graphically depicts our queue representation. A few comments about our
graphical representation scheme are necessary. To make our figures easier to read, we
often depict queues by showing their instance variables (front and rear) in different
areas of the figure. Remember that these variables are actually collected together in a sin-
gle queue object. Additionally, by now you realize that dynamically allocated nodes in
linked structures exist “somewhere in the system memory” rather than in adjacent loca-
tions like array slots, but we are going to show the nodes arranged linearly for clarity.

Note the relative positions of front and rear in the figure. Had they been reversed
(as in Figure 5.10), we would have difficulty implementing the dequeue operation.
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Enqueue (item)
Create a node for the new item
Insert the new node at the rear of the queue
Update the reference to the rear of the queue

Figure 5.9 A linked queue representation
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Figure 5.10 A bad queue design

• •
• •

rear

• •  •  • 

front

To enqueue, use the Push algorithm To dequeue, we must be able to reset
front to point to the preceding node.
But we can't get there from here.  

Remember that we dequeue from the front end of the queue. To remove the node that
represents the front of the queue, we have to reset the front reference to the next node
on the chain. If we implement the queue as in Figure 5.10, we can’t easily obtain a refer-
ence to the next node in the chain, since it is the preceding node. We would either have
to traverse the whole list (an O(N ) solution—very inefficient, especially if the queue is
long) or else keep a list with references in both directions. Use of this kind of a doubly
linked structure is not necessary if we set up our queue references correctly to begin with.

The Enqueue Operation

We can dequeue elements from the queue using an algorithm similar to our stack pop
algorithm, with front pointing to the first node in the queue. Because we add new ele-
ments to the queue by inserting after the last node, however, we need a new enqueue
algorithm (see Figure 5.11).
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Figure 5.11 The enqueue operation
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The first of these tasks is familiar from the stack push operation. We get space for a
queue node using Java’s new operator and then store the new item into the node’s info
variable. The new node is inserted at the rear end of the queue, so we also need to set
the node’s link variable to null. The corresponding code is:

QueueNode newNode = new QueueNode();
newNode.info = item;
newNode.link = null;

The next part of the enqueue algorithm involves inserting our new node at the rear
of the queue. This requires setting the link of the current last element to reference the
new node. This can be accomplished by a simple assignment statement:

rear.link = newNode;

However, we must consider what happens if the queue is empty when we enqueue the
item. In general, when using references, always consider and handle the special case of
the reference being equal to null; in this case, you cannot use it to access an object. If
the queue is empty when we insert the item, the value of rear would be null, and the
use of rear.link would raise a run-time exception. There is no rear.link. In this
case, we must set front to point to the new node:

if (rear == null)
front = newNode;

else
rear.link = newNode;

The last task in the enqueue algorithm, updating the rear reference, simply
involves the assignment

rear = newNode;
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Dequeue: returns Object
Set item to the information in the front node
Remove the front node from the queue
if the queue is empty

Set the rear to null
return item

Does this work if this is the first node in the queue? Sure, we always want rear to be
pointing to the rear node following a call to enqueue, regardless of how many items are
in the queue.

Putting this all together, we get the following code for the enqueue method:

public void enqueue(Object item)
// Adds item to the rear of this queue
{
QueueNode newNode = new QueueNode();
newNode.info = item;
newNode.link = null;
if (rear == null)
front = newNode;

else
rear.link = newNode;

rear = newNode;
}

The Dequeue Operation

As we noted above, the dequeue operation can be similar to the stack’s pop operation.
However, recall that the pop operation only removed the top element from the stack,
whereas the dequeue operation both removes and returns the element. Also, as with the
stack’s top operation, we do not want to return the entire QueueNode, but only the
information in the node’s info variable.

In writing the enqueue algorithm, we noticed that inserting into an empty queue is
a special case because we need to make front point to the new node also. Similarly, in
our dequeue algorithm we need to allow for the case of deleting the last node in the
queue, leaving the queue empty. If front is null after we have deleted the front node,
we know that the queue is now empty. In this case we need to set rear to null also.
The algorithm for removing the front element from a linked queue is illustrated in Fig-
ure 5.12. This algorithm assumes that the test for an empty queue was performed before
the dequeue routine was entered, so we know that the queue contains at least one node.
(We can make this assumption because this is the precondition for dequeue in our FIFO
Queue ADT specification.) 



5.2 Implementing a Queue as a Linked Structure | 361

Again, we look at the implementation of the algorithm line by line. Since we have
to return the information from the first element of the queue, we start by “remember-
ing” the information. Recall that the information on a queue is of the class Object. So,
we declare a local Object variable item, and assign the information (i.e., the reference
to the information) from the front queue element to it:

Object item;
item = front.info;

Next we must remove the front node from the queue. This is easy. We just reassign
the reference to the front of the queue to be the reference in the link of the current
front element (see Figure 5.12). This works even if the resultant queue is empty, since in
that case the link would hold the value null. In this latter case we must also set the
rear of the queue to null, as discussed above:

front = front.link;
if (front == null)
rear = null;

Finally, we just return the information we saved earlier:

return item;

Putting it all together, the code is:

public Object dequeue()
// Removes front element from this queue and returns it
{
Object item;

item = front.info;
front = front.link;
if (front == null)
rear = null;

return item;
}

Figure 5.12 The dequeue operation
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The Queue Implementation

The remaining operations (isEmpty, isFull) are very straightforward. Here is the code
for the entire FIFO Queue implementation based on the linked approach:

//----------------------------------------------------------------------------
// LinkedQueue.java            by Dale/Joyce/Weems                   Chapter 5
// 
// Implements QueueInterface using a linked list to hold the queue items
//----------------------------------------------------------------------------

package ch05.queues;

import ch04.queues.*;

public class LinkedQueue implements QueueInterface
{

private class QueueNode
// Used to hold references to queue nodes for the linked queue implementation
{
private Object info;
private QueueNode link;

}

private QueueNode front;   // Reference to the front of this queue
private QueueNode rear;    // Reference to the rear of this queue

public LinkedQueue()
// Constructor
{
front = null;
rear = null;

}

public void enqueue(Object item)
// Adds item to the rear of this queue
{
QueueNode newNode = new QueueNode();
newNode.info = item;
newNode.link = null;
if (rear == null)
front = newNode;

else
rear.link = newNode;

rear = newNode;
}
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public Object dequeue()
// Removes front element from this queue and returns it
{
Object item;

item = front.info;
front = front.link;
if (front == null)
rear = null;

return item;
}

public boolean isEmpty()
// Determines whether this queue is empty
{
if (front == null)
return true;

else
return false;

}

public boolean isFull()
// Determines whether this queue is full
{

return false;
}

}

A Circular Linked Queue Design

Our LinkedQueue class contains two instance variables, one to reference each end of
the queue. This design is based on the linear structure of the linked queue. Given only a
reference to the front of the queue, we could follow the references to get to the rear, but
this makes accessing the rear (to enqueue an item) an O(N ) operation. With a reference
only to the rear of the queue, we could not access the front because the references only
go from front to rear.

However, we could access both ends of the queue from a single reference, if we
made the queue circularly linked. That is, the link of the rear node would reference
the front node of the queue (see Figure 5.13). Now LinkedQueue has only one
instance variable, rather than two. One interesting thing about this queue implementa-
tion is that it differs from the logical picture of a queue as a linear structure with two
ends. This queue is a circular structure with no ends. What makes it a queue is its sup-
port of FIFO access.

In order to enqueue, we access the “rear” node directly through the reference rear.
To dequeue, we must access the “front” node of the queue. We don’t have a reference to
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Figure 5.13 A circular linked queue

•

•

rear

• ••  •  • 
  Front of

queue
Rear of
queue

this node, but we do have a reference to the node preceding it—rear. The reference to
the “front” node of the queue is in rear.link. An empty queue would be represented
by rear = null. Designing and coding the queue operations using a circular linked
implementation is left as a programming assignment.

Both linked implementations of the Queue ADT can be tested using the same test
plan that was written for the array-based version.

Comparing Queue Implementations

We have now looked at several different implementations of the Queue ADT. How do
they compare? As we compared stack implementations, we look at two different factors:
the amount of memory required to store the structure and the amount of “work” the
solution requires, as expressed in Big-O notation. Let’s compare the two implementa-
tions that we have coded completely: the array-based implementation and the dynami-
cally linked implementation.

An array variable of the maximum queue size takes the same amount of memory,
no matter how many array slots are actually used; we need to reserve space for the max-
imum possible number of elements. The linked implementation using dynamically allo-
cated storage space requires space only for the number of elements actually in the queue
at run time. Note, however, that the node elements are twice as large, because we must
store the link (the reference to the next node) as well as the reference to the user’s data.

See Figure 5.14 for a depiction of each queue implementation approach, assuming a
current queue size of 5 and a maximum queue size (for the array-based implementation) of
100. Note that the array-based implementation requires space for 4 integers and 101 refer-
ences (one for myQueue and one for each array slot) no matter what the size of the current
queue. In the example, the linked implementation only requires space for 13 references
(one for front, one for rear, two for each of the current queue elements, and one for
myQueue). However, the required space increases if the size of the queue increases, based
on the formula:

number of required references = 3 + ( 2 * size of queue)

A simple analysis of this situation tells us that if the average queue size is less than
half the maximum queue size, then the linked representation uses less space than the
array representation. And vice versa: If the average queue size is larger than half the
maximum queue size, the linked representation requires more space. In any case, unless
you have a situation in which the maximum queue size is very large, and significantly
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Figure 5.14 Alternate queue implementations
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larger than the average queue size, the difference between the two implementations in
terms of space is not much.

We can also compare the relative execution “efficiency” of the two implementa-
tions, in terms of Big-O. In both implementations, the isFull and isEmpty opera-
tions are clearly O(1). They always take the same amount of work regardless of how
many items are on the queue. As was the case for stacks, the queue constructor
requires O(N ) steps for the array representation, but is O(1) for the linked representa-
tion. What about enqueue and dequeue? Does the number of elements in the queue
affect the amount of work done by these operations? No, it does not; in both imple-
mentations, we can directly access the front and the rear of the queue. The amount of
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work done by these operations is independent of the queue size, so these operations
also have O(1) complexity.

As with the array-based and linked implementations of stacks, these two queue
implementations are roughly equivalent in terms of the amount of work they do.

5.3 An Abstract Linked List Class

We have now implemented both our Stack ADT and our Queue ADT as reference-based
structures using a self-referential node. We can use the same approach to implementing
our List ADT. However, the situation with lists is slightly more complicated, since we are
supporting both sorted and unsorted varieties of our ADT.

Overview

Let’s review some facts about our lists:

• Our lists use the “by copy” approach to storing and returning information, unlike
our stacks and queues, which use the “by reference” approach.

• As we do for our queues, we use a programming “by contract” approach for our
lists. We assume that the list holds unique items (based on the key) and that calls
to delete and retrieve pass an argument item whose key matches exactly one
element on the list.

• In Section 3.7, we presented the Listable interface that allows us to manipulate
generic lists; as long as an object is of a class that implements Listable, it can
be used with our lists.

• In Section 3.7, we also presented an abstract class List that defines all the con-
structs for an array-based list that do not depend on whether or not the list is sorted.

• Finally, in Section 3.7, we presented the concrete class SortedList that extends
the abstract List class, providing an array-based implementation of a sorted list.

• In the Chapter 3 exercises, we asked you to implement a concrete class
UnsortedList that extends the abstract List class, providing an array-based
implementation of an unsorted list.

• In Section 4.1, we presented the Java interface ListInterface that specifies
our List ADT. We stated that, in retrospect, the abstract class List should imple-
ment ListInterface. Both of these classes are part of the ch04.generic-
Lists packages.

In summation, ListInterface defines our List ADT, List is an abstract class that
implements ListInterface using an array to hold the list elements, and SortedList
and UnsortedList are concrete classes that extend and complete the List class. Fig-
ure 4.1 presents all of these relationships using a UML class diagram.

Perhaps we should have called our List class “ArrayList,” just as we called our
array-based stack implementation ArrayStack. Since we had already introduced the
ArrayList class from the Java library, we decided to just use the name “List.” Deter-



5.3 An Abstract Linked List Class | 367

mining names for our classes is important and not always easy. See the feature section
titled Naming Constructs for more discussion on this topic.

In this chapter, we extend our list framework to include implementation classes
based on references. Lists implemented in this fashion are known as linked lists.

We extend our framework in a natural way. We already have an abstract class List
that extends ListInterface and defines all the constructs for an array-based list that
do not depend on whether or not the list is sorted. In this section, we define an abstract
class LinkedList in the same manner, except it uses a reference-based approach. In
the next two sections, we define concrete classes UnsortedLinkedList and Sort-
edLinkedList that extend and complete the LinkedList class.

Naming Constructs
Choosing appropriate names for our programmer-defined constructs is an important task. In this
sidebar, we discuss this task and explain some of the naming conventions used in this textbook.

Java is very lenient in terms of its rules for programmer-defined names. They must begin with
a letter; after that, they can contain any combination of letters and digits. They can be as long as
you want. Other than the fact that you cannot use Java reserved words such as while or class as
names, there are no other restrictions. Remember, of course, that Java identifiers are case-sensitive.

We have been following standard conventions when naming the constructs created for this
text. Our class and interface names all begin with an uppercase letter, such as in List or Stack-
Interface. Our method and variable names all begin with a lowercase letter, such as in push or
list. If a name contains more than one word, we capitalize the start of each additional word,
such as ArrayStack, getNextItem, or currentPos. Other than that, we use lowercase letters
in our names.

The name assigned to a construct should provide useful information to someone who is
working with the construct. For example, if you declare a variable within a method that is to
hold the maximum value of a set of numbers, you should name it based on its use—name it
maximum or maxValue instead of X. The same is true for class, interface, and method names.

Since classes tend to represent objects, we usually name them using nouns; for example
ArrayStack, LinkedStack, and List. Since methods tend to represent actions, we usually
name them using verbs; for example push, reset, and dequeue.

We use interfaces in two ways. We use them to specify ADTs. In this case we use the name
of the ADT plus the term “interface” within the name of our interface; for example List-
Interface. Although this is a bit redundant, it is the approach favored by the Java library cre-
ators. Note that the name of the interface does not imply any implementation detail. Classes
that implement the ListInterface interface can use arrays, vectors, array lists, or refer-
ences—the interface itself does not restrict implementation options and its name does not imply
anything about implementation details. The name does help us identify the purpose of the con-
struct; thus ListInterface defines the interface required by the List ADT.

We also use an interface to guarantee that an object supports a certain set of operations,
so that it can be used with another class that expects to deal only with objects that support
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that set of operations. For example, our Listable interface defines operations required by
objects to be used with our various list classes. In this case, we name the interface with an
adjective—objects of classes that implement this class are “listable” objects. That is, they pos-
sess the quality of being able to be listed.

Implementation-Based Class Names

We must confess that we were hesitant to use names such as ArrayStack and Linked-
Stack for our classes. Can you guess why? Recall our goal of information hiding: We want to
hide implementation detail about the underlying organizational structures and code used to
support our ADTs inside the class that implements the ADT. However, if we use terms such as
“Array” and “Linked” in the names of our ADTs, then we are revealing clues to the very infor-
mation we are trying to hide.

One of the main differences between array-based and reference-based ADT implementa-
tions is the allocation of computer memory for holding the information associated with the ADT.
For our array-based approaches, the space is allocated statically, when the structure is instanti-
ated. For our reference-based approaches, the space is allocated and deallocated dynamically, as
needed. An offshoot of this is that our array-based structures have a bounded size, whereas our
reference-based structures do not. We considered using this aspect of our structures to provide
informative names for our classes that did not completely reveal the underlying structure. For
example, we could call our two stack classes BoundedStack and UnboundedStack instead of
ArrayStack and LinkedStack.

However, we decided not to use this approach. It does not completely solve our naming
problem anyway. For example, it is possible to have an unbounded implementation based on
dynamically allocated arrays as in our ArrayListStack. So we have two unbounded stack
classes—if we try to stay away from implementation-dependent names we might call them
UnboundedStack1 and UnboundedStack2. We prefer to stay away from using numbers to
differentiate our classes when possible.

We finally settled on using implementation-dependent terms within our class names. There
are several reasons why we did this:

1. This is the same approach used by the Java Library, for example, the ArrayList class. By
the way, although we call our array-based stack and queue classes ArrayStack and
ArrayQueue, we do not call our array-based list class “ArrayList” because we have
already seen that there is a Java library construct of that same name. So we simply call it
List instead.

2. Although information hiding is important, some information about the implementation is
valuable to the client programmer, since it affects the space used by objects of the class and
the execution efficiency of the methods of the class. We present comparisons of array-based
and reference-based implementations along these dimensions later in this chapter. Using
“array” and “linked” in the class names does help convey this information.

3. We already have a construct associated with our ADTs whose name is independent of imple-
mentation. It is the interface, for example, the StackInterface interface.

4. In this textbook we create multiple implementations of many different ADTs; this is funda-
mental to the way we study ADTs. Using implementation-dependent names makes it easier
to distinguish among these different implementations.
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The LinkedList Class

Our LinkedList class implements the ListInterface interface. For easy reference, we
repeat the interface definition here. Note that it is in the ch04.genericLists package.

//----------------------------------------------------------------------------
// ListInterface.java            by Dale/Joyce/Weems                 Chapter 5
// 
// Interface for a class that implements a list of unique elements, i.e.,
// no duplicate elements as defined by the key of the list.
// The list has a special property called the current position - the position
// of the next element to be accessed by getNextItem during an iteration 
// through the list. Only reset and getNextItem affect the current position
//----------------------------------------------------------------------------

package ch04.genericLists;

public interface ListInterface
{
public boolean isFull();
// Effect:         Determines whether this list is full
// Postcondition:  Return value = (this list is full)

public int lengthIs();
// Effect:         Determines the number of elements on this list
// Postcondition:  Return value = number of elements on this list

public boolean isThere (Listable item);
// Effect:         Determines whether element matching item is on this list
// Postcondition:  Return value = (element with the same key as item is on 
//                 this list)

public Listable retrieve(Listable item);
// Effect:         Returns a copy of the list element with the same key as 
//                 item
// Preconditions:  Item is on this list
// Postcondition:  Return value = (list element that matches item)

public void insert (Listable item);
// Effect:         Adds a copy of item to this list
// Preconditions:  This list is not full
//                 Element matching item is not on this list
// Postcondition:  Copy of item is on this list

public void delete (Listable item);
// Effect:         Deletes the element of this list whose key matches item's 
//                 key
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// Preconditions:  Exactly one element on this list has a key matching item's 
//                 key
// Postcondition:  No element has a key matching the argument item's key

public void reset();
// Effect:         Initializes current position for an iteration through this 
//                 list
// Postcondition:  Current position is first element on this list

public Listable getNextItem ();
// Effect:         Returns a copy of the element at the current position on 
//                 this list and advances the value of the current position
// Preconditions:  Current position is defined
//                 There exists a list element at current position
//                 No transformers have been called since most recent call to 
//                 reset
// Postconditions: Return value = (a copy of element at current position)
//                 If current position is the last element then current 
//                 position is set to the beginning of this list; otherwise, 
//                 it is updated to the next position

}

We define the LinkedList class as an abstract class. We place it, and the corre-
sponding concrete classes, in a package called ch05.genericLists. As we did with the
array-based List class, we include as much implementation detail as we can, without
making any assumptions about whether or not the list is sorted. Let’s start with the
instance variables.

Just as in the implementations of the Stack and Queue ADTs, each node in a linked
list must have at least two reference variables. The first contains a reference to a copy of
the user’s data; the second is a reference to the next element in the list. We again use an
inner class, this time named ListNode, to provide the definition of our nodes. The
ListNode class defines two reference variables: info of type Listable to hold the
user’s information, and next of type ListNode to hold the link to the next item in the
list. The list itself is accessed through an instance variable called list, of type List-
Node, which references the first element of the list.

In order to implement the List ADT, we need to record two pieces of information
about the structure in addition to the list of items. The lengthIs operation returns the
number of items in the list. In the array-based implementation, lengthIs simply
returns the value of the numItems instance variable. This variable defines the extent of
the list within the array. Therefore, the numItems variable must be present. In a link-
based list we have a choice: We can keep a variable to hold the number of items or we
can count the number of items each time the lengthIs operation is called. Keeping a
numItems variable requires an addition operation each time insert is called and a
subtraction operation each time delete is called. Which approach is better? We cannot
determine it in the abstract; it depends on the relative frequency of use of the
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lengthIs, insert, and delete operations. Here, let’s explicitly keep track of the
length of the list by including a numItems variable in the LinkedList class.

The reset and getNextItem operations require that we keep track of the current
position during an iteration, so we need a currentPos variable. In the array-based
implementation, currentPos is an array index. What is the logical equivalent within a
linked list? A reference to a ListNode, that is, to a ListNode object variable. Figure
5.15 pictures the structure of our list representation, assuming an unsorted list, after
three items are inserted, reset is invoked, and getNextItem is invoked once. For clar-
ity, we assume the list manipulates integers (although in actuality it must manipulate
Listable objects).

We identified three instance variables (list, numItems, currentPos) to define in
the LinkedList class. The class constructor must initialize these variables to values
that represent an empty list. It sets the numItems variable to 0, and each of the refer-
ence variables to null. Here is the beginning of our LinkedList class.

//----------------------------------------------------------------------------
// LinkedList.java             by Dale/Joyce/Weems                   Chapter 5
// 
// Defines all constructs for a reference-based list that do not depend on
//  whether or not the list is kept sorted
//----------------------------------------------------------------------------

Figure 5.15 List with three items (reset has been called; getNextItem has been called once)

myList: list:
numItems: 3
currentPos:

2info:

next:

7info:

next:

5info:

next: null

The above is after: myList = new UnsortedLinkedList();
myList.insert(5);
myList.insert(7);
myList.insert(2);
myList.reset();
temp = myList.getNextItem();
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package ch05.genericLists;

import ch04.genericLists.*;

public abstract class LinkedList implements ListInterface
{
protected class ListNode
// Used to hold references to list nodes for the linked list implementation
{
protected Listable info;       // The info in a list node
protected ListNode next;       // A link to the next node on the list

}

protected ListNode list;         // Reference to the first node on the list
protected int numItems;          // Number of elements in the list
protected ListNode currentPos;   // Current position for iteration

public LinkedList()
// Creates an empty list object
{
numItems = 0;
list = null;
currentPos = null;

}
}

Note the use of the protected modifier to provide access protection while allowing the
variables to be inherited. Remember, LinkedList is an abstract class—it is extended by
concrete classes that must be able to access the instance variables.

The isFull and lengthIs Methods
Now we must decide which of the methods required by the interface to implement as
concrete methods, and which to leave abstract. We want to implement all the methods
that do not depend on whether or not the list is sorted. For the array-based approach,
we implemented isFull, lengthIs, reset, and getNextItem. We can again imple-
ment each of those methods at this level.

We handle the isFull method the same way we did for the reference-based imple-
mentations of the Stack and Queue ADTs. We simply return the value false. The only
way the list could be full is if the program runs out of system space. In this case the
Java run time system raises an exception anyway, so we decide just to rely on the run
time systems built-in mechanisms.

public boolean isFull()
// Determines whether this list is full
{
return false;

}
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reset
Initialize currentPos to position of first list element

getNextItem: returns Listable
Set next to currentPos.info( )
Set currentPos to currentPos.next( )
return copy of next

The lengthIs implementation is also very simple. Just return the value of the
numItems instance variable. Remember, since we are supplying a lengthIs method,
we do not need to supply an isEmpty method. The client can simply check if the length
is 0, to see if the list is empty.

public int lengthIs()
// Determines the number of elements on this list
{
return numItems;

}

The reset and getNextItem Methods
In Chapter 3 we used our list design terminology to describe algorithms for the reset
and getNextItem operations. Since the design terminology was independent of the
implementation approach, we can reuse it now. We repeat the algorithms here:

Equivalent expressions for some of our list design notation, using an array-based and a
reference-based approach, are shown in Table 5.1

Our list interface specification defines the “current position” to mean the location of
the next element accessed during an iteration through the list. Recall that to be safe, we
decided to reset the current position automatically, in the getNextItem method, when
the end of the list is reached.

Table 5.1 Comparing List Design Notation to Java Code

Design Notation Array-based Reference-based

Initialize location to position of first list element  location = 0 location = list

Set location to location.next( ) location++ location = location.next

location.info( ) list[location] location.info
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In the array-based implementation, to initialize the current position, the reset
method set currentPos to 0, since 0 was the index of the first element on the list. The
corresponding action for the linked approach is to set the current position reference to
the beginning of the list. The instance variable list always references the first element
of the list. Therefore, the code for reset is:

public void reset()
// Initializes current position for an iteration through this list
{
currentPos = list;

}

What happens if the list is empty? When the list is instantiated, the constructor sets the
value of list to null. Let’s be sure to maintain this property. That is, whenever the list is
empty, in addition to the value of numItems being 0, we ensure that the value of list is
null. Therefore, if we reset an empty list, the value of currentPos becomes null.

The getNextItem implementation is very similar to its array-based counterpart and
follows directly from the generic algorithm. First, we make a copy of the item to be
returned in a variable called nextItemInfo. It is of type Listable; in other words, it is
an object of the class Listable. Those are the only objects we can manipulate on our lists.

Next, we increment the value of currentPos. Recall that the reference to the next
item on the list is contained in the next reference of the current item. To update cur-
rentPos we use the following assignment statement, which is very similar to the algo-
rithmic description:

currentPos = currentPos.next;

However, as we did in the array-based case, we must handle the special case of the cur-
rent item being the last item on our list. The last item on the list is identifiable by the
fact that its next reference contains the value null—it cannot reference anything since
it is the end of the list. Therefore, we test the value of next. If it is null we reset the list
by assigning currentPos the value held in list, just as we do in the reset method.
See the code below.

Finally, the method returns the copy of the item it made in its first statement. The
completed method looks like this:

public Listable getNextItem ()
// Returns copy of the next element in list
{
Listable nextItemInfo = currentPos.info.copy();
if (currentPos.next == null)
currentPos = list;

else
currentPos = currentPos.next;

return nextItemInfo;
}
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Remember that we assume that the list is not empty (“Precondition: there exists a list
element at current position”) when getNextItem is called.

The Remaining Methods
We still need to implement four operations: isThere, retrieve, insert, and delete.
In the case of array-based lists we used abstract methods for each of these operations, in
the abstract class List. Do you remember why? It was because in each case we used
different algorithms for the unsorted and sorted versions of the lists. Therefore, we
delayed the concrete definitions of these methods until we defined the concrete classes
SortedList and UnsortedList.

Let’s review the differences in the method approaches between the sorted and
unsorted array-based implementations. For isThere and retrieve, we used a linear
search algorithm for the unsorted version and a binary search approach for the sorted
version. For insert we had to ensure we inserted the item into the correct location in
the sorted case, whereas in the unsorted case we just inserted the item at the “end” of
the array. For delete we searched for the item to delete using a linear search in each
case; but in the unsorted case we simply replaced the item to be deleted with the item
in the last array slot, whereas in the sorted case we had to move all of the remaining
list elements down one slot.

Are there similar differences in the reference-based approach? Let’s look at each
operation in turn:

• The isThere method—We can no longer use the binary search algorithm, even if
the list is kept sorted, because there is no way for us to directly access the middle
element of the list or sublists. Therefore, we must use a linear search approach.
However, we can still create a slightly more efficient algorithm for the sorted
version. In the case where the targeted element is not on the list, we can stop
searching as soon as we reach an element that is greater than the targeted ele-
ment. Since we have different algorithms for the sorted and unsorted cases, we
define this method as abstract.

• The retrieve method—Again, we can no longer use the binary search algo-
rithm. We use the linear search algorithm for both the sorted and the unsorted
cases, and there are no improvements available for the sorted case. Since we
know the element we are retrieving must be on the list, the trick of stopping our
search when we reach an element that is too large does not apply. Since the
algorithm we use is identical in the unsorted and sorted cases we implement
retrieve as a concrete method in the abstract LinkedList class.

• The insert method—This is the case where it is easiest to see that a difference
exists. In the unsorted case we can just insert the element anywhere, whereas in
the sorted case we must insert it so that the list remains sorted. Since the two
cases use different algorithms, we define this method as abstract.

• The delete method—In both cases (sorted and unsorted) we perform a linear
search to find the element to be deleted. Once we find the element, we delete it
by rearranging references. The deletion approach is the same whether or not the
list is sorted, so we implement delete as a concrete class.
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retrieve (item) from an unsorted list: returns Listable
Initialize location to position of first list element
Set found to false

while NOT found
if item.compareTo(location.info( )) == 0

Set found to true
else

Set location to location.next( )

return copy of location.info( )

In summation, we define isThere and insert as abstract methods, leaving their
implementation to the concrete classes presented in the next two sections. We imple-
ment both retrieve and delete within our abstract LinkedList class. Let’s do
retrieve first.

The retrieve Method
In Chapter 3, we did not introduce the retrieve operation until we covered generic
lists. Therefore, we did not discuss how to implement retrieve for unsorted, array-
based lists (although there is an exercise that asks you to do this). The required algo-
rithm is similar to the one presented for the unsorted array-based isThere operation,
except in this case we know that we eventually find the element, so we do not have to
worry about falling off the end of the list. The algorithm for retrieving an item from an
unsorted list is:

Since we have no information about the order of the elements on the list, we must
check each element until we find the one to return. If the comparison of our item to the
element at the current location returns a 0, indicating equality, we set found to true
and stop searching. Otherwise, we move to the next location.

In the case of the linked approach, sorted or unsorted, we are in the same situa-
tion. The only way to visit the elements on the list is to walk down the list one ele-
ment at a time, just as we do in the above algorithm. Since we know from the
preconditions that the item is on the list, there is no improvement available in the
sorted case. Therefore, the algorithm for the linked implementation of retrieve
(sorted or unsorted) is the same as the one presented above for the unsorted array-
based implementation. Given the argument item, we traverse the list looking for a
location where item.compareTo(location.info()) returns 0, indicating that the
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keys of the item and the list element are identical. Here is the referenced-based code
that corresponds to the algorithm:

public Listable retrieve (Listable item)
// Returns a copy of the list element with the same key as item
{
ListNode location = list;
boolean found = false;

while (!found)
{
if (item.compareTo(location.info) == 0)    // If they match
found = true;

else
location = location.next;

}

return location.info.copy();
}

Figure 5.16 shows the contents of the various relevant constructs if we are try-
ing to retrieve an item that is the second element of a list. The figure shows the situ-
ation before the while loop is entered, after the while loop is executed once, and
after the while loop is executed twice. At that point, the while loop is exited and the
method returns the required information.

The delete Method
In order to delete an item, we must first find it. We can do that using the same
approach we used for the retrieve operation. However, as shown in Figure 5.16, when
we use that approach, the location variable is left referencing the node that contains
the item for which we are searching, the one to be removed. In order to actually remove
it, we must change the reference in the previous node. That is, we must change the
next reference of the previous node to the next reference of the one being deleted (see
Figure 5.17).

Because we know from the specifications that the item to be deleted is in the list,
we can change our search algorithm slightly. Rather than compare the item for which
we are searching with the information in location.info(), we compare it with
location.next().info(). Essentially, we are looking at the item in the position after
location. When we find a match, we have references to both the previous node
(location) and the one containing the item to be deleted (location.next()). We set
the next reference of the previous node to the value of the next reference of the node
to be deleted. This causes our links to “jump over” the node we wanted to delete, effec-
tively deleting it from the list.
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Figure 5.16 Retrieving an item from a list

Before while loop entered:

myList list:

5info:

next:

7info:

next:

2info:

next:

numItems: 20

currentPos:

. . .

location

found: false

After while loop executed once:

myList list:

5info:

next:

7info:

next:

2info:

next:

numItems: 20

currentPos:

. . .

location

found: false

After while loop executed twice:

myList list:

5info:

next:

7info:

next:

2info:

next:

numItems: 20

currentPos:

. . .

location

found: true

myList.retrieve(7)
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Note that removing the first node must be treated as a special case because the
object’s reference to the list (list) must be changed. We handle that special case with
an if-statement at the beginning of our code. Is removing the last node a special case?
No. The next reference of the node being deleted is null and it is stored into the next
reference of the previous node, where it belongs.

Finally, we must remember to decrement the numItems instance variable since we
are decreasing the size of the list. The code for the method is:

public void delete (Listable item)
// Deletes the element of this list whose key matches item's key
{
ListNode location = list;

// Locate node to be deleted
if (item.compareTo(location.info) == 0)
list = list.next;                         // Delete first node

else
{
while (item.compareTo(location.next.info) != 0)
location = location.next;

// Delete node at location.next
location.next = location.next.next;
}

numItems--;
}

The lists in the Java Library Collections Framework handle deletion in an alterna-
tive, interesting way. The delete operation is encapsulated with the list iterator methods.
Clients can only delete an item when they are using an iterator object to walk through
the list. They simply call the list’s delete method, and whatever was the most recent
object visited during the iteration is deleted. In this way, a client can iterate through a
list one element at a time, examining elements to see if they want to delete them, in
which case they just immediately invoke the delete operation.

Figure 5.17 Deleting an item from a list

• •• Katelist •Lila Becca John

•

location

(a) Delete Lila
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5.4 Implementing the Unsorted List as a Linked Structure

The LinkedList class, developed in the previous section, looks like this (the abstract
method signatures are emphasized):

//----------------------------------------------------------------------------
// LinkedList.java             by Dale/Joyce/Weems                   Chapter 5
// 
// Defines all constructs for a reference-based list that do not depend on
//  whether or not the list is kept sorted
//----------------------------------------------------------------------------

package ch05.genericLists;

import ch04.genericLists.*;

public abstract class LinkedList implements ListInterface
{
protected class ListNode
// Used to hold references to list nodes for the linked list implementation
{
protected Listable info;       // The info in a list node
protected ListNode next;       // A link to the next node on the list

}

protected ListNode list;         // Reference to the first node on the list
protected int numItems;          // Number of elements in the list
protected ListNode currentPos;   // Current position for iteration

public LinkedList()
// Creates an empty list object
{
numItems = 0;
list = null;
currentPos = null;

}

public boolean isFull()
// Determines whether this list is full
{
return false;

}
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public int lengthIs()
// Determines the number of elements on this list
{
return numItems;

}

public abstract boolean isThere (Listable item);
// Determines if element matching item is on this list

public Listable retrieve (Listable item)
// Returns a copy of the list element with the same key as item
{
ListNode location = list;
boolean found = false;

while (!found)
{
if (item.compareTo(location.info) == 0)    // If they match
found = true;

else
location = location.next;

}

return location.info.copy();
}

public abstract void insert (Listable item);
// Adds a copy of item to this list

public void delete (Listable item)
// Deletes the element of this list whose key matches item's key
{
ListNode location = list;

// Locate node to be deleted
if (item.compareTo(location.info) == 0)
list = list.next;                         // Delete first node

else
{
while (item.compareTo(location.next.info) != 0)
location = location.next;

// Delete node at location.next
location.next = location.next.next;
}
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isThere (item): returns boolean
Initialize location to position of first list element
Set found to false
Set moreToSearch to (have not examined last.info( ))

numItems--;
}

public void reset()
// Initializes current position for an iteration through this list
{
currentPos  = list;

}

public Listable getNextItem ()
// Returns copy of the next element in list
{
Listable nextItemInfo = currentPos.info.copy();
if (currentPos.next == null)
currentPos = list;

else
currentPos = currentPos.next;

return nextItemInfo;
}

}

We now extend this abstract class with two concrete classes, one that implements
an unsorted list and one that implements a sorted list. In this section, we handle the
simpler, unsorted version. In both cases, we only need to implement a constructor and
the two abstract methods isThere and insert.

The setup for our UnsortedLinkedList class is very simple. We have to note that
the class extends the LinkedList class. That lets us inherit the protected instance
variables and public methods of that class. Since we cannot inherit constructors, we
must implement a new constructor. It simply invokes the constructor of the
LinkedList class.

For the isThere operation, we can reuse the isThere algorithm for the unsorted
array-based list developed in Chapter 3:
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while moreToSearch AND NOT found
if item.compareTo(location.info( )) == 0

Set found to true
else

Set location to location.next( )
Set moreToSearch to (have not examined last.info( ))

return found

Unlike for the retrieve method, we do not know if the item we are searching for is on
the list. We protect our code from searching off the end of the list using the more-
ToSearch variable. The implementation of the algorithm is straightforward. It is pre-
sented with the rest of the code for the class below.

Finally, we implement the insert method. In the unsorted array-based implemen-
tation, we put the new item at the end because that was the easiest place to put it. What
is the analogous place in the linked implementation? At the beginning of the list.
Because the list is unsorted, we can put the new item wherever we choose, and we
choose the easiest place: at the front of the list. In fact, insert is nearly identical to
push in the linked stack implementation, although the list is implemented “by copy”
and the stack “by reference.” Note, we are not saying that inserting an item into an
unsorted list is the same as pushing an item on a stack. The unsorted list and the stack
are two entirely different data structures. We are saying, however, that the algorithms
for the respective operations are the same.

Here is the code for the UnsortedLinkedList class:

//----------------------------------------------------------------------------
// UnsortedLinkedList.java         by Dale/Joyce/Weems               Chapter 5
// 
// Completes the definition of a reference-based list under the assumption
//  that the list is not kept sorted
//----------------------------------------------------------------------------

package ch05.genericLists;

import ch04.genericLists.*;

public class UnsortedLinkedList extends LinkedList
{
public UnsortedLinkedList()
// Instantiates an empty list object
{
super();

}
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public boolean isThere (Listable item)
// Determines if element matching item is on this list
{
boolean moreToSearch;
ListNode location = list;
boolean found = false;

moreToSearch = (location != null);

while (moreToSearch && !found)
{
if (item.compareTo(location.info) == 0)  // If they match
found = true;

else
{
location = location.next;
moreToSearch = (location != null);

}
}

return found;
}

public void insert (Listable item)
// Adds a copy of item to this list
{
ListNode newNode = new ListNode();
newNode.info = (Listable)item.copy();
newNode.next = list;
list = newNode;
numItems++;

}
}

You can test the linked implementation of the Unsorted List ADT using the same
test plan that was written for the array-based implementation.

Comparing Unsorted List Implementations

Now let’s compare the array-based and linked implementations of the Unsorted List
ADT. Just as we compared Stack and Queue ADT implementations, we look at two dif-
ferent factors: the amount of memory required to store the structure and the amount of
work the solution does.

An array variable of the maximum list size takes the same amount of memory, no mat-
ter how many array slots are actually used, because we need to reserve space for the maxi-
mum possible. The linked implementation using dynamically allocated storage space
requires only enough space for the number of elements actually in the list at run time.
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However, as we discussed in detail when evaluating queue implementations, each node ele-
ment is larger, because we must store the link (the next reference) as well as the user’s data.

Again, we use Big-O notation to compare the execution efficiency of the two imple-
mentations. As mentioned before, most of the operations are nearly identical in the two
implementations. The isFull, reset, and getNextItem methods in both implementa-
tions clearly have O(1) complexity. As with stacks and queues, the array-based con-
structor is O(N ) but the reference-based constructor is only O(1).

The lengthIs method is always O(1) in an array-based implementation, but we
have a choice in the linked version. We chose to make it O(1) by keeping a counter of
the number of elements we insert and delete. If we had chosen to implement lengthIs
by counting the number of elements each time the method is invoked, the operation
would be O(N ). The moral here is that you must know how an operation is implemented
in order to specify its Big-O measure.

The isThere and retrieve operations are virtually identical for the two imple-
mentations. Beginning at the first element, they examine one element after another
until the correct element is found. Because they must potentially search through all the
elements in a list, both implementations are O(N ).

Because the list is unsorted, we can choose to put a new item into a directly accessi-
ble place: the last position in the array-based implementation or the front in the linked
version. Therefore, the complexity of insert is the same in both implementations: O(1).
In both implementations, delete is O(N ) because the list must be searched for the item
to delete. These observations are summarized in Table 5.2. For those operations that

Table 5.2 Big-O Comparison of Unsorted List Operations

Array Implementation Linked Implementation

Class constructor O(N ) O(1)
isFull O(1) O(1)
lengthIs O(1) O(1)
isThere O(N ) O(N )
reset O(1) O(1)
getNextItem O(1) O(1)
retrieve

Find O(N ) O(N )
Process O(1) O(1)
Combined O(N ) O(N )

insert
Find O(1) O(1)
Insert O(1) O(1)
Combined O(1) O(1)

delete
Find O(N ) O(N )
Delete O(1) O(1)
Combined O(N ) O(N )
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require an initial search, we break the Big-O into two parts: the search and what is done
following the search.

5.5 Implementing the Sorted List as a Linked Structure

To implement our Sorted List ADT as a linked structure we also extend the abstract class
LinkedList. Again, we only need to implement a constructor and the two abstract
methods isThere and insert.

The setup for our SortedLinkedList class is the same as for our Unsort-
edLinkedList class. Again we have the class extend the LinkedList class and add a
constructor that just invokes the constructor of the LinkedList class.

The isThere method of the sorted array-based list implementation in Chapter 3
used the binary search algorithm. As we have already noted, we cannot use the binary
search approach with linked lists. To search the list to see if a given item is on it, we
must follow the links down the list one by one. We used the same approach for the
unsorted linked list. However, we can improve our approach in one way. If the item is
not on the list, we can stop searching when the element we are examining is larger than
the item we are looking for. Since the list is sorted, we know that the rest of the ele-
ments on the list are larger still, and cannot possibly match our item.

When we encounter a list element larger than our target item, we set the more-
ToSearch variable to false. This same variable is set to false if the next location to
be examined is null, that is, if we have reached the end of the list. Since there are two
places in the code where we need to compare our item to the current list element (to see
if they are equal and to see if the element is larger than the item), we declare an int
variable holdCompare, to hold the result of the comparison. This way we only have to
call the compareTo method once. Here is the code for isThere:

public boolean isThere (Listable item)
// Determines if element matching item is on this list
{
int holdCompare;
boolean moreToSearch;
ListNode location = list;
boolean found = false;

moreToSearch = (location != null);

while (moreToSearch && !found)
{
holdCompare = item.compareTo(location.info);
if (holdCompare == 0)  // If they match
found = true;

else
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insert (item) – Locating insertion location

Set location to position of first element
Set moreToSearch to (have not examined last.info( ))
while moreToSearch

if (item.compareTo(location.info( )) < 0)
Set moreToSearch to false

else
Set location to location.next( )
Set moreToSearch to (have not examined last.info( ))

if (holdCompare < 0)   // If list element is larger than item
moreToSearch = false;

else
{
location = location.next;
moreToSearch = (location != null);

}
}

return found;
}

To complete the definition of the SortedLinkedList class we must define the
insert operation. Inserting an item into a sorted list with a linked implementation is
more complicated than any of the other operations we have implemented, due to the
number of special cases to handle.

We base our approach on the algorithm identified in Chapter 3 for the array-based
implementation. This algorithm has two parts: find the place to insert the item and
insert the item. We can reuse the array-based approach for the first part of the algo-
rithm, the part that walks through the list until we reach an element that is larger than
our insertion item or we reach the end of the list. Remember that we assume that no
current list element has a key value that matches the key value of our insertion item.
That is why we search for an element that is “greater” than our item, rather than
“greater than or equal to.”

The second part of the Chapter 3 algorithm shifts the array elements between the
insertion location and the end of the list down one position, to make room for the new
item. With the linked approach, we know we don’t have to shift any elements, so we
should not use the second part of the algorithm. Here is the first part of the algorithm:
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Figure 5.18 Inserting an item into the “middle” of the list
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found:
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insert Kit

Figure 5.19 Inserting at the end of the list
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moreToSearch: true

insert Sarah

When we exit the loop, location is referencing the location where item goes, as
shown in Figure 5.18. We just need to get a new node, put item into the info vari-
able, put location into the next variable, and put the reference to the new node in
the next variable of the node before it (the node containing Kate in the figure). Oops!
We don’t have a reference to the node before it. We must keep track of the previous
reference as well as the current reference. When we had a similar problem with
delete for the abstract LinkedList class, we compared one item ahead (loca-
tion.next.info). Can we do that here? No. We were able to use that technique
because we knew that the item for which we were searching was on the list. Here we
know that the item for which we are searching is not on the list. If the new item were
to go at the end of the list, that approach would crash because location.next
would be null. (See Figure 5.19.)

We could change the way of determining moreToSearch, but there is an easier
method for handling this situation. We use two references to search the list with one
reference always trailing one node behind. We call the previous reference prevLoc
(“previous location”) and let it trail one node behind location. When compareTo
returns an integer greater than 0, indicating that the element at location is still
smaller than the insertion item, we advance both references. As Figure 5.20 shows, the
process resembles the movement of an inchworm. The prevLoc reference (the tail of the
inchworm) catches up with location (the head), and then location advances. Because
there is not a node before the first node, we initialize prevLoc by setting it to null. We
know we have reached the end of the list when location becomes null. Now let’s
summarize these thoughts into a new algorithm. We use some link-related notation in
our algorithm, such as the term null, to simplify our transition to Java code later.
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insert (item)
Set location to list
Set prevLoc to null
Set moreToSearch to (location != null)
while moreToSearch

if (item.compareTo(location.info( )) < 0)
Set moreToSearch to false

else
Set prevLoc to location
Set location to location.next( )
Set moreToSearch to (location != null)

Set newNode to a reference to a newly instantiated node
Set newNode.info( ) to copy of item
Set newNode.next( ) to location
Set prevLoc.next( ) to newNode
increment numItems

Let’s do an algorithm walk-through before we code it. There are four cases, as
shown in Figure 5.21: the new item goes before the first element, between two other

Figure 5.20 The inchworm effect
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if prevLoc == null
Set list to newNode

else
Set prevLoc.next( ) to newNode

Set prevLoc.next( ) to newNode

elements, comes after the last element, or is inserted into an empty list. In the first case
(Figure 5.21a), “Alex” compared to “Becca” returns an integer less than 0, and we exit
the loop. We store location into the next reference of newNode and newNode into the
next reference of prevLoc. Whoops! The program crashes because prevLoc is null.
Before setting the next reference of prevLoc we must check to see if prevLoc is null,
and if it is, we must store newNode into list rather than the next reference of prev-
Loc. We amend the line of our algorithm that reads

to read 

When you use a reference, remember to consider the possibility that it might be null.
What about the in-between case? Inserting “Kit” (Figure 5.21b) leaves location

referencing the node with “Lila” and prevLoc referencing the node with “Kate.” There-
fore, the next reference of newNode references the node with Lila; the node with “Kate”
references the new node. That’s fine. What about when we insert at the end? Inserting
“Kate” (Figure 5.21c) leaves location equal to null and prevLoc referencing the node
with “Chris.” Therefore, the next reference of newNode is assigned null, and the value
of newNode (the reference to “Kate”) is stored in the next reference of the node con-
taining “Chris.” That is also correct.

Does the algorithm work when the list is empty? Let’s see. Both location and
prevLoc are null, but we store newNode into list when prevLoc is null (remember
how we updated our algorithm) so there isn’t a problem. (See Figure 5.21d.)

Here is the code for the entire SortedLinkedList class, including the insert
method.
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Figure 5.21 Four insertion cases
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//----------------------------------------------------------------------------
// SortedLinkedList.java          by Dale/Joyce/Weems                Chapter 5
// 
// Completes the definition of a link-based list under the assumption
//  that the list is kept sorted
//----------------------------------------------------------------------------

package ch05.genericLists;

import ch04.genericLists.*;

public class SortedLinkedList extends LinkedList
{
public SortedLinkedList()
// Instantiates an empty list object
{
super();

}

public boolean isThere (Listable item)
// Determines if element matching item is on this list
{
int holdCompare;
boolean moreToSearch;
ListNode location = list;
boolean found = false;

moreToSearch = (location != null);

while (moreToSearch && !found)
{
holdCompare = item.compareTo(location.info);
if (holdCompare == 0)  // If they match
found = true;

else
if (holdCompare < 0)   // If list element is larger than item
moreToSearch = false;

else
{
location = location.next;
moreToSearch = (location != null);

}
}

return found;
}
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public void insert (Listable item)
// Adds a copy of item to list
{
ListNode newNode = new ListNode();     // Reference to node being inserted
ListNode prevLoc = new ListNode();     // Trailing reference
ListNode location = new ListNode();    // Traveling reference
boolean moreToSearch;

location = list;
prevLoc = null;
moreToSearch = (location != null);

// Find insertion point
while (moreToSearch)
{
if (item.compareTo(location.info) < 0) // List element is larger than item
moreToSearch = false;

else
{
prevLoc = location;
location = location.next;
moreToSearch = (location != null);

}
}

// Prepare node for insertion
newNode.info = (Listable)item.copy();

// Insert node into list
if (prevLoc == null)
// Insert as first
{
newNode.next = list;
list = newNode;

}
else
{
newNode.next = location;
prevLoc.next = newNode;

}
numItems++;

}
}
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Comparing Sorted List Implementations

As for the unsorted list, it is easy to see that for both array-based and linked
approaches, the isFull, lengthIs, reset, and getNextItem methods are all O(1);
that is, they require a constant number of steps. Also, the constructor for the former is
O(N ) and the constructor for the latter is O(1).

We discussed three algorithms for the isThere operation in an array-based list: a
sequential search, a sequential search with an exit when the place is passed where the
item would be if present, and a binary search. The first two have order O(N ); the binary
search has order O(log2N). The first two searches can be implemented in a linked list, but
a binary search cannot. (How do you get directly to the middle of a linked list?) There-
fore, the array-based algorithm for searching a list is faster than the linked version if
the binary search algorithm is used.

Retrieving an item, inserting an item, and deleting an item all require, as a first
step, finding the correct location in the list to perform the operation. Any of the algo-
rithms identified for the isThere operation can be used to find the location. Once the
correct location is determined, the retrieve method, in both implementations, simply
has to return a copy of the item at the location. This step is O(1). Therefore, the total
Big-O complexity of retrieve depends entirely on the algorithm used to find the cor-
rect location. For the array-based implementation this is either O(N ) or O(log2N ). For
the link-based implementation this is O(N ).

In both list implementations, the insert method uses a sequential search to find
the insertion position; therefore, the search parts of the algorithms have O(N ) complex-
ity. As just pointed out, the binary search algorithm, with O(log2N ) complexity, could
be used for the array-based implementation. For the array-based list we must also
move down all the elements that follow the insertion position to make room for the
new element. The number of elements to be moved ranges from 0, when we insert at
the end of the list, to numItems, when we insert at the beginning of the list. So the
insertion part of the algorithm also has O(N ) complexity for the array-based list.
Because O(N ) + O(N ) = O(N ), the array-based list’s insert operation is O(N ). Even if
we used the binary search to find where the item belongs (O(log2N )), the items would
have to be moved to make room for the new one (O(N )). O(log2N ) + O(N ) is also O(N ).

The insertion part of the algorithm for the linked list representation simply requires
the reassignment of a couple of references. This makes the insertion task O(1) for a
linked list, which is one of the main advantages of linking. However, adding the inser-
tion task to the search task gives us O(N ) + O(1) = O(N )—the same Big-O approximation
as for the array-based list! Doesn’t the linking offer any advantage in efficiency? Per-
haps. Remember that the Big-O evaluations are only rough approximations of the
amount of work that an algorithm does.

The delete method is similar to insert. In both implementations, the search task is
performed as a O(N ) operation. Then the array-based list’s delete operation “deletes” the
element by moving up all the subsequent elements in the list, which adds O(N ). The
whole function is O(N ) + O(N ), or O(N ). The linked list deletes the element by unlinking it
from the list, which adds O(1) to the search task. The whole function is O(N ) + O(1), or
O(N ). Thus, both delete operations are O(N ); for large values of N, they are roughly
equivalent.
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The fact that two operations have the same Big-O measure does not mean that they
take the same amount of time to execute. The array-based implementation requires, on
average, a great deal of data movement for both insert and delete operations. Does all
this data movement really make any difference? It doesn’t matter too much in the
examples in our figures; the lists are all very small. If there are 1,000 elements on the
list, however, the data movement starts to add up.

Table 5.3 summarizes the Big-O comparison of the sorted list operations for array-
based and linked implementations

5.6 Our List Framework

In this chapter, we further refined our list framework. The framework consists of the fea-
tures of our unsorted and sorted lists, the assumptions, the supported operations, and the
set of classes and interfaces that support everything else. Let’s review our framework.

Table 5.3 Big-O Comparison of Sorted List Operations

Array Implementation Linked Implementation

Class constructor O(N ) O(1)

isFull O(1) O(1)

lengthIs O(1) O(1)

isThere O(N )* O(N )*

reset O(1) O(1)

getNextItem O(1) O(1)

retrieve

Find O(N )* O(N )

Process O(1) O(1)

Combined O(N )* O(N )

insert

Find O(N )* O(N )

Insert O(N ) O(1)

Combined O(N ) O(N )

delete

Find O(N )* O(N )

Delete O(N ) O(1)

Combined O(N ) O(N )

*O(log2N ) if a binary search is used.
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First, we review the features and supported operations of our lists. In Chapter 3, we
defined our general list ADT. We decided that our lists would

• be keyed lists.
• contain unique items in terms of the keys.
• hold objects of classes that implement the Listable interface.
• use the “by copy” approach; in other words, insertions would place copies of the

client’s data onto the list, and retrievals would return copies of the items on the list.
• support the operations isFull, lengthIs, isThere, retrieve, insert,

delete, reset, and getNextItem.
• operate by contract in terms of assuming the client would never insert a dupli-

cate item, insert into a full list, request deletion or retrieval of a nonexistent
item, or try to iterate through an empty list.

Next, we review the classes and interfaces that support these features:

• The Listable interface: Only objects of classes that implement this interface
can be used with our lists

• The ListInterface interface: Defines the method signatures of all the sup-
ported list operations; the detailed comments include the effect, preconditions,
and postconditions for each operation

• The abstract class List: Implements ListInterface and defines all the con-
structs for an array-based list that do not depend on whether or not the list is sorted

• The abstract class LinkedList: Implements ListInterface and defines all the
constructs for a link-based list that do not depend on whether or not the list is
sorted; includes the definition of the ListNode class as an inner class

• The UnsortedList class: Extends List and completes its definition under the
assumption that the list is not kept sorted (Note: the creation of this class was
left as an exercise.)

• The SortedList class: Extends List and completes its definition under the
assumption that the list is kept sorted

• The UnsortedLinkedList class: Extends LinkedList and completes its defini-
tion under the assumption that the list is not kept sorted

• The SortedLinkedList class: Extends LinkedList and completes its defini-
tion under the assumption that the list is kept sorted

Figure 5.22 displays a UML static class diagram that captures the relationships among
these classes and interfaces.

Please remember that this list framework is not the only possible framework. We
believe it is a sound logical framework for the purposes of this textbook. However, there
are many other viable approaches to supporting list abstractions using Java. For exam-
ple, the lists that are part of the Java 2 Library’s Collection Framework are much differ-
ent from those we created.

We could define lists with different features. For example, we could drop the
assumption that the lists contain unique elements—although the class and interface rela-
tionships and basic algorithms would not change, the implementation details of many
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Figure 5.22 UML class diagram for our list framework
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of the operations would be affected. As another example, we might drop the program-
ming-by-contract approach and use Java’s exception mechanism to enforce the stated
preconditions. In that case they are no longer preconditions, they are part of the defini-
tion of the method interface.

Additionally, we could create a different class/interface architecture. Perhaps,
instead of using abstract classes to factor out the commonality from the sorted and
unsorted approaches, we could directly implement the ListInterface with concrete
classes. Or maybe we could create one abstract class for unsorted lists and another for
sorted lists, rather than one for the array-based approach and one for the link-based
approach.

We developed the Listable interface to ensure that the objects we placed on our
lists supported the copy and compareTo operations. Instead of creating our own inter-
face, we could have used two of Java’s predefined interfaces, the Cloneable interface
and the Comparable interface. The Cloneable interface has a unique protocol—declar-
ing that a class implements Cloneable amounts to a promise by the implementer that
clients of the class can safely invoke a clone method on objects of the class. The class
either provides its own reliable clone method or the implementer of the class is guaran-
teeing that the Object class’s clone method (a bitwise copy operation, that is, an exact
copy of the object’s memory representation) can be used. The use of the Cloneable
interface is not very intuitive, so we decided to define our own Listable interface.

Summary
We have seen how stacks, queues, unsorted lists, and sorted lists may be represented in
an array-based or linked representation. The specifications for each ADT didn’t mention
design representation, so we were free to implement them in any way we chose. There
was nothing in the specification of these ADTs to say that the structures should be
array-based or linked, or that the elements were stored in statically or dynamically allo-
cated storage.

We could specify a number of other operations for a List ADT. Some operations, such as
one to find the preceding node in a list, are easy to implement for an array-based list but
would be difficult to implement using a list that is linked in one direction (like the lists in
this chapter). This operation would be simpler if the list had links going both forward and
backward. We can think of many variations for representing a linked list in order to sim-
plify the kinds of operations that are specified for the list: doubly linked lists, circular lists,
lists that are accessed from both the beginning and the end. We look at some of these
alternative implementation structures in the next chapter.

The idea of linking the elements in a data structure is not specific to stacks, queues,
and lists. We use this powerful tool to implement trees and graphs later in this book.

Summary of Classes and Support Files
The classes and files are listed in the order in which they appear in the text. The pack-
age a class belongs to, if any, is listed in parentheses under Notes. The class and support
files are available on our web site. They can be found in the ch05 subdirectory of the
bookFiles directory.
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Classes, Interfaces and Support Files Defined in Chapter 5

File 1st Ref. Notes

LinkedStack.java page 347 (ch05.stacks) Reference-based implementation
of our stack ADT;
implements StackInterface

LinkedQueue.java page 357 (ch05.queues) Reference-based implementation of
our queue ADT;
implements QueueInterface

LinkedList.java page 371 (ch05.genericLists) Abstract class—defines all
the constructs for a reference-based generic list that
do not depend on whether or not the list is sorted;
the list stores objects derived from a class that imple-
ments Listable;
implements ListInterface

UnsortedLinkedList.java page 383 (ch05.genericLists) Extends LinkedList
under the assumption that the list is not kept sorted

SortedLinkedList.java page 392 (ch05.genericLists) Extends LinkedList
under the assumption that the list is kept sorted

Note: The StackNode, QueueNode, and ListNode classes are all defined as inner
classes. They do not exist as separate files. Therefore, they are not included in the table
below, which list constructs by file.

Exercises
5.1 Implementing a Stack as a Linked Structure

1. True or False? Explain your answers.

a. An array is a random-access structure.

b. An array-based list is a random-access structure.

c. A linked list is a random-access structure.

d. An array-based list is always stored in a statically allocated structure.

e. A stack is not a random-access structure.

2. What is the main difference in terms of memory allocation, between using an
array-based stack and using a reference-based stack?

3. What is a self-referential class? We provided three examples of self-referential
classes in this chapter—what are they and how are they used?

4. Consider the code for the push method on page 350. What would be the effect of
the following changes to that code?

a. Switch the first and second lines.
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b. Switch the second and third lines.

c. Switch the second and fourth lines.

5. We decide to add a new operation to our Stack ADT called popTop. We add the
following code to our StackInterface interface

public Object popTop() throws StackUnderflowException;
// Effect:         Removes top item from this stack and returns it
// Postconditions: If (this stack is empty)
//                   an exception that communicates 'pop on stack
//                   empty' is thrown
//                 else
//                   top element has been removed from this stack.
//                   return value = (the removed element)

An operation like this is often included for stacks. Implement the popTop
method for the LinkedStack class.

6. Suppose we decide to add a new operation to our Stack ADT called sizeIs,
which returns a value of primitive type int equal to the number of items on the
stack. The method signature for sizeIs is:

public int sizeIs()

a. Write the code for sizeIs for the ArrayStack class defined in Chapter 4.

b. Write the code for sizeIs for the LinkedStack class defined in this chapter
(do not add any instance variables to the class; each time sizeIs is called
you must “walk” through the stack and count the nodes).

c. Augment the LinkedStack class with an instance variable size that always
holds the current size of the stack. Now you can implement the sizeIs oper-
ation by just returning the value of size. Identify all the methods of
LinkedStack that you need to modify to maintain the correct value in the
size variable and describe how you would change them.

d. Analyze the methods created/changed in Parts a, b, and c in terms of Big-O
efficiency.

5.2 Implementing a Queue as a Linked Structure
7. Consider the code for the enqueue method on page 360. What would be the

effect of the following changes to that code?

a. Switch the second and third lines.

b. Change the boolean expression “rear == null” to “front == null”.

8. Given the following specification of a front operation for a queue:

Effect: Returns a reference to the front item on the queue.

Precondition: Queue is not empty.

Postconditions: Return value = a reference to the front item on the queue.

Queue is not changed.
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a. Write this operation as client code, using operations from the LinkedQueue
class. (Remember the client code has no access to the private variables of the
class.)

b. Write this operation as a new public method of the LinkedQueue class.

9. Assume that an integer requires 2 bytes of space, and that a reference requires 4
bytes of space. Also assume the maximum queue size is 200. For queues of integers:

a. How much space would our array-based queue of size 20 require?

b. How much space would our array-based queue of size 100 require?

c. How much space would our array-based queue of size 200 require?

d. How much space would our reference-based queue of size 20 require?

e. How much space would our reference-based queue of size 100 require?

f. How much space would our reference-based queue of size 200 require?

g. For what size queue do the array-based and reference-based approaches use
approximately the same amount of space?

10. Implement the Queue ADT using a circular linked list as discussed in the section.
Test your implementation using the test plan developed in Chapter 4.

5.3 An Abstract Linked List Class
11. You have studied both array-based and reference-based (linked) lists.

a. Explain the difference between an array-based and a linked representation of
a list.

b. Give an example of a problem for which an array-based list would be the better
solution.

c. Give an example of a problem for which a linked list would be the better
solution.

12. A friend of yours is having trouble instantiating an object of the LinkedList
class and asks for your help. What do you tell your friend?

13. The List class and LinkedList class are both abstract classes that implement the
ListInterface interface. Other than the fact that the former is based on arrays
and the latter is based on references, what are some important differences between
these two classes?

14. Rewrite the lengthIs method of the LinkedList class assuming that we do not
keep track of the current size of the list in an instance variable.

15. Suppose we redefine the delete operation by dropping the precondition that the
item to be deleted is definitely on the list; furthermore, we have the delete
operation return a boolean value indicating whether or not it successfully
deleted the item. Write this new delete operation for the LinkedList class.

16. Suppose we redefine our list so that it can contain duplicate items. We now define
the delete operation so that it deletes every matching element from the list (we
still assume that at least the element matches). Write this new delete operation
for the LinkedList class.
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The next three questions use the following diagram. In the diagram a reference is
indicated by an arrow, the list nodes have an info variable containing an integer
and a next variable containing a reference, and list, ref1, and ref2 are refer-
ences to a list node.

17. Give the values of the following expressions:

a. ref1.info

b. ref2.next.info

c. list.next.next.info

18. Are the following expressions true or false?

a. list.next == ref1

b. ref1.next.info == 60

c. ref2.next == null

d. list.info == 25

19. Write one statement to do each of the following:

a. Make list point to the node containing 45.

b. Make ref2 point to the last node in the list.

c. Make list point to an empty list.

d. Set the info variable of the node containing 45 to 60.

5.4 Implementing the Unsorted List as a Linked Structure
20. Following the style of the figures in this chapter, draw the list that would result

from each of the following code sequences. To simplify the presentation of this
exercise, we assume our lists hold integers rather than objects of the class
Listable.

a. UnsortedLinkedList myList = new UnsortedLinkedList();
myList.insert(5);
myList.insert(9);
myList.insert(3);

b. UnsortedLinkedList myList = new UnsortedLinkedList();
myList.insert(5);
myList.insert(9);

• • • • • •

•

• •

list

ref1 ref2

25 30 45 60 65 80 90
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myList.insert(3);
myList.delete(9);

21. Suppose we have a class called Car that models cars; it has instance variables
for year, make, model, and price; it provides appropriate observer methods,
including one called getPrice that returns a value of type int indicating the
price of “this” car. The Car class also implements the Listable interface, so we
can create a list of cars.

Implement a client method totalPrice, that accepts a list (Unsorted-
LinkedList carList) of cars and returns an integer equal to the total cost of
the cars on the list.

22. Extend our UnsortedLinkedList class with a public method endInsert,
which inserts an item onto the end of the list. Do not add any instance variables
to the class. The method signature is:

public void endInsert(Listable item)

23. Extend our UnsortedLinkedList class with a public method ceilingList,
which returns a new list that contains all the elements of the current list that are
less than or equal to the item argument. The method signature is:

public UnsortedLinkedList ceilingList(UnsortedLinkedList list, 
Listable item)

5.5 Implementing the Sorted List as a Linked Structure
24. Following the style of the figures in this chapter, draw the list that would result

from each of the following code sequences. To simplify the presentation of this
exercise, we assume our lists hold integers rather than objects of the class
Listable.

a. SortedLinkedList myList = new SortedLinkedList();
myList.insert(5);
myList.insert(9);
myList.insert(3);

b. SortedLinkedList myList = new SortedLinkedList();
myList.insert(5);
myList.insert(9);
myList.insert(3);
myList.delete(9);

25. Extend our SortedLinkedList class with a public method ceilingList,
which returns a new list that contains all the elements of the current list that are
less than or equal to the item argument. The method signature is:

public UnsortedLinkedList ceilingList(UnsortedLinkedList list, 
Listable item)
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26. Consider the operation of merging together two sorted linked lists, list1 and
list2, into a single sorted linked list, list3. Suppose list1 is size M, and
list2 is size N.

a. Suppose you implemented this operation at the client level by using an iterator
to obtain each of the elements of list1 and insert them into list3, and then
using an iterator to obtain each of the elements of list2, using isThere to
make sure they were not already in list1, and if they were not, using insert
to insert them into list3. What is the Big-O complexity of this approach?
(Remember to count the time taken by the list methods.)

b. Another approach is to implement the operation as a public method of the
SortedLinkedList class. The start of the method would be

public void merge (SortedLinkedList list1, SortedLinkedList list2)
// Effect:         This list becomes the merger of list1 and list2
// Postconditions: Any item on list1 is also on this list
//                 Any item on list2 is also on this list
//                 No other items are on this list
//                 This list is sorted
//                 There are no duplicate items on this list

Describe an algorithm for implementing this method. What is the Big-O com-
plexity of your algorithm?

5.6 Our List Framework
27. For our list framework, identify and describe the main purpose of

a. Each of the interfaces

b. Each of the abstract classes

c. The inner class

d. Each of the concrete classes

28. Recreate the structure of our list framework diagram; that is, indicate the inter-
faces, abstract classes, inner classes, and concrete classes and their relationships;
do not include details such as instance variable and method names.



Measurable goals for this chapter include that you should be able to

implement a circular linked list

implement a doubly linked list

implement a linked list with a header node or a trailer node or both

implement a linked list as an array of nodes

describe the benefits and drawbacks of each of our list approaches

explain the relationships among the classes and interfaces of our list framework

choose a reasonable list approach based on a set of list requirements

if needed, define a new list approach to help solve a specified problem
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This chapter begins with three new implementations of reference-based lists: circular
linked lists, doubly linked lists, and lists with headers and trailers. We then introduce an
array-based approach to implementing a linked list. This implementation is widely used
in operating systems software.

All of the lists presented to this point are generic; that is, they are designed to be
useful for many applications. At the end of this chapter we design a list ADT with very
different properties for a specific application. In the case study, we design and imple-
ment the application.

Note that Figure 6.20, in the chapter summary section, features the additions to our
list framework made in this chapter.

6.1 Circular Linked Lists

The linked lists that we implemented in Chapter 5 are characterized by a linear (line-
like) relationship between the elements: Each element (except the first one) has a unique
predecessor, and each element (except the last one) has a unique successor.

Let’s consider a small change to our linked list approach and see how much it
would affect our implementation and use of the Sorted List ADT. Suppose we change

the linear list slightly, making the next reference of
the last node point back to the first node instead of
containing null (Figure 6.1). Now our list is a circular
linked list rather than a linear linked list. We can start
at any node in the list and traverse the whole list.

Of course, we must now ensure that all of our list
operations maintain this new property of the list: that

after the execution of any list operation, the last node continues to point to the front
node. A quick consideration of each of the operations should convince us that we could
continue to efficiently support all of them except when an operation changes the first
element on the list. Consider, for example, if we try to delete the first element. Our pre-
vious delete approach would simply change the list reference to point to the second
element on the list, effectively removing the first element. Now, however, we must also
update the reference in the last element on the list, so that it points to the new first ele-
ment. The only way to do that is to traverse the entire list to obtain access to the last
element, and then make the change. A similar problem arises if we insert an item into
the front of the list.

Circular linked list A list in which every node has a
successor; the “last” element is succeeded by the “first”
element

Figure 6.1 A circular linked list

•• • • •A B C DlistData
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Inserting and deleting elements at the front of a list might be a common operation
for some applications. Our linear linked list approach supported these operations very
efficiently, but our circular linked list approach does not. We can fix this problem by
letting our list reference point to the last element in the list rather than the first; now
we have direct access to both the first and the last elements in the list (See Figure 6.2
where list.info references the information in the last node, and list.next.info
references the information in the first node.) We mentioned this type of list structure in
Chapter 5, when we discussed circular linked queues.

The CircularSortedLinkedList Class

In order to implement a list class using our new approach we must decide where it fits
in our list framework. Certainly, we expect the new class to implement the List-
Interface interface. The question is whether it should implement the interface directly
or whether it should extend one of our current classes that already implements the
interface. Perhaps we can reuse some of the methods already defined in the
LinkedList class or the SortedLinkedList class. To resolve this question, let’s con-
sider more carefully the effect that our structure change has on our implementation.

There is no need to change any of the declarations in the inner class ListNode to
make the list circular, rather than linear. After all, the design of the nodes is the same;
only the value of the next reference of the last node has changed. Also, we can con-
tinue to use the same instance variables as before, since we still need a reference into the
list, a count of the number of elements on the list, and a current position indicator for
list iterations. The list constructor does not change since the reference variables are still
initialized to null, and the number of elements on the original empty list is still zero.

How does the circular nature of the list change the implementations of the list oper-
ations? Three methods can remain unchanged. We continue to follow the convention

Figure 6.2 Circular linked lists with the external pointer pointing to the rear element

• •• • •A B C D
list

•

•A
list

list (empty list)

(a)

(b)

(c)
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that a reference-based list is never “full;” the isFull method remains unchanged. The
lengthIs method still needs to just return the value of numItems. And since the
retrieve method asserts as a precondition that the targeted item is on the list, its code
can remain the same. We do not have to worry about “looping” back to the beginning
of the list since we are guaranteed to find the targeted item before that could occur.

All of the other methods require some modification. For the isThere method we
must change the search termination condition since the end of the list is no longer
marked by null. The insert and delete methods change the structure of the list so
we must make sure they maintain the circular nature of the list; and the iterator meth-
ods need to be updated to reflect the new structure of list elements.

Considering that we can reuse the declarations, constructor, and three methods of the
LinkedList class, we decide to implement our new list as an extension of the abstract
class LinkedList. We call our new class CircularSortedLinkedList; its header is:

public class CircularSortedLinkedList extends LinkedList

Following our previous conventions, we create a new package, ch06.genericLists, to
hold this class and the other generic list constructs defined in this chapter. Obviously, our
new class requires access to the LinkedList class. Normally, we would just import the
package containing the LinkedList class (ch05.genericLists) into the new class. How-
ever, simply importing the package does not allow our new class the privilege of accessing
the attributes of the ListNode inner class of the LinkedList class. This privilege is only
accorded to classes in the same package as LinkedList. Since access to these attributes is
necessary to code the new methods, we make a copy of the LinkedList class file and place
it in the ch06.genericLists package. A copy of the corresponding file can be found in
the appropriate subdirectory (bookfiles.ch06.genericLists) on our web site.

The beginning of the new class definition looks like this:

//----------------------------------------------------------------------------
// CircularSortedLinkedList.java      by Dale/Joyce/Weems            Chapter 6
// 
// Completes the definition of a link-based list under the assumption
//  that the list is circular and is kept sorted
//----------------------------------------------------------------------------

package ch06.genericLists;

import ch04.genericLists.*;

public class CircularSortedLinkedList extends LinkedList
{
public CircularSortedLinkedList()
// Instantiates an empty list object
{
super();

}
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Next we look at the changes to the remaining methods. Let’s begin with the easy ones.

The Iterator Methods

The required changes here are interesting in that the reset method becomes more com-
plicated and the getNextItem method becomes simpler. Here’s the code for the linear
linked list and circular linked list, side-by-side, for easy comparison:

Linear Circular

public void reset() public void reset()
// Initializes current position for // Initializes current position for
//  an iteration through this list //  an iteration through this list
{ {
currentPos = list; if (list == null)

} currentPos = list;
else

public Listable getNextItem () currentPos = list.next;
// Returns copy of the next element }
{
Listable nextItemInfo = public Listable getNextItem ()

currentPos.info.copy(); // Returns copy of the next element
if (currentPos.next == null) {
currentPos = list; Listable nextItemInfo =

else currentPos.info.copy();
currentPos = currentPos.next; currentPos = currentPos.next;

return nextItemInfo; return nextItemInfo;
} }

Since we want the reset method to set the current position to the start of the list and
our list reference variable points to the last list element, we must access the start of
the list through the list.next reference. However, if the list is empty, this reference
does not exist. In that case, the list variable itself holds the value null, so we cannot
access list.next. Therefore, we must protect the assignment statement

currentPos = list.next;

with the test for the empty list.
The getNextItem method has become simpler. For the linear list, this method had

to explicitly test for the end of list condition, and handle it as a special case. For the cir-
cular list, this is no longer necessary. When an iteration reaches the end of the list the
circular nature of the list ensures that it is redirected to the front of the list, as we wish.

Note that since the methods reset and getNextItem are both defined in the
LinkedList class we must redefine them in the CircularSortedLinkedList class.
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The new definitions override the LinkedList definitions for objects of the class
CircularSortedLinkedList.

The isThere Method

The changes needed for isThere are also relatively easy. Recall that we wish to start
our search at the beginning of the list, and continue searching sequentially until we find
an element larger than the targeted item or we reach the end of the list. We must make
sure that under the new arrangement we still begin our search at the beginning of the
list. An easy way to do this is to change the list information we are comparing our tar-
geted item to, from location.info to location.next.info. Note that we are guar-
anteed that location.next.info exists since when we access it we have already
determined that the list is not empty.

Additionally, we must revise our method of determining when we have reached the
end of the list. For a nonempty list, the isThere implementation in the LinkedList
class terminates its search when location becomes null, indicating that the search
has exhausted the entire list:

moreToSearch = (location != null);

With the circular list this test no longer works, since the list loops back upon itself
rather than terminating with a next reference equal to null. The goal is to stop search-
ing when the end of the list is reached. With the circular list, we know we reach the end
of the list when location references the same node as the list variable (remember,
list always indicates the last node on the list for the circular approach). So the termi-
nating condition is set appropriately:

moreToSearch = (location != list);

The code, with the changes from the previous approach emphasized, is:

public boolean isThere (Listable item)
// Determines if element matching item is on this list
{
int holdCompare;
boolean moreToSearch;
ListNode location = list;
boolean found = false;

moreToSearch = (location != null);

while (moreToSearch && !found)
{
holdCompare = item.compareTo(location.next.info);
if (holdCompare == 0)  // If they match
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found = true;
else
if (holdCompare < 0)   // If list element is larger than item
moreToSearch = false;

else
{
location = location.next;
moreToSearch = (location != list);

}
}

return found;
}

Study this code and convince yourself that it works for an empty list and for lists of
sizes 1, 2, and 5, for both the case when the item is on the list and the case in which the
item is not on the list.

Deleting from a Circular List

We can use the same basic approach to deleting an element from a circular list as we
used for a linear list. First, find the element that matches the targeted item and then
delete it. To delete it we unlink it from the chain of elements by setting the next refer-
ence of the element previous to the identified element to reference the element after the
identified element. Thus, when we delete an element we need a reference to the element
that precedes it. Recall the “trick” we used for the linear list delete method, where we
always looked at the element in the position after our current location, using the
Boolean expression:

item.compareTo(location.next.info) != 0

That way, when we found the element to delete, location held a reference to the pre-
vious node and we could “jump over” the node to be deleted with the statement

location.next = location.next.next;

In fact, using our trick with the circular list works very nicely. Since the original
value of location is the node at the end of the list, the first information that we check
is actually associated with the first node on the list. As with the linear approach, we are
guaranteed to find our targeted element. When we do, location is referencing its pred-
ecessor on the list. To remove the targeted element from the list, we simply reset loca-
tion.next as described above; we set it to jump over the node we are deleting. That
works for the general case, at least (see Figure 6.3a).

What kind of special cases do we have to consider? In the linear list version, we had
to check for deleting the first (or first-and-only) element. However, the primary reason
that there was a special case was that the overall list reference pointed to the first list
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Figure 6.3 Deleting from a circular linked list
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element and had to be updated if that element was deleted. In the circular version the
overall list reference points to the last list element, so it is very possible that deleting the
first element is not a special case. Figure 6.3(b) shows that guess to be correct. However,
deleting the only node in a circular list is a special case, as we see in Figure 6.3(c). The
reference to the list must be set to null to indicate that the list is now empty. We can
detect this situation by checking, at the start of the method, whether location is equal
to location.next. If it is, since we know from the method preconditions that the item
we are deleting is on the list, in the case of the single element list we can simply delete
it immediately. It must be the element that we wish to delete. We delete it by setting the
list reference to null.

We might also guess that deleting the largest list element (the last node) from a cir-
cular list is a special case. After all, our reference to the list points to the last element,
so if we delete it we must change our reference. As Figure 6.3(d) illustrates, when we
delete the last node, we first update the overall list reference to point to the preceding
element. We can detect this situation by checking whether location.next equals list
after the search phase.

Here is the code for the delete method. Notice, of course, that in every case it
decrements the value of numItems. You should trace through the code and convince
yourself that it handles the general case, and all the special cases, properly.

public void delete (Listable item)
// Deletes the element of this list whose key matches item's key
{
ListNode location = list;

if (location == location.next)   // Single element list
list = null;

else
{
while (item.compareTo(location.next.info) != 0)
location = location.next;

if (location.next == list)         // Deleting last element
list = location;

// Delete node at location.next
location.next = location.next.next;
}

numItems--;
}

The insert Method

The algorithm to insert an element into a circular linked list is also similar to its linear
list counterpart. Essentially, we find the insertion location by performing a search, and
insert the new item by rearranging some references. To do the insertion we need to have
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access to both the node preceding the insertion point and the node following the inser-
tion point. And, of course, we need to handle special cases carefully. A high-level
description of the algorithm is:

The task of creating a new node is the same as for the linear list. We allocate space
for the node using the new operator and then store a copy of item into newNode.info.
The next task is one that we are used to by now. We search through the list maintaining
two references, location and prevLoc, until we find an element larger than item or
reach the end of the list. The new node is linked into the list immediately after
prevLoc. To put the new element into the list we store location into newNode.next
and newNode into prevLoc.next.

The general case is illustrated in Figure 6.4(a). What are the special cases? First, we
have the case of inserting the first element into an empty list. In this case, we want to
make list point to the new node and to make the new node point to itself (Figure
6.4b). We handle this special case first, before doing any other processing. In the inser-
tion algorithm for the linear linked list we also had a special case when the new element
key was smaller than any other key in the list. Because the new node became the first
node in the list, we had to change the reference to point to the new node. The reference
to a circular list, however, doesn’t point to the first node in the list—it points to the last
node. Therefore, inserting the smallest list element is not a special case for a circular
linked list (Figure 6.4c). However, inserting the largest list element at the end of the list
is a special case. In addition to linking the node to its predecessor (previously the last
list node) and its successor (the first list node), we must modify the list reference to
point to newNode—the new last node in the circular list (Figure 6.4d).

The statements to link the new node to the end of the list are the same as the gen-
eral case, plus the assignment of the reference, list. Rather than checking for this spe-
cial case before the search, we can treat it together with the general case: We search for
the insertion place and link in the new node. Then, if we detect that we have added the
new node to the end of the list, we reassign list to point to the new node. To detect
this condition, we compare item to list.info.

The remaining task, incrementing numItems, finishes the task. The resulting imple-
mentation of insert is shown next.

insert (item)
Create a node for the new list element
Find the place where the new element belongs
Put the new element into the list
Increment the number of items
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Figure 6.4 Inserting into a circular linked list
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public void insert (Listable item)
// Adds a copy of item to list
{
ListNode newNode = new ListNode();     // Reference to node being inserted
newNode.info = (Listable)item.copy();  // Set info attribute of new node

if (list == null)      // Insert into an empty list
{
list = newNode;
newNode.next = newNode;

}
else                   // Insert into a nonempty list
{
ListNode prevLoc = new ListNode();     // Create trailing reference
ListNode location = new ListNode();    // Create traveling reference
boolean moreToSearch = true;

location = list.next;
prevLoc = list;

// Find insertion point
while (moreToSearch)
{
if (item.compareTo(location.info) < 0) // List element is larger than item
moreToSearch = false;

else
{
prevLoc = location;
location = location.next;
moreToSearch = (location != list.next);

}
}

// Insert node into list
newNode.next = location;
prevLoc.next = newNode;
if (item.compareTo(list.info) > 0)         // New item is last on this list
list = newNode;

}
numItems++;

}

The entire CircularSortedLinkedList class can be found on the web site.
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Circular Versus Linear

Studying circular linked lists provided good practice with using references and self-referen-
tial structures. Are circular lists good for anything else? You may have noticed that the only
operation that is simpler for the circular approach, as compared to the linear approach, is
getNextItem; that minimal advantage is counterbalanced by a more complicated reset
operation. Why then might we want to use a circular, rather than linear, linked list?

Circular lists are good for applications that require access to both ends of the list.
Our CircularSortedLinkedList class could be used as the basis for other classes that
include operations that can take advantage of the new implementation. Perhaps we
need a “maximum” operation that returns the largest list element; with the circular
approach we have easy access to the largest element (through list). Or suppose we
need an operation inBetween that returns a boolean value indicating whether a param-
eter item is “in between” the largest and smallest element of the list; as just mentioned,
with the circular approach we have easy access to the largest element (through list)
and we also have easy access to the smallest element (through list.next). Therefore,
with the circular list, we could implement inBetween in O(1), whereas with our linear
approach it would take O(N ).

In addition, it is common for the data we want to add to a sorted list to already be in
order. Sometimes people manually sort raw data before turning it over to a data entry
clerk. Data produced by other programs are often in sorted order. Given a Sorted List ADT
and sorted input data, we always insert at the end of the list, the most expensive place to
insert in terms of machine time. It is ironic that the work done manually to order the data
now results in maximum insertion times. A circular list with the list reference to the end of
the list, as developed in this section, can be designed to avoid this execution overhead.

You may have realized that many of the benefits described here for circular lists
could also be obtained by using the linear linked list defined in Chapter 5 augmented
with a reference to the last element of the list. This is yet another list variation; as with
the circular list, this variation requires changes to some of the linear list methods. We
ask you to explore this variation in the exercises. The existence of many list variations
is another reason for studying circular lists—it helps us understand how small changes
in the structure underlying an ADT can require many subtle changes in the implementa-
tions of the ADT operations.

In the next section, we look at another important list structure, doubly linked lists.
In this case, the advantages of the new approach are obvious—it lets us easily traverse a
list in either direction.

6.2 Doubly Linked Lists

We have discussed using circular linked lists to enable us to reach any node in the list
from any starting point. Although this structure has advantages over a simple linear
linked list for some applications, it is still too limited for others. Suppose we want to be
able to delete a particular node in a list, given only a reference to that node. This task
involves changing the next reference of the node preceding the targeted node. How-
ever, given only a reference to a node, it is not easy to access its predecessor in the list.
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Another task that is difficult to perform on a linear linked list (or even a circular
linked list) is traversing the list in reverse. For instance, suppose we have a list of stu-
dent records, sorted by grade point average (GPA) from lowest to highest. The Dean of
Students might want a printout of the students’ records, sorted from highest to lowest,
to use in preparing the Dean’s List. Or consider the Real Estate application presented in
the case study at the end of Chapter 3. In that application the user can step through a
list of house information, viewing the information house by house on the screen, by
pressing a “next” button. Suppose the user requests an enhancement to the interface—
the idea is to include a “previous” button so that the user can browse through the
houses in either direction.

In cases like these, where we need to be able to
access the node that precedes a given node, a doubly
linked list is useful. In a doubly linked list, the nodes
are linked in both directions. Each node of a doubly
linked list contains three parts:

info: the data stored in the node
next: the reference to the following node
back: the reference to the preceding node

A linear doubly linked list is pictured in Figure 6.5. Note that the back reference of
the first node, as well as the next reference of the last node, contains a null. The fol-
lowing definition might be used to declare the nodes in such a list:

protected class DLListNode
{
// List nodes for the doubly linked list implementation
protected Listable info;    // The info in a list node
protected DLListNode next;  // A link to the next node on the list
protected DLListNode back;  // A link to the next node on the list

}

The Insert and Delete Operations

Using the definition of DLListNode, let’s discuss the corresponding insert and
delete methods. The first step for both is to find the location to do the insertion or
deletion. This step was complicated in the singly linked list situation by the need to hold
onto a reference to the previous location during the search. That is why we created our
inchworm search approach. That approach is no longer needed; instead, we can get the
predecessor to any node through its back reference. This means we can revert to the
simpler search approaches used with our array-based lists.

Doubly linked list A linked list in which each node is
linked to both its successor and its predecessor

Figure 6.5 A linear doubly linked list
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Although our search phase is simpler, the algorithms for the insertion and deletion
operations on a doubly linked list are somewhat more complicated than for a singly
linked list. The reason is clear: There are more references to keep track of in a doubly
linked list.

For example, consider insert. To link a new node newNode, after a given node
referenced by prevLoc, in a singly linked list, we need to change two references: new-
Node.next and prevLoc.next (see Figure 6.6a). The same operation on a doubly
linked list requires four reference changes (see Figure 6.6b).

Figure 6.6 Insertions into single and doubly linked lists
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Figure 6.7 Inserting into a doubly linked list
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To insert a new node we allocate space for the new node and search the list to find
the insertion point. The result of our search is that location references the node that
should follow the new node. Now we are ready to link the new node into the list.
Because of the complexity of the operation, it is important to be careful about the order
in which you change the references. For instance, when inserting the new node before
location, if we change the reference in location.back first, we lose our reference to
the node that is to precede the new node. The correct order for the reference changes is
illustrated in Figure 6.7. The corresponding code would be

newNode.back = location.back;
newNode.next = location;
location.back.next = newNode;
location.back = newNode;

We do have to be careful about inserting into an empty list, as it is a special case.
Now let’s consider the delete method. One of the useful features of a doubly

linked list is that we don’t need a reference to a node’s predecessor in order to delete the
node. Through the back reference, we can alter the next variable of the preceding node
to make it jump over the unwanted node. Then we make the back reference of the suc-
ceeding node point to the preceding node. This operation is pictured in Figure 6.8.

We do, however, have to be careful about the end cases. If location.back is
null, we are deleting the first node; if location.next is null, we are deleting the last
node. If both location.back and location.next are null, we are deleting the only
node. We leave the complete coding of the insert and delete methods for the doubly
linked list as an exercise.

The List Framework

Before leaving the topic of doubly linked lists we should address the question of how
they fit into our list framework. Although a doubly linked list is a form of linked list, it
is based on a different underlying logical structure than our other linked lists. The rela-
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Figure 6.8 Deleting from a doubly linked list
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tionship among its list elements is different from the case of the singly linked list.
Therefore, it does not make sense to have it extend the abstract LinkedList class as we
did for the other implementations. Instead, there are several other viable options.

We could create a new class, perhaps called DoublyLinkedList, and require it to
implement our current ListInterface interface. In this case, we would probably want
to add some additional methods to DoublyLinkedList that are not required by the
interface. For example, we could add a getPreviousItem method; otherwise, what is
the benefit of having the double links?

Alternately, we could create a new interface, perhaps called TwoWayListInter-
face that defines what we expect of lists that can be traversed in two directions. Then
we could create a class based on doubly linked lists that implements the new interface.
The new interface would probably require all of the operations that are part of our cur-
rent ListInterface interface, plus a few more. Certainly, we would add the getPre-
viousItem operation. Of course, a doubly linked list is not the only possible way to
implement such an interface. An array-based
approach would also work well.

The fact that the proposed new interface
would require all of the operations of our cur-
rent ListInterface interface raises another
possible approach. Java supports the inheri-
tance of interfaces. (In fact, the language sup-
ports multiple inheritance of interfaces, so
that a single interface can extend any number
of other interfaces.) A good approach would
be to define a new interface that extends
ListInterface and adds a getPrevi-
ousItem method. Figure 6.20, in the chapter
summary section, shows all the changes to
our list framework made in this chapter; it
assumes that we followed this last option
with respect to doubly linked lists.

Inheritance of interfaces A Java interface can extend
another Java interface, inheriting its requirements. If
interface B extends interface A, then classes that imple-
ment interface B must also implement interface A.
Usually, interface B adds additional abstract methods
to those required by interface A.

Multiple inheritance of interfaces Unlike for classes,
Java does support multiple inheritance of interfaces. If
interface C extends both interface A and interface B,
then classes that implement interface C must also
implement both interface A and interface B. Sometimes
multiple inheritance of interfaces is used simply to
combine the requirements of two interfaces, without
adding any additional abstract methods.
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Here is the code for the new interface:

package ch06.genericLists;

import ch04.genericLists.*;

public interface TwoWayListInterface extends ListInterface

// Interface for a class that implements a list of elements as defined
//  by ListInterface, with the additional operation(s) defined below

{
public Listable getPreviousItem ();
// Effect:         Returns a copy of the element preceding the current 
//                 position on this list and moves back the value of the 
//                 current position
//                 The last element precedes the first element
// Preconditions:  Current position is defined
//                 There exists a list element preceding current 
//                 position. No list transformers have been called since 
//                 most recent reset
// Postcondition:  Return value = (a copy of element previous to current 
//                 position)

}

6.3 Linked Lists with Headers and Trailers

In writing the insert and delete algorithms for all implementations of linked lists, we see
that special cases arise when we are dealing with the first node or the last node. One
way to simplify these algorithms is to make sure that we never insert or delete at the
ends of the list.

How can this be accomplished? Recall that the elements in the sorted linked list are
arranged according to the value in some key—for example, numerically by identification
number or alphabetically by name. If the range of possible values for the key can be

determined, it is often a simple matter to set up
dummy nodes with values outside of this range. A
header node, containing a value smaller than any pos-
sible list element key, can be placed at the beginning
of the list. A trailer node, containing a value larger
than any legitimate element key, can be placed at the
end of the list.

The header and the trailer are regular nodes of the
same type as the real data nodes in the list. They have a different purpose, however;
instead of storing list data, they act as placeholders.

Header node A placeholder node at the beginning of
a list; used to simplify list processing

Trailer node A placeholder node at the end of a list;
used to simplify list processing
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Figure 6.9 An “empty” list with a header and a trailer

• •“AAAAAAAAAA” “ZZZZZZZZZZ”

Header
node

Trailer
node

list

If a list of students is sorted by last name, for example, we might assume that there
are no students named “AAAAAAAAAA” or “ZZZZZZZZZZ”. We could therefore initial-
ize our linked list to contain header and trailer nodes with these values as the keys. See
Figure 6.9. How can we implement a general list ADT if we must know the minimum
and maximum key values? We can use a parameterized class constructor and let the
user pass as arguments elements containing the dummy keys. 

6.4 A Linked List as an Array of Nodes

We tend to think of linked structures as being dynamically allocated as needed, using
self-referential nodes as illustrated in Figure 6.10(a), but this is not a requirement. A
linked list could be implemented in an array; the elements might be stored in the array
in any order, and “linked” by their indexes (see Figure 6.10b). In this section, we
develop an array-based linked-list implementation.

In our previous reference-based implementations of lists, we have used Java’s built
in memory management services when we needed a new node for insertion or when we
were finished with a node and wanted to delete it. Obtaining a new node is easy in
Java; we just use the familiar new operation. Releasing a node from use is also easy; we
just remove our references to it and depend on the Java run time system’s garbage col-
lector to reclaim the space used by the node.

For the array-based linked representation developed in this section, we can no
longer rely on Java’s built-in space management support. Instead, we predetermine the
maximum list size and instantiate an array of list nodes of that size. We then directly
manage the nodes in the array, much like the Java system manages free space. We keep
a separate list of the available nodes, and write routines to allocate and deallocate
nodes, from and to this free list. Many programming languages do not provide the same
space management support that Java does. Working with the space management
required by the array-based linked approach is good practice for you, in case you ever
have to use those languages.

Why Use an Array?

We have seen that dynamic allocation of list nodes has many advantages, so why would
we even discuss using an array-of-nodes implementation instead? Remember that
dynamic allocation is only one advantage of choosing a linked implementation; another
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Figure 6.10 Linked lists in dynamic and static storage
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nodes
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(a) a linked list in dynamic storage

class ListNode
{
 protected Listable info;
 protected ListNode next;
}

ListNode list = new ListNode();

(b) a linked list in static storage

class AListNode
{
 protected Listable info;
 protected int next;
}

class ArrayLinkedList
{
 AListNode[] nodes = new AListNode[5];
 int first;
}

ArrayLinkedList list = new ArrayLinkedList();

advantage is the efficiency of the insert and delete algorithms. Most of the algorithms
that we have discussed for operations on a linked structure can be used for either an
array-based or a reference-based implementation. The main difference is the require-
ment that we manage our own free space in an array-based implementation. Sometimes,
managing the free space ourselves gives us greater flexibility.

Another reason to use an array of nodes is that there are programming languages
that do not support dynamic allocation or reference types. You can still use linked
structures if you are programming in one of these languages, using the techniques pre-
sented in this section.

With some languages, using references presents a problem when we need to save
the information in a data structure between runs of a program. Suppose we want to
write all the nodes in a list to a file and then use this file as input the next time we run
the program to recreate the list. If the links are reference values—containing memory
addresses—they are meaningless on the next run of the program because the program
may be placed somewhere else in memory the next time. We must save the user data
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part of each node in the file and then rebuild the linked structure the next time we run
the program. An array index, however, is still valid on the next run of the program. We
can store the array information, including the next data index, and then read it back in
the next time we run the program. (Note that Java’s serialization facilities make the use
of the array approach for this reason unnecessary. We discuss the serialization facilities
in Section 9.4: Storing Objects/Structures in Files.)

Most importantly, there are times when dynamic allocation isn’t possible or feasi-
ble, or when dynamic allocation of each node, one at a time, is too costly in terms of
time—especially in real-time system software such as operating systems, air traffic con-
trollers, and automotive systems. In such situations, an array-based linked approach
provides the benefits of linked structures without the runtime costs.

How Is an Array Used?

Let’s get back to our discussion of how a linked list can be implemented in an array. We
can associate a next variable with each array node to indicate the array index of the
succeeding node. The beginning of the list is accessed through a “reference” that con-
tains the array index of the first element in the list. Figure 6.11 shows how a sorted list

Figure 6.11 A sorted list stored in an array of nodes
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containing the elements “David,” “Joshua,” “Leah,” “Miriam,” and “Robert” might be
stored in an array of nodes called nodes. Do you see how the order of the elements in
the list is explicitly indicated by the chain of next indexes?

What goes in the next index of the last list element? Its “null” value must be an
invalid address for a real list element. Because the nodes array indexes begin at 0, the
value �1 is not a valid index into the array; that is, there is no nodes[�1]. Therefore,
�1 makes an ideal value to use as a “null” address. We could use the literal value �1 in
our programs:

while (location != –1)

but it is better programming style to declare a named constant. We use the identifier
NUL and define it to be �1:

private static final int NUL = –1;

When an array-of-nodes implementation is used to represent a linked list, the pro-
grammer must write routines to manage the free space available for new list elements.
Where is this free space? Look again at Figure 6.11. All of the array elements that do
not contain values in the list constitute free space. Instead of the built-in allocator new,
which allocates memory dynamically, we must write our own method to allocate nodes
from the free space. We call this method getNode. We use getNode when we insert
new items onto the list.

When elements are deleted from the list, we need to free the node space, that is, to
return the deleted node to the free space, so it can be used again later. We can’t depend
on a garbage collector; the node we delete remains in the allocated array so it is not
reclaimed by the run-time engine. We write our own method, freeNode, to put a node
back into the pool of free space.

We need a way to track the collection of nodes that are not being used to hold list
elements. We can link this collection of unused array elements together into a second
list, a linked list of free nodes. Figure 6.12 shows the array nodes with both the list of
elements and the list of free space linked through their next values. The list variable
is a reference to a list that begins at index 0 (containing the value David). Following the
links in next, we see that the list continues with the array slots at index 4 (Joshua), 7
(Leah), 2 (Miriam), and 6 (Robert), in that order. The free list begins at free, at index 1.
Following the next links, we see that the free list also includes the array slots at index
5, 3, 8, and 9. You see two NUL values in the next column because there are two linked
lists contained in the nodes array; so there are two end-of-list values in the array.

There are two approaches to using an array-of-nodes implementation for linked
structures. The first is to simulate dynamic memory with a single array. One array is
used to store many different linked lists, just as the computer’s free space can be
dynamically allocated for different lists. In this approach, the references to the lists are
not part of the storage structure, but the reference to the list of free nodes is part of the
structure. Figure 6.13 shows an array that contains two different lists. The list indicated
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by list1 contains the values “John,” “Nell,” “Susan,” and “Suzanne” and the list indi-
cated by list2 contains the values “Mark,” “Naomi,” and “Robert.” The remaining three
array slots in Figure 6.13 are linked together in the free list.

Another approach is to have one array of nodes for each list. In this approach, the
reference to the list is part of the storage structure itself (see Figure 6.14). This works
since there is only one list. The list constructor has a parameter that specifies the maxi-
mum number of items to be on the list. This parameter is used to dynamically allocate
an array of the appropriate size.

In this section, we implement this second approach. We call our new class
ArrayLinkedList. In implementing our class methods, we need to keep in mind that
there are two distinct processes going on within the array of nodes: bookkeeping relat-
ing to the space (such as initializing the array of nodes, getting a new node, and freeing

Figure 6.12 An array with linked list of values and free space
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a node) and the operations on the list that contains the user’s data. The bookkeeping
operations are transparent to the user. Our list interface does not change. In fact, our
new class implements the ListInterface interface, just as all of our other list imple-
mentations have done. The private data, however, change. We need to include the array
of nodes. Let’s call this array nodes and have it hold elements of the class AListNode.
Objects of the AListNode class, then, contain two attributes: info of type Listable
that holds a reference to a copy of the user’s data, and next, of the primitive type int,
that holds the index of the next element on the list. In addition to the array of nodes,
we need an integer “reference” to the first node of the list and another to the first free
node. We call these list and free. And, of course, we still need our numItems and
currentPos variables. Next is the beginning of our class file:

Figure 6.13 An array with three lists (including the free list)
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//----------------------------------------------------------------------------
// ArrayLinkedList.java          by Dale/Joyce/Weems                 Chapter 6
// 
// Implements an array-based sorted linked list of Listable elements
//----------------------------------------------------------------------------

package ch06.genericLists;

import ch04.genericLists.*;

public class ArrayLinkedList implements ListInterface
{
private static final int NUL = –1;   // End of list symbol

Figure 6.14 List and link structure are together
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private class AListNode
{
private Listable info;      // The info in a list node
private int next;           // A link to the next node on the list

}

private AListNode[] nodes;    // Array of AListNode holds the linked list

private int list;             // Reference to the first node on the list
private int free;             // Reference to the first node on the free list

private int numItems;         // Number of elements in the list
private int currentPos;       // Current position for iteration

The class constructors for class ArrayLinkedList must allocate the storage for
the array of nodes and initialize all of the private instance variables. They must also set
up the initial free list of nodes. At the time of instantiation, all of the nodes are on the
free list. So, the variable free is set to 0 to “reference” the first array node, and the
next value of that node is set to 1, and so on until all of the nodes are chained
together. This initialization can be handled by a for loop, followed by a single assign-
ment statement to set the last next value to NUL. To be consistent with our past array-
based implementation we should provide two constructors, one that accepts a size
parameter and one that uses a default maximum size. Here is the code for the construc-
tor that takes a parameter:

public ArrayLinkedList(int maxItems)
// Instantiates and returns a reference to an empty list object with
//  room for maxItems elements
{
nodes = new AListNode[maxItems];
for (int index = 0; index < maxItems; index++)
nodes[index] = new AListNode();

// Link together the free nodes.
for (int index = 1; index < maxItems; index++)
nodes[index – 1].next = index;

nodes[maxItems – 1].next = NUL;

list = NUL;
free = 0;
numItems = 0;
currentPos = NUL;

}
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The methods that do the bookkeeping, getNode and freeNode, are auxiliary
(“helper”) methods, and therefore are private methods. The getNode method must return
the index of the next free node. The easiest node to use is the one at the beginning of
the free list, so getNode returns the value of free. Therefore, getNode must also
update the value of free to indicate the next node on the free list. Other than the fact
that we must be careful of our order of operations, and use a temporary variable to hold
the index we need to return, this method is straightforward:

private int getNode()
// Returns the index of the next available node from the free list
//  and updates the free list index
{
int hold;
hold = free;
free = nodes[free].next;
return hold;

}

The freeNode method must take the node index received as an argument and insert
the corresponding node into the list of free nodes. As the first element in the list is the one
that is directly accessible, we have freeNode insert the node being returned at the begin-
ning of the free list, in the variable free (Yes, we are keeping the free list as a stack—not
because we need the LIFO property but because the code is the simplest for what we need.)

private void freeNode(int index)
// Frees the node at array position index by linking it into the
//  free list
{
nodes[index].next = free;
free = index;

}

The public methods are very similar to their reference-based linked list counter-
parts. From the point of view of the algorithm used, they are identical. At the beginning
of Chapter 3, we established a list design terminology that is independent of implemen-
tation approach. We were able to implement algorithms expressed in this notation for
both the array-based lists and the reference-based lists. Now we have a third implemen-
tation approach, the array-based linked approach. The following table shows equivalent
expressions in each of our views of a list. It also shows the expressions for creating and
deleting nodes, where appropriate.
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We look here at some of the methods, and leave the rest as an exercise. First an easy
one: isFull. We have two ways of determining whether or not the list is full. As for our
array-based list implementation, we can compare the number of items on the list to the
size of the underlying array. If they are equal then the list is full. But there is an even
easier way. Can you think of it? If the entire array is being used to hold our list, then the
list of free space must be empty. So, we can just check to see if free is equal to NUL.

public boolean isFull()
// Determines whether this list is full
{
return (free == NUL);

}

The remaining methods can be implemented following the same scheme devised for
the reference-based approach. You must be careful, however, to correctly transform the
implementation. And don’t forget that you have to handle the memory management
yourself. Let’s look at the delete method. Consider the following statement from the
delete method of the LinkedList class:

while (item.compareTo(location.next.info) != 0)
location = location.next;

Think for a minute about how you would represent this statement using the approach of
this section. It is not as simple as it might first appear. You need to compare the info
value of the next element to item. Using the table above, you see that you access the
info attribute of a location with nodes[location].info. However, you don’t want
the info value of the location, you want the info value of the next location. So, you
must replace location with the expression that stands for the next location. In this
case, that is nodes[location].next. Putting this altogether (see Figure 6.15), the cor-
responding code is:

while (item.compareTo(nodes[nodes[location].next].info) != 0)
location = nodes[location].next;

Design Terminology Array-Based Reference-Based Array Index Links

location.node( ) list[location] location nodes[location]

location.info( ) list[location] location.info nodes[location].info

location.next( ) list[location+1] location.next nodes[location].next

allocate a node N done by constructor ListNode N = new ListNode N = getNode()

free a node N not applicable remove links, garbage collector freeNode(N)
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Below is the entire delete method. Notice how we carefully store the index of the
node being deleted, so that we can “free” it before leaving the method. Compare the
code for this delete method to the code presented in Chapter 5 for the delete method
of the LinkedList class.

public void delete (Listable item)
// Deletes the element of this list whose key matches item's key
{

int hold;                        // To remember deleted node index
int location = list;

// Locate node to be deleted
if (item.compareTo(nodes[location].info) == 0)
{
hold = list;
list = nodes[list].next;

// Delete first node
}
else
{
while (item.compareTo(nodes[nodes[location].next].info) != 0)
location = nodes[location].next;

// Delete node at nodes[location].next
hold = nodes[location].next;
nodes[location].next = nodes[nodes[location].next].next;
}

freeNode(hold);
numItems--;

}

Figure 6.15 Referencing the info value of the next node
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6.5 A Specialized List ADT

We have defined Unsorted and Sorted List ADTs and several implementations of each.
Our lists can be used for many applications. However, there are always some applica-
tions that need special purpose lists; perhaps they require specific list operations that are
not defined by our List ADTs or perhaps the specific qualities of our lists (unique ele-
ments, store by copy) do not fit with the requirements of the application. In such cases,
we may be able to extend one of our list classes to create a new list that meets the needs
of the application. Alternately, it may be easier just to create a new specialized list class,
specifically for the application in question.

In the case study in the next section, we need lists with a unique set of properties
and operations. The lists must hold elements of the primitive type byte; duplicate ele-
ments are allowed. The lists need not support isFull, isThere, retrieve, or delete.
In fact, the only list operations that we have been using that are still required by this
new list construct are the lengthIs operation and the iterator operations. For the case
study, we are going to need to process elements from left-to-right and from right-to-left,
so we need to support two iterators. In addition, we are going to need to insert items at
the front and at the back of our lists. The reasons for these requirements are made clear
in the case study; for now we just accept the requirements as stated and consider how to
implement this new list.

The Specification

Given this unique set of requirements, we decide to start from scratch for this new List
ADT. Of course, we can reuse our knowledge of lists and maybe even reuse (through cut
and paste) some of the code from the previous list implementations, but we are not going
to implement the ListInterface interface, and we are not going to extend any of our
current classes. Since the new list construct creates a specialized list for a specific applica-
tion, we call the list class SpecializedList, and we specify its behavior in an interface
called SpecializedListInterface. The new list does not provide a list of generic ele-
ments; instead, it provides a list of byte elements. Recall that a byte is one of Java’s prim-
itive integer types. A byte can hold an integer between �128 and +127. We place the
classes related to our new list in a package called ch06.byteLists.

Given the requirement that we must be able to iterate through the list in both
directions, instead of our standard “current position” property, lists of the class Spe-
cializedList have both a “current forward position” and a “current backward posi-
tion” and provide iterator operations for traversing the list in either direction. Note that
this does not mean that an iteration can change directions—it means that there can be
two separate iterations going on at the same time, one forward and one backward.

Here is the formal specification of the new list ADT:

//----------------------------------------------------------------------------
// SpecializedListInterface.java     by Dale/Joyce/Weems             Chapter 6
// 
// Interface for a class that implements a list of bytes
// There can be duplicate elements on the list
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// The list has two special properties called the current forward position
//  and the current backward position -- the positions of the next element
//  to be accessed by getNextItem and by getPriorItem during an iteration
//  through the list. Only resetForward and getNextItem affect the current
//  forward position. Only resetBackward and getPriorItem affect the current
//  backward position. Note that forward and backward iterations may be in
//  progress at the same time
//----------------------------------------------------------------------------

package ch06.byteLists;

public interface SpecializedListInterface
{
public void resetForward();
// Effect:         Initializes current forward position for this list
// Postcondition:  Current forward position is first element on this list

public byte getNextItem ();
// Effect:         Returns the value of the byte at the current forward
//                 position on this list and advances the value of the
//                 current forward position
// Preconditions:  Current forward position is defined
//                 There exists a list element at current forward position
//                 No list transformers have been called since most recent 
//                 call
// Postconditions: Return value = (value of byte at current forward position)
//                 If current forward position is the last element then
//                 current forward position is set to the beginning of this 
//                 list, otherwise it is updated to the next position

public void resetBackward();
// Effect:         Initializes current backward position for this list
// Postcondition:  Current backward position is first element on this list

public byte getPriorItem ();
// Effect:         Returns the value of the byte at the current backward
//                 position on this list and advances the value of the
//                 current backward position (towards front of list)
// Preconditions:  Current backward position is defined
//                 There exists a list element at current backward position
//                 No list transformers have been called since most recent 
//                 call
// Postconditions: Return value = (value of byte at current backward 
//                 position)
//                 If current backward position is the first element then
//                 current backward position is set to the end of this list;
//                 otherwise, it is updated to the prior position
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public int lengthIs();
// Effect:         Determines the number of elements on this list
// Postcondition:  Return value = number of elements on this list

public void insertFront (byte item);
// Effect:         Adds the value of item to the front of this list
// PostCondition:  Value of item is at the front of this list

public void insertEnd (byte item);
// Effect:         Adds the value of item to the end of this list
// PostCondition:  Value of item is at the end of this list

}

The Implementation

The unique requirement for the SpecializedList is that we are able to traverse it
either frontward or backward. Because a doubly linked list is linked in both directions,
traversing the list either way is equally simple. Therefore, we use a reference-based dou-
bly linked structure for our implementation.

To begin our backward traversals, and to support the new insertEnd operation, it
is clear that we need easy access to the end of a list. We have already seen how keeping
the list reference pointing to the last element in a circular structure gives direct access
to both the front element and the last element. So, we could use a doubly linked circular
structure. However, another approach is also possible. We can maintain two list refer-
ences, one for the front of the list and one for the back of the list. We use this approach
in Figure 6.16.

Here is the beginning of the SpecializedList class. We use a doubly linked refer-
ence based approach, with instance variables to track the first list element, the last list
element, the number of items on the list, and the positions for both the forward tra-
versal and the backward traversal. Note that the info attribute of the SListNode class
holds a value of the primitive byte type, as was discussed above.

Figure 6.16 A doubly linked list with two references
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//----------------------------------------------------------------------------
// SpecializedList.java          by Dale/Joyce/Weems                 Chapter 6
// 
// Implements the specialized list ADT using a doubly linked list of nodes
//----------------------------------------------------------------------------

package ch06.byteLists;

public class SpecializedList implements SpecializedListInterface
{
protected class SListNode
// List nodes for the specialized list implementation
{
protected byte info;        // The info in a list node
protected SListNode next;   // A link to the next node on the list
protected SListNode back;   // A link to the next node on the list

}

protected SListNode listFirst;      // Reference to the first node on list
protected SListNode listLast;       // Reference to the last node on the list
protected int numItems;             // Number of elements in the list
protected SListNode currentFPos;    // Current forward position for iteration
protected SListNode currentBPos;    // Current backward position for 

//  iteration

public SpecializedList()
// Creates an empty list object
{
numItems = 0;
listFirst = null;
listLast = null;
currentFPos = null;
currentBPos = null;

}

The lengthIs method is essentially unchanged from previous implementations—it simply
returns the value of the numItems instance variable.

public int lengthIs()
// Determines the number of elements on this list
{
return numItems;

}
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The iterator methods are straightforward. Resetting an iteration simply requires set-
ting the appropriate instance variable to either the front of the list or the back of the
list. The methods that return the next element for an iteration work as they have in the
past. A copy is made of the element to return, the current position is changed appropri-
ately, and the information is returned. Changing the current position is guarded by an if
statement, that handles the case of wrapping around the list.

public void resetForward()
// Initializes current forward position for an iteration through this list
{
currentFPos = listFirst;

}

public byte getNextItem ()
// Returns the value of the next element in list in forward iteration
{
byte nextItemInfo = currentFPos.info;
if (currentFPos == listLast)
currentFPos = listFirst;

else
currentFPos = currentFPos.next;

return nextItemInfo;
}

public void resetBackward()
// Initializes current backward position for an iteration through this list
{
currentBPos = listLast;

}

public byte getPriorItem ()
// Returns the value of the next element in list in backward iteration
{
byte nextItemInfo = currentBPos.info;
if (currentBPos == listFirst)
currentBPos = listLast;

else
currentBPos = currentFPos.back;

return nextItemInfo;
}

The insertion methods are simpler then the insertion method for the doubly linked
list we used before. This is because we do not have to handle the general case insertion.
The insertFront method always inserts at the front of the list and the insertEnd
method always inserts at the end of the list. Let’s look at insertFront (see Figure
6.17a). The method begins by creating the new node and initializing its attributes. Since
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Figure 6.17 Inserting at the front and at the end
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the new node is the new front of the list, we know that its next link should reference
the current front of the list, and its back link should be null. An if statement guards
the case when the insertion is into an empty list (see Figure 6.17b). In that case, both
the listFirst and listLast instance variables must reference the new node, since it
is both the first and last elements of the list. Otherwise, the back link of the previous
first element is set to reference the new element, along with the listFirst instance
variable. And, of course, we must increment the value of numItems.

public void insertFront (byte item)
// Adds the value of item to the front of this list
{
SListNode newNode = new SListNode();   // Reference to node being inserted
newNode.info = item;
newNode.next = listFirst;
newNode.back = null;
if (listFirst == null)            // Inserting into an empty list
{
listFirst = newNode;
listLast = newNode;

}
else                             // Inserting into a nonempty list
{
listFirst.back = newNode;
listFirst = newNode;

}
numItems++;

}

The code for the insertEnd method is similar (see Figure 6.17c):

public void insertEnd (byte item)
// Adds the value of item to the end of this list
{
SListNode newNode = new SListNode();   // Reference to node being inserted
newNode.info = item;
newNode.next = null;
newNode.back = listLast;
if (listFirst == null)            // Inserting into an empty list
{
listFirst = newNode;
listLast = newNode;

}
else                             // Inserting into a nonempty list
{
listLast.next = newNode;
listLast = newNode;

}
numItems++;

}
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Case Study
Large Integers

The range of integer values that can be supported in Java varies from one primitive integer type to
another. Appendix C contains a table showing, for each primitive integer type, the kind of value
stored by the type, the default value, the number of bits used to implement the type, and the possi-
ble range of values. Note that the largest integer type, type long, can be used to represent values
between �9,223,372,036,854,775,808 and 9,223,372,036,854,775,807. Wow! That range of num-
bers would seem to suffice for most applications that we might want to write. However, even given
that large range of integers, some programmer is bound to want to represent integers with larger
values. Let’s design and implement a class LargeInt that allows the client programmer to manip-
ulate integers in which the number of digits is only limited by the size of the available memory.

Because we are providing an alternate implementation for a mathematical object, an inte-
ger number, most of the operations are already specified: addition, subtraction, multiplication,
division, assignment, and the relational operators. For this case study, we limit our attention to
addition (add) and subtraction (subtract). We ask you to enhance this ADT with some of the
other operations in the exercises.

In addition to the standard mathematical operations, we need an operation that con-
structs a number digit by digit. This operation cannot be a constructor with an integer parame-
ter, because the desired integer argument might be too large to represent in Java—after all,
that is the idea of this ADT. So we must have a special member method (addDigit) that can
be called within a loop that inserts the digits one at a time, most significant digit to least sig-
nificant digit, as we would normally read a number. We assume the sign of a large integer is
positive, but we do need a way to set it to negative if desired (setNegative). Additionally,
we must have an observer operation that returns a string representation of the large integer.
We follow the Java convention and call this operation toString.

The Underlying Representation Before we can begin to look at the algorithms for these
operations, we need to decide on our underlying representation for a large integer. Because we
said earlier that we were designing the class SpecializedList to use in this case study,
you know that we are going to use it to represent our large integers. Nevertheless, let’s assume
we don’t already know the answer to our question, and look at the reasons we developed the
specific requirements that we used for SpecializedList.

The fact that we intend to place no limits on the size of a large integer leads us to a
dynamic memory-based representation. And considering that an integer is a list of digits, it is
natural to investigate the possibility of representing a large integer as a dynamically allocated
linked list of digits. Figure 6.18 shows several examples of numbers in a singly linked list and
an addition. Figure 6.18(a) and (c) show one digit per node; Figure 6.18(b) shows several digits
per node. We develop our large integer ADT using a single digit per node. You are asked in the
exercises to explore the necessary changes to include more than one digit in each node.

At this point, we have decided to represent our large integers as linked lists of digits. Since
a single digit can be represented by Java’s smallest integer type, the byte, we decide to use
linked lists of byte values. Throughout Chapters 5 and 6 we developed several implementa-
tions of linked lists. Perhaps we can use one of them to support our large integers.

What kind of linked list should we use? Can we use one of our predefined generic list
classes such as UnsortedArrayList or CircularSortedLinkedList? No, we cannot for
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Figure 6.18 Representing large integers with linked lists
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several reasons. Most importantly, those lists were for keyed elements and carried the restric-
tion that duplicate elements were not allowed. Obviously, we need to allow duplicate digits in
a large integer. Additionally, we need to know that the order in which we insert digits into a
large integer is preserved by the representation. None of our generic list implementations can
guarantee that property. So, we must define a special-purpose list class just for our large inte-
gers. What operations must be supported by this class?

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Case Study: Large Integers | 443

Figure 6.19 Three points of view of large integers
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Note!! For this case study we are developing a Large Integer ADT that can be used by any
application program that requires large integers. This ADT provides operations to build large
integers, perform arithmetic operations on large integers, and return strings representing large
integers. Now we are discussing using a List ADT to hold the underlying representation of a
large integer. In other words, the application program uses the Large Integer ADT since it pro-
vides large integers, and the Large Integer ADT uses the List ADT since it provides a list of
byte values. See Figure 6.19.
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The first thing to consider is how large integer objects are to be constructed. We have
already decided that we need to be able to build our representation, one digit at a time, working
from left to right across a particular large integer. That is how we initialize large integers directly.
But large integers can also be created as a result of arithmetic operations. Think about how you
perform arithmetic operations such as addition—you work from the least significant digit to the
most significant digit, building the result of the addition from right to left as you proceed. There-
fore, we also need to create large integers by inserting digits from least significant to most sig-
nificant; this enables us to construct an object that is the result of an arithmetic operation. So,
our linked list should support insertion of digits at both the beginning and the end of the list.

Now we ask what type of access to the representation do we need? We must be able to access
our representation one digit at a time, working from left to right to build a string for a large integer
for display. And to support arithmetic operations on large integers, we realize that we must also be
able to access the digits of the large integer from right to left. We conclude that we should use a
list that supports both forward and backward iterations. Yes, this is beginning to sound familiar.

As stated in the previous section, the requirements set forth for a list to support the repre-
sentation of large integers are exactly the requirements we used for our SpecializedList
ADT. For organizational purposes we wanted to present our list implementations before getting
into this case study, so we decided to present the ADT before we had developed the impetus
for it. Let’s review what we stated about the specifications in the previous section: “The lists
must hold elements of type byte; duplicate elements are allowed. The lists need not support
isFull, isThere, retrieve, or delete. In fact, the only operation that we have been
using that is still required by this new list construct is the lengthIs operation. For the case
study, we are going to need to process elements from left to right and from right to left. In
addition, we are going to need to insert items at the front and at the back of our lists.”

The LargeInt Class Now that we know we can use the SpecializedList class to hold the
list of digits for a large integer, we can concentrate on the rest of the definition of the large
integer class. In addition to digits, integers also have a sign, an indication of whether they are
positive or negative. We represent the sign of a large integer with a boolean instance variable
sign. Furthermore, we define two boolean constants, PLUS = true and MINUS = false,
to use with sign.

Here is the first approximation of the beginning of the class LargeInt. It includes the
instance variables, constructor, and methods setNegative (to make a large integer nega-
tive), addDigit (to build a large integer digit by digit), and toString (to provide a string
representation of a large integer, complete with commas separating every three digits). We
place it in the package ch06.largeInts. Since it uses the SpecializedList class it must
import the ch06.byteLists package.

//----------------------------------------------------------------------------
// LargeInt.java             by Dale/Joyce/Weems                     Chapter 6
// 
// Provides a Large Integer ADT. Large Integers can consist of any number
//  of digits, plus a sign. Supports an add and a subtract operation.
//----------------------------------------------------------------------------
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package ch06.largeInts;

import ch06.byteLists.*;

public class LargeInt
{
private SpecializedList numbers;    // Holds digits

// Constants for sign variable
private static final boolean PLUS = true;
private static final boolean MINUS = false;

private boolean sign;

public LargeInt()
{
numbers = new SpecializedList();
sign = PLUS;

}

public void setNegative()
{
sign = MINUS;

}

public void addDigit(byte digit)
{
numbers.insertEnd(digit);

}
public String toString()
{
String largeIntString;
if (sign == PLUS)
largeIntString = "+";

else
largeIntString = "-";

int length;
length = numbers.lengthIs();
numbers.resetForward();
for (int count = length; count >= 1; count--)
{
largeIntString = largeIntString + numbers.getNextItem();
if ((((count – 1) % 3) == 0) && (count != 1))
largeIntString = largeIntString + ",";

}
return(largeIntString);

}
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Note that classes in a program typically exhibit one of the following relationships: they
are independent of each other, they are related by composition, or they are related by inheri-
tance. Class LargeInt and class SpecializedList are related by composition. As you see
in the beginning of the class definition, a LargeInt object is composed of (or contains) a
SpecializedList object. Just as inheritance expresses an is a relationship (a Sort-
edLinkedList object is a LinkedList object), composition expresses a has a relationship
(a LargeInt object has a SpecializedList object inside it).

Addition and Subtraction Do you recall when you learned addition of integers? Remember
how there were many special rules depending on the signs of the operands and which operand
had the larger absolute value? For example, to perform the addition (�312) + (+200), what
steps would you take? Let’s see . . . the numbers have unlike signs, therefore you subtract the
smaller absolute value (200) from the larger absolute value (312), giving you 112, and use the
sign of the larger absolute value (�), giving the final result of (�112). Here, try a couple more
additions:

(+200) + (+100) = ?

(–300) + (–134) = ?

(+34)  + (–62)  = ?

(–34)  + (+62)  = ?

The answers are (+300, �434, �28, +28) right?
Did you notice anything about the actual arithmetic operations that you had to perform

to calculate the results of the summations listed above? You only performed two kinds of
operations: adding two positive numbers and subtracting a smaller positive number from a
larger positive number. That’s it. When you learned arithmetic, you learned these two basic
operations and used them, in combination with rules about how to handle signs, to do all of
your sums.

Helper Methods In programming, we also like to factor out and reuse common operations.
Therefore, to support the general addition operation we first define a few helper operations.
First, note that the base operations we need should apply to the absolute values of our
numbers. This means we can just use the numbers object (the SpecializedList of
digits) and ignore the sign for now. Second, what common operations do we need? Based
on the above discussion, we need to be able to add together two lists of digits, and to
subtract a smaller list from a larger list. That means we also have to be able to identify
which of two lists of digits is larger. So, we need three operations, which we call
addLists, subtractLists, and greaterList.

Let’s begin with greaterList. It is probably the simplest of the three helper methods.
We pass greaterList two SpecializedList arguments and it returns true if the first
represents a larger number than the second, and false otherwise. When comparing strings,
we compare the characters in each character position one at a time from left to right. The first
characters that do not match determine which string comes first. When comparing positive
numbers (we are ignoring the sign for now), we only have to compare the numbers digit by
digit if they are the same length. We first compare the lengths, and if they are not the same,
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we return the appropriate result. If the number of digits is the same, we compare the digits
from left to right. The first unequal pair determines the result in this case. In the code, we orig-
inally set a boolean variable greater to false, and only change this setting if we discover
that the first number is not larger than the second number. In the end, we return the boolean
value of the greater variable.

private static boolean greaterList(SpecializedList first, 
SpecializedList second)

// Effect: returns true if first represents a larger number than second,
//         otherwise returns false;
// Precondition: no leading zeros
{
boolean greater = false;
if (first.lengthIs() > second.lengthIs())
greater = true;

else
if (first.lengthIs() < second.lengthIs())
greater = false;

else
{
byte digitFirst;
byte digitSecond;
first.resetForward();
second.resetForward();

// Set up loop
int length = first.lengthIs();
boolean keepChecking = true;
int count = 1;

while ((count <= length) && (keepChecking))
{
digitFirst = first.getNextItem();
digitSecond = second.getNextItem();
if (digitFirst > digitSecond)
{
greater = true;
keepChecking = false;

}
else
if (digitFirst < digitSecond)
{
greater = false;
keepChecking = false;

}
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count++;
}

}
return greater;

}

Notice that if we get the whole way through the while loop without finding a difference
between any digit pairs, the numbers are equal and we return the original value of greater,
which is false (since the first is not greater than the second). Also note that since we
blindly look at the lengths of the lists we must assume that the numbers do not include lead-
ing zeros (for example, the method would report that 005 > 14). Finally, note that the
greaterList method is private—helper methods are not intended for use by the client pro-
grammer; they are only intended for use within the LargeInt class itself.

Let’s look at addLists next. We pass addLists its two summation operands as Spe-
cializedList parameters and it returns a new SpecializedList as the result. The pro-
cessing for addLists can be simplified if we assume that the first argument is larger (or
equal to) the second argument. This simplifies traversing the lists. Since we already have
access to a greaterList method, we make this simplifying assumption.

We begin by adding the two least significant digits (the units position). Next, we add the
digits in the tens position (if present) plus the carry from the sum of the least significant digits
(if any). This process continues until we finish with the digits of the smaller operand. Then we
continue the same sort of processing until we finish with the digits of the larger operand.
Finally, if there is still a carry value left over, we add it to the most significant location. We use
integer division and modulus operators to determine the carry value and the value to insert
into the result. The algorithm is:

addLists (SpecializedList larger, SpecializedList smaller) returns SpecializedList

Set result to new SpecializedList( );
Set carry to 0;
larger.resetBackward( );
smaller.resetBackward( );

for the length of the smaller list
Set digit1 to larger.getPriorItem( );
Set digit2 to smaller.getPriorItem( );
Set temp to digit1 + digit2 + carry
Set carry to temp/10
result.insertFront(temp % 10)

Finish up digits in larger, adding carries if necessary
if (carry != 0))
result.insertFront(carry)

return result
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Apply the algorithm to the following examples to convince yourself that it works. The code follows.

322 388 399 999 3 1 988 0
44 108 1 11 44 99 100 0___ ___ ___ ____ __ ___ ____ _

366 496 400 1010 47 100 1088 0

private static SpecializedList addLists(SpecializedList larger,
SpecializedList smaller)

// Returns a specialized list that is a byte-by-byte sum of the two 
//  argument lists
// Assumes larger >= smaller
{
byte digit1;
byte digit2;
byte temp;
byte carry = 0;

int largerLength = larger.lengthIs();
int smallerLength = smaller.lengthIs();
int lengthDiff;

SpecializedList result = new SpecializedList();

larger.resetBackward();
smaller.resetBackward();

// Process both lists while both have digits
for (int count = 1; count <= smallerLength; count++)
{
digit1 = larger.getPriorItem();
digit2 = smaller.getPriorItem();
temp = (byte)(digit1 + digit2 + carry);
carry = (byte)(temp / 10);
result.insertFront((byte)(temp % 10));

}

// Finish processing of leftover digits
lengthDiff = (largerLength – smallerLength);
for (int count = 1; count <= lengthDiff; count++)
{
digit1 = larger.getPriorItem();
temp = (byte)(digit1 + carry);
carry = (byte)(temp / 10);
result.insertFront((byte)(temp % 10));

}
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if (carry != 0)
result.insertFront((byte)carry);

return result;
}

Now let’s examine subtracting lists. Remember that for our helper method sub-
tractLists we are handling only the simplest case: both integers are positive and the
smaller one is subtracted from the larger one. As with addLists, we accept two Special-
izedList parameters, the first being larger than the second, and we return a new Special-
izedList. Again, we begin with the digits in the units position. Let’s call the digit in the
larger argument digit1 and the digit in the smaller argument digit2. If digit2 is less
than digit1, we subtract and insert the resulting digit at the front of the result. If digit2 is
greater than digit1, we borrow 10 and subtract. Then we access the digits in the tens posi-
tion. If we have borrowed, we subtract 1 from the new digit1 and proceed as before.
Because we have limited our problem to the case where digit1 is larger than digit2, both
either run out of digits together or digit1 still contains digits when digit2 has been
processed. Also note that this constraint guarantees that borrowing does not extend beyond
the most significant digit of digit1. See if you can follow the algorithm we just described in
the code.

private static SpecializedList subtractLists(SpecializedList larger,
SpecializedList smaller)

// Returns a specialized list that is the difference of the two argument lists
//  Assumes larger >= smaller
{
byte digit1;
byte digit2;
byte temp;
boolean borrow = false;

int largerLength = larger.lengthIs();
int smallerLength = smaller.lengthIs();
int lengthDiff;

SpecializedList result = new SpecializedList();

larger.resetBackward();
smaller.resetBackward();

// Process both lists while both have digits.
for (int count = 1; count <= smallerLength; count++)
{
digit1 = larger.getPriorItem();
if (borrow)



Case Study: Large Integers | 451

{
if (digit1 != 0)
{
digit1 = (byte)(digit1 – 1);
borrow = false;

}
else
{
digit1 = 9;
borrow = true;

}
}

digit2 = smaller.getPriorItem();

if (digit2 <= digit1)
result.insertFront((byte)(digit1 – digit2));

else
{
borrow = true;
result.insertFront((byte)(digit1 + 10 – digit2));

}
}

// Finish processing of leftover digits
lengthDiff = (largerLength – smallerLength);
for (int count = 1; count <= lengthDiff; count++)
{
digit1 = larger.getPriorItem();
if (borrow)
{
if (digit1 != 0)
{
digit1 = (byte)(digit1 – 1);
borrow = false;

}
else
{
digit1 = 9;
borrow = true;

}
}
result.insertFront(digit1);

}

return result;
}
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Addition Now that we have finished the helper methods, we can turn our attention to the
public methods provided to clients of the LargeInt class. First, addition. Here are the rules
for addition you learned when studying arithmetic.

Addition Rules

1. If both operands are positive, add the absolute values and make the result positive

2. If both operands are negative, add the absolute values and make the result negative

3. If one operand is negative and one operand is positive, subtract the smaller absolute value
from the larger absolute value and give the result the sign of the larger absolute value.

We use these rules to help us design our add method. Note that we can combine the first two
rules into “If the operands have the same sign, add the absolute values and make the sign of
the result the same as the sign of the operands.” Our code uses the appropriate helper method
to generate the new list of digits and then sets the sign based on the rules. Remember that to
use our helper methods we pass them the required arguments in the correct order (larger first).
Here is the code for add:

public static LargeInt add(LargeInt first, LargeInt second)
// Returns a LargeInt that is the sum of the two argument LargeInts
{
LargeInt sum = new LargeInt();

if (first.sign == second.sign)
{
if (greaterList(first.numbers, second.numbers))
sum.numbers = addLists(first.numbers, second.numbers);

else
sum.numbers = addLists(second.numbers, first.numbers);

sum.sign = first.sign;
}
else   // Signs are different
{
if (greaterList(first.numbers, second.numbers))
{
sum.numbers = subtractLists(first.numbers, second.numbers);
sum.sign = first.sign;

}
else
{
sum.numbers = subtractLists(second.numbers, first.numbers);
sum.sign = second.sign;

}
}

return sum;
}
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The add method accepts two LargeInt objects and returns a new LargeInt object
equal to their sum. Since it is passed both summation operands as parameters, and since it
returns the result explicitly, it is defined as a static method. It is invoked through the class,
rather than through an object of the class. For example, the code

LargeInt LI1 = new LargeInt();
LargeInt LI2 = new LargeInt();
LargeInt LI3;

LI1.addDigit((byte)9);
LI1.addDigit((byte)9);
LI1.addDigit((byte)9);

LI2.addDigit((byte)9);
LI2.addDigit((byte)8);
LI2.addDigit((byte)7);

LI3 = LargeInt.add(LI1, LI2);

System.out.println("LI3 is " + LI3);

would result in the output of the string “LI3 is +1,986”.

Subtraction Remember how subtraction seemed harder than addition when you were
learning arithmetic? Not anymore. We only need to use one subtraction rule: “Change the sign
of the subtrahend, and add.” We do have to be careful about how we “change the sign of the
subtrahend,” because we do not want to change the sign of the actual argument passed to
subtract, since that would produce an unwanted side effect of our method. Therefore, we
create a new LargeInt object, make it a copy of the second parameter, invert its sign, and
then invoke add:

public static LargeInt subtract(LargeInt first, LargeInt second)
// Returns a LargeInt that is the difference of the two argument LargeInts
{
LargeInt diff = new LargeInt();

// Create an inverse of second
LargeInt negSecond = new LargeInt();
negSecond.sign = !second.sign;
second.numbers.resetForward();
int length = second.numbers.lengthIs();
for (int count = 1; count <= length; count++)
negSecond.numbers.insertEnd(second.numbers.getNextItem());
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// Add first to inverse of second
diff = add(first, negSecond);

return diff;
}

Test Plan

Each LargeInt operation must be unit tested. The complexity of the code for each
operation is evident in the number of if statements in the corresponding method. The
more complex the code, the more test cases are necessary to test it. A white-box strat-
egy would require going through the code of each operation and determining data that
test at least all branches (including the branches of any helper methods). A black-box
strategy involves choosing data that test the varieties of possible input. This would
involve varying combinations of signs and relative relationships between the absolute
values of operands. The examples used in the discussion can serve as test data for those
operations. However, other end cases should be included, such as cases in which one or
both of the operands are zero, or the expected result is zero.

It is not difficult to create a test driver for the LargeInt class by modifying one of
our previous test drivers. However, in keeping with the approach we’ve established in
our case studies, we have created an application with a graphical interface that uses
LargeInt. Using this application, a Large Integer Calculator, you can test whatever
combinations of large integers and operations that you want.

A Large Integer Calculator

The Large Integer Calculator allows the user to enter two large integers and perform
either addition or subtraction. Here are some screen shots, to give you a feeling for the
application.

The user first sees:
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Here is the result of entering two operands, choosing addition, and pressing Calculate:

How about subtraction?

Wait a second, is that answer correct? Of course . . . remember that 1000 � (�2000) =
1000 + 2000. Let’s look at an example using really big integers; that is the purpose of
the Large Integer ADT:
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The code for the Large Integer Calculator is included on the web site. Since it is an
application program, we do not place it in a package. It is in the bookFiles.ch06 sub-
directory. You are encouraged to try it for yourself. If you do, you may discover a few
problem situations. These situations form the basis for some section exercises.

The Code
In the Large Integer Calculator code we use a helper method, getLargeInt, which accepts
a string argument and returns the corresponding LargeInt object. This method is passed
the strings from the operand text fields. Even if we had used our standard test approach,
creating a test driver that takes its test input from a file, we would have needed a similar
method. It might be a good idea to consider enhancing our Large Integer ADT with such
an operation, so that we do not have to continually create it every time we use the ADT.

Study the code below. See if you can find the statements that declare, instantiate,
initialize, transform, and observe Large Integers.

The user interface code for the Large Integer Calculator is similar to the user inter-
face code for the Postfix Expression Evaluator of Chapter 4, since both applications pro-
vide a type of calculator/evaluator. The only new construct, radio buttons, is described
in the Java I/O IV feature section below. The lines of code directly related to radio but-
tons are emphasized.

//----------------------------------------------------------------------------
// LargeIntCalculator.java         by Dale/Joyce/Weems               Chapter 6
// 
// Evaluates addition and subtraction of large integers
//----------------------------------------------------------------------------

import ch06.largeInts.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

public class LargeIntCalculator
{
// Large integers
private static LargeInt first;
private static LargeInt second;
private static LargeInt result;

private static LargeInt getLargeInt(String intString)
// Returns the large integer indicated in intString
// Precondition: intString contains a well-formatted integer
{
LargeInt temp = new LargeInt();
int firstDigitPosition;          // Position of first digit in intString
int lastDigitPosition;           // Position of last digit in intString
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// Used to translate character to byte
char digitChar;
int digitInt;
byte digitByte;

firstDigitPosition = 0;
if (intString.charAt(0) == '+')   //  Skip leading plus sign
firstDigitPosition = 1;

else
if (intString.charAt(0) == '-')   // Handle leading minus sign
{
firstDigitPosition = 1;
temp.setNegative();

}

lastDigitPosition = intString.length() – 1;

for (int count = firstDigitPosition; count <= lastDigitPosition; count++)
{
digitChar = intString.charAt(count);
digitInt = Character.digit(digitChar, 10);
digitByte = (byte)digitInt;
temp.addDigit(digitByte);

}

return temp;
}

// Text field
private static JTextField operandAText;  // Text field for operand A
private static JTextField operandBText;  // Text field for operand B

// Status Label
private static JLabel statusLabel;         // Label for status info
private static JLabel resultLabel;         // Label for status info

// Radio Buttons and Group for choosing operation
private static JRadioButton plusButton;
private static JRadioButton minusButton;
private static ButtonGroup operationGroup;

// Define a button listener
private static class ActionHandler implements ActionListener
{
public void actionPerformed(ActionEvent event)
// Listener for the button events
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{
if (event.getActionCommand().equals("Calculate"))
{ 
// Handles Calculate event
first = getLargeInt(operandAText.getText());
second = getLargeInt(operandBText.getText());
result = LargeInt.add(first, second);

String choice = operationGroup.getSelection().getActionCommand();
if (choice == "plus")
{
statusLabel.setText("The sum of the first and second operands is ");
result = LargeInt.add(first, second);

}
else
{
statusLabel.setText("The difference of the first and second operands 

is ");
result = LargeInt.subtract(first, second);

}
resultLabel.setText(result.toString());

}
else
if (event.getActionCommand().equals("Clear"))
{ 
// Handles Clear event
statusLabel.setText("cleared");
resultLabel.setText("cleared");
operandAText.setText("");
operandBText.setText("");

}
}

}

public static void main(String args[]) throws IOException
{
// Declare/instantiate/initialize display frame
JFrame displayFrame = new JFrame();
displayFrame.setTitle("Large Integer Calculator Program");
displayFrame.setSize(600,250);
displayFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Text box for operands
operandAText = new JTextField( 60);
operandBText = new JTextField( 60);
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// Radio Buttons for choosing operation
JRadioButton plusButton = new JRadioButton("   First + Second   ");
plusButton.setSelected(true);
JRadioButton minusButton = new JRadioButton("   First – Second   ");
plusButton.setActionCommand("plus");
minusButton.setActionCommand("minus");
operationGroup = new ButtonGroup();
operationGroup.add(plusButton);
operationGroup.add(minusButton);

// Status/Result labels
statusLabel = new JLabel("Message will go here", JLabel.CENTER);
resultLabel = new JLabel("Result will go here", JLabel.CENTER);

// Various labels
JLabel operandALabel   = new JLabel("First Operand", JLabel.LEFT);
JLabel operandBLabel   = new JLabel("Second Operand", JLabel.LEFT);
JLabel operatorsLabel   = new JLabel("Choose an Operation:", JLabel.LEFT);
JLabel blankLabel1 = new JLabel("");
JLabel blankLabel2 = new JLabel("");
JLabel blankLabel3 = new JLabel("");

// Calculate and clear buttons
JButton calculate   = new JButton("Calculate");
JButton clear       = new JButton("Clear");

// Button event listener
ActionHandler action = new ActionHandler();

// Register button listeners
calculate.addActionListener(action);
clear.addActionListener(action);

// Instantiate content pane and information panels
Container contentPane = displayFrame.getContentPane();
JPanel setupPanel = new JPanel();
JPanel operatorPanel = new JPanel();
JPanel resultPanel = new JPanel();
JPanel buttonPanel = new JPanel();

// Initialize setup panel
setupPanel.setLayout(new GridLayout(6,1));
setupPanel.add(operandALabel);
setupPanel.add(operandAText);
setupPanel.add(operandBLabel);
setupPanel.add(operandBText);
setupPanel.add(operatorsLabel);
operatorPanel.setLayout(new GridLayout(1,5));
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operatorPanel.add(blankLabel1);
operatorPanel.add(plusButton);
operatorPanel.add(blankLabel2);
operatorPanel.add(minusButton);
operatorPanel.add(blankLabel3);
setupPanel.add(operatorPanel);

// Initialize result panel
resultPanel.setLayout(new GridLayout(2,1));
resultPanel.add(statusLabel);
resultPanel.add(resultLabel);

// Initialize button panel
buttonPanel.setLayout(new GridLayout(1,2));
buttonPanel.add(calculate);
buttonPanel.add(clear);

// Set up and show the frame
contentPane.add(setupPanel, "North");
contentPane.add(resultPanel, "Center");
contentPane.add(buttonPanel, "South");

displayFrame.show();
}

}

Java Input/Output IV
The only new I/O construct used in the Large Integer Calculator program is the radio button. The
related statements are emphasized in the code listing.

A radio button can be selected or deselected by the user of the application. When
selected, a dot appears in the small circle beside the radio button text. A set of radio buttons
can be designated as a button group—this means that only one member of the set can be
selected at any time. If button A of a group is currently selected and the user selects another
button from the group, then button A is automatically deselected. Designating which buttons
belong to which groups is done within the program and need not be related to where the
radio buttons are displayed on the screen. Of course, a good interface makes the grouping of
radio buttons obvious to the user.

The radio buttons, and their button group, are declared in the outer level of the program:

private static JRadioButton plusButton;
private static JRadioButton minusButton;
private static ButtonGroup operationGroup;
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These must be declared at the outer level since they are used in the ActionHandler class. We
return to that soon. First let’s see how the buttons and button group are instantiated and initial-
ized in the main program:

JRadioButton plusButton = new JRadioButton("   First + Second   ");
plusButton.setSelected(true);
JRadioButton minusButton = new JRadioButton("   First – Second   ");
plusButton.setActionCommand("plus");
minusButton.setActionCommand("minus");
operationGroup = new ButtonGroup();
operationGroup.add(plusButton);
operationGroup.add(minusButton);

You can see how the text for the buttons is initialized through the constructor. Also note the use
of the setSelected method to set the plusButton as selected at the start of the program. It
is good form to always have exactly one radio button of a group selected, even at the start of a
program.

The setActionCommand statements associate an action with a radio button. Note that
this action is not dynamically invoked when a radio button is selected; it is just returned by a
call to the button’s group when needed. We do not need to register the actions with the event
listener in this case. In general, radio buttons by themselves should not be used to initiate
events. Instead, radio buttons are used to select a single item from a set of items—any actions
based on this selection should be initiated by another event, such as pushing a Calculate button.

Finally, note in the preceding code how the buttons are added to the ButtonGroup object
operationGroup. Now, when an event occurs (such as pushing the Calculate or Clear buttons)
that generates an action to be handled, the action handler can observe which radio button of
the operationGroup is selected, if needed:

String choice = operationGroup.getSelection().getActionCommand();
if (choice == "plus")
{
...

}
else
{
...

}

Since there are only two radio buttons in our group, we only need one if statement here. More
buttons could be handled by including if-else statements.

The only job left is to lay out the radio buttons in a panel and display them. We use a 1-by-5
grid layout to organize the radio buttons into the operatorPanel horizontally, following the
pattern <blank label, radio button, blank label, radio button, blank label> to create the spacing
desired. The operatorPanel is added to the setupPanel, which is later added to the north
section of the contentPane.
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operatorPanel.setLayout(new GridLayout(1,5));
operatorPanel.add(blankLabel1);
operatorPanel.add(plusButton);
operatorPanel.add(blankLabel2);
operatorPanel.add(minusButton);
operatorPanel.add(blankLabel3);
setupPanel.add(operatorPanel);

Summary
The idea of linking the elements in a list has been extended to include lists with header
and trailer nodes, circular lists, and doubly linked lists. In addition to using dynamically
allocated nodes to implement a linked structure, we looked at a technique for imple-
menting linked structures in an array of nodes. In this technique the links are not refer-
ences into the free store but indexes into the array of nodes. This type of linking is used
extensively in systems software.

The case study at the end of the chapter designed a Large Integer ADT. The number
of digits is bounded only by the size of memory. The Large Integer ADT required a spe-
cialized list for its implementation; none of the lists developed so far provided the
needed functionality. Instead of implementing the specialized list “inside” the large inte-
ger implementation, we created a new class SpecializedList. This case study pro-
vided a good example of how one ADT can be implemented by another ADT and thus of
the importance of viewing systems as a hierarchy of abstractions.

Although a linked list can be used to implement almost any list application, its real
strength is in applications that largely process the list elements in order. This is not to
say that we cannot do “random access” operations on a linked list. Our specifications
include operations that logically access elements in random order. For instance, public
methods retrieve and delete manipulate an arbitrary element in the list. However, at
the implementation level the only way to find an element is to search the list, beginning
at the first element and continuing sequentially to examine element after element. This
search is O(N ), because the amount of work required is directly proportional to the
number of elements in the list. A particular element in a sequentially sorted list in an
array, in contrast, can be found with a binary search, decreasing the search algorithm to
O(log2N ). For a large list, the O(N ) sequential search can be quite time-consuming.
There is a linked structure that supports O(log2N ) searches: the binary search tree. We
discuss the binary search tree data structure in detail in Chapter 8.

Summary of Classes and Support Files
The classes and files are listed in the order in which they appear in the text. The pack-
age a class belongs to, if any, is listed in parentheses under Notes. The class and support

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Summary of Classes and Support Files | 463

Figure 6.20 shows our current set of list-related classes and their relationships. The
figure does not show the SpecializedList class developed in Section 6.5 since it is a
standalone class, and is not related to any of the other list classes. 

On page 465 is a list of the Java Library Classes that were used in this chapter for the
first time in the textbook. The classes are listed in the order in which they are first used.
We only list classes used in our programs, not classes just mentioned in the text. Note
that in some classes the methods listed might not be defined directly in the class; they
might be defined in one of its superclasses. With the methods we also list constructors, if
appropriate. For more information about the library classes and methods, the reader can
check Sun’s Java site.

Classes, Interfaces and Support Files Defined in Chapter 6

File 1st Ref. Notes

CircularSortedLinkedList.java page 408 (ch06.genericLists) Linked list based on
an array of nodes; implements ListInter-
face

TwoWayListInterface.java page 422 (ch06.genericLists) An interface that
specifies a doubly linked list; partial imple-
mentation details are presented and imple-
mentation completion is left as an exercise

ArrayLinkedList.java page 429 (ch06.genericLists) Linked list based on
an array of nodes; implements ListInter-
face

SpecializedListInterface.java page 434 (ch06.byteLists) An interface that speci-
fies the list needed to support the chapter’s
case study

SpecializedList.java page 437 (ch06.byteLists) Implements Special-
izedListInterface using a dynamic doubly
linked list with references to the first and last
nodes

LargeInt.java page 444 (ch06.largeInts) Provides large integers
and some arithmetic operations

LargeIntCalculator.java page 456 Allows user to enter two operands and choose
an operation.

files are available on our web site. They can be found in the ch06 subdirectory of the
bookFiles directory. Note that inner classes are not included in the table.
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Figure 6.20 Our current set of list related classes

+UnsortedList(in maxItems:int)
+UnsortedList()
+isThere(in item:Listable):boolean
+retrieve(in item:Listable):Listable
+insert(in item:Listable):void
+delete(in item:Listable):void

UnsortedList

+SortedList(in maxItems:int)
+SortedList()
+isThere(in item:Listable):boolean
+retrieve(in item:Listable):Listable
+insert(in item:Listable):void
+delete(in item:Listable):void

SortedList

–nodes:AListNode
–list:int
–free:int
–numItems:int
–currentPos:AListNode

+ArrayLinkedList(in maxItems:int)
+isFull():boolean
+lengthIs():int
+is There(in item:Listable):boolean
+retrieve(in item:Listable):Listable
+insert(in item:Listable):void
+delete(in item:Listable):void
+reset():void
+getNextItem():Listable

ArrayLinkedList

#list:DLListNode
#numItems:int
#currentPos:DLListNode

+LinkedList()
+isFull():boolean
+lengthIs():int
 isThere(in item:Listable):boolean
 retrieve(in item:Listable):Listable
 insert(in item:Listable):void
+delete(in item:Listable):void
+reset():void
+getNextItem():Listable
+getPreviousItem():Listable

DoublyLinkedList

 isFull():boolean
 lengthIs():int
 isThere(in item:Listable):boolean
 retrieve(in item:Listable):Listable
 insert(in item:Listable):void
 delete(in item:Listable):void
 reset():void
 getNextItem():Listable

<<interface>>
ListInterface

 compareTo(in other:Listable):int
 copy():Listable

<<interface>>
Listableuses

DLListNode

#info:Listable
#next:DLListNode
#back:DLListNode

ListNode

#info:Listable
#next:ListNode

<<interface>>
TwoWayListInterface

 getPreviousItem():Listable

inner
class

inner
class

AListNode

#info:Listable
#next:AListNode

inner
class

+CircularSortedLinkedList()
+isThere(in item:Listable):boolean
+insert(in item:Listable):void
+delete(in item:Listable):void
+reset():void
+getNextItem():Listable

CircularSortedLinkedList

+UnsortedLinkedList()
+isThere(in item:Listable):boolean
+insert(in item:Listable):void

UnsortedLinkedList

+SortedLinkedList()
+isThere(in item:Listable):boolean
+insert(in item:Listable):void

SortedLinkedList

#list:Listable[]
#numItems:int
#currentPos:int

+List(in maxItems:int)
+isFull():boolean
+lengthIs():int
 isThere(in item:Listable):boolean
 retrieve(in item:Listable):Listable
 insert(in item:Listable):void
 delete(in item:Listable):void
+reset():void
+getNextItem():Listable

List

#list:ListNode
#numItems:int
#currentPos:ListNode

+LinkedList()
+isFull():boolean
+lengthIs():int
 isThere(in item:Listable):boolean
+retrieve(in item:Listable):Listable
 insert(in item:Listable):void
+delete(in item:Listable):void
+reset():void
+getNextItem():Listable

LinkedList



Exercises | 465

Exercises
6.1 Circular Linked Lists

1. In our CircularSortedLinkedList class, we reuse the constructor and the
isFull, lengthIs, and retrieve methods of our LinkedList class. The way
we reused the constructor was different from the way we reused the methods.
Explain why and how.

2. Implement a copy constructor for the circular linked list class. The signature for
your method should be:

public CircularSortedLinkedList(CircularSortedLinkedList inList)

3. If you were going to implement the FIFO Queue ADT as a circular linked list with
the reference accessing the “rear” node of the queue, which public methods would
require changing?

4. Write a public method printReverse that prints the elements of a Circular-
SortedLinkedList object in reverse order. For instance, for the list X Y Z,
list.printReverse() would output Z Y X. Assume that the list elements all
have an associated toString method. You may use as a precondition that the
list is not empty.

5. Suppose we define an operation on a list called inBetween that accepts an item
as a parameter and returns true if the item is “in between” the smallest and
largest list elements. That is, based on the compareTo method defined for list
elements, the item is larger than the smallest list element and smaller than the
largest list element. Otherwise, the method returns false (even if the item
“matches” the smallest or largest element).

a. Design and code inBetween as client code, using operations of the
SortedList class (the array-based sorted list class from Chapter 3).

b. Design and code inBetween as a public method of the SortedList class.

Library Classes Used in Chapter 6 for the First Time:

Class Name Package Overview Methods Used Where Used

JRadioButton swing Radio button JRadioButton, LargeIntCalculator
objects setSelected, 

setActionCommand

ButtonGroup awt Allows grouping ButtonGroup, LargeIntCalculator
of button objects add,

getSelection 
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c. Design and code inBetween as a public method of the SortedLinkedList
class.

d. Design and code inBetween as a public method of the CircularSorted-
LinkedList class.

e. State the Big-O complexity of each of your implementations in terms of N,
the size of the list.

6. We implemented the CircularSortedLinkedList by maintaining a single ref-
erence into the linked list, to the last element of the list. Suppose we changed
our approach to maintaining two references into the linked list, one to the first
list element and one to the last list element.

a. Would the new approach necessitate a change in the class constructor? If so,
describe the change.

b. Would the new approach necessitate a change in the getNextItem method?
If so, describe the change.

c. Would the new approach necessitate a change in the isThere method? If so,
describe the change.

d. Would the new approach necessitate a change in the insert method? If so,
describe the change.

7. At the end of the section on circular linked lists, it was suggested that many of the
claimed benefits could also be obtained by simply augmenting our Sorted-
LinkedList class with a private variable that references the last element of the
list. Outline the changes to the public methods of the SortedLinkedList class
that should be made due to such a change. For each change, identify whether the
change is necessary to support the new implementation, or whether it is an
improvement made possible by the new implementation.

6.2 Doubly Linked Lists
8. We discussed the Insert operation for a doubly linked list and showed that the

correct order for the reference changes is:

newNode.back = location.back;
newNode.next = location;
location.back.next = newNode;
location.back = newNode;

Describe the ramifications of making the reference changes in a different order
as shown here:

a. location.back = newNode;
newNode.back = location.back;
newNode.next = location;
location.back.next = newNode;
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b. newNode.back = location.back;
location.back.next = newNode;
newNode.next = location;
location.back = newNode;

c. newNode.next = location;
newNode.back = location.back;
location.back.next = newNode;
location.back = newNode;

9. We discussed the implementation of the insert method for a sorted doubly
linked list class. Implement the method in Java.

10. We discussed the implementation of the delete method for a sorted doubly
linked list class. Implement the method in Java.

11. Outline the changes to the other public methods of the Sorted List ADT (besides
insert and delete) that should be made to implement the Sorted List as a dou-
bly linked list instead of as a singly linked list. For each change, identify
whether the change is necessary because of the new implementation, or whether
it is an improvement made possible by the new implementation.

12. Using the circular doubly linked list below, give the expression corresponding to
each of the following descriptions.

• • •

••• •

•

•

•
Node

1
Node

2
Node

3
Node

4
Node

5

A B C

For example, the expression for the info member of Node 1, referenced from ref-
erence A, would be A.info.

a. The info member of Node 1, referenced from reference C

b. The info member of Node 2, referenced from reference B

c. The next member of Node 2, referenced from reference A

d. The next member of Node 4, referenced from reference C

e. Node 1, referenced from reference B

f. The back member of Node 4, referenced from reference C

g. The back member of Node 1, referenced from reference A
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6.3 Linked Lists with Headers and Trailers
13. Dummy nodes are used to simplify list processing by eliminating some “special

case.”

a. What special case is eliminated by a header node in a reference-based linked
list?

b. What special case is eliminated by a trailer node in a reference-based linked
list?

c. Would dummy nodes be useful in implementing a linked stack? That is,
would their use eliminate a special case?

d. Would dummy nodes be useful in implementing a linked queue with a refer-
ence to both the head and the rear elements?

e. Would dummy nodes be useful in implementing a circular linked queue?

14. Of the three variations of linked lists (circular, with header and trailer nodes, and
doubly linked), which would be most appropriate for each of the following appli-
cations?

a. You must search a list for a key and return the keys of the two elements that
come before it and the keys of the two elements that come after it.

b. A text file contains integer elements, one per line, sorted from smallest to
largest. You must read the values from the file and create a sorted linked
list containing the values.

c. A list that is short and frequently becomes empty. You want a list that is
optimum for inserting an element into the empty list and deleting the last
element from the list.

15. John and Mary are programmers for the local school district. One morning John
commented to Mary about the funny last name the new family in the district
had: “Have you ever heard of a family named Zzuan?” Mary replied “Uh oh; we
have some work to do. Let’s get going.” Can you explain Mary’s response?

6.4 A Linked List as an Array of Nodes
16. What is the Big-O measure for initializing the free list in the array-based linked

implementation? For the methods getNode and freeNode?

17. Use the linked lists contained in the array pictured in Figure 6.13 to answer the
following questions:

a. What elements are in the list pointed to by list1?

b. What elements are in the list pointed to by list2?

c. What array positions (indexes) are part of the free space list?

d. What would the array look like after the deletion of “Nell” from the first list?



e. What would the array look like after the insertion of “Anne” into the second
list? Assume that before the insertion that the array is as pictured in Figure 6.13.

18. An array of records (nodes) is used to contain a doubly linked list, with the next
and back members indicating the indexes of the linked nodes in each direction.

a. Show how the array would look after it was initialized to an empty state,
with all the nodes linked into the free-space list. (Note that the free-space
nodes only have to be linked in one direction.)

b. Draw a box-and-arrow picture of an abstract doubly linked list into which
the following numbers are inserted into their proper places: 17, 4, 25.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

free

list

nodes .info .next .back
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c. Show how the array in part (a) would look after the listed numbers are
inserted into their proper places in the doubly linked list: 17, 4, 25.

d. Show how the array in part (c) would look after 17 is deleted from the doubly
linked list.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

free

list

nodes .info .next .back
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19. We developed code for the constructor and the getNode, freeNode, isFull,
and delete methods of our ArrayLinkedList class. Develop the code for

a. the lengthIs method

b. the isThere method

c. the retrieve method

d. the insert method

e. the reset method

f. the getNextItem method

6.5 A Specialized List ADT
20. True or False? The SpecializedList class

a. uses the “by copy” approach with its elements.

b. implements the ListInterface interface.

c. keeps its data elements sorted.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

free

list

nodes .info .next .back
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d. allows duplicate elements.

e. throws an exception if an iteration “walks off” the end of the list.

f. can hold objects of any Java class.

g. has only O(1) operations, including its constructor.

21. Describe the difference between the getPriorItem method of the
SpecializedList class and the proposed getPreviousItem method of the
DoublyLinkedList class.

22. Can you derive a class DLList from the class SpecializedList that has a
public method insert that inserts the item into its proper place in the list? If so,
derive the class and implement the method. If not, explain why not.

A Case Study: Large Integers
23. Discuss the changes that would be necessary within the LargeInt class if more

than one digit is stored per node.

24. Implement a copy constructor for the LargeInt class. The signature for your
method should be:

public LargeInt(LargeInt inLargeInt)

Does the existence of this copy constructor affect the design of any of the meth-
ods of the Large Integer Calculator program? If so, which ones, and how?

25. Consider the multiplication of large integers.

a. Describe an algorithm.

b. Implement a multiply method for the LargeInt class.

c. Add multiplication as an option for the Large Integer Calculator program.

26. The private method greaterList of the LargeInt class assumes that its argu-
ments have no leading zeros. When this assumption is violated, strange results
can occur. Consider the following screen shot from the Large Integer Calculator
program that shows that 35 � 3 is �968:

a. Why do leading zeros cause a problem?

b. Identify at least two approaches to correcting this problem.
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c. Describe benefits and drawbacks to each of your identified approaches.

d. Choose one of your approaches and implement the solution.

27. The Large Integer Calculator program does not “catch” ill-formatted input like
the Postfix Expression Evaluator program did. For example, consider the follow-
ing screen shot:

Fix the program so that it is more robust, and in situations such as that shown
above it writes an appropriate error message to the display.
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Measurable goals for this chapter include that you should be able to

discuss recursion as another form of repetition

do the following, given a recursive method:

determine whether the method halts

determine the base case(s)

determine the general case(s)

determine what the method does

determine whether the method is correct and, if it is not, correct it

do the following, given a recursive-problem description:

determine the base case(s)

determine the general case(s)

design and code the solution as a recursive void or value-returning method

verify a recursive method, according to the Three-Question Method

decide whether a recursive solution is appropriate for a problem

compare and contrast dynamic storage allocation and static storage allocation in relation to using
recursion

explain how recursion works internally by showing the contents of the run-time stack

replace a recursive solution with iteration and/or the use of a stack

explain why recursion may or may not be a good choice to implement the solution of a problem

Programming with
Recursion

G
oals
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This chapter introduces the topic of recursion—a unique problem-solving approach sup-
ported by many computer languages (Java included). With recursion, you solve a prob-
lem by repeatedly breaking it into smaller versions of the same problem, until the
problem is reduced to a trivial size that can be easily solved; then you repeatedly com-
bine your solutions to the subproblems until you arrive at a solution to the original
problem.

Although recursion can at first appear unwieldy and awkward, when applied prop-
erly it is an extremely powerful and useful problem-solving tool.

7.1 What is Recursion?

You may have seen a set of gaily-painted Russian dolls that fit inside one another.
Inside the first doll is a smaller doll, inside of which is an even smaller doll, inside of
which is yet a smaller doll, and so on. A recursive algorithm is like such a set of Russian
dolls. It reproduces itself with smaller and smaller versions of itself until a version is
reached that can no longer be subdivided—that is, until the smallest doll is reached. The

recursive algorithm is implemented by using a method
that makes recursive calls to itself; analogous to tak-
ing the dolls apart one by one. The solution often
depends on passing back from the recursive calls,
larger and larger subsolutions, analogous to putting
the dolls back together again.

In Java, any method can invoke another method. A method can even invoke itself!
When a method invokes itself, it is making a recursive call. The word recursive means
“having the characteristic of coming up again, or repeating.” In this case, a method

invocation is being repeated by the method itself. This
type of recursion is sometimes called direct recursion,
since the method directly calls itself. All of the exam-
ples in this chapter are of direct recursion. Indirect
recursion occurs when method A calls method B, and
method B calls method A; the chain of method calls
could be even longer, but if it eventually leads back to
method A, then it is indirect recursion.

Recursive call A method call in which the method
being called is the same as the one making the call

Direct recursion Recursion in which a method
directly calls itself

Indirect recursion Recursion in which a chain of two
or more method calls returns to the method that origi-
nated the chain
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Recursion is a powerful programming technique. However, you must be careful
when using recursion. Recursive solutions can be less efficient than iterative solutions
to the same problem. In fact, some of the examples used in this chapter are better suited
to iterative methods (see the discussion in Section 7.10). Still, many problems lend
themselves to simple, elegant, recursive solutions and are exceedingly cumbersome to
solve iteratively. Some programming languages, such as early versions of FORTRAN,
BASIC, and COBOL, do not allow recursion. Other languages are especially oriented to
recursive approaches—LISP is one of these. Java lets us take our choice; we can imple-
ment both iterative and recursive algorithms in Java.

A Classic Example of Recursion

Mathematicians often define concepts in terms of the process used to generate them. For
instance, n! (read “n factorial”) is used to calculate the number of permutations of n ele-
ments. One mathematical description of n! is

Consider the case of 4!. Because n > 0, we use the second part of the definition:

4! = 4 * 3 * 2 * 1 = 24

This description of n! provides a different definition for each value of n, for the
three dots stand in for the intermediate factors. That is, the definition of 2! is 2 * 1, the
definition of 3! is 3 * 2 * 1, and so forth.

We can also express n! without using the three dots:

This is a recursive definition because we
express the factorial function in terms of
itself.

Let’s consider the recursive calculation of
4! intuitively. Because 4 is not equal to 0, we
use the second half of the definition:

4! = 4 * (4 � 1)! = 4 * 3!

Of course, we can’t do the multiplication yet, because we don’t know the value of 3!.
So we call up our good friend Sue Ann, who has a Ph.D. in math, to find the value of 3!.

n
n

n n n
!

,

* !
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=
−( ) >





1 0

1 0
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n n n n
!
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* * * * ,
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1 0

1 2 1 0

if 

if L

Recursive definition A definition in which something
is defined in terms of smaller versions of itself
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Sue Ann has the same formula we have for calculating the factorial function, so she
knows that

3! = 3 * (3 � 1)! = 3 * 2!

She doesn’t know the value of 2!, however, so she puts you on hold and calls up her
friend Max, who has an M.S. in math.

Max has the same formula Sue Ann has, so he quickly calculates that

2! = 2 * (2 � 1)! = 2 * 1!

But Max can’t complete the multiplication because he doesn’t know the value of 1!. He
puts Sue Ann on hold and calls up his mother, who has a B.A. in math education.

Hey Mom,
what is

1! ?
1! = 1 * 0!

n=4 n=3 n=2
n=1

4! = 4 * 3! 3! = 3 * 2! 2! = 2 * 1!

What is
2! ?

2! = 2 * 1!
By the way,

what are
you doing
tonight?

n=4 n=3
n=2

4! = 4 * 3! 3! = 3 * 2!

What is
3! ? 3! = 3 * 2!

n=4 n=3

4! = 4 * 3!
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Max’s mother has the same formula Max has, so she quickly figures out that

1! = 1 * (1 � 1)! = 1 * 0!

Of course, she can’t perform the multiplication, because she doesn’t have the value of 0!.
So Mom puts Max on hold and calls up her colleague Bernie, who has a B.A. in English
literature.

Bernie doesn’t need to know any math to figure out that 0! = 1 because he can read
that information in the first clause of the formula (n! = 1, if n = 0). He reports the
answer immediately to Max’s mother. She can now complete her calculations:

1! = 1 * 0! = 1 * 1 = 1

She reports back to Max that 1! = 1, who now performs the multiplication in his for-
mula and learns that

2! = 2 * 1! = 2 * 1 = 2

He reports back to Sue Ann, who can now finish her calculation:

3! = 3 * 2! = 3 * 2 = 6

So 4! is 24.

n=1

n=0

3! is 6. 2! is 2. 1! is 1. 0! is 1.

n=2n=4 n=3

3! = 3 * 2! =
3 * 2 = 6

4! = 4 * 3! =
4 * 6 = 24

2! = 2 * 1! =
2 * 1 = 2

1! = 1 * 0! =
1 * 1 = 1

0! = 1

What is 0! ? 0! = 1

n=4 n=3 n=2
n=1

n=0

4! = 4 * 3! 3! = 3 * 2! 2! = 2 * 1! 1! = 1 * 0! 0! = 1
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Sue Ann calls you with this exciting bit of information. You can now complete your
calculation:

4! = 4 * 3! = 4 * 6 = 24

Notice when the recursive calls stop. They stop when we have reached a case for
which we know the answer without resorting to a recursive definition. In this example,

Bernie knew that 0! = 1 directly from the definition
without having to resort to recursion. The case (or
cases) for which an answer is explicitly known is
called the base case. The case for which the solution is
expressed in terms of a smaller version of itself is
called the recursive or general case. A recursive algo-
rithm is an algorithm that expresses the solution in
terms of a call to itself, a recursive call. A recursive
algorithm must terminate; that is, it must have a base
case.

7.2 Programming Recursively

Of course, the use of recursion is not limited to mathematicians with telephones. Com-
puter languages, such as Java, that support recursion, give the programmer a powerful
tool for solving certain kinds of problems by reducing the complexity or by hiding the
details of the problem.

In this chapter we consider recursive solutions to several problems. In our initial
discussion, you may wonder why a recursive solution would ever be preferred to an
iterative, or nonrecursive one, for the iterative solution may seem simpler and be more
efficient. Don’t worry. There are, as you see later, situations in which the use of recur-
sion produces a much simpler—and more elegant—program.

Coding the Factorial Function

A recursive method is one that calls itself. Here we construct a recursive Java method
factorial that returns the value of number! when passed the argument number.
Therefore, the method needs to return the value number * (number – 1)!. Where can
we get the value (number – 1)! that we need in the formula? We already have a
method for doing this calculation: factorial. So we just call factorial from within
factorial. Notice the recursive call to factorial in the else statement in the code
below (throughout this chapter we emphasize the recursive calls within our code). Of
course, the argument, number – 1, in the recursive call is different from the argument
in the original call, number. This is an important and necessary consideration; otherwise
the method would continue calling itself indefinitely.

Base case The case for which the solution can be
stated nonrecursively

General (recursive) case The case for which the solu-
tion is expressed in terms of a smaller version of itself

Recursive algorithm A solution that is expressed in
terms of (a) smaller instances of itself and (b) a base
case
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public static int factorial(int number)
{
if (number == 0)
return 1;          // Base case

else
return (number * factorial(number – 1));     // General case

}

Let’s trace this method with an original number of 4:

Call 1 number is 4. Because number is not 0, the else branch is taken. The return
statement cannot be completed until the recursive call to factorial with
number – 1 as the argument has been completed.

Call 2 number is 3. Because number is not 0, the else branch is taken. The return
statement cannot be completed until the recursive call to factorial with
number – 1 as the argument has been completed.

Call 3 number is 2. Because number is not 0, the else branch is taken. The return
statement cannot be completed until the recursive call to factorial with
number – 1 as the argument has been completed.

Call 4 number is 1. Because number is not 0, the else branch is taken. The return
statement cannot be completed until the recursive call to factorial with
number – 1 as the argument has been completed.

Call 5 number is 0. Because number equals 0, this call to the method returns,
sending back 1 as the result.

Call 4 The return statement in this copy can now be completed. The value to be
returned is number (which is 1) times 1. This call to the method returns,
sending back 1 as the result.

Call 3 The return statement in this copy can now be completed. The value to be
returned is number (which is 2) times 1. This call to the method returns,
sending back 2 as the result.

Call 2 The return statement in this copy can now be completed. The value to be
returned is number (which is 3) times 2. This call to the method returns,
sending back 6 as the result.

Call 1 The return statement in this copy can now be completed. The value to be
returned is number (which is 4) times 6. This call to the method returns,
sending back 24 as the result. Because this is the last of the calls to fac-
torial, the recursive process is over. The value 24 is returned as the final
value of the call to factorial with an argument of 4.

Figure 7.1 summarizes the execution of the factorial method with an argument
of 4.
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Comparison to the Iterative Solution

We have used the factorial algorithm to demonstrate recursion because it is familiar and
easy to visualize. In practice, one would never want to solve this problem using recur-
sion. The iterative solution is simpler and much more efficient because starting a new
iteration of a loop is a faster operation than calling a method. Let’s look at an iterative
solution to the problem:

// Iterative solution
public static int factorial(int number)
{
int value = 1;
for (int count = 2; count <= number; count++)
{
value = value * count;

}
return value;

}

Figure 7.1 Execution of factorial(4)

number:0

number:1

number:2

number:3

factorial(4)

Call 1:

Call 2:

Call 3:

Call 4:

Call 5:

number:4

Argument is 4

Argument is 3

Argument is 2

Argument is 1

Argument is 0

Returns 24.

Returns 6.

Returns 2.

Returns 1.

Returns 1.
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For easy comparison, we repeat the recursive solution:

// Recursive solution
public static int factorial(int number)
{
if (number == 0)
return 1;          // Base case

else
return (number * factorial (number – 1));     // General case

}

Iterative solutions tend to employ loops, whereas recursive solutions tend to have selec-
tion statements—either an if or a switch statement. A branching structure is the main
control structure in a recursive method. A looping structure is the main control struc-
ture in an iterative method. The iterative version of factorial has two local variables
(value and count), whereas the recursive version has none. There are usually fewer
local variables in a recursive method than in an iterative method. Sometimes, as we see
later, a recursive solution needs more parameters than the equivalent iterative one. Data
values used in the iterative solution are usually initialized inside the method, above the
loop. Similar data values used in a recursive solution are usually initialized by the
choice of parameter values in the initial call to the method.

Note that the code for both approaches is included in the tryFact.java applica-
tion provided on our web site.

7.3 Verifying Recursive Methods

The kind of walk-through we did in the previous section, to check the validity of a
recursive method, is time consuming, tedious, and often confusing. Furthermore, simu-
lating the execution of factorial(4) tells us that the method works when the argu-
ment equals 4, but it doesn’t tell us whether the method is valid for all nonnegative
values of the argument. It would be useful to have a technique that would help us deter-
mine inductively whether a recursive algorithm works.

The Three-Question Method

We use the Three-Question Method of verifying recursive methods. To verify that a
recursive solution works, you must be able to answer yes to all three of these questions.

1. The Base-Case Question: Is there a nonrecursive way out of the method, and does
the method work correctly for this base case?

2. The Smaller-Caller Question: Does each recursive call to the method involve a
smaller case of the original problem, leading inescapably to the base case?

3. The General-Case Question: If the recursive call(s) works correctly, does the whole
method work correctly?
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Let’s apply these three questions to method factorial. (We use the mathematical
symbol n rather than the variable number in this discussion.)

1. The Base-Case Question: The base case occurs when n = 0. The factorial method
then returns the value of 1, which is the correct value of 0!, and no further (recur-
sive) calls to factorial are made. The answer is yes.

2. The Smaller-Caller Question: To answer this question we must look at the parame-
ters passed in the recursive call. In method factorial, the recursive call passes 
n � 1. Each subsequent recursive call sends a decremented value of the parameter,
until the value sent is finally 0. At this point, as we verified with the base-case
question, we have reached the smallest case, and no further recursive calls are
made. The answer is yes.

3. The General-Case Question: In the case of a method like factorial, we need to
verify that the formula we are using actually results in the correct solution. Assum-
ing that the recursive call factorial(n – 1) gives us the correct value of (n �
1)!, the return statement computes n * (n � 1)!. This is the definition of a factorial,
so we know that the method works for all positive integers. In answering the first
question, we have already ascertained that the method works for n = 0. (The facto-
rial function is defined only for nonnegative integers.) So the answer is yes.

If you are familiar with inductive proofs, you should recognize what we have done.
Having made the assumption that the method works for (n � 1), we have shown that
applying the method to the next value, (n � 1) + 1, or n, results in the correct formula
for calculating n!. Since we have also shown that the formula works for the base case,
n = 0, we have inductively shown that it works for any integral argument >= 0.

7.4 Writing Recursive Methods

The questions used for verifying recursive methods can also be used as a guide for writing
recursive methods. You can use the following approach to write any recursive method:

1. Get an exact definition of the problem to be solved. (This, of course, is the first step
in solving any programming problem.)

2. Determine the size of the problem to be solved on this call to the method. On the
initial call to the method, the size of the whole problem is expressed in the value(s)
of the parameter(s).

3. Identify and solve the base case(s) in which the problem can be expressed nonrecur-
sively. This ensures a yes answer to the base-case question.

4. Identify and solve the general case(s) correctly in terms of a smaller case of the
same problem—a recursive call. This ensures yes answers to the smaller-caller and
general-case questions.

In the case of factorial, the definition of the problem is summarized in the definition
of the factorial function. The size of the problem is the number of values to be multi-
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plied: n. The base case occurs when n = 0, in which case we take the nonrecursive path.
Finally, the general case occurs when n > 0, resulting in a recursive call to factorial
for a smaller case: factorial(n – 1).

A Recursive Version of isThere

Let’s apply this approach to writing a recursive version of the isThere method for our
abstract List class. Recall the specification of the isThere method:

public boolean isThere (Listable item);
// Effect:        Determines if element matching item is on this list
// Postcondition: Return value = (element with the same key as item 
//                is on this list)

You need to also remember that the underlying structure used to implement our
Unsorted List ADT by our List class is the array:

protected Listable[] list;     // Array to hold this list's elements
protected int numItems;        // Number of elements on this list

The isThere problem can be decomposed into smaller problems by deciding if
item is in the first position of the list or in the rest of the list. More formally

isThere(item) = return  (is item in the first list position?) 
or (is item in the rest of the list?)

We can answer the first question just by comparing item to list[0]. But how do
we know whether item is in the rest of the list? If only we had a method that would
search the rest of the list. But we do have one! The isThere method searches for a
value in a list. We simply need to start searching at position 1, instead of at position
0 (a smaller case). To do this, we need to pass the search starting place to isThere as
a parameter. Each recursive call to isThere passes a starting location that is one
location more than its own starting location. But how do we know when to stop?
Within the code for the recursive isThere method we can use numItems – 1 to
mark the end of the list, so we can stop the recursive calls when our starting position
is that value.

We use the following method specification:

public boolean isThere (Listable item, int startPosition);
// Effect:        Determines if element matching item is on this list between
//                startPosition and the end of the list
// Postcondition: Return value = (element with the same key as item is on this 
//                list between startPosition and the end of the list)
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Figure 7.2 Recursive method isThere in mid-execution

[0] [1] [startPosition]

Already searched Needs to be searchedCurrent
index

of
lower
limit

[numItems-1]

• • • • • • • • •

To search the whole list, we would invoke the method with the statement

if (isThere(value, 0))
.
.
.

Note that since Java allows us to overload method names (as long as the methods have
unique signatures), we can still call our new method isThere. The general case of this
approach is the part that searches the rest of the list. This case involves a recursive call
to isThere, specifying a smaller part of the array to be searched:

return isThere(item, startPosition + 1);

By using the expression startPosition + 1 as the argument, we have effectively
diminished the size of the problem to be solved by the recursive call. That is, searching
the list from startPosition + 1 to numItems – 1 is a smaller task than searching
from startPosition to numItems – 1. Figure 7.2 shows the recursive method
isThere frozen in mid-execution.

Finally, we need to know when to stop searching. In this problem, we have two
base cases: (1) when the value is found (return true), and (2) when we have reached the
end of the list without finding the value (return false). In either case, we can stop mak-
ing recursive calls to isThere.

The code for the base case returns the appropriate Boolean value to the copy of the
method that invoked it. This method, in turn, immediately returns the value to the copy
of the method that invoked it, and so on, until the Boolean value is returned to what-
ever originally invoked the isThere method. Let’s summarize what we have discussed
and then write the isThere method.
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Recursive isThere(item) method: returns boolean

Definition: Searches list for item. Returns true if item is
found; returns false otherwise.

Size: The number of slots to search in list.info[start-
Position]..list.info[list.numItems � 1].

Base Cases: (1) If list.info[startPosition] equals value, return
true.
(2) If startPosition equals list.numItems � 1 and
list.info[list.length – 1] does not equal item,
return false.

General Case: Search the rest of the list for item. This is a
recursive invocation of isThere with a parameter
startPosition + 1 (smaller caller).

The code for the recursive isThere method follows

public boolean isThere (Listable item, int startPosition)
// Returns true if item is on this list; otherwise, returns false
{
if (item.compareTo(list[startPosition]) == 0)  // If they match
return true;

else if (startPosition == (numItems – 1))      // If end of list
return false;

else return isThere(item, startPosition + 1);
}

Note that it is the parameter startPosition that acts as an index through the array; it
is initialized in the original invocation of isThere and incremented on each recursive
call. The equivalent iterative solution would use a local counter, initialized inside the
method above the loop and incremented inside the loop. The code for this method is
included in the UnsortedStringList3 class in the ch07.stringLists package on
our web site.

Let’s use the Three-Question Method to verify this method.

1. The Base Case Question: One base case occurs when the value is found on this call
and the method is exited without any further calls to itself. A second base case
occurs when the end of the list is reached without the value being found and the
method is exited without any further recursive calls. The answer is yes.

2. The Smaller Caller Question: The recursive call in the general case increments the
value of startPosition, making the part of the list left to be searched smaller.
The answer is yes.
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3. The General Case Question: Let’s assume that the recursive call in the general case
correctly tells us whether the value is found in the second through last elements in
the list. Then Base Case 1 gives us the correct answer of true if the value is found
in the first element in the list, and Base Case 2 gives us the correct answer of false
if the value is not in the first element and the first element is the only element in
the list. The only other possible case is that the value exists somewhere in the rest
of the list. Assuming that the recursive call works correctly, the whole method
works, so the answer to this question is also yes.

Debugging Recursive Methods

Because of their nested calls to themselves, recursive methods can be confusing to
debug. The most serious problem is the possibility that the method recurses forever. A
typical symptom of this problem is an error message telling us that the system has run
out of space in the run-time stack, due to the level of recursive calls. (In Section 7.8 we
look at how recursion uses the run-time stack.) Using the Three-Question Method to
verify recursive methods should help us avoid the problem of never finishing. If we can
answer yes to the base-case and smaller-caller questions, we should be able to guaran-
tee that the method eventually ends—theoretically, at least.

That does not guarantee, however, that the program does not fail due to lack of
space. In Section 7.8 we discuss the amount of space overhead required to support
recursive method calls. And since a call to a recursive method may generate many,
many levels of method calls to itself—it might be more than the system can handle.

One error that programmers often make when they first start writing recursive
methods is to use a looping structure instead of a branching one. Because they tend to
think of the problem in terms of a repetitive action, they inadvertently use a while state-
ment rather than an if statement. The main body of the recursive method should always
be a breakdown into base and recursive cases. Hence, we use a branching statement, not
a looping statement. It’s a good idea to double-check your recursive methods to make
sure that you used an if or switch statement to get a branching effect.

Recursive methods are good places to put debug output statements during testing.
Print out the parameters and local variables, if any, at the beginning and end of the
method. Be sure to print the values of the parameters on the recursive call(s) to make
sure that each call is trying to solve a problem smaller than the previous one.

7.5 Using Recursion to Simplify Solutions—Two Examples

So far, the examples we have looked at could just as easily (or more easily) been written
as iterative methods. There are, however, many problems in which using recursion sim-
plifies the solution. At the end of the chapter, we talk more about choosing between
iterative and recursive solutions.
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Combinations

Our first example of a problem that is easily solved with recursion is the evaluation of
another mathematical function, Combinations, which tells us how many combinations
of a certain size can be made out of a total group of elements. For instance, if we have
20 different books to pass out to four students, we can easily see that—to be equitable—
we should give each student five books. But, how many combinations of five books can
be made out of a group of 20 books?

There is a recursive mathematical formula that can be used for solving this problem.
Given that C is the total number of combinations, group is the total size of the group to
pick from, members is the size of each subgroup, and group >= members,

Because this definition of C is recursive, it is easy to see how a recursive method can be
used to solve the problem.

Let’s summarize our problem.

Number of Combinations, returns int

Definition: calculates how many combinations of members
size can be made from the total group size.

Size: Sizes of group, members.
Base Case: (1) If members = 1, return group.

(2) If members = group, return 1.
General Case: If group > members > 1, return

Combinations(group � 1, members � 1) +
Combinations(group � 1, members)

The resulting recursive method, combinations, is listed here.

public static int combinations(int group, int members)
// Pre:  group and members are positive
// Post: Return value = number of combinations of members size
//       that can be constructed from the total group size
{
if (members == 1)
return group;             // Base case 1

C(group, members) =
   group, if members = 1
   1, if members = group
   C(group � 1, members � 1) + C(group � 1, members), if group > members > 1
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Figure 7.3 Calculating combinations(4,3)
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else if (members == group)
return 1;                 // Base case 2

else
return (combinations(group – 1, members – 1) +

combinations(group – 1, members));
}

The processing of this method to calculate the number of combinations of three ele-
ments that can be made from a set of four is shown in Figure 7.3.

Returning to our original problem, we can now find out how many combinations of
five books can be made from the original set of 20 books with the statement

System.out.println("Number of combinations = " + combinations(20, 5));

which outputs “Number of combinations = 15504”. Did you guess that it would be that
large a number? Recursive definitions can be used to define functions that grow
quickly.

The tryComb.java application program, available on our web site, can be used to
test the recursive combinations method.
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Beware of Inappropriate Recursion!
The Number of Combinations problem is a good example of a problem for which we can quickly
create a recursive solution. Attempting to create an iterative solution based on the recursive
definition of C(group, members) would be difficult. However, as discussed in Section 7.10, Decid-
ing Whether to Use a Recursive Solution, our recursive approach to this problem results in inef-
ficient multiple calculations of subsolutions; so much so that this approach can only be used for
small argument values.

However, an easy (and efficient) iterative solution does exist to this problem, since mathe-
maticians provide us an alternate definition of the function C :

C(group, members) = group! / (members!) * (group – members)!

A carefully constructed iterative program based on this formula is much more efficient than the
recursive solution we presented in this section.

Towers of Hanoi

One of your first toys may have been a disk with three pegs with colored circles of dif-
ferent diameters. If so, you probably spent countless hours moving the circles from
one peg to another. If we put some constraints on how the circles or discs can be
moved, we have an adult game called the Towers of Hanoi. When the game begins, all
the circles are on the first peg in order by size, with the smallest on the top. The object
of the game is to move the circles, one at a time, to the third peg. The catch is that a
circle cannot be placed on top of one that is smaller in diameter. The middle peg can
be used as an auxiliary peg, but it must be empty at the beginning and at the end of
the game. The circles can only be moved one at a time.

To get a feel for how this might be done, let’s look at some sketches of what the
configuration must be at certain points if a solution is possible. We use four circles or
discs. The beginning configuration is:

1 2 3

1
2
3
4
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To move the largest circle (circle 4) to peg 3, we must move the three smaller circles to
peg 2 (this cannot be done with 1 move). Then circle 4 can be moved into its final place:

Let’s assume we can do this. Now, to move the next largest circle (circle 3) into place,
we must move the two circles on top of it onto an auxiliary peg (peg 1 in this case):

To get circle 2 into place, we must move circle 1 to another peg, freeing circle 2 to
be moved to its place on peg 3:

The last circle (circle 1) can now be moved into its final place, and we are finished:

The general algorithm for moving n circles from peg 1 to peg 3 is:

2
3
41

1 2 3 1 2 3

1
2
3
4

1 2 3

3
42 1

2
3
41

1 2 3

1 2 3

43
1
2

3
4

1
2

1 2 3

1 2 3

4

1
2
3 4

1
2
3

1 2 3

Get n Circles Moved from Peg 1 to Peg 3
Get n � 1 circles moved from peg 1 to peg 2
Move the nth circle from peg 1 to peg 3
Get n � 1 circles moved from peg 2 to peg 3
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This algorithm certainly seems simple; surely there must be more. But this really is all
there is to it.

Let’s write a recursive method that implements this algorithm. We can see that recur-
sion works well because the first and third steps of the algorithm are essentially a repeat
of the overall algorithm, albeit with a smaller number of disks. Notice however, that the
beginning peg, the ending peg, and the auxiliary peg are different for the subproblems;
they keep changing during the recursive execution of the algorithm. To make the algo-
rithm easier to follow, we call the pegs beginPeg, endPeg, and auxPeg. These three
pegs, along with the number of circles on the beginning peg, are the parameters of the
method. We can’t actually move discs, of course, but we can print out a message to do so.

We have the recursive or general case, but what about a base case? How do we
know when to stop the recursive process? The clue is in the expression “Get n circles
moved.” If we don’t have any circles to move, we don’t have anything to do. We are
finished with that stage. Therefore, when the number of circles equals 0, we do nothing
(that is, we simply return). That is the base case.

public static void doTowers(
int circleCount,    // Number of circles to move
int beginPeg,       // Peg containing circles to move
int auxPeg,         // Peg holding circles temporarily
int endPeg      )   // Peg receiving circles being moved

// Moves are written on file outFile
{
if (circleCount > 0)
{
// Move n – 1 circles from beginning peg to auxiliary peg
doTowers(circleCount – 1, beginPeg, endPeg, auxPeg);

outFile.println("Move circle from peg " + beginPeg
+ " to peg " + endPeg);

// Move n – 1 circles from auxiliary peg to ending peg
doTowers(circleCount – 1, auxPeg, beginPeg, endPeg);

}
}

It’s hard to believe that such a simple algorithm actually works, but we’ll prove it to
you. We enclose the method within a driver class Towers that invokes the doTowers
method. Output statements have been added so you can see the values of the arguments
with each recursive call. Because there are two recursive calls within the method, we
have indicated which recursive statement issued the call. The program accepts two argu-
ments through command line parameters. The first is the number of circles and the sec-
ond is the name of an output file. For example, to generate the results for six circles to
the file HanoiInfo.dat, enter

java Towers 6 HanoiInfo
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on the command line.

//----------------------------------------------------------------------------
// Towers.java             by Dale/Joyce/Weems                       Chapter 7
// 
// Driver class for doTowers method
// The number of circles is the first command-line parameter
// The output file name is the second command-line parameter
//----------------------------------------------------------------------------

import java.io.*;

public class Towers
{
private static PrintWriter outFile;    // Output data file

public static void main(String[] args) throws IOException
{
// Prepare outputfile
String outFileName = args[1];
outFile = new PrintWriter(new FileWriter(outFileName));

// Get number of circles on starting peg
int circleCount;
circleCount = Integer.valueOf(args[0]).intValue();

outFile.println("OUTPUT WITH " + circleCount + " CIRCLES");
outFile.println("From original: ");
doTowers(circleCount, 1, 2, 3);
outFile.close();

}

public static void doTowers(
int circleCount,    // Number of circles to move
int beginPeg,       // Peg containing circles to move
int auxPeg,         // Peg holding circles temporarily
int endPeg      )   // Peg receiving circles being moved

//  Moves are written on file outFile
//  This recursive method moves circleCount circles from beginPeg
//   to endPeg.  All but one of the circles are moved from beginPeg
//   to auxPeg, then the last circle is moved from beginPeg to
//   endPeg, and then the circles are moved from auxPeg to endPeg
//  The subgoals of moving circles to and from auxPeg are what
//   involve recursion
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{
outFile.println("#circles: " + circleCount + " Begin: " +
beginPeg + " Auxil: " + auxPeg + " End: " + endPeg);

if (circleCount > 0)
{
// Move n – 1 circles from beginning peg to auxiliary peg
outFile.println("From first:   ");
doTowers(circleCount – 1, beginPeg, endPeg, auxPeg);

outFile.println("Move circle from peg " + beginPeg
+ " to peg " + endPeg);

// Move n – 1 circles from auxiliary peg to ending peg
outFile.println("From Second:  ");
doTowers(circleCount – 1, auxPeg, beginPeg, endPeg);

}
}

}

The output from a run with three circles follows. “Original” means that the
parameters listed beside it are from the nonrecursive call, which is the first call to
doTowers. “From first” means that the parameters listed are for a call issued from
the first recursive statement. “From second” means that the parameters listed are for a
call issued from the second recursive statement. Notice that a call cannot be issued from
the second recursive statement until the preceding call from the first recursive statement
has completed execution.

OUTPUT WITH 3 CIRCLES
From original: #circles: 3 Begin: 1 Auxil: 2 End: 3
From  first:   #circles: 2 Begin: 1 Auxil: 3 End: 2
From  first:   #circ1es: 1 Begin: 1 Auxil: 2 End: 3
From  first:   #circ1es: 1 Begin: 1 Auxil: 3 End: 2
Move circle 1 from 1 to 3
From second:   #circ1es: 0 Begin: 2 Auxil: 1 End: 3
Move circle 2 from 1 to 2
From second:   #circ1es: 1 Begin: 3 Auxil: 1 End: 2
From  first:   #circ1es: 0 Begin: 3 Auxil: 2 End: 1
Move circle 1 from 3 to 2
From second:   #circ1es: 0 Begin: 1 Auxil: 3 End: 2
Move circle 3 from 1 to 3
From second:   #circ1es: 2 Begin: 2 Auxil: 1 End: 3
From  first:   #circ1es: 1 Begin: 2 Auxil: 3 End: 1
From  first:   #circ1es: 0 Begin: 2 Auxil: 1 End: 3
Move circle 1 from 2 to 1
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From second:   #circ1es: 0 Begin: 3 Auxil: 2 End: 1
Move circle 2 from 2 to 3
From second:   #circ1es: 1 Begin: 1 Auxil: 2 End: 3
From  first:   #circ1es: 0 Begin: 1 Auxil: 3 End: 2
Move circle 1 from 1 to 3
From second:   #circ1es: 0 Begin: 2 Auxil: 1 End: 3

Here is the output with all of the trace statements removed, which makes it easier to fol-
low the solution:

OUTPUT WITH 3 CIRCLES
Move circle 1 from 1 to 3
Move circle 2 from 1 to 2
Move circle 1 from 3 to 2
Move circle 3 from 1 to 3
Move circle 1 from 2 to 1
Move circle 2 from 2 to 3
Move circle 1 from 1 to 3

Try the program for yourself. Be careful though—remember what we stated earlier
about recursive functions growing quickly. In fact, every time you add one more circle
to the starting peg you more than double the amount of output from the program. A run
of Towers on the author’s system, with an input parameter indicating 16 circles, gener-
ated an output file of size 10 megabytes.

7.6 A Recursive Version of Binary Search

In the chapter on array-based lists (Chapter 3), we developed the binary search algo-
rithm for the public method isThere of our Sorted List ADT. Here is the description of
the algorithm. “Divide the list in half (divide by 2—that’s why it’s called a binary search)
and see if the middle element is the target item; if not, decide which half to look in
next. Division of the selected portion of the list is repeated until the item is found or it
is determined that the item is not in the list.” There is something inherently recursive
about this description.

Though the method that we wrote in Chapter 3 was iterative, this really is a recur-
sive algorithm. The solution is expressed in smaller versions of the original problem: If
the answer isn’t found in the middle position, perform a binary search (a recursive call)
to search the appropriate half of the list (a smaller problem). In the iterative version we
kept track of the bounds of the current search area with two local variables, first and
last. In the recursive version we call the method with these two values as parameters.
Let’s summarize the problem in terms of a boolean method binarySearch that returns
true or false according to whether the desired item is found in the range indicated by
the two parameters, fromLocation and toLocation.



7.6 A Recursive Version of Binary Search | 497

binarySearch (item, fromLocation, toLocation), returns boolean

Definition: Searches the list delimited by the parameters to
see if item is present.

Size: The number of elements in
list[fromLocation] . . . list[toLocation].

Base Cases: (1) If fromLocation > toLocation, return false.
(2) If item.compareTo(list[midPoint]) = 0, return
true.

General Case: If item.compareTo(list[midPoint]) < 0, binary-
Search the first half of the list.
If item.compareTo(list[midPoint]) > 0, binary-
Search the second half of the list.

The recursive binarySearch method follows. The method should not be a public
method of class SortedList, but a private, auxiliary method of the class, since it takes
array bounds information as arguments. Remember, following the principles of informa-
tion hiding, the fact that an array is used to implement the list should not be used
explicitly in the interface of the class. Therefore, binarySearch cannot be public.
Besides, we really do not want to change our public list interface.

private boolean binarySearch (Listable item, int fromLocation, int toLocation)
// Returns true if item is on this list, between fromLocation and toLocation;
//  otherwise, returns false
{
if (fromLocation > toLocation)          // Base case 1
return false;

else
{
int midPoint;
int compareResult;
midPoint = (fromLocation + toLocation) / 2;
compareResult = item.compareTo(list[midPoint]);

if (compareResult == 0)          // Item found
return true;

else if (compareResult < 0)
// Item is less than element at location
return binarySearch (item, fromLocation, midPoint – 1);

else
// Item is greater than element at location
return binarySearch (item, midPoint + 1, toLocation);

}
}
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The client program’s call to the isThere method has the same form as before; for example:

if myList.isThere(myItem) ...

The isThere method now consists of a single call to the recursive method, passing it the original val-
ues for fromLocation and toLocation:

public boolean isThere (Listable item)
// Returns true if item is on this list; otherwise, returns false
{
return binarySearch(item, 0, numItems – 1);

}

The SortedList2 class in the ch07.genericLists package on our web site uses the
recursive isThere method.

7.7 Recursive Linked-List Processing

Next we look at some problems that use recursive approaches for manipulating a linked
list. In the case of a singly linked list, a recursive approach can sometimes be useful for
“backing up” in the list.

Reverse Printing

We start with a method that prints out the elements in our SortedLinkedList class.
You might be protesting that this task is so simple to accomplish iteratively that it does
not make any sense to write it recursively. So let’s make the task more difficult: Print
out the elements of the list in reverse order. This problem is much more easily and ele-
gantly solved recursively than it is iteratively.

What is the task to be performed? The algorithm follows and is illustrated in Figure
7.4. To simplify our linked list figures in this chapter, we use a capital letter to stand for
the object referenced by info, an arrow to represent the next reference (as always), and
a slash to represent null.

revPrint (listRef)
Print out the second through last elements in the list referenced by listRef in reverse order.
Then print the first element in the list referenced by listRef
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revPrint the rest of the list (third through last elements).
Then print the second element in the list.

Figure 7.4 Recursive revPrint

A B DC Elist •••••
First, print out this section of the list, backwards.

Then, print
this element.

E   D   C   B   AResult:

The second part of the task is simple. If listRef references the first node in the list, we
can print out its contents with the statement

System.out.println(" " + listRef.info);

The first part of the task—printing out all the other nodes in the list in reverse order—is
also simple because we have a method that prints out lists in reverse order: We just
invoke the method revPrint recursively. Of course, we have to adjust the parameter
somewhat, so that the invocation is revPrint(listRef.next). This call says “Print,
in reverse order, the linked list pointed to by listRef.next.” This task in turn is
accomplished recursively in two steps:

And, of course, the first part of this task is accomplished recursively.
Where does it all end? We need a base case. We can stop calling revPrint when

we have completed its smallest case: reverse printing a list of one element. Then the
value of listRef.next is null, and we can stop making recursive calls. Let’s summa-
rize the problem.
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Reverse Print (listRef)

Definition: Prints out the list referenced by listRef in reverse
order.

Size: Number of elements in the list referenced by
listRef.

Base Case: If the list is empty, do nothing.
General Case: Reverse Print the list referenced by listRef.next,

then print listRef.info.

The other recursive methods that we have written have been value-returning meth-
ods; revPrint is a void method. The revPrint method is a void method because
each method call simply performs an action (printing the contents of a list node) with-
out returning a value to the calling code. Here is the code for revPrint (yes, it is this
simple!):

private void revPrint(ListNode listRef)
{
if (listRef != null)
{
revPrint(listRef.next);
System.out.println(" " + listRef.info);

}
}

Notice that revPrint is a private method of the SortedLinkedList class. Could
we make revPrint a public method instead? The answer is no, and here is the reason.
To print the whole linked list, the client’s initial call to revPrint must pass as an argu-
ment the reference to the first node in the list. But in our Linked List classes this refer-
ence (list) is a protected instance variable of the class, so the following client code is
not permitted:

myList.revPrint(list);     // Not allowed--list is private

Therefore, we must create revPrint as an auxiliary, private method and define a public
method, say, PrintReversed, which calls revPrint:

public void printReversed()
{
revPrint(list);

}
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This pattern of defining a private recursive method, with a public entry method, has
been used in many of our examples. Given this design, the client can print the entire list
with the following method invocation:

myList.PrintReversed();

Let’s verify revPrint using the Three-Question Method.

1. The Base-Case Question: The base case is implied. When listRef is equal to null,
we return to the statement following the last recursive call to revPrint, and no
further recursive calls are made. The answer is yes.

2. The Smaller-Caller Question: The recursive call passes the list referenced by
listRef.next, which is one node smaller than the list referenced by listRef. The
answer is yes.

3. The General-Case Question: We assume that revPrint (listRef.next) correctly
prints out the rest of the list in reverse order; this call, followed by the statement
printing the value of the first element, gives us the whole list, printed in reverse
order. So the answer is yes.

How would you change the method revPrint (in addition to changing its name) to
make it print out the list in forward rather than reverse order? How would you use the
approach described in this section at the client level to print a list in reverse order? We
leave these as exercises. Note that the recursive approach to printing a list backwards,
described in this subsection, is used in the SortedLinkedList2 class of the
ch07.genericLists package, available on the web site.

The Insert Operation

Inserting an item into a linked implementation of a sorted list requires two references:
one referencing the node being examined and one referencing the node behind it. We
need this trailing reference because by the time we discover where to insert a node, we
are beyond the node that needs to be changed. In the recursive version, we let the recur-
sive process take care of the trailing reference.

Let’s begin by looking at an example where the item type is int.

If we insert 11, we begin by comparing 11 to the value in the first node of the list,
7. Eleven is greater than 7, so we look for the insertion point in the sublist referenced by
the next reference of the first node. This new list is one node shorter than the original
list. We compare 11 to the value in the first node in this list, 9. Eleven is greater than 9,
so we look for the insertion point in the sublist referenced by the next link of the first
node. This new list is one node shorter than the current list. We compare 11 with the
value in the first node of this new list, 13. Eleven is less than 13, so we have found the
insertion point. We insert a new node with 11 as the value at the beginning of the list
we are examining, at the beginning of the sublist consisting of 13 and 20. We then set
the value of the next reference of the node containing 9 to reference this new list.

7 9 2013list ••••



502 | Chapter 7:  Programming with Recursion

recursiveInsert (subList, item): Returns List
if subList is empty

return a list consisting of just item
else if item is less than the first item on subList

insert item onto the front of subList
return this new list

else
subList.next = recursiveInsert(subList.next, item)
return subList

What if the value we are inserting is greater than the value in the last node of the
list? In this case, we eventually examine an empty sublist and we insert the value into
“the beginning” of this empty list.

Recursive Insert (subList, item) returns list

Definition: Insert item into the sorted list referenced by sub-
List.

Size: The number of items in subList.
Base Cases: (1) If subList is empty, insert item into the empty

list, and return this new list.
(2) If item is less than first element on subList
insert item at the beginning of subList, and
return this new list.

General Case: Set subList to the list returned by recursive
Insert(subList.next, item) and return subList.

The key to recursive insertion into a sorted linked list is to realize that a list minus
its first node is still a list (we call this the subList) and that the easiest place to insert a
node into a linked list is at its beginning. Combining these insights we develop the fol-
lowing recursive insertion algorithm:

Note that the algorithm returns a list. The idea is to start processing with a call such as

list = recursiveInsert(list, item);

so that our list becomes the result of inserting the item into our list.
Let’s analyze the algorithm a little more closely. The first two if statements cover

our base cases of inserting into an empty subList and inserting into a subList where
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item belongs at its beginning (the “easiest place to insert”). Logically, these are two
separate base cases, but it turns out that their implementation is identical. In both cases
we create a new node, set its info attribute to item, and set its next reference to sub-
List. (If subList is “empty” this effectively sets the next reference to null; if not this
sets the next reference to the front of subList.) If we fall through to the general case
we know that the current subList is not empty and that our item does not belong at
the beginning of it. Therefore, we set the next reference of the current subList to the
result returned by inserting item into the list consisting of the “rest” of the current
subList, that is, we set it to the subList minus its first node. We also return a refer-
ence to the current subList to whatever called recursiveInsert.

The method is coded below, for our SortedLinkedList2 class. This class is found
in the ch07.genericLists package. As we have done for previous examples, we keep
the insert method’s signature unchanged and create a private recursiveInsert
method that is invoked by the public insert. The new version of insert is also listed
below. Note that as the system works it way out of the series of recursive calls it repeat-
edly reassigns the references in the next links of the chain of nodes, to the same values
that they already contain. This apparent redundancy is needed so that the placement of
the new inserted node into the chain occurs properly.

private ListNode recursiveInsert(ListNode subList, Listable item)
{
if (subList == null || item.compareTo(subList.info) < 0)
{
// Insert new node at the front of this sublist
ListNode newNode = new ListNode();
newNode.info = item;
newNode.next = subList;

// Return reference to new node
return newNode;

}
else
{
// Recursively insert item into list referenced by next
//  field of current sublist
subList.next = recursiveInsert(subList.next, item);

// Return reference to this sublist
return subList;

}
}

public void insert(Listable item)
// Adds a copy of item to list
{
list = recursiveInsert(list, item);

}
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Figure 7.5 shows visually what the code does in the case of our example of insert-
ing 11 into the list shown above, a general case situation. We leave it to the reader to
create similar figures for the base cases.

Figure 7.5 Using recursiveInsert
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7.8 How Recursion Works

In order to understand how recursion works and why some programming languages
allow it and some do not, we have to take a detour and look at how languages associate
places in memory with variable names. The association of a memory address with a
variable name is called binding. The point in the compile/execute cycle when binding
occurs is called the binding time. We want to stress that binding time refers to a point of
time in a process, not the amount of clock time that it takes to bind a variable.

As you know, Java is usually used as an interpreted language. When you compile a
Java program it is translated into a language called Java bytecode. When you run a
Java program, your machine’s Java interpreter interprets the bytecode version of your
program. The interpreter dynamically generates machine code based on the bytecode,
and executes the machine code on your machine. You can also use a Java bytecode
compiler to translate your bytecode files directly into machine code. In that case, you
can run your programs directly on your machine, without having to use an interpreter.
In either case, your Java programs must be transformed into the machine language of
your machine, in order for you to run them. In this section, we discuss the machine lan-
guage representation of programs. Programmers working with most other high-level
languages typically use compilers that translate directly into machine language.

Static storage allocation associates variable names with memory locations at com-
pile time; dynamic storage allocation associates variable names with memory locations
at execution time. As we look at how static and dynamic storage allocation work, con-
sider the following question: When are the parameters of a method bound to a particu-
lar address in memory? The answer to this question tells something about whether
recursion can be supported.

Static Storage Allocation

As a program is being translated, the compiler creates a table called a symbol table.
When the compiler reads a variable declaration, the variable is entered into the symbol
table, and a memory location—an address—is assigned to it. For example, let’s see how
the compiler would translate the following Java global declarations:

int girlCount, boyCount, totalKids;

To simplify this discussion, we assume that integers take only one memory location.
This statement causes three entries to be made in the symbol table. (The addresses we
use are arbitrary.)

Symbol Address

girlCount 0000
boyCount 0001
totalKids 0002
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That is, at compile time,

girlCount is bound to address 0000.

boyCount is bound to address 0001.

totalKids is bound to address 0002.

Whenever a variable is used later in the program, the compiler searches the symbol
table for its actual address and substitutes that address for the variable name. After all,
meaningful variable names are for the convenience of the human reader; addresses,
however, are meaningful to computers. For example, the assignment statement

totalKids = girlCount + boyCount;

is translated into machine instructions that execute the following actions:

• Get the contents of address 0000.
• Add it to the contents of address 0001.
• Put the result into address 0002.

The object code itself can then be stored in a different part of memory. Let’s say
that the translated instructions begin at address 1000. At the beginning of execution of
the program, control is transferred to address 1000. The instruction stored there is exe-
cuted, then the instruction in 1001 is executed, and so on.

Where are the parameters of methods stored? With static storage allocation, the
parameters of a method are assumed to be in a particular place; for instance, the com-
piler might set aside space for the parameter values immediately preceding the code for
each method. Consider a method countKids, with two int parameters, girlCount and
boyCount, as well as a local variable totalKids. Let’s assume that the method’s code
begins at an address we call CountKids. The compiler leaves room for the two parame-
ters and the local variable at addresses CountKids – 1, CountKids – 2, and Count-
Kids – 3, respectively. Given this method heading and declaration:

void countKids(int girlCount, int boyCount)
{
int totalKids;
.
.

}

the statement

totalKids = girlCount + boyCount;

in the body of the method would generate the following actions:

• Get the contents of address CountKids – 1.
• Add it to the contents of address CountKids – 2.
• Store the result in address CountKids – 3.
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Figure 7.6 shows how a program with three methods might be arranged in memory.
This discussion has been simplified somewhat, because the compiler sets aside space

not only for the parameters and local variables, but also for the return address (the loca-
tion in the calling code of the next instruction to process, following the completion of
the method) and the computer’s current register values. However, we have illustrated the
main point: The method’s parameters and local variables are bound to actual addresses
in memory at compile time in this scheme.

We can compare the static allocation scheme to one way of allocating seats in an
auditorium where a lecture is to be held. A finite number of invitations are issued for
the event, and the exact number of chairs needed are set up before the lecture. Each
invited guest has a reserved seat. If anyone brings friends, however, there is nowhere for
them to sit.

What is the implication of binding variable names to memory locations before the
program executes? Each parameter and local variable has but a single location assigned
to it at compile time. (They are like invited guests with reserved seats.) If each call to a
method is an independent event, there is no problem. But in the case of recursion, each

Figure 7.6 Static allocation of space for a program with three methods
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void PrintTotal (int numKids)
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int totalKids;
. . .

{

}
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recursive call requires space to hold its own values. Where is the storage for the multiple
versions of the parameters and local variables generated by recursive calls? Because the
intermediate values of the parameters and local variables must be retained, the recursive
call cannot store its arguments in the fixed number of locations that were set up at
compile time. The values from the previous recursive call would be overwritten and lost.
Thus, a language that uses only static storage allocation cannot support recursion.

Dynamic Storage Allocation

The situation we have described is like a class of students that must share one copy of a
workbook. Joe writes his exercise answers in the space provided in the workbook, then
Mary erases his answers, and writes hers in the same space. This process continues until
each student in the class writes his or her answers into the workbook, obliterating all
the answers that came before. Obviously, this situation is not practical. Clearly, what is
needed is for each student to read from the single copy of the workbook, then to write
his or her answers on a separate piece of paper. In computer terms, what each invoca-
tion of a method needs is its own work space. Dynamic storage allocation provides this
solution.

With dynamic storage allocation, variable names are not bound to actual addresses
in memory until run time. The compiler references variables not by their actual
addresses, but by relative addresses. Of particular interest to us, the compiler references
the parameters and local variables of a method relative to some address known at run
time, not relative to the location of the method’s code.

Let’s look at a simplified version of how this might work in Java. (The actual imple-
mentation depends on the particular machine/compiler/interpreter/bytecode-compiler.)
When a method is invoked, it needs space to keep its parameters, its local variables, and

the return address (the address in the calling code to
which the computer returns when the method com-
pletes its execution). Just like students sharing one
copy of a workbook, each invocation of a method
needs its own work space. This work space is called an
activation record or stack frame. Consider our recur-
sive factorial method:

public static int factorial(int number)
{
if (number == 0)
return 1;          // Base case

else
return (number * factorial (number – 1));     // General case

}

A simplified version of an activation record for method factorial might have the fol-
lowing “declaration”:

Activation record (stack frame) A record used at run
time to store information about a method call, includ-
ing the parameters, local variables, register values, and
return address
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Table 7.1 Run-time Version of Factorial (Simplified)

What Your Source Code Says What the Run-time System Does

int factorial(int number)

{

if (number == 0)

return 1;

else

return number *

factorial(number – 1);

}

// Method prologue

actRec = new ActivationRecordType;

actRec.returnAddr = retAddr;

actRec.number = number;

// actRec->result is undefined

if (actRec.number == 0)

actRec.result = 1;

else

actRec.result =

actRec.number *

factorial(actRec.number–1);

// Method epilogue

returnValue = actRec.result;

retAddr = actRec.returnAddr;

delete actRec;

Jump (goto) retAddr

class ActivationRecordType
{
AddressType returnAddr;     // Return address
int result;                 // Returned value
int number;                 // Parameter
.
.
.

};

Each call to a method, including recursive calls, generates a new activation record.
Within the method, references to the parameters and local variables use the values in
the activation record. When the method ends, the activation record is released. How
does this happen? Your source code doesn’t need to allocate and free activation records;
the compiler adds a “prologue” to the beginning of each method and an “epilogue” to
the end of each method. Table 7.1 compares the source code for factorial with a sim-
plified version of the “code” executed at run time. (Of course, the code executed at run
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1The drawings in this chapter that represent the run-time stack have the top of the stack at the bottom of the
picture because we generally think of memory being allocated in increasing address order.

time is machine code, but we are listing the source-code equivalent so that it makes
sense to the reader.)

What happens to the activation record of one method when a second method is
invoked? Consider a program whose main method calls proc1, which then calls proc2.
When the program begins executing, the “main” activation record is generated (the
main method’s activation record exists for the entire execution of the program). At the
first method call, an activation record is generated for proc1.1

When proc2 is called from within proc1, its activation record is generated.
Because proc1 has not finished executing, its activation record is still around; just like
the mathematicians with telephones, one waits “on hold” until the next call is finished:

When proc2 finishes executing, its activation record is released. But which of the
other two activation records becomes the active one: proc1’s or main's? proc1’s acti-
vation record should now be active, of course. The order of activation follows the Last-
In-First-Out rule. We know of a structure that supports LIFO access—the stack—so it

main activation record

proc2 activation record

procl activation record

main activation record

procl activation record
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should come as no surprise that the structure
that keeps track of the activation records at
run time is called the run-time stack.

When a method is invoked, its activation
record is pushed onto the run-time stack.
Each nested level of method calls adds
another activation record to the stack. As each method completes its execution, its acti-
vation record is popped from the stack. Recursive method calls, like calls to any other
methods, cause a new activation record to be generated. The level of recursive calls in a
program determines how many activation records for this method are pushed onto the
run-time stack at any one time.

Using dynamic allocation might be compared to another way of allocating seats in an
auditorium where a lecture has been scheduled. A finite number of invitations is issued, but
each guest is asked to bring his or her own chair. In addition, each guest can invite an
unlimited number of friends, as long as they all bring their own chairs. Of course, if the
number of extra guests gets out of hand, the space in the auditorium runs out, and there
may not be enough room for any more friends or chairs. Similarly, the level of recursion in
a program is limited by the amount of memory available in the run-time stack.

Let’s walk through method factorial again to see how its execution affects the
run-time stack. Let’s say that the main method is loaded in memory beginning at loca-
tion 5000, and that the initial call to factorial is made in a statement at memory loca-
tion 5200. Suppose also that the factorial method is loaded in memory at location
1000, with the recursive call made in the statement at location 1010. Figure 7.7 shows a

Run-time stack A data structure that keeps track of
activation records during the execution of a program

Figure 7.7 The sample program loaded in memory
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simplified version of how this example program is loaded in memory. (These numbers
have been picked arbitrarily, so that we have actual numbers to show in the return
address of the activation record.)

When factorial is called the first time from the statement in the main method at
address 5400:

answer = factorial(4);

an activation record is pushed onto the run-time stack to hold three pieces of data: the
return address (5400), the parameter number (4), and the value returned from the
method (result), which has not yet been evaluated. Rather than showing our activa-
tion records as pictures, we show it as a table. Each new activation record is a new row
of the table. This activation record in the last row of the table is now on the top of the
run-time stack. We have added a column on the left that identifies which call it is.

The code is now executed. Is number (the number value in the top activation
record) equal to 0? No, it is 4, so the else branch is taken:

return number * factorial(number – 1);

This time the method factorial is called from a different place. It is called recursively
from within the method itself, from the statement at location 1010. After the value of
factorial(number – 1) is calculated, we return to this location to multiply the
result times number. A new activation record is pushed onto the run-time stack:

The code for the new invocation of factorial begins executing. Is number (the num-
ber value in the top activation record) equal to 0? No, it is 3, so the else branch is taken

return number * factorial(number – 1);

So the method factorial is again called recursively from the instruction at location
1010. This process continues until the situation looks as shown below with the fifth call.

Call number result returnAddr

1 4 ? 5200

2 3 ? 1010 top

Call number result returnAddr

1 4 ? 5200 top

TE
AM
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Now, as the fifth call is executed, we again ask the question: Is number (the number
value in the top activation record) equal to 0? Yes. This time we perform the then
clause, storing the value 1 into result (the result in the top activation record, that
is). The fifth invocation of the method has executed to completion, and the value of
result in the top activation record is returned from the method. The run-time stack is
popped to release the top activation record, leaving the activation record of the fourth
call to factorial at the top of the run-time stack. We don’t restart the fourth method
call from the beginning, however. As when we return from any method call, we return
to the place where the method was called. This place was recorded as the return address
(location 1010) stored in the activation record.

Next, the returned value (1) is multiplied by the value of number in the top activa-
tion record (1) and the result (1) is stored into result (the instance of result in the
top activation record, that is). Now the fourth invocation of the method is complete, and
the value of result in the top activation record is returned from the method. Again the
run-time stack is popped to release the top activation record and a multiplication
occurs, leaving the activation record of the third call to factorial at the top of the
run-time stack.

This process continues until we are back to the first call:

and 6 has just been returned as the value of factorial(number – 1). This value is
multiplied by the value of number in the top activation record (that is, 4) and the result,

Call number result returnAddr

1 4 ? 5200 top

Call number result returnAddr

1 4 ? 5200

2 3 ? 1010

3 2 2 1010 top

Call number result returnAddr

1 4 ? 5200

2 3 ? 1010

3 2 ? 1010

4 1 ? 1010

5 0 ? 1010 top
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24, is stored into the result field of the top activation record. This assignment com-
pletes the execution of the initial call to method factorial. The value of result in
the top activation record (24) is returned to the place of the original call (address 5200),
and the activation record is popped. This leaves the main activation record at the top of
the run-time stack. The final value of result is stored into the variable answer, and
the statement following the original call is executed.

The number of recursive calls is the depth of the
recursion. Notice the relationship between the com-
plexity of the iterative version of factorial in terms
of Big-O notation and the depth of recursion for the
recursive version. Both are based on the parameter
number. Is it a coincidence that the depth of recursion

is the same as the complexity of the iterative version? No. Recursion is another way of
doing repetition, so you would expect that the depth of recursion would be approxi-
mately the same as the number of iterations for the iterative version of the same prob-
lem. In addition, they are both based on the size of the problem.

7.9 Removing Recursion

In cases where a recursive solution is not desired, either because the language doesn’t
support recursion or because the recursive solution is deemed too costly in terms of
space or time, a recursive algorithm can be implemented as a nonrecursive method.
There are two general techniques that are often substituted for recursion: iteration and
stacking.

Iteration

When the recursive call is the last action executed in a recursive method, an interesting
situation occurs. The recursive call causes an activation record to be put on the run-time
stack to contain the method’s arguments and local variables. When this recursive call
finishes executing, the run-time stack is popped and the previous values of the variables
are restored. But, because the recursive call is the last statement in the method, the
method terminates without using these values. The pushing and popping of activation
records is superfluous. All we really need to do is to change the “smaller-caller” vari-
able(s) on the recursive call’s parameter list, and “jump” back to the beginning of the
method. In other words, we really need a loop.

For instance, it is not necessary to use recursion for our array-based Unsorted List
isThere operation, as we did in Section 7.4. However, it is simple to remove the recur-
sion from this method. (Let’s assume we have our recursive solution and want to use it
to generate an iterative solution.) The last statement executed in the general case is the
recursive call to itself. Let’s see how to replace the recursion with a loop. First we revisit
the code for the recursive approach:

Depth of recursion The number of recursive calls
used to complete an original call of a recursive method
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public boolean isThere (Listable item, int startPosition)
// Returns true if item is on this list; otherwise, returns false
{
if (item.compareTo(list[startPosition]) == 0)  // If they match
return true;

else if (startPosition == (numItems – 1))      // If end of list
return false;

else return isThere(item, startPosition + 1);
}

The recursive solution has two base cases; one occurs if we find the value and the
other occurs if we reach the end of the list without finding the value. The base cases
solve the problem without further executions of the method. In the iterative solution,
the base cases become the terminating conditions of the loop:

while (moreToSearch && !found)

When the terminating conditions are met, the problem is solved without further execu-
tions of the loop body.

In the general case of the recursive solution, isThere is called to search the
remaining, unsearched part of the list. Each recursive execution of the method processes
a smaller version of the problem. The smaller-caller question is answered affirmatively
because startPosition is incremented, shrinking the unsearched part of the list on
every recursive call. Similarly, in an iterative solution, each subsequent execution of the
loop body processes a smaller version of the problem. The unsearched part of the list is
shrunk on each execution of the loop body by incrementing location. Here is the iter-
ative version of the method:

public boolean isThere (Listable item)
// Returns true if item is on this list; otherwise, returns false
{
boolean moreToSearch;
int location = 0;
boolean found = false;

moreToSearch = (location < numItems);

while (moreToSearch && !found)
{
if (item.compareTo(list[location]) == 0)  // If they match
found = true;

else
{
location++;
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moreToSearch = (location < numItems);
}

}

return found;
}

Cases in which the recursive call is the last state-
ment executed are called tail recursion. Note that the
recursive call is not necessarily the last statement in
the method. For instance, the recursive call in the fol-
lowing version of isThere is still tail recursion, even
though it is not the last statement in the method:

public boolean isThere(Listable item, int startPosition)
{
if (item.compareTo(list[startPosition]) == 0)  // If they match
return true;

else if (startPosition != (numItems – 1))      // If not end of list
return isThere(item, startPosition + 1);

else return false;
}

The recursive call is the last statement executed in the general case—thus it is tail recur-
sion. Tail recursion is usually replaced by iteration to remove recursion from the solu-
tion. In fact, many compilers catch tail recursion and automatically replace it with
iteration.

Stacking

When the recursive call is not the last action executed in a recursive method, we cannot
simply substitute a loop for the recursion. For instance, consider method revPrint,
developed in Section 7.7 for printing a linked list in reverse order:

private void revPrint(ListNode listRef)
{
if (listRef != null)
{
revPrint(listRef.next);
System.out.println(" " + listRef.info);

}
}

Tail recursion The case in which a method contains
only a single recursive invocation and it is the last
statement to be executed in the method
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RevPrint (iterative)
Create an empty stack of node references.
Set listRef to reference the first node in list
while listRef is not null

Push listRef onto the stack
Advance listRef

while the stack is not empty
Pop the stack to get listRef (to previous node)
Print listRef.info

Here we make the recursive call and then print the value in the current node. In cases
like this, we must replace the stacking that was done by the system with stacking that is
done by the programmer, in order to remove the recursion.

How would we write method revPrint nonrecursively? As we traverse the list, we
must keep track of the reference to each node, until we reach the end of the list (when
our traversing reference equals null). When we reach the end of the list, we print the
info value of the last node. Then we back up and print again, back up and print, and so
on, until we have printed the first list element.

We know of a data structure in which we can store references and retrieve them in
reverse order: the stack. The general task for revPrint becomes:

A nonrecursive revPrint method may be coded as follows. Note that we can now
make revPrint a public method of class SortedLinkedList instead of a helper
method. Because revPrint no longer has a parameter, we don’t have to deal with the
problem of having the client pass the (inaccessible) pointer to the beginning of the
linked list. We use the ArrayStack stack developed in Chapter 4 to hold the stacked
references.

public void revPrint()
// Prints this list in reverse order
{
ArrayStack stack = new ArrayStack();
ListNode listRef;

listRef = list;

while (listRef != null)   // Put references onto the stack
{
stack.push(listRef);
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listRef = listRef.next;
}

// Retrieve references in reverse order and print elements
while (!stack.isEmpty())
{
listRef = (ListNode)stack.top();
stack.pop();
System.out.println(" " + listRef.info);

}
}

Notice that the nonrecursive version of revPrint is quite a bit longer than its recur-
sive counterpart, especially if we add in the code for the stack methods push, pop,
top, and isEmpty. This verbosity is caused by our need to stack and unstack the ref-
erences explicitly. In the recursive version, we just called revPrint recursively and
let the run-time stack keep track of the references. The nonrecursive version of
revPrint appears in our SortedLinkedList2 class in the ch07.genericLists
package.

7.10 Deciding Whether to Use a Recursive Solution

There are several factors to consider in deciding whether or not to use a recursive solu-
tion to a problem. The main issues are the clarity and the efficiency of the solution. Let’s
talk about efficiency first. In general, a recursive solution is more costly in terms of both
computer time and space. (This is not an absolute decree; it really depends on the prob-
lem, the computer, and the compiler.) A recursive solution usually requires more “over-
head” because of the nested recursive method calls, in terms of both time (the method
prologues and epilogues must be run for each recursive call) and space (activation
records must be created). A call to a recursive method may hide many layers of internal
recursive calls. For instance, the call to an iterative solution to factorial involves a
single method invocation, causing one activation record to be put on the run-time
stack. Invoking the recursive version of factorial, however, requires n + 1 method
calls and n + 1 activation records to be pushed onto the run-time stack, where n repre-
sents the parameter number. That is, the depth of recursion is O(n). For some problems,
the system just may not have enough space in the run-time stack to run a recursive
solution.

Another problem to look for is the possibility that a particular recursive solution
might just be inherently inefficient. Such inefficiency is not a reflection of how we
choose to implement the algorithm; rather, it is an indictment of the algorithm itself.
For instance, look back at method combinations, which we discussed in Section
7.5. The example of this method illustrated in Figure 7.3, combinations(4,3),
seems straightforward enough. But consider the execution of combinations(6,4),
as illustrated in Figure 7.8. The inherent problem with this method is that the same
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Figure 7.8 Calculating combinations(6,4)
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values are calculated over and over. combinations(4,3) is calculated in two differ-
ent places, and combinations(3,2) is calculated in three places, as are combina-
tions(2,1) and combinations(2,2). It is unlikely that we could solve a
combinatorial problem of any large size using this method. The problem is that the
program runs “forever”—or until it exhausts the capacity of the computer; it is an
exponential-time, O(2N ) solution to a linear-time, O(N ), problem. Although our
recursive method is very easy to understand, it was not a practical solution. In such
cases, you should seek an alternate solution. A programming approach called
dynamic programming, where solutions to subproblems that are needed repeatedly
are saved in a data structure instead of being recalculated, can often be used. Or
even better, discover an iterative solution, as we did for combinations in the feature
section in Section 7.5.

The issue of the clarity of the solution is still an important factor, however. For
many problems, a recursive solution is simpler and more natural for the programmer to
write. The total amount of work required to solve a problem can be envisioned as an
iceberg. By using recursive programming, the applications programmer may limit his or
her view to the tip of the iceberg. The system takes care of the great bulk of the work
below the surface. Compare, for example, the recursive and nonrecursive versions of
method revPrint. In the recursive version, we let the system take care of the stacking



520 | Chapter 7:  Programming with Recursion

that we had to do explicitly in the nonrecursive method. Thus, recursion is a tool that
can help reduce the complexity of a program by hiding some of the implementation
details. With the cost of computer time and memory decreasing and the cost of a pro-
grammer’s time rising, it is worthwhile to use recursive solutions to such problems.

To summarize, it is good to use recursion when:

• The depth of recursive calls is relatively “shallow,” some fraction of the size of
the problem. For instance, the level of recursive calls in the binarySearch
method is O(log2N ); this is a good candidate for recursion. The depth of recursive
calls in the factorial and isThere methods, however, is O(N ).

• The recursive version does about the same amount of work as the nonrecursive
version. You can compare the Big-O approximations to determine this. For
instance, we have determined that the O(2N ) recursive version of combinations
is a poor use of recursion, compared to an O(N ) iterative version. Both the recur-
sive and iterative versions of binarySearch, however, are O(log2N ). binary-
Search is a good example of a recursive method.

• The recursive version is shorter and simpler than the nonrecursive solution. By
this rule, factorial and isThere are not good uses of recursive programming.
They illustrate how to understand and write recursive methods, but they could
more efficiently be written iteratively—without any loss of clarity in the solu-
tion. revPrint is a better use of recursion. Its recursive solution is very simple
to understand, and the nonrecursive equivalent is much less elegant.

Summary
Recursion is a very powerful computing tool. Used appropriately, it can simplify the
solution of a problem, often resulting in shorter, more easily understood source code. As
usual in computing, there are tradeoffs: Recursive methods are often less efficient in
terms of both time and space, due to the overhead of many levels of method calls. How
expensive this cost is depends on the problem, the computer system, and the compiler.

A recursive solution to a problem must have at least one base case—that is, a case in
which the solution is derived nonrecursively. Without a base case, the method recurses
forever (or at least until the computer runs out of memory). The recursive solution also
has one or more general cases that include recursive calls to the method. The recursive
calls must involve a “smaller caller.” One (or more) of the actual parameter values must
change in each recursive call to redefine the problem to be smaller than it was on the
previous call. Thus, each recursive call leads the solution of the problem toward the base
case(s).

A typical implementation of recursion involves the use of a stack. Each call to a
method generates an activation record to contain its return address, parameters, and
local variables. The activation records are accessed in a Last-In-First-Out manner.
Thus a stack is the choice of data structure. Recursion can be supported by systems
and languages that use dynamic storage allocation. The method parameters and local
variables are not bound to addresses until an activation record is created at run time.
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Classes, Interfaces, and Support Files Defined in Chapter 7

File 1st Ref. Notes

tryFact.java page 483 This class contains the recursive and iterative versions
of factorial

UnsortedStringList3.java page 487 (ch07.stringLists) This class contains the recur-
sive version of isThere

tryComb.java page 490 This class contains the recursive version of combina-
tions

Towers.java page 494 The Towers of Hanoi program

SortedList2.java page 498 (ch07.genericLists) This class contains the recur-
sive version of Binary Search, used to implement the
isThere method

SortedLinkedList2.java page 501 (ch07.genericLists) This class contains both the
recursive and iterative (stack based) versions of Reverse
Print. The recursive version is invoked through print-
Reversed and the iterative version is invoked through
revPrint. The recursive version of insert is also
implemented here.

Thus multiple copies of the intermediate values of recursive calls to the method can
be supported, as new activation records are created for them.

With static storage allocation, in contrast, a single location is reserved at compile
time for each parameter and local variable of a method. There is no place to store inter-
mediate values calculated by repeated nested calls to the same method. Therefore, sys-
tems and languages with only static storage allocation cannot support recursion.

When recursion is not possible or appropriate, a recursive algorithm can be imple-
mented nonrecursively by using a looping structure and, in some cases, by pushing and
popping relevant values onto a stack. This programmer-controlled stack explicitly
replaces the system’s run-time stack. Although such nonrecursive solutions are often
more efficient in terms of time and space, there is usually a tradeoff in terms of the ele-
gance of the solution.

Summary of Classes and Support Files
The classes and files are listed in the order in which they appear in the text. The pack-
age a class belongs to, if any, is listed in parentheses under Notes. The class and sup-
port files are available on our web site. They can be found in the ch07 subdirectory of
the bookFiles directory.

There were no new library classes used in this chapter.
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Exercises
The exercises for this chapter are divided into three units: Basics (Sections 1, 2, 3),
Examples (Sections 4, 5, 6, 7), and Advanced (Sections 8, 9, 10).

Basics (Sections 1, 2, 3)
1. Explain what is meant by

a. base case.

b. general (or recursive) case.

c. indirect recursion.

2. Use the Three-Question Method to verify the isThere method in this chapter.

3. Describe the Three-Question Method of verifying recursive methods in relation to
an inductive proof.

Examples (Sections 4, 5, 6, 7)
Use the following method in answering Exercises 4 and 5:

int puzzle(int base, int limit)

{
if (base > limit)
return –1;

else
if (base == limit)
return 1;

else
return base * puzzle(base + 1, limit);

}

4. Identify

a. the base case(s) of method puzzle.

b. the general case(s) of method puzzle.

5. Show what would be written by the following calls to the recursive method puzzle.

a. System.out.println(puzzle (14, 10));

b. System.out.println(puzzle (4, 7));

c. System.out.println(puzzle (0, 0));

6. Given the following method:

int exer(int num)
{
if (num == 0)
return 0;

else
return num + exer(num + 1);

}
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a. Is there a constraint on the values that can be passed as a parameter in order
for this method to pass the smaller-caller test?

b. Is exer(7) a good call? If so, what is returned from the method?

c. Is exer(0) a good call? If so, what is returned from the method?

d. Is exer(–5) a good call? If so, what is returned from the method?

7. For each of the following recursive methods, identify the base and general cases
and the legal initial argument values, and explain what the method does.

a. int power(int base, int exponent)
{
if (exponent == 0)
return 1;

else
return (base * power(base, exponent–1));

}

b. int factorial (int num)
{
if (num > 0)
return (num * factorial (num – 1));

else
if (num == 0)
return 1;

}

c. int recur(int n)
{
if (n < 0)
return –1;

else if (n < 10)
return 1;

else
return (1 + recur(n / 10);

}

d. int recur2(int n)
{
if (n < 0)

return –1;
else if (n < 10)

return n;
else

return (n % 10) + recur2(n / 10);
}

8. You must assign the grades for a programming class. Right now the class is
studying recursion, and they have been given this simple assignment: Write a
recursive method sumSquares that takes a reference to a linked list of integer
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elements and returns the sum of the squares of the elements. The list nodes
contain an info variable of primitive type int, and a next reference of type
ListNode.

Example:

sumSquares(list) yields (5 * 5) + (2 * 2) + (3 * 3) + (1 * 1) = 39

Assume that the list is not empty.
You have received quite a variety of solutions. Grade the methods below,

marking errors where you see them.

a. int sumSquares(ListNode list)
{
return 0;
if (list != null)
return (list.info * list.info) + sumSquares(list.next));

}
b. int sumSquares(ListNode list)

{
int sum = 0;
while (list != null)
{
sum = list.info + sum;
list = list.next;

}
return sum;

}
c. int sumSquares(ListNode list)

{
if (list == null)
return 0;

else
return list.info * list.info + sumSquares(list.next);

}
d. int sumSquares(ListNode list)

{
if (list.next == null)
return list.info * list.info;

else
return list.info * list.info + sumSquares(list.next);

}

5 2 13list ••••
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e. int sumSquares(ListNode list)
{
if (list == null)
return 0;

else
return (sumSquares(list.next) *

sumSquares(list.next));
}

9. The Fibonacci sequence is the series of integers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .

See the pattern? Each element in the series is the sum of the preceding two items.
There is a recursive formula for calculating the nth number of the sequence:

a. Write a recursive method fibonacci that returns the nth Fibonacci number
when passed the argument n.

b. Write a nonrecursive version of method fibonacci.

c. Write a driver to test your two versions of method fibonacci.

d. Compare the recursive and iterative versions for efficiency. (Use words, not
Big-O notation.)

e. Can you think of a way to make the recursive version more efficient?

10. The following defines a function that calculates an approximation of the square
root of a number, starting with an approximate answer (approx), within the speci-
fied tolerance (tol).

a. What limitations must be made on the values of the parameters if this func-
tion is to work correctly?

b. Write a recursive method sqrRoot that implements the function SqrRoot.

c. Write a nonrecursive version of method sqrRoot.

d. Write a driver to test the recursive and iterative versions of method sqrRoot.

SqrRoot(number, approx, tol)=
   approx, if | approx2 � number | <=tol
    
   SqrRoot(number, (approx2 + number)/(2*approx), tol), if | approx2 � number | >tol

Fib
if  or 

Fib Fib if 
N

N N
N N N

( ) =
=
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2One of our reviewers pointed out that the proof of termination of this algorithm is a celebrated
open question in mathematics. See Programming Pearls by Jon Bently for a discussion and further
references.

11. Given the following method2:

int ulam(int num)
{
if (num < 2)
return 1;

else
if (num % 2 == 0)
return ulam(num / 2);

else
return ulam (3 * num + 1);

}

a. What problems come up in verifying this method?

b. How many recursive calls are made by the following initial calls:

• ulam (7)

• ulam (8)

• ulam (15)

12. In Section 7.7 we implement a recursive version of the list insert operation, for
sorted linked lists. Using that as a model, design and implement a recursive ver-
sion of the list delete operation, for sorted linked lists. Note that the code for our
recursive insert method is included in the SortedLinkedList2 class.

13. Using the recursive method revPrint as a model, write the recursive method
printList, which traverses the elements in a linked list in forward order. Does
one of these methods constitute a better use of recursion? If so, which one?

14. The recursive method revPrint prints the elements of a linked list in reverse
order. It was written as a private method of the SortedLinkedList2 class,
which is called from the public method printReversed. A client program can
print a list in reverse order by calling printReversed. Suppose the linked list
class did not export a Print Reverse operation. Design a recursive client level
method clientRevPrint, using the public list iteration methods, to print a
linked list in reverse order.

15. We want to count the number of possible paths to move from row 1, column 1
to row N, column N in a two-dimensional grid. Steps are restricted to going up
or to the right, but not diagonally. The illustration shows three of many paths, if
N = 10:
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a. The following method, numPaths, is supposed to count the number of paths,
but it has some problems. Debug the method.

int numPaths(int row, int col, int n)
{
if (row == n)
return 1;

else
if (col == n)
return (numPaths + 1);

else
return (numPaths(row + 1, col) * numPaths(row, col + 1))

}

b. After you have corrected the method, trace the execution of numPaths with 
n = 4 by hand. Why is this algorithm inefficient?

c. The efficiency of this operation can be improved by keeping intermediate
values of numPaths in a two-dimensional array of integer values. This
approach keeps the method from having to recalculate values that it has
already done. Design and code a version of numPaths that uses this
approach.

d. Show an invocation of the version of numPaths in part (c), including any
array initialization necessary.

e. How do the two versions of numPaths compare in terms of time efficiency?
Space efficiency?
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Advanced (Sections 8, 9, 10)
16. Explain what is meant by:

a. run-time stack.

b. binding time.

c. tail recursion.

17. True or False? Explain your answers. Recursive methods:

a. often have fewer local variables than the equivalent nonrecursive methods.

b. generally use while or for statements as their main control structure.

c. are possible only in languages with static storage allocation.

d. should be used whenever execution speed is critical.

e. are always shorter and clearer than the equivalent nonrecursive methods.

f. must always contain a path that does not contain a recursive call.

g. are always less efficient, in terms of Big-O.

18. What data structure would you most likely see in a nonrecursive implementation
of a recursive algorithm?

19. Explain the relationship between dynamic storage allocation and recursion.

20. What do we mean by binding time, and what does it have to do with recursion?

21. Given the following values in list,

show the contents of the run-time stack during the execution of this call to
binarySearch:

binarySearch(99, 0, 9);

22. True or False? Explain your answers. A recursive solution should be used when:

a. computing time is critical.

b. the nonrecursive solution would be longer and more difficult to write.

c. computing space is critical.

d. your instructor says to use recursion.

2
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Measurable goals for this chapter include that you should be able to

define and use the following tree terminology:

binary tree descendant

binary search tree level

root height

parent subtree

child full

ancestor complete

given a binary tree, identify the order the nodes would be visited for preorder, inorder, and pos-
torder traversals

define a binary search tree at the logical level

show what a binary search tree would look like after a series of insertions and deletions

implement the following binary search tree algorithms in Java:

finding an element deleting an element

counting the number of nodes retrieving an element

inserting an element traversing a tree in preorder, inorder, and postorder

discuss the Big-O efficiency of a given binary search tree operation

describe an algorithm for balancing a binary search tree

show how a binary tree can be represented as an array, with implicit positional links between the
elements

Binary Search Trees

G
oals
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We have described some of the advantages of using a linear linked list to store sorted
information. One of the drawbacks of using a linear linked list is the time it takes to
search a long list. A sequential or linear search of (possibly) all the nodes in the whole
list is a O(N ) operation. In Chapter 3, we saw how a binary search could find an element
in a sorted list stored sequentially in an array. The binary search is a O(log2N ) opera-
tion. It would be nice if we could use a binary search with a linked list, but there is no
practical way to find the midpoint of a linked list of nodes. We can, however, reorgan-
ize the list’s elements into a linked structure that is just perfect for binary searching: the
binary search tree. The binary search tree provides us with a data structure that retains
the flexibility of a linked list while allowing quicker [O(log2N ) in the average case]
access to any node in the list.

This chapter introduces some basic tree vocabulary and then develops the algo-
rithms and implementations of the operations needed to use a binary search tree. The
case study uses a binary search tree to calculate the frequency of words in a text file.

8.1 Trees

Each node in a singly linked list may point to one other node: the one that follows it.
Thus, a singly linked list is a linear structure; each node in the list (except the last) has a

unique successor. A tree is a nonlinear structure in
which each node is capable of having many successor
nodes, called children. Each of the children, being
nodes in a tree, can also have many child nodes, and
these children can also have many children, and so
on, giving the tree its branching structure. The “begin-
ning” of the tree is a unique starting node called the
root. Trees are useful for representing hierarchical
relationships among data items. Figure 8.1 shows
three example trees; the first represents the chapters,

sections, and subsections of this textbook, the second represents the hierarchical inheri-
tance relationship among a set of Java classes, and the third represents a scientific clas-
sification of butterflies.

Trees are recursive structures. You can view any tree node as being the root of its
own tree; such a tree is called a subtree of the original tree. For example, in Figure
8.1(a) the node labeled Chapter 1 is the root of a subtree containing all of the Chapter 1
material. There is one more defining quality of a tree: Its subtrees are disjoint; that is,
they do not share any nodes. Another way of expressing this property is to say that
there is a unique path from the root of a tree to any other node of the tree. This means
that every node (except the root) has a unique parent. In the structure at the top of page
532, this rule is violated any way you look at it: the subtrees of A are not disjoint; there
are two paths from the root to the node containing D; D has two parents. Therefore, this
structure is not a tree.

Tree A structure with a unique starting node (the
root), in which each node is capable of having many
child nodes, and in which a unique path exists from the
root to every other node

Root The top node of a tree structure; a node with no
parent
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Figure 8.1 Trees model hierarchical relationships

(a)  A textbook

Data Structures in Java
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Data Design and 
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4  .  .  .

.  .  .

etc etc

etc etc etc
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1.1 Program
Design

1.2 Verification of
Software Correctness

1.3

2. 3.

(c)  Scientific classification of butterflies and moths

Butterflies/Moths
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etc

etc

Hesperiidae
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(b)  Java classes

Object

Boolean AbstractCollection  .  .  .

etc

AbstractList AbstractSet

Byte

AbstractSequentialList ArrayList Vector

Linked List Stack
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Trees are useful structures. In this chapter, we concentrate on a particular form of
tree: the binary tree. In fact, we concentrate on a particular type of binary tree: the
binary search tree.

Binary Trees

A binary tree is a tree where each node is capable of having two children. Figure 8.2
depicts a binary tree. The root node of this binary tree contains the value A. Each node

in the tree may have 0, 1, or 2 children. The node to
the left of a node, if it exists, is called its left child. For
instance, the left child of the root node contains the
value B. The node to the right of a node, if it exists, is
its right child. The right child of the root node con-
tains the value C. The root node is the parent of the
nodes containing B and C. If a node in the tree has no
children, it is called a leaf. For instance, the nodes

containing G, H, E, I, and J are leaf nodes.
Note, in Figure 8.2, that each of the root node’s children is itself the root of a

smaller binary tree, or subtree. The root node’s left child, containing B, is the root of its
left subtree, while the right child, containing C, is the root of its right subtree. In fact,
any node in the tree can be considered the root node of a binary subtree. The subtree
whose root node has the value B also includes the nodes with values D, G, H, and E.
These nodes are the descendants of the node containing B. The descendants of the node
containing C are the nodes with the values F, I, and J. The leaf nodes have no descen-
dants. A node is the ancestor of another node if it is the parent of the node, or the par-
ent of some other ancestor of that node. (Yes, this is a recursive definition.) The
ancestors of the node with the value G are the nodes containing D, B, and A. Obviously,
the root of the tree is the ancestor of every other node in the tree, but the root node has
no ancestors itself.

The level of a node refers to its distance from the root. Therefore, in Figure 8.2 the
level of the node containing A (the root node) is 0 (zero), the level of the nodes contain-

A

B

DC

•notTree

Binary tree A tree in which each node is capable of
having two child nodes, a left child node and a right
child node

Leaf A tree node that has no children
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Figure 8.2 A binary tree
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•

Level 0

Level 1

Level 2

Level 3

tree

ing B and C is 1, the level of the nodes containing D, E, and F is 2, and the level of the
nodes containing G, H, I, and J is 3.

The maximum level in a tree determines its height. The maximum number of nodes
at any level N is 2N. Often, however, levels do not contain the maximum number of
nodes. For instance, in Figure 8.2, Level 2 could contain four nodes, but because the
node containing C in Level 1 has only one child, Level 2 contains only three nodes.
Level 3, which could contain eight nodes, has only four. We could make many differ-
ently shaped binary trees out of the ten nodes in this tree. A few variations are illus-
trated in Figure 8.3. It is easy to see that the maximum number of levels in a binary tree
with N nodes is N (counting Level 0 as one of the levels). What is the minimum number
of levels? If we fill the tree by giving every node in each level two children until we run
out of nodes, the tree has log2N + 1 levels (Figure 8.3a). Demonstrate this to yourself by
drawing “full” trees with 8 [log2 (8) = 3] and 16 [log2 (16) = 4] nodes. What if there are
7, 12, or 18 nodes?

The height of a tree is the critical factor in determining how efficiently we can
search for elements. Consider the maximum-height tree in Figure 8.3(c). If we begin
searching at the root node and follow the references from one node to the next,
accessing the node with the value J (the farthest from the root) is a O(N ) operation—
no better than searching a linear list! On the other hand, given the minimum-height
tree depicted in Figure 8.3(a), to access the node containing J, we only have to look
at three other nodes—the ones containing E, A, and G—before we find J. Thus, if the
tree is of minimum height, its structure supports O(log2N ) access to any element.

However, the arrangement of the values in the tree pictured in Figure 8.3(a) does
not lend itself to quick searching. Let’s say that we want to find the value G. We begin
searching at the root of the tree. This node contains E, not G, so we need to keep
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Figure 8.3 Binary trees

E A

A

B G

F B C

D I

HC J

D

F

H I

E

G

•

A

E

F

G

H

I

J

B

C

D

••tree

(a) A 4-level tree (b) A 5-level tree (c) A 10-level tree

tree tree

searching. But which of its children should we look at next, the right or the left? There
is no special order to the nodes, so we have to check both subtrees. We could search the
tree, level by level, until we come across the value we are searching for. But that is a
O(N ) search operation, which is no better than searching a linked list!

Binary Search Trees

To support O(log2N ) searching, we add a special property based on the relationship
among the keys of the items in the binary tree. We put all the nodes with values smaller
than the value in the root into its left subtree, and all the nodes with values larger than
the value in the root into its right subtree. Figure 8.4 shows the nodes from Figure 8.3(a)
rearranged to satisfy this property. The root node, which contains E, references two sub-
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trees. The left subtree contains all the values smaller than E and the right subtree con-
tains all the values larger than E.

Searching for the value G, we look first in the root node. G is larger than E, so we
know that G must be in the root node’s right subtree. The right child of the root node
contains H. Now what? Do we go to the right or to the left? This subtree is also
arranged according to the binary search property: The nodes with smaller values are to
the left and the nodes with larger values are to the right. The value of this node, H, is
greater than G, so we search to its left. The left child of this node contains the value F,
which is smaller than G, so we reapply the rule and move to the right. The node to the
right contains G; we have found the node we were searching for.

A binary tree with this special property is
called a binary search tree. Like any binary
tree, it gets its branching structure by allow-
ing each node to have up to two child nodes.
It gets its easy-to-search structure by main-
taining the binary search property: The left
child of any node (if there is one) is the root
of a subtree that contains only values smaller

Figure 8.4 A binary tree
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(Left
subtree)

(Right
subtree)

(Root node)

All values in the left subtree
are less than the value in the
root node.

All values in the right subtree
are greater than the value in the
root node.

Binary search tree A binary tree in which the key
value in any node is greater than the key value in its left
child and any of its descendants (the nodes in the left
subtree) and less than the key value in its right child and
any of its descendants (the nodes in the right subtree)
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1When we say “visit,” we mean that the algorithm does whatever it needs to do with the values in the node:
print them, sum certain values, or delete them, for example. For this section we assume that a visit means to
print out the value of the node.

than the node. The right child of any node (if there is one) is the root of a subtree that
contains only values that are larger than the node.

Four comparisons instead of up to ten doesn’t sound like such a big deal, but as
the number of elements in the structure increases, the difference becomes impressive.
In the worst case—searching for the last node in a linear linked list—you must look at
every node in the list; on the average you must search half the list. If the list contains
1,000 nodes, you must make 1,000 comparisons to find the last node! If the 1,000
nodes were arranged in a binary search tree of minimum height, you would never
make more than 10 comparisons (log2(1000) < 10), no matter which node you were
seeking!

Binary Tree Traversals

To traverse a linear linked list, we set a temporary reference equal to the start of the list
and then follow the list references from one node to the other until we reach a node
whose reference value is null. Similarly, to traverse a binary tree, we initialize our ref-
erence to the root of the tree. But where do we go from there—to the left or to the right?
Do we visit1 the root or the leaves first? The answer is “all of these.” There are only two
standard ways to traverse a list: forward and backward. There are many ways to tra-
verse a tree. We define three common ones in this subsection.

Our traversal definitions depend upon the relative
order in which we visit a root and its subtrees. We
define three possibilities here:

• Preorder traversal: Visit the root, visit the left sub-
tree, visit the right subtree

• Inorder traversal: Visit the left subtree, visit the
root, visit the right subtree

• Postorder traversal: Visit the left subtree, visit the
right subtree, visit the root

Notice that the name given to each traversal specifies
where the root itself is processed in relation to its sub-
trees. Also note that these are recursive definitions.

We can visualize each of these traversal orders by
drawing a “loop” around a binary tree as in Figure
8.5. Before drawing the loop, extend the nodes of the

tree that have less than two children with short lines so that every node has two
“edges.” Then draw the loop from the root of the tree, down the left subtree, and back
up again, hugging the shape of the tree as you go. Each node of the tree is “touched”
three times by the loop (the touches are numbered in the figure): once on the way down

Preorder traversal A systematic way of visiting all
the nodes in a binary tree by visiting a node, then visit-
ing the nodes in the left subtree of the node, and then
visiting the nodes in the right subtree of the node

Inorder traversal A systematic way of visiting all the
nodes in a binary tree by visiting the nodes in the left
subtree of a node, then visiting the node, and then vis-
iting the nodes in the right subtree of the node

Postorder traversal A systematic way of visiting all
the nodes in a binary tree by visiting the nodes in the
left subtree of a node, then visiting the nodes in the
right subtree of the node, and then visiting the node
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before the left subtree is reached, once after finishing the left subtree but before starting
the right subtree, and once on the way up, after finishing the right subtree. To generate
a preorder traversal, follow the loop and visit each node the first time it is touched
(before visiting the left subtree). To generate an inorder traversal, follow the loop and
visit each node the second time it is touched (in between visiting the two subtrees). To
generate a postorder traversal, follow the loop and visit each node the third time it is
touched (after visiting the right subtree). Use this method on the tree in Figure 8.6 and
see if you agree with the listed traversal orders.

You may have noticed that an inorder traversal of a binary search tree visits the
nodes in order from the smallest to the largest. Obviously, this would be useful when we

Figure 8.5 Visualizing binary tree traversals
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Figure 8.6 Three binary tree traversals.
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need to access the elements in ascending key order; for example, to print a sorted list of
the elements. There are also useful applications of the other traversal orders. For exam-
ple, the preorder and postorder traversals can be used to translate infix arithmetic
expressions into their prefix and postfix counterparts.

8.2 The Logical Level

In this section, we specify our Binary Search Tree ADT. As we have done for lists,
stacks, and queues, we use the Java interface construct to specify our ADT. However,
before proceeding with the specification, we have to decide what kinds of elements we
are going to store on our trees.

The Comparable Interface

In order to define public operations on binary search trees, we must know what kinds of
elements make up the trees. Remember that these elements are parameters to many of
our operations. For example, we cannot specify a tree insert operation without includ-
ing the type of the element being inserted. Let’s review some of our previous ADTs and
the types of elements used with them:

• In Chapter 3 we started with an Unsorted List ADT that used strings as elements.
We needed to be able to copy list elements, since we stored the elements “by
copy.” We needed to be able to compare list elements; for example, to support
the isThere operation. Since we already were able to copy and compare strings,
we could use them without any special specifications.
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• Later in Chapter 3 we decided to implement a list of more generic elements.
However, we still needed to copy and compare our list elements. Therefore, we
created the Listable interface, consisting of the abstract methods compareTo
and copy, and insisted that our list elements implement the Listable interface.
We had lists of Listable elements.

• In Chapter 4 we defined and implemented Stack and Queue ADTs. We imple-
mented these structures “by reference” rather than “by copy,” eliminating the
need for elements that support the copy operation. Additionally, since we never
search stacks or queues for elements based on a key, we did not need our ele-
ments to support a compare operation. So, we simply defined and implemented
our stacks and queues to work directly with Java objects (of class object).

What about trees? As we did for stacks and queues, we implement our trees “by ref-
erence.” Recall that this means that a client who uses our tree ADT must be careful not
to change the key value of a tree node after it has been inserted into the tree. If a client
does, the structure of the tree could be corrupted.

Our decision to use the “by reference” approach means we do not need our tree ele-
ments to support a copy operation. How about the compare operation? If we are going
to use trees in ways similar to the way we use lists, as implied in the introduction to this
chapter, we certainly need to support the comparison of tree elements. Besides, if we are
building binary search trees, we need to compare the current tree elements to the ele-
ments we are inserting in order to determine insertion locations that are consistent with
the tree’s binary search property.

So, we do not need elements to support a copy operation, but we do need them to
support comparison. As we did for lists, when we defined the Listable interface, we
could define our own interface (Treeable?!) that consists of just the abstract method
compareTo, and insist that our tree elements implement this interface. However, we do
not need to do that. The Java library already provides such an interface. It is called the
Comparable interface. It consists of exactly one abstract method:

public int compareTo(Object o);
// Returns a negative integer, zero, or a positive integer as this object
//  is less than, equal to, or greater than the parameter object

This definition is consistent with the way we have been using compareTo through-
out the textbook. In fact, you may recall that in Chapter 3, when we first defined com-
pareTo, we stated, “we follow the Java convention used in the String class by naming
the method compareTo and by having it return integer values to indicate the result of
the comparison.” In actuality, the definition of compareTo in Java’s String class is
based on the compareTo specification in the Comparable interface. The String class is
just one of many Java classes that implement the Comparable interface, and therefore
provide a concrete implementation of its abstract method. This highlights one of the
benefits of using a predefined interface for our tree elements—our trees are able to store
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any class that already implements the Comparable interface. For example, our trees are
able to store String and Integer objects.

The Binary Search Tree Specification

Our binary search tree specification is very similar to our sorted list specification. This is
not surprising, since both are typically used to store and retrieve sorted data. We now
know that our binary search trees hold Comparable elements and store references to
the elements, rather than copies of the elements. Are there other decisions to make
before we can formally specify our ADT?

First, we must decide if duplicate elements are allowed in our trees. In one sense, we
have already made this decision. Our definition of a binary search tree precludes duplicate
elements. Do you see why? If two identical elements are in different subtrees, then the
root of the subtrees could not possibly be greater than one of the elements and less than
the other. Therefore, they must be in the same subtree. However, that means that one of
them must be a descendant of the other. The definition of a binary search tree does not
allow the key value of a node to be equal to the key value of one of its descendants.
Therefore, they cannot be in the same subtree. Clearly, this is an impossible situation.

Of course, we could change the definition of binary search tree to state that the key
value of a node is greater than “or equal to” the key values of the nodes in its left sub-
tree. But there is no need to do this; instead, we do assume that our trees consist of
unique elements. This is consistent with our list approach.

We also follow the conventions established with our list approach in terms of oper-
ation preconditions. For example, we assume that when the retrieve operation is
invoked that an element in the tree has a key value that matches the key value of the
parameter item. As with lists, alternative approaches are possible, and in some cases
preferable. But we want to concentrate here on the tree operations themselves.

In the previous section we defined three binary tree traversals. Which one should we
use to iterate through our tree? Why not support all three? We define the reset and
getNextItem operations with a parameter that indicates which of the three traversals to
use. As we did with our Specialized List in Chapter 6, we allow more than one traversal
to be in progress at a time. Within our interface definition we define the three constants:

public static final int INORDER = 1;
public static final int PREORDER = 2;
public static final int POSTORDER = 3;

for use as parameters to reset and getNextItem. These constants are available to any
class that implements the interface. Their use is demonstrated in the next section.

We make one other modification to the definition of the reset operation, as com-
pared to the reset operation for lists. The Binary Search Tree reset method, in addi-
tion to setting up an iteration, returns the current number of nodes in the tree. We
explain the reason for this change in the subsection that discusses the implementation
of the iteration methods.
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Here is the specification of our Binary Search Tree ADT.

//----------------------------------------------------------------------------
// BSTInterface.java            by Dale/Joyce/Weems                  Chapter 8
// 
// Interface for a class that implements a Binary Search Tree of unique 
//  elements, i.e., no duplicate elements as defined by the key of the tree 
//  elements
//----------------------------------------------------------------------------

package ch08.trees;

public interface BSTInterface
{
// Used to specify traversal order
public static final int INORDER = 1;
public static final int PREORDER = 2;
public static final int POSTORDER = 3;

public boolean isEmpty();
// Effect:         Determines whether this BST is empty
// Postcondition:  Return value = (this BST is empty)

public boolean isFull();
// Effect:         Determines whether this BST is full
// Postcondition:  Return value = (this BST is full)

public int numberOfNodes();
// Effect:         Determines the number of nodes in this BST
// Postcondition:  Return value = number of nodes in this BST

public Comparable isThere (Comparable item);
// Effect:         Determines whether element matching item is in this BST
// Postcondition:  Return value = (element with the same key as item is in 
//                 this BST)

public Comparable retrieve(Comparable item);
// Effect:         Returns the BST element with the same key as item
// Precondition:   An element with the same key as item is in this BST
// Postcondition:  Return value = (reference to BST element that matches 
//                 item)

public void insert (Comparable item);
// Effect:         Adds item to this BST
// Preconditions:  This BST is not full
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//                 Element matching item is not in this BST
// Postcondition:  Item is in this BST

public void delete (Comparable item);
// Effect:         Delete the element of this BST whose key matches item's 
//                 key
// Precondition:   Exactly one element in this BST has a key matching item's 
//                 key
// Postcondition:  No element has a key matching the argument item's key

public int reset(int orderType);
// Effect:         Initializes current position for an iteration through this 
//                 BST
//                 in orderType order
// Postconditions: Current position is first element for the orderType order
//                 Returns current number of nodes in the tree

public Comparable getNextItem (int orderType);
// Effect:         Returns a copy of the element at the current position in 
//                 this BST and advances the value of the current position 
//                 based on the orderType
// Preconditions:  Current position for this orderType is defined
//                 There exists a BST element at current position
//                 No BST transformers were called since most recent call to 
//                 reset
// Postcondition:  Return value = (a copy of element at current position)

}

8.3 The Application Level

As we have already pointed out, our Binary Search Tree ADT is very similar to our Sorted
List ADT. A comparison of the BSTInterface listed in the previous section to the
ListInterface presented in Section 4.1 only reveals a few minor changes. Instead of a
length operation, we have a numberOfNodes operation. (The number of nodes in a tree
is analogous to the length of a list.) In addition, we support three iteration paths through
the tree rather than just one, as we do with the list. The biggest difference between our
lists and our trees is that our lists use copies of the client’s information, whereas our trees
use references to the client’s information. This difference is a problem only if the client
updates information related to an item’s key after inserting an item into the structure.

Another important difference between our sorted lists and our binary search trees is
in the efficiency of some of the operations; we highlight these differences later in this
chapter. The similarity between our ADTs means that we can use the binary search tree
in many of the same applications where we use lists.
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For example, we used the Sorted List ADT in the Real Estate program for the Chap-
ter 3 case study. In place of the SortedList class we could use a class that implements
the BSTInterface. For the Real Estate program, the differences between storing copies
of elements and references to elements do not affect anything. The application does not
support a “change house information” operation. The only way for the user to change
the information about a house is to delete the house from the list and then reinsert it
with the new information in place. This works equally well whether the information is
stored by copy or by reference. Of course, at those places in the program where the list
iterator is used, the appropriate tree iterator would have to be chosen.

We look next at an example of how a client performs tree iteration.

A printTree Operation

As with our lists, we have not included a print operation for our binary search trees.
And the reason is the same. We don’t include it because to write a good print routine,
we must know what the elements represent. The application programmer (who does
know what the elements represent) can use the reset and getNextItem operations to
iterate through the tree, printing each element in a form that makes sense within the
application. In the code that follows, we assume our tree elements are strings and the
desired form of output is a simple numbered list of elements. We use the inorder tra-
versal, so the values are printed from smallest to largest. Finally, we assume that the
class BinarySearchTree implements the BSTInterface.

void printTree(PrintWriter outFile, BinarySearchTree tree)
// Effect:         Prints contents of tree to outFile
// Preconditions:  Tree has been instantiated
//                 OutFile is open for writing
// Postconditions: Each component in tree has been written to outFile
//                 OutFile is still open
{
String theString;
int treeSize;
treeSize = tree.reset(BinarySearchTree.INORDER);
outFile.println("The tree elements in Inorder order are:");
for (int count = 1; count <= treeSize; count++)
{
theString = (String) tree.getNextItem(BinarySearchTree.INORDER);
outFile.println(count + ". " + theString);

}
}

Note the use of the constant INORDER as a parameter to the reset and getNextItem
methods. It is defined in the BSTInterface interface. We access the constant through
the BinarySearchTree class, which implements the interface. Also note how we
make use of the new functionality of the reset operation; it tells us the number of
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Figure 8.7 Node terminology for a binary tree node
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nodes in the tree and we use that value to control the number of iterations through
the for loop.

8.4 The Implementation Level—Declarations and Simple Operations

We represent a tree as a linked structure whose nodes are allocated dynamically. Before we
go on, we need to decide just what a node in the tree is going to look like. In our discussion
of binary trees, we talked about right and left children. These are the structural references in
the tree; they hold the tree together. We also need a place to store the user’s data in the
node. We might as well continue to call it info. Figure 8.7 shows a picture of a node.

Here is the definition of BSTNode that corresponds to the picture in Figure 8.7:

protected class BSTNode
{
// Used to hold references to BST nodes for the linked implementation
protected Comparable info;       // The info in a BST node
protected BSTNode left;          // A link to the left child node
protected BSTNode right;         // A link to the right child node

}

Notice the type of information held by a tree node: Comparable. Our trees can hold any
kind of object, as long as it is of a class that implements Comparable.

We declare BSTNode as an inner class of our Binary Search Tree implementation. In
this way, it is available to all of the methods of the implementation, but it is hidden
from the client programmer, as it should be.

We call our implementation class BinarySearchTree. It implements the BSTIn-
terface. The instance variable root references the root node of the tree. It is set to
null by the constructor. The beginning of the class definition looks like this:

//----------------------------------------------------------------------------
// BinarySearchTree.java          by Dale/Joyce/Weems                Chapter 8
// 
// Defines all constructs for a reference-based BST
//----------------------------------------------------------------------------
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package ch08.trees;

import ch04.queues.*;
import ch05.stacks.*;
public class BinarySearchTree implements BSTInterface
{
protected class BSTNode
{
// Used to hold references to BST nodes for the linked implementation
protected Comparable info;       // The info in a BST node
protected BSTNode left;          // A link to the left child node
protected BSTNode right;         // A link to the right child node

}

protected BSTNode root;            // Reference to the root of this BST

public BinarySearchTree()
// Creates an empty BST object
{
root = null;

}
. . .

}

Next let’s look at the simple observer methods isFull and isEmpty. As we did for
our dynamically allocated lists, stacks, and queues, we implement isFull to always
return false. We include isFull in the BSTInterface, because an implementation
that depends upon static allocation of node space may become full. However, with the
dynamic allocation approach we use here, our tree is not full unless we completely run
out of memory. In that case, the Java system throws an exception anyway. So we ignore
the possibility and assume that our tree is never full.

public boolean isFull()
// Determines whether this BST is full
{
return false;

}

The isEmpty operation is different from its list counterpart. We are not keeping a
running count of the number of nodes. Therefore, we cannot simply check an instance
variable for the current number of nodes for this operation. We could use the
numberOfNodes method—if it returns a 0, isEmpty returns true; otherwise, it returns
false. But the numberOfNodes method has to count the nodes on the tree each time it
is called. This takes at least O(N ) steps, where N is the number of nodes. Is there a
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cheaper way to see if the list is empty? Yes, just see whether the root of the tree is cur-
rently null. This only takes O(1) steps.

public boolean isEmpty()
// Determines whether this BST is empty
{
return (root == null);

}

We next look at methods that are more complicated. We start with the numberOf-
Nodes method and use it to investigate the differences between iterative and recursive
approaches.

8.5 Iterative Versus Recursive Method Implementations

Binary search trees provide a good chance to compare iterative and recursive
approaches to a problem. Notice that trees are inherently recursive. Any node in a tree
can be considered the root of a subtree. We even use recursive definitions when talking
about properties of trees; for example: “a node is the ancestor of another node if it is the
parent of the node, or the parent of some other ancestor of that node.” And, of course,
the formal definition of a binary tree node, embodied in the class BSTNode, is itself
recursive. So it seems probable that recursive solutions work well when dealing with
trees. In this section we address that hypothesis.

First, we develop recursive and iterative implementations of the numberOfNodes
method. Of course, the method could be implemented by maintaining a running count
of tree nodes (incrementing it for every insert and decrementing it for every delete).
We used that approach for lists. The alternate approach of counting the nodes each time
the number is needed is also viable, and we use it here.

After we look at the two implementations of the numberOfNodes method, we dis-
cuss the benefits of recursion versus iteration for this problem.

Recursive numberOfNodes

As was the case with the recursive linked list methods we developed in Chapter 7, we
must use a public method to access the Number of Nodes operation, and a private recur-
sive method to do all the work. The recursive method requires a reference to a tree node
as a parameter; since tree nodes are hidden from the client, the client cannot directly
invoke the recursive method. Thus the use of the public/private pattern.

The public method, numberOfNodes, calls the private recursive method, recNum-
berOfNodes and passes it a reference to the root of the tree. We design the recursive
method to return the number of nodes in the subtree referenced by the argument passed
to it. Therefore, it returns the number of nodes in the entire tree to the numberOfNodes
method, which in turn returns it to the client program. The code for numberOfNodes is,
of course, very simple:
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recNumberOfNodes(tree): returns int Version 1
if (tree.left( ) is null) AND (tree.right( ) is null)

return 1
else

return recNumberOfNodes(tree.left( )) + recNumberOfNodes(tree.right( )) + 1

public int numberOfNodes()
// Determines the number of nodes in this BST
{
return recNumberOfNodes(root);

}

Remember for function Factorial we said that we could determine the factorial of N
if we knew the factorial of N � 1. The analogous statement here is that we can deter-
mine the number of nodes in the tree if we know the number of nodes in its left subtree
and the number of nodes in its right subtree. That is, the number of nodes in a tree is:

number of nodes in left subtree + number of nodes in right subtree + 1

This is easy. Given a method recNumberOfNodes and a reference to a tree node,
we know how to calculate the number of nodes in a subtree: We call recNumberOfN-
odes recursively with the reference to the subtree as the argument. Thus we know how
to write the general case. What about the base case? Well, a leaf node has no subtrees,
so the number of nodes is 1. How do we determine that a node has no subtrees? The ref-
erences to its children are null. Let’s try summarizing these observations into an algo-
rithm, where tree is a reference to a node.

Let’s try this algorithm on a couple of examples to be sure that it works (see Figure 8.8).
We call recNumberOfNodes with the tree in Figure 8.8(a). The left and right chil-

dren of the root node (M) are not null, so we call recNumberOfNodes with the node
containing A as the root. Because both the left and right children are null on this call,
we send back the answer 1. Now we call recNumberOfNodes with the tree containing Q
as the root. Both of its children are null, so we send back the answer 1. Now we can
calculate the number of nodes in the tree with M in the root: it is

1 + 1 + 1 = 3

This seems okay.
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recNumberOfNodes(tree): returns int Version 2
if (tree.left( ) is null) AND (tree.right( ) is null)

return 1
else if tree.left( ) is null

return recNumberOfNodes(tree.right( )) + 1
else if tree.right( ) is null

return recNumberOfNodes(tree.left( )) + 1
else return recNumberOfNodes(tree.left( )) + recNumberOfNodes(tree.right( )) + 1

Figure 8.8 Two binary search trees
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The left subtree of the root of the tree in Figure 8.8(b) is empty; let’s see if this
proves to be a problem. It is not true that both children of the root (L) are null, so rec-
NumberOfNodes is called with the left child as the argument. OOPS! We do have a
problem. The left child of L is null, so we just called recNumberOfNodes with a null
parameter. The first statement checks to see if the children of the tree referenced by the
argument are null, but the value of tree itself is null. The method crashes when we try
to access tree.left when tree is null. To prevent this, we can check to see if a child
is null, and not call recNumberOfNodes if it is.

Version 2 works correctly if method recNumberOfNodes has a precondition that
the tree is not empty. However, an initially empty tree causes a crash. We must check to
see if the tree is empty as the first statement in the algorithm, and if it is, return zero.
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recNumberOfNodes(tree): returns int Version 4
if tree is null

return 0
else

return recNumberOfNodes(tree.left( )) + recNumberOfNodes(tree.right( )) + 1

recNumberOfNodes(tree): returns int Version 3
if tree is null

return 0
else if (tree.left( ) is null) AND (tree.right( ) is null)

return 1
else if tree.left( ) is null

return recNumberOfNodes(tree.right( )) + 1
else if tree.right( ) is null

return recNumberOfNodes(tree.left( )) + 1
else return recNumberOfNodes(tree.left( )) + recNumberOfNodes(tree.right( )) + 1

This certainly looks complicated; there must be a simpler solution—and there is. We
can collapse the two base cases into one. There is no need to make the leaf node a spe-
cial case. We can simply have one base case: an empty tree returns zero. Now we do not
have to check the left and right subtrees; if they are null and we process them, they
just contribute a value of zero.

We have taken the time to work through the versions containing errors because they
illustrate two important points about recursion with trees: (1) Always check for the
empty tree first, and (2) leaf nodes do not need to be treated as separate cases. Table 8.1
reviews the design notation and the corresponding Java code.
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Table 8.1 Comparing Node Design Notation to Java Code

Design Notation Java Code

location.info( ) location.info

location.right( ) location.right

location.left( ) location.left

Set location.info( ) to value location.info = value

Here is the method specification:

Method recNumberOfNodes(tree)

Definition: Counts and returns the number of nodes in tree
Size: Number of nodes in tree
Base Case: If tree is null, return 0
General Case: Return recNumberOfNodes(tree.left) + 

recNumberOfNodes(tree.right) + 1

And the code:

private int recNumberOfNodes(BSTNode tree)
// Determines the number of nodes in tree
{
if (tree == null)
return 0;

else
return recNumberOfNodes(tree.left) +

recNumberOfNodes(tree.right) + 1;
}

Iterative numberOfNodes

An iterative method to count the nodes on a linked list is easy:

count = 0;
while (list != null)
{
count++;
list = list.next;

}
return count;

A similar approach for an iterative method to count the nodes in a binary tree
quickly runs into trouble. We start at the root and increment the count. Now what?
Should we count the nodes in the left subtree or the right subtree? Suppose we decide to
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count the nodes in the left subtree. We must remember to come back later and count the
nodes in the right subtree. In fact, every time we make a decision on which subtree to
count we must remember to return to that node and count the nodes of its other subtree.
How can we remember all of this?

In the recursive version, we did not have to explicitly remember which subtrees we
still needed to process. The trail of unfinished business was maintained on the system
stack for us automatically. For the iterative version, we must maintain the information
explicitly, on our own stack. Whenever we postpone processing a subtree, we can push
a reference to that subtree on a stack of references. Then, when we are finished with our
current processing, we can remove the reference that is on the top of the stack and con-
tinue our processing with it.

We must be careful that we process each node in the tree exactly once. To ensure
that we do not process a node twice, we follow these rules:

1. Process a node immediately after removing it from the stack.

2. Do not process nodes at any other time.

3. Once a node is removed from the stack, do not push it back onto the stack.

To ensure that we do not miss any nodes, we begin execution by pushing the root
onto the stack. As part of the processing of every node, we push its children onto the
stack. This guarantees that all descendants of the root are eventually pushed onto the
stack; in other words, that we do not miss any nodes.

Finally, we only push references to actual tree nodes. We do not push any null ref-
erences. This way, when we remove a reference from the stack we can increment the
count of nodes and access the left and right links of the referenced node without worry-
ing about null reference errors. Here is an algorithm for the iterative numberOfNodes:

numberOfNodes returns int

Set count to 0
if the tree is not empty

Instantiate a stack
Push the root of the tree onto the stack
while the stack is not empty

Set currNode to top of stack
Pop the stack
Increment count
if currNode has a left child

Push currNode’s left child onto the stack
if currNode has a right child

Push currNode’s right child onto the stack
return count
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The corresponding code, using a stack named hold, is as follows:

public int numberOfNodes()
// Determines the number of nodes in this BST
{
int count = 0;
if (root != null)
{
LinkedStack hold = new LinkedStack();
BSTNode currNode;
hold.push(root);
while (!hold.isEmpty())
{
currNode = (BSTNode) hold.top();
hold.pop();
count++;
if (currNode.left != null)
hold.push(currNode.left);

if (currNode.right != null)
hold.push(currNode.right);

}
}
return count;

}

Recursion or Iteration?

Now that we have looked at both the recursive and the iterative versions of counting
nodes, can we determine which is better? In the last chapter, we gave some guidelines
for determining when recursion is appropriate. Let’s apply these to the use of recursion
for counting nodes.

Is the depth of recursion relatively shallow?

Yes. The depth of recursion is dependent on the height of the tree. If the tree is well-
balanced (relatively short and bushy, not tall and stringy), the depth of recursion is
closer to O(log2N ) than to O(N ).

Is the recursive solution shorter or clearer than the nonrecursive version?

Yes. The recursive solution is shorter than the iterative method, especially if you count
the code for implementing the stack against the iterative approach. Is the recursive solu-
tion clearer? Although we spent more space discussing the recursive solution, we do
believe it is clearer. We used extra space in order to teach you a little more about recur-
sive design. We believe the recursive version is intuitively obvious. It is very easy to see
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that the number of nodes in a binary tree that has a root is 1 plus the number of nodes
in its two subtrees. The iterative version is not as clear. We need to worry that we did
not count any node twice, and that we did not miss any nodes. Compare the code for
the two approaches and see what you think.

Is the recursive version much less efficient than the nonrecursive version?

No. Both the recursive and the nonrecursive versions of numberOfNodes are O(N ) oper-
ations. They both have to count every node.

We give the recursive version of the method an ‘A’; it is a good use of recursion.

8.6 The Implementation Level—More Operations

In this section, we use recursion to implement the remaining Binary Search Tree operations.

The isThere and retrieve Operations

At the beginning of this chapter, we demonstrated how to search for an element in a
binary search tree. First check to see if the item searched for is in the root. If it is not,
compare the element with the root and look in either the left or the right subtree. This is
a recursive algorithm.

We implement isThere using a private recursive method called recIsThere. This
method is passed the item we are searching for and a reference to a subtree in which to
search. It follows the algorithm described above in a straightforward manner. The only
remaining question is how to determine that there is no item with the same key in the tree.
If the subtree we are searching is empty, then there cannot be an item with the same key as
the item’s key. We summarize these observations in a table, which is followed by the code.

Method recIsThere (item, tree)

Definition: Searches for an element in tree with the same
key as item’s key
If found, return true; otherwise, return false

Size: Number of nodes in tree (or number of nodes in
the path)

Base Cases: (1) If item’s key matches key in tree.info( ),
return true.
(2) If tree = null, return false.

General Case: If item’s key is less than key in tree.info( ),
return recIsThere(item, tree.left( ));
else return recIsThere(item, tree.right( ))
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private boolean recIsThere(Comparable item, BSTNode tree)
// Returns true if item is in tree; false otherwise
{
if (tree == null)
return false;                          // Item is not found

else if (item.compareTo(tree.info) < 0)
return recIsThere(item, tree.left);    // Search left subtree

else if (item.compareTo(tree.info) > 0)
return recIsThere(item, tree.right);   // Search right subtree

else
return true;                           // Item is found

}

public boolean isThere (Comparable item)
// Determines if element matching item is in this BST
{
return recIsThere(item, root);

}

Let’s trace this operation using the tree in Figure 8.9. In our trace we substitute actual
arguments for the method parameters. We assume we can work with integers. We want
to search for the element with the key 18 in a tree myTree, so the call to the public
method is

myTree.isThere(18);

The isThere method, in turn, immediately calls the recursive method:

return recIsThere(18, root);

Figure 8.9 Tracing the isThere operation
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Since root is not null, and 18 > tree.info, we issue the first recursive call:

return recIsThere(18, tree.right);

Now tree references the node whose key is 20 so 18 < tree.info. The next recur-
sive call is

return recIsThere(18, tree.left);

Now tree references the node with the key 18 so processing falls through to the last
else statement

return true;

This halts the recursive descent, and the value true is passed back up the line of recursive
calls until it is returned to the original isThere method and then to the client program.

Next, let’s look at an example where the key is not found in the tree. We want to
find the element with the key 7. The public method call is

myTree.isThere(7);

followed immediately by

recIsThere(7, root)

tree is not null and 7 < tree.info, so the first recursive call is

recIsThere(7, tree.left)

tree is pointing to the node that contains 9. tree is not null and we issue the second
recursive call

recIsThere(7, tree.left)

Now tree is null, and the return value of false makes its way back to the original
caller.

The retrieve method is very similar to the isThere operation. In both cases we
search the tree recursively to locate the tree element that matches the parameter item.
There are two differences however. First, the precondition of retrieve states that the
item being retrieved is definitely in the tree, so we do not have to worry about the base
case of reaching a null subtree. Second, instead of returning a boolean we must
return a reference to the tree element that matches item. Remember that the actual tree
element is the info of the tree node, so we must return a reference to the info object.
The info variable references an object of type Comparable.
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private Comparable recRetrieve(Comparable item, BSTNode tree)
// Returns the element in tree with the same key as item
{
if (item.compareTo(tree.info) < 0)
return recRetrieve(item, tree.left);        // Retrieve from left subtree

else
if (item.compareTo(tree.info) > 0)
return recRetrieve(item, tree.right);       // Retrieve from right subtree

else
return tree.info;

}

public Comparable retrieve(Comparable item)
// Returns the BST element with the same key as item
{
return recRetrieve(item, root);

}

The insert Operation

To create and maintain the information stored in a binary search tree, we must have an
operation that inserts new nodes into the tree. We use the following insertion approach.
A new node is always inserted into its appropriate position in the tree as a leaf. Figure
8.10 shows a series of insertions into a binary tree.

We use a public method, insert, that is passed the item for insertion. The insert
method invokes the recursive method, recInsert, and passes it the item plus a refer-
ence to the root of the tree.

public void insert (Comparable item)
// Adds item to this BST
{
root = recInsert(item, root);

}

Note that the call to recInsert returns a BSTNode. It returns a reference to the new
tree, that is, to the tree that includes item. The statement

root = recInsert(item, root);

can be interpreted as “Set the reference of the root of this tree to the root of the tree that is
generated when item is inserted into this tree.” At first this might seem inefficient. Since we
always perform insertions as leaves, why do we have to change the root of the tree? Look
again at the sequence of insertions in Figure 8.10. Do any of the insertions affect the value
of the root of the tree? Yes, the original insertion into the empty tree changes the value held
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Figure 8.10 Insertions into a binary search tree
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in root. In the case of all the other insertions the statement in the insert method just
copies the current value of root onto itself; but we still need the assignment statement to
handle the degenerative case of insertion into an empty tree. When does the assignment
statement occur? After all the recursive calls to recInsert have been processed and have
returned.

Before we go into the development of recInsert, we want to reiterate that every
node in a binary search tree is the root node of a binary search tree. In Figure 8.11(a),
we want to insert a node with the key value 13 into our tree whose root is the node
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Figure 8.11 The recursive insert operation
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containing 7. Because 13 is greater than 7, we know that the new node belongs in the
root node’s right subtree. We now have redefined a smaller version of our original prob-
lem. We want to insert a node with the key value 13 into the tree whose root is
tree.right (Figure 8.11b). Of course, we have a method to insert elements into a
binary search tree: recInsert. The recInsert method is called recursively:

tree.right = recInsert(item, tree.right);

recInsert still returns a reference to a BSTNode; it is the same recInsert method
that was originally called from insert so it must behave in the same way. The above
statement says “Set the reference of the right subtree of the tree to the root of the tree
that is generated when item is inserted into the right subtree of tree.” Again, the actual
assignment statement does not occur until after the remaining recursive calls to recIn-
sert have finished processing and have returned.

recInsert begins its execution, looking for the place to insert item in the tree
whose root is the node with the key value 15. We compare the key of item (13) to the
key of the root node; 13 is less than 15, so we know that the new item belongs in the
tree’s left subtree. Again, we have obtained a smaller version of the problem. We want
to insert a node with the key value 13 into the tree whose root is tree.left (Figure
8.11c). We call recInsert recursively to perform this task. Remember that in this
(recursive) execution of recInsert, tree points to the node whose key is 15, not the
original tree root:

tree.left = recInsert(item, tree.left);

Again we recursively execute recInsert. We compare the key of item to the key
of the (current) root node and then call recInsert to insert item into the correct sub-
tree—the left subtree if item’s key is less than the key of the root node, the right subtree
if item’s key is greater than the key of the root node.

Where does it all end? There must be a base case, in which space for the new ele-
ment is allocated and the value of item copied into it. This case occurs when tree is
null, that is, when the subtree we wish to insert into is empty. (Remember, we are going
to add item as a leaf node.) Figure 8.11(d) illustrates the base case. We create the new
node and return a reference to it to the most recent invocation of recInsert where the
reference is assigned to the right link of the node containing 10 (see Figure 8.11e). That
invocation of recInsert is then finished, and it returns a reference to its subtree to the
previous invocation (see Figure 8.11f ) where the reference is assigned to the left link
of the node containing 15. And so on; we continue until a reference to the entire tree is
returned to the original insert method, which assigns it to root, as shown in Figure
8.11(g, h).

Note that while backing out of the recursive calls, the only assignment statement that
actually changes a value is the one at the deepest nested level; the one that changes the
right subtree of the node containing 10 from null to a reference to the new node. All of
the other assignment statements simply assign a reference to the variable that held that
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reference previously. This is a typical recursive approach. We do not know ahead of time at
what level the crucial assignment takes place, so we perform the assignment at every level.

This technique should sound familiar. We used it in the last chapter for the recur-
sive version of insertion into a sorted linked list. The recursive method for insertion into
a binary search tree is summarized as follows:

Method recInsert(item, tree) returns tree reference

Definition: Inserts item into binary search tree.
Size: The number of elements in path from root to

insertion place.
Base Case: If tree is null, then allocate a new leaf to contain

item.
General Cases: (1) If item < tree.info(), then recInsert(item,

tree.left())
(2) If item > tree.info(), then recInsert(item,
tree.right())

Here is the code that implements this recursive algorithm.

private BSTNode recInsert(Comparable item, BSTNode tree)
// Inserts item into the tree
{
if (tree == null)
{// Insertion place found
tree = new BSTNode();
tree.right = null;
tree.left = null;
tree.info = item;

}
else if (item.compareTo(tree.info) < 0)
tree.left = recInsert(item, tree.left);    // Insert in left 

//  subtree
else
tree.right = recInsert(item, tree.right);   // Insert in right 

//  subtree
return tree;

}

Insertion Order and Tree Shape
Because nodes are always added as leaves, the order in which nodes are inserted deter-
mines the shape of the tree. Figure 8.12 illustrates how the same data, inserted in differ-
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Figure 8.12 The insert order determines the shape of the tree
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ent orders, produce very differently shaped trees. If the values are inserted in order (or
in reverse order), the tree is completely skewed (a long “narrow” tree shape). A random
mix of the elements produces a shorter, “bushy” tree. Because the height of the tree
determines the maximum number of comparisons in a binary search, the tree’s shape is
very important. Obviously, minimizing the height of the tree maximizes the efficiency
of the search. There are algorithms to adjust a tree to make its shape more desirable; one
such scheme is presented in Section 8.8.



562 | Chapter 8:  Binary Search Trees

recDelete: returns BSTNode
Find the node in the tree
Delete the node from the tree
return a reference to the new tree

The delete Operation

The delete operation is the most complicated of the binary search tree operations. It is
not difficult to locate the item to be deleted; but we must ensure when we delete it that
we maintain the binary search tree property.

The set up for the delete operation is the same as that for the insert operation. The
private recDelete method is invoked from the public delete method with parame-
ters equal to the item to be deleted and the subtree to delete it from. The recursive
method returns a reference to the revised tree, just as it did for insert. Here is the
code for delete:

public void delete (Comparable item)
// Delete the element of this BST whose key matches item's key
{
root = recDelete(item, root);

}

Again, in most cases the root of the tree is not affected by the recDelete call, in which
case the assignment statement is somewhat superfluous, since it is reassigning the cur-
rent value of root to itself. But, if the node being deleted happens to be the root node,
then this assignment statement is crucial.

The recDelete method receives an item and the external reference to the binary
search tree, finds and deletes the node matching the item’s key from the tree, and
returns a reference to the newly created tree. According to the specifications of the
operation, an item with the same key exists in the tree. These specifications suggest a
three-part operation:

We know how to find the node; we did it for retrieve. As with that operation, we
use recursive calls to recDelete to progressively decrease the size of the tree where the
target node could be, until we actually locate the node. Now we must delete the node
and return a reference to the new subtree—this is somewhat complicated. This task
varies according to the position of the target node in the tree. Obviously it is simpler to
delete a leaf node than to delete a non-leaf node. In fact, we can break down the dele-
tion algorithm into three cases, depending on the number of children linked to the node
we want to delete:

TE
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Figure 8.13 Deleting a leaf node
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1. Deleting a leaf (no children): As shown in Figure 8.13, deleting a leaf is simply a
matter of setting the appropriate link of its parent to null.

2. Deleting a node with only one child: The simple solution for deleting a leaf does
not suffice for deleting a node with a child, because we don’t want to lose all of its
descendants from the tree. We want to make the reference from the parent skip over
the deleted node and point instead to the child of the node we intend to delete (see
Figure 8.14).

3. Deleting a node with two children: This case is the most complicated because we
cannot make the parent of the deleted node point to both of the deleted node’s
children. The tree must remain a binary tree and the search property must
remain intact. There are several ways to accomplish this deletion. The method we
use does not delete the node but replaces its info with the info from another
node in the tree so that the search property is retained. We then delete this other
node. Hmmm. That also sounds like a candidate for recursion. Let’s see how this
turns out.

What element could we replace the deleted item with that would maintain the
search property? The elements whose keys immediately precede or follow the key of
item: the logical predecessor or successor of item. We replace the info of the node we
wish to delete with the info of its logical predecessor—the node whose key is closest in
value to, but less than, the key of the node to be deleted. Look back at Figure 8.10(j) and
locate the logical predecessor of nodes 5, 9, and 7. Do you see the pattern? The logical
predecessor of 5 is 4, the largest value in 5’s left subtree. The logical predecessor of 9 is
8, the largest value in 9’s left subtree. The logical predecessor of 7 is 6, the largest value
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Figure 8.14 Deleting a node with one child
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in 7’s left subtree. This replacement value is in a node with either 0 or 1 children. We
then delete the node the replacement value was in by changing one of its parent’s refer-
ences (see Figure 8.15).

Examples of all of these types of deletions are shown in Figure 8.16.

Figure 8.15 Deleting a node with two children
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Figure 8.16 Deletions from a binary search tree
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It is clear that the delete task involves changing references in the parent of the node
to be deleted. This is why the recDelete method must return a reference to a BSTNode.
Let’s look at the three cases in terms of our implementation.

If both child references of the node to be deleted are null, the node is a leaf and we
just return null; so the previous reference to this leaf node is replaced by null in the
calling method, effectively removing the leaf node from the tree. If one child reference
is null, we return the other child reference; the previous reference to this node is
replaced by a reference to the node’s only child, effectively jumping over the node and
removing it from the tree (similar to the way we deleted a node from a singly linked
list). If neither child reference is null, we replace the info of the node with the info of
the node’s logical predecessor and delete the node containing the predecessor. The node
containing the predecessor came from the left subtree of the current node; so we delete
it from that subtree. We then return the original reference to the node (we have not cre-
ated a new node with a new reference; we have just changed the node’s info reference).
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Let’s summarize all of this in algorithmic form as deleteNode. Within the algorithm
and the code the reference to the node to be deleted is tree.

Now we can write the recursive definition and code for recDelete.

Method recDelete (item, tree) returns BSTNode

Definition: Deletes item from tree.
Size: The number of nodes in the path from the root

to the node to be deleted.
Base Case: If item’s key matches key in tree.info, delete

node pointed to by tree.
General Case: If item < tree.info(), recDelete(item, tree.left());

else recDelete(item, tree.right()).

private BSTNode recDelete(Comparable item, BSTNode tree)
// Deletes item from the tree
{
if (item.compareTo(tree.info) < 0)
tree.left = recDelete(item, tree.left);

else if (item.compareTo(tree.info) > 0)
tree.right = recDelete(item, tree.right);

else
tree = deleteNode(tree);   // Item is found

return tree;
}

deleteNode (tree): returns BSTNode
if (tree.left( ) is null) AND (tree.right( ) is null)

return null
else if tree.left( ) is null

return tree.right( )
else if tree.right( ) is null

return tree.left( )
else

Find predecessor
Set tree.info( ) to predecessor.info( )
Set tree.left( ) to recDelete(predecessor.info( ), tree.left( ))
return tree
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Before we code deleteNode, let’s look at its algorithm again. We can remove one
of the tests if we notice that the action taken when the left child reference is null also
takes care of the case in which both child references are null. When the left child ref-
erence is null, the right child reference is returned. If the right child reference is also
null, then null is returned, which is what we want if they are both null.

In good top-down fashion, let’s now write the code for deleteNode using get-
Predecessor as the name of an operation that returns the info reference of the prede-
cessor of the node with two children.

private BSTNode deleteNode(BSTNode tree)
// Deletes the node referenced by tree
// Post: The user's data in the node referenced to by tree is no
//       longer in the tree.  If tree is a leaf node or has only
//       a nonnull child pointer, the node pointed to by tree is
//       deleted; otherwise, the user's data is replaced by its
//       logical predecessor and the predecessor's node is deleted
{
Comparable data;

if (tree.left == null)
return tree.right;

else if (tree.right == null)
return tree.left;

else
{
data = getPredecessor(tree.left);
tree.info = data;
tree.left = recDelete(data, tree.left);  // Delete predecessor node.
return tree;

}
}

Now we must look at the operation for finding the logical predecessor. We know that
the logical predecessor is the maximum value in tree’s left subtree. Where is this node?
The maximum value in a binary search tree is in its rightmost node. Therefore, given
tree’s left subtree, we just keep moving right until the right child is null. When this
occurs, we return the info reference of the node. There is no reason to look for the pred-
ecessor recursively in this case. A simple iteration until tree.right is null suffices.

private Comparable getPredecessor(BSTNode tree)
// Returns the info member of the rightmost node in tree
{
while (tree.right != null)
tree = tree.right;

return tree.info;
}
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That’s it. We have used four methods to implement the Binary Search Tree delete
operation! See Figure 8.17 for a view of the calling relationships among the four meth-
ods. Did you notice that we used both types of recursion in our solution—we used both
direct recursion (recDelete invokes itself) and indirect recursion (recDelete invokes
deleteNode, which in turn may invoke recDelete). Due to the nature of our approach
we are guaranteed that the indirect recursion never proceeds deeper than one level.
Whenever deleteNode invokes recDelete, it passes an item and a reference to a sub-
tree such that the item matches the largest element in the subtree. Therefore, the item
matches the rightmost element of the subtree, which does not have a right child. This
represents one of the base cases for the recDelete method and the recursion stops there.

Iteration

In the Print Tree operation developed in Section 8.3, we developed a client method to
print the contents of a Binary Search Tree in order. The method printed the value of a
node in between printing the values in its left subtree and the values in its right subtree.
Using the inorder traversal resulted in a listing of the values of the binary search tree in
ascending key order.

Let’s review our traversal definitions:

• Preorder traversal: Visit the root, visit the left subtree, visit the right subtree.
• Inorder traversal: Visit the left subtree, visit the root, visit the right subtree.
• Postorder traversal: Visit the left subtree, visit the right subtree, visit the root.

Remember that the name given to each traversal specifies where the root itself is
processed in relation to its subtrees.

Figure 8.17 The methods used to delete a node
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Our Binary Search Tree ADT supports all three traversal orders. How can it do this?
As you saw for the Print Tree operation, the client program passes the reset and get-
NextItem methods a parameter indicating which of the three traversal orders to use for
that particular invocation of the method. Imagine, for example, that reset is called
with an INORDER argument, followed by several calls to getNextItem with INORDER
arguments. How does getNextItem keep track of which tree node to return next? It is
not as simple as maintaining an instance variable that references the next item, as we
did for linked lists. A simple reference to a node does not capture the status of the tra-
versal. Sure, getNextItem could return the referenced item, but then how does it
update the reference in preparation for the next call? Does it go down the left subtree,
or down the right subtree, or back up to the parent? The program could save more
information about the current traversal, enough to let it find the next item; due to the
recursive nature of the traversals it would have to save this information in a stack.

However, there is a simpler way: We let reset generate a queue of node contents
in the indicated order and let getNextItem process the node contents from the queue.
Each of the traversal orders is supported by a separate queue. Therefore, the instance
variables of our BinarySearchTree class must include three queues:

protected ArrayQueue inOrderQueue;    // Queue of info
protected ArrayQueue preOrderQueue;   // Queue of info
protected ArrayQueue postOrderQueue;  // Queue of info

The reset method instantiates one of the queues, based on its parameter, and ini-
tializes it to a size equal to the current size of the tree. It then calls one of three recur-
sive methods, depending on the value of its parameter. Each of these methods
implements a recursive traversal, enqueing the node contents onto the corresponding
queue in the appropriate order. Below is the code for reset and getNextItem: Note
that reset calls the numberOfNodes method in order to determine how large to make
the required queue. In most cases, a client program that invokes reset immediately
requires the same information, to control how many times they call the getNextItem
method to iterate through the tree. See the code for printTree in Section 8.3, for
example. We make it easy for the client to obtain the number of nodes, by providing it
as the return value of reset. Since reset needs to call numberOfNodes anyway, this
requires minimal extra cost.

What happens when getNextItem reaches the end of the collection of items? At
that point, the corresponding queue is empty, and another call to getNextItem results
in a run time exception being thrown. Unlike with our List ADT, iterations on Binary
Search Trees do not “wrap around.” The client must be sure not to call getNextItem
inappropriately.

public int reset(int orderType)
// Initializes current position for an iteration through this BST in orderType 
//  order
{
int numNodes = numberOfNodes();
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if (orderType == INORDER)
{
inOrderQueue = new ArrayQueue(numNodes);
inOrder(root);

}
else
if (orderType == PREORDER)
{
preOrderQueue = new ArrayQueue(numNodes);
preOrder(root);

}
if (orderType == POSTORDER)
{
postOrderQueue = new ArrayQueue(numNodes);
postOrder(root);

}
return numNodes;

}

public Comparable getNextItem (int orderType)
// Returns a copy of the element at the current position in this BST and 
//  advances the value of the current position based on the orderType set 
//  through reset
{
if (orderType == INORDER)
return (Comparable)inOrderQueue.dequeue();

else
if (orderType == PREORDER)
return (Comparable)preOrderQueue.dequeue();

else
if (orderType == POSTORDER)
return (Comparable)postOrderQueue.dequeue();

else return null;
}

All that is left to do is to define the three traversal methods to store the required
information into the queues in the correct order.

We start with the inorder traversal. We first need to visit the root’s left subtree, all
the values in the tree that are smaller than the value in the root node. Then we visit the
root node by enqueing its info reference in our inOrderQueue. Finally, we visit the
root’s right subtree, all the values that are larger than the value in the root node (see Fig-
ure 8.18).

Let’s describe this problem again, developing our algorithm as we proceed. We
assume our method is named inOrder and is passed a parameter tree. We want to visit
the elements in the binary search tree rooted at tree in order; that is, first we visit the
left subtree in order, then we visit the root, and finally we visit the right subtree in order.
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Figure 8.18 Visiting all the nodes in order
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tree.left references the root of the left subtree. Because the left subtree is also a
binary search tree, we can call method inOrder to visit it, using tree.left as the
argument. When inOrder finishes visiting the left subtree, we enqueue the info refer-
ence of the root node. Then we call method inOrder to visit the right subtree with
tree.right as the argument.

Of course, each of the two calls to method inOrder uses the same approach to visit
the subtree: They visit the left subtree with a call to inOrder, visit the root, and then
visit the right subtree with another call to inOrder. What happens if the incoming
parameter is null on one of the recursive calls? This situation means that the parameter
is the root of an empty tree. In this case, we just want to exit the method—clearly there’s
no point to visiting an empty subtree. That is our base case.

Method inOrder (tree)

Definition: Enqueues the items in the binary search tree in
order from smallest to largest.

Size: The number of nodes in the tree whose root is
tree

Base Case: If tree = null, do nothing.
General Case: Traverse the left subtree in order.

Then enqueue tree.info().
Then traverse the right subtree in order.

This description is coded as the following recursive method:

private void inOrder(BSTNode tree)
// Initializes inOrderQueue with tree elements in inOrder order
{
if (tree != null)
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{
inOrder(tree.left);
inOrderQueue.enqueue(tree.info);
inOrder(tree.right);

}
}

The remaining two traversals are approached exactly the same, except the relative
order in which they visit the root and the subtrees is changed. Recursion certainly
allows for an elegant solution to the binary tree traversal problem.

private void preOrder(BSTNode tree)
// Initializes preOrderQueue with tree elements in preOrder order
{
if (tree != null)
{
preOrderQueue.enqueue(tree.info);
preOrder(tree.left);
preOrder(tree.right);

}
}

private void postOrder(BSTNode tree)
// Initializes postOrderQueue with tree elements in postOrder order
{
if (tree != null)
{
postOrder(tree.left);
postOrder(tree.right);
postOrderQueue.enqueue(tree.info);

}
}

Testing Binary Search Tree Operations

Now that we’ve finished the implementation of the Binary Search Tree ADT we must
address testing our implementation. The code for the entire BinarySearchTree class is
contained on our web site, including both the recursive numberOfNodes method, and
the iterative version (numberOfNodes2). We have also included a test driver for the
ADT called TDBinarySearchTree. In addition to directly supporting testing of all the
ADT operations, the test driver also supports a printTree operation that accepts one of
the order constants as a parameter and “prints” the contents of the tree, in that order, to
an output file. See Figure 8.19 for an example of a test input file, the resulting output
file, and the screen information generated during the test. Note that the printTree
results can be used to help verify the shape of the tree.
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Figure 8.19 Example of a test input file and the resulting output file

       File: tree1.dat File: tree1.out

Command: java TDBinarySearchTree  tree1.dat  tree1.out

Test Case for TextBook
BinarySearchTree
numberOfNodes
numberOfNodes2
isEmpty
insert
L
insert
D
insert
P
insert
C
insert
H
insert
J
numberOfNodes
numberOfNodes2
isThere
J
delete
J
printTree
INORDER
printTree
PREORDER
quit

Results Test Case for TextBook

The tree is instantiated
The number of nodes in the tree is 0
The (iterative) number of nodes in the tree is 0
The tree is empty is true
L was inserted into the tree
D was inserted into the tree
P was inserted into the tree
C was inserted into the tree
H was inserted into the tree
J was inserted into the tree
The number of nodes in the tree is 6
The (iterative) number of nodes in the tree is 6
J is on the tree: true
J was deleted from the tree
The tree in Inorder is:
1. C
2. D
3. H
4. L
5. P
The tree in Preorder is:
1. L
2. D
3. C
4. H
5. P

  Screen Output
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You are invited to use the test driver to test the various tree operations. Be sure to
test all of the operations, in many combinations. In particular, you should test both
skewed and balanced trees.

8.7 Comparing Binary Search Trees to Linear Lists

A binary search tree is an appropriate structure for many of the same applications dis-
cussed previously in conjunction with other sorted list structures. The special advan-
tage of using a binary search tree is that it facilitates searching while conferring the
benefits of linking the elements. It provides the best features of both the sorted array-
based list and the linked list. Like a sorted array-based list, it can be searched quickly,
using a binary search. Like a linked list, it allows insertions and deletions without
having to move data. Thus, it is particularly suitable for applications in which search
time must be minimized or in which the nodes are not necessarily processed in
sequential order.

As usual, there is a tradeoff. The binary search tree, with its extra reference in each
node, takes up more memory space than a singly linked list. In addition, the algorithms
for manipulating the tree are somewhat more complicated. If all of the list’s uses
involve sequential rather than random processing of the elements, the tree may not be
as good a choice.

Suppose we have 100,000 customer records in a list. If the main activity in the applica-
tion is to send out updated monthly statements to the customers and if the order in which
the statements are printed is the same as the order in which the information appears on the
list, a linked list would be suitable. But suppose we decide to keep a terminal available to
give out account information to the customers whenever they ask. If the data are kept in a
linked list, the first customer on the list can be given information almost instantly, but the
last customer has to wait while the other 99,999 nodes are examined. When direct access to
the nodes is a requirement, a binary search tree is a more appropriate structure.

Big-O Comparisons

Finding a node (isThere), as we would expect in a structure dedicated to searching, is
the most interesting operation to analyze. In the best case—if the order that the elements
were inserted results in a short and bushy tree—we can find any node in the tree with at
most log2N + 1 comparisons. We would expect to be able to locate a random element in
such a tree much faster than finding an element in a sorted linked list. In the worst
case—if the elements were inserted in order from smallest to largest or vice versa—the
tree won’t really be a tree at all; it would be a linear list, linked through either the left
or right references. This is called a “degenerate” tree. In this case, the tree operations
should perform much the same as the operations on a linked list. Therefore, if we were
doing a worst-case analysis, we would have to say that the complexity of the tree opera-
tions is identical to the comparable linked-list operations. However, in the following
analysis, we assume that the items are inserted into the tree in random order giving a
balanced tree.
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The insert and retrieve operations are basically finding the node [O(log2N )]
plus tasks that are O(1)—for instance, creating a node or resetting references. Thus
these operations are all described as O(log2N ). The delete operation consists of find-
ing the node plus invoking deleteNode. In the worst case (deleting a node with two
children), deleteNode must find the replacement value, a O(log2N ) operation. (Actu-
ally, the two tasks together add up to log2N comparisons, because if the target node is
higher in the tree, fewer comparisons are needed to find it, but more comparisons may
be needed to find its replacement node; and vice versa.) Otherwise, if the deleted node
has 0 or 1 child, deleteNode is a O(1) operation. So delete too may be described as
O(log2N ).

The numberOfNodes and reset operations require the tree to be traversed, pro-
cessing each element once. Thus these are O(N ) operations. Of course, iterating through
an entire collection of elements takes O(N ) steps even if both reset and getNextItem
are O(1), since getNextItem must be called N times by the client.

The orders of magnitude for the tree and list operations as we have coded them are
compared in Table 8.2. The binary search tree operations are based on a random inser-

Table 8.2 Big-O Comparison of List Operations

Binary Search Tree Array-Based Linear List Linked List

Class constructor O(1) O(1) O(1)

isFull O(1) O(1) O(1)

isEmpty O(1) O(1) O(1)

reset O(N) O(1) O(1)

getNextItem O(1) O(1) O(1)

isThere O(log2N) O(log2N) O(N)

retrieve

Find O(log2N) O(log2N) O(N)

Process O(1) O(1) O(1)

Total O(log2N) O(log2N) O(N)

insert

Find O(log2N) O(log2N) O(N)

Process O(1) O(N) O(N)

Total O(log2N) O(N) O(N)

delete

Find O(log2N) O(log2N) O(N)

Process O(1) O(N) O(1)

Total O(log2N) O(N) O(N)
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Save the tree information in an array
Insert the information from the array back into the tree

tion order of the items; the Find operation in the array-based implementation is based
on using a binary search. We do not list the list’s lengthIs method or the tree’s num-
berOfNodes method. These methods can be implemented with a simple return statement
if the object maintains an instance variable holding the size of the structure. Of course,
this instance variable would have to be updated every time an item is inserted or deleted
from the structure, so the cost really depends on how often those operations occur.

8.8 Balancing a Binary Search Tree

In our Big-O analysis of binary search tree operations we assumed our tree was bal-
anced. If this assumption is dropped and if we perform a worst-case analysis assuming a
completely skewed tree, the efficiency benefits of the binary search tree disappear. The
time required to perform the isThere, retrieve, insert, and delete operations is
now O(N ), just as it is for the linked list. Therefore, a beneficial addition to our Binary
Search Tree ADT operations is a balance operation that balances the tree. The specifi-
cation of the operation is:

public balance();
// Effect:         Restructures this BST to be optimally balanced
// Postcondition:  This BST has a minimum number of levels
//                 The information in the tree is unchanged

Of course, it is up to the client program to use the balance method appropriately. It
should not be invoked too often, since it also has an execution cost associated with it.

There are several ways to restructure a binary search tree. We use a simple
approach:

The structure of the new tree depends on the order that we save the information into the
array, or the order in which we insert the information back into the tree, or both. Let’s
start by assuming we insert the array elements back into the tree in “index” order, that
is, starting at index 0 and working through the array. We use the following algorithm:
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Set ORDER to one of the tree traversal orders.
Set count to tree.reset(ORDER).
for (int index = 0; index < count; index++)

Set array[index] = tree.getNextItem(ORDER).
tree = new BinarySearchTree().
for (int index = 0; index < count; index++)

tree.insert(array[index]).

Does that balance the tree? Its impossible to tell what it does without knowing the order
of the tree traversal.

Let’s consider what happens if we use an inorder traversal. See Figure 8.20 for an
example. The results are not very satisfactory are they? We have taken a perfectly nice
bushy tree and turned it into a degenerate skewed tree that does not efficiently support
our tree operations. That is the opposite of what we hope to accomplish. There must be a
better approach.

Next we try a preorder traversal. See Figure 8.21. We end up with an exact copy of
our tree. Will this always be the case? Yes. Recall our rule for inserting items into a tree—
we always insert at a leaf position. Do you see what this means? Consider the tree in Fig-
ure 8.21(a). Assuming it has had no deletions, what was the first node inserted into that
tree when it was created? It had to be the root node, the node containing the value 10,
since the only time the root node is also a leaf is when the tree contains a single element.
What was the second element inserted? It was either the 7 or the 15—they are the roots
of the left subtree and right subtree. If we recreate the tree based on a preorder traversal
(root first!) of the original tree, we obtain an exact copy of the tree. Since we always
insert a node before any of its descendants, we maintain the ancestor-descendant rela-
tionships of the original tree, and obtain an exact copy. This is an interesting discovery,
and could be useful if we wanted to duplicate a tree, but it doesn’t help us balance a tree.

Using a postfix traversal doesn’t help either. Try it out.
How can we do better? One way to ensure a balanced tree is to even out, as much

as possible, the number of descendants in each node’s left and right subtrees. Since we
insert items “root first” this means that we should first insert the “middle” item. (If we
list the items from smallest to largest, the “middle” item is the one in the middle of the
list—it has as many items less than it as it has greater than it, or at least as close as pos-
sible.) The middle item becomes the root of the tree. It has about the same number of
descendants in its left subtree as it has in its right subtree. Good. What item do we
insert next? Let’s work on the left subtree. The root of the left subtree should be the
“middle” item of all the items that are less than the root. That item is inserted next.
Now, when the remaining items that are less than the root are inserted, about half of
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Figure 8.20 A skewed tree is produced
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them will be in the left subtree of the item, and about half will be in its right subtree.
And so on. Sounds recursive, doesn’t it?

Here is an algorithm for balancing a tree based on the approach described above.
The algorithm consists of two parts, one iterative and one recursive. The iterative part,
Balance, creates the array and invokes the recursive part, InsertTree, that rebuilds the
tree. We first store the nodes of the tree into our array using an inorder traversal. There-
fore, they are stored, in order, from smallest to largest. The algorithm continues by

Figure 8.21 An exact copy is produced
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invoking the recursive algorithm InsertTree, passing it the bounds of the array. The
InsertTree algorithm checks the array bounds it is passed. If the low and high bounds
are the same (base case 1) it simply inserts the corresponding array element into the
tree. If the bounds only differ by one location (base case 2) the algorithm inserts both
elements into the tree. Otherwise, it computes the “middle” element of the subarray,
inserts it into the tree, and then makes two recursive calls to itself: one to process the
elements less than the middle element, and one to process the elements greater than the
element.

Trace the InsertTree algorithm using sorted arrays of both even and odd length to con-
vince yourself that it works. The code for balance and a helper method insertTree
follows directly from the algorithm and is left as an exercise. Figure 8.22 shows the
results of using this approach on the previous example.

Balance
Set count to tree.reset(INORDER).
For (int index = 0; index < count; index++)

Set array[index] = tree.getNextItem(ORDER).
tree = new BinarySearchTree().
tree.InsertTree(0, count � 1)

InsertTree(low, high)
if (low == high)             // Base case 1

tree.insert(nodes[low]).
else if ((low + 1) == high)   // Base case 2

tree.insert(nodes[low]).
tree.insert(nodes[high]).

else
mid = (low + high) / 2.
tree.insert(mid).
tree.InsertTree(low, mid – 1).
tree.InsertTree(mid + 1, high).
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Figure 8.22 An optimal transformation
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8.9 A Nonlinked Representation of Binary Trees

Our discussion of the implementation of binary trees has so far been limited to a scheme
in which the links from parent to children are explicit in the implementation structure.
An instance variable was declared in each node for the reference to the left child and
the reference to the right child.

A binary tree can be stored in an array in such a way that the relationships in the
tree are not physically represented by link members, but are implicit in the algorithms
that manipulate the tree stored in the array. The code is, of course, much less self-docu-
menting, but we might save memory space because there are no references.
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Figure 8.23 A binary tree and its array representation
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Let’s take a binary tree and store it in an array in such a way that the parent–child
relationships are not lost. We store the tree elements in the array, level by level, left-to-
right. If the number of nodes in the tree is numElements, we can package the array and
numElements into an object as illustrated in Figure 8.23. The tree elements are stored
with the root in tree.nodes[0] and the last node in tree.nodes[numElements – 1].

To implement the algorithms that manipulate the tree, we must be able to find the
left and right child of a node in the tree. Comparing the tree and the array in Figure
8.23, we see that

tree.nodes[0]’s children are in tree.nodes[1] and tree.nodes[2].

tree.nodes[1]’s children are in tree.nodes[3] and tree.nodes[4].

tree.nodes[2]’s children are in tree.nodes[5] and tree.nodes[6].

Do you see the pattern? For any node tree.nodes[index], its left child is in
tree.nodes[index*2 + 1] and its right child is in tree.nodes[index*2 + 2]
(provided that these child nodes exist). Notice that the nodes in the array from
tree.nodes[tree.numElements/2] to tree.nodes[tree.numElements – 1] are
leaf nodes.

Not only can we easily calculate the location of a node’s children, we also
can determine the location of its parent node. This task is not an easy one in a
binary tree linked together with references from parent to child nodes, but it is very
simple in our implicit link implementation: tree.nodes[index]’s parent is in
tree.nodes[(index – 1)/2].TE
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Because integer division truncates any remainder, (index – 1)/2 is the correct
parent index for either a left or right child. Thus, this implementation of a binary tree is
linked in both directions: from parent to child, and from child to parent. We take
advantage of this fact in the next chapter when we study heaps.

This tree representation works well for
any binary tree that is full or complete. A full
binary tree is a binary tree in which all of the
leaves are on the same level and every non-
leaf node has two children. The basic shape of
a full binary tree is triangular:

A complete binary tree is a binary tree
that is either full or full through the next-to-
last level, with the leaves on the last level as
far to the left as possible. The shape of a com-
plete binary tree is either triangular (if the tree
is full) or something like the following:

Figure 8.24 shows some examples of different types of binary trees.
The array-based representation is simple to implement for trees that are full or com-

plete, because the elements occupy contiguous array slots. If a tree is not full or com-
plete, however, we must account for the gaps where nodes are missing. To use the array
representation, we must store a dummy value in those positions in the array in order to
maintain the proper parent–child relationship. The choice of a dummy value depends on
the information that is stored in the tree. For instance, if the elements in the tree are
nonnegative integers, a negative value can be stored in the dummy nodes; or if the ele-
ments are objects we could use a null value.

Figure 8.25 illustrates a tree that is not complete and its corresponding array. Some
of the array slots do not contain actual tree elements; they contain dummy values. The

Full binary tree A binary tree in which all of the
leaves are on the same level and every nonleaf node
has two children

Complete binary tree A binary tree that is either full
or full through the next-to-last level, with the leaves
on the last level as far to the left as possible
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Figure 8.24 Examples of different types of binary trees

(a) Full and complete (b) Neither full nor
complete

(e) Neither full nor
complete

(c) Complete

(f) Complete(d) Full and complete

algorithms to manipulate the tree must reflect this situation. For example, to determine
whether the node in tree.nodes[index] has a left child, you must check whether
index*2 + 1 < tree.numElements, and then check to see if the value in
tree.nodes[index*2 + 1] is the dummy value.

Figure 8.25 A binary search tree stored in an array with dummy values
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Case Study
Word Frequency Generator

Problem Our firm is planning to create some text analysis software, for example, software
that automatically calculates the reading level of a document. As a first step, we’ve been
assigned the task of creating a Word Frequency Generator. This generator is to be used to
perform some preliminary text analysis during the planning stage of the project; if it works
well it may be incorporated into the tools developed later.

The word frequency generator is to read a text file indicated by the user, and generate an
alphabetical listing of the unique words that it contains, along with a count of how many
times each word occurs. The output is to go to a text file, also indicated by the user. To allow
the user to control the amount of useful output from the generator, based on the particular
problem they are studying, the generator must allow the user to specify a minimum word size
and a minimum frequency count. The generator should skip over words smaller than the mini-
mum word size; the generator should not include a word on its output list if the word occurs
less times than the minimum frequency count. Finally, the generator should present a few
summary statistics: the total number of words, the number of words whose length is at least
the minimum word size, and the number of unique words of the specified size whose fre-
quency is at least the minimum frequency count.

Discussion Clearly, the main object in this problem is a word with associated frequency.
Therefore, the first thing we must do is define a “word.”

We discuss this question with our manager. What is a tentative definition of a word in
this context? How about “something between two blanks?” Or better yet, a “character
string between two blanks.” That definition works for most words. However, all words
before ‘.’ and ‘,’ would have the ‘.’ and ‘,’ attached. Also, words with quotes would cause a
problem. Therefore, we settle on the following definition: A word is a string of alphanu-
meric characters between markers where markers are whitespace and all punctuation
marks. Although we “lose” some words following this definition (for example contractions
such as “can’t” are treated as two words “can” and “t”) we decide that these small prob-
lems do not adversely affect our goals. Finally, our manager points out that all words
should be transformed into lowercase characters for processing—“THE” and “the” represent
the same word.

Brainstorming As usual, the first step is to list objects that might be useful in solving the
problem. Scanning the problem statement above we identify the following “nouns”: word
frequency generator, input text file, user, alphabetical listing, unique words, word count,
output text file, minimum word size, minimum frequency count, output list, summary statistics,
and word totals. That’s 12 candidate objects. We realize that we need to use a data structure
to store words—for now we just call it the word store and add that to our list, giving us 13
candidate objects.

Listing the verbs in a problem statement often helps identify the actions our program
needs to take. In this case, however, we are clear on the actions needed: read in the words,
determine their frequencies, and output the results. A quick scan of the problem statement
reminds us that the results are to be sorted alphabetically and that some pruning of the data is
required based on minimum thresholds for word size and word frequency.
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Filtering We have identified 13 candidate objects. A few of them can be discarded
immediately: the word frequency generator is the entire program; minimum word size and
minimum frequency count are input values. Some of the candidate objects (input text file, user,
output text file, output list) are related to the user interface. We discuss the interface in the
next subsection. The remaining candidates are grouped as follows:

• summary statistics, word totals—these are really the same thing; we decide the statis-
tics can be tracked by the main processing class and presented to the user at the con-
clusion of processing—this does not require a separate object

• unique words, word count—these two are related since we need to have a word
count for each unique word; we decide to create a class called WordFreq to hold a
word-frequency pair; a quick analysis tells us that we have to be able to initialize
objects of the class, increment the frequency, and observe both the word and the
frequency values.

• alphabetical listing, word store—we realize that we can combine these objects by using a
container that supports sorted traversals to hold our WordFreq objects; we decide to
delay our choice of containers until after we perform scenario analysis, but we know it
must support insertion, searching, and “in order” traversal. At this point we consider both
the Sorted List and the Binary Search Tree ADTs as candidates. For now we call this class
Container.

The User Interface We decide not to create a graphical user interface for this program. It is
not worth the time because the program is only to be used for preliminary analysis of texts, as
an aid in planning full fledged text analysis tools, and the program is targeted to be embedded
in a larger system later, a system that already has a user interface.

Therefore, we use an I/O approach identical to that used for our test drivers and small
examples throughout the text. The user enters four pieces of information to the program
through command-line parameters: the name of the input file, the name of the output file, the
minimum word size, and the minimum frequency count. The program reads text from the input
file, breaks it into words, generates the word frequency list to the output file, and displays the
summary statistics in a frame. The user closes the frame to end the program.

Error Handling For the same reasons we are not creating a graphical interface, we do not
worry about checking input parameters for validity. We assume that when our program is
embedded in a larger system that that system will ensure valid input. For now, we rely on the
user to supply appropriate program arguments.

CRC Cards During the filtering stage, we identified two primary classes to support our
program, the WordFreq class and a “storage” class that we call Container for now. Before
proceeding with scenario analysis, we create preliminary CRC cards for each of these classes.
These cards can be modified during the scenario analysis and design stages. Note that we
intend to use one of our predefined ADTs for the Container class; the scenario analysis
should help us determine which one is the best fit.
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While creating the CRC card for Container we immediately realize that the WordFreq
class must support a compareTo operation, since the Container class needs to compare
WordFreq objects to perform many of its responsibilities. So we add compareTo to the list of
responsibilities for WordFreq.

Class Name: Superclass: Subclasses:

Responsibilities

Main Responsibility:

Collaborations

Store WordFreq objects

Container Object

Create itself

WordFreq

WordFreq

WordFreq

WordFreq

None

Receive a WordFreq object for storage

Receive a WordFreq object and know

whether it already has an object with

the same key, return boolean

Receive a WordFreq object and return

the object it is storing with the same key,

return WordFreq

Provide an alphabetical iteration

through the stored WordFreq objects

Class Name: Superclass: Subclasses:

Responsibilities

Main Responsibility:

Collaborations

Hold a word-frequency pair

WordFreq Object

Create itself(word)

None

None

String

None

Increment its frequency count

Compare itself to another WordFreq

(other WordFreq), return int

Know its information

   Know word, return String

   Know freq, return int
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Scenario Analysis
There really is only one scenario for this problem: read a file, break it into words, process the
words, and output the results. Let’s describe it in algorithmic form:

We need to walk through this algorithm a few times to complete our helper class definitions.
As we walk through it we ask ourselves, at each step, how we could accomplish that step:

• We already know how to handle the input and output.
• We can use Java’s string tokenizer, introduced in Chapter 4’s case study, to break the

input line into words. Note that the string tokenizer class allows us to pass a string of

Get arguments (input, output, minimum size, minimum frequency) from the user
Set up input file for reading
Set up output file for writing
Set up container object
Set numWords to 0
Set numValidWords to 0
Set numValidFreqs to 0

Read a line of input
while not at the end of the input

Break current input line into words
Set current word to the first word from the input line
while there are still words to process

Increment numWords
if current word size is OK

Increment numValidWords
Change word to all lower case
wordToTry = WordFreq(current word)
if wordToTry is already in the container

wordInTree = container.retrieve(wordToTry)
Increment the frequency of wordInTree
Save wordInTree back into the container

else
Insert wordToTry into the container

Set current word to the next word from the input line
Get next line of input

Set up an in order traversal through the container
while there are more WordFreq items

Get the next WordFreq item
if the frequency of the WordFreq item is large enough

Increment numValidFreqs
Output the WordFreq information to the output file

Output the summary statistics to a Frame
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characters to its constructor to use as token delimiters. For this program, we pass it a
string containing all the common punctuation and whitespace characters.

• Setting and incrementing the variables are trivial.
• Checking a word’s size and changing it to lowercase can both be accomplished using

methods of the String class.
• Iterating through the WordFreq items for output just requires using the iteration tools

of whatever data structure we choose for our container. Creating the output does
require the output of “WordFreq information” so we decide to expand the set of
WordFreq operations to include a toString operation—we add this to its CRC card.

That leaves one section of the algorithm for more careful analysis, the section dealing
with the container. Let’s look at it again and decide exactly what container class to use.

The first thing we notice is the repeated access to the container required for each word.
Potentially we have to check the container to see if the word is already there, retrieve the
word from the container, and save the word back into the container. Ignoring the fact that we
are not sure what “save back” means for now, we realize that we should consider efficient
access to the container a high priority. Our input files could have thousands of words, so the
underlying structure can be large. The need for repeated access and searching in a large struc-
ture leads us to choose the binary search tree for our container. This decision means that the
WordFreq class must implement the Comparable interface, so that we can store WordFreq
objects on our tree. We should update the CRC card for WordFreq accordingly.

Now let’s address the “save back” question. The only way we can “save” information in
our tree is to insert it; and our insert operation assumes that no current element matches
the item being inserted. So, to “save back” the WordFreq object we would first have to
delete the previous version of the object and then insert the new version. But, wait a minute.
Do we really have to do that? Remember that our tree stores objects “by reference.” When we
retrieve a WordFreq object from the tree, we are actually retrieving a reference to the
object. If we use that reference to access the object to increment its frequency count, the fre-
quency count of the object in the tree is incremented. We do not have to “save back” the
object at all!

In our discussion of the perils of “store by reference” in the feature section in Chapter 4,
we stated that it is dangerous for the client to use a reference to reach into a data structure
hidden by an ADT and change a data element. However, we also said this is dangerous only if
the change affects the parts of the element used to determine the underlying physical rela-
tionship of the structure. In this case, the structure is based on the word information of a
WordFreq object; we are changing the frequency information. We can reach into the tree and

if wordToTry is already in the container
wordInTree = container.retrieve(wordToTry)
Increment the frequency of wordInTree
Save wordInTree back into the container

else
Insert wordToTry into the container



590 | Chapter 8:  Binary Search Trees

increment the frequency count of one of its elements without affecting the tree’s structure.
So, we can reduce this part of our algorithm to

Can we do anything else to increase the efficiency of the algorithm? To check “if the cur-
rent word is already in the container” we need to use the Binary Search Tree’s isThere oper-
ation. If it returns true, we immediately have to use the retrieve operation to obtain the
reference to the object. Hmmm. We know that the first thing the retrieve operation does is
search the tree to find the item to return . . . but we just searched the tree using the isThere
operation. This seems wasteful, especially since we expect our text files have many repeated
words, and therefore this sequence of operations has to be repeated many times.

This brings up a very important point: There are times when it is not appropriate to use an
off-the-shelf container class. Using library classes—whether provided by Java or your own—
allows you to write more reliable software in a shorter amount of time. These classes are
already tested and debugged. If they fit the needs of your problem, use them. If they do not,
then write a special-purpose method to do the job. In this case, we can extend the Binary
Search Tree class with a new method that suits the purposes of our current problem. Our new
method, find, combines the functionality of the isThere and retrieve methods. It
searches the tree for an element matching its parameter item. If it finds a matching element,
it returns a reference to it ( just like retrieve would do). If it doesn’t find a matching element, it
returns the null reference. This way the client can determine whether or not the item “is
there” by checking whether or not the return value is null. If the item is there, the client can
use the returned reference to access the item. We call our extension of the Binary-
SearchTree class BinarySearchTree2.

With these insights, and changes, the subsection of our algorithm becomes:

We have reduced the number of times the tree is “searched” in order to handle a word that is
already in the tree to 1.

The WordFreq Class The code for the WordFreq class is very straightforward. It is placed in
the package ch08.wordFreqs. A few observations are appropriate. The code corresponding
to these points is emphasized in the listing below.

• The constructor initializes the freq variable to 0. This means that the main program
must increment a WordFreq object before placing it on the tree for the first time. We

wordInTree = container.find(wordToTry)
if (wordInTree == null)

Insert wordToTry into the container
else

Increment the frequency of wordInTree

if wordToTry is already in the container
wordInTree = container.retrieve(wordToTry)
Increment the frequency of wordInTree

else
Insert wordToTry into the container
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could have coded the constructor to set the original frequency to 1, but we think it is
more natural to begin a frequency count at 0. There may be other applications that can
use WordFreq where this would be important.

• Java’s DecimalFormat class allows us to force the string, used for the frequency
count by the toString method, to be at least five characters wide. This helps line up
output information for applications such as our Word Frequency Generator.

//----------------------------------------------------------------------------
// WordFreq.java              by Dale/Joyce/Weems                    Chapter 8
// 
// Defines word-frequency pairs
//----------------------------------------------------------------------------

package ch08.wordFreqs;

import java.text.DecimalFormat;

public class WordFreq implements Comparable
{
private String word;
private int freq;

DecimalFormat fmt = new DecimalFormat("00000");

public WordFreq(String newWord)
{
word = newWord;
freq = 0;
}

public void inc()
{
freq = freq + 1;

}

public int compareTo(Object otherWordFreq)
{
WordFreq other = (WordFreq)otherWordFreq;
return this.word.compareTo(other.word);
}

public String toString()
{
return(fmt.format(freq) + " " + word);

}
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public String wordIs()
{
return word;

}

public int freqIs()
{
return freq;

}
}

The BinarySearchTree2 Class This class extends our current binary search tree class, adding
the find method identified in the scenario analysis section above. Our program can instantiate
objects of the class BinarySearchTree2 and have access to all of the capabilities of our
Binary Search Tree ADT plus the new Find operation. The find method calls the recursive
recFind method that does most of the work.

//----------------------------------------------------------------------------
// BinarySearchTree2.java          by Dale/Joyce/Weems               Chapter 8
// 
// Adds a method 'find' to the BinarySearchTree ADT
//----------------------------------------------------------------------------

package ch08.trees;

public class BinarySearchTree2 extends BinarySearchTree
{
private Comparable recFind(Comparable item, BSTNode tree)
// Returns reference to tree element that matches item
// If no match exists, returns null
{
if (tree == null)
return null;                            // Item is not found

else if (item.compareTo(tree.info) < 0)
return recFind(item, tree.left);        // Search left subtree

else if (item.compareTo(tree.info) > 0)
return recFind(item, tree.right);       // Search right subtree

else
return tree.info;                       // Item is found

}

public Comparable find (Comparable item)
// Returns reference to this tree's element that matches item
// If no match exists, returns null
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{
return recFind(item, root);

}
}

The Word Frequency Generator Program The main program is provided by the Frequency-
List class. It follows the same input/output pattern as our test drivers. The main processing
implements the algorithm developed in the Scenario Analysis section above.

//----------------------------------------------------------------------------
// FrequencyList.java            by Dale/Joyce/Weems                 Chapter 8
// 
// Creates a word frequency list of the words listed in the input file
// Writes the list to the output file
// Does not process words less than minSize in length
// Does not output words unless their frequency is at least minFreq
// Command-line parameters are assumed valid, as follows:
//   first: input file name
//   second: output file name
//   third: value of minSize
//   four: value of minFreq
//----------------------------------------------------------------------------

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import java.util.StringTokenizer;
import ch08.trees.*;
import ch08.wordFreqs.*;

public class FrequencyList
{
private static Frame outputDisplay;

public static void main(String[] args) throws IOException
{
String inLine = null;
String word;
WordFreq wordToTry;
WordFreq wordInTree;
WordFreq wordFromTree;

BinarySearchTree2 tree = new BinarySearchTree2();
StringTokenizer tokenizer;
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int numWords = 0;
int numValidWords = 0;
int numValidFreqs = 0;
int treeSize;

// Get file name arguments from command line as entered by user
String dataFileName = args[0];
String outFileName  = args[1];

BufferedReader dataFile = new BufferedReader(new FileReader(dataFileName));
PrintWriter outFile = new PrintWriter(new FileWriter(outFileName));

// Get word and freq limits from command line as entered by user
int minSize = Integer.parseInt(args[2]);
int minFreq = Integer.parseInt(args[3]);

inLine = dataFile.readLine();
while (inLine != null)
{
tokenizer = new StringTokenizer(

inLine, " \t\n\r\\\"![at]#$&*()_-+={}[]:;'<,>.?/");
while (tokenizer.hasMoreTokens())
{
word = tokenizer.nextToken();
numWords = numWords + 1;
if (word.length() >= minSize)
{
numValidWords = numValidWords + 1;
word = word.toLowerCase();
wordToTry = new WordFreq(word);

wordInTree = (WordFreq)tree.find(wordToTry);
if (wordInTree == null)
{
// Insert new word into tree
wordToTry.inc();               // Set frequency to 1
tree.insert(wordToTry);

}
else
{
// Word already in tree; just increment frequency
wordInTree.inc();

}
}

}
inLine = dataFile.readLine();

}
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treeSize = tree.reset(BinarySearchTree.INORDER);
outFile.println("The words of length " + minSize + " and above,");
outFile.println("with frequency counts of " + minFreq + " and above:");
outFile.println();
outFile.println("Freq  Word");
outFile.println("–-- –––––--");
for (int count = 1; count <= treeSize; count++)
{
wordFromTree = (WordFreq) tree.getNextItem(BinarySearchTree.INORDER);
if (wordFromTree.freqIs() >= minFreq)
{
numValidFreqs = numValidFreqs + 1;
outFile.println(wordFromTree);

}
}

// Close files
dataFile.close();
outFile.close();

// Set up output frame
JFrame outputFrame = new JFrame();
outputFrame.setTitle("Frequency List Generator");
outputFrame.setSize(400,100);
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Instantiate content pane and information panel
Container contentPane = outputFrame.getContentPane();
JPanel infoPanel      = new JPanel();

// Set layout
infoPanel.setLayout(new GridLayout(4,1));

// Create labels
JLabel numWordsInfo = new JLabel(numWords + " words in the input file.  ");
JLabel numValidWordsInfo =
new JLabel(numValidWords + " of them are at least " + minSize + 

" characters.");
JLabel numValidFreqsInfo =
new JLabel(numValidFreqs + " of these occur at least " + minFreq + 

" times.");
JLabel finishedInfo =
new JLabel("Program completed. Close window to exit program.");

// Add information
infoPanel.add(numWordsInfo);
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infoPanel.add(numValidWordsInfo);
infoPanel.add(numValidFreqsInfo);
infoPanel.add(finishedInfo);
contentPane.add(infoPanel);

// Show information
outputFrame.show();

}
}

Testing This program should first be tested using small files, where it is easy for us to
determine the expected output. The fact that the parameters for the program are passed
through command-line arguments makes it easy for us to test the program on a series of input
files, with varying minimum word sizes and frequency counts. Figure 8.24 shows the results of

Figure 8.26 Example of a run of the Word Frequency Generator program

    

File: chapter8.txt

            

File: ch8out.txt

  Screen

Command:  java  FrequencyList   chapter8.txt ch8out.txt  12  7

8
Binary Search Trees
GOALS
Measurable goals for this chapter include that
you should be able to

* define and use the following terminology:
o binary tree
o binary search tree
o root
o parent
o child
o ancestor
o descendant
o level

The words of length 12 and above,
with frequency counts of 7 and above:

Freq  Word
----- -----------------
00020 binarysearchtree
00010 bstinterface
00009 hippopotamus
00018 implementation
00024 numberofnodes
00008 postcondition
00033 recnumberofnodes
00008 serializable
00007 specification

etc.
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running the program on a text file version of this chapter of the textbook, at least the current
draft of this chapter. The minimum word size was set to 12 and the minimum frequency count
was set to 7. Note that the output file contains the word “hippopotamus”! “Hippopotamus” is
a strange word to occur so often in a computing chapter.

Summary
In this chapter we have seen how the binary tree may be used to structure sorted infor-
mation to reduce the search time for any particular element. For applications in which
direct access to the elements in a sorted structure is needed, the binary search tree is a
very useful data type. If the tree is balanced, we can access any node in the tree with an
O(log2N ) operation. The binary search tree combines the advantages of quick random-
access (like a binary search on a linear list) with the flexibility of a linked structure.

We also saw that the tree operations could be implemented very elegantly and con-
cisely using recursion. This makes sense, because a binary tree is itself a “recursive”
structure: Any node in the tree is the root of another binary tree. Each time we moved
down a level in the tree, taking either the right or left path from a node, we cut the size
of the (current) tree in half, a clear case of the smaller-caller.

We also discussed a tree balancing approach and a structuring approach that uses
arrays. Finally, we presented a case study that used an extension of our Binary Search
Tree ADT.

Summary of Classes and Support Files
The classes and files are listed in the order in which they appear in the text. The pack-
age a class belongs to, if any, is listed in parenthesis under Notes. The class and sup-
port files are available on our web site. They can be found in the ch08 subdirectory of
the bookFiles directory.

Classes, Interfaces, and Support Files Defined in Chapter 8

File 1st Ref. Notes

BSTInterface.java page 541 (ch08.trees) Specifies our Binary Search Tree ADT

BinarySearchTree.java page 544 (ch08.trees) Reference-based implementation of our
Binary Search Tree

TDBinarySearchTree.java page 572 Test driver for BinarySearchTree

WordFreq.java page 591 (ch08.wordFreqs) Used to hold word-frequency pairs
for the case study

BinarySearchTree2.java page 592 (ch08.trees) Extends BinarySearchTree with a
find method, for use in the case study

FrequencyList.java page 593 The Word-Frequency Generator program from the case
study
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Library Classes Used in Chapter 8 for the First Time

Class/Interface 
Name Package Overview Methods Used Where Used

Comparable.java lang Objects of classes that compareTo Tree classes
implement this interface 
can be compared to each 
other

Below is a list of the Java Library Interface that was used in this chapter for the first
time in the textbook. For more information about the library classes and methods the
reader can study Sun’s Java documentation.

Exercises
8.1 Trees

1. Binary Tree Levels:

a. What does the level of a binary search tree mean in relation to the searching
efficiency?

b. What is the maximum number of levels that a binary search tree with 100
nodes can have?

c. What is the minimum number of levels that a binary search tree with 100
nodes can have?

2. Which of these formulas gives the maximum total number of nodes in a tree that
has N levels? (Remember that the root is Level 0.)

a. N 2 � 1

b. 2N

c. 2N�1 � 1

d. 2N�1

3. Which of these formulas gives the maximum number of nodes in the Nth level of
a binary tree?

a. N 2

b. 2N

c. 2N�1

d. 2N � 1

4. How many ancestors does a node in the Nth level of a binary search tree have?

5. How many different binary trees can be made from three nodes that contain the
key values 1, 2, and 3?
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6. How many different binary search trees can be made from three nodes that con-
tain the key values 1, 2, and 3?

7. Draw all the possible binary trees that have four leaves and all the nonleaf nodes
that have two children.

8. Answer the following questions about treeA.

a. What are the ancestors of node P?

b. What are the descendants of node K?

c. What is the maximum possible number of nodes at the level of node W?

d. What is the maximum possible number of nodes at the level of node N?

e. What is the order in which the nodes are visited by an inorder traversal?

f. What is the order in which the nodes are visited by a preorder traversal?

g. What is the order in which the nodes are visited by a postorder traversal?

23 30 61 64

59

11 6229

•treeB 56

47 69

22 49
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9. Answer the following questions about treeB.

a. What is the height of the tree?

b. What nodes are on level 3?

c. Which levels have the maximum number of nodes that they could contain?

d. What is the maximum height of a binary search tree containing these nodes?
Draw such a tree.

e. What is the minimum height of a binary search tree containing these nodes?
Draw such a tree.

f. What is the order in which the nodes are visited by an inorder traversal?

g. What is the order in which the nodes are visited by a preorder traversal?

h. What is the order in which the nodes are visited by a postorder traversal?

10. True or False?

a. A preorder traversal of a binary search tree processes the nodes in the tree in
the exact reverse order that a postorder traversal processes them.

b. An inorder traversal of a binary search tree always processes the elements of
the tree in the same order, regardless of the order in which the elements were
inserted.

c. A preorder traversal of a binary search tree always processes the elements
of the tree in the same order, regardless of the order in which the elements
were inserted.

8.2 The Logical Level
11. Describe the differences between our specifications of the Sorted List ADT and

the Binary Search Tree ADT.

12. Suppose you decide to change our Binary Search Tree to allow duplicate ele-
ments. How would you have to change the Binary Search Tree specifications?

13. Our binary search trees hold elements of type Comparable. What would be the
consequences of changing this to the type Listable?

14. List six Java Library classes that implement the Comparable interface. (The
answer is not in this textbook—it requires research!)

15. Lots of preconditions are stated for the Binary Search Tree operations defined in
the BSTInterface interface. Describe an alternative approach to using all of
these preconditions.

8.3 The Application Level
16. Write a client method that returns a count of the number of nodes of a binary

search tree that contain a value less than or equal to the parameter value. The
signature of the method is:

int countLess(BinarySearchTree tree, Comparable maxValue)
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17. Write a client method that returns a reference to the information in the node
with the “smallest” value in a binary search tree. The signature of the method is:

Comparable min(BinarySearchTree tree)

18. Write a client method that returns a reference to the information in the node
with the “largest” value in a binary search tree. The signature of the method is:

Comparable max(BinarySearchTree tree)

8.4 The Implementation Level—Declarations and Simple Operations
19. Extend the Binary Search Tree ADT to include a public method leafCount that

returns the number of leaf nodes in the tree.

20. Extend the Binary Search Tree ADT to include a public method singleParent-
Count that returns the number of nodes in the tree that have only one child.

21. The Binary Search Tree ADT is extended to include a boolean method simi-
larTrees that receives references to two binary trees and determines if the
shapes of the trees are the same. (The nodes do not have to contain the same
values, but each node must have the same number of children.)

a. Write the declaration of method similarTrees. Include adequate comments.

b. Write the body of method similarTrees.

8.5 Iterative Versus Recursive Method Implementations
22. Use the Three-Question Method to verify the recursive version of the num-

berOfNodes method.

23. We need a public method for our Binary Search Tree ADT that returns a reference
to the information in the node with the “smallest” value in the tree. The signature
of the method is:

public Comparable min()

a. Design an iterative version of the method.

b. Design a recursive version of the method.

c. Which approach is better? Explain.

24. We need a public method for our Binary Search Tree ADT that returns a reference
to the information in the node with the “largest” value in the tree. The signature
of the method is:

public Comparable max()

a. Design an iterative version of the method.

b. Design a recursive version of the method.

c. Which approach is better? Explain.
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25. We need a public method for our Binary Search Tree ADT that returns a count of
the number of nodes of the tree that contain a value less than or equal to the
parameter value. The signature of the method is:

public int countLess(Comparable maxValue)

a. Design an iterative version of the method.

b. Design a recursive version of the method.

c. Which approach is better? Explain.

8.6 The Implementation Level—More Operations
26. The BinarySearchTree class used a queue as an auxiliary storage structure for

iterating through the elements in the tree. Discuss the relative merits of using a
dynamically allocated array-based queue versus a dynamically allocated linked
queue.

27. Show what treeA (page 599) would look like after each of the following changes.
(Use the original tree to answer each part.)

a. Add node C.

b. Add node Z.

c. Add node X.

d. Delete node M.

e. Delete node Q.

f. Delete node R.

28. Draw the binary search tree whose elements are inserted in the following order:

50  72  96  94  107  26  12  11  9  2  10  25  51  16  17  95

Exercises 29–31 use treeB (page 599).

29. Trace the path that would be followed in searching for

a. a node containing 61.

b. a node containing 28.

30. Show how treeB would look after the deletion of 29, 59, and 47.

31. Show how the (original) treeB would look after the insertion of nodes containing
63, 77, 76, 48, 9, and 10 (in that order).

32. The key of each node in a binary search tree is a short character string.

a. Show how such a tree would look after the following words were inserted (in
the order indicated):

“hippopotamus” “canary” “donkey” “deer” “zebra” “yak” “walrus” “vulture”
“penguin” “quail”
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b. Show how the tree would look if the same words were inserted in this order:

“quail” “walrus” “donkey” “deer” “hippopotamus” “vulture” “yak” “penguin”
“zebra” “canary”

c. Show how the tree would look if the same words were inserted in this order:

“zebra” “yak” “walrus” “vulture” “quail” “penguin” “hippopotamus” “donkey”
“deer” “canary”

Examine the following binary search tree and answer the questions in Exercises
33–36. The numbers on the nodes are labels so that we can talk about the nodes;
they are not key values within the nodes.

33. If an item is to be inserted whose key value is less than the key value in node 1
but greater than the key value in node 5, where would it be inserted?

34. If node 1 is to be deleted, the value in which node could be used to replace it?

35. 4 2 7 5 1 6 8 3 is a traversal of the tree in which order?

36. 1 2 4 5 7 3 6 8 is a traversal of the tree in which order?

8.7 Comparing Binary Search Trees to Linear Lists
37. One hundred integer elements are chosen at random and inserted into a sorted

linked list and a binary search tree. Describe the efficiency of searching for an
element in each structure, in terms of Big-O.

38. One hundred integer elements are inserted in order, from smallest to largest, into
a sorted linked list and a binary search tree. Describe the efficiency of searching
for an element in each structure, in terms of Big-O.

39. Write a client boolean method matchingItems that determines if a binary
search tree and a sorted list contain the same values. Assume that the tree and
the list both store Listable elements. The signature of the method is:

boolean matchingItems(BinarySearchTree tree, SortedList list)

6

87

1

2 3

4 5



604 | Chapter 8:  Binary Search Trees

40. In Chapter 6 we discussed how a linked list could be stored in an array of nodes
using index values as “references” and managing our list of free nodes. We can
use these same techniques to store the nodes of a binary search tree in an array,
rather than using dynamic storage allocation. Free space is linked through the
left member.

a. Show how the array would look after these elements had been inserted in this
order:

Q  L  W  F  M  R  N  S

Be sure to fill in all the spaces. If you do not know the contents of a space,
use ‘?’.

b. Show the contents of the array after ‘B’ has been inserted and ‘R’ has been
deleted.

[0]

nodes .info .left .right

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

free

root



8.8 Balancing a Binary Search Tree
41. Show the tree that would result from storing the nodes of the tree in Figure

8.20(a) in postorder order into an array, and then traversing the array in index
order while inserting the nodes into a new tree.

42. Using the Balance algorithm, show the tree that would be created if the follow-
ing values represented the inorder traversal of the original tree

a. 3   6    9   15   17   19   29

b. 3   6    9   15   17   19   29   37

43. Revise our BSTInterface interface and BinarySearchTree class to include
the balance method. How can you test your revision?

8.9 A Nonlinked Representation of Binary Trees
44. Consider the following trees.

a. Which fulfill the binary search tree property?

[0]

nodes .info .left .right

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

free

root
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b. Which are complete?

c. Which are full?

65

27

26

50

42

12 4

(a)

(b)

(c)

(d)

(e)

(f)

19

tree

46

14

916

tree tree

50

46

2

37

35

12 8

19 11

tree

50

48

45

49

44

40 41

46

4342

47

tree

32

5 8

50

40

20

tree

40

20

2

1 3
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45. The elements in a binary tree are to be stored in an array, as described in the
section. Each element is a nonnegative int value.

a. What value can you use as the dummy value, if the binary tree is not com-
plete?

b. Show the contents of the array, given the tree illustrated below.

44 60

tree
.numElements
.elements

tree

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

26

14 38

1 33 50

7 35
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46. The elements in a complete binary tree are to be stored in an array, as described
in the section. Each element is a nonnegative int value. Show the contents of
the array, given the tree illustrated below.

tree
.numElements
.elements

tree[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

60

53 3

49 146 2

1648 25 40
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47. Given the array pictured below, draw the binary tree that can be created from its
elements. (The elements are arranged in the array as discussed in the section.)

48. A complete binary tree is stored in an array called treeNodes, which is indexed
from 0 to 99, as described in the section. The tree contains 85 elements. Mark
each of the following statements as True or False, and explain your answers.

a. treeNodes[42] is a leaf node.

b. treeNodes[41] has only one child.

c. The right child of treeNodes[12] is treeNodes[25].

d. The subtree rooted at treeNodes[7] is a full binary tree with four levels.

e. The tree has seven levels that are full, and one additional level that contains
some elements.

8.10 Word Frequency Generator—A Case Study
49. You wouldn’t expect to find the word “hippopotamus” very often in a computer

book. After all, a hippopotamus is an animal, not a data structure. Yet the word
“hippopotamus” does appear many times in this chapter alone. How many times
does the word “hippopotamus” appear in this chapter?

tree.numElements
tree.elements

9

[0] 15

[1] 10

[2] 12

[3] 3

[4] 47

[5] 8

[6] 3

[7] 20

[8] 17

[9] 8
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50. We want the Word Frequency Generator program to output one additional piece
of information, the number of unique words in the input file.

a. Describe two separate ways you could solve this problem, that is, two ways to
handle the additional words the program now must track.

b. Which approach do you believe is better? Why?

c. Implement the change.

51. Design and create a graphical user interface for the Word Frequency Generator
using

a. The graphical components used in previous case studies

b. Use JSlider objects to obtain the word size and frequency minimums from
the user.

c. Use JFileChooser objects to obtain the input and output file names from
the user.
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Measurable goals for this chapter include that you should be able to

describe a priority queue at the logical level and discuss alternate implementation approaches

define a heap and the operations reheap up and reheap down

implement a priority queue as a heap

describe the shape and order properties of a heap, and implement a heap using a nonlinked tree
representation of an array

compare the implementations of a priority queue using a heap, linked list, and binary search tree

define the following terms related to graphs:

directed graph complete graph

undirected graph weighted graph

vertex adjacency matrix

edge adjacency list

path

implement a graph using an adjacency matrix to represent the edges

explain the difference between a depth-first and a breadth-first search and implement these
searching strategies using stacks and queues for auxiliary storage

implement a shortest-paths operation, using a priority queue to access the edge with the mini-
mum weight

save an object or structure to a file from one program and retrieve it for use in another program

Priority Queues,
Heaps, and Graphs

G
oals
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So far, we have examined several basic data structures in depth, discussing their uses
and operations, as well as one or more implementations of each. As we have constructed
these programmer-defined data structures out of the built-in types provided by our
high-level language, we have noted variations that adapt them to the needs of different
applications. In Chapter 8 we looked at how a tree structure, the binary search tree,
facilitates searching data stored in a linked structure. In this chapter we see how other
branching structures are defined and implemented to support a variety of applications.

9.1 Priority Queues

A priority queue is an abstract data type with an interesting accessing protocol. Only
the highest-priority element can be accessed. “Highest priority” can mean different
things, depending on the application. Consider, for example, a small company with one
secretary. When employees leave work on the secretary’s desk, which jobs get done
first? The jobs are processed in order of the employee’s importance in the company; the
secretary completes the president’s work before starting the vice-president’s, and does
the marketing director’s work before the work of the staff programmers. The priority of
each job relates to the level of the employee who initiated it.

In a telephone answering system, calls are answered in the order that they are
received; that is, the highest-priority call is the one that has been waiting the longest.
Thus, a FIFO queue can be considered a priority queue whose highest-priority element is
the one that has been queued the longest time.

Sometimes a printer shared by a number of computers is configured to always print
the smallest job in its queue first. This way, someone who is only printing a few pages
does not have to wait for large jobs to finish. For such printers, the priority of the jobs
relates to the size of the job; shortest job first.

Priority queues are useful for any application that involves processing items by
priority.

Logical Level

The operations defined for the Priority Queue ADT include enqueing items and dequeing
items, as well as testing for an empty or full priority queue. These operations are very
similar to those specified for the FIFO queue discussed in Chapter 4. The enqueue opera-
tion adds a given element to the priority queue. The dequeue operation removes the
highest-priority element from the priority queue and returns it to the user. The difference
is that the Priority Queue does not follow the “first in, first out” approach; the Priority
Queue always returns the highest priority item from the current set of enqueued items,
no matter when it was enqueued. Here is the specification, as a Java interface named
PriQueueInterface (note that it is in a package called ch09.priorityQueues.)

//----------------------------------------------------------------------------
// PriQueueInterface.java          by Dale/Joyce/Weems               Chapter 9
// 
// Interface for a class that implements a priority queue of Comparable Objects
//----------------------------------------------------------------------------
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package ch09.priorityQueues;

public interface PriQueueInterface
// Interface for a class that implements a priority queue of Comparable Objects
{
public boolean isEmpty();
// Effect:         Determines whether this priority queue is empty
// Postcondition:  Return value = (this priority queue is empty)

public boolean isFull();
// Effect:         Determines whether this priority queue is full
// Postcondition:  Return value = (priority queue is full)

public void enqueue(Comparable item);
// Effect:         Adds item to this priority queue
// Postconditions: If (this priority queue is full)
//                   an unchecked exception that communicates 'enqueue
//                   on priority queue full' is thrown
//                 Else
//                   item is in this priority queue

public Comparable dequeue();
// Effect:         Removes element with highest priority from this
//                   priority queue and returns a reference to it
// Postconditions: If (this priority queue is empty)
//                   an unchecked exception that communicates 'dequeue
//                   on empty priority queue' is thrown
//                 Else
//                   Highest priority element has been removed.
//                   Return value = (the removed element)

}

A few notes based on the specification:

• Our Priority Queues hold objects of type Comparable, just as our Binary Search
Trees do. This allows us to rank the items by priority.

• Our Priority Queues can hold duplicate items, that is, items with the same key value.
• We implement Priority Queues “by reference.” For example, note that the

enqueue operation’s effect is “adds item to this priority queue” and not “adds
copy of item to this priority queue.”

• Attempting to enqueue an item into a full priority queue, or dequeue an item
from an empty priority queue, causes an unchecked exception to be thrown.

We define the exceptions using the standard approach established in Chapter 4.
Here are the definitions of the two exception classes used by our priority queue class:
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package ch09.priorityQueues;

class PriQUnderflowException extends RuntimeException
{
public PriQUnderflowException()
{
}

public PriQUnderflowException(String message)
{
super(message);

}
}

package ch09.priorityQueues;

class PriQOverflowException extends RuntimeException
{
public PriQOverflowException()
{
}

public PriQOverflowException(String message)
{
super(message);

}
}

Application Level

In discussing FIFO queue applications in Chapter 4, we said that the operating system of
a multi-user computer system may use job queues to save user requests in the order in
which they are made. Another way such requests may be handled is according to how
important the job request is. That is, the head of the company might get higher priority
than the junior programmer. Or an interactive program might get higher priority than a
job to print out a report that isn’t needed until the next day. To handle these requests
efficiently, the operating system may use a priority queue.

Priority queues are also useful in sorting. Given a set of elements to sort, we can
enqueue the elements into a priority queue, and then dequeue them in sorted order
(from largest to smallest). We look more at how priority queues can be used in sorting
in Chapter 10.

Implementation Level

There are many ways to implement a priority queue. In any implementation, we want to
be able to access the element with the highest priority quickly and easily. Let’s briefly
consider some possible approaches:
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1Heap is also a synonym for the free store of a computer—the area of memory available for dynamically allo-
cated data. The heap as a data structure is not to be confused with this unrelated computer system concept of
the same name.

An Unsorted List
Enqueing an item would be very easy. Simply insert it at the end of the list. However,
dequeing would require searching through the entire list to find the largest element.

An Array-Based Sorted List
Dequeing is very easy with this approach. Simply return the last list element and reduce
the size of the list; dequeue is a O(1) operation. Enqueing however would be more
expensive; we have to find the place to enqueue the item (O(log2N ) if we use binary
search) and rearrange the elements of the list after removing the item to return (O(N )).

A Reference-Based Sorted List
Let’s assume the linked list is kept sorted from largest to smallest. Dequeing simply
requires removing and returning the first list element, an operation that only requires a
few steps. But enqueing again is O(N ) since we must search the list one element at a
time to find the insertion location.

A Binary Search Tree
For this approach, the enqueue operation is implemented as a standard binary search
tree insert operation. We know that requires O(log2N ) steps on average. Assuming we
have access to the underlying implementation structure of the tree, we can implement
the dequeue operation by returning the rightmost tree element. We follow the right
subtree references down, maintaining a trailing reference as we go, until we reach a
node with an empty right subtree. The trailing reference allows us to “unlink” the node
from the tree. We then return the node. This is also a O(log2N ) operation on average.

The binary tree approach is the best—it only requires, on average, O(log2N ) steps for
both enqueue and dequeue. However, if the tree is skewed the performance degener-
ates to O(N ) steps for each operation. In the next section we present an approach, called
the heap, that guarantees O(log2N ) steps, even in the worst case.

9.2 Heaps

A heap1 is an implementation of a Priority
Queue that uses a binary tree that satisfies
two properties, one concerning its shape and
the other concerning the order of its elements.
The shape property is simply stated: the tree
must be a complete binary tree (see Section
8.9). The order property says that, for every node in the tree, the value stored in that
node is greater than or equal to the value in each of its children.

It might be more accurate to call this structure a “maximum heap,” since the root node
contains the maximum value in the structure. It is also possible to create a “minimum

Heap An implementation of a Priority Queue based
on a complete binary tree, each of whose elements
contains a value that is greater than or equal to the
value of each of its children
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heap,” each of whose elements contains a value that is less than or equal to the value of
each of its children. The term heap is used for both the abstract data type—the Priority
Queue implementation—and for the underlying structure, the tree that fulfills the shape and
order properties.

Figure 9.1 shows two trees containing the letters ‘A’ through ‘J’ that fulfill both the
shape and order properties. Notice that the placement of the values differs in the two
trees, but the shape is the same: a complete binary tree of ten elements. Note also that
the two trees have the same root node. A group of values can be stored in a binary tree
in many ways and still satisfy the order property of heaps. Because of the shape property,
we know that the shape of all heap trees with a given number of elements is the same.
We also know, because of the order property, that the root node always contains the

Figure 9.1 Two heaps containing the letters ‘A’ through ‘J’
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largest value in the tree. This helps us implement an efficient dequeue operation. Finally,
note that every subtree of a heap is also a heap.

Let’s say that we want to dequeue an element from the heap, in other words, we
want to remove and return the element with the largest value from the tree. The largest
element is in the root node, so we can easily remove it, as illustrated in Figure 9.2(a).

Figure 9.2 The reheapDown operation

(a)

(b)

(c)

heap

Still a heap

Still a heap

Remove J

H I

D G F A

B C E

J

heap

H I

D G F A

B C E

E

heap

H F

D G E A

B C

I



618 | Chapter 9:  Priority Queues, Heaps, and Graphs

But this leaves a hole in the root position. Because the heap’s tree must be complete, we
decide to fill the hole with the bottom rightmost element from the tree; now the struc-
ture satisfies the shape property (Figure 9.2b). However, the replacement value came
from the bottom of the tree, where the smaller values are; the tree no longer satisfies the
order property of heaps.

This situation suggests one of the standard heap-support operations. Given a binary
tree that satisfies the heap properties, except that the root position is empty, insert an
item into the structure so that it is again a heap. This operation, called reheapDown,
involves starting at the root position and moving the “hole” (the empty position) down,
while moving tree elements up, until finding a position for the hole where the item can
be inserted (see Figure 9.2c). We say that we swap the hole with one of its children. The
reheapDown operation has the following specification.

reheapDown (item)

Effect: Adds item to the heap.
Precondition: The root of the tree is empty.
Postcondition: item is in the heap.

To dequeue an element from the heap, we remove and return the root element,
remove the bottom rightmost element, and then pass the bottom rightmost element to
reheapDown, to restore the heap.

Now let’s say that we want to enqueue an element to the heap—where do we put it?
The shape property tells us that the tree must be complete, so we put the new element in
the next bottom rightmost place in the tree, as illustrated in Figure 9.3(a). Now the
shape property is satisfied, but the order property may be violated. This situation illus-
trates the need for another heap-support operation. Given a binary tree that satisfies the
heap properties, except that the last position is empty, insert a given item into the struc-
ture so that it is again a heap. Instead of inserting the item in the next bottom rightmost
position in the tree, we imagine we have another hole there. We then float the hole
position up the tree, while moving tree elements down, until the hole is in a position
(see Figure 9.3b) that allows us to legally insert the item. This operation is called
reheapUp. Here is the specification.

reheapUp (item)

Effect: Adds item to the heap.
Precondition: The last index position of the tree is empty.
Postcondition: item is on the heap.
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Heap Implementation

Although we have graphically depicted heaps as binary trees with nodes and links, it
would be very impractical to implement the heap operations using the usual linked-
tree representation. The shape property of heaps tells us that the binary tree is com-
plete, so we know that it is never unbalanced. Thus, we can easily store the tree in an
array with implicit links, as discussed in Section 8.9, without wasting any space. Figure
9.4 shows how the values in a heap would be stored in this array representation. If a
heap with numElements elements is implemented this way, the shape property says
that the heap elements are stored in numElements consecutive slots in the array, with
the root element in the first slot (index 0) and the last leaf node in the slot with index
numElements – 1.

Figure 9.3 The reheapUp operation
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Figure 9.4 Heap values in an array representation
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Recall that when we use this representation of a binary tree, the following relation-
ships hold for an element at position index:

• If the element is not the root, its parent is at position (index – 1) / 2.
• If the element has a left child, the child is at position (index * 2) + 1.
• If the element has a right child, the child it is at position (index * 2) + 2.

These relationships allow us to efficiently calculate the parent, left child, or right child
of any node! And since the tree is complete we do not waste space using the array rep-
resentation. Time efficiency and space efficiency! We make use of these features in our
heap implementation.

Here is the beginning of our Heap class. As you can see, it implements
PriQueueInterface. Since it implements a priority queue, we placed it in the
ch09.priorityQueues package. Also note that the only constructor requires an inte-
ger argument, used to set the size of the underlying array. The isEmpty and isFull
operations are trivial.

//----------------------------------------------------------------------------
// Heap.java                by Dale/Joyce/Weems                      Chapter 9
// 
// Defines all constructs for a heap of Comparable objects
// The dequeue method returns the largest value in the heap
//----------------------------------------------------------------------------

package ch09.priorityQueues;

public class Heap implements PriQueueInterface
{
private Comparable[] elements;  // Array that holds priority queue elements
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private int lastIndex;          // Index of last element in priority queue
private int maxIndex;           // Index of last position in array

// Constructor
public Heap(int maxSize)
{
elements = new Comparable[maxSize];
lastIndex = –1;
maxIndex = maxSize – 1;

}

public boolean isEmpty()
// Determines whether this priority queue is empty
{
return (lastIndex == –1);

}

public boolean isFull()
// Determines whether this priority queue is full
{
return (lastIndex == maxIndex);

}
...
}

The enqueue Method

We next look at the enqueue method. It is the simpler of the two transformer methods.
If we assume the existence of a reheapUp helper method, as specified previously, the
enqueue method is:

public void enqueue(Comparable item) throws PriQOverflowException
// Adds item to this priority queue
// Throws PriQOverflowException if priority queue already full
{
if (lastIndex == maxIndex)
throw new PriQOverflowException("Priority queue is full");

else
{
lastIndex = lastIndex + 1;
reheapUp(item);

}
}
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If the array is already full, we throw the appropriate exception. Otherwise, we increase
the lastIndex value and call the reheapUp method. Of course, the reheapUp method
is doing all of the interesting work. Let’s look at it more closely.

The reheapUp algorithm starts with a tree whose last node is empty; we continue to
call this empty node the hole. We swap the hole up the tree until it reaches a spot where
the item argument can be placed into the hole without violating the order property of
the heap. While the hole moves up the tree, the elements it is replacing move down the
tree, filling in the previous location of the hole. This is illustrated in Figure 9.5.

Note that the sequence of nodes between a leaf and the root of a heap can be
viewed as a sorted linked list. This is guaranteed by the heap’s order property. The
reheapUp algorithm is essentially inserting an item into this sorted linked list. As we

Figure 9.5 The reheapUp operation in action
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reheapUp(item)
Set hole to lastIndex.
while (the hole is not the root) And (item > the hole’s parent.info( ))

Swap hole with hole’s parent
Set hole.info to item

progress from the leaf to the root along this path, we compare the value of item with
the value in the hole’s parent node. If the parent’s value is smaller, we cannot place
item into the current hole, since the order property would be violated, so we move the
hole up. Moving the hole up really means copying the value of the hole’s parent into
the hole’s location. Now the parent’s location is available and it becomes the new hole.
We repeat this process until (1) the hole is the root of the heap, or (2) item’s value is
less than or equal to the value in the hole’s parent node. In either case, we can now
safely copy item into the hole’s position.

Here’s the algorithm:

This algorithm requires us to be able to quickly find a given node’s parent. This appears
difficult, based on our experiences with references that can only be traversed in one
direction. But, as we saw earlier, it is very simple with our implicit link implementation:

• If the element is not the root its parent is at position (index – 1) / 2.

Here is the code for the reheapUp method:

private void reheapUp(Comparable item)
// Current lastIndex position is empty
// Inserts item into the tree and maintains shape and order properties
{
int hole = lastIndex;
while ((hole > 0)                                       // Hole is not root

&&                                               // Short circuit
(item.compareTo(elements[(hole – 1) / 2]) > 0))  // item > hole's 

//  parent
{
elements[hole] = elements[(hole – 1) / 2];  // Move hole's parent down
hole = (hole – 1) / 2;                      // Move hole up

}
elements[hole] = item;                        // Place item into final hole

}
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This method takes advantage of the short circuit nature of Java’s && operator. If the cur-
rent hole is the root of the heap then the first half of the while loop control expression

(hole > 0)

is false and the second half

(item.compareTo(elements[(hole – 1) / 2]) > 0))

is not evaluated. If it was evaluated in that case, it would cause a run-time “array access
out of bounds” error.

The dequeue Method

Finally, we look at the dequeue method. As for enqueue, if we assume the existence of the
helper method, in this case the reheapDown method, the dequeue method is very simple:

public Comparable dequeue() throws PriQUnderflowException
// Removes element with highest priority from this priority queue
//  and returns a reference to it
// Throws PriQUnderflowException if priority queue is empty
{
Comparable hold;      // Item to be dequeued and returned
Comparable toMove;    // Item to move down heap

if (lastIndex == –1)
throw new PriQUnderflowException("Priority queue is empty");

else
{
hold = elements[0];            // Remember item to be returned
toMove = elements[lastIndex];  // Item to reheap down
lastIndex = lastIndex – 1;     // Decrease priority queue size
reheapDown(toMove);            // Restore heap properties
return hold;                   // Return largest element

}

If the array is empty, we throw the appropriate exception. Otherwise, we first make a
copy of the root element (the maximum element in the tree), so that we can return it to
the client program when we are finished. We also make a copy of the element in the
“last” array position. Recall that this is the element we use to move into the hole
vacated by the root element, so we call it the toMove element. We decrement the
lastIndex variable to reflect the new bounds of the array and pass the toMove ele-
ment to the reheapDown method. If that method does its job, the only thing remaining
to do is to return the saved value of the previous root element (hold) to the client.
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Let’s look at the reheapDown algorithm more closely. In many ways, it is similar to
the reheapUp algorithm. In both cases, we have a “hole” in the tree and an item to be
placed into the tree so that the tree remains a heap. In both cases, we move the hole
through the tree (actually moving tree elements into the hole) until it reaches a location
where it can legally hold the item. However, reheapDown is a more complex operation
since it is moving the hole down the tree instead of up the tree. When we are moving
down, there are more decisions for us to make.

When reheapDown is first called, the root of the tree can be considered a hole; that
position in the tree is available, since the dequeue method has already saved the con-
tents in its hold variable. The job of reheapDown is to “move” the hole down the tree
until it reaches a spot where item can replace it. See Figure 9.6.

Figure 9.6 The reheapDown operation in action
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Before we can move the hole we need to know where to move it. It should either
move to its left child or its right child, or it should stay where it is. Let’s assume the
existence of another helper method, called newHole, that provides us this information.
The specification for newHole is:

private int newHole(int hole, Comparable item)
// If either child of hole is larger than item, this returns the index
//  of the larger child; otherwise, it returns the index of hole

Given the index of the hole, newHole returns the index of the next location for the
hole. If newHole returns the same index that is passed to it, we know the hole is at its
final location. The reheapDown algorithm repeatedly calls newHole to find the next
index for the hole, and then moves the hole down to that location. It does this until
newHole returns the same index that is passed to it. The existence of newHole simpli-
fies reheapDown so that we can now create its code:

private void reheapDown(Comparable item)
// Current root position is "empty";
// Inserts item into the tree and ensures shape and order properties
{
int hole = 0;      // Current index of hole
int newhole;       // Index where hole should move to

newhole = newHole(hole, item);   // Find next hole
while (newhole != hole)
{
elements[hole] = elements[newhole];  // Move element up
hole = newhole;                      // Move hole down
newhole = newHole(hole, item);       // Find next hole

}
elements[hole] = item;           // Fill in the final hole

}

Now the only thing left to do is create the newHole method. This method does
quite a lot of work for us. Consider Figure 9.6 again. Given the initial configuration,
newHole should return the index of the node containing J, the right child of the hole
node; J is larger than either the item (E) or the left child of the hole node (H). So,
newHole must compare three values (the values in item, the left child of the hole
node, and the right child of the hole node) and return the index of the Greatest.
Think about that. It doesn’t seem very hard but it does become a little messy when
described in algorithmic form:
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Greatest(left, right, item) returns index
if (left.value( ) < right.value( ))

if (right.value( ) <= item.value( ))
return item

else
return right

else
if (left.value( ) <= item.value( ))

return item;
else

return left;

Of course, there are other approaches to the Greatest algorithm, but they all require
about the same number of comparisons. One benefit of the above algorithm is that if
item is tied for being the largest of the three arguments its index is returned. This helps
our program be efficient since in this situation we want the hole to stop moving
(reheapDown breaks out of its loop when the value of hole is returned). Trace the algo-
rithm with various combinations of arguments to convince yourself that it works.

The Greatest algorithm only applies to the case when the hole node has two chil-
dren. The newHole method must also handle the cases where the hole node is a leaf and
where the hole node has only one child. How can we tell if a node is a leaf or if it only
has one child? Easily, based on the fact that our tree is complete. First, we calculate the
expected position of the left child; if this position is greater than lastIndex, then the
tree has no node at this position and the hole node is a leaf. (Remember, if it doesn’t
have a left child, it cannot have a right child since the tree is complete.) In this case
newHole just returns the index of its hole parameter, since the hole cannot move any-
more. If the expected position of the left child is equal to lastIndex then the node has
only one child, and newHole returns the index of that child if the child’s value is larger
than the value of item.

Here is the code for newHole. As you can see, it is a sequence of if-else statements
that capture the approaches described in the preceding two paragraphs.

private int newHole(int hole, Comparable item)
// If either child of hole is larger than item this returns the index
//  of the larger child; otherwise, it returns the index of hole
{
int left = (hole * 2) + 1;
int right = (hole * 2) + 2;
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if (left > lastIndex)
// Hole has no children
return hole;

else
if (left == lastIndex)
// Hole has left child only
if (item.compareTo(elements[left]) < 0)
// item < left child
return left;

else
// item >= left child
return hole;

else
// Hole has two children
if (elements[left].compareTo(elements[right]) < 0)
// left child < right child
if (elements[right].compareTo(item) <= 0)
// right child <= item
return hole;

else
// item < right child
return right;

else
// left child >= right child
if (elements[left].compareTo(item) <= 0)
// left child <= item
return hole;

else
// item < left child
return left;

}

Heaps Versus Other Representations of Priority Queues

How efficient is the heap implementation of a priority queue? The constructor,
isEmpty, and isFull methods are trivial, so we examine only the operations to add
and remove elements. The enqueue and dequeue methods both consist of a few basic
operations plus a call to a helper method. The reheapUp method creates a slot for a new
element by moving a hole up the tree, level by level; because a complete tree is of mini-
mum height, there are at most log2N levels above the leaf level (N = number of ele-
ments). So enqueue is an O(log2N ) operation. The reheapDown method is invoked to
fill the hole in the root created by the dequeue method. This operation moves the hole
down in the tree, level by level. Again, there are at most log2N levels below the root;
therefore, dequeue is also an O(log2N ) operation.

How does this implementation compare to the others we mentioned in the previous
section? If we implement the priority queue with a linked list, sorted from largest to
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smallest priority, dequeue merely removes the first node from the list—an O(1) opera-
tion. enqueue, however, must search up to all the elements in the list to find the appro-
priate insertion place; thus it is an O(N ) operation.

If the priority queue is implemented using a binary search tree, the efficiency of the
operations depends on the shape of the tree. When the tree is bushy, both dequeue and
enqueue are O(log2N ) operations. In the worst case, if the tree degenerates to a linked
list sorted from smallest to largest priority, both enqueue and dequeue have O(N ) effi-
ciency. Table 9.1 summarizes the efficiency of the different implementations.

Overall, the binary search tree looks good, if it is balanced. It can, however, become
skewed, which reduces the efficiency of the operations. The heap, on the other hand, is
always a tree of minimum height. The heap is not a good structure for accessing a ran-
domly selected element, but that is not one of the operations defined for priority queues.
The accessing protocol of a priority queue specifies that only the largest (or highest-pri-
ority) element can be accessed. The linked list is excellent for this operation (assuming
the list is sorted from largest to smallest), but we may have to search the whole list to
find the place to add a new element. For the operations specified for priority queues,
therefore, the heap is an excellent choice.

9.3 Introduction to Graphs

Binary trees provide a very useful way of representing relationships in which a hierar-
chy exists. That is, a node is pointed to by at most one other node (its parent), and each
node points to at most two other nodes (its children). If we remove the restriction that
each node can have at most two children, we have a general tree, as pictured here.

Table 9.1 Comparison of Priority Queue Implementations

enqueue dequeue

Heap O(log2N ) O(log2N )

Linked List O(N ) O(1)

Binary Search Tree

Balanced O(log2N ) O(log2N )

Skewed O(N ) O(N )
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If we also remove the restriction that each node
may have only one parent node, we have a data struc-
ture called a graph. A graph is made up of a set of
nodes called vertices and a set of lines called edges (or
arcs) that connect the nodes.

The set of edges describes relationships among the
vertices. For instance, if the vertices are the names of
cities, the edges that link the vertices could represent
roads between pairs of cities. Because the road that
runs between Houston and Austin also runs between
Austin and Houston, the edges in this graph have no
direction. This is called an undirected graph. However,
if the edges that link the vertices represent flights
from one city to another, the direction of each edge is
important. The existence of a flight (edge) from Hous-
ton to Austin does not assure the existence of a flight
from Austin to Houston. A graph whose edges are

directed from one vertex to another is called a directed graph, or digraph.
From a programmer’s perspective, vertices represent whatever is the subject of our

study: people, houses, cities, courses, and so on. However, mathematically, vertices are
the abstract concept upon which graph theory rests. In fact, there is a great deal of for-
mal mathematics associated with graphs. In other computing courses, you may analyze
graphs and prove theorems about them. This textbook introduces the graph as an
abstract data type, teaches some basic terminology, discusses how a graph might be
implemented, and describes how algorithms that manipulate graphs make use of stacks,
queues, and priority queues.

Formally, a graph G is defined as follows:

G = (V, E)

where

V(G) is a finite, nonempty set of vertices

E(G) is a set of edges (written as pairs of vertices)

The set of vertices is specified by listing them in set notation, within { } braces. The fol-
lowing set defines the four vertices of the graph pictured in Figure 9.7(a):

V(Graph1) = {A, B, C, D}

The set of edges is specified by listing a sequence of edges. Each edge is denoted by
writing the names of the two vertices it connects in parentheses, with a comma between
them. For instance, the vertices in Graph1 in Figure 9.7(a) are connected by the four
edges described below:

E(Graph1) = {(A, B), (A, D), (B, C), (B, D)}

Graph A data structure that consists of a set of
nodes and a set of edges that relate the nodes to each
other

Vertex A node in a graph

Edge (arc) A pair of vertices representing a connec-
tion between two nodes in a graph

Undirected graph A graph in which the edges have
no direction

Directed graph (digraph) A graph in which each
edge is directed from one vertex to another (or the
same) vertex
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Figure 9.7 Some examples of graphs
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Because Graph1 is an undirected graph, the order of the vertices in each edge is unim-
portant. The set of edges in Graph1 can also be described as follows:

E(Graph1) = {(B, A), (D, A), (C, B), (D, B)}

If the graph is a digraph, the direction of the edge is indicated by which vertex is
listed first. For instance, in Figure 9.7(b), the edge (5,7) represents a link from vertex 5
to vertex 7. However, there is no corresponding edge (7,5) in Graph2. Note that in pic-
tures of digraphs, the arrows indicate the direction of the relationship.

If two vertices in a graph are connected by an edge, they are said to be adjacent. In
Graph1 (Figure 9.7a), vertices A and B are adjacent, but vertices A and C are not. If the
vertices are connected by a directed edge, then the first vertex is said to be adjacent to

the second, and the second vertex is said to be adja-
cent from the first. For example, in Graph2 (in Figure
9.7b), vertex 5 is adjacent to vertices 7 and 9, while
vertex 1 is adjacent from vertices 3 and 11.

The picture of Graph3 in Figure 9.7(c) may look
familiar; it is the tree we looked at earlier in connec-
tion with the nonlinked representation of a binary
tree. A tree is a special case of a directed graph in
which each vertex may only be adjacent from one
other vertex (its parent node) and one vertex (the root)
is not adjacent from any other vertex.

A path from one vertex to another consists of a
sequence of vertices that connect them. For a path to

exist, there must be an uninterrupted sequence of edges from the first vertex, through any
number of vertices, to the second vertex. For example, in Graph2, there is a path from ver-
tex 5 to vertex 3, but not from vertex 3 to vertex 5. Note that in a tree, such as Graph3 (Fig-
ure 9.7c), there is a unique path from the root to every other node in the tree.

A complete graph is one in which every vertex is adjacent to every other vertex.
Figure 9.8 shows two complete graphs. If there are N vertices, there are N * (N � 1) edges
in a complete directed graph and N * (N � 1) / 2 edges in a complete undirected graph.

A weighted graph is a graph in which each edge carries a value. Weighted graphs
can be used to represent applications in which the value of the connection between the
vertices is important, not just the existence of a connection. For instance, in the
weighted graph pictured in Figure 9.9, the vertices represent cities and the edges indi-
cate the Air Busters Airlines flights that connect the cities. The weights attached to the
edges represent the air distances between pairs of cities.

To see whether we can get from Denver to Washington, we look for a path between
them. If the total travel distance is determined by the sum of the distances between each
pair of cities along the way, we can calculate the travel distance by adding the weights
attached to the edges that constitute the path between them. Note that there may be
multiple paths between two vertices. Later in this chapter, we talk about a way to find
the shortest path between two vertices.

Adjacent vertices Two vertices in a graph that are
connected by an edge

Path A sequence of vertices that connects two nodes
in a graph

Complete graph A graph in which every vertex is
directly connected to every other vertex

Weighted graph A graph in which each edge carries
a value TE
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FL
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Figure 9.8 Two complete graphs
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Figure 9.9 A weighted graph
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Logical Level

We have described a graph at the abstract level as a set of vertices and a set of edges
that connect some or all of the vertices to one another. What kind of operations are
defined on a graph? In this chapter we specify and implement a small set of useful
graph operations. Many other operations on graphs can be defined; we have chosen
operations that are useful in the graph applications described later in the chapter.

The specification for the ADT Graph, listed below, includes methods for checking
whether the graph is empty or full, and methods to add vertices and edges. The
method weightIs returns the weight of the edge between two given vertices; if there
is no such edge it returns a special value indicating that fact. The special value could
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vary from one application to another. For example, the value �1 could be used for a
graph whose edges represent distances, since there’s no such thing as a negative dis-
tance. The special value for a specific application could be passed to the Graph con-
structor.

The last method specified, getToVertices, returns a queue of vertex objects.
This works since both our graph and queue ADTs use the “by reference” storage
approach. Note that the return value of the method is of “type” QueueInterface. The
implementation programmer can choose to use any queue class that implements this
interface.

//----------------------------------------------------------------------------
// WeightedGraphInterface.java       by Dale/Joyce/Weems             Chapter 9
// 
// Interface for a class that implements a directed graph with weighted edges
// Vertices are Objects
// Edge weights are integers
//----------------------------------------------------------------------------

package ch09.graphs;

import ch04.queues.*;

public interface WeightedGraphInterface
{
public boolean isEmpty();
// Effect:         Determines whether this graph is empty
// Postcondition:  Return value = (this graph is empty)

public boolean isFull();
// Effect:         Determines whether this graph is full
// Postcondition:  Return value = (this graph is full)

public void addVertex(Object vertex);
// Effect:         Adds vertex to the graph
// Precondition:   Graph is not full
// Postcondition:  vertex is in V(graph)

public void addEdge(Object fromVertex, Object toVertex, int weight);
// Effect:         Adds an edge with the specified weight from fromVertex
//                   to toVertex
// Precondition:   fromVertex and toVertex are in V(graph)
// Postcondition:  (fromVertex, toVertex) is in E(graph) with the specified 
//                   weight
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public int weightIs(Object fromVertex, Object toVertex);
// Effect:         Determines the weight of the edge from fromVertex to 
//                 toVertex
// Precondition:   fromVertex and toVertex are in V(graph)
// Postcondition:  if edge exists, Return value = (weight of edge from 
//                 fromVertex to toVertex);
//                 otherwise, return value = (special "null-edge" value)

public QueueInterface getToVertices(Object vertex)
// Effect:         Returns a queue of the vertices that are adjacent from 
//                 vertex
// Precondition:   vertex is in V(graph)
// Postcondition:  returns a queue containing all the vertices that are 
//                 adjacent from vertex

}

Application Level

The graph specification given in the last section included only the most basic opera-
tions. It did not include any traversal operations. As you might imagine, there are many
different orders in which we can traverse a graph. As a result, we consider traversal a
graph application rather than an innate operation. The basic operations given in our
specification allow us to implement different traversals independent of how the graph
itself is actually implemented.

In Chapter 8, we discussed the postorder tree traversal, which goes to the deepest
level of the tree and works up. This strategy of going down a branch to its deepest
point and moving up is called a depth-first strategy. Another systematic way to visit
each vertex in a tree is to visit each vertex on level 0 (the root), then each vertex on
level 1, then each vertex on level 2, and so on. Visiting each vertex by level in this
way is called a breadth-first strategy. With graphs, both depth-first and breadth-first
strategies are useful. We outline both algorithms within the context of the airline
example.

Depth-First Searching
One question we can answer with the graph in Figure 9.9 is “Can I get from city X to
city Y on my favorite airline?” This is equivalent to asking “Does a path exist in the
graph from vertex X to vertex Y?” Using a depth-first strategy, let’s develop an algo-
rithm that determines if a path exists from startVertex to endVertex.

We need a systematic way to keep track of the cities as we investigate them. With a
depth-first search, we examine the first vertex that is adjacent from startVertex; if
this is endVertex, the search is over. Otherwise, we examine all the vertices that can be
reached in one step (are adjacent from) this vertex. Meanwhile, we need to store the
other vertices that are adjacent from startVertex. If a path does not exist from the
first vertex, we come back and try the second, third, and so on. Because we want to
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travel as far as we can down one path, backtracking if the endVertex is not found, a
stack is a good structure for storing the vertices. Here is the algorithm we use:

Let’s apply this algorithm to the sample airline-route graph in Figure 9.9. We want
to fly from Austin to Washington. We initialize our search by pushing our starting city
onto the stack (Figure 9.10a). At the beginning of the loop we retrieve the current city,
Austin, from the stack (top) and then remove it from the stack (pop). The places we can
reach directly from Austin are Dallas and Houston; we push both these vertices onto the
stack (Figure 9.10b). At the beginning of the second iteration we retrieve and remove
the top vertex from the stack—Houston. Houston is not our destination, so we resume
our search from there. There is only one flight out of Houston, to Atlanta; we push
Atlanta onto the stack (Figure 9.10c). Again we retrieve and remove the top vertex from
the stack. Atlanta is not our destination, so we continue searching from there. Atlanta
has flights to two cities: Houston and Washington.

But we just came from Houston! We don’t want to fly back to cities that we have
already visited; this could cause an infinite loop. We have to prevent cycling in this

DepthFirstSearch (startVertex, endVertex): returns boolean
Set found to false
stack.push(startVertex)
do

vertex = stack.top( )
stack.pop( )
if vertex = endVertex

Set found to true
else

Push all adjacent vertices onto stack
while !stack.isEmpty( ) AND !found
return found

Figure 9.10 Using a stack to store the routes
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algorithm. We must mark a city as having been visited so that it is not investigated a
second time. Let’s assume that we have marked the cities that have already been tried,
and continue our example. Houston has already been visited, so we ignore it. The sec-
ond adjacent vertex, Washington, has not been visited so we push it onto the stack (Fig-
ure 9.10d). Again we retrieve and remove the top vertex from the stack. Washington is
our destination, so the search is complete. The path from Austin to Washington, using a
depth-first search, is illustrated in Figure 9.11.

This search is called a depth-first search because we go to the deepest branch, examin-
ing all the paths beginning at Houston, before we come back to search from Dallas. When
you have to backtrack, you take the branch closest to where you dead-ended. That is, you
go as far as you can down one path before you take alternative choices at earlier branches.

Before we look at the source code of the depth-first search algorithm, let’s talk a lit-
tle more about “marking” vertices on the graph. Before we begin the search, any marks
in the vertices must be cleared to indicate they are not yet visited. Let’s call this method
clearMarks. As we visit each vertex during the search, we mark it. Let’s call this
method markVertex. Before we process each vertex we can ask, “Have we visited this
vertex before?” The answer to this question is returned by the method isMarked. If we
have already visited this vertex, we ignore it and go on. We must add these three meth-
ods to the specifications of the Graph ADT.

Additions to Weighted Graph ADT

public void clearMarks();
// Effect:         Sets marks for all vertices to false
// Postcondition:  All marks have been set to false

public void markVertex(Object vertex);
// Effect:         Sets mark for vertex to true
// Precondition:   vertex is in V(graph)
// Postcondition:  isMarked(vertex) is true

Figure 9.11 The depth-first search
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public boolean isMarked(Object vertex);
// Effect:         Determines if vertex has been marked
// Precondition:   vertex is in V(graph)
// Postcondition:  return value = (vertex is marked true)

Method depthFirstSearch receives a graph object, a starting vertex, and a target
vertex. It uses the depth-first strategy to determine if there is a path from the starting
city to the ending city, displaying the names of all the cities visited in the search. Note
that there is nothing in the method that depends on the implementation of the graph.
The method is implemented as a graph application; it uses the Graph ADT operations
(including the mark operations), without knowing how the graph is represented. In the
following code, we assume that a stack and a queue implementation have been
imported into the client class. (The depthFirstSearch method is included in the Use-
Graph.java application, available on our web site.)

private static boolean depthFirstSearch(WeightedGraphInterface graph,
Object startVertex,
Object endVertex    )

// Returns true if a path exists on graph, from startVertex to endVertex;
//  otherwise, returns false

{
StackInterface stack = new LinkedStack();
QueueInterface vertexQueue = new LinkedQueue();

boolean found = false;
Object vertex;
Object item;

graph.clearMarks();
stack.push(startVertex);
do
{
vertex = stack.top();
stack.pop();
if (vertex == endVertex)

found = true;
else
{
if (!graph.isMarked(vertex))
{
graph.markVertex(vertex);
vertexQueue = graph.getToVertices(vertex);
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while (!vertexQueue.isEmpty())
{
item = vertexQueue.dequeue();
if (!graph.isMarked(item))
stack.push(item);

}
}

}
} while (!stack.isEmpty() && !found);

return found;
}

Breadth-First Searching
A breadth-first search looks at all possible paths at the same depth before it goes to a
deeper level. In our flight example, a breadth-first search checks all possible one-stop
connections before checking any two-stop connections. For most travelers, this is the
preferred approach for booking flights.

When we come to a dead end in a depth-first search, we back up as little as possi-
ble. We try another route from a recent vertex—the route on top of our stack. In a
breadth-first search, we want to back up as far as possible to find a route originating
from the earliest vertices. The stack is not the right structure for finding an early route.
It keeps track of things in the order opposite of their occurrence—the latest route is on
top. To keep track of things in the order in which they happened, we use a FIFO queue.
The route at the front of the queue is a route from an earlier vertex; the route at the
back of the queue is from a later vertex.

To modify the search to use a breadth-first strategy, we change all the calls to stack
operations to the analogous FIFO queue operations. Searching for a path from Austin to
Washington, we first enqueue all the cities that can be reached directly from Austin:
Dallas and Houston (Figure 9.12a). Then we dequeue the front queue element. Dallas is
not the destination we seek, so we enqueue all the adjacent cities that have not yet been
visited: Chicago and Denver (Figure 9.12b). (Austin has been visited already, so it is not
enqueued.) Again we dequeue the front element from the queue. This element is the
other “one-stop” city, Houston. Houston is not the desired destination, so we continue
the search. There is only one flight out of Houston, and it is to Atlanta. Because we
haven’t visited Atlanta before, it is enqueued (Figure 9.12c).

Now we know that we cannot reach Washington with one stop, so we start exam-
ining the two-stop connections. We dequeue Chicago; this is not our destination, so we
put its adjacent city, Denver, into the queue (Figure 9.12d). Now this is an interesting
situation: Denver is in the queue twice. Should we mark a city as having been visited
when we put it in the queue or after it has been dequeued, when we are examining its
outgoing flights? If we mark it only after it is dequeued, there may be multiple copies
of the same vertex in the queue (so we need to check to see if a city is marked after it is
dequeued.)
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An alternative approach is to mark the city as having been visited before it is put
into the queue. Which is better? It depends on the processing goals. You may want to
know whether there are alternative routes, in which case you would want to put a city
into the queue more than once.

Back to our example. We have put Denver into the queue in one step and removed
its previous entry at the next step. Denver is not our destination, so we put its adjacent
cities that we haven’t already marked (only Atlanta) into the queue (Figure 9.12e). This
processing continues until Washington is put into the queue (from Atlanta), and is
finally dequeued. We have found the desired city, and the search is complete. This
search is illustrated in Figure 9.13.

The source code for the breadthFirstSearch method is identical to the depth-
first search, except for the replacement of the stack with a FIFO queue. It is also
included in the UseGraph.java application, available on our web site.

Figure 9.12 Using a queue to store the routes
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private static boolean breadthFirstSearch(WeightedGraphInterface graph,
Object startVertex,
Object endVertex    )

// Returns true if a path exists on graph, from startVertex to endVertex;
//  otherwise, returns false

{
QueueInterface queue = new LinkedQueue();
QueueInterface vertexQueue = new LinkedQueue();

boolean found = false;
Object vertex;
Object item;

graph.clearMarks();
queue.enqueue(startVertex);
do
{
vertex = queue.dequeue();
if (vertex == endVertex)

found = true;

Figure 9.13 The breadth-first search
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else
{
if (!graph.isMarked(vertex))
{
graph.markVertex(vertex);
vertexQueue = graph.getToVertices(vertex);

while (!vertexQueue.isEmpty())
{
item = vertexQueue.dequeue();
if (!graph.isMarked(item))
queue.enqueue(item);

}
}

}
} while (!queue.isEmpty() && !found);

return found;
}

The Single-Source Shortest-Paths Problem
We know from the two search operations just discussed that there may be multiple
paths from one vertex to another. Suppose that we want to find the shortest path from
Austin to each of the other cities that Air Busters serves. By “shortest path” we mean the
path whose edge values (weights), added together, have the smallest sum. Consider the
following two paths from Austin to Washington:

Clearly, the first path is preferable, unless you want to collect extra frequent-flyer miles.
Let’s develop an algorithm that displays the shortest path from a designated start-

ing city to every other city in the graph—this time we are not searching for a path
between a starting city and an ending city. As in the two graph searches described
earlier, we need an auxiliary structure for storing cities that we process later. By
retrieving the city that was most recently put into the structure, the depth-first search
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shortestPaths
graph.ClearMarks( )
Set item.fromVertex to startVertex
Set item.toVertex to startVertex
Set item.distance to 0
pq.enqueue(item)

do
item = pq.dequeue( )
if item.toVertex is not marked

Mark item.toVertex
Write item.fromVertex, item.toVertex, item.distance
Set item.fromVertex to item.toVertex
Set minDistance to item.distance
Get queue vertexQueue of vertices adjacent from item.fromVertex
while more vertices in vertexQueue

Get next vertex from vertexQueue
if vertex not marked

Set item.toVertex to vertex
Set item.distance to minDistance + graph.weightIs(fromVertex, vertex)
pq.enqueue(item)

while !pq.isEmpty( )

tries to keep going “forward.” It tries a one-flight solution, then a two-flight solution,
then a three-flight solution, and so on. It backtracks to a fewer-flight solution only
when it reaches a dead end. By retrieving the city that had been in the structure the
longest time, the breadth-first search tries all one-flight solutions, then all two-flight
solutions and so on. The breadth-first search finds a path with a minimum number of
flights.

But a minimum number of flights does not necessarily mean the minimum total dis-
tance. Unlike the depth-first and breadth-first searches, this shortest-path traversal must
use the number of miles (edge weights) between cities. We want to retrieve the vertex
that is closest to the current vertex—that is, the vertex connected with the minimum
edge weight. If we consider minimum distance to be the highest priority, then we know
of a perfect structure—the priority queue. Our algorithm can use a priority queue whose
elements are flights (edges) with the distance from the starting city as the priority. That
is, the items on the priority queue are objects with three attributes: fromVertex,
toVertex, and distance. We use an inner class Flights to define these objects. Here
is the algorithm:
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while more vertices in vertexQueue
Get next vertex from vertexQueue
if vertex not marked

Set item.toVertex to vertex
Set item.distance to minDistance + graph.weightIs(fromVertex, vertex)
pq.enqueue(item)

The algorithm for the shortest-path traversal is similar to those we used for the
depth-first and breadth-first searches, but there are three major differences:

1. We use a priority queue rather than a FIFO queue or stack.

2. We stop only when there are no more cities to process; there is no destination.

3. It is incorrect if we use a reference-based priority queue improperly!

When we code this algorithm we are likely to make a subtle, but crucial, error. The
error is related to the fact that our queues store information “by reference,” and not “by
copy.” Take a minute to look over the algorithm again to see if you can spot the error,
before continuing.

Recall the feature section in Chapter 4 that discussed the dangers of storing informa-
tion by reference. In particular, it warned us to be careful when inserting an object into a
structure and later making changes to that object. If we use the same reference to the object
when we make changes to it, the changes are made to the object that is in the structure.
Sometimes this is what we want (see the case study in Chapter 8). Sometimes this causes
problems, as in the current example. Here is the incorrect part of the algorithm:

Now can you see the problem? This part of the algorithm walks through the queue
of vertices adjacent to the current vertex, and enqueues Flights objects onto the prior-
ity queue pq based on the information. The item variable is actually a reference to a
Flights object. Suppose the queue of adjacent vertices has information in it related to
the cities Atlanta and Houston. The first time through this loop we insert information
related to Atlanta in item and enqueue it in pq. But the next time through the loop we
make changes to the Flights object referenced by item. We update it to contain infor-
mation about Houston. And we again enqueue it in pq. So now pq contains information
about Atlanta and Houston, correct? Nope. When we change the information in item to
the Houston information, those changes are reflected in the item that is already on pq.
The item variable still references that object. In reality the pq structure now contains
two references to the same item, and that item contains Houston information.

To solve this problem we must create a new item before storing on pq. Here is a
revised algorithm:
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while more vertices in vertexQueue
Get next vertex from vertexQueue
if vertex not marked

Create newItem
Set newItem.fromVertex to item.fromVertex
Set newItem.toVertex to vertex
Set newItem.distance to minDistance + graph.weightIs(fromVertex, vertex)
pq.enqueue(newItem)

Here is the source code for the shortest-path algorithm (also included in the Use-
Graph.java application, available on our web site). As before, the code assumes that a
priority queue and a queue implementation have been imported into the client class. For
the priority queue we use our Heap class. Notice that we intend for a smaller distance to
indicate a higher priority. But our Heap class implements a maximum heap, returning
the largest value from the dequeue method. To fix this problem we could define a new
heap class, a minimum heap. But there is an easier way. The current Heap class bases its
decision about what is “larger” on the values returned by the heap item’s compareTo
method. So, we just define the compareTo method of the Flights class to indicate that
the current flight is “larger” then the parameter flight if its distance is smaller. This
means, for every item in the heap’s tree, item.distance is less than or equal to the
distance value of each of its children. We can still use our maximum heap.

private static void shortestPaths(WeightedGraphInterface graph,
Object startVertex  )

// Writes the shortest path from startVertex to every
//  other vertex in graph
{
class Flights implements Comparable
{
private Object fromVertex;
private Object toVertex;
private int distance;

public int compareTo(Object otherFlights)
{
Flights other = (Flights)otherFlights;
return (other.distance – this.distance); // Shorter is better
}

}
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Flights item;
Flights saveItem;         // For saving on priority queue
int minDistance;

Heap pq = new Heap(10);   // Assume at most 10 vertices
Object vertex;
QueueInterface vertexQueue = new LinkedQueue();

graph.clearMarks();
saveItem = new Flights();
saveItem.fromVertex = startVertex;
saveItem.toVertex = startVertex;
saveItem.distance = 0;
pq.enqueue(saveItem);

System.out.println("Last Vertex  Destination   Distance");
System.out.println("-----------------------------------");

do
{
item = (Flights)pq.dequeue();
if (!graph.isMarked(item.toVertex))
{
graph.markVertex(item.toVertex);
System.out.print(item.fromVertex);
System.out.print("  ");
System.out.print(item.toVertex);
System.out.println("  " + item.distance);
item.fromVertex = item.toVertex;
minDistance = item.distance;
vertexQueue = graph.getToVertices(item.fromVertex);
while (!vertexQueue.isEmpty())
{
vertex = vertexQueue.dequeue();
if (!graph.isMarked(vertex))
{
saveItem = new Flights();
saveItem.fromVertex = item.fromVertex;
saveItem.toVertex = vertex;
saveItem.distance = minDistance +

graph.weightIs(item.fromVertex, vertex);
pq.enqueue(saveItem);

}
}

}
} while (!pq.isEmpty());

}
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Last Vertex Destination Distance

Washington Washington 0

Washington Atlanta 600

Washington Dallas 1300

Atlanta Houston 1400

Dallas Austin 1500

Dallas Denver 2080

Dallas Chicago 2200

The output from this method is a table of city pairs (edges) showing the total mini-
mum distance from startVertex to each of the other vertices in the graph, as well as
the last vertex visited before the destination. We assume that printing a vertex means
printing the name of the corresponding city. If graph contains the information shown
in Figure 9.9, the method call

shortestPaths(graph, startVertex);

where startVertex corresponds to Washington, would print a table like the follow-
ing:

The shortest-path distance from Washington to each destination is shown in the two
columns to the right. For example, our flights from Washington to Chicago total 2,200
miles. The left-hand column shows which city immediately preceded the destination in
the traversal. Let’s figure out the shortest path from Washington to Chicago. We see
from the left-hand column that the next-to-last vertex in the path is Dallas. Now we
look up Dallas in the Destination (middle) column: The vertex before Dallas is Washing-
ton. The whole path is Washington-Dallas-Chicago. (We might want to consider another
airline for a more direct route!)

Implementation Level

Array-Based Implementation
A simple way to represent V(graph), the vertices in the graph, is with an array where the
array elements are the vertices. For example, if the vertices represent city names, the
array might hold strings. A simple way to
represent E(graph), the edges in a graph, is by
using an adjacency matrix, a two-dimen-
sional array of edge values (weights), where
the indexes of a weight correspond to the
vertices connected by the edge. Thus, a graph
consists of an integer variable numVertices,
a one-dimensional array vertices, and a two-dimensional array edges. Figure 9.14
depicts the implementation of the graph of Air Busters flights between seven cities. For
simplicity, we omit the additional boolean data needed to mark vertices as “visited”

Adjacency matrix For a graph with N nodes, an N by
N table that shows the existence (and weights) of all
edges in the graph
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during a traversal from the figure. While the city names in Figure 9.14 are in alphabeti-
cal order, there is no requirement that the elements in this array be sorted.

At any time, within this representation of a graph,

• numVertices is the number of vertices in the graph.
• V(graph) is contained in vertices[0]..vertices[numVertices – 1].
• E(graph) is contained in the square array edges[0][0]..edges[numVertices

– 1][numVertices – 1].

The names of the cities are contained in graph.vertices. The weight of each edge
in graph.edges represents the air distance between two cities that are connected by a
flight. For example, the value in graph.edges[1][3] tells us that there is a direct
flight between Austin and Dallas, and that the air distance is 200 miles. A NULL_EDGE
value (0) in graph.edges[1][6] tells us that the airline has no direct flights between
Austin and Washington. Because this is a weighted graph with weights being air dis-
tances, we use int for the edge value type. If this were not a weighted graph, the edge

Figure 9.14 Matrix representation of graph of flight connections between cities
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value type would be boolean, and each position in the adjacency matrix would be
true if an edge exists between the pair of vertices, and false if no edge exists.

Here is the beginning of the definition of class WeightedGraph. For simplicity we
assume that the edge value type is int and that a null edge is indicated by a 0 value.

//----------------------------------------------------------------------------
// WeightedGraph.java            by Dale/Joyce/Weems                 Chapter 9
// 
// Implements (partially) a directed graph with weighted edges
// Vertices are Objects
// Edge weights are integers
//----------------------------------------------------------------------------

package ch09.graphs;

import ch04.queues.*;
import ch05.queues.*;

public class WeightedGraph implements WeightedGraphInterface
{
public static int NULL_EDGE = 0;
private int numVertices;
private int maxVertices;
private Object[] vertices;
private int[][] edges;
private boolean[] marks;  // marks[i] is marked for vertices[i]

public WeightedGraph()
// Post: Arrays of size 50 are dynamically allocated for
//       marks and vertices, and of size 50 X 50 for edges
//       numVertices is set to 0; maxVertices is set to 50
{
numVertices = 0;
maxVertices = 50;
vertices = new Object[50];
marks = new boolean[50];
edges = new int[50][50];

}

public WeightedGraph(int maxV)
// Post: Arrays of size maxV are dynamically allocated for
//       marks and vertices, and of size maxV X maxV for edges
//       numVertices is set to 0; maxVertices is set to maxV
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{
numVertices = 0;
maxVertices = maxV;
vertices = new Object[maxV];
marks = new boolean[maxV];
edges = new int[maxV][maxV];

}
...
}

Note that the class constructors have to allocate the space for vertices and marks
(the boolean array indicating whether a vertex has been marked or not). The default
constructor sets up space for 50 vertices and marks. The parameterized constructor
lets the user specify the maximum number of vertices.

The addVertex operation puts a vertex into the next free space in the array of ver-
tices. Because the new vertex has no edges defined yet, we also initialize the appropriate
row and column of edges to contain NULL_EDGE (0 in this case).

public void addVertex(Object vertex)
// Post: vertex has been stored in vertices
//       Corresponding row and column of edges has been set to NULL_EDGE.
//       numVertices has been incremented
{
vertices[numVertices] = vertex;
for (int index = 0; index < numVertices; index++)
{
edges[numVertices][index] = NULL_EDGE;
edges[index][numVertices] = NULL_EDGE;

}
numVertices++;

}

To add an edge to the graph, we must first locate the fromVertex and toVertex
that define the edge we want to add. These become the parameters to addEdge and are
of the general Object class. Of course, the client really passes references to the vertex
objects, since that is how we manipulate objects in Java. We are implementing our
graphs “by reference” so this should not be a problem for the client. To index the cor-
rect matrix slot, we need the index in the vertices array that corresponds to each ver-
tex. Once we know the indexes, it is a simple matter to set the weight of the edge in the
matrix. Here is the algorithm:
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addEdge(fromIndex, toIndex, weight)
Set fromIndex to index of fromVertex in V(graph)
Set toIndex to index of toVertex in V(graph)
Set edges[fromIndex, toIndex] to weight

To find the index of each vertex, let’s write a little search method that receives a
vertex and returns its location (index) in vertices. Because the precondition of
addEdge states that fromVertex and toVertex are in V(graph), the search method is
very simple. We code it as helper method indexIs. Here is the code for indexIs and
addEdge:

private int indexIs(Object vertex)
// Post: Returns the index of vertex in vertices
{
int index = 0;
while (vertex != vertices[index])
index++;

return index;
}

public void addEdge(Object fromVertex, Object toVertex, int weight)
// Post: Edge (fromVertex, toVertex) is stored in edges
{
int row;
int column;

row = indexIs(fromVertex);
column = indexIs(toVertex);
edges[row][column] = weight;

}

The weightIs operation is the mirror image of addEdge.

public int weightIs(Object fromVertex, Object toVertex)
// Post: Returns the weight associated with the edge
//       (fromVertex, toVertex)
{
int row;
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int column;

row = indexIs(fromVertex);
column = indexIs(toVertex);
return edges[row][column];

}

The last graph operation that we address is getToVertices. This method receives a
vertex, and returns a queue of vertices that are adjacent from the designated vertex. That is,
it returns a queue of all the vertices that you can get to from this vertex in one step. Using
an adjacency matrix to represent the edges, it is a simple matter to determine the nodes to
which the vertex is adjacent. We merely loop through the appropriate row in edges; when-
ever a value is found that is not NULL_EDGE, we add another vertex to the queue.

public QueueInterface getToVertices(Object vertex)
// Returns a queue of the vertices that are adjacent from vertex
{
QueueInterface adjVertices = new LinkedQueue();
int fromIndex;
int toIndex;
fromIndex = indexIs(vertex);
for (toIndex = 0; toIndex < numVertices; toIndex++)
if (edges[fromIndex][toIndex] != NULL_EDGE)
adjVertices.enqueue(vertices[toIndex]);

return adjVertices;
}

We leave isFull, isEmpty, and the marking operations (clearMarks, mark-
Vertex, and isMarked) as exercises.

Linked Implementation
The advantages of representing the edges in a graph with an adjacency matrix are speed
and simplicity. Given the indexes of two vertices, determining the existence (or the
weight) of an edge between them is a O(1) operation. The problem with adjacency matri-
ces is that their use of space is O(N2), where N is the maximum number of vertices in the
graph. If the maximum number of vertices is large, adjacency matrices may waste a lot
of space. The space needed could be decreased by dynamically allocating larger arrays
when needed, but that approach can be inefficient in terms of time. In the past, we have

tried to save space by allocating memory as we need
it at run time, using linked structures. We can use a
similar approach to implementing graphs. Adjacency
lists are linked lists, one list per vertex, that identify
the vertices to which each vertex is connected. There

Adjacency list A linked list that identifies all the ver-
tices to which a particular vertex is connected; each
vertex has its own adjacency list
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Figure 9.15 Adjacency list representation of graphs
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are several ways to implement adjacency lists. Figure 9.15 shows two different adja-
cency list representations of the graph in Figure 9.9.

In Figure 9.15(a), the vertices are stored in an array. Each component of this array
contains a reference to a linked list of edge nodes. Each node in these linked lists con-
tains an index number, a weight, and a reference to the next node in the adjacency list.
Let’s look at the adjacency list for Denver. The first node in the list indicates that there
is a 1,400-mile flight from Denver to Atlanta (the vertex whose index is 0) and a 1,000-
mile flight from Denver to Chicago (the vertex whose index is 2).

No arrays are used in the implementation illustrated in Figure 9.15(b). The list of
vertices is implemented as a linked list. Now each node in the adjacency list contains a
reference to the vertex information rather than the index of the vertex. Because there
are so many of these references in Figure 9.15(b), we have used text to describe the ver-
tex that each reference designates rather than draw them as arrows.

We leave the implementation of the Graph class methods using the linked approach
as a programming exercise.



654 | Chapter 9:  Priority Queues, Heaps, and Graphs

Figure 9.15 (continued)
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9.4 Storing Objects/Structures in Files

Suppose we want to save a tree or graph between program runs. Our current programs
can build structures and use them for processing information, but when the program
terminates, the structure is lost. The memory space occupied by the structure, along with
all the other memory space used by the program, is returned to the operating system for
use by other programs.

Many programs need to save information between program runs. Alternately, we
may want one program to save information for later use by another program. In either
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case, the information is stored in files. Files are the mechanism for permanently storing
information on computers. In this subsection we investigate Java’s facilities for saving
and retrieving objects and structures using files.

Saving Object Data in Text Files

Any information we need to save can be broken into primitive data. As a very simple
example, consider the Circle objects defined in Chapter 2. Remember that we used cir-
cles to demonstrate the “record” concept. The fields of circles are not private. While we
do not encourage this lack of information hiding, it does make it easy to demonstrate
the concepts of this section. To simplify our file organization, we place the Circle class
in a new package called ch09.circles.

package ch09.circles;

public class Circle
{
int xValue;      // Horizontal position of center
int yValue;      // Vertical position of center
float radius;
boolean solid;   // True means circle filled

}

Although a circle can be viewed as a “nonprimitive” object, when broken into its
constituent parts it consists of two ints, a float, and a boolean, all primitive data
types. Values of these data types can be saved as strings. We can save a Circle object
by breaking it into its constituent parts, transforming each part into a string, and writ-
ing the strings to a text file. The following program demonstrates this approach:

import java.io.*;
import ch09.circles.*;

public class SaveCircle
{
private static PrintWriter outFile;

public static void main(String[] args) throws IOException
{
Circle c1 = new Circle();
c1.xValue = 5;
c1.yValue = 3;
c1.radius = 3.5f;
c1.solid = true;

outFile = new PrintWriter(new FileWriter("circle.dat"));

outFile.println(c1.xValue);
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outFile.println(c1.yValue);
outFile.println(c1.radius);
outFile.println(c1.solid);

outFile.close();
}

}

When this program is executed, it creates the following circle.dat file:

5
3
3.5
true

When we need to retrieve the Circle object, we just reverse the process: read the
strings, transform them into the primitive data types, and reconstruct the circle.

import java.io.*;
import ch09.circles.*;

public class GetCircle
{
private static BufferedReader inFile;

public static void main(String[] args) throws IOException
{
Circle c2 = new Circle();
inFile = new BufferedReader(new FileReader("circle.dat"));

c2.xValue = Integer.parseInt(inFile.readLine());
c2.yValue = Integer.parseInt(inFile.readLine());
c2.radius = Float.parseFloat(inFile.readLine());
c2.solid  = Boolean.getBoolean(inFile.readLine());

System.out.println("The xValue is " + c2.xValue);
System.out.println("The yValue is " + c2.yValue);
System.out.println("The radius is " + c2.radius);
System.out.println("The solidity is " + c2.solid);

inFile.close();
}

}

When these two programs are executed back to back, the second program produces the
following output:



9.4 Storing Objects/Structures in Files | 657

The xValue is 5
The yValue is 3
The radius is 3.5
The solidity is true

As you can see, the Circle object created and saved by the first program was successfully
retrieved and used by the second program. The entire process is depicted in Figure 9.16.

Figure 9.16 Saving and retrieving a Circle object
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The circle programs use the same file I/O techniques we use in our test drivers and
program examples throughout the textbook. These techniques are explained in the Java
Input/Output I feature section at the end of Chapter 1. Note that we used this same
approach (transforming an object’s primitive attributes into strings, and saving the
strings to a file) in the Real Estate program in the Chapter 3 case study. We used it to
save and retrieve house information.

This approach can be used even if the objects involved are hierarchical, like our
NewCircle objects from Chapter 2:

public class Point
{
public int xValue;
public int yValue;

}

public class NewCircle
{
public Point location;
public float radius;
public boolean solid;

}

The programmer just has to work a little harder in saving and restoring the objects. But
what about storing and retrieving an entire data structure, such as an array, list, stack,
queue, or tree? We examine this question next.

Saving Structures in Text Files

We began the previous subsection by stating that any information we need to save can
be broken into primitive data. However, what happens when the structural organization
of the data is as important as the data itself? In this case, we would also like to save the
structure of the data, or at least be able to recreate the structure when desired.

Simply storing the primitive data of a structure in a specific order, and then care-
fully rebuilding the structure upon retrieval of the data, can sometimes work. Let’s look
at several examples:

Arrays
Assuming the array contains homogeneous data, this is easy. Simply save the data one
array element at a time, from index 0 through the largest index of the array. Restore the
array elements in the same order. For example, to save an array of Circle objects just
use the approach of the previous subsection combined with loops to repetitively save or
restore the information. If the array is not homogeneous, it is not as easy. For example,
if the array can contain both Circle and NewCircle objects, you would somehow
have to store a class identifier along with the object information. Upon retrieval, this
identifier could be used to determine which type of object to recreate from the data.
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Array-Based Lists
No problem. Just save the array information as described above. This is how we handled
the list of house information in the Chapter 3 case study.

Reference-Based Lists
We cannot save and restore references as we save and restore primitive data. A refer-
ence is really a memory address. When we try to restore information, there is no guar-
antee that it is placed in the exact same memory location in which it formerly
resided—in fact, that would be extraordinarily lucky. However, we usually can recon-
struct our list by using our list operations. We should exercise care with this approach—
it can lead to inefficient processing. For example, if we store a sorted list in order, from
smallest to largest, and then recreate the list by using our Sorted List ADT insert oper-
ation, it requires O(N 2) steps to recreate the list. (Do you see why?) When processing an
item that is larger than any current list element, the insert operation visits every node
of the current list. That is the worst possible situation. Yet, in the approach just
described, that situation would repeat itself for every single insert operation when
recreating the list. It might be better to read in all of the list elements and store them on
a stack, and then remove the elements one at a time from the stack to insert them into
the list. This ensures repeated insertion at the start of the list, an efficient operation.

A Linked List as an Array of Nodes
As explained in Section 6.5, using this approach to implementing a linked list makes it
easy to save the structure information in a text file. Since the links are not references,
but array indices, we can save and restore them just as we would other primitive values.

Binary Search Trees
A binary tree can also be implemented with an array of nodes (see Section 8.9). In that
case, as it is for linked lists, it is a simple matter to store and retrieve the tree. But what
if the tree is implemented using references? This complicates matters. Certainly we can
iterate through the tree and save each node into a file; then later we can construct a
binary search tree from the information in the file. But will the tree have the same
shape? Do we want it to? The answers depend on the order the tree is traversed to save
the nodes, and on the order the nodes are inserted into the new tree. These issues were
all addressed in Section 8.8.

Graphs
We discussed both array-based and reference-based implementations of graphs. Follow-
ing the same reasoning as above, if the array-based approach is used we could safely
save and reconstruct our graphs. But the reference approach would require first trans-
forming the references into information that is independent of memory location; for
example, storing a reference by storing the names of the nodes that it links. In either
case, the transforming, storing, and reconstructing of our graphs is a lot of work. We
next discuss an easier approach.
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Serialization of Objects

Transforming objects into strings and back again is a lot of work for the programmer.
Fortunately, Java provides a way to save objects without requiring all of this work. Sav-
ing an object with this approach is called serializing the object.

Support Constructs
Before seeing how to serialize objects, you must learn about a new interface and two
support classes.

We can write whole objects using the writeObject method of the ObjectOutput-
Stream class. We can read objects using the readObject method of the ObjectIn-
putStream class. To set up the output of serialized objects to the file objects.dat
using the stream variable out, we code

ObjectOutputStream out = new ObjectOutputStream(new 
FileOutputStream("objects.dat"));

Similarly, to set up reading from the same file, but this time using the variable in, we code

ObjectInputStream in = new ObjectInputStream(new 
FileInputStream("objects.dat"));

Finally, any object that you plan to serialize must implement the Serializable
interface. This interface has no methods! It is merely a way of marking a class as poten-
tially being serialized for I/O, so that the Java runtime engine knows to convert refer-
ences as needed on output or input of class instances. So to make your objects
serializable, you simply have to state that their class implements the interface. The
interface is part of the Java io package.

Serializing Objects
Here’s the code for a serializable version of our circle class, called SCircle. As with
Circle, we place this class in the ch09.circles package.

package ch09.circles;

import java.io.*;

public class SCircle implements Serializable
{
public int xValue;
public int yValue;
public float radius;
public boolean solid;

}
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Now let’s look at our program to save a SCircle object:

import java.io.*;
import ch09.circles.*;

public class SaveSCircle
{
public static void main(String[] args) throws IOException
{
SCircle c1 = new SCircle();
c1.xValue = 5;
c1.yValue = 3;
c1.radius = 3.5f;
c1.solid = true;

ObjectOutputStream out = new ObjectOutputStream(new
FileOutputStream("objects.dat"));

out.writeObject(c1);
out.close();

}
}

As you can see, to save the SCircle object we simply write the entire object to the out
stream. We do not have to handle the individual instance variables. Let’s see the corre-
sponding version of retrieving a circle:

import java.io.*;
import ch09.circles.*;

public class GetSCircle
{
public static void main(String[] args) throws IOException
{
SCircle c2 = new SCircle();
ObjectInputStream in = new ObjectInputStream(new 

FileInputStream("objects.dat"));

try
{
c2 = (SCircle)in.readObject();

}
catch (Exception e)
{
System.out.println("Error in readObject: " + e);
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System.exit(1);
}

System.out.println("The xValue is " + c2.xValue);
System.out.println("The yValue is " + c2.yValue);
System.out.println("The radius is " + c2.radius);
System.out.println("The solidity is " + c2.solid);

in.close();
}

}

Note that the object read from the file must be cast into a SCircle object before being
assigned to the c2 variable. Also note that the readObject method throws several
checked exceptions, so we must enclose it in a try-catch statement. Other than that, it is
very easy to read in our SCircle object. Java takes care of all the work of rebuilding
the object.

Saving hierarchical objects, such as our NewCircle objects, is just as easy. In that
case, simply ensure that each of the objects involved implements the Serializable
interface. For example:

import java.io.*;
public class SPoint implements Serializable
{
public int xValue;
public int yValue;

}
import java.io.*;
public class SNewCircle implements Serializable
{
public SPoint location;
public float radius;
public boolean solid;

}

A program that uses SNewCircle objects can use the writeObject and readObject
methods to save and retrieve those objects. Java handles the hierarchical object auto-
matically with no problems.

Serializing Structures
The real power of Java’s serialization tools is evident when dealing with data structures.
For example, you can save or restore an entire array of SCircle objects with a single
statement. To save the array:
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SCircle[] circles = new SCircles[100];
...
out.writeObject(circles);

And to retrieve it later, perhaps from another program:

SCircle[] laterCircles = (SCircle[])in.readObject();

What is even more impressive is that Java’s serialization works for linked struc-
tures. You can save an entire binary search tree or a graph using a single writeObject
statement, and later restore it using a single readObject statement. You can do this
even for reference-based implementations. The tree and graph retain both their informa-
tion and their structure. For example, if the writeObject statement is invoked on an
object tree, Java follows all references that start with tree and lead to other objects,
and saves those objects along with the tree object. Of course, all the objects involved
must implement the Serializable interface.

How does Java recreate the structure of tree? The run-time engine follows a care-
ful approach of numbering (i.e., serializing) each object involved in a write operation
and using those numbers in place of references when saving the information. Therefore,
when it reloads the information, it can recreate the structure even though it places the
information in new memory locations.

Summary
In this chapter we discussed two data structures: priority queues and graphs. For the
former we saw an elegant implementation based on a binary tree with special shape and
order properties. For the latter we saw a time-efficient array-based implementation and
discussed a space-efficient reference-based implementation. Time and space efficiency
tradeoffs are often the key to choosing alternate implementations of a data structure.

Graphs are the most complex structure we studied. They are very versatile and are a
good way to model many real-world objects and situations. Because there are many dif-
ferent types of applications for graphs, there are all kinds of variations and generaliza-
tions of their definitions and implementations. Many advanced algorithms for
manipulating and traversing graphs have been discovered. They are generally covered
in detail in advanced computer science courses on algorithms.

Finally, we discussed the topic of saving objects and data structures in files and later
retrieving them. We introduced Java’s serialization tools that support these operations.

Summary of Classes and Support Files
The classes and files are listed in the order in which they appear in the text. Inner
classes are not included.

The package a class belongs to, if any, is listed in parenthesis under Notes. The class
and support files are available on our web site. They can be found in the ch09 subdirec-
tory of the bookFiles directory.
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At the top of the next page is a list of the Java Library classes and interfaces that were
used in this chapter for the first time in the textbook. The classes are listed in the order in
which they are first used. Note that in some classes the methods listed might not be
defined directly in the class; they might be defined in one of its superclasses. With the
methods we also list constructors, if appropriate. For more information about the library
classes and methods, the reader can check Sun’s Java documentation.

Classes, Interfaces, and Support Files Defined in Chapter 9

File 1st Ref. Notes

PriQueueInterface page 613 (ch09.priorityQueues) Specification of a Priority
Queue ADT

PriQUnderflowException page 614 (ch09.priorityQueues) Exception raised when
attempt to dequeue from an empty PQ

PriQOverflowException page 614 (ch09.priorityQueues) Exception raised when
attempt to enqueue to a full PQ

Heap page 620 (ch09.priorityQueues) Implements Priority Queue

WeightedGraphInterface page 634 (ch09.graphs) Specification of a Weighted Graph ADT

UseGraph page 638 Contains depthFirstSearch, breadthFirst-
Search, and shortestPaths methods

WeightedGraph page 649 (ch09.graphs) Partial implementation of an array-
based Weighted Graph—completion is left as an exercise

Circle.java page 655 (ch09.circles) First used in Chapter 2

SaveCircle.java page 655 Saves the information of a Circle object in a text file

GetCircle.java page 656 Retrieves the Circle object saved by SaveCircle

SCircle.java page 660 (ch09.circles) A serializable circle

SaveSCircle.java page 661 Saves a SCircle object in a file of serialized objects

GetSCircle.java page 661 Retrieves the SCircle object saved by SaveSCircle
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Exercises
9.1 Priority Queues

1. A priority queue is implemented as a linked list, sorted from largest to smallest
element.

a. Write the declarations for the instance variables, inner classes, and so forth,
needed for this implementation.

b. Write the enqueue operation, using this implementation.

c. Write the dequeue operation, using this implementation.

2. A priority queue is implemented as a binary search tree.

a. Write the declarations for the instance variables, inner classes, and so forth,
needed for this implementation.

b. Write the enqueue operation, using this implementation.

c. Write the dequeue operation, using this implementation.

3. A priority queue is implemented as a sequential array-based list. The highest-pri-
ority item is in the first array position, the second-highest priority item is in the
second array position, and so on.

a. Write the declarations for the instance variables, inner classes, and so forth,
needed for this implementation.

b. Write the enqueue operation, using this implementation.

c. Write the dequeue operation, using this implementation.

4. A stack is implemented using a priority queue. Each element is time-stamped as
it is put into the stack. (The time stamp is a number between 0 and
Integer.MAX_VALUE. Each time an element is pushed onto the stack, it is
assigned the next largest number.)

Library Classes Used in Chapter 9 for the First Time

Class/Interface 
Name Package Overview Methods Used Where Used

Serializable.java io Objects of classes None Section 9.4 
that implement 
this interface can 
be easily saved to 
files

ObjectOutputStream.java io Used for saving writeObject Section 9.4
serializable objects

ObjectInputStream.java io Used for retrieving readObject Section 9.4
serializable objects
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a. What is the highest-priority element?

b. Write the push, top, and pop algorithms, using the specifications in Chapter
4.

5. A FIFO queue is implemented using a priority queue. Each element is time-
stamped as it is put into the queue. (The time stamp is a number between 0 and
Integer.MAX_VALUE. Each time an element is enqueued, it is assigned the next
largest number.)

a. What is the highest-priority element?

b. Write the enqueue and dequeue operations, using the specifications in
Chapter 4.

9.2 Heaps
6. Which of the following trees are heaps?
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7. Draw a tree that satisfies both the binary search property and the order property
of heaps.

8. A minimum heap has the following order property: The value of each element is
less than or equal to the value of each of its children. What changes must be
made in the heap operations given in this chapter?

9. We created iterative versions of the heap helper methods reheapDown and
reheapUp in this chapter.

a. Write a recursive version of reheapDown.

b. Write a recursive version of reheapUp.

c. Describe the recursive versions of these operations in terms of Big-O.

10. A priority queue containing characters is implemented as a heap stored in an
array. The precondition states that this priority queue cannot contain duplicate
elements. There are ten elements currently in the priority queue below. What
values might be stored in array positions 7–9 so that the properties of a heap are
satisfied?

pq.items.elements

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Z

F

J

E

B

G

H

?

?

?
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11. A priority queue is implemented as a heap:

a. Show how the heap above would look after this series of operations:

pq.Enqueue(28);
pq.Enqueue(2);
pq.Enqueue(40);
pq.Dequeue(x);
pq.Dequeue(y);
pq.Dequeue(z);

b. What would the values of x, y, and z be after the series of operations in part
(a)?

12. A priority queue of strings is implemented using a heap. The heap contains the
following elements:

.numElements

.elements

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

"introspective"

"intelligent"

"intellectual"

"intimate"

"intensive"

"interesting"

"internal"

"into"

"in"

"intro"

10

pq 56

27 42 

26 315 19

2425 5
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a. What feature of these strings is used to determine their priority in the priority
queue?

b. Show how this priority queue is affected by adding the string “interviewing”.

13. Write and compare two implementations of a priority queue whose highest pri-
ority element is the one with the smallest key value. The first implementation
uses a minimum heap. You need to modify the heap operations to keep the mini-
mum, rather than maximum, element in the root. The comparison function
should compare key values. The second implementation uses a linear linked list
whose elements are ordered by key value. Create a data set that contains 50
items with priorities generated by a random-number generator. To compare the
operations, you must modify the enqueue and dequeue operations to count
how many elements are accessed (compared or swapped, in the case of reheap-
ing) during its execution. Write a driver to Enqueue and Dequeue the 50 test
items and print out the number of elements accessed for the operations. Run
your driver once with each implementation.

Deliverables

• A listing of specification and implementation files for both priority queue
implementations

• A listing of your driver
• A listing of your test data
• A listing of the output from both runs
• A report comparing the number of elements accessed in executing each opera-

tion.

9.3 Graphs
Use the following description of an undirected graph in Exercises 14–17.

EmployeeGraph = (V, E)

V(EmployeeGraph) = {Susan, Darlene, Mike, Fred, John, Sander, Lance, Jean, Brent,
Fran}

E(EmployeeGraph) = {(Susan, Darlene), (Fred, Brent), (Sander, Susan), (Lance, Fran),
(Sander, Fran), (Fran, John), (Lance, Jean), (Jean, Susan), (Mike,
Darlene), (Brent, Lance), (Susan, John)}

14. Draw a picture of EmployeeGraph.

15. Draw EmployeeGraph implemented as an adjacency matrix. Store the vertex
values in alphabetical order.

16. Using the adjacency matrix for EmployeeGraph from Exercise 14, describe the
path from Susan to Lance

a. using a breadth-first strategy.

b. using a depth-first strategy.
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17. Which one of the following phrases best describes the relationship represented
by the edges between the vertices in EmployeeGraph?

a. “works for”

b. “is the supervisor of”

c. “is senior to”

d. “works with”

Use the following specification of a directed graph in Exercises 18–21.

ZooGraph = (V, E)

V(ZooGraph) = {dog, cat, animal, vertebrate, oyster, shellfish, invertebrate, crab,
poodle, monkey, banana, dalmatian, dachshund}

E(ZooGraph) = {(vertebrate, animal), (invertebrate, animal), (dog, vertebrate), (cat,
vertebrate), (monkey, vertebrate), (shellfish, invertebrate), (crab,
shellfish), (oyster, shellfish), (poodle, dog), (dalmatian, dog), (dachs-
hund, dog)}

18. Draw a picture of ZooGraph.

19. Draw the adjacency matrix for ZooGraph. Store the vertices in alphabetical
order.

20. To tell if one element in ZooGraph has relation X to another element, you look
for a path between them. Show whether the following statements are true, using
the picture or adjacency matrix.

a. dalmatian X dog

b. dalmatian X vertebrate

c. dalmatian X poodle

d. banana X invertebrate

e. oyster X invertebrate

f. monkey X invertebrate

21. Which of the following phrases best describes relation X in the previous ques-
tion?

a. “has a”

b. “is an example of”

c. “is a generalization of”

d. “eats”
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Use the following graph for Exercises 22–24:

22. Describe the graph pictured above, using the formal graph notation.

V(StateGraph) =

E(StateGraph) =

23. In the states graph:

a. Is there a path from Oregon to any other state in the graph?

b. Is there a path from Hawaii to every other state in the graph?

c. From which state(s) in the graph is there a path to Hawaii?

24. Graphs can be implemented using arrays or references.

a. Show the adjacency matrix that would describe the edges in this graph. Store
the vertices in alphabetical order.

b. Show the array-of-references adjacency lists that would describe the edges in
this graph.

25. Complete the implementation of the Weighted Graph that we began in this chap-
ter by providing bodies for the methods isEmpty, isFull, clearMarks,
markVertex, and isMarked in the WeightedGraph.java file. Test the com-
pleted implementation using the UseGraph class.

Oregon

Alaska

Texas

Hawaii

Vermont New York

California
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26. Class WeightedGraph in this chapter is to be extended to include a boolean
edgeExists operation, which determines whether two vertices are connected by
an edge.

a. Write the declaration of this method. Include adequate comments.

b. Using the adjacency matrix implementation developed in the chapter and the
declaration from part (a), implement the body of the method.

27. Class WeightedGraph in this chapter is to be extended to include a deleteEdge
operation, which deletes a given edge.

a. Write the declaration of this method. Include adequate comments.

b. Using the adjacency matrix implementation developed in the chapter and the
declaration from part (a), implement the body of the method.

28. Class WeightedGraph in this chapter is to be extended to include a delete-
Vertex operation, which deletes a vertex from the graph. Deleting a vertex is
more complicated than deleting an edge from the graph. Discuss the reasons.

29. The depthFirstSearch operation can be implemented without a stack by using
recursion.

a. Name the base case(s). Name the general case(s).

b. Write the algorithm for a recursive depth-first search.

9.4 Storing Objects/Structures in Files
30. If you wanted to traverse a binary search tree, writing all the elements to a file,

and later (the next time you run the program) rebuild the tree by reading the ele-
ments and inserting them into the tree using the insert method, would an
inorder traversal be appropriate? Why or why not?

31. We want to serialize our binary search trees.

a. What changes would you make to the binary search tree file Binary-
SearchTree.java to allow binary search trees to be serialized?

b. How could you test your changes?

c. Make and test the changes.

32. Expand the Word Frequency Generator program from the case study in Chapter 8,
and any associated files that also have to be changed, so that it accepts a third file
name as a parameter and uses that file to hold a serialized copy of the binary
search tree between runs of the program. This means that you can run the program
on one input file of text to create the tree, and later run it on another input file of
text and have the second file’s words added to the tree containing the first file’s
words. Discuss rules for using this program.
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Measurable goals for this chapter include that you should be able to

design and implement the following sorting algorithms:
straight selection sort quick sort

bubble sort (two versions) merge sort

insertion sort heap sort

compare the efficiency of the sorting algorithms, in terms of Big-O time and space requirements

discuss other efficiency considerations: sorting small numbers of elements, programmer time

use the Java Comparator interface to define multiple sort orders for objects of a class

discuss the performances of the following search algorithms:
sequential search of an unsorted list

sequential search of a sorted list

binary search

searching a high-probability sorted list

define the following terms:
hashing linear probing

rehashing clustering

collisions

design and implement an appropriate hashing function for an application

design and implement a collision-resolution algorithm for a hash table

discuss the efficiency considerations for the searching and hashing algorithms, in terms of Big-O

Sorting and Searching
Algorithms

G
oals
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At many points in this book, we have gone to great trouble to keep lists of elements in
sorted order: real estate information sorted by house ID number, airline routes sorted by
distance, integers sorted from smallest to largest, words sorted alphabetically. One goal
of keeping sorted lists, of course, is to facilitate searching; given an appropriate imple-
mentation structure, a particular list element can be found faster if the list is sorted.

In this chapter we directly examine strategies for both sorting and searching, two
tasks that are fundamental to a variety of computing problems.

10.1 Sorting

Putting an unsorted list of data elements into order—sorting—is a very common and
useful operation. Whole books have been written about various sorting algorithms, as
well as algorithms for searching a sorted list to find a particular element. The goal is to
come up with better, more efficient, sorts. Because sorting a large number of elements
can be extremely time consuming, a good sorting algorithm is very desirable. This is
one area in which programmers are sometimes encouraged to sacrifice clarity in favor
of speed of execution.

How do we describe efficiency? We pick an operation central to most sorting
algorithms: the operation that compares two values to see which is smaller. In our
study of sorting algorithms, we relate the number of comparisons to the number of
elements in the list (N ) as a rough measure of the efficiency of each algorithm. The
number of element swaps is another measure of sorting efficiency. In the exercises we
ask you to analyze the sorting algorithms developed in this chapter in terms of data
movements.

Another efficiency consideration is the amount of memory space required. In
general, memory space is not a very important factor in choosing a sorting algo-
rithm. We look at only two sorts in which space would be a consideration. The usual
time versus space tradeoff applies to sorts—more space often means less time, and
vice versa.

Because processing time is the factor that applies most often to sorting algorithms,
we consider it in detail here. Of course, as in any application, the programmer must
determine goals and requirements before selecting an algorithm and starting to code.

We first discuss the straight selection sort, the bubble sort, and the insertion sort,
three simple sorts that students sometimes write in their first course. Then we introduce
three more complex (but more efficient) sorting algorithms: merge sort, quick sort, and
heap sort. So that we can concentrate on the algorithms, during the initial discussions,
we assume that our goal is to sort a given list of integers, held in an array. At the logi-
cal level, sorting algorithms take an unsorted list and convert it into a sorted list. At the
implementation level, the algorithms take an array and reorganize the values in the
array so that they are in order by key. Although we may say that we are “sorting the
array” or that we have a “sorted array,” remember that it is actually the list represented
by the array that is being sorted. In Section 10.4 we address issues related to sorting
objects in general.
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A Test Harness

To facilitate our study of sorting we develop a
standard test harness, a driver program that
we can use to test each of our sorting algo-
rithms. Since we are using this program just
to test our implementations and facilitate our
study, we keep it simple. It consists of a sin-
gle class called Sorts. The class defines an array of integers of size 50. The array is
named values. Several static methods are defined:

• initValues: Initializes the values array with random numbers between 0 and
99; uses the abs method from the Java library’s Math class (absolute value) and
the nextInt method from the Random class.

• isSorted: Returns a boolean value indicating whether or not the values array
is currently sorted.

• swap: Swapping data values between two array locations is common in many
sorting algorithms—this method swaps the integers between values[index1]
and values[index2], where index1 and index2 are parameters of the method.

• printValues: Prints the contents of the values array to the System.out
stream; the output is arranged evenly in ten columns.

Here is the code for the test harness:

//----------------------------------------------------------------------------
// Sorts.java               by Dale/Joyce/Weems                     Chapter 10
// 
// Test harness used to run sorting algorithms
//----------------------------------------------------------------------------

import java.io.*;
import java.util.*;
import java.text.DecimalFormat;

public class Sorts
{
static final int SIZE = 50;            // Size of array to be sorted
static int[] values = new int[SIZE];   // Values to be sorted

static void initValues()
// Initializes the values array with random integers from 0 to 99
{
Random rand = new Random();
for (int index = 0; index < SIZE; index++)
values[index] = Math.abs(rand.nextInt()) % 100;

}

Test harness A standalone program designed to facil-
itate testing of the implementations of algorithms
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static public boolean isSorted()
// Determines whether the array values are sorted
{
boolean sorted = true;
for (int index = 0; index < (SIZE – 1); index++)
if (values[index] > values[index + 1])
sorted = false;

return sorted;
}

static public void swap(int index1, int index2)
// Swaps the integers at locations index1 and index2 of array values
// Precondition: index1 and index2 are less than size
{
int temp = values[index1];
values[index1] = values[index2];
values[index2] = temp;

}

static public void printValues()
// Prints all the values integers
{
int value;
DecimalFormat fmt = new DecimalFormat("00");
System.out.println("the values array is:");
for (int index = 0; index < SIZE; index++)
{
value = values[index];
if (((index + 1) % 10) == 0)
System.out.println(fmt.format(value));

else
System.out.print(fmt.format(value) + " ");

}
System.out.println();

}

public static void main(String[] args) throws IOException
{
initValues();
printValues();
System.out.println("values is sorted: " + isSorted());
System.out.println();

swap(0, 1);
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printValues();
System.out.println("values is sorted: " + isSorted());
System.out.println();

}
}

In this version of Sorts the main method initializes the values array, prints it, prints
the value of isSorted, swaps the first two values of the array, and again prints infor-
mation about the array. The output from this class as currently defined would look
something like this:

the values array is:
20 49 07 50 45 69 20 07 88 02
89 87 35 98 23 98 61 03 75 48
25 81 97 79 40 78 47 56 24 07
63 39 52 80 11 63 51 45 25 78
35 62 72 05 98 83 05 14 30 23

values is sorted: false

the values array is:
49 20 07 50 45 69 20 07 88 02
89 87 35 98 23 98 61 03 75 48
25 81 97 79 40 78 47 56 24 07
63 39 52 80 11 63 51 45 25 78
35 62 72 05 98 83 05 14 30 23

values is sorted: false

As we proceed in our study of sorting algorithms, we add methods that implement
the algorithms to the Sorts class and change the main method to invoke those
methods. We can use the isSorted and printValues methods to help us check the
results.

Since our sorting methods are implemented for use with this test harness, they can
directly access the static values array. In the general case, we could modify each
method to accept a reference, to an array-based list to be sorted, as a parameter.

10.2 Simple Sorts

In this section we present three “simple” sorts, so called because they use an unsophisti-
cated brute force approach. This means they are not very efficient; but they are easy to
understand and to implement.
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Figure 10.1 Example of a straight selection sort (sorted elements are shaded)
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SelectionSort
Set current to the index of first item in the array
while more items in unsorted part of array

Find the index of the smallest unsorted item
Swap the current item with the smallest unsorted one
Shrink the unsorted part of the array by incrementing current

Straight Selection Sort

If you were handed a list of names and asked to put them in alphabetical order, you
might use this general approach:

1. Find the name that comes first in alphabetical order, and write it on a second sheet
of paper.

2. Cross the name out on the original list.

3. Continue this cycle until all the names on the original list have been crossed out
and written onto the second list, at which point the second list is sorted.

This algorithm is simple to translate into a computer program, but it has one draw-
back: It requires space in memory to store two complete lists. Although we have not
talked a great deal about memory-space considerations, this duplication is clearly
wasteful. A slight adjustment to this manual approach does away with the need to
duplicate space, however. As you cross a name off the original list, a free space opens
up. Instead of writing the minimum value on a second list, you can exchange it with the
value currently in the position where the crossed-off item should go. Our “by-hand list”
is represented in an array. Let’s look at an example—sorting the five-element array
shown in Figure 10.1(a). Because of this algorithm’s simplicity, it is usually the first
sorting method that students learn.
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Figure 10.2 A snapshot of the selection sort algorithm
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We implement the algorithm with a method selectionSort that is part of our
Sorts class. This method sorts the values array, declared in that class, and therefore
has access to the SIZE constant that indicates the number of elements in the array.
Within the selectionSort method we use a variable, current, to mark the beginning
of the unsorted part of the array. This means that the unsorted part of the array goes
from index current to index SIZE – 1. We start out by setting current to the index
of the first position (0).

The main sort processing is in a loop. In each iteration of the loop body, the small-
est value in the unsorted part of the array is swapped with the value in the current
location. After the swap, current is in the sorted part of the array, so we shrink the
size of the unsorted part by incrementing current. The loop body is now complete.

Back at the top of the loop body, the unsorted part of the array goes from the (now
incremented) current index to position SIZE – 1. We know that every value in the
unsorted part is greater than or equal to any value in the sorted part of the array.

How do we know when “there are more elements in the unsorted part”? As long
as current <= SIZE – 1, the unsorted part of the array (values[current] ..
values[SIZE – 1]) contains values. In each iteration of the loop body, current is
incremented, shrinking the unsorted part of the array. When current = SIZE – 1, the
“unsorted” part contains only one element, and we know that this value is greater than
or equal to any value in the sorted part. So the value in values[SIZE – 1] is in its
correct place, and we are done. The condition for the while loop is current < SIZE –
1. A snapshot of the selection sort algorithm is illustrated in Figure 10.2.

Now all we have to do is locate the smallest value in the unsorted part of the array.
Let’s write a method to do this task. The minIndex method receives first and last
indexes of the unsorted part, and returns the index of the smallest value in this part of
the array.
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Now that we know where the smallest unsorted element is, we swap it with the ele-
ment at index current. We use the swap method that is part of our test harness. Here
is the code for the minIndex and selectionSort methods. Since they are placed
directly in our test harness class, a class with a main method, they are declared as static
methods.

static int minIndex(int startIndex, int endIndex)
// Post: Returns the index of the smallest value in
//       values[startIndex]..values[endIndex]
{
int indexOfMin = startIndex;
for (int index = startIndex + 1; index <= endIndex; index++)
if (values[index] < values[indexOfMin])
indexOfMin = index;

return indexOfMin;
}

static void selectionSort()
// Post: The elements in the array values are sorted
{
int endIndex = SIZE – 1;
for (int current = 0; current < endIndex; current++)
swap(current, minIndex(current, endIndex));

}

If we now change the main body of the test harness to:

initValues();
printValues();
System.out.println("values is sorted: " + isSorted());
System.out.println();

selectionSort();

minIndex(startIndex, endIndex): return int
Set indexOfMin to startIndex
for index going from startIndex + 1 to endIndex

if values[index] < values[indexOfMin]
Set indexOfMin to index

return indexOfMin
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printValues();
System.out.println("values is sorted: " + isSorted());
System.out.println();

we get an output from the program that looks like this:

the values array is:
92 66 38 17 21 78 10 43 69 19
17 96 29 19 77 24 47 01 97 91
13 33 84 93 49 85 09 54 13 06
21 21 93 49 67 42 25 29 05 74
96 82 26 25 11 74 03 76 29 10

values is sorted: false

the values array is:
01 03 05 06 09 10 10 11 13 13
17 17 19 19 21 21 21 24 25 25
26 29 29 29 33 38 42 43 47 49
49 54 66 67 69 74 74 76 77 78
82 84 85 91 92 93 93 96 96 97

values is sorted: true

We can test all of our sorting methods using this same approach.

Analyzing Selection Sort
Now let’s try measuring the amount of “work” required by this algorithm. We describe
the number of comparisons as a function of the number of items in the array, i.e., SIZE.
To be concise, in this discussion we refer to SIZE as N.

The comparison operation is in the minIndex method. We know from the loop con-
dition in the selectionSort method that minIndex is called N � 1 times. Within
minIndex, the number of comparisons varies, depending on the values of startIndex
and endIndex:

for (int index = startIndex + 1; index <= endIndex; index++)
if (values[index] < values[indexOfMin])
indexOfMin = index;

In the first call to minIndex, startIndex is 0 and endIndex is SIZE – 1, so there are
N � 1 comparisons; in the next call there are N � 2 comparisons, and so on, until in
the last call, when there is only one comparison. The total number of comparisons is

(N � 1) + (N � 2) + (N � 3) + . . . + 1 = N (N � 1)/2
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Table 10.1 Number of Comparisons Required to Sort Arrays of Different Sizes Using Selection Sort

Number of Items Number of Comparisons

10 45

20 190

100 4,950

1,000 499,500

10,000 49,995,000

To accomplish our goal of sorting an array of N elements, the straight selection sort
requires N(N � 1)/2 comparisons. Note that the particular arrangement of values in the
array does not affect the amount of work done at all. Even if the array is in sorted order
before the call to selectionSort, the method still makes N(N � 1)/2 comparisons.
Table 10.1 shows the number of comparisons required for arrays of various sizes. Note
that doubling the array size roughly quadruples the number of comparisons.

How do we describe this algorithm in terms of Big-O? If we express N(N � 1)/2 as
1/2N 2 � 1/2N, it is easy to see. In Big-O notation we only consider the term 1/2N 2,
because it increases fastest relative to N. (Remember the elephant and goldfish?) Further,
we ignore the constant, 1/2 , making this algorithm O(N 2). This means that, for large
values of N, the computation time is approximately proportional to N 2. Looking back at
the previous table, we see that multiplying the number of elements by 10 increases the
number of comparisons by a factor of more than 100; that is, the number of compar-
isons is multiplied by approximately the square of the increase in the number of ele-
ments. Looking at this chart makes us appreciate why sorting algorithms are the subject
of so much attention: Using selectionSort to sort an array of 1,000 elements requires
almost a half million comparisons!

The identifying feature of a selection sort is that, on each pass through the loop,
one element is put into its proper place. In the straight selection sort, each iteration
finds the smallest unsorted element and puts it into its correct place. If we had made the
helper method find the largest value instead of the smallest, the algorithm would have
sorted in descending order. We could also have made the loop go down from SIZE – 1
to 1, putting the elements into the end of the array first. All these are variations on the
straight selection sort. The variations do not change the basic way that the minimum (or
maximum) element is found.

Bubble Sort

The bubble sort is a sort that uses a different scheme for finding the minimum (or maxi-
mum) value. Each iteration puts the smallest unsorted element into its correct place, but
it also makes changes in the locations of the other elements in the array. The first itera-
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BubbleSort
Set current to the index of first item in the array
while more items in unsorted part of array

“Bubble up” the smallest item in the unsorted part,
causing intermediate swaps as needed

Shrink the unsorted part of the array by incrementing current

Figure 10.3 Example of bubble sort (sorted elements are shaded)
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tion puts the smallest element in the array into the first array position. Starting with the
last array element, we compare successive pairs of elements, swapping whenever the
bottom element of the pair is smaller than the one above it. In this way the smallest ele-
ment “bubbles up” to the top of the array. The next iteration puts the smallest element in
the unsorted part of the array into the second array position, using the same technique.
As you look at the example in Figure 10.3, note that in addition to putting one element
into its proper place, each iteration causes some intermediate changes in the array.

The basic algorithm for the bubble sort is

The structure of the loop is much like that of the selectionSort. The unsorted
part of the array is the area from values[current] to values[SIZE – 1]. The value
of current begins at 0, and we loop until current reaches SIZE – 1, with current
incremented in each iteration. On entrance to each iteration of the loop body, the first
current values are already sorted, and all the elements in the unsorted part of the
array are greater than or equal to the sorted elements.

The inside of the loop body is different, however. Each iteration of the loop “bub-
bles up” the smallest value in the unsorted part of the array to the current position.
The algorithm for the bubbling task is



684 | Chapter 10:  Sorting and Searching Algorithms

A snapshot of this algorithm is shown in Figure 10.4. We use the swap method as
before. The code for methods bubbleUp and bubbleSort follows. The code can be
tested using our test harness.

bubbleUp(startIndex, endIndex)
for index going from endIndex DOWNTO startIndex +1

if values[index] < values[index � 1]
Swap the value at index with the value at index � 1

Figure 10.4 Snapshot of a bubble sort
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static void bubbleUp(int startIndex, int endIndex)
// Post: Adjacent pairs that are out of order have been switched
//       between values[startIndex]..values[endIndex] beginning at
//       values[endIndex]
{
for (int index = endIndex; index > startIndex; index--)
if (values[index] < values[index – 1])
swap(index, index – 1);

}

static void bubbleSort()
// Post: The elements in the array values are sorted
{
int current = 0;

while (current < SIZE – 1)
{
bubbleUp(current, SIZE – 1);
current++;

}
}

Analyzing Bubble Sort
To analyze the work required by bubbleSort is easy. It is the same as for the straight
selection sort algorithm. The comparisons are in bubbleUp, which is called N � 1 times.
There are N � 1 comparisons the first time, N � 2 comparisons the second time, and so
on. Therefore, bubbleSort and selectionSort require the same amount of work in
terms of the number of comparisons. bubbleSort does more than just make compar-
isons though; selectionSort has only one data swap per iteration, but bubbleSort
may do many additional data swaps.

What is the purpose of these intermediate data swaps? By reversing out-of-order
pairs of data as they are noticed, the method might get the array in order before N � 1
calls to bubbleUp. However, this version of the bubble sort makes no provision for
stopping when the array is completely sorted. Even if the array is already in sorted order
when bubbleSort is called, this method continues to call bubbleUp (which changes
nothing) N � 1 times.

We could quit before the maximum number of iterations if bubbleUp returns a
boolean flag, to tell us when the array is sorted. Within bubbleUp, we initially set a
variable sorted to true; then in the loop, if any swaps are made, we reset sorted to
false. If no elements have been swapped, we know that the array is already in order.
Now the bubble sort only needs to make one extra call to bubbleUp when the array is
in order. This version of the bubble sort is as follows:
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static boolean bubbleUp2(int startIndex, int endIndex)
// Post: Adjacent pairs that are out of order have been switched
//       between values[startIndex]..values[endIndex] beginning at
//       values[endIndex]
//       Returns false if a swap was made; otherwise, true
{
boolean sorted = true;
for (int index = endIndex; index > startIndex; index--)
if (values[index] < values[index – 1])
{
swap(index, index – 1);
sorted = false;

}
return sorted;

}

static void shortBubble()
// Post: The elements in the array values are sorted by key
//       The process stops as soon as values is sorted
{
int current = 0;
boolean sorted = false;
while (current < SIZE – 1 && !sorted)
{
sorted = bubbleUp2(current, SIZE – 1);
current++;

}
}

The analysis of shortBubble is more difficult. Clearly, if the array is already sorted to
begin with, one call to bubbleUp tells us so. In this best-case scenario, shortBubble is
O(N ); only N � 1 comparisons are required for the sort. What if the original array was actu-
ally sorted in descending order before the call to shortBubble? This is the worst possible
case: shortBubble requires as many comparisons as bubbleSort and selectionSort,
not to mention the “overhead”—all the extra swaps and setting and resetting the sorted
flag. Can we calculate an average case? In the first call to bubbleUp, when current is 0,
there are SIZE � 1 comparisons; on the second call, when current is 1, there are SIZE �
2 comparisons. The number of comparisons in any call to bubbleUp is SIZE � current �
1. If we let N indicate SIZE and K indicate the number of calls to bubbleUp executed
before shortBubble finishes its work, the total number of comparisons required is

(N � 1) + (N � 2) + (N � 3) + . . . + (N � K )
1st call 2nd call 3rd call Kth call
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Figure 10.5 Example of the insertion sort algorithm
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A little algebra changes this to

(2KN � 2K 2 � K )/2

In Big-O notation, the term that is increasing the fastest relative to N is 2KN. We
know that K is between 1 and N � 1. On average, over all possible input orders, K is
proportional to N. Therefore, 2KN is proportional to N 2; that is, the shortBubble algo-
rithm is also O(N 2).

Why do we even bother to mention the bubble sort algorithm if it is O(N 2) and
requires extra data movements? Due to the extra intermediate swaps performed by bub-
ble sort, it can quickly sort an array that is “almost” sorted. If the shortBubble varia-
tion is used, bubble sort can be very efficient for this situation.

Insertion Sort

In Chapter 3, we created a sorted list by inserting each new element into its appropriate
place in an array. We can use a similar approach for sorting an array. The principle of the
insertion sort is quite simple: Each successive element in the array to be sorted is inserted
into its proper place with respect to the other, already sorted elements. As with the previ-
ous sorts, we divide our array into a sorted part and an unsorted part. (Unlike the previous
sorts, there may be values in the unsorted part that are less than values in the sorted part.)
Initially, the sorted portion contains only one element: the first element in the array. Now
we take the second element in the array and put it into its correct place in the sorted part;
that is, values[0] and values[1] are in order with respect to each other. Now the value
in values[2] is put into its proper place, so values[0]..values[2] are in order with
respect to each other. This process continues until all the elements have been sorted. Fig-
ure 10.5 illustrates this process, which we describe in the following algorithm, and Figure
10.6 shows a snapshot of the algorithm.

In Chapter 3, our strategy was to search for the insertion point from the beginning
of the array and shift the elements from the insertion point down one slot to make room
for the new element. We can combine the searching and shifting by beginning at the
end of the sorted part of the array. We compare the item at values[current] to the
one before it. If it is less, we swap the two items. We then compare the item at val-
ues[current – 1] to the one before it, and swap if necessary. The process stops when
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insertionSort
for count going from 1 through SIZE � 1

insertItem(0, count)

InsertItem(startIndex, endIndex)
Set finished to false
Set current to endIndex
Set moreToSearch to true
while moreToSearch AND NOT finished

if values[current] < values[current � 1]
swap(values[current], values[current � 1])
Decrement current
Set moreToSearch to (current does not equal startIndex)

else
Set finished to true

Figure 10.6 A snapshot of the insertion sort algorithm
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the comparison shows that the values are in order or we have swapped into the first
place in the array.

Here are the coded versions of insertItem and insertionSort.
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static void insertItem(int startIndex, int endIndex)
// Post: values[0]..values[endIndex] are now sorted
{
boolean finished = false;
int current = endIndex;
boolean moreToSearch = true;
while (moreToSearch && !finished)
{
if (values[current] < values[current – 1])
{
swap(current, current – 1);
current--;
moreToSearch = (current != startIndex);

}
else
finished = true;

}
}

static void insertionSort()
// Post: The elements in the array values are sorted by key
{
for (int count = 1; count < SIZE; count++)
insertItem(0, count);

}

Analyzing Insertion Sort
The general case for this algorithm mirrors the selectionSort and the bubbleSort,
so the general case is O(N2). But like shortBubble, insertionSort has a best case:
The data are already sorted in ascending order. When the data are in ascending order,
insertItem is called N times, but only one comparison is made each time and no
swaps are necessary. The maximum number of comparisons is made only when the ele-
ments in the array are in reverse order.

If we know nothing about the original order of the data to be sorted, selection-
Sort, shortBubble, and insertionSort are all O(N2) sorts and are very time con-
suming for sorting large arrays. Thus, we need sorting methods that work better when N
is large.

10.3 O(N log2N) Sorts

Considering how rapidly N2 grows as the size of the array increases, can’t we do better?
We note that N2 is a lot larger than (1/2N)2 + (1/2N)2. If we could cut the array into two
pieces, sort each segment, and then merge the two back together, we should end up
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mergeSort
Cut the array in half
Sort the left half
Sort the right half
Merge the two sorted halves into one sorted array

Figure 10.7 Rationale for divide-and-conquer sorts
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sorting the entire array with a lot less work. An example of this approach is shown in
Figure 10.7.

The idea of “divide and conquer” has been applied to the sorting problem in differ-
ent ways, resulting in a number of algorithms that can do the job much more efficiently
than O(N2). In fact, there is a category of sorting algorithms that are O(Nlog2N). We
examine three of these algorithms here: mergeSort, quickSort, and heapSort. As
you might guess, the efficiency of these algorithms is achieved at the expense of the
simplicity seen in the straight selection, bubble, and insertion sorts.

Merge Sort

The merge sort algorithm is taken directly from the idea presented above.

Merging the two halves together is a O(N ) task: We merely go through the sorted
halves, comparing successive pairs of values (one in each half) and putting the smaller
value into the next slot in the final solution. Even if the sorting algorithm used for each
half is O(N 2), we should see some improvement over sorting the whole array at once.
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mergeSort—Recursive
Cut the array in half
mergeSort the left half
mergeSort the right half
Merge the two sorted halves into one sorted array

Actually, because mergeSort is itself a sorting algorithm, we might as well use it
to sort the two halves. That’s right—we can make mergeSort a recursive method and let
it call itself to sort each of the two subarrays:

This is the general case, of course. What is the base case, the case that does not
involve any recursive calls to mergeSort? If the “half ” to be sorted doesn’t have more
than one element, we can consider it already sorted and just return.

Let’s summarize mergeSort in the format we used for other recursive algorithms.
The initial method call would be mergeSort(0, SIZE – 1).

Method mergeSort(first, last)

Definition: Sorts the array items in ascending order.
Size: last � first + 1
Base Case: If size less than 2, do nothing.
General Case: Cut the array in half.

mergeSort the left half.
mergeSort the right half.
Merge the sorted halves into one sorted array.

Cutting the array in half is simply a matter of finding the midpoint between the
first and last indexes:

middle = (first + last) / 2;

Then, in the smaller-caller tradition, we can make the recursive calls to mergeSort:

mergeSort(first, middle);
mergeSort(middle + 1, last);

So far this is simple enough. Now we only have to merge the two halves and
we’re done.
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Merging the Sorted Halves
Obviously, all the serious work is in the merge step. Let’s first look at the general algo-
rithm for merging two sorted arrays, and then we can look at the specific problem of
our subarrays.

To merge two sorted arrays, we compare successive pairs of elements, one from
each array, moving the smaller of each pair to the “final” array. We can stop when one
array runs out of elements, and then move all the remaining elements from the other
array to the final array. Figure 10.8 illustrates the general algorithm. We use a similar
approach in our specific problem, in which the two “arrays” to be merged are actually
subarrays of the original array (Figure 10.9). Just as in Figure 10.8, where we merged

Figure 10.8 Strategy for merging two sorted arrays
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Figure 10.10 Merging sorted halves
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array1 and array2 into a third array, we need to merge our two subarrays into some
auxiliary structure. We only need this structure, another array, temporarily. After the
merge step, we can copy the now-sorted elements back into the original array. The
whole process is shown in Figure 10.10.

Let’s specify a method, merge, to do this task:

merge(int leftFirst, int leftLast, int rightFirst, int rightLast)

Method: Merges two sorted subarrays into a single sorted
piece of the array

Preconditions: values[leftFirst]..values[leftLast] are sorted;
values[rightFirst]..values[rightLast] are sorted.

Postcondition: values[leftFirst]..values[rightLast] are sorted.

Here is the algorithm for Merge:



694 | Chapter 10:  Sorting and Searching Algorithms

merge (leftFirst, leftLast, rightFirst, rightLast)
(uses a local array, tempArray)

Set saveFirst to leftFirst      // To know where to copy back
Set index to leftFirst
while more items in left half AND more items in right half

if values[leftFirst] < values[rightFirst]
Set tempArray[index] to values[leftFirst]
Increment leftFirst

else
Set tempArray[index] to values[rightFirst]
Increment rightFirst

Increment index
Copy any remaining items from left half to tempArray
Copy any remaining items from right half to tempArray
Copy the sorted elements from tempArray back into values

In the coding of method merge, we use leftFirst and rightFirst to indicate
the “current” position in the left and right halves, respectively. Because these are values
of the primitive type int and not objects, copies of these parameters are passed to
method merge, rather than references to the parameters. These copies are changed in
the method; but changing the copies does not affect the original values. Note that both
of the “copy any remaining items” loops are included. During the execution of this
method, one of these loops never executes. Can you explain why?

static void merge (int leftFirst, int leftLast, int rightFirst, int
rightLast)
// Post: values[leftFirst]..values[leftLast] and
//       values[rightFirst]..values[rightLast] have been merged.
//       values[leftFirst]..values[rightLast] are now sorted
{
int[] tempArray = new int [SIZE];
int index = leftFirst;
int saveFirst = leftFirst;

while ((leftFirst <= leftLast) && (rightFirst <= rightLast))
{
if (values[leftFirst] < values[rightFirst])
{
tempArray[index] = values[leftFirst];
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leftFirst++;
}
else
{
tempArray[index] = values[rightFirst];
rightFirst++;

}
index++;

}

while (leftFirst <= leftLast)
// Copy remaining items from left half

{
tempArray[index] = values[leftFirst];
leftFirst++;
index++;

}

while (rightFirst <= rightLast)
// Copy remaining items from right half
{
tempArray[index] = values[rightFirst];
rightFirst++;
index++;

}

for (index = saveFirst; index <= rightLast; index++)
values[index] = tempArray[index];

}

As we said, most of the work is in the merge task. The actual mergeSort method is
short and simple:

static void mergeSort(int first, int last)
// Post: The elements in values are sorted by key
{
if (first < last)
{
int middle = (first + last) / 2;
mergeSort(first, middle);
mergeSort(middle + 1, last);
merge(first, middle, middle + 1, last);

}
}
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Figure 10.11 Analysis of Merge Sort algorithm with N = 16
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Analyzing mergeSort
The mergeSort method splits the original array into two halves. It first sorts the first
half of the array, using the divide and conquer approach; then it sorts the second half of
the array using the same approach; then it merges the two halves. To sort the first half
of the array it follows the same approach, splitting and merging. During the sorting
process the splitting and merging operations are all intermingled. However, analysis is
simplified if we imagine that all of the splitting occurs first—we can view the process
this way without affecting the correctness of the algorithm.

We view the mergeSort algorithm as continually dividing the original array (of
size N ) in two, until it has created N one element subarrays. Figure 10.11 shows this
point of view for an array with an original size of 16. The total work needed to divide
the array in half, over and over again until we reach subarrays of size 1, is O(N ). After
all, we end up with N subarrays of size 1.

Each subarray of size 1 is obviously a sorted subarray. The real work of the algo-
rithm involves merging the smaller sorted subarrays back into the larger sorted subar-
rays. To merge two sorted subarrays of size X and size Y into a single sorted subarray
using the merge operation requires O(X + Y ) steps. We can see this because each time
through the while loops of the merge method we either advance the leftFirst index
or the rightFirst index by 1. Since we stop processing when these indexes become
greater than their “last” counterparts, we know that we take a total of (leftLast –
leftFirst + 1) + (rightLast – rightFirst + 1) steps. This expression repre-
sents the sum of the lengths of the two subarrays being processed.

How many times must we perform the merge operation? And what are the sizes
of the subarrays involved? Let’s work from the bottom up. The original array of size N
is eventually split into N subarrays of size 1. Merging two of those subarrays, into a
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Table 10.2 Comparing N2 and N log2 N

N log2N N2 Nlog2N

32 5 1,024 160

64 6 4.096 384

128 7 16,384 896

256 8 65,536 2,048

512 9 262,144 4,608

1024 10 1,048,576 10,240

2048 11 4,194,304 22,528

4096 12 16,777,216 49,152

subarray of size 2, requires O(1 + 1) = O(2) steps based on the analysis of the preced-
ing paragraph. That is, it requires a small constant number of steps in each case. But,
we must perform this merge operation a total of 1⁄2N times (we have N one-element
subarrays and we are merging them two at a time). So the total number of steps to
create all the sorted two-element subarrays is O(N ). Now we repeat this process to cre-
ate four-element subarrays. It takes four steps to merge two two-element subarrays.
We must perform this merge operation a total of 1⁄4N times (we have 1⁄2N two-element
subarrays and we are merging them two at a time). So the total number of steps to
create all the sorted four-element subarrays, is also O(N ) (4 * 1⁄4N = N ). The same rea-
soning leads us to conclude that each of the other levels of merging also requires O(N )
steps—at each level the sizes of the subarrays double, but the number of subarrays is
cut in half, balancing out.

We now know that it takes O(N ) total steps to perform merging at each “level”
of merging. How many levels are there? The number of levels of merging is equal to
the number of times we can split the original array in half. If the original array is
size N, we have log2N levels. (This is just like the analysis of the binary search algo-
rithm.) For example, in Figure 10.11 the size of the original array is 16 and the
number of levels of merging is 4. Since we have log2N levels, and we require O(N )
steps at each level, the total cost of the merge operation is: O(Nlog2N ). And since the
splitting phase was only O(N ), we conclude that Merge Sort algorithm is O(Nlog2N ).
Table 10.2 illustrates that, for large values of N, O(Nlog2N ) is a big improvement
over O(N 2).

The disadvantage of mergeSort is that it requires an auxiliary array that is as large
as the original array to be sorted. If the array is large and space is a critical factor, this
sort may not be an appropriate choice. Next we discuss two sorts that move elements
around in the original array and do not need an auxiliary array.
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Figure 10.12 Ordering a list using the Quick Sort algorithm
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Quick Sort

Like Merge Sort, Quick Sort is a divide-and-conquer algorithm, which is inherently recur-
sive. If you were given a large stack of final exams to sort by name, you might use the fol-
lowing approach: pick a splitting value, say, L and divide the stack of tests into two piles,
A–L and M–Z. (Note that the two piles do not necessarily contain the same number of
tests.) Then take the first pile and subdivide it into two piles, A–F and G–L. The A–F pile
can be further broken down into A–C and D–F. This division process goes on until the
piles are small enough to be easily sorted. The same process is applied to the M–Z pile.

Eventually all the small sorted piles can be collected one on top of the other to pro-
duce a sorted set of tests. (See Figure 10.12.)

This strategy is recursive—on each attempt to sort the pile of tests, the pile is
divided, and then the same approach is used to sort each of the smaller piles (a smaller
case). This process goes on until the small piles do not need to be further divided (the
base case). The parameter list of the quickSort method reflects the part of the list that
is currently being processed; we pass the first and last indexes that define the part of
the array to be processed on this call. The initial call to quickSort is

quickSort(0, SIZE – 1);

Method quickSort (first, last)

Definition: Sorts the items in sub array
values[first]..values[last].

Size: last � first + 1
Base Case: If size less than 2 , do nothing.
General Case: Split the array according to splitting value.

quickSort the elements <= splitting value.
quickSort the elements > splitting value.
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quickSort
if there is more than one element in values[first]..values[last]

Select splitVal
Split the array so that

values[first]..values[splitPoint – 1] <= splitVal
values[splitPoint] = splitVal
values[splitPoint + 1]..values[last] > splitVal

quickSort the left half
quickSort the right half

How do we select splitVal? One simple solution is to use the value in
values[first] as the splitting value. (We show a better solution later.)

We create a helper method split, to rearrange the array elements as planned. After
the call to split, all the items less than or equal to splitVal are on the left side of the
array and all of those greater than splitVal are on the right side of the array.

The two “halves” meet at splitPoint, the index of the last item that is less than or
equal to splitVal. Note that we don’t know the value of splitPoint until the split-
ting process is complete. Its value is returned by split. We can then swap splitVal
with the value at splitPoint.

6

[first] [splitPoint]

smaller values larger values

[last]

8 9 10 14 20 60 11

9

[first]

smaller values larger values

[last]

8 6 10 14 20 60 11

[splitPoint]

9

[first] [last]

splitVal = 9

20 6 10 14 8 60 11
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Our recursive calls to quickSort use this index (splitPoint) to reduce the size of
the problem in the general case.

quickSort(first, splitPoint – 1) sorts the left “half ” of the array. quick-
Sort(splitPoint + 1, last) sorts the right “half ” of the array. (The “halves” are
not necessarily the same size.) splitVal is already in its correct position in
values[splitPoint].

What is the base case? When the segment being examined has less than two items,
we do not need to go on. So “there is more than one item in values[first]..val-
ues[last]” can be translated into “if (first < last)”. We can now code our
quickSort method.

static void quickSort(int first, int last)
{
if (first < last)
{
int splitPoint;

splitPoint = split(first, last);
// values[first]..values[splitPoint – 1] <= splitVal
// values[splitPoint] = splitVal
// values[splitPoint+1]..values[last] > splitVal

quickSort(first, splitPoint – 1);
quickSort(splitPoint + 1, last);

}
}

Now we must develop our splitting algorithm. We must find a way to get all of the
elements equal to or less than splitVal on one side of splitVal and the elements
greater than splitVal on the other side.

We do this by moving the indexes, first and last, toward the middle of the
array, looking for items that are on the wrong side of the split point and swapping them
(Figure 10.13). While this is proceeding, the splitVal remains in the first position of
the subarray being processed. As a final step, we swap it with the value at the split-
Point; therefore, we save the original value of first in a local variable, saveF. (See
Figure 10.13a.)

We start out by moving first to the right, toward the middle, comparing val-
ues[first] to splitVal. If values[first] is less than or equal to splitVal, we
keep incrementing first; otherwise we leave first where it is and begin moving
last toward the middle. (See Figure 10.13b.)

Now values[last] is compared to splitVal. If it is greater, we continue decre-
menting last; otherwise, we leave last in place. (See Figure 10.13c.) At this point, it is
clear that values[last] and values[first] are each on the wrong side of the array.
Note that the elements to the left of values[first] and to the right of values[last]
are not necessarily sorted; they are just on the correct side of the array with respect to
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Figure 10.13 The split operation
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(a) Initialization. Note that splitVal = values[first] = 9.

[saveF][first] [last]
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(b) Increment first until values[first]>splitVal

[saveF][first] [last]

9 20 6 10 14 8 60 11

(c) Decrement last until values[last]<= splitVal

[saveF][first] [last]

9 8 6 10 14 20 60 11

(d) Swap values[first] and values[last]; move first and last
toward each other

[saveF] [last][first]

9 8 6 10 14 20 60 11

(e) Increment first until values[first]>splitVal or first>last.
     Decrement last until values[last]<= splitVal or first>last

[saveF] [last] [first]

6 8 9 10 14 20 60 11

(f) first>last so no swap occurs within the loop.
    swap values[saveF] and values[last]

[saveF] [last]
(splitPoint)

splitVal. To put values[first] and values[last] into their correct sides, we
merely swap them, then increment first and decrement last. (See Figure 10.13d.)

Now we repeat the whole cycle, incrementing first until we encounter a value
that is greater than splitVal, then decrementing last until we encounter a value that
is less than or equal to splitVal. (See Figure 10.13e.)
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When does the process stop? When first and last meet each other, no further
swaps are necessary. Where they meet determines the splitPoint. This is the location
where splitVal belongs, so we swap values[saveF], which contains splitVal, with
the element at values[splitPoint] (Figure 10.13f ). The index splitPoint is returned
from the method, to be used by quickSort to set up the next pair of recursive calls.

static int split(int first, int last)
{
int splitVal = values[first];
int saveF = first;
boolean onCorrectSide;

first++;
do
{
onCorrectSide = true;
while (onCorrectSide)             // Move first toward last
if (values[first] > splitVal)
onCorrectSide = false;

else
{
first++;
onCorrectSide = (first <= last);

}

onCorrectSide = (first <= last);
while (onCorrectSide)             // Move last toward first
if (values[last] <= splitVal)
onCorrectSide = false;

else
{
last--;
onCorrectSide = (first <= last);
}

if (first < last)
{
swap(first, last);
first++;
last--;

}
} while (first <= last);

swap(saveF, last);
return last;

}
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What happens if our splitting value is the largest or the smallest value in the seg-
ment? The algorithm still works correctly, but because the split is lopsided, it is not
so quick.

Is this situation likely to occur? That depends on how we choose our splitting value
and on the original order of the data in the array. If we use values[first] as the
splitting value and the array is already sorted, then every split is lopsided. One side con-
tains one element, while the other side contains all but one of the elements. Thus, our
quickSort is not a quick sort. Our splitting algorithm works best for an array in ran-
dom order.

It is not unusual, however, to want to sort an array that is already in nearly sorted
order. If this is the case, a better splitting value would be the middle value,

values[(first + last) / 2]

This value could be swapped with values[first] at the beginning of the method.

Analyzing quickSort
The analysis of quickSort is very similar to that of mergeSort. On the first call, every
element in the array is compared to the dividing value (the “split value”), so the work
done is O(N ). The array is divided into two parts (not necessarily halves), which are then
examined.

Each of these pieces is then divided in two, and so on. If each piece is split approxi-
mately in half, there are O(log2N ) levels of splits. At each level, we make O(N ) compar-
isons. So Quick Sort is also an O(Nlog2N ) algorithm, which is quicker than the O(N 2)
sorts we discussed at the beginning of this chapter.

But Quick Sort isn’t always quicker. Note that there are log2N levels of splits if each
split divides the segment of the array approximately in half. As we’ve seen, the array
division of Quick Sort is sensitive to the order of the data, that is, to the choice of the
splitting value.

What happens if the array is already sorted when our version of quickSort is
called? The splits are very lopsided, and the subsequent recursive calls to quickSort
break into a segment of one element and a segment containing all the rest of the array.
This situation produces a sort that is not at all quick. In fact, there are N � 1 levels; in
this case Quick Sort is O(N 2).

Such a situation is very unlikely to occur by chance. By way of analogy, consider
the odds of shuffling a deck of cards and coming up with a sorted deck. On the other
hand, in some applications you may know that the original array is likely to be sorted
or nearly sorted. In such cases you would want to use either a different splitting algo-
rithm or a different sort—maybe even shortBubble!

What about space requirements? Quick Sort does not require an extra array, as
Merge Sort does. Are there any extra space requirements, besides the few local vari-
ables? Yes-remember that Quick Sort uses a recursive approach. There can be many lev-
els of recursion “saved” on the system stack at any time. On average, the algorithm
requires O(log2N ) extra space to hold this information and in the worst case requires
O(N ) extra space, the same as Merge Sort.
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Heap Sort

In each iteration of the selection sort, we searched the array for the next-smallest ele-
ment and put it into its correct place in the array. Another way to write a selection sort
is to find the maximum value in the array and swap it with the last array element, then
find the next-to-largest element and put it into its place, and so on. Most of the work in
this sorting algorithm comes from searching the remaining part of the array in each
iteration, looking for the maximum value.

In Chapter 9, we discussed the heap, a data structure with a very special feature: We
always know where to find its greatest element. Because of the order property of heaps,
the maximum value of a heap is in the root node. We can take advantage of this situa-
tion by using a heap to help us sort. The general approach of the heap sort is as follows:

1. Take the root (maximum) element off the heap, and put it into its place.

2. Reheap the remaining elements. (This puts the next-largest element into the root
position.)

3. Repeat until there are no more elements.

The first part of this algorithm sounds a lot like the straight selection sort. What
makes the heap sort fast is the second step: finding the next-largest element. Because
the shape property of heaps guarantees a binary tree of minimum height, we make only
O(log2N ) comparisons in each iteration, as compared with O(N ) comparisons in each
iteration of the selection sort.

Building a Heap
By now you are probably protesting that we are dealing with an unsorted array of ele-
ments, not a heap. Where does the original heap come from? Before we go on, we have
to convert the unsorted array, values, into a heap.

Let’s take a look at how the heap relates to our array of unsorted elements. In Chap-
ter 9 we saw how heaps can be represented in an array with implicit links. Because of
the shape property, we know that the heap elements take up consecutive positions in the
array. In fact, the unsorted array of data elements already satisfies the shape property of
heaps. Figure 10.14 shows an unsorted array and its equivalent tree.

We also need to make the unsorted array elements satisfy the order property of
heaps. First let’s see if there’s any part of the tree that already satisfies the order prop-
erty. All of the leaf nodes (subtrees with only a single node) are heaps. In Figure
10.15(a) the subtrees whose roots contain the values 19, 7, 3, 100, and 1 are heaps
because they consist solely of root nodes.

Now let’s look at the first nonleaf node, the one containing the value 2 (Figure 10.15b).
The subtree rooted at this node is not a heap, but it is almost a heap—all of the nodes except
the root node of this subtree satisfy the order property. We know how to fix this problem. In
Chapter 9 we developed a heap utility method, reheapDown, that can be used to correct this
exact situation. Given a tree whose elements satisfy the order property of heaps except that
the tree has an empty root, and a value to insert into the heap, reheapDown rearranges the
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buildHeap
for index going from first nonleaf node up to the root node

reheapDown(values[index], index)

Figure 10.14 An unsorted array and its tree
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1[6]

19[7]

7[8]

values

nodes, leaving the (sub)tree containing the new element as a heap. We can invoke reheap-
Down on the subtree, passing it the current root value of the subtree.

We apply this method to all the subtrees on this level, and then we move up a level
in the tree and continue reheaping until we reach the root node. After reheapDown has
been called for the root node, the whole tree should satisfy the order property of heaps.
This heap-building process is illustrated in Figure 10.15; the changing contents of the
array are shown in Figure 10.16.

In Chapter 9, we defined reheapDown as a private method of the Heap class. There,
the method had only one parameter, the item being inserted into the heap. It always
worked on the entire tree, that is, it always started with an empty node at index 0 and
assumed that the last tree index of the heap was lastIndex. Here, we use a slight vari-
ation: reheapDown is a static method of our Sorts class that takes a second parame-
ter—the index of the node that is the root of the subtree that is to be made into a heap.
This is an easy change; if we call the parameter root we simply add the following
statement to the beginning of the reheapDown method:

int hole = root;   // Current index of hole

The algorithm for building a heap is summarized here:
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Figure 10.15 The heap-building process
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Figure 10.16 Changing contents of the array
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Sort Nodes
for index going from last node up to next-to-root node

Swap data in root node with values[index]
reheapDown(values[0], 0, index � 1)

We know where the root node is stored in our array representation of heaps—it’s in
values[0]. Where is the first nonleaf node? Because half the nodes of a complete
binary tree are leaves (prove this yourself ), the first nonleaf node may be found at posi-
tion SIZE/2 – 1.

Sorting Using the Heap
Now that we are satisfied that we can turn the unsorted array of elements into a heap,
let’s take another look at the sorting algorithm.

We can easily access the largest element from the original heap—it’s in the root
node. In our array representation of heaps, that is values[0]. This value belongs in the
last-used array position values[SIZE – 1], so we can just swap the values in these
two positions. Because values[SIZE – 1] now contains the largest value in the array
(its correct sorted value), we want to leave this position alone. Now we are dealing with
a set of elements, from values[0] through values[SIZE – 2], that is almost a heap.
We know that all of these elements satisfy the order property of heaps, except (perhaps)
the root node. To correct this condition, we call our heap utility, reheapDown. (But, our
original reheapDown method assumed that the heap’s tree ends at position lastIndex.
We must again redefine reheapDown, so that it now accepts three parameters, the third
being the ending index of the heap. And again the change is easy; the new code for
reheapDown is included in the Sorts class file on our web site.)

At this point we know that the next-largest element in the array is in the root node
of the heap. To put this element in its correct position, we swap it with the element in
values[SIZE – 2]. Now the two largest elements are in their final correct positions,
and the elements in values[0] through values[SIZE – 3] are almost a heap. So we
call reheapDown again, and now the third-largest element is in the root of the heap.

This process is repeated until all of the elements are in their correct positions; that is,
until the heap contains only a single element, which must be the smallest item in the array,
in values[0]. This is its correct position, so the array is now completely sorted from the
smallest to the largest element. Notice that at each iteration the size of the unsorted portion
(represented as a heap) gets smaller and the size of the sorted portion gets larger. At the
end of the algorithm, the size of the sorted portion is the size of the original array.

The heap sort algorithm, as we have described it, sounds like a recursive process.
Each time we swap and reheap a smaller portion of the total array. Because it uses tail
recursion, we can code the repetition just as clearly using a simple for loop. The node-
sorting algorithm is as follows:
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Method heapSort first builds the heap and then sorts the nodes, using the algo-
rithms just discussed.

static void heapSort()
// Post: The elements in the array values are sorted by key
{
int index;
// Convert the array of values into a heap
for (index = SIZE/2 – 1; index >= 0; index--)
reheapDown(values[index], index, SIZE – 1);

// Sort the array
for (index = SIZE – 1; index >=1; index--)
{
swap(0, index);
reheapDown(values[0], 0, index – 1);

}
}

Figure 10.17 shows how each iteration of the sorting loop (the second for loop)
would change the heap created in Figure 10.16. Each line represents the array after one
operation. The sorted elements are shaded.

We entered the heapSort method with a simple array of unsorted values and
returned with an array of the same values sorted in ascending order. Where did the heap
go? The heap in heapSort is just a temporary structure, internal to the sorting algo-
rithm. It is created at the beginning of the method to aid in the sorting process, and
then is methodically diminished element by element as the sorted part of the array
grows. At the end of the method, the sorted part fills the array and the heap has com-
pletely disappeared. When we used heaps to implement priority queues in Chapter 9, the
heap structure stayed around for the duration of the use of the queue. The heap in
heapSort, in contrast, is not a retained data structure. It only exists temporarily, during
the execution of the heapSort method.

Analyzing Heap Sort
The code for method heapSort is very short—only a few lines of new code plus the
helper method reheapDown, which we developed in Chapter 9 (albeit, slightly revised).

Unsorted
data in array

Enter heapSort

Same values
rearranged
into a heap
for sorting

Same values
reordered
(sorted)

Exit heapSort
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Figure 10.17 Effect of heapSort on the array
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These few lines of code, however, do quite a bit. All of the elements in the original array
are rearranged to satisfy the order property of heaps, moving the largest element up to
the top of the array, only to put it immediately into its place at the bottom. It’s hard to
believe from a small example such as the one in Figure 10.17 that heapSort is very
efficient.

In fact, for small arrays, heapSort is not very efficient because of all the “over-
head.” For large arrays, however, heapSort is very efficient. Let’s consider the sorting
loop. We loop through N � 1 times, swapping elements and reheaping. The compar-
isons occur in reheapDown (actually in its helper method newHole). A complete binary
tree with N nodes has O(log2(N + 1)) levels. In the worst cases, then, if the root element
had to be bumped down to a leaf position, the reheapDown method would make
O(log2N ) comparisons. So method reheapDown is O(log2N ). Multiplying this activity
by the N � 1 iterations shows that the sorting loop is O(Nlog2N ).

Combining the original heap build, which is O(N ), and the sorting loop, we can see
that Heap Sort requires O(N log2N ) comparisons. Note that, unlike Quick Sort, Heap
Sort’s efficiency is not affected by the initial order of the elements. Heap Sort is just as
efficient in terms of space; only one array is used to store the data. Heap Sort only
requires constant extra space.
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10.4 More Sorting Considerations

In this section we wrap up our coverage of sorting by revisiting efficiency, considering
the “stability” of sorting algorithms, and discussing special concerns involved with sort-
ing objects rather than primitive types.

Testing

All of our sorts were implemented within the test harness presented in Section 10.1.
That test harness program, Sorts, allows us to generate a random array of size 50, sort
it with one of our algorithms, and view the sorted array. It is easy to see if the sort was
successful. If we do not want to verify success by eyeballing the output, we can always
use a call to the isSorted method of the Sorts class.

Sorts is a useful tool for quickly evaluating the correctness of our sorting methods.
However, to thoroughly test them, we should vary the size of the array they are sorting. A
small revision to Sorts, allowing the user to pass the array size as a command-line
parameter, would facilitate this process. We should also vary the original order of the
array—test an array that is in reverse order, one that is almost sorted, and one that has all
identical elements (to make sure we do not generate an array index out of bounds error).

Besides validating that our sort methods create a sorted array, we can check on
their performance. At the start of the sorting phase we can initialize two variables, num-
Swaps and numCompares, to 0. By carefully placing statements incrementing these
variables throughout our code, we can use them to track how many times the code per-
forms swaps and comparisons. Now we output these values and compare them to the
predicted theoretical values. Inconsistencies would require further review of the code (or
maybe the theory!).

Efficiency

When N Is Small
As we have stressed throughout this chapter, we have based our analysis of efficiency
on the number of comparisons made by a sorting algorithm. This number gives us a
rough estimate of the computation time involved. The other activities that accompany
the comparison (swapping, keeping track of boolean flags, and so forth) contribute to
the “constant of proportionality” of the algorithm.

In comparing Big-O evaluations, we ignored constants and smaller-order terms,
because we wanted to know how the algorithm would perform for large values of N. In
general, a O(N2) sort requires few extra activities in addition to the comparisons, so its
constant of proportionality is fairly small. On the other hand, a O(Nlog2N ) sort may be
more complex, with more overhead and thus a larger constant of proportionality. This
situation may cause anomalies in the relative performances of the algorithms when the
value of N is small. In this case, N 2 is not much greater than N log2N, and the constants
may dominate instead, causing a O(N 2) sort to run faster than a O(N log2N ) sort.
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We have discussed sorting algorithms that have complexity either O(N 2) or
(N log2N ). An obvious question is: Are there algorithms that are better than (N log2N )?
No, it has been proven theoretically that we cannot do better than (N log2N ) for sorting
algorithms that are based on comparing keys.

Eliminating Calls to Methods
Sometimes it may be desirable, for efficiency considerations, to streamline the code as much
as possible, even at the expense of readability. For instance, we have consistently used

swap(index1, index2);

when we wanted to swap two items in the values array. We would achieve slightly
better execution efficiency by dropping the method call and directly coding:

tempValue = values[index1];
values[index1] = values[index2];
values[index2] = tempValue;

Coding the Swap operation as a method made the code simpler to write and to understand,
avoiding a cluttered sort method. But, method calls require extra overhead that you may
prefer to avoid during a sort, where the method is called over and over again within a loop.

The recursive sorting methods, mergeSort and quickSort, have a similar situa-
tion: They require the extra overhead involved in executing the recursive calls. You may
want to avoid this overhead by coding nonrecursive versions of these methods.

In some cases, an optimizing compiler replaces method calls with the inline expan-
sion of the code of the method. In that case, we get the benefits of both readability and
efficiency.

Programmer Time
If the recursive calls are less efficient, why would anyone ever decide to use a recursive
version of a sort? The decision involves a choice between types of efficiency. Up until
now, we have only been concerned with minimizing computer time. While computers
are becoming faster and cheaper, however, it is not at all clear that computer program-
mers are following that trend. In fact, programmers are becoming more expensive.
Therefore, in some situations, programmer time may be an important consideration in
choosing an algorithm and its implementation. In this respect, the recursive version of
Quick Sort is more desirable than its nonrecursive counterpart, which requires the pro-
grammer to simulate the recursion explicitly.

Of course, if a programmer is familiar with a language’s support library, the pro-
grammer can use the sort routines provided there. The Java Arrays class in the library’s
util package defines a number of sorts for sorting arrays. Likewise, the Java collections
framework, introduced in Section 4.3, provides methods for sorting many of its collec-
tion objects.
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Figure 10.18 Sorting arrays with references
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Space Considerations
Another efficiency consideration is the amount of memory space required. In small
applications, memory space is not a very important factor in choosing a sorting algo-
rithm. In large applications, such as a database with many gigabytes of data, space may
be a serious concern. We looked at only two sorts, mergeSort and quickSort, which
required more than constant extra space. The usual time-versus-space tradeoff applies
to sorts—more space often means less time, and vice versa.

Because processing time is the factor that applies most often to sorting algo-
rithms, we have considered it in detail here. Of course, as in any application, the pro-
grammer must determine goals and requirements before selecting an algorithm and
starting to code.

Sorting Objects

So that we could concentrate on the algorithms, we limited our implementations to sort-
ing arrays of integers. Do the same approaches work for sorting objects? Of course. But
there are a few extra considerations.

References
Keep in mind that when sorting an array of objects we are manipulating references to
the objects, and not the objects themselves. See Figure 10.18. This does not affect any of
our algorithms, but it is still important to understand. For example, if we decide to swap
the objects at index 0 and index 1 of an array, it is actually the references to the objects
that we swap and not the objects themselves. At an abstract level, we view objects, and
the references to the objects, as identical.

Comparisons
When sorting objects we must have a way to compare two objects and decide which is
“larger.” There are two basic approaches used when dealing with Java objects.
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Using the Comparable Interface The first approach you are familiar with from previous
chapters. If the object class exports a compareTo operation, or something similar, it can
be used to provide the needed comparison. This is the approach we have used
throughout the text. For example, our sorted lists contained objects that implemented
the Listable interface, which in turn requires a compareTo method. For our Binary
Search Trees and Priority Queues we used objects that implemented Java’s Comparable
interface. In fact, the only requirement for a Comparable object is that it provides a
compareTo operation. It is common for Java programmers, when creating methods that
need to compare objects, to insist that all arguments be of type Comparable.

For example, here is what the bubbleUp implementation looks like when defined to
sort objects of type Comparable, rather than just integers:

static void bubbleUp(int startIndex, int endIndex)
// Post: Adjacent pairs that are out of order have been switched
//       between values[startIndex]..values[endIndex] beginning at
//       values[endIndex]
{
for (int index = endIndex; index > startIndex; index--)
if (values[index].compareTo(values[index – 1]) < 0)
swap(index, index – 1);

}

A limitation of this approach is that a class can only have one compareTo method.
What if we have a class of objects, for example student records, that we want to sort in
many various ways: by name, by grade, by zip code, in increasing order, in decreasing
order? In this case we need to use the next approach.

Using the Comparator Interface The second common approach allows more flexibility.
The Java Library provides another interface related to comparing objects called
Comparator. The interface defines two abstract methods:

public abstract int compare(Object o1, Object o2);
// Returns a negative integer, zero, or a positive integer to 
//  indicate that o1 is less than, equal to, or greater than o2

public abstract boolean equals(Object obj);
// Returns true if this Object equals obj; false, otherwise

The first method, compare, is very similar to the familiar compareTo method. How-
ever, it takes two arguments, rather than one. The second method, equals, is specified
the same as the equals method of the Object class. We do not have to provide a con-
crete method for equals when creating a Comparator class, since every class inherits
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the equals method from Object. We do not address the equals method again in this
discussion.

Any sort implementation must compare elements. Our methods so far have used
built-in integer comparison operations such as “<” or “<=”. If we sort Comparable
objects, instead of integers, we could use the compareTo method that is guaranteed to
exist by that interface. Alternately, we could use a versatile approach supported by the
Comparator interface. If we pass a Comparator object comp to a sorting method as a
parameter, the method can use comp.compare to determine the relative order of two
objects and base its sort on that relative order. Passing a different Comparator object
results in a different sorting order. Perhaps one Comparator object defines an increas-
ing order, and another defines a decreasing order. Or, the different Comparator objects
could define order based on different attributes of the objects. Now, with a single sort-
ing method, we can produce many different sort orders.

Let’s look at an example. As we did in Chapter 9, to allow us to concentrate on the
topic of discussion, we use a simple circle class. The fact that the fields of circles are not
private makes it easy to demonstrate the concepts of this section. We redefine circles
slightly here as follows:

package ch10.circles;

public class SortCircle
{
public int xValue;
public int yValue;
public int radius;
public boolean solid;

}

Here is the definition of a Comparator object that orders SortCircles based on
their xValue:

Comparator xComp = new Comparator()
{
public int compare(Object a, Object b)
{
SortCircle circleA = (SortCircle)a;
SortCircle circleB = (SortCircle)b;
return (circleA.xValue – circleB.xValue);

}
};

And here is a selectionSort method, along with its helper method minIndex, that
accepts and uses a Comparator object (the changes from the previous version of
selectionSort are emphasized):
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static int minIndex(int startIndex, int endIndex, Comparator comp)
// Post: Returns the index of the smallest value in
//       values[startIndex]..values[endIndex]
//       based on the Comparator comp
{
int indexOfMin = startIndex;
for (int index = startIndex + 1; index <= endIndex; index++)
if (comp.compare(values[index],values[indexOfMin]) < 0)
indexOfMin = index;

return indexOfMin;
}

static void selectionSort(Comparator comp)
// Post: The elements in the array values are sorted
{
int endIndex = SIZE – 1;
for (int current = 0; current < endIndex; current++)
swap(current, minIndex(current, endIndex, comp));

}

Note how passing a different Comparator object to selectionSort would result
in a different sort order. This makes the sort operation extremely versatile. Just by pass-
ing it different Comparator objects it can sort circles in increasing or decreasing order
based on any of the circle fields, or even any mathematical combination of circle fields.
The following program, Sorts2, demonstrates our new flexibility. It generates an array
of six random SortCircle objects, prints them, sorts them by xValue, prints them,
sorts them by yValue, and then prints them again. Study the program carefully. The
output from an execution of the program is:

the values array is:

x  y  r solid
-- -- -- –--
37 83 82 true
46 25 71 false
43 73 62 true
08 67 40 false
69 68 70 true
20 95 15 false
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the values array is:

x  y  r solid
-- -- -- –--
08 67 40 false
20 95 15 false
37 83 82 true
43 73 62 true
46 25 71 false
69 68 70 true

the values array is:

x  y  r solid
-- -- -- –--
46 25 71 false
08 67 40 false
69 68 70 true
43 73 62 true
37 83 82 true
20 95 15 false

//----------------------------------------------------------------------------
// Sorts2.java              by Dale/Joyce/Weems                     Chapter 10
// 
// Test harness used to run sorting algorithms that use Comparator
//----------------------------------------------------------------------------

import java.io.*;
import java.util.*;
import java.text.DecimalFormat;
import ch10.circles.*;

public class Sorts2
{
static final int SIZE = 6;                      // Size of array to be sorted
static SortCircle[] values = new SortCircle[SIZE];   // Values to be sorted

static void initValues()
// Initializes the values array with random circles
{
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Random rand = new Random();
for (int index = 0; index < SIZE; index++)
{
values[index] = new SortCircle();
values[index].xValue = Math.abs(rand.nextInt()) % 100;
values[index].yValue = Math.abs(rand.nextInt()) % 100;
values[index].radius = Math.abs(rand.nextInt()) % 100;
values[index].solid = ((Math.abs(rand.nextInt()) % 2) == 0);

}
}

static public void swap(int index1, int index2)
// Swaps the SortCircles at locations index1 and index2 of array values
// Precondition: index1 and index2 are less than SIZE
{
SortCircle temp = values[index1];
values[index1] = values[index2];
values[index2] = temp;

}

static public void printValues()
// Prints all the values integers
{
SortCircle value;
DecimalFormat fmt = new DecimalFormat("00");
System.out.println("the values array is:");
System.out.println();
System.out.println(" x  y  r solid");
System.out.println("-- -- -- –--");
for (int index = 0; index < SIZE; index++)
{
value = values[index];
System.out.print(fmt.format(value.xValue) + " ");
System.out.print(fmt.format(value.yValue) + " ");
System.out.print(fmt.format(value.radius) + " ");
System.out.print(value.solid);
System.out.println();

}
System.out.println();

}

static int minIndex(int startIndex, int endIndex, Comparator comp)
// Post: Returns the index of the smallest value in
//       values[startIndex]..values[endIndex]
//       based on the Comparator comp
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{
int indexOfMin = startIndex;
for (int index = startIndex + 1; index <= endIndex; index++)
if (comp.compare(values[index],values[indexOfMin]) < 0)
indexOfMin = index;

return indexOfMin;
}

static void selectionSort(Comparator comp)
// Post: The elements in the array values are sorted
{
int endIndex = SIZE – 1;
for (int current = 0; current < endIndex; current++)
swap(current, minIndex(current, endIndex, comp));

}

public static void main(String[] args) throws IOException
{
Comparator xComp = new Comparator()
{
public int compare(Object a, Object b)
{
SortCircle circleA = (SortCircle)a;
SortCircle circleB = (SortCircle)b;
return (circleA.xValue – circleB.xValue);

}
};

Comparator yComp = new Comparator()
{
public int compare(Object a, Object b)
{
SortCircle circleA = (SortCircle)a;
SortCircle circleB = (SortCircle)b;
return (circleA.yValue – circleB.yValue);

}
};

initValues();
printValues();
selectionSort(xComp);
printValues();
selectionSort(yComp);
printValues();

}
}
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Remember that using the Comparator approach does require revising our sorting
routines slightly; they must accept a Comparator as a parameter and use it appropriately.
With similar changes, we could use this approach for any of our ADTs that involve com-
paring elements: our lists, binary search trees, and priority queues. If our goal is to make
our ADTs as generally usable as possible, we should certainly consider this new approach.

The added flexibility of Comparator comes with a cost in performance. Just as we
said that writing the swap operation within a separate method adds overhead to execution
time, performing the comparison within a method also takes more time than a direct com-
parison. The Comparable interface also places the compare operation within a method,
but most optimizing compilers are able to automatically extract the code from the method
and place it directly in the sort to avoid this cost. With Comparator, however, different
methods are used at different times, and so the same optimization can’t be applied.

Stability

The stability of a sorting algorithm is based on what it does with duplicate values. Of
course, the duplicate values all appear consecutively in the final order. For example, if we
sort the list A B B A, we get A A B B. But is the
relative order of the duplicates the same in the
final order as it was in the original order? If
that property is guaranteed, we have a stable
sort.

In our descriptions of the various sorts, we showed examples of sorting arrays of
integers. Stability is not important when sorting primitive types. If instead we sort
objects, the stability of a sorting algorithm can become more important. We may want to
preserve the original order of objects considered identical by the comparison operation.

Suppose the items in our array are student objects with instance values representing
their names, zip codes, and identification numbers. The list may normally be sorted by
the unique identification numbers. For some purposes we might want to see a listing in
order by name. In this case the comparison would be based on the name variable. To
sort by zip code, we would sort on that instance variable.

If the sort is stable, we can get a listing by zip code, with the names in alphabetical
order within each zip code, by sorting twice: the first time by name and the second time
by zip code. A stable sort preserves the order of the elements when there is a match. The
second sort, by zip code, produces many such matches, but the alphabetical order
imposed by the first sort is preserved.

Of the sorts that we have discussed in this book, only heapSort and quickSort are
inherently unstable. The stability of the other sorts depends on what the code does with
duplicate values. In some cases, stability depends on whether a < or a <= comparison is
used in some crucial comparison statement. In the exercises, you are asked to examine the
code for the other sorts as we have coded them and determine whether they are stable.

Of course, if you can directly control the comparison operation used by your sort
method, you can allow more than one variable to be used in determining a sort order.
So another, more efficient approach to sorting our students by zip code and name is to
define an appropriate compareTo method for determining sort order as follows (for sim-
plicity, this assumes we can directly compare the name values):

Stable sort A sorting algorithm that preserves the
order of duplicates
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if (zipcode < other.zipcode)
return –1;

else
if (zipcode > other.zipcode)
return +1;

else
// Zipcodes are equal
if (name < other.name)
return –1;

else
if (name > other.name)
return +1;

else
return 0;

With this approach we need to sort the array only once.

10.5 Searching

As we have seen throughout the text, for each particular structure used to hold data, the
methods that allow access to elements in the structure must be defined. In some cases
access is limited to the elements in specific positions in the structure, such as the top
element in a stack or the front element in a queue. Often, when data are stored in a list
or a table, we want to be able to access any element in the structure.

Sometimes the retrieval of a specified element can be performed directly. For
instance, the fifth element of the list stored sequentially in an array-based list called
list is found in list[4]. Often, however, you want to access an element according to
some key value. For instance, if a list contains student records, you may want to find
the record of the student named Suzy Brown or the record of the student whose ID
number is 203557. In cases like these, some kind of searching technique is needed to
allow retrieval of the desired record.

For each of the techniques we review or introduce, our search operation must meet
the following specifications. Note that we are talking about techniques within the class,
not client code.

FindItem(item) return location

Effect: Determines whether an element in the list has a key
that matches item’s, and if so returns its location

Preconditions: List has been initialized.
Item’s key has been initialized.

Postcondition: Location = position of element whose key matches
item’s key, if it exists;
otherwise, location = NULL.
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Linear Search (unsorted data): returns location
Initialize location to position of first item
Set found to false
Set moreToSearch to (have not examined last.info( ))
while moreToSearch AND NOT found

if item equals location.info( )
Set found to true

else
Set location to location.next( )
Set moreToSearch to (have not examined last.info( ))

if not found
Set location to NULL

return location

This specification has been written to apply to both array-based and linked lists, where
location would be either an index in an array-based list or a reference in a linked
list, and NULL would be either �1 in an array-based list or the null reference in a
linked list.

Linear Searching

We cannot discuss efficient ways to find an element in a list without considering how
the elements were inserted into the list. Therefore, our discussion of search algorithms is
related to the issue of the list’s insert operation. Suppose that we want to insert ele-
ments as quickly as possible, and we are not as concerned about how long it takes to
find them. We would put the element into the last slot in an array-based list and the
first slot in a linked list. These are O(1) insertion algorithms. The resulting list is sorted
according to the time of insertion, not according to key value.

To search this list for the element with a given key, we must use a simple linear (or
sequential) search. Beginning with the first element in the list, we search for the desired
element by examining each subsequent item’s key until either the search is successful or
the list is exhausted:

Based on the number of comparisons, it should be obvious that this search is O(N ),
where N represents the number of elements. In the worst case, in which we are looking
for the last element in the list or for a nonexistent element, we have to make N key
comparisons. On the average, assuming that there is an equal probability of searching
for any item in the list, we make N/2 comparisons for a successful search; that is, on the
average we have to search half of the list.
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High-Probability Ordering

The assumption of equal probability for every element in the list is not always valid.
Sometimes certain list elements are in much greater demand than others. This observa-
tion suggests a way to improve the search: Put the most-often-desired elements at the
beginning of the list. Using this scheme, you are more likely to make a hit in the first
few tries, and rarely do you have to search the whole list.

If the elements in the list are not static or if you cannot predict their relative
demand, you need some scheme to keep the most frequently used elements at the front
of the list. One way to accomplish this goal is to move each element accessed to the
front of the list. Of course, there is no guarantee that this element is later frequently
used. If the element is not retrieved again, however, it drifts toward the end of the list as
other elements are moved to the front. This scheme is easy to implement for linked lists,
requiring only a couple of pointer changes, but it is less desirable for lists kept sequen-
tially in arrays, because of the need to move all the other elements down to make room
at the front.

A second approach, which causes elements to move toward the front of the list
gradually, is appropriate for either linked or array-based list representations. As an ele-
ment is found, it is swapped with the element that precedes it. Over many list retrievals,
the most frequently desired elements tend to be grouped at the front of the list. To
implement this approach, we only need to modify the end of the algorithm to exchange
the found element with the one before it in the list (unless it is the first element). This
change should be documented; it is an unexpected side effect of searching the list.

Keeping the most active elements at the front of the list does not affect the worst
case; if the search value is the last element or is not in the list, the search still takes N
comparisons. This is still a O(N ) search. The average performance on successful searches
should be better, however. Both of these algorithms depend on the assumption that
some elements in the list are used much more often than others. If this assumption is
not applicable, a different ordering strategy is needed to improve the efficiency of the
search technique.

Lists in which the relative positions of the elements are changed in an attempt to
improve search efficiency are called self-organizing or self-adjusting lists.

Key Ordering

If a list is sorted according to the key value, we can write more efficient search routines.
To support a sorted list, we must either insert the elements in order, or we must sort the
list before searching it. (Note that inserting the elements in order is an O(N 2) process, as
each insertion is O(N ).) If we insert each element into the next free slot, and then sort
the list with a “good” sort, the process is O(N log2N ).)

If the list is sorted, a sequential search no longer needs to search the whole list to
discover that an element does not exist. It only needs to search until it has passed the
element’s logical place in the list—that is, until an element with a larger key value is
encountered. Versions of the Sorted List ADT in Chapters 3 and 5 implement this search
technique.
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One advantage of linear searching of a sorted list is the ability to stop searching
before the list is exhausted if the element does not exist. Again, the search is O(N )—the
worst case, searching for the largest element, still requires N comparisons. The average
number of comparisons for an unsuccessful search is now N/2, however, instead of a
guaranteed N.

Another advantage of linear searching is its simplicity. The disadvantage is its per-
formance: In the worst case you have to make N comparisons. If the list is sorted and
stored in an array, you can improve the search time to a worst case of O(log2N ) by
using a binary search. However, efficiency is improved at the expense of simplicity.

Binary Searching

We know of a way to improve searching from O(N ) to O(log2N ). If the data elements are
sorted and stored sequentially in an array, we can use a binary search. The binary
search algorithm improves the search efficiency by limiting the search to the area where
the element might be. The binary search algorithm takes a divide-and-conquer
approach. It continually pares down the area to be searched until either the element is
found or the search area is gone (the element is not in the list). We developed the binary
Search algorithm in Chapter 3, and converted it to a recursive approach in Chapter 7.

The binary search, however, is not guaranteed to be faster for searching very small
lists. Notice that even though the binary search generally requires fewer comparisons,
each comparison involves more computation. When N is very small, this extra work
(the constants and smaller terms that we ignore in determining the Big-O approxima-
tion) may dominate. Although fewer comparisons are required, each involves more pro-
cessing. For instance, in one assembly-language program, the linear search required 5
time units per comparison, whereas the binary search took 35. For a list size of 16 ele-
ments, therefore, the worst-case linear search would require 5 * 16 = 80 time units. The
worst-case binary search requires only 4 comparisons, but at 35 time units each, the
comparisons take 140 time units. In cases where the number of elements in the list is
small, a linear search is certainly adequate and sometimes faster than a binary search.

As the number of elements increases, however, the disparity between the linear
search and the binary search grows very quickly. Look back at Table 3.2 to compare the
rates of growth for the two algorithms.

Note that the binary search discussed here is appropriate only for list elements
stored in a sequential array-based representation. After all, how can you efficiently find
the midpoint of a linked list? However, you already know of a structure that allows you
to perform a binary search on a linked data representation, the binary search tree. The
operations used to search a binary tree were discussed in Chapter 8.

10.6 Hashing

So far, we have succeeded in paring down our O(N ) search to O(log2N ) by keeping the
list sorted sequentially with respect to the key value. That is, the key in the first element
is less than (or equal to) the key in the second element, which is less than the key in the
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third, and so on. Can we do better than that? Is it possible to design a search of O(1);
that is, one that has a constant search time, no matter where the element is in the list?

In theory, that is not an impossible dream. Let’s look at an example, a list of
employees of a fairly small company. Each of the 100 employees has an ID number in
the range 0 to 99, and we want to access the employee information by the key idNum.
If we store the elements in an array that is indexed from 0 to 99, we can directly access
any employee’s information through the array index. There is a one-to-one correspon-
dence between the element keys and the array index; in effect, the array index func-
tions as the key of each element.

In practice, however, this perfect relationship between the key value and the loca-
tion of an element is not easy to establish or maintain. Consider a similar small com-
pany that uses its employees’ five-digit ID number as the primary key. Now the range of
key values is from 00000 to 99999. Obviously, it is impractical to set up an array of
100,000 elements, of which only 100 are needed, just to make sure that each employee’s
element is in a perfectly unique and predictable location.

What if we keep the array size down to the size that we actually need (an array of 100
elements) and use just the last two digits of the key to identify each employee? For instance,
the element of employee 53374 is in employeeList[74], and the element of employee
81235 will be in employeeList[35]. Note that the elements are not sorted according to
the value of the key as they were in our earlier discussion; the position of employee 81235’s
information precedes that of employee 53374 in the array, even though the value of its key

is larger. Instead, the elements are sorted with respect to
some function of the key value.

This function is called a hash function, and the
search technique we are using is called hashing. The
underlying data structure is often called a hash table.
In the case of the employee list, the hash function is
(key % 100). The key (idNum) is divided by 100, and
the remainder is used as an index into the array of
employee elements, as illustrated in Figure 10.19. This
function assumes that the array is indexed from 0 to
99 (MAX_ITEMS = 100). The method to perform the
conversion of key values to indexes is very simple:

int hash()
// Post: Returns an integer between 0 and MAX_ITEMS –1
{
return (idNum % MAX_ITEMS);

}

Here we assume that hash is a public method of itemType, the type (class) of the
items in the list, and that idNum is an instance variable of itemType. For example, to
use hashing to facilitate access to the lists we defined in Chapter 3 we must create a
new interface Hashable:

Hash function A function used to manipulate the key
of an element in a list to identify its location in the list

Hashing The technique used for ordering and access-
ing elements in a list in a relatively constant amount of
time by manipulating the key to identify its location in
the list

Hash table Term used to describe the data structure
used to store and retrieve elements using hashing
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public interface Hashable extends Listable
// Objects of classes that implement this interface can be used
//  with lists based on hashing
{
// A mathematical function used to manipulate the key of an element
//  in a list to identify its location in the list
public abstract int hash();

}

We can manipulate objects that implement the Hashable interface on our hash-based
lists. In Chapter 3 we required such objects to implement the Listable interface.
(Listable defines abstract methods compareTo and copy.) Note that the Hashable
interface extends the Listable interface—objects that implement Hashable must
export hash, compareTo, and copy methods.

The hash function has two uses. As we have seen, it is used to access a list element.
The result of the hash function tells us where to look for a particular element—informa-
tion we need to retrieve, modify, or delete the element. Here, for example, is a simple
version of our list method retrieve, which assumes that the element is in the list.

public Hashable retrieve(Hashable item)
// Returns a copy of the list element in the array at position
//  item.Hash()

Figure 10.19 Using a hash function to determine the location of the element in an array
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Figure 10.20 Comparing hashed and sequential lists of identical elements
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{
int location;
location = item.hash();
return (Hashable)list[location].copy();

}

There is a second use of the hash function. It determines where in the array to store
the element. If the employee list elements were inserted into the list using an insert
operation from Chapter 3—into sequential array slots or into slots with their relative
order determined by the key value—we could not use the hash function to retrieve them.
We have to create a version of an insert operation that puts each new element into the
correct slot according to the hash function. Here is a simple version of insert, which
assumes that the array slot at the index returned from the hash function is not in use:

public void insert (Hashable item)
// Adds a copy of item to this list at position item.Hash()
{
int location;
location = item.hash();
list[location] = item;
numItems++;

}

Figure 10.20(a) shows an array whose elements—information for the employees with
the key values (unique ID numbers) 12704, 31300, 49001, 52202, and 65606—were
added using insert. Note that this function does not fill the array positions sequen-
tially. Because we have not yet inserted any elements whose keys produce the hash val-
ues 3 and 5, the array slots [3] and [5] are logically “empty.” This is different from the
approach we used in Chapter 3 to create a sorted list. In Figure 10.20(b), the same
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employee records have been inserted into a sorted list using the insert operation from
Chapter 3. Note that, unless the hash function was used to determine where to insert an
element, the hash function is useless for finding the element.

Collisions

By now you are probably objecting to this
scheme on the grounds that it does not guar-
antee unique hash locations. ID number
01234 and ID number 91234 both “hash” to
the same location: list[34]. The problem of
avoiding these collisions is the biggest chal-
lenge in designing a good hash function. A good hash function minimizes collisions by
spreading the elements uniformly throughout the array. We say “minimizes collisions”
because it is extremely difficult to avoid them completely.

Assuming that there are some collisions, where do you store the elements that cause
them? We briefly describe several popular collision-handling algorithms in the next sec-
tion. Note that the scheme that is used to find the place to store an element determines
the method subsequently used to retrieve it.

Linear Probing
A simple approach to resolving collisions is to
store the colliding element into the next
available space. This technique is known as
linear probing. In the situation in Figure
10.21, we want to add the employee element

Collision The condition resulting when two or more
keys produce the same hash location

Linear probing Resolving a hash collision by sequen-
tially searching a hash table beginning at the location
returned by the hash function

Figure 10.21 Handling collisions with linear probing
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with the key ID number 77003. The hash function returns 3. But there already is an ele-
ment stored in this array slot, the record for Employee 50003. We increment location
to 4 and examine the next array slot. list[4] is also in use, so we increment loca-
tion again. This time we find a slot that is empty, so we store the new element into
list[5].

What happens if the key hashes to the last index in the array and that space is in
use? We can consider the array as a circular structure and continue looking for an
empty slot at the beginning of the array. This situation is similar to our circular array-
based queue in Chapter 4. There we used the % operator when we incremented our
index. We can use similar logic here.

How do we know whether an array slot is “empty”? Assuming we have an array of
objects, this is easy—just check to see if the value of the array slot is null.

Here is a version of insert that uses linear probing to find a place to store a new
element. It assumes that there is room in the array for another element; that is, the
client checks for isFull before the method is called. (We have retained the numItems
instance variable of our lists. Even though it no longer tells us where the end of the list
is, it is still useful in determining whether the list is full.)

public static void insert (Hashable item)
// Adds a copy of item to this list at position item.Hash()
//  or the next free spot
{
int location;
location = item.hash();
while (list[location] != null)
location = (location + 1) % list.length;

list[location] = item;
numItems++;

}

To search for an element using this collision-handling technique, we perform the
hash function on the key, then compare the desired key to the actual key in the element
at the designated location. If the keys do not match, we use linear probing, beginning at
the next slot in the array. Following is a version of the retrieve method that uses this
approach. Recall that our retrieve method for lists assumes that the item being
retrieved is on the list.

public static Hashable retrieve(Hashable item)
// Returns a copy of the list element that matches item
{
int location;
location = item.hash();
while (list[location].compareTo(item) != 0)
location = (location + 1) % list.length;

return (Hashable)list[location].copy();
}
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isThere (item): return boolean
Set location to item.hash( )
Return (list[location] != null)

delete (item)
Set location to item.hash( )
Set list[location] to null

Figure 10.22 A hash program with linear probing
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We have discussed the insertion and retrieval of elements in a hash table, but we
have not yet mentioned how to determine whether an item is in the table (isThere) or
how to remove an element from the table (delete). If we did not need to concern our-
selves with collisions, the algorithms would be simple:

Collisions, however, complicate the matter. We cannot be sure that our item is in
location item.hash(). For delete, since we assume the item to be deleted is in the
table, we can use the same approach we used for retrieve. We examine every array
element, starting with location item.hash(), until we find the matching element. For
isThere we need an extra check to see if we have looped all the way back to our start-
ing position without finding a match, in which case we return false.

Let’s look at an example. In Figure 10.22, suppose we delete the element with the
key 77003 by setting the array slot [5] to null. A subsequent search for the element with
the key 42504 would begin at the hash location [4]. The element in this slot is not the
one we are looking for, so we increment the hash location to [5]. This slot, which
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formerly was occupied by the element that we deleted, is now empty (contains null), but
we cannot terminate the search—the record that we are looking for is in the next slot.

Not being able to assume that an empty list element indicates the end of a linear
probe severely undermines the efficiency of this approach. Even when the hash table is
sparsely populated, we must examine every location before determining that an item is
not contained in the table. For the List ADT defined in Chapter 3, this search operation
must precede every insert, delete, and retrieve operation. This problem illustrates
that hash tables, in the forms that we have studied thus far, are not the most effective
data structure for implementing lists whose elements may be deleted.

Clustering
One problem with linear probing is that it results in a
situation called clustering. A good hash function
results in a uniform distribution of indexes through-
out the array’s index range. Initially, therefore, items
are inserted throughout the array, each slot equally
likely to be filled. Over time, however, after a number

of collisions have been resolved, the distribution of elements in the array becomes less
and less uniform. The elements tend to cluster together, as multiple keys begin to com-
pete for a single hash location.

Consider the hash table in Figure 10.22. Only an element whose key produces the
hash value 8 would be inserted into array slot [8]. However, any elements with keys that
produce the hash values 3, 4, 5, 6, or 7 would be inserted into array slot [7]. That is,
array slot [7] is five times as likely as array slot [8] to be filled. Clustering results in
inconsistent efficiency of list operations.

Rehashing
The technique of linear probing discussed here is an
example of collision resolution by rehashing. If the
hash function produces a collision, the hash value is
used as the input to a rehash function to compute a
new hash value. In the previous section, we added 1

to the hash value to create a new hash value; that is, we used the rehash function:

(HashValue + 1) % MAX_ITEMS

For rehashing with linear probing, you can use any function

(HashValue + constant) % array-size

as long as constant and array-size are relatively prime—that is, if the largest num-
ber that divides both of them evenly is 1. For instance, given the 100-slot array in Fig-
ure 10.23, we might use the constant 3 in the rehash function:

(HashValue + 3) % 100

Clustering The tendency of elements to become
unevenly distributed in the hash table, with many ele-
ments clustering around a single hash location

Rehashing Resolving a collision by computing a new
hash location from a hash function that manipulates
the original location rather than the element’s key
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(Though 100 is not a prime number, 3 and 100 are relatively prime; they have no com-
mon factor larger than 1.)

Suppose that we want to add an element with the key 14001 to the hash table in
Figure 10.23. The original hash function (Key % 100) returns the hash value 1, but this
array slot is in use; it contains the element with the key 44001. To determine the next
array slot to try, we apply the rehash function using the results of the first hash func-
tion as input: (1 + 3) % 100 = 4. The array slot at index [4] is also in use, so we reapply
the rehash function until we get an available slot. Each time, we use the value computed
from the previous rehash as input to the rehash function. The second rehash gives us 
(4 + 3) % 100 = 7; this slot is in use. The third rehash gives us (7 + 3) % 100 = 10; the
array slot at index [10] is empty, so the new element is inserted there.

To understand why the constant and the number of array slots must be relatively
prime, consider the rehash function

(HashValue + 2) % 100

We want to add the element with the key 14001 to the hash table pictured in Figure
10.23. The original hash function, key % 100, returns the hash value 1. This array slot is
already occupied. We resolve the collision by applying the rehash function above,
examining successive odd-numbered indexes until a free slot is found. What happens if
all of the slots with odd-numbered indexes are already in use? The search would fail—
even though there are free slots with even-numbered indexes. This rehash function does
not cover the full index range of the array. However, if the constant and the number of
array slots are relatively prime (like 3 and 100), the function produces successive
rehashes that eventually cover every index in the array.

Figure 10.23 Handling collisions with rehashing
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Rehash functions that use linear probing do not eliminate clustering (although the
clusters are not always visually apparent in a figure). For example, in Figure 10.23, any
element with a key that produces the hash value 1, 4, 7, or 10 would be inserted into the
slot at index [10].

In linear probing, we add a constant (usually 1) in
each successive application of the rehash function.
Another approach, called quadratic probing, makes
the result of rehashing dependent on how many times
the rehash function has been applied. In the Ith
rehash, the function is:

(HashValue + I2) % array-size

The first rehash adds 1 to HashValue, the second
rehash adds 4, the third rehash adds 9, and so on.

Quadratic probing reduces clustering, but it does not necessarily examine every slot in
the array. For example, if array-size is a power of 2 (512 or 1024, for example), rela-
tively few array slots are examined. However, if array-size is a prime number of the
form (4 * some-integer + 3), quadratic probing does examine every slot in the array.

A third approach uses a pseudo-random number generator to determine the incre-
ment to HashValue in each application of the rehash function. Random probing is
excellent for eliminating clustering, but it tends to be slower than the other techniques
we have discussed.

Buckets and Chaining
Another alternative for handling collisions is to allow multiple element keys to hash to
the same location. One solution is to let each computed hash location contain slots for

multiple elements, rather than just a single element.
Each of these multi-element locations is called a
bucket. Figure 10.24 shows a hash table with buckets
that can contain three elements each. Using this
approach, we can allow collisions to produce duplicate
entries at the same hash location, up to a point. When
the bucket becomes full, we must again deal with han-
dling collisions.

Another solution, which avoids this problem, is to use the hash value not as the
actual location of the element, but as the index into a linked list of elements. Each array
slot accesses a chain of elements that share the same hash location. Figure 10.25 illus-
trates this solution to the problem of collisions. Rather than rehashing, we simply allow
both elements to share hash location [3]. The entry in the array at this location contains
a reference to a linked list that includes both elements.

To search for a given element, you first apply the hash function to the key and then
search the chain for the element. Searching is not eliminated, but it is limited to ele-
ments that actually share a hash value. In contrast, with linear probing you may have to
search through many additional elements if the slots following the hash location are
filled with elements from collisions on other hash locations.

Quadratic probing Resolving a hash collision by
using the rehashing formula (HashValue + I2)
% array-size, where I is the number of times
that the rehash function has been applied

Random probing Resolving a hash collision by gener-
ating pseudo-random hash values in successive appli-
cations of the rehash function

Bucket A collection of elements associated with a
particular hash location

Chain A linked list of elements that share the same
hash location
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Figure 10.26 illustrates a comparison of the chaining and hash-and-search schemes.
The elements were added in the following order:
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Figure 10.24 Handling collisions by hashing with buckets
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Figure 10.25 Handling collisions by hashing with chaining

Add element
with key = 77003

[3]

Hash function:
Key % 100

[00]

[01]

[02]

[03]

[04]

[05]

[99]

Element with key = 14001

Element with key = 50003

Element with key = 00104

Element with key = 33099

Add element
with key =
77003 here.

• 
• 

•

• 
• 

•



734 | Chapter 10:  Sorting and Searching Algorithms

Figure 10.26 Comparison of linear probing and chaining schemes
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Figure 10.26(a) represents the linear probing approach to collision handling; Figure
10.26(b) shows the result of chaining the colliding elements. Let’s search for the element
with the key 30001.

Using linear probing, we apply the hash function to get the index [1]. Because
list[1] does not contain the element with the key 30001, we search sequentially until
we find the element in list[7]. This requires seven steps.

Using the chaining approach, we apply the hash function to get the index [1].
list[1] directs us to a chain of elements whose keys hash to 1. We search this linked
list until we find the element with the desired key. This requires only two steps.

Another advantage of chaining is that it simplifies the deletion of elements from the
hash table. We apply the hash function to obtain the index of the array slot that con-
tains the pointer to the appropriate chain. The node can then be deleted from this chain
using the linked-list algorithm from Chapter 5.

Choosing a Good Hash Function

One way to minimize collisions is to use a data structure that has more space than is
actually needed for the number of elements, in order to increase the range of the hash
function. In practice it is desirable to have the array size somewhat larger than the
number of elements required, in order to reduce the number of collisions. (This is
assuming you are not using a method that requires the isThere method to continue
searching when it encounters an empty array slot.)

Selecting the table size involves a space-versus-time tradeoff. The larger the range
of hash locations, the less likely it is that two keys hash to the same location. However,
allocating an array that contains a large number of empty slots wastes space.
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More important, you can design your hash function to minimize collisions. The goal
is to distribute the elements as uniformly as possible throughout the array. Therefore,
you want your hash function to produce unique values as often as possible. Once you
admit collisions, you must introduce some sort of searching, either through array or
chain searching or through rehashing. The access to each element is no longer direct,
and the search is no longer O(1). In fact, if the collisions cause very disproportionate
chains, the worst case may be almost O(N ).

To avoid such a situation, you need to know something about the statistical distri-
bution of keys. Imagine a company whose employee information is sorted according to
a company ID six digits long. There are 500 employees, and we decide to use a chained
approach to handling collisions. We set up 100 chains (expecting an average of five ele-
ments per chain) and use the hash function

idNum % 100

That is, we use the last two digits of the six-digit ID number as our index. The planned
hash scheme is shown in Figure 10.27(a). Figure 10.27(b) shows what happened when the
hash scheme was implemented. How could the distribution of the elements have come out
so skewed? It turns out that the company’s ID number is a concatenation of three values:

The hash scheme depended solely on the year hired to produce hash values. Because
the company was founded in 1987, all the elements were crowded very disproportion-
ately into a small subset of the hash locations. A search for an employee element, in this
case, is O(N ). Although this is an exaggerated example, it illustrates the need to under-
stand as completely as possible the domain and predicted values of keys in a hash
scheme. In the example situation it is much better to use some combination of the first
three digits for the hash function.

Division Method
The most common hash functions use the division method (%) to compute hash values.
This is the type of function used in the preceding examples. The general function is

Key % TableSize

We have already mentioned the idea of making the table somewhat larger than the
number of elements required, in order to increase the range of hash values. In addition,
it has been found that better results are produced with the division method when the
table size is a prime number.
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Figure 10.27 Hash scheme to handle employee elements
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The advantage of the division hash function is simplicity. Sometimes, however, it is
necessary to use a more complicated (or even exotic) hash function to get a good distri-
bution of hash values.

Other Hash Methods
How can we use hashing if the element key is a string instead of an integer? One
approach is to use an arithmetic combination of the internal representations of the
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string’s characters to create a number that
can be used as an index. (Each Unicode char-
acter is represented in memory as an integer.)

A hash method called folding involves
breaking the key into several pieces and con-
catenating or exclusive-OR’ing some of them
to form the hash value. Another method is to square the key and then use some of the
digits (or bits) of the key as a hash value. There are a number of other techniques, all of
which are intended to make the hash location as unique and random (within the
allowed range) as possible.

When using an exotic hash function, you should keep two considerations in mind.
First, you should consider the efficiency of calculating the function. Even if a hash
function always produces unique values, it is not a good hash function if it takes longer
to calculate the hash value than to search half the list. Second, you should consider pro-
grammer time. An extremely exotic function that somehow produces unique hash val-
ues for all of the known key values may fail if the domain of possible key values
changes in a later modification. The programmer who has to modify the program may
then waste a lot of time trying to find another hash function that is equally clever.

Finally, we should mention that if you know all of the possible keys ahead of time,
it is possible to determine a perfect hash function. For example, if you needed a list of
elements whose keys were the reserved words in a computer language, you could find a
hash function that hashes each word to a unique location. In general, it takes a great
deal of work to discover a perfect hash function. And usually, we find that its computa-
tional complexity is very high, perhaps comparable to the effort required to execute a
binary search.

Java’s Support for Hashing
The Java Library includes a HashTable class that uses hash techniques to support stor-
ing objects in a table. In fact, the library includes several other collection classes, such
as HashSet, that provide an ADT whose underlying implementation uses the
approaches described in this section.

The Java Object class exports a hashCode method that returns an int hash code.
Since all Java objects ultimately inherit from Object, all Java objects have an associated
hash code. This is the hash value that Java uses within its hash-based library classes.

The standard Java hash code for an object is a function of the object’s memory
location. This means it cannot be used to relate separate objects with identical contents.
For example, even if circleA and circleB have identical field values, it is very
unlikely that they have the same hash code. Of course, if circleA and circleB both
reference the same circle object, then their hash codes are identical since they hold the
same memory reference.

For most applications, hash codes based on memory locations are not usable. There-
fore, many of the Java classes that define commonly used objects (such as String and
Integer), override the Object class’s hashCode method with one that is based on the
contents of the object. If you plan to use hash tables in your programs, you should do
likewise.

Folding A hash method that breaks the key into sev-
eral pieces and concatenates or exclusive-ORs some of
them to form the hash value
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Complexity

We began the discussion of hashing by trying to find a list implementation where the
insertion and deletion were O(1). If our hash function never produces duplicates and the
array size is large compared to the expected number of items in the list, then we have
reached our goal. In general, this is not the case. Clearly, as the number of elements
approaches the array size, the efficiency of the algorithms deteriorates. A precise analy-
sis of the complexity of hashing is beyond the scope of this book. Informally, we can
say that the larger the array is relative to the expected number of elements, the more
time-efficient the algorithms are.

Summary
We have not attempted in this chapter to describe every known sorting algorithm. We
have presented a few of the popular sorts, of which many variations exist. It should be
clear from this discussion that no single sort is best for all applications. The simpler,
generally O(N2) sorts work as well, and sometimes better than the more complicated
sorts, for fairly small values of N. Because they are simple, these sorts require relatively
little programmer time to write and maintain. As you add features to improve sorts, you
also add to the complexity of the algorithms, increasing both the work required by the
routines and the programmer time needed to maintain them.

Another consideration in choosing a sort algorithm is the order of the original data.
If the data are already sorted (or almost sorted), shortBubble is O(N ), whereas some
versions of a quickSort are O(N2).

As always, the first step in choosing an algorithm is to determine the goals of the
particular application. This step usually narrows down the options considerably. After
that, knowledge of the strong and weak points of the various algorithms assists you in
making a choice.

The following table compares the sorts discussed in this chapter, in terms of Big-O.

Table 10.3 Comparison of Sorting Algorithms

Order of Magnitude

Sort Best Case Average Case Worst Case

selectionSort O(N 2) O(N 2) O(N 2)

bubbleSort O(N 2) O(N 2) O(N 2)

shortBubble O(N ) (*) O(N 2) O(N 2)

insertionSort O(N ) (*) O(N 2) O(N 2)

mergeSort O(N log2N ) O(N log2N ) O(N log2N )

quickSort O(N log2N ) O(N log2N ) O(N 2) (depends on split)

heapSort O(N log2N ) O(N log2N ) O(N log2N )

*Data almost sorted.



Summary of Classes and Support Files | 739

Classes, Interfaces, and Support Files Defined in Chapter 10

File 1st Ref. Notes

Sorts.java page 675 Test harness for the sorting methods—includes the code for all of
the sorting algorithms covered in the chapter

SortCircle.java page 714 (ch10.circles) Defines circle objects to use with Sorts2

Sorts2.java page 716 Test harness for using the Comparator approach with Selection
Sort

Searching, like sorting, is a topic that is closely tied to the goal of efficiency. We
speak of a sequential search as an O(N ) search, because it may require up to N compar-
isons to locate an element. (N refers to the number of elements in the list.) Binary
searches are considered to be O(log2N ) and are appropriate for arrays only if they are
sorted. A binary search tree may be used to allow binary searches on a linked structure.
The goal of hashing is to produce a search that approaches O(1) time efficiency. Because
of collisions of hash locations, some searching or rehashing is usually necessary. A
good hash function minimizes collisions and distributes the elements randomly
throughout the table.

It is important to be familiar with several of the basic sorting and searching tech-
niques. These are tools that you use over and over again in a programming environ-
ment, and you need to know which ones are appropriate solutions to different
problems. Our review of sorting and searching techniques has given us another
opportunity to examine a measuring tool—the Big-O approximation—that helps us
determine how much work is required by a particular algorithm. Both building and
measuring tools are needed to construct sound program solutions.

Summary of Classes and Support Files
The classes and files are listed in the order in which they appear in the text. Inner
classes are not included.

The package a class belongs to, if any, is listed in parenthesis under Notes. The class
and support files are available on our web site. They can be found in the ch10 subdirec-
tory of the bookFiles directory.

On the next page is a list of the Java Library Classes and Interfaces that were used in
this chapter for the first time in the textbook. The classes are listed in the order in
which they are first used. Note that in some classes the methods listed might not be
defined directly in the class; they might be defined in one of its superclasses. With the
methods we also list constructors, if appropriate. For more information about the
library classes and methods, the reader can check Sun’s Java documentation.
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Exercises
10.1 Sorting

1. A test harness program for testing sorting methods is provided on our web site.
It is in the file Sorts.java. The program includes a swap method that is used
by all of the sorting methods to swap array elements.

a. Describe an approach to modifying the program so that after calling a sorting
method the program prints out the number of swaps needed by the sorting
method.

b. Implement your approach.

c. Test your new program by running the selectionSort method. Your pro-
gram should report 49 swaps.

10.2 Simple Sorts
2. Multiple choice: How many comparisons would be needed to sort an array con-

taining 100 elements using Selection Sort if the original array values were
already sorted?

a. 10,000 b. 9,900 c. 4,950 d. 99 e. None of these

3. Determine the Big-O measure for Selection Sort based on the number of ele-
ments moved rather than on the number of comparisons

a. for the best case.

b. for the worst case.

4. In what case(s), if any, is the Selection Sort O(log2N )?

5. Write a version of the Bubble Sort algorithm that sorts a list of integers in descend-
ing order.

6. In what case(s), if any, is the Bubble Sort O(N )?

7. How many comparisons would be needed to sort an array containing 100 ele-
ments using shortBubble

a. in the worst case?

b. in the best case?

Library Classes Used in Chapter 10 for the First Time:

Class/Interface 
Name Package Overview Methods Used Where Used

Random.java util Supports generation of Random, Sorts and
random numbers nextInt Sorts2

Comparator.java util Interface; Supports compare Sorts2
generic sort routines
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8. Show the contents of the array

after the fourth iteration of

a. selectionSort

b. bubbleSort

c. insertionSort

9. A sorting function is called to sort a list of 100 integers that have been read
from a file. If all 100 values are zero, what would the execution requirements (in
terms of Big-O) be if the sort used was

a. bubbleSort?

b. shortBubble?

c. selectionSort?

d. insertionSort?

10. In Exercise 1 you were asked to modify the Sorts program so that it would out-
put the number of swaps used by a sorting method. It is a little more difficult to
have the program also output the number of comparisons (compares) needed.
You must include one or more statements to increment your counter within the
sorting methods themselves. For each of the listed methods, make and test the
changes needed, and list both the number of swaps and the number of compares
needed by the Sorts program to sort an array of 50 random integers.

a. selectionSort swaps: ____ compares: ____

b. bubbleSort swaps: ____ compares: ____

c. shortBubble swaps: ____ compares: ____

d. insertionSort swaps: ____ compares: ____

10.3 O(Nlog2N) Sorts
11. A merge sort is used to sort an array of 1,000 test scores in descending order.

Which one of the following statements is true?

a. The sort is fastest if the original test scores are sorted from smallest to largest.

b. The sort is fastest if the original test scores are in completely random order.

c. The sort is fastest if the original test scores are sorted from largest to smallest.

d. The sort is the same, no matter what the order of the original elements.

12. Show how the values in the array in Exercise 8 would be arranged immediately
before the execution of method merge in the original (nonrecursive) call to
mergeSort.

43

[0]

7

[1]

10

[2]

23

[3]

18

[4]

4

[5]

19

[6]

5

[7]

66

[8]

14

[9]



742 | Chapter 10:  Sorting and Searching Algorithms

13. Determine the Big-O measure for mergeSort based on the number of elements
moved rather than on the number of comparisons

a. for the best case.

b. for the worst case.

14. Use the Three-Question Method to verify mergeSort.

15. In what case(s), if any, is Quick Sort O(N 2)?

16. Which is true about Quick Sort?

a. A recursive version executes faster than a nonrecursive version.

b. A recursive version has fewer lines of code than a nonrecursive version.

c. A nonrecursive version takes more space on the run-time stack than a recur-
sive version.

d. It can only be programmed as a recursive function.

17. Determine the Big-O measure for Quick Sort based on the number of elements
moved rather than on the number of comparisons

a. for the best case.

b. for the worst case.

18. Use the Three-Question Method to verify quickSort.

19. Use the algorithms for creating a heap and sorting an array using a heap-based
approach.

a. Show how the values in the array in Exercise 8 would have to be rearranged
to satisfy the heap property.

b. Show how the array would look with four values in the sorted portion after
reheaping.

20. A sorting function is called to sort a list of 100 integers that have been read
from a file. If all 100 values are zero, what would the execution requirements (in
terms of Big-O) be if the sort used was

a. Merge Sort?

b. Quick Sort, with the first element used as the split value?

c. Heap Sort?

21. A list is sorted from smallest to largest when a sort is called. Which of the fol-
lowing sorts would take the longest time to execute and which would take the
shortest time?

a. Quick Sort, with the first element used as the split value

b. Short Bubble

c. Selection Sort

d. Heap Sort

e. Insertion Sort

f. Merge Sort
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22. A very large array of elements is to be sorted. The program is to be run on a per-
sonal computer with limited memory. Which sort would be a better choice: heap
sort or merge sort? Why?

23. True or False? Explain your answers.

a. Merge Sort requires more space to execute than heap sort.

b. Quick Sort (using the first element as the split value) is better for nearly
sorted data than Heap Sort.

c. The efficiency of Heap Sort is not affected by the original order of the ele-
ments.

24. In Exercise 1 you were asked to modify the Sorts program so that it would out-
put the number of swaps used by a sorting method. It is a little more difficult to
have the program also output the number of comparisons needed. You must
include one or more statements to increment your counter within the sorting
methods themselves. For each of the listed methods, make and test the changes
needed, and list the number of comparisons needed by Sorts to sort an array of
50 random integers.

a. mergeSort compares: ____

b. quickSort compares: ____

c. heapSort compares: ____

10.4 More Sorting Considerations
25. For small values of N the number of steps required for a O(N2) sort might be less

than the number of steps required for a sort of a lower degree. For each of the
following pairs of mathematical functions f and g below, determine a value N
such that if n > N, g(n) > f (n). This value represents the cutoff point, above
which the O(n2) function is always larger than the other function.

a. f (n) = 4n g(n) = n2 + 1

b. f (n) = 3n + 20 g(n) = 1⁄2n2 + 2

c. f (n) = 4 log2n + 10 g(n) = n2

26. Give arguments for and against using methods (such as swap) to encapsulate
frequently used code in a sorting routine.

27. Many times, in order to simplify our code, we create recursive methods of the form

if condition
do something

If the condition is false, the recursive method does nothing and returns. To avoid
the overhead of extra method invocations, it is more efficient to perform the test
on the condition before invoking the recursive method. Thus the method
becomes

do something
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An example of this is our quickSort method. Describe how you would change
quickSort to avoid the overhead of unneeded invocations. Don’t forget to
address any needed change to the original invocation of quickSort.

28. What is meant by the statement that programmer time is an efficiency consider-
ation? Give an example of a situation in which programmer time is used to jus-
tify the choice of an algorithm, possibly at the expense of other efficiency
considerations.

29. Suppose a sorting method doSort operates on arrays of Comparable objects.
Consider the Circle class defined in Chapter 2. Write a compareTo method for
the Circle class so that the doSort method would sort an array of circles

a. from smallest to largest.

b. from right to left, based on the position of the center of the circle. (The coor-
dinate system uses increasing values moving from left to right.)

c. based on the distance of the circle from the point 0,0; shortest distance first.

30. Modify the Sorts2 class so that it also sorts the array of SortCircles

a. from smallest to largest.

b. from right to left, based on the position of the center of the circle. (The coor-
dinate system uses increasing values moving from left to right.)

c. based on the distance of the circle from the point 0,0; shortest distance first.

31. The Sorts2 class, provided on the CD, is similar to the Sorts class we used to
study sorting algorithms. Instead of using integers, the Sorts2 class generates
an array of random SortCircles, and then sorts them first by xValue and
then by yValue. Create an isSorted method for Sorts2, similar to the
isSorted method of Sorts except it must accept and use a Comparator
parameter. Modify Sorts2 to include this new method; remember to call the
method both before and after the calls to the sort routines.

32. Go through the sorting algorithms coded in this chapter and determine which ones
are stable as coded. Identify the key statement in the corresponding method that
determines the stability. If there are unstable algorithms (other than Quick Sort and
Heap Sort), make them stable.

33. We said that Heap Sort is inherently unstable. Explain why.

34. Which sorting algorithm would you not use under each of the following condi-
tions?

a. The sort must be stable.

b. Space is very limited.

10.5 Searching
35. Fill in the following table, showing the number of comparisons needed either to

find the value or to determine that the value is not in the indicated structure
based on the given approach and given the following values:

26, 15, 27, 12, 33, 95, 9, 5, 99, 14
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36. If you know the index of an element stored in an array of N unsorted elements,
which of the following best describes the order of the algorithm to retrieve the
element?

a. O(1)

b. O(N )

c. O(log2N )

d. O(N 2)

e. O(0.5 N )

37. The element being searched for is not in an array of 100 elements. What is the
average number of comparisons needed in a sequential search to determine that the
element is not there

a. if the elements are completely unsorted?

b. if the elements are sorted from smallest to largest?

c. if the elements are sorted from largest to smallest?

38. The element being searched for is not in an array of 100 elements. What is the
maximum number of comparisons needed in a sequential search to determine
that the element is not there

a. if the elements are completely unsorted?

b. if the elements are sorted from smallest to largest?

c. if the elements are sorted from largest to smallest?

Sorted 
Array,
Binary
Search

15

Value

Unsorted
Array in

order shown

Sorted Array,
Sequential
Search

17

14

5

99

100

0

Binary
Search
Tree
(entered
as shown)
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39. The element being searched for is in an array of 100 elements. What is the aver-
age number of comparisons needed in a sequential search to determine the posi-
tion of the element

a. if the elements are completely unsorted?

b. if the elements are sorted from smallest to largest?

c. if the elements are sorted from largest to smallest?

40. Choose the answer that correctly completes the following sentence: The elements in
an array may be sorted by highest probability of being requested in order to reduce

a. the average number of comparisons needed to find an element in the list.

b. the maximum number of comparisons needed to detect that an element is not
in the list.

c. the average number of comparisons needed to detect that an element is not
in the list.

d. the maximum number of comparisons needed to find an element that is in
the list.

41. Identify each of the following statements as True or False. Explain your answers.

a. A binary search of a sorted set of elements in an array is always faster than a
sequential search of the elements.

b. A binary search is an O(N log2N ) algorithm.

c. A binary search of elements in an array requires that the elements be sorted
from smallest to largest.

d. A high-probability ordering scheme would be a poor choice for arranging an
array of elements that are equally likely to be requested.

42. How might you order the elements in a list of Java’s reserved words to use the
idea of high-probability ordering?

10.6 Hashing
For Exercises 43–46, use the following values:

66, 47, 87, 90, 126, 140, 145, 153, 177, 285, 393, 395, 467, 566, 620, 735

43. Store the values into a hash table with 20 positions, using the division method
of hashing and the linear probing method of resolving collisions.

44. Store the values into a hash table with 20 positions, using rehashing as the
method of collision resolution. Use key % tableSize as the hash function, and
(key + 3) % tableSize as the rehash function.

45. Store the values into a hash table with ten buckets, each containing three slots.
If a bucket is full, use the next (sequential) bucket that contains a free slot.

46. Store the values into a hash table that uses the hash function key % 10 to
determine which of ten chains to put the value into.
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47. Fill in the following table, showing the number of comparisons needed to find
each value using the hashing representations given in Exercises 43–46.

48. Identify each of the following statements as True or False. Explain your answers.

a. When a hash function is used to determine the placement of elements in an
array, the order in which the elements are added does not affect the resulting
array.

b. When hashing is used, increasing the size of the array always reduces the
number of collisions.

c. If we use buckets in a hashing scheme, we do not have to worry about col-
lision resolution.

d. If we use chaining in a hashing scheme, we do not have to worry about col-
lision resolution.

e. The goal of a successful hashing scheme is an O(1) search.

49. Choose the answer that correctly completes the following sentence: The number
of comparisons required to find an element in a hash table with N buckets, of
which M are full

a. is always 1.

b. is usually only slightly less than N.

c. may be large if M is only slightly less than N.

d. is approximately log2M.

e. is approximately log2N.

66

Value Exercise 43

467

566

735

285

87

Exercise 44

Number of Comparisons

Exercise 45 Exercise 46
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50. Write a program that repeatedly accepts a string from the user and outputs the
hash code for the string, using the String class’s predefined hashCode method.

51. Create a data set with 100 integer values. Use the division method of hashing to
store the data values into hash tables with table sizes of 7, 51, and 151. Use the
linear probing method of collision resolution. Print out the tables after the data
values have been stored. Search for ten different values in each of the three hash
tables, counting the number of comparisons necessary. Print out the number of
comparisons necessary in each case in tabular form. Turn in a listing of your
program and a listing of the output.
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Java Reserved Words

abstract
boolean
break
byte
case
catch
char
class
const
continue
default

do
double
else
extends
false
final
finally
float
for
goto

if
implements
import
instanceof
int
interface
long
native
new
null

package
private
protected
public
return
short
static
strictfp
super
switch

synchronized
this
throw
throws
transient
true
try
void
volatile
while
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Operator Precedence

Precedence (highest to lowest)

Operator Assoc.* Operand Type(s) Operation Performed

. LR object, member object member access
[] LR array, int array element access
( args ) LR method, arglist method invocation
++, -- LR variable post-increment, decrement

++, -- RL variable pre-increment, decrement
+, - RL number unary plus, unary minus
~  RL integer bitwise complement
! RL boolean boolean NOT

new RL class, arglist object creation
( type ) RL type, any cast (type conversion)

*, /, % LR number, number multiplication, division, remainder

+, - LR number, number addition, subtraction
+ LR string, any string concatenation

<< LR integer, integer left shift
>> LR integer, integer right shift with sign extension
>>> LR integer, integer right shift with zero extension

<, <= LR number, number less than, less than or equal
>, >= LR number, number greater than, greater than or equal
instanceof LR reference, type type comparison

== LR primitive, primitive equal (have identical values)
!= LR primitive, primitive not equal (have different values)
== LR reference, reference equal (refer to the same object)
!= LR reference, reference not equal (refer to different objects)

& LR integer, integer bitwise AND
& LR boolean, boolean boolean AND

^ LR integer, integer bitwise XOR
^ LR boolean, boolean boolean XOR

*LR means left to right associativity; RL means right to left associativity.
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In the following table, the operators are grouped by precedence level (highest to lowest), and a horizontal line
separates each precedence level from the next-lower level.



Precedence (highest to lowest)

Operator Assoc.* Operand Types(s) Operation Performed

| LR integer, integer bitwise OR
| LR boolean, boolean boolean OR

&& LR boolean, boolean conditional AND 
(short circuit evaluation)

|| LR boolean, boolean conditional OR 
(short circuit evaluation)

?: RL boolean, any, any conditional (ternary) operator

= RL variable, any assignment
*=, /=, %=, +=, -=, <<=,
>>=, >>>=, &=, ^=, |= RL variable, any assignment with operation

*LR means left to right associativity; RL means right to left associativity.

Appendix C

Primitive Data Types

Type Value Stored Default Value Size Range of Values

char Unicode character Character code 0 16 bits 0 to 65535
byte Integer value 0 8 bits �128 to 127
short Integer value 0 16 bits �32768 to 32767
int Integer value 0 32 bits �2147483648 to 2147483647
long Integer value 0 64 bits �9223372036854775808 to 

9223372036854775807
float Real value 0.0 32 bits �1.4E-45 to 

�3.4028235E+38
double Real value 0.0 64 bits �4.9E-324 to

�1.7976931348623157E+308
boolean true or false false 1 bit NA
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Appendix D

ASCII Subset of Unicode
The following chart shows the ordering of characters in the ASCII (American Standard Code for Information
Interchange) subset of Unicode. The internal representation for each character is shown in decimal. For exam-
ple, the letter A is represented internally as the integer 65. The space (blank) character is denoted by a “®”.

Right ASCII
Left Digit

Digit(s) 0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT
1 LF VT FF CR SO SI DLE DC1 DC2 DC3
2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS
3 RS US ® ! “ # $ % & ´
4 ( ) * + , – . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [ \ ] ^ _ ` a b c
10 d e f g h i j k l m
11 n o p q r s t u v w
12 x y z { | } ~ DEL

Codes 00–31 and 127 are the following nonprintable control characters:

NUL Null character VT Vertical tab SYN Synchronous idle
SOH Start of header FF Form feed ETB End of transmitted block
STX Start of text CR Carriage return CAN Cancel
ETX End of text SO Shift out EM End of medium
EOT End of transmission SI Shift in SUB Substitute
ENQ Enquiry DLE Data link escape ESC Escape
ACK Acknowledge DC1 Device control one FS File separator
BEL Bell character (beep) DC2 Device control two GS Group separator
BS Back space DC3 Device control three RS Record separator
HT Horizontal tab DC4 Device control four US Unit separator
LF Line feed NAK Negative acknowledge DEL Delete
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Answers to 
Selected Exercises

Chapter 1

Many of the questions in this chapter’s exercises are “thought questions.” The answers
given here are typical or suggested responses, but they are not the only possible answers.

1. Software engineering is a disciplined approach to the creation and maintenance of com-
puter programs.

3. (d) is correct. Although there is a general order to the activities, and in some cases it is
desirable to finish one phase completely before beginning another, often the software
phases overlap one another.

4. a. When the program’s requirements change; when a better solution is discovered in the
middle of the design phase; when an error is discovered in the requirements due to
the design effort.

b. When the program is being debugged, because of compilation errors or errors in the
design; when a better solution is found for a part of the program that was already
implemented; or when any of the situations in Part (a) occur.

c. When there are errors that cause the program to crash or to produce wrong answers;
or when any of the situations in Parts (a) or (b) occur.

d. When an error is discovered during the use of the program; when additional functions
are added to an existing software system; when a program is being modified to use on
another computer system; or when any of the situations in Parts (a), (b), or (c) occur.

10. Top-down: First the problem is broken into several large parts. Each of these parts is in
turn divided into sections, then the sections are subdivided, and so on.

Bottom-up: With this approach the details come first. It is the opposite of the top-down
approach. After the detailed components are identified and designed, they are brought
together into increasingly high-level components.
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Functional decomposition: This is a program design approach that encourages program-
ming in logical action units, called functions. The main module of the design becomes
the main program (also called the main function), and subsections develop into func-
tions.

Round-trip gestalt design: First, the tangible items and events in the problem domain are
identified and assigned to candidate classes and objects. Next the external properties and
relationships of these classes and objects are defined. Finally, the internal details are
addressed, and unless these are trivial, the designer must return to the first step for
another round of design.

13. A class defines a structure or template for an object or a set of objects. An object is an
instance of a class. An example is a blueprint of a building and the building itself.
Another example, from the text, of a Java class/object is the Date class and the myDate,
yourDate, ourDate objects.

15. Customer, bank card, ATM, PIN, account, account number, balance, display

16. a. Legal—dayIs is a public method that returns an int.

b. Legal—yearIs is a public method that returns an int.

c. Illegal—increment is not defined for Date objects.

d. Legal—increment is defined for IncDate objects.

e. Legal—Object variables can be assigned to objects of the same class.

f. Legal—Subclasses are assignment-compatible with the superclasses above them in the
class hierarchy.

g. Illegal—Superclasses are not assignment-compatible with the subclasses below them
in the class hierarchy

18. The correction of errors early in the program’s life cycle involves less rework. The correc-
tion can be incorporated into the program design. Detected late in the life cycle, errors
may necessitate redesign, recoding, and/or retesting. The later the error is detected, the
more rework one is likely to have to do to correct it.

20. Program verification determines that the program fulfills the specified requirements; pro-
gram validation determines if the program is as useful as possible for the customer. The
former is measured against formal documentation; the latter is determined through
observation and a thorough understanding of the problem domain.

23. The body of the while loop is not in braces.

The comment includes the call to increment the count variable.

24. A single programmer could use the inspection process as a way to do a structured
deskcheck. The programmer would especially benefit from inspection checklists of errors
to look for.

25. a. It is appropriate to start planning a program’s testing during the earliest phases of
program development.
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28. Parameter 1 Parameter 2 Expected Result
0 0 true

5 5 true

�5 �5 true

5 �5 false

�5 5 false

5 0 false

�5 0 false

0 5 false

0 �5 false

27 3 true

�15 �34 true

27 �34 false

33. Life-cycle verification refers to the idea that program verification activities can be per-
formed throughout the program’s life cycle, not just by testing the program after it is coded.

Chapter 2

2. Data abstraction refers to the logical picture of the data—what the data represent rather
than how they are represented.

3. Data encapsulation is the separation of the physical representation of data from the
applications that use the data at a logical (abstract) level. When data abstraction is pro-
tected through encapsulation, the data user can deal with the data abstraction but cannot
access its implementation, which is encapsulated. The data user accesses data that are
encapsulated through a set of operations specified to create, access, and change the data.
Data encapsulation is accomplished through a programming language feature.

5. a. Application level (e.g., College of Engineering’s enrollment information for 1988)

b. Abstract level (e.g., list of student academic records)

c. Implementation level (e.g., array of objects that contain the variables studentID [an
integer], lastName [a string of characters], firstName [a string of characters], and so
forth)

6. a. Applications of type GroceryStore include the Safeway on Main Street, the Piggly
Wiggly on Broadway, and the Kroger’s on First Street.

b. User operations include SelectItem, CheckOut, PayBill, and so on.

c. Specification of CheckOut operation:
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CheckOut
InitRegister
Set bill to 0
do

OpenSack
while More objects in Basket AND NOT SackFull

Take object from Basket
Set bill to bill + cost of this object
Put object in sack

Put full Sack aside
while more objects in Basket

Put full sacks into Basket
return bill

float CheckOut (Basket)

Effect: Presents basket of groceries to cashier to check
out; returns bill.

Precondition: Basket is not empty.
Postconditions: Return value = total charge for all the groceries

in Basket.
Basket contains all groceries arranged in paper
sacks.

d. Algorithm for the CheckOut operation:

e. The customer does not need to know the procedure that is used by the grocery store to
check out a basket of groceries and to create a bill. The logical level (c) above pro-
vides the correct interface, allowing the customer to check out without knowing the
implementation of the process.

7. Java’s primitive types are boolean, byte, char, double, float, int, long, and short.

10. a. public String toString()

{
String temp;
temp = " (" + xValue + "," + yValue + ")";
temp = temp + "\n radius: " + radius;
temp = temp + "\n solid: " + solid;
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return temp;
}

b. public String toString()

{
String temp;
temp = " (" + location.xValue + "," + location.yValue + ")";
temp = temp + "\n radius: " + radius;
temp = temp + "\n solid: " + solid;
return temp;

}

12. 5/5/2000
5/5/2000

5/6/2000

5/6/2000

14. Garbage is memory space that has been allocated to a program but that can no longer be
accessed by the program. Garbage can be created when a variable that is the only refer-
ence to an object is associated with a new object:

Circle c1 = new Circle();
c1 = new Circle();

or when it is assigned to a different object:

Circle c1 = new Circle();
Circle c2 = new Circle();
c1 = c2;

16. Final, static variables; abstract methods.

20. import java.io.PrintWriter;
public class Exercise20
{
static PrintWriter output = new PrintWriter(System.out,true);

public static void main(String[] args)
throws Exception

{
int[] squares = new int[10];

for (int i = 0; i < 10; i++)
squares[i] = i * i;

for (int i = 0; i < 10; i++)
output.println(squares[i]);

}
}
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24. The class

25. When a record is created, the instance variables are public and can be directly
accessed from the class/program that uses the record; when an ADT is created, the
instance variables are private and can only be accessed through the public methods of
the class.

34. a. array

b. array list

c. array

d. array

e. array list

37. a.

SquareMatrix ADT Specification (assumes programming by
contract)

Structure: An N � N square integer matrix.
Operations:

void MakeEmpty(int n)
Effect: Instantiates this matrix to size n � n and sets

the values to zero.
Precondition: n is less than or equal to 50.
Postcondition: This matrix contains all zero values.

void StoreValue(int i, int j, int value)
Effect: Stores value into the i, jth position in this

matrix.
Preconditions: This matrix has been initialized; i and j are

between 0 and the size minus 1.
Postcondition: value has been stored into the i, jth position of

this matrix.

SquareMatrix Add(SquareMatrixType one)
Effect: Adds this matrix and matrix one and returns

the result.
Preconditions: This matrix and matrix one have been initial-

ized and are the same size.
Postcondition: return value = this + one.
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SquareMatrix Subtract(SquareMatrixType one)
Effect: Subtracts matrix one from this matrix and

returns the result.
Preconditions: This matrix and matrix one have been initial-

ized and are the same size.
Postcondition: return value = this � two.

SquareMatrix Copy()
Effect: Returns a copy of this matrix.
Precondition: This matrix has been initialized.
Postcondition: return value = copy of this matrix.

40. See the feature section Designing ADTs on page 130.

Chapter 3

2. a. Voter Identification Number

b. A combination of their league name, team name, and team number

c. Many schools have a student identification number.

3. UnsortedStringList Constructor

isFull Observer

lengthIs Observer

isThere Observer

insert Transformer

delete Transformer

reset, getNextItem Iterator

4. a. private static boolean printLast(PrintWriter outFile, 
UnsortedStringList list)
// Effect: Prints the last item on the list
// Pre:    List has been instantiated.
//         outFile is open for writing
// Post:   If the list is not empty
//            the last list item has been written to outFile.
//            return value = true
//         otherwise
//            "List is empty" has been written to the outFile
//            return value = false
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{
int length;
String item = "";

if (list.lengthIs() == 0)
{
outFile.println("List is empty");
return false;

}
else
{
list.reset();
length = list.lengthIs();
for (int counter = 1; counter <= length; counter++)
item = list.getNextItem();

outFile.println(item);
return true;

}
}

b. For testing, the printLast method can be included in the TDUnsortedStringList
application. At the end of the while loop of the test driver, after the call to print-
List, we can include the call:

exer4 = printLast(outFile, list);
outFile.println(exer4 + " returned from printLast");
outFile.println();

This assumes we have declared a boolean variable exer4. Now we can just run
the set of test cases we used to test the ADT and ensure that printLast acts as
expected in each case.

8. a. Syntax error occurs because the length attribute of the list array is a final variable
and therefore cannot have a value assigned to it.

c. A fatal run-time error “NullPointerException” occurs when we pass the isThere
method a value that is not on the list. This error occurs because we do not stop
searching when the end of the list is reached.

e. Since the numItems variable is a crucial component for many of the list methods,
many errors can result. A deleted item will still appear to be on the list. The size of the
list will be reported incorrectly.
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10. a.

boolean isEmpty()

Effect: Determines whether this list is empty.
Postcondition: Return value = (this list is empty).

b. public boolean isEmpty()

// Returns whether this list is empty
{
return (numItems == 0);

}

13. a.

boolean tryDelete (String item)

Effect: If the list contains an element whose key
matches item’s key, deletes the element and
returns true;
Otherwise,
returns false.

Precondition: List is instantiated.
Postconditions: No element on this list has a key matching the

argument item’s key.
Return value = (list did contain an element
matching item).

b. public boolean tryDelete (String item)
// If an element on this list matches item
//    deletes it and returns true;
//  otherwise, returns false
{

int match = –1;

for (int location = 0; location < numItems; location++)
if (item.compareTo(list[location]) == 0)  // If they match
match = location;
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if (match == –1)  // Item not found
return false;

else
{
list[match] = list[numItems – 1];
numItems—;
return true;

}
}

18. a. isThere, insert, delete

b. StringList, isFull, lengthIs, reset, getNextItem

c. An abstract method does not have a method body. In the case of StringList, the
abstract methods are the ones whose code depends upon whether or not the string list
is sorted.

20. An abstract method. If the list is kept sorted, the smallest element is the first element on
the list. This is not true for the unsorted case. Therefore, the implementation of this
method depends on whether or not the list is sorted. So, it should be an abstract method,
with the method body provided in the extension.

22. a.

String smallest ()

Effect: Finds the smallest element of this list.
Precondition: List is not empty.
Postcondition: Return value = (copy of smallest value on this

list).

b. public String smallest ()
// Returns a copy of the smallest element from this list
{
return new String(list[0]);
}

28. a. O(N 2)

c. O(N 5)

e. O(N 4)

30. b. O(N 2)

31. a. Algorithm 1 is O(N 3); Algorithm 2 is O(N ).

b. Algorithm 2

c. N 3 < 3N + 1000
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Rather than solve the cubic equation we can just use a table to answer the question:

N N3 3N + 1000

1 1 1003

2 8 1006

5 125 1015

10 1000 1030

11 1331 1033

Therefore, for N <= 10, the “less efficient” algorithm is faster.

32. a. O(N )—To print the list, we must visit every item.

c. O(1)—Simply return whether or not the number of items is zero.

d. O(N )—Assuming the UnsortedStringList is implemented as described in the text . . .
but if we allow any implementation, then it could be O(1). (For example, the list could
be kept sorted.)

e. O(N )—Since the client can only use the ADT as is, this is the only possible answer.

35. a. public class ListNumber implements Listable
{
private int value;
private String word;

public ListNumber(int x, String y)
{
this.value = x;
this.word = y;

}

public int getValue()
{
return value;

}

public String getWord()
{
return word;

}
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public int compareTo(Listable otherListNumber)
{
ListNumber other = (ListNumber)otherListNumber;
return (int)(this.value – other.value);

}

public Listable copy()
{
ListNumber result = new ListNumber(this.value, this.word);
return result;

}

public String toString()
{
return word;

}
}

b. Here is one test program:

import java.io.*;
import ch03.genericLists.*;

// Test for Exercise 35, Chapter 3
public class TestExercise35
{
public static void main(String[] args) throws IOException
{
SortedList list;
int size;
ListNumber temp;

list = new SortedList();

System.out.println("Test of Exercise 35 Results");
System.out.println();

list = new SortedList(5);;

temp = new ListNumber(3, "three");
list.insert(temp);

temp = new ListNumber(2, "two");
list.insert(temp);
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temp = new ListNumber(17, "seventeen");
list.insert(temp);

temp = new ListNumber(1, "one");
list.insert(temp);

temp = new ListNumber(27, "twenty-seven");
list.insert(temp);

list.reset();
for (int i = 0; i <= 4; i++)
System.out.println(list.getNextItem());

}
}

We would expect the output from this program to be:

Test of Exercise 35 Results

one
two
three
seventeen
twenty-seven

37. a. Since the HouseFile class “hides” the information in the houses.dat file, it is the
only class that needs to be changed. In its getHouse and putHouse methods we
would just switch the order of handling first and last names. This is a good example
of information hiding limiting the scope of changes.

c. This change would permeate through the entire application. The ListHouse class
would need to expand its definition of what a house is to include the number of bath-
rooms. This would require adding a new instance variable, expanding the constrictor
and copy methods to handle another parameter and adding a new observer method
that returns the number of bathrooms. The HouseFile class would need one new
read statement in the getNextHouse method and one new write statement in the
putToFile method to handle the new information. The main application,
RealEstate, would need to be changed to include the number of bathrooms in the
interface—this requires straightforward additions throughout the program.

Chapter 4

2. Since the methods return different types, the compiler will report that the class is missing
a method definition.
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4. a. Yes

b. No

c. Yes

d. No

e. Yes

f. No

g. No

h. Yes

5. a. 3 5 4
5
16
5
1
0

7. a. {
myStack.pop();
secondElement = myStack.top();
myStack.pop();

}

c. {
ArrayStack tempStack = new ArrayStack();
Object tempItem;

while (!myStack.isEmpty())
{

tempItem = myStack.top();
myStack.pop();
tempStack.push(tempItem);

}
bottom = tempItem;

// Restore stack
while (!tempStack.isEmpty())
{
tempItem = tempStack.top();
tempStack.pop();
myStack.push(tempItem);

}
}
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8. a. evenTop: top for the stack of even values, initialized to �1 and incremented.

oddTop: top for the stack of odd values, initialized to 200 and decremented.

evenTop: 3

oddTop: 198

b.
public interface EvenOddStackInterface
{
public void push(int item) throws StackOverflowException;
// Effect:         If item is even, adds item to the top of the even 
//                 stack; otherwise, adds item to top of odd stack
// Postconditions: If (this stack is full)
//                    an unchecked exception that communicates
//                    'push on stack full' is thrown
//                 else
//                    item is at the top of the appropriate stack

public void popEven() throws StackUnderflowException;
// Effect:         Removes top item from the even stack
// Postconditions: If (the even stack is empty)
//                   an unchecked exception that communicates
//                   'pop on stack empty' is thrown
//                 else
//                   top element has been removed from the even stack

public int topEven() throws StackUnderflowException;
// Effect:         Returns the element on top of the even stack
// Postconditions: If (the even stack is empty)
//                    an unchecked exception that communicates
//                   'top on stack empty' is thrown
//                 else
//                   return value = (top element of the even stack)

0 1 2 3 4 . . . 197 198 199

6 28 34 8 . . . 27 129

6 28 34 8 . . . 27 [129]

0 1 2 3 4 . . . 198197 199
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public boolean isEvenEmpty();
// Effect:         Determines whether the even stack is empty
// Postcondition:  Return value = (the even stack is empty)

public boolean isEvenFull();
// Effect:         Determines whether the even stack is full
// Postcondition:  Return value = (even stack is full)

public void popOdd() throws StackUnderflowException;
// Effect:         Removes top item from the odd stack
// Postconditions: If (the odd stack is empty)
//                   an unchecked exception that communicates
//                   'pop on stack empty' is thrown
//                 else
//                   top element has been removed from the odd stack

public int topOdd() throws StackUnderflowException;
// Effect:         Returns the element on top of the odd stack
// Postconditions: If (the odd stack is empty)
//                    an unchecked exception that communicates
//                   'top on stack empty' is thrown
//                 else
//                   return value = (top element of the odd stack)

public boolean isOddEmpty();
// Effect:         Determines whether the odd stack is empty
// Postcondition:  Return value = (the odd stack is empty)

public boolean isOddFull();
// Effect:         Determines whether the odd stack is full
// Postcondition:  Return value = (odd stack is full)

}

11. b.
public void pop(int count)
// Removes the top count elements from this stack
{
for (int i = 0; i < count; i++)
{
if (!isEmpty())
{
stack[topIndex] = null;
topIndex--;

}
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else
throw new StackUnderflowException("Pop attempted on an empty stack.");

}
}

12. A number is either printed or put on the stack. Therefore, the numbers must follow a
(possibly empty) increasing sequence followed by a (possibly empty) decreasing
sequence.

a. ii) False

b. i) True

c. The answers do not change. The implementation of an ADT does not (should not)
change its functional behavior.

17. The Set class provides a collection that contains no duplicate elements.

19. b. 6
4
6
0
6  5  0

22. a. No

b. Yes

c. No

d. No

e. Yes

f. Yes

g. No

h. Yes

i. No

23. a. Repeatedly dequeue and save the items from the queue, counting as you go, until the
queue is empty. Save the items in an array or another queue, and then enqueue them
back into the original queue, in the same order in which they were removed.

b. Simply return the value of the numItems instance variable.

25. a. 61

b. 96

26. a. Too many operands when reach the second ‘+’

b. Too many operands when reach ‘/’
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Chapter 5

1. a. True—Array elements can be directly accessed through their indices.

b. False—It depends on the implementation details; the key-based lists developed in this
book are not random access.

c. False—You must follow the links to access the items in the middle of the structure.

d. False—For example, it could use dynamic arrays such as the Java Library’s
ArrayList class.

e. True—In order to access an element in the middle of a stack you must “work through”
the elements on top of it.

2. Typically, with an array-based stack, storage is allocated statically, ahead of time.

4. a. The use of newNode before its declaration would result in a syntax error.

b. No functional difference.

c. The third line would now use an incorrect value of top; the link to the rest of the
stack would be lost.

6. a. public int sizeIs()
// Returns the number of items on this stack
{
return (topIndex + 1);

}

b. public int sizeIs()
// Returns the number of items on this stack
{
int count = 0;
StackNode temp;
temp = top;
while (temp != null)
{
count = count + 1;
temp = temp.link;

}
return count;

}

c. The constructor should set size to zero. The push method should increment size by
1 and the pop method should decrement size by 1. Could change isEmpty but it is
not necessary.

d. The sizeIs method for the ArrayStack class is O(1), since it just consists of a single
statement. No other extra work is needed by the class. The sizeIs method for the
LinkedStack class is O(N ), since it must walk through the entire stack, counting
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items, each time it is called. In Part (c) the LinkedStack class is revised, creating a
little extra work every time push or pop are called, but allowing a O(1) sizeIs
method, just like for the ArrayStack approach.

9. a. (201 references) � (4 bytes) + (20 ints � 2 bytes) = 844 bytes

d. (41 references) � (4 bytes) + (20 ints � 2 bytes) = 204 bytes

12. You cannot instantiate the LinkedList class since it is an abstract class. First you must
extend it with a concrete class, such as SortedLinkedList, and then instantiate the con-
crete class.

13. In the List class, retrieve and delete are abstract methods, but in the LinkedList
class they are concrete classes. The LinkedList class defines and uses an inner class
called ListNode.

15. public boolean delete (Listable item)
// Deletes the element of this list whose key matches item's key
// and returns true. If no element on the list matches item it,
// returns false
{
ListNode location = list;
boolean found = false;

if (numItems != 0)
{
// Locate node to be deleted
if (item.compareTo(location.info) == 0)
{
list = list.next;                         // Delete first node
found = true;
numItems—;

}
else
{
while ((location.next != null)

&& (item.compareTo(location.next.info) != 0))
location = location.next;

if (location.next != null)
{
// Delete node at location.next
location.next = location.next.next;
found = true;
numItems—;

}
}

}
return found;

}
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17. a. 30

b. 90

c. 45

19. a. list = list.next.next;

b. list = null;

20. a.

21. int totalPrice(UnsortedLinkedList carList)
{
Car currCar;
int total = 0;
int size = carList.lengthIs();
carList.reset();
for (int i = 0; i < size; i++)
{
currCar = (Car)carList.getNextItem();
total = total + currCar.getPrice();

}
return total;

}
24. b.

26. a. It takes M steps to insert the items from list1 into list3. For each of the N items in
list2 it takes M steps to check to see if they already were in list1, so that is M *
N steps. The actual insertion of the list2 items is a little complicated to analyze.
In the worst case we would have to traverse the entire list3 for each insertion of
an element of list2. Therefore, the first insertion from list2 would take M + 1
steps, the second would take M + 2 steps, and so on, with the last taking M + N

myList

53 •

•

myList

59 •3 •
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steps. The total number of steps for this part of the process is therefore (M + 1) + (M
+ 2) + . . . + (M + N ) = (M * N ) + (1 + 2 + . . . + N ) = (M * N) + (N * (N � 1))/2.
Therefore, the total number of steps is

M + (M * N ) + (M * N ) + N 2/2 � N/2

In terms of Big-O, the complexity is O(M * N + N 2).

b. A good algorithm would be to walk down each of the parameter lists, creating the
new list as you go. At each step, you would copy the smaller of the elements that you
are looking at on the parameter lists and then advance the list pointer of that list.
When you reach the end of one of the lists, the remaining elements of the other list
can just be copied to the new list. During this processing, if an element is discovered
to be on both lists, it is copied to the new list only once. This algorithm advances one
of the parameter list pointers at each “step”; therefore, it is O(M + N ), much faster
than the algorithm described in part (a).

Chapter 6

1. The isFull, lengthIs, and retrieve methods are inherited, but Java does not allow
inheritance of constructors. This forces the class designer to create his or her own con-
structor for each class, or use the default constructor. However, we can (and do) use the
super operation to invoke the constructor of the superclass from within the constructor of
the subclass.

3. The public methods enqueue and dequeue would have to be changed since they require
manipulation of the extra references.

4. public void printReverse()
// Pre:  List is not empty
// Post: List is printed in reverse order
{
ListNode location = list;
ArrayStack stack = new ArrayStack();
Object item;

do
{

stack.push(location.info);
location = location.next;

} while (location != list);

while (!stack.isEmpty())
{
item = stack.top();
stack.pop();
System.out.println(item);

}
}
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6. a. Yes. The constructor must also set the new reference to null.

b. No.

8. a. Instead of the references in the new node pointing to the previous node and the next
node on the list, both references will point to the new node itself.

12. a. C.next.info

b. B.back.info

c. A.next.next

14. a. Doubly linked

b. Circular

c. List with header and trailer

15. Perhaps the school management programs use lists with trailers, and Mary knows that
the “larger value” held in the trailer node’s name variable is “Zz”. But the new family will
be inserted into the list after the trailer node. So, they must perform some corrective
maintenance on the programs.

16. Initialization has O(N ) complexity, where N is the size of the array of items; getNode
and freeNode have O(1) complexity.

18. a.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

1

2

3

4

5

6

7

8

9

null

free

list

nodes .info .next .back

0

null

null

0

1

2

3

4

5

6

7

8
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20. a. False

b. False

c. False

d. True

e. False

f. False

g. True

22. No. There is no “proper place” on the list. The list is not kept sorted and allows duplicates.

23. First of all, most of the changes would have to be made to the SpecializedList class,
since that is the class the defines the nodes used for storage of the digits. If we assume
that class can hold multiple bytes per node, the only changes needed to LargeInt would
be to possibly change addDigit to handle more than one digit at a time and to change
toString (revamp the construction of largeIntString).

26. a. The greaterList method assumes that a “longer” number is a larger number. So in
the example it identified the number 003 as larger than the number 35. The subtrac-
tion algorithm changes the sign of the subtrahend and adds, so the program tries to
add 35 and �003. The addition algorithm, when presented with two numbers of
opposite signs, subtracts the absolute value of the smaller from the larger . . . so in the
example it subtracts 35 from 003. Passing the parameters to the subtractLists
method in the incorrect order causes calculation errors.

b. One approach, which we call the Interface approach, would be to have the numbers
entered by the user checked for leading zeros, and if they exist, display an error mes-
sage in the interface and do not perform the calculation. Another approach, which we
call the StripZeros approach, would be to have the leading zeros stripped off the num-
bers before they are stored in the lists. A third approach, called the RobustMath
approach, is to rewrite all of the methods related to mathematics to handle situations
where there are leading zeros.

c. The Interface approach is easy to implement. We can test each operand for a single
leading zero and, if it exists, throw an appropriate exception. The exception handler
can display the error message. A drawback of this approach is that it puts the respon-
sibility on the user. We must be careful to properly handle the case where the user
just enters the digit 0 by itself.

The StripZeros approach is a little more complicated. Instead of just checking for a sin-
gle leading zero we must check for a string of leading zeros and “remove” them.
Removing them just means not passing them to the addDigit method. A drawback
here is that we are changing the information entered by the user. If later updates to the
system require access to the exact information entered by the user, things could get
complicated. Again, we must be careful to properly handle the case where the user just
enters the digit 0 by itself.

The RobustMath approach is the most complicated. The greaterList helper method is
now more complicated. Additionally, the loop controls in the addLists and sub-
tractLists methods depend on the “smaller” number being the “shorter” number. Since
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this is no longer necessarily true, this program logic would need to be revised. If we ever
upgrade the application to perform additional operations, they are also likely to be more
complicated if this approach is used. The benefit of this approach is that the user is not
bothered by any special rules about entering numbers and the user’s entry data is not
changed.

Chapter 7

1. a. The case for which a solution can be stated nonrecursively; it is a nonrecursive exit
from the recursive solution.

b. The general (or recursive) case is the case for which the solution is expressed in terms
of a smaller version of itself.

c. Indirect recursion is when the solution to one problem is expressed in terms of a second
problem, which in turn is expressed in terms of a smaller version of the original problem.

2. See page 487.

5. a. �1

6. a. Yes, num must be zero or a negative number.

b. No

c. Yes. 0 is returned.

d. Yes. �15 is returned.

7. a. The base case is when the second argument is equal to zero.

The general case is when the second argument is not equal to zero.

The second argument must be greater than or equal to zero.

When the method is passed a base and a nonnegative exponent, it returns the value of
the base raised to a power of the exponent. For example power(4, 3) would return
43 = 64.

c. The base case is when the argument, n, is less than 10.

The general case is when the second argument, n, is greater than or equal to 10.

There are no restrictions on the initial argument value (except that it must be of type
int).

When the method is passed a negative argument, it returns a �1; otherwise, it returns
the number of digits in the positive integral argument. For example recur(501)
would return 3 and recur(12345) would return 5.

8. a. This answer is incorrect. The value 0 is returned; the recursive case is never reached.
This solution gets half credit, because it correctly calculates the base case (even if it
doesn’t reach it).
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b. This solution correctly calculates the sum of squares but gets no credit because it is
not a recursive solution.

c. This answer is correct and gets full credit.

d. This answer is functionally equivalent to (c); it just avoids the last recursive call (to an
empty list) by returning the sum of the last squares as the base case. This answer runs
into problems if the list is empty, but the specification states that the list is not empty.
This answer gets full credit.

e. This solution is incorrect. The general case does not correctly calculate the sum of the
squares. Quarter credit is given for using the correct control structure and for getting
the base case correct.

9. a. int fibonacci(int number)
{
if (number <= 1)
return number;

else
return fibonacci(number – 2) + fibonacci(number – 1);

}

b. int fibonacci(int number)
{
int current;
int previous;
int temp;

if (number <= 1)
return 1;

else
{
previous = 0;
current = 1;
for (int count = 2; count <= number; count++)
{
temp = previous;
previous = current;
current = temp + previous;

}
return current;

}
}

d. The recursive solution is extremely inefficient because many of the intermediate val-
ues are calculated more than once.
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e. The following version, which uses an auxiliary recursive function, is more efficient.
Note that the recursive parameters are used to keep track of the current and previous
numbers, rather than recalculating them.

int fibonacci(int number)
{
return fib(number, 1, 1);

}

int fib(int number, int previous, int current)
{
if (number == 0)
return previous;

else
return fib(number – 1, current, current + previous)

}

11. a. It is difficult to establish that the recursive calls satisfy Question 2, that they are mov-
ing toward the base case.

b. 16 recursive calls

3 recursive calls

17 recursive calls

13. private void printList(ListNode listRef)
{
if (listRef != null)
{
System.out.println(" " + listRef.info);
printList(listRef.next);

}
}

The revPrint method is a better use of recursion since the list can easily be printed in
forward order by using a standard iterative list traversal.

17. a. True—The return values on the runtime stack can take the place of local variables.

d. False—Recursive solutions are often less efficient in terms of computing time.

f. True—Otherwise you would recurse indefinitely and eventually use up all the run time
stack space and bomb.

18. A stack.
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Chapter 8

1. a. The level of a binary search tree determines the maximum number of comparisons
that are required to find an element in the tree.

b. 100

c. 7

2. c. is the correct answer

7.

8. a. Q, K, and M

b. B, D, J, M, P, and N

c. 8

d. 16

e. BDJKMNPQRTWY

f. BJDNPMKRWYTQ

g. QKDBJMPNTRYW

10. a. False

b. True

c. False

13. The elements used with our trees would need to support the copy operation, in addition
to the compareTo operation. Since this operation is not really needed to implement the
tree operations, requiring it places an unnecessary restriction on the kinds of elements
that can be used with trees. Additionally, since the Comparable interface is a Java library
interface, there are many types of elements that already implement it, that can be used
with our trees. This benefit would not occur if we require Listable tree elements instead.

16.
int countLess(BinarySearchTree tree, Comparable maxValue)
// Effect: returns the number of nodes of tree that contain a value
//         less than or equal to maxValue
// Pre:    tree has been instantiated
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{
int treeSize;
int numNodes = 0;
treeSize = tree.reset(BinarySearchTree.INORDER);
for (int count = 1; count <= treeSize; count++)
{
if ((tree.getNextItem(BinarySearchTree.INORDER).compareTo(maxValue))

<= 0)
numNodes = numNodes + 1;

}
return numNodes;

}

19. public int leafCount()
// Effect: returns number of leaf nodes in the tree
// Calls recursive method countLeaves to count the number
//  of leaf nodes
{
return countLeaves(root);

}

private int countLeaves(BSTNode tree)
{
if (tree == null)
return 0;

else if (tree.left == null) && (tree.right == null)
return 1;

else
return (countLeaves(tree.left) + countLeaves(tree.right));

}
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27.

JB P W

•treeA

(a)

MD

C N

YR

K T

Q

JB N W

•treeA

(d)

PD YR

K T

Q

•treeA

•treeA

•treeA

NW

(b)

YR

(Unchanged) T

Q

•treeA

X

W

YR

(Unchanged) T

Q

JB N W

(e)

MD YR

K T

P

(c)

JB P W

(f)

MD

N

Y

K T

Q
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28.

30.

32. a.
hippopotamus

canary

donkey

deer

zebra

yak

walrus

vulture

penguin

quail

56

30

22

11 23

64

49 62

61

69

•treeB

50

26

12

11

9 16

2 10 17

96

107

95

25

51

94

72

•tree
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34. Either the value in node 5 or the value in node 6.

36. Preorder

37. Elements inserted in random order:

Sorted linked list: O(N )

Binary search tree: O(log2N )

42. a.

45. a. Any negative value, for example a �1.

b. tree
.numElements
.elements

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

10

26

14

38

1

–1

33

50

-1

7

-1

-1

-1

35

44

60

-1

3

6

15

19

tree

17 299
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void push(Comparable item)
Assign the next largest time stamp to the new item.
Enqueue the new item into the priority queue.

48. a. True—Its smallest child index would be 85, but the tree only contains 85 elements, in
locations 0 .. 84.

b. False—treeNodes[41] has two children: treeNodes[83] and treeNodes[84].

c. False—The left child of treeNodes[12] is treeNodes[25].

d. True—Drawing the corresponding tree helps verify this statement.

e. False—The tree contains six full levels (containing 63 elements), with 22 additional
elements on the seventh level.

49. It appears 9 times. See the figure on page 596.

Chapter 9

3. a. private Comparable[] items;
private int numItems;

b. The code is the same as for the insert method of the SortedList class as presented
in Chapter 3, except we must reverse the relational operator so that the items are
stored from largest to smallest.

c. public Comparable dequeue()
{
Comparable item;
item = items[0];
for (int count = 1; count < numItems; count++)
items[count – 1] = items[count];

numItems—;
return item;

}

4. a. The highest-priority element is the one with the largest time stamp.

b.
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Comparable top( )
Dequeue an item from the priority queue.
Enqueue the item back into the queue.
Return the item.

void pop( )
Dequeue an item from the priority queue.

6. Tree d is the only heap. Trees a, c, and f do not satisfy the shape property of heaps. Trees
b and e do not satisfy the order property of heaps.

7. Any tree whose root nodes contain the largest value, and whose other nodes are linearly
linked through the left pointer member, each containing a smaller value than its parent,
correctly answers this question.
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11. a.

b. x = 56, y = 42, z = 40

28

56

After pq.Enqueue (28)

26

2425

27

155

42

3 19

28

56

After pq.Enqueue (2)

26

2425

27

155

42

3

2

19

28

56

After pq.Enqueue (40)

26

2425

27

155

42

40

32

19

28

42

After pq.Dequeue (x)

26

2425

27

155

40

3

2

19

28

40

After pq.Dequeue (y)

26

2425

27

155

19

3 2

27

28

After pq.Dequeue (z)

26

2425

15

5

19

3 2
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14.

15.

Brent[0]

[1]

Fran[2]

Fred[3]

Jean[4]

John[5]

Lance[6]

Mike[7]

Sander[8]

Susan[9]

10
EmployeeGraph

.numVertices

.vertices

F[0]

[0]

F[1]

F[2]

T[3]

F[4]

F[5]

T[6]

F[7]

F[8]

F

F

[1]

F

F

F

F

F

F

T

F

T

F

[2]

F

F

F

F

T

T

F

T

F

T

[3]

F

F

F

F

F

F

F

F

F

F

[4]

F

F

F

F

F

T

F

F

T

F

[5]

F

T

F

F

F

F

F

F

T

T

[6]

F

T

F

T

F

F

F

F

F

F

[7]

T

F

F

F

F

F

F

F

F

F

[8]

F

T

F

F

F

F

F

F

T

F

[9]

T

F

F

T

T

F

F

T

Darlene

F[9]

.edges

EmployeeGraph

Jean

John

Fran

Susan

Lance Sander

Brent

Fred

MikeDarlene



16. a. Susan, Jean, Lance

b. Susan, Sander, Fran, Lance

17. ”works with” is the best description of the relationship represented by the edges between
vertices in EmployeeGraph, because it is an undirected graph. The other relationships
listed have an order implicit in them.

18.

21. The correct answer is (b). For example, a dalmatian is an example of a dog.

22. V(StateGraph) = {Oregon, Alaska, Texas, Hawaii, Vermont, New York, California}
E(StateGraph) = {(Alaska, Oregon), (Hawaii, Alaska), (Hawaii, Texas), (Texas, Hawaii),
(Hawaii, California), (Hawaii, New York), (Texas, Vermont), (Vermont, California),
(Vermont, Alaska)}

23. a. No

b. Yes

c. Hawaii and Texas

26. a.

public boolean edgeExists(Object vertex1, Object vertex2)
// Effect:         Return value = (vertex1, vertex2) is in the set of 
//                 edges
// Preconditions:  vertex1 and vertex2 are in the set of vertices

b.

{
return (edges[indexIs(vertex1)][indexIs(vertex2)] != NULL_EDGE);

}

animal

vertebrate

monkey dog cat

invertebrate

shellfish

oyster crab

poodle dalmation dachshund

banana
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30. No. An inorder traversal of a binary search tree produces an ordered list of the tree ele-
ments. If such a list is fed to the insert method the resulting binary search tree will be
completely skewed.

Chapter 10

1. a. Declare a static variable numSwaps in the Sorts class. Initialize it to 0. Also set it to 0
in the initValues method. Print out the numSwaps value in the printValues
method. Finally, increment numSwaps by 1 in the swap method.

2. The correct answer is (c)

3. a. O(N )

b. O(N )

4. None.

7. a. 4950

b. 99

9. a. O(N 2)

b. O(N )

c. O(N 2)

d. O(N )

11. The correct answer is (d).

15. Quick Sort is O(N 2) if the split algorithm repeatedly causes the array to be split into one
element and the rest of the unfinished array. For example, if the split algorithm simply
chooses the split value as the first value in the subarray and the list is already sorted, the
result will be O(N 2).

16. Only (b) is true.

20. a. O(N log2N )

b. O(N 2)

c. O(N log2N )

21. Quick Sort and Selection Sort would take the longest; Insertion Sort and Short Bubble
would take the shortest.

23. a. True. Using the array-based implementation of a binary tree, Heap Sort can be
accomplished with constant extra space. However, Merge Sort requires at least
enough space to hold information about all the outstanding merge jobs.

b. False. Depending on the way the split value is selected, nearly sorted data is often a
degenerate case for Quick Sort.

c. True. Heap Sort takes essentially the same steps no matter what the order of the elements.
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25. a. We could use the quadratic equation to solve the formula n2 – 4n + 1 > 0 but it is just
as easy to use a table to calculate the answer.

n f (n) = 4n g(n) = n2 + 1

1 4 2

2 8 5

3 12 10

4 16 17

5 20 26

Therefore, when n > 3, g(n) > f(n).

28. Programmer time refers to the amount of time it takes a programmer to generate a piece
of software, including the time to design, code, and test it. If a programmer needs to fin-
ish a software project quickly, sometimes the programmer’s time is a more critical effi-
ciency consideration than how fast the resulting program runs on a computer. In this
chapter, recursive sorting algorithms are cited as time-savers for the programmer, possi-
bly at the expense of computing time.

29. a. public int compareTo(Circle otherCircle)
{
Circle other = (Circle)otherCircle;
return (int)(this.radius – other.radius);

}

34. a. Quick Sort or Heap Sort

b. Quick Sort or Merge Sort

36. The correct answer is (a), O(1), since you already know the index.

38. a. 100

b. 100

c. 100

39. a. 50

b. 50

c. 50

40. The correct answer is (a).



43. 44.

45.

90

153

145

[0]

HashTable

[3]

[2]

[4]

[5]

[1]

66[6]

[9]

[8]

[7] 47

467

140

393

285

126

87

735

620

395

566

177

140

620

145

[0]

[3]

[2]

[4]

[5]

[1]

467

66

126

87

[6]

[9]

[8]

[10]

[11]

[7] 47

285

566

395

[12]

[15]

[14]

[13] 90

153

393

[16]

[19]

[18]

[17] 177

735

140

145

[0]

[3]

[2]

[4]

[5]

[1] 620

66

126

90

285

[6]

[9]

[8]

[10]

[11]

[7] 47

87

467

395

[12]

[15]

[14]

[13] 153

393

566[16]

[19]

[18]

[17] 177

735
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46.
90[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

140 620

153

145

66

47

393

285

126

87

395

566

735

177 467
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Note: Italicized page locators refer to tables/figures.

A
Abstract classes, 55, 162-168, 244

in collections framework, 281
extending, 166-168

AbstractCollection class, 284-285
Abstract data type operations, 142-146

constructors, 142
element types, 143-146
iterators, 143
observers, 143
transformers, 142-143

Abstract data types, 69, 73, 90, 100, 104, 132
building, 118-119
data structures versus, 75
designing, 130-131
and exceptions, 129
formal specifications of, using Java interface, 250-

254
generic, 193-206
implementing by copy, 259-260
implementing by reference, 259, 260-261
interfaces for specifying, 367
returning values from within, 158

Abstract data type sorted list, 169-181, 244
application level, 170
binary search algorithm, 175-179
delete operation, 173-174
implementation level, 170
improving isThere operation, 174-175
insert operation, 170-173
logical level, 169
test plan for, 181

Abstract data type unsorted list, 141-162, 242
application level, 146-147
implementation level, 147-159
logical level, 141-146
test plan for, 159-162

Abstractions, 1, 4, 9, 10, 12, 23, 60, 70, 149
Abstract level, 75
Abstract linked list class, 366-367, 369-379, 401-402
AbstractList class, 164-166, 285
AbstractMap class, 284
Abstract method, 88, 164, 250
AbstractSet class, 285
Abstract view, capturing in interface, 89,
Abstract Window Toolkit (AWT), 57, 106
Acceptance tests, 1, 32
Access modifiers, 120

Index



Accessor methods, 16, 74
ActionEvent class, 236, 241
ActionHandler class

ActionPerformed method of, 317
radio buttons/button group used in, 461
for Real Estate program, 234, 235, 236

ActionListener class, 241, 805
ActionListener interface, ActionHandler and implemen-

tation of, 235
ActionListener listener, 235
Action listeners, 235
actionPerformed method, 235, 236, 317
Activation records, 508, 509, 518, 520

and iteration, 514
and Last-In-First-Out rule, 510
and run-time stack, 511, 512, 513, 514

ActivationRecordType class, 509
addDigit method, 441, 444
addEdge algorithm, 651
Addition, 304, 305

with Large Integer Calculator, 455
and large integers, 441
rules, 452

Addition operation (+), 71, 80
addLists operation, 446, 448-450
add method, code for, 59, 452-453
add operation, 116
addVertex operation, 650
addWindowListener method, 232
Adjacency lists

defined, 652
graph representation for, 653-654

Adjacency matrix (matrices), 647, 649, 652
Adjacent vertex (vertices), 632
Adjectives, and interface names, 368
ADTs. See Abstract data types
ADT Graph, specification for, 633-634
ADT methods, error situations within, 130
ADT objects, copying, 121
Aggregate objects, 92-94, 97
Algorithm Init1 and Init2, 185
Algorithms, 1, 3, 325

addEdge, 651
for balancing a tree, 579-580

binary search, 496, 723
bubble sort, 683
bubbleUp, 684
comparison of, 181-187, 246-247
comparison of rates of growth for, 186
and complexity bins, 191, 192
deleteNode, 566, 567
depth-first searching, 635-636
for inserting item, 389
for inserting item-locating insertion location, 387
insertion sort, 687, 688
insert(item), 414
isThere, for unsorted array-based list, 382
iterative, 477
palindrome problem, 291-292
postfix expression evaluation, 306-307
for RealEstate program, 222-223
recursive, 476, 480, 496, 521
recursive insertion, 502
reheapDown, 625-627
reheapUp, 622-623
for reset and getNextItem operations, 373
for retrieving item from unsorted list, 376
reverse printing, 498
shortest-paths, 643, 644, 645-646
sorting, 674
SortNodes, 707
for stacks, 266, 267
straight selection sort, 678
for Towers of Hanoi problem, 492-493
in Word Frequency Generator case study, 588-590

Algorithm Sum1, 186, 187
Algorithm Sum2, 187
Aliases, 84, 85-86, 122

and “by reference” approach, 261
AListNode class, 428
allCircles array, 94, 95
alpha array, 96, 97

Java implementation of, 98
American Standard Code for Information Interchange.

See ASCII
Ancestor nodes, 532, 546
Application, 100
Application data, 148
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Application level, 75, 79, 118, 250, 600-601
for abstract data type sorted list, 170
for abstract data type unsorted list, 146-147
of array lists, 118
in arrays, 91-92
for binary search trees, 542-544
of class type, 84-85
for graphs, 635
and interfaces, 89-90
of library analogy, 77, 78
in primitive data types, 80-81
for priority queues, 614
for queues, 289-296
for Stack ADT, 264-272
of String class, 113. See also Implementation

level; Logical level
Application programmers, 119, 126
Application view, 237
args parameter, 54
Arguments, variables passed as, 87
“Array access out of bounds” error, 624
Array-based ADT implementations, 272

for graphs, 647-652
reference-based ADT implementations versus,

368
Array-based implementation of sorted list oper-

ation
linked implementation of sorted list opera-

tion versus, 394
Array-based implementation of Unsorted List

ADT
linked implementation of Unsorted List ADT

compared with, 384-386
Array-based linked approach, 431, 432
Array-based lists, saving in text files, 659
Array-based representation, for binary tree,

582, 583
Array-based sorted list approach, with priority

queues, 615
Array implementations, comparing, 303
Array index links, 432
ArrayIndexOutOfBoundsException, 92
Array-index-out-of-bounds situations, 109
ArrayLinkedList class, 427

ArrayLinkedList.java, 429-430, 463
ArrayList-based implementation, 277-279
ArrayList class, 114, 151, 277, 281, 282, 285,

342, 366
ArrayList operations, 115
Array lists, 114-118

application level of, 118
arrays contrasted with, 115
implementation level view of, 116, 117
logical level view of, 114-115
using, 118

ArrayListStack.java, 278-279, 326
Array of nodes, sorted list stored in, 425
ArrayQueue class, 297
ArrayQueue.java, 301, 303, 326
Array representation, heap values in, 620
Arrays, 71

application level in, 91-92
array lists contrasted with, 115
changing contents of, 706
comparing hashed and sequential lists of

identical elements in, 726
declaring/instantiating with single command,

92
effect of heapSort on, 709
with linked list of values and free space, 

427
logical level in, 90-91
logical view of student records, 99
merging two sorted, 692
of objects, 94-95
reasons for using, 423-425
results of stack operations using, 343
results of stack operations without using,

344
saving in text files, 658
sorting with references, 712
with three lists (including free list), 428
using, 118, 425-428

Arrays class, 711
ArrayStack class, 268, 311, 347, 355-356
ArrayStack.java, 274, 326
ArrayStack stack, 517
array type, 79, 100
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ASCII
character set, 55
as subset of Unicode, 792

Assignment operation, on integers, 71
Assignment operators, and large integers, 441
Assignment statements, results of, 85
Assumptions, within program specification, 8
Atomic (or primitive) types, 70
Atomic (simple) data types, 81
Automated teller machine, scenario for, 7-8
AWT. See Abstract Window Toolkit

B
back reference, 418
Balance algorithm (iterative part), 579, 580
Balanced.java, 326

code for, 268-272
Balanced program, sample run of, 273
Balanced trees, 552, 574, 597

binary search trees, 576, 581
optimal transformation, 581

balance method, 576, 580
Balance operation, specification for, 576
Base case, 480, 484, 486, 488, 520, 522

for inOrder method, 571
with mergeSort, 691
with Quick Sort, 700
and recInsert, 559
and recNumberOfNodes, 547-549
and recursive insertion, 503
of recursive solution, 515
and reverse printing, 499
for Towers of Hanoi problem, 493. See also General

case
Base-Case Question, 483, 484, 488

for verifying isThere method, 487
for verifying revPrint, 501

BASIC, 477
Beck and Cunningham, 13
Bently, Jon, 526
Big-O approximation

and height of tree, 533
and recursive solutions, 520
and searching efficiency, 530

sorting and searching techniques and, 739
Big-O comparisons, 189-190

of list operations, 192, 574, 575
of priority queue implementations, 628, 629
of sorted list operations, 394, 395
of sorting algorithms, 738
of stack implementations, 356
of unsorted list operations, 385

Big-O notation, 183-187, 238
and binary search algorithm, 190
and circular versus linear linked lists, 417
and complexity of iterative version of factorial, 514
and efficiency considerations for binary searching,

723
and efficiency considerations for high-probability

ordering, 722
and efficiency considerations for key ordering, 722-

723
and efficiency considerations for linear searching,

721
and family laundry analogy, 188
and implementations of Queue ADT, 364-366
and recursive/nonrecursive version of numberOfN-

odes, 553
Selection Sort algorithm described in terms of, 682

Big-O time and space requirements
and bubble sort, 685-687
and efficiency of sorting algorithms, 710-711
for heap sort, 708-709
for insertion sort, 689
and linked implementation, 652
for quick sort, 703 
and reference-based lists, 659

Binary operations, 336
Binary operators, 304
Binary search algorithm, 190, 191, 386

for abstract data type sorted list, 175, 179
trace of, 178, 179

Binary searches, 462, 530, 723
comparison of linear searches and, 180, 190
of phone book, 175
recursive version of, 496-498

binarySearch method, 496
recursive, 497
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Binary search property, 534
Binary Search Tree ADT, 538, 576, 597

iteration, 568-572
specification of, 541
testing, 572, 573, 574

Binary search tree approach, with priority
queues, 615

BinarySearchTree class, 543
code for, 572
queues in, 569

BinarySearchTree.java, 544-545, 597
BinarySearchTree2 class, 590, 592
BinarySearchTree2.java, 592-593, 597
Binary search tree operations, testing, 572, 573,

574
Binary search tree property, and delete opera-

tion, 562
Binary search trees, 462, 530, 534-536, 597,

599, 739
application level for, 542-544
balancing, 576-581, 605
defined, 535
deletions from, 565
implementation level for, 544-546, 553-574
insertions into, 557
iterative versus recursive method implemen-

tations with, 546-553
linear lists compared to, 574-576, 603
logical level for, 538-542
recursive method for insertion into, 559-560
saving, 663
saving in text files, 659
specification for, 540-542
storage of, in array with dummy values, 584
two, 548

Binary transformer, 143
Binary tree node, node terminology for, 544
Binary trees, 532, 533, 534, 535, 598, 629

array representation of, 582
complete, 583, 584
defined, 532
examples of different types of, 584
full, 583, 584
height of, and searching efficiency, 533

nonlinked representation of, 581-584,
605-609

Binary tree traversals, 536-538
three, 538
visualizing, 537

Binding, 505, 507
Binding time, 505
BitSet class, 282
BitSet objects, 282
Black-box strategy, and LargeInt operation, 

454
Black-box testing, 1, 43
Booch, Grady, 11
bookFiles directory, 103, 206, 325
Boolean flags, and debugging, 45
Boolean methods, 74
boolean type, 80, 81
Boolean values, 282
Border layouts, in PostFix Evaluator, 323, 

324
Borders, for Java Swing components, 233
Bottom-up approach, 749
Bottom-up stepwise refinement, 11
Bounded size, 368
Bounded time, 184-185
Braces, 630, 803
Brackets, with arrays, 91
Brainstorming, 29

and identifying classes, 23
in postfix expression evaluator case study,

309-311
in real estate listings case study, 207
for word frequency generator case study, 

585
Branch, 44
Branching statements, and debugging recursive

methods, 488
Branching structure, in recursive method, 483
Breadth-first searching, 635, 639, 641
breadthFirstSearch method, code for, 640-642
BSTInterface interface, 543, 544
BSTInterface.java, 541-542, 597
BSTNode class, 556, 565

definition of, 544
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Bubble sort, 674, 682-685
analyzing, 685-687
example of, 683
snapshot of, 684

BubbleSort algorithm, 683
bubbleSort method, code for, 685
BubbleUp algorithm, 684
BubbleUp implementation, and objects of Comparable

type, 713
bubbleUp method, code for, 685
BubbleUp2, 686
Buckets, 732

collisions handled by hashing with, 733
BufferedReader class, 56, 63, 212
Buffers, 290
Bugs, origins of, 33
buildHeap, algorithm for, 705
Built-in types, Java’s classification of, 79, 80
ButtonGroup class, 464
Button groups, 460-461
buttonPanel, in PostFix Evaluator, 323
Buttons, 58

for Real Estate program, 233, 234, 235, 236
“By contract” programming, 145, 146, 366
“By copy approach,” 141, 383, 539, 644

implementing ADTs by, 259-260
in list framework, 396
lists use of, 366
stacks implemented by, 356n1
storing “by reference” versus, 261, 262, 263

“By reference” approach, 141, 383
graph manipulation with, 650
graph/queue ADTs usage of, 634
implementing ADTs by, 259, 260-261
priority queues implemented by, 613
and shortest-path traversal, 644
for stacks and queues, 366
stacks implemented by, 356n.1
storing “by copy” versus, 261, 262, 263
trees implemented by, 539

byte elements, and specialized list ADT, 434
byte type, 80, 81, 444

C
C, 82

C++, 2, 82
Calculator application, code for, 805-807
Calculator program, 810-812

Swing JFrame displayed in running of, 812
Calendar class, 105
Capacity, of list, 149
capacity variable, 298
Case sensitivity, with Java identifiers, 367
Case studies, 50-51

large integers, 441-454, 472-473
postfix expression evaluator, 304-322
real estate listings, 206-232, 248
word frequency generator, 585-597, 609-610. See

also Examples
catch block, 109
Catching an exception, 107
catch statement, 110, 129
Chaining, 732

collisions handled by hashing with, 733
comparison of linear probing and, 734

Character class, 110, 268, 292
Characters, 70
char type, 80, 81, 100, 110
charValue method, 268
checkError method, 55
CheckInbook, 77
CheckOut (Basket), 752
CheckOut operation, algorithm for, 752
Child nodes, 530, 563, 564, 582
Children, 530, 563, 564, 629
ch03.genericLists package, 193, 253, 369
ch04.genericLists package, 253, 366
ch04.queues package, 255
ch04.stacks package, 255

StackInterface interface defined in, 347
ch05.genericLists package, LinkedList class in, 370, 408
ch05.stacks package, 347
ch06.byteLists package, 434, 444
ch06.genericLists package, CircularSortedLinkedList

class in, 408
ch07.genericLists package 

SortedLinkedList2 class in, 501, 503, 518
SortedList2 class in, 498

ch07.stringLists package, UnsortedStringList3 class in,
487
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ch08.wordFreq. package, WordFreq class in,
590

ch09.circles package 
Circle class in, 655
SCircle class in, 660

ch09.priorityQueues package, 614
Heap.java in, 620
PriQueueInterface.java in, 612

ch10.circles package, 714
Circle class, 83, 84, 119, 120, 133, 655
Circle.java, 655, 664
Circle objects, 84, 124

retrieving, 656-657
saving, 655-656, 657

Circular linked lists, 406, 462, 464, 466
CircularSortedLinkedList class, 407-409
defined, 406
deleting from, 411-413
with external pointer pointing to rear ele-

ment, 407
insert method, 413-416
isThere method, 410-411
iterator methods, 409-410
linear linked lists versus, 417

Circular linked queue design, 363-364
Circular linked queues, 364
Circular lists, 398
CircularSortedLinkedList class, 407-409, 416,

417
CircularSortedLinkedList.java, 408, 463
Clarity, and recursive solutions, 518, 519-520
Class-based types, 98-131, 135
Class constructor, 16
Class diagrams, 12, 13
Classes, 1, 14-16, 71

abstract, 55
arrays versus, 90
collection framework, 281-282
concrete, 281
identifying, 23-24
identifying in object-oriented systems, 23-24
inner, 347
legacy, 282-283
naming, 367
in programs, 100

self-referential, 345
sources for, 103-105
wrapper, 57

Classes, Responsibilities and Collaborations
cards. See CRC cards

class mechanism, 73
Class name, in CRC card, 13
ClassPath directories, 103
ClassPath variable, 100
class type, 79, 81-85, 100

application level of, 84-85
logical level of, 82-84

Class variables, 15
Clear-box strategy, 279
clearHouse method, 223
clearMarks method, 637
Clear (white) box testing, 44
Client class, 100
Cloneable interface, 398
clone method, 398
close method, 55
closeSet method, 268
Clustering, 730, 732
COBOL, 82, 477
Code 

coverage, 44
inspections, 61
walk-throughs, 1

Coding, 2
Cohesion, 10, 24
Collaborations

in CRC cards, 13
and scenario walk-throughs, 27, 28, 29, 30

Collection
defined, 281. See also Java collections

framework
Collection interface, 283-284 

operations listed in, 283
Collections framework classes, properties of,

281-282
Collection type, 131
Collisions, 727

and buckets and chaining, 732, 733
good hash function choices for minimizing,

734-735
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Collisions (continued)
handling with linear probing, 727
handling with rehashing, 730, 731
linear probing and chaining schemes comparison,

734
Color class, 233, 241
Combinations example, 489-491
combinations method, 489, 518

calculating, 519
testing, 490

Command-line arguments, 54
Comments, 799-801

declaration, 800
header, 799
in-line, 800
sidebar, 801

Commercial off-the-shelf components, 104
Comparable, 544
Comparable interface, 398, 538-540, 713
Comparable.java, 598
Comparable type, 555, 613
Comparator interface, using, 713-719
Comparator.java, 740
Comparator object, 714, 715
compare method, 713
compare operation, 719
compareTo method, 194, 198, 199, 237, 259, 539, 645,

714
in ListHouse class, 208, 216-217

compareTo operation, 398, 713
Comparison, 84
Comparison operator (==), 86
Compilation unit, 101
Compilers, 3, 505

and static storage allocation, 505, 506, 507
tail recursion caught by, 516

Compile-time errors, 35
Complete binary tree, 583, 584
Complete directed graphs, 633
Complete graphs, 632, 633
Complete undirected graphs, 633
Complexity

of hashing, 738
reduction of, by separating views on data, 132

Complexity bins, 191, 192
Components

adding to content pane, 809
for Real Estate program, 233-234

Component selector, 82-83, 91
Composite, 69
Composite data types, 71, 79, 81, 82
Computers, 3
Concatenation, string, 114
concat method, 114
Concrete class, 281
Concrete method, 164
Concurrency, 282
Concurrent programming, 114
Consistency, 799, 803
“Constant of proportionality,” of algorithm, 710
Constants, defining in interface, 89
Constant time, 185
Constructors, 16, 74, 131

for ArrayLinkedList, 430
copy, 122, 123
default, 84
List ADT operations classified into, 142
for queues, 301
and Unsorted List ADT, 151-152

Constructs, naming, 367-368
Container class, 58, 63, 586, 587, 589, 809
Containers, 131, 140
ContentPane, 59
Content panes, 58, 233, 809
contentPane variable, 58
Copy constructors, 122, 123, 142
Copying

deep, 124, 125
objects, 121-124, 125
shallow, 123, 125

copy method, 237, 259, 539
copy operation, 259, 398
Correctness, designing for, 36-37
COTS. See Commercial off-the-shelf components
count instance variable, 312
countKids method, 506
Crashes, 35-36
CRC cards, 1, 12, 23
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blank, 13
enhancement of, with additional informa-

tion, 30, 31
for entry in design example, 29
with initial responsibilities, 26, 27
for postfix expression evaluator case study,

311
for real estate listings case study, 208, 210,

212, 213, 214
for word frequency generator case study,

586, 587
Cunningham and Beck, 13
Current length, of list, 149
Current position, of list, 149
currentPos method, 149
currentPos value, 158
currentPos variable, 371, 374
current variable, 679
Cut and paste, and Unsorted List ADTs/Sorted

List ADTs, 163

D
Data, 70

abstraction, 71-73, 751
coverage, 42-43
encapsulation, 4, 72-73, 751
levels, 75
perspectives on, 132
program postfix evaluation of, 309
relationships among views of, 237
separating views of, 132

DataFormatException, 126
Data objects, for real estate listings case study,

209
Data structures, 69, 74-75, 76, 104, 105

abstract data types versus, 75
serializing, 662-663
testing Java, 46-59

Data types, 2, 70-71
in Java, 80
primitive, 791. See also Abstract data types

Date ADT, 120, 121
Date class, 14, 15, 16, 18, 22, 73, 82, 105, 119,

124, 126, 127

access modifiers, 120
toString method added to definition, 21
UML class diagram for, 16

Date constructor, 127, 128, 129
Date.java, 62
Date method, 15
Date objects, 14, 18, 121

extended UML class diagram for, 17
DateOutOfBoundsException, 126, 128, 129
Dates, 126

history of, in Java, 105
Deadlines, importance of, 6
Deallocation, 87
debugFlag, 45-46
Debugging, 31, 44-46, 86

programs, 3
recursive methods, 488

DecimalFormat class, 107, 268, 327, 591, 794
Decimal format type, 794-798
DecimalFormat variables, 794, 796
Declaration comments, 800
Deep copying, 69, 124, 125, 260
Degenerate tree, 574
delete algorithm, 189, 191
delete method, 142, 196, 251, 375, 376, 377,

379, 462
and circular linked list, 408
code for, 413, 433
of LinkedList class, 432
testing, 160, 161

deleteNode method, 566, 567, 568
deleteNode operation, Big-O efficiency of, 575
delete operation, 155-156, 370, 371, 379, 396

for abstract data type sorted list, 173-174
Big-O efficiency of, 575
and binary search trees, 562-568
and doubly linked lists, 418-420

Deleting
from circular linked list, 411, 412, 413
from doubly linked list, 420, 421
elements in binary search tree, 562-568
node with one child, 563, 564
node with two children, 563, 564

Delivery, 2
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Deprecation, 105
Depth-first search, 635, 637
DepthFirstSearch algorithm, 636
depthFirstSearch method, 638
Depth of recursion, 514, 518, 520, 552
dequeue method, 645

and heaps, 624-628
and Big-O efficiency, 628, 629

dequeue operation, 287, 289, 357, 358, 361, 612, 615
effect of, 300
and floating-front design approach, 299
and implementing queues as linked structures,

360-361
Dequeuing

elements to heap, 618
and priority queue implementations, 615

Descendants, of nodes, 532
Design

choices, 24-25
high-level, 2
implementation of, 2
program, 8-30
review activities, 39-40
specifications and errors in, 33-35
verification, 61. See also Object-oriented design;

Program design
Designers, 119
Deskchecking, 1

checklist for, 39
destroy method, 805
Detailed class diagrams, 12
Diagrams, 12
Direct access, 90
Directed graphs (digraphs), 630, 631, 632
Direct recursion, 476, 568
Disjoint subtrees, 530
distance attribute, 643
Divide-and-conquer algorithm, 698
Divide-and-conquer approach, 696, 723
Divide-and-conquer sorts, rationale for, 690
Division, 304

and large integers, 441
by zero, 109

Division method (%), 735-736

Division operation (/), 71, 80
DLListNode class, 418
Documentation, 799
doTowers method, 493
double type, 80, 81, 100
Doubly linked lists, 398, 417-422, 462, 466-468

defined, 418
deleting from, 420, 421
insert and delete operations, 418-420
insertions into, 419
linear, 418
and list framework, 420-422
with two references, 436

Drawings, 58
Driver program, 231-232
Dummy values, 583, 584

binary search tree stored in array with, 584
Duplicate elements, in binary search trees, 

540
Duplicate keys, 141
Duplicate values, and stable sorts, 719
Dynamic allocation, 423, 425
Dynamic memory management, 86, 87
Dynamic programming, 519
Dynamic storage, 356, 505, 520

linked lists in, 424
and recursion, 508-514

E
Edges, 630, 632, 633, 650, 652
edges array, 647, 648
Editors, 3
Efficiency

of operations, 79
and recursive solutions, 518-519
of sorting algorithms, 674
when N is small, 710-711. See also Big-O notation

E(graph), 647
Elements, 183
Element types, 143-146
Employee elements, hash scheme for handling, 736
Empty lists, 374, 390, 411

with header and trailer, 423
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inserting into, 420
and recursive insertion, 502

Empty stacks
results of push, then pop on, 354
results of push operation on, 350, 351

Empty trees, 571
and crashes, 548

endIndex method, 681
EndVertex, 635
Enqueueing

elements to heap, 618
and priority queue implementations, 615

enqueue method, 302, 628
and Big-O efficiency, 628, 629
code for, 360
for heaps, 621-624

enqueue operation, 287, 359, 612, 615
effect of, 300
and fixed-front design approach, 298, 299
and floating-front design approach, 299
and implementing queues as linked struc-

tures, 358-360
equals method, 713, 714
Error conditions

and observers, 143
and unsorted list ADT specification, 145-146

Error handling, for word frequency generator
case study, 586

Errors, 130, 310, 314-315
compile-time, 35
and deskchecking, 39, 40
detecting/fixing, 2
out-of-bounds, 92
preventing, 60
run-time, 35-36, 109
software, 1
specification, 34-35
syntax, 21, 35
testing for, 30

evaluate method, 313, 314
EvenOddStackInterface interface, 763
Event listeners, 234, 235
Event model, for Real Estate program, 234-236
Event sources, 234, 235

Examples
Combinations, 489-491
library “data structure,” 75-79
object-oriented design, 25-30
recursion, 477-480
storing “by copy” versus “by reference,” 261,

262, 263
Towers of Hanoi, 491-496. See also Case

studies
Exception classes, 107, 108, 126, 133, 613
Exceptions, 40-41, 79, 107, 108, 124, 126-130
Execution times, 182
Exhaustive testing, 42
Explicit relationships, in binary trees, 581
Exponential time, 185
Exported methods, 120-121
expressionPanel, in PostFix Evaluator, 323
Expressions, formatting, 802
extends keyword, 19

F
Factorial function, calculating, 477-480
factorial method, 480, 483 

activation record for, 508-509
execution of, with argument of 4, 481, 482
execution of, and run-time stack, 511-514
run-time version of (simplified), 509
Three-Question Method applied to, 484

Family laundry analogy, 188
Fibonacci sequence, 525
FIFO. See First In, First Out
FigureGeometry.java, 133 
FileReader class, 63, 212
Files, objects/structures stored in, 654-663, 672
FileWriter class, 55, 56, 63, 212
Filtering

in postfix expression evaluator case study,
309-311

in real estate listings case study, 207-208
for word frequency generator case study, 586

Filtering classes, 23
finally clause, 109
Final modifier, 15
FindElement method, 66
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FindItem, 720
find method, and Word Frequency Generator case

study, 590, 592
First In, First Out, 286, 287, 289, 290, 356, 639, 640
Fixed-front design approach, 298-299
Flights class, 643, 645
Floating-front design approach, 299-300
Floating-point multiplication, 72
float type, 80, 81
flush method, 55
Folding, 737
for loops, 94, 265
Formatting, 799, 802
FORTRAN, 82, 477
Four-element subarrays, 697
Frames, 57

for Real Estate program, 232-233
title/size setting for, 58

freeNode method, 426, 431
FrequencyList class, 593
FrequencyList.java, 593-596, 597
fromVertex attribute, 643, 650, 651
front instance variable, 301, 302, 357, 358, 359, 360
Full binary tree, 583, 584
Functional decomposition, 11, 750
Functional domain, 1, 42
Functions, 11

G
Garbage, 84, 86, 87, 116, 122, 753
Garbage collection, 86, 87, 116, 182, 302
Garbage collector, 276, 423
General (recursive) case, 480, 484, 520, 522

and deleting from circular list, 411, 412, 413
and insert meHVsd, 414, 415
with mergeSort, 691
and recNumberOfNodes, 547
and recursive insertion, 503
of recursive solution, 515
for Towers of Hanoi problem, 493

General Case Question, 483, 484
for verifying isThere method, 488
for verifying revPrint, 501

Generic abstract List class, 196-200

Generic ADTs, 237, 247
and Listable interface, 194-196
and lists of objects, 193-194
sorted list, 200-204

Generic data types, 193
Generic lists, using, 205-206
Generic Lists package, 240
Generic structures, 90
GetCircle.java, 656, 664
getHouse method, 223
getLargeInt method, 456
getNextItem method, 158, 251, 373, 374, 375

and BinarySearchTree class, 569-570
and circular linked list, 409

getNextItem operation, 143, 149, 156, 396, 417, 575
getNode method, 426, 431
getPredecessor, 567
getPrevious method, 421
GetSCircle class, 661-662
GetSCircle.java, 661, 664
getText method, 234
getToVertices method, 634
getToVertices operation, 652
Graph class, 653
Graphical user interfaces, 57, 808

and postfix expressions, 306
and PostFix program, 310
and Real Estate program, 232

Graphs, 132, 398, 629-653, 669-672
adjacency list representation of, 653-654
application level, 635
array-based implementation of, 647-652
breadth-first searching, 639-642
complete, 632, 633
defined, 630
and depth-first searching, 635-639
directed, 630, 631, 632
examples of, 631
of flight connections between cities, 648
implementation of, 647-653
linked implementation of, 652-653
logical level for, 633-635
saving, 663
saving in text files, 659
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single-source shortest-paths problem,
642-647

undirected, 630, 631, 632
weighted, 632, 633, 648

greaterList method, 771
greaterList operation, 446-448
Greatest algorithm, 627
Gregorian calendar, 126
GregorianCalendar class, 105
Grid Bag layout approach, 324
GridLayout class, 63
Grouping symbols, well-formed and ill-formed,

265
GUIs. See Graphical user interfaces

H
Halting, recursive descents, 555
Handling the exception, 107
Hardware, 3
“Has a” relationship, 93

UML diagram of, 94
Hashable interface, 724-725
hashCode method, 737
Hash functions, 724

choosing, 734-735
collisions minimized by, 727
uses for, 725-726

Hashing, 283, 723-738, 746-748
buckets and chaining, 732-734
choosing good hash function, 734-735
clustering, 730
collisions, 727
complexity, 738
defined, 724
division method, 735-736
goal, 739
Java’s support for, 737
linear probing, 727-730
other hash methods, 736-737
rehashing, 730-732

HashMap class, 283, 284
HashSet class, 737
Hash table, 724, 730, 731, 735
HashTable class, 282, 283, 284, 737

HashValue, 732
Hash values, 737

division method for computing, 735
hasMoreTokens method, 314
Header comments, 799
Header nodes, 422, 462
Heap class, 620, 645, 664, 705
Heap.java, 620-621
Heaps, 583, 615-629, 666-669, 704

building, 704-707
defined, 615
dequeue method, 624-628
enqueue method, 621-624
implementation of, 619-621
letters ‘A’ through ‘J’ contained in, 616
other representations of priority queues ver-

sus, 628-629
sorting using, 707-708

Heap sort, 674, 704
analyzing, 708-709

heapSort method, 708, 709
Hierarchical relationships, trees and modeling

of, 530, 531
Hierarchy of tasks, 11
Highest-priority elements, in priority queues,

612
High-probability ordering, 722
Hole

and reheapDown, 618, 625, 626
and reheapUp, 622, 623

HouseFile class, 208, 211, 212, 214, 222, 761
specification of, 217-218
testing, 231

HouseFile.java, 218-220, 239
houses.dat file, 217
Houses package, 240

I
Ideaware, 3-4
IDTestDriver program, 108, 110
if-else statements, 159
if statements, and recursive solutions, 483
if-then-else statements, 189
if-then statements, 44, 265
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Illegal arguments, 126
Ill-formed expressions, 265, 266
Immutable objects, 112
Implementation, 250

of design, 2
heap, 619-621
of responsibilities of class, 30
view, 237

Implementation-based class names, 368
Implementation level, 75, 118, 131, 601

for abstract data type sorted list, 170
for abstract data type unsorted list, 147-159
of array lists, 116, 117
binary search trees, 544-546, 553-574
for graphs, 647-653
of library analogy, 77, 78, 79
priority queues, 614
queues, 297
and sorting algorithms, 674
of Stack ADT, 272. See also Application level; Logi-

cal level
Implementers, 119
Implicit invocation, 235
Implicit links, 704

in binary trees, 581
and heaps, 620, 623 

import keyword, 102
import statement, 55, 102
IncDate ADT, 159
IncDate class, 18, 19, 62, 86

test driver for, 51-53
testing, 48

IncDate increment method, augmenting, 44-45
IncDate.java, 62
IncDate subclass, 120
Inchworm effect, 389
Inchworm search approach, 418
increment method, 18, 19, 21, 48, 120, 121
Indexes

array, 90
key values converted to, 724

indexIs method, 651
Indirect recursion, 476, 568
Inductive proofs, 484

Infinite loops, 636
Infix expression, converting to postfix format, 336
Infix notation, 305
Info attribute, referencing, for next node, 433
info instance variable, 345
infoPanel object, 58
info reference variable, of type Listable, 370
Information hiding, 1, 4, 10, 12, 23, 60, 158, 194

and by copy approach, 260, 263
and implementation-based class names, 368

Inheritance, 1, 14, 17-22, 120
extended UML class diagram showing, 20
of interfaces, 421
and Unsorted List ADTs/Sorted List ADTs, 163-164

Initial responsibilities, CRC cards with, 26, 27
initValues method, 675
Inner class, 100, 347
inOrder method, 571
inOrderQueue, 570
Inorder traversal, 536, 537, 568, 570

and balancing binary search tree, 577, 578, 581
Input

files, 290
program postfix evaluation, 309
for real estate listings case study, 209

Input/output (I/O), 2. See also Java Input/Output
insert algorithm, 189, 190
insertEnd method, 438, 439, 440
insertEnd operation, 436
insertFront method, 438, 439, 440
Insertion order, and tree shape, 560-561
Insertion sort, 674, 687-689

analyzing, 689
example of, 687
snapshot of, 688

insertionSort algorithm, 688
insertionSort method, 689
insertItem method, 689
insert method, 142, 194, 251, 375, 376, 382, 383

and binary search tree, 556, 557-560
and circular linked list, 408, 413-414, 415, 416
implementation of, 416
testing, 160

insert operation, 155, 370, 371, 396, 556-560, 721
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for abstract data type sorted list, 170-173
Big-O efficiency of, 575
defining, 387
and doubly linked lists, 418-420
and hash function, 726, 727
and linear probing, 728
recursive, 558
in recursive linked-list processing, 501-504

InsertTree algorithm (recursive part), 579, 580
insertTree method, 580
Inspections, 40
Instance variables, 15, 149-151

for queues, 301
of Unsorted List ADT, 150

Integer addition, 183
Integer class, 63, 110

parseInt method of, 111, 112
Integer division, 80
Integer multiplication, 72
Integers, 70, 71

black box for representing, 73
different representations of, 72

Integer wrapper class, 56
Interface approach, 771
interface keyword, 88
Interfaces, 71, 88-90

application level, 89-90
in collections framework, 281
inheritance of, 421
Java, 250, 283-284
logical level, 88-89
multiple inheritance of, 421
naming, 367
program postfix evaluation, 309
and radio buttons, 460

Interpreters, 3
int hash code, 737
int keyword, 80
IntSetStats class, 311, 318
IntSetStats.java, 312-313, 326
IntSetStats object, 313
int type, 71, 72, 80, 81, 84, 100, 110
int variables, modeling with, 81
I/O. See Input/output

IOException, 108, 109
is-a relationship, 18
isEmpty() boolean, 757
isEmpty method, 274, 275, 285, 355

in BSTInterface, 545-546
isEmpty operation, 257, 263, 298
isFull method, 189, 193, 251, 274, 275, 277,

355, 372
in BSTInterface, 545

isFull observer, 143
isFull operation, 152, 160, 258, 263, 298, 396
isLetter method, 292
isMarked method, 637
isSorted method, 675, 677, 710
isThere method, 163, 189, 190, 196, 199, 251,

375, 376, 382, 498
and circular linked lists, 408, 410-411
code for, 386-387
code for recursive, 487
iterative version of, 515-516
recursive call in, 516
recursive method in mid-execution, 486
Recursive Version of, 485-488
Three-Question Method for verifying, 487-

488
isThere operation, 145, 153-155, 194, 396

improving, 174
and retrieve operation, 553-556
and word frequency generator case study,

590
Iteration

recursion versus, 552-553
substitution of, for recursion, 514-516

Iterative algorithms, 477
Iterative method implementations, recursive

method implementations versus,
546-553, 601-602

Iterative solutions, 480, 519
to Number of Combinations problem, 491
recursive solutions compared to, 482-483

Iterator interface, 284
Iterator methods, for circular linked lists,

409-410
Iterator objects, 284
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Iterator operations, 156, 158-159, 434
for specialized list ADT, 434, 438

Iterators, 74, 131
List ADT operations classified into, 143

J
JAR (Java Archive) file format, 106
Java, 1, 2, 10

and exception handling, 41
hashing supported by, 737-738
history of dates in, 105
IncDate created in, 18-19
integer values supported in, 441
object creation in, 16
operator-precedence rules in, 305
recursion supported by, 480
reserved words in, 789
Swing components, 57

Java arguments, passing by value, 87
java.awt.event package, 106
java.awt package, 106
Java bytecode, 505
Java bytecode compiler, 505
Java Class Library, 53, 59, 70, 104, 105, 106, 132, 260,

285
ADTs in, 111-113
ArrayList class of, 277
important library packages within, 106
list classes in, 140
Stack class in, 281
stream types in, 55
useful general library classes in, 106-111
wrapper class in, 110

Java code, list design notation compared to, 373
Java collections framework, 281-286

legacy classes, 282-283
properties of classes in, 281-282

Java data structure
example of test input file and resulting output file,

50
model of test architecture, 47
testing, 46-59

Java exception mechanism, 124
Java Input/Output, 50, 53-59

command-line input, 54

file input, 56-57
file output, 55-56
frame output, 57-59

Java Input/Output II, for Real Estate program, 232-236
Java Input/Output III, for Postfix Evaluator case study,

322-324
Java Input/Output IV, in Large Integer Calculator pro-

gram, 460-462
Java interface

formal ADT specification using, 250-254
for specifying Stack ADT, 263-264

Java interpreter, 505
java.io class, 218
java.io package, 106

Serializable interface in, 660
java.lang.Error subclass, in Throwable class, 108
java.lang.Exception, in Throwable class, 108
java.lang package, 106 

String class in, 112
System class in, 107
wrapper classes in, 110

Java.lang.RunTimeException class, 109
Java.lang.Throwable class, 108
Java language specification, meaning of type in, 100
Java library awt package, 57
Java Library Classes/Interfaces, 240, 241, 463, 464,

598, 664, 665, 739. See also Java Class Library
Java Library Collections Framework, deletion of lists

in, 379
java.math package, 106
Java packages, 101-103

import statement, 102
with multiple compilation units, 101
and subdirectories, 103
syntax in, 101

Java’s built-in types, 79-98, 134
aggregate objects, 92-94
arrays, 90-92
arrays of objects, 94-95
class type, 81-85
interfaces, 88-90
multilevel hierarchies, 97-98
primitive data types, 80-81
two-dimensional arrays, 95-97
type hierarchies, 92
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Java swing package, 57
java.text package, 106

DecimalFormat class in, 107, 794
Java 2 collections framework interfaces, 283-

285
Collection interface, 283-284
Iterator interface, 284
Map interface, 284

Java 2 Library Collection Framework, 396
Java 2 platform, 282
java.util.Date class, 14n.4
java.util.jar package, 106
java.util package, 106

ArrayList class in, 114
Java Virtual Machine, 109
javax.swing.border, 233
JButtonadd class, 228, 230, 241
JComponent class, 233
JFrame class, 57, 58, 63
JLabel class, 63, 233
Job queues, 612, 614
Jpanel class, 63
JPanel object, 58
JRadioButton class, 464
JTextField class, 224, 241
JVM. See Java Virtual Machine

K
Keyed lists, 396
Key ordering, 722-723
Keys, 141

and headers/trailers, 422, 423
statistical distribution of, in hash scheme, 

735
Key values, and hashing, 723, 724, 726

L
labelPanel, in PostFix Evaluator, 323
Labels, 58, 59

for Real Estate program, 233
LargeIntCalculator.java, 463

code for, 456-460
LargeInt class, 441, 444, 446
Large Integer ADT, 442, 455, 462

code for, on web site, 456

Large Integer Calculator, 454-456
Java Input/Output IV for, 460-462
screen shots of, 454, 455

Large integers
representing with linked lists, 442
three points of views of, 443

Large integers case study, 441-454, 472-473
addition rules, 452-453
and addition/subtraction, 446
helper methods, 446-451
LargeInt class, 444-446
subtraction rule, 453
test plan, 454
underlying representation in, 441-442, 444

LargeInt.java, 444-445, 463
LargeInt object, 446, 453, 456
Last In, First Out, 255, 256, 265, 325, 510, 520
Layout management approaches, 324
Leaf, 532

and binary tree traversals, 536
new nodes inserted on tree as, 556

Leaf nodes, 704
deleting, 563

Left child, 532, 535, 620
and nonlinked representation of binary tree,

582
Left children, 544
leftFirst, and merge method, 694
Left subtrees, 532, 535

and balancing binary search tree, 577
and binary tree traversals, 536, 537
and inOrder method, 570, 571
and iterative numberOfNodes, 551
and recursive numberOfNodes, 547

Legacy classes, 282-283
Length: of list, 140
lengthIs method, 147, 189, 251, 372, 373

in specialized list ADT, 437
testing, 160

lengthIs observer, 143
lengthIs operation, 370, 396, 434, 444
length variable, 91
Level of node, 532
Library classes, off-the-shelf container classes

versus, 590
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Library data structure, 75-79
Life cycle 

software, 2-3
verification, 751

LIFO. See Last In, First Out
Linear doubly linked list, 418
Linear linked lists

circular linked lists versus, 417
drawbacks with, 530
traversing, 536

Linear lists, binary search trees compared to, 574-576,
603

Linear probing, 727-730
chaining schemes compared with, 734
and clustering, 730
hash program with, 729
rehashing with, 730

Linear relationship, 140
Linear Search, 721
Linear searches, 191, 721

binary searches compared to, 180, 190
Linear time, 185
LineBorder class, 233, 241
Lines, formatting, 802
Linked implementation, for graphs, 652-653
Linked implementation of sorted list operation

array-based implementation of sorted list operation
versus, 394

Linked implementation of Unsorted List ADT
array-based implementation of Unsorted List ADT

compared with, 384-386
LinkedList class, 367, 369, 382, 396, 407, 408, 767
Linked-list implementation, 147
LinkedList.java, 371-372, 380-382, 399
Linked lists, 367, 398, 574

as array of nodes, 423-433, 468-472
array with, of values and free space, 427
circular, 406-417, 462, 464, 466
doubly, 417-422, 462, 466-468
in dynamic and static storage, 424
with headers and trailers, 422-423, 468
large integers represented with, 442
nodes in, 370
recursive approaches with, 498-504

Linked lists as array of nodes, saving in text files, 659
LinkedQueue class, 362
LinkedQueue.java, 357, 362, 399
Linked queues representation, 358
LinkedStack, ArrayStack compared with, 355-356
LinkedStack class, 347-350
LinkedStack.java, 347-348, 399
Linked structures

approaches to using array-of-nodes implementation
for, 426-427

implementing queues as, 356-366, 400-401
implementing sorted lists as, 386-395, 403-404
implementing stacks as, 342-356, 399
implementing unsorted lists as, 380-386, 402-403
queues implemented as, 400-401

link instance variable, 345
Link structure, list together with, 429
LISP

lists in, 140
and recursive approaches, 477

List (abstract list specification), 238
Listable class, 204-205, 231
Listable elements, 196, 539
Listable interface, 194-196, 237, 251, 253, 259, 366,

396, 398, 539, 713
ListHouse class and implementation of, 208
ListString and implementation of, 204-205
UML diagram for, 203

Listable.java, 70, 238
Listable objects, 198, 206
Listable retrieve, 200
List ADTs, 139, 140, 251

implementing, 366-367
specialized, 434-462, 471-472

ListCircle class, 195-196, 214
ListCircle.java, 71, 238
ListCircle objects, 196, 198
List class, 251, 366, 396, 485, 767

generic abstract, 196-200
with three items, 371
UML diagram for, 203

List data structure, 131
List design notation, Java code compared to, 373
List design terminology, 148-149
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List elements, 237
writing, 184

listFirst instance variable, 440
List framework, 395-398, 404

and doubly linked lists, 420-422
UML class diagram for, 397

List getNextItem operation, code for, 260
ListHouse class, 207-208, 211, 212, 214, 216,

761
objects, 209
testing, 231

ListHouse.java, 215-216, 239 
ListHouse objects, 208
list.info references, 407
List insert operation, code for, 259, 260
List instance variable, of type ListNode, 370
ListInterface, 366, 367, 369, 398

extension of, by TwoWayListInterface, 421,
422

List interface, 284, 285
List Interface interface, 396, 407, 428
ListInterface.java, 251-254, 326, 369-370
List iterator methods, 379
List.java, 196-198, 239, 326
listLast instance variable, 440
List.next.info references, 407
ListNode class, 370, 396, 399, 407
ListNode object variable, 371
ListNumber class, 759
List operations, Big-O comparison of, 192
list reference, 406, 407
Lists, 74, 132, 140-141, 183, 281

adjacency, 652, 653
circular linked, 406-417, 464, 466
doubly linked, 417-422, 466-468
empty, 374, 411, 420
inserting at end of, or middle of, 388
keyed, 396
linear doubly linked, 418
link structure with, 429
of objects, 193-194
ordering with Quick Sort algorithm, 698
retrieving items from, 378, 379. See also

Array lists; Circular linked lists; Doubly

linked lists; Empty lists; Linked lists;
Unsorted lists

ListString class, 214
Listable interface implemented by, 204-205

ListString.java, 239
ListStudent class, 199
Location, for array-based implementation, 148
location.back reference, 420
location.next reference, 410, 411, 413
location reference, 388, 390, 410, 411, 413, 414
Logarithmic time, 185
Logical (or abstract) level, 75, 79, 118, 131,

250, 600
for abstract data type sorted list, 169
for abstract data type unsorted list, 141-146
of array lists, 114-115
in arrays, 90-91
binary search trees, 538-542
of class type, 82-84
for graphs, 633-635
and interfaces, 88-89
of library analogy, 77
in primitive data types, 80
priority queues, 612-614
queues, 286-287
and sorting algorithms, 674
of Stack ADT, 255-256
String class, 112. See also Application level;

Implementation level
Logical view, 237

of array of student records, 99
long type, 80, 81, 441
Looping, 2
Looping statements, 488
Looping structure, in iterative method, 483
Loops, with iterative solutions, 483
Loose coupling, 10
Low-level design, 2
Lukasiewicz, Jan, 304n.2

M
main method, 100, 511, 512
Maintenance, 3
Map interface, 284, 285
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Maps, 281
markVertex method, 637
Maximum heap, 615, 645
Maximum-height trees, 533
max, 312
Memory addresses

and dynamic storage allocation, 508
and static storage allocation, 505

Memory space
efficiency, sorting algorithm choices and, 712
and sorting algorithm, 674
and straight selection sort, 678

Merge algorithm, 693-694
merge method, specification for, 693
merge operation, 696
Merge sort, 674, 690-691

merging sorted halves, 692-695
MergeSort algorithm, 185

analysis of, with N=16, 696
comparing N2 and N log2N, 697

MergeSort method, 695, 711 
analyzing, 696-697

Merging sorted halves, 693
Methods

abstract, 164
concrete, 164
eliminating calls to, 711
exported, 120-121
naming, 367
signature of, 152

Minimum heap, 615-616, 645
Minimum-height trees, 533
minIndex method, 681, 714-715

code for, 680
min, 312
MINUS = false, 444
MINYEAR, 15, 126
Models, 9
Modifiability

and quality software, 5
and separating views on data, 132

Modifiers, access, 120
Modular design, 60
Modules, 10

Modulo arithmetic, 71
Modulo operator (%), for resetting rear indicator, 300
Modulus operation (%), 80
Monitors, 3
moreToSearch variable, 383
Multilevel hierarchies, 97-98
Multiple compilation units, packages with, 101-102
Multiple inheritance

of interfaces, 421
replacing, 89

Multiplication, 304, 305
and large integers, 441

Multiplication operation (*), 71, 80
Mutator, 74

N
Names/naming, constructs, 367-368
N elements, 182
Nested components, 264, 265
Nested containers, in PostFix Evaluator, 322-323
Nested Grid layouts, 324
NewCircle class, 123

copy constructor code for, 124
object of, 93

NewCircle.java, 93, 133
NewCircle objects, 94, 658
new command, 84
newHole method 

code for, 627-628
specification for, 626

newNode.info reference, 350, 414
newNode.next reference, 419
new operation, 342, 348
new operator, 16
nextItemInfo variable, 374
next node, referencing info attribute of, 433
next reference variable, of type ListNode, 370
nextToken method, 314
N factorial (n!), calculating, 477-480
N log2N time, 185
Node

level of, 532-533
root, 530

Node design notation, Java code compared with, 550
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Nodes
ancestor, 546
in binary search trees, 534-536
in binary trees, 532-534
in circular linked lists, 406, 407, 410, 413,

414
and delete operation, 562-568
in doubly linked lists, 418, 419, 420
dummy, 583, 584
header, 422, 462
inserting into trees, 556-560
insertion order, tree shape and, 560-561
leaf, 532
linked list as array of, 423-433
in linked lists, 370
linked lists as array of, 423-433
methods used for deleting, 568
and recursive insertion, 501-504
trailer, 422, 462
in trees, 530
visiting in order, 571

nodes array, 428
nodes[location].info, 432
nodes[location].next, 432
Non-fatal exceptions, 41
Nonleaf nodes, 704, 707
Nonprimitive types, handling “by reference,” 84
Nonprimitive variables, comparing, 87
Nonrecursive revPrint method, 517-518
Nonrecursive solutions, recursive solutions con-

trasted with, 520
Nouns

for classes in postfix expression evaluation,
310

and class names, 367
in problem description, 24
in real estate listings case study, 207
in word frequency generator case study, 585

NULL_EDGE, 650, 652
NullPointerException, 352
null references, 17, 390
null value, 85
NumberFormatException, 224

Number of Combinations problem, 489-490,
491

numberOfNodes method 
algorithm for iterative, 551
code for, 546-547, 552
iterative, 550-552
recursive, 546-550

numberOfNodes operation, 542
Big-O efficiency of, 575

numCompares variable, 710
numItems variable, 149, 298, 302, 370
numSwaps variable, 710
numVertices, 647, 648

O
Object class, 21, 22, 110, 194, 259, 272, 737
Object data, saving in text files, 655-658
Objected-oriented systems, identifying classes

in, 23-24
ObjectInputStream class, readObject method

of, 660
ObjectInputStream.java, 665
Object-oriented approaches, and resuability, 6
Object-oriented design, 1, 2, 3, 8, 14-30, 60, 82

classes, 14-16
CRC card enhancement in, 30
design, 22
design choices, 24-25
example, 25-30
first scenario walk-through, 27-30
identifying classes in, 23-24
and inheritance, 17-22
initial responsibilities, 26
objects, 16-17
review of, 14
stepwise refinement approach to, 11

ObjectOutputStream class, writeObject method
of, 660

ObjectOutputStream.java, 665
Objects, 1, 14, 16-17

aggregate, 92-94
arrays of, 94-95
comparing, 86
copying, 121-124, 125
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Objects (continued)
immutable, 112
and interfaces, 367-368
lists of, 193-194
serialization of, 660-662
sorting, 712
storing in files, 654-663, 672

Object type, 193
Observers, 16, 74, 91, 131, 143
Off-the-shelf components, 104
Off-the-shelf container classes, library classes versus,

590
O(N) algorithm, 184
One-dimensional arrays, 90, 91, 95, 97
One-element subarrays, 697
O (N log2N) sorts, 689-709

analyzing heap sort, 708-709
analyzing mergeSort, 696-697
analyzing quickSort, 703
building a heap, 704-707
heap sort, 704
merge sort, 690-691
quick sort, 698-703
sorting using heap, 707-708 

OOD. See Object-oriented design
Open problems, 8
openSet method, 268
Operands, in postfix expressions, 305, 306, 307,

308
Operating systems, 3
operationGroup, and radio button selection, 461
Operations, 3

on queues, 287
on stacks, 256

Operator precedence, 305, 790-791
Operators

binary, 304
in postfix expressions, 305, 306, 307, 308

Order of magnitude, 184-187. See also Big-O notation
Order property, 615, 616, 618, 622, 663, 704, 705, 707
Out-of-bounds error, 92
Output

files, 290
program postfix evaluation, 309

for real estate listings case study, 209
Overloading, 152

P
package keyword, 101
Packages, 100

and access, 120
and subdirectories, 103

Package statement, 150
Pack method, 809
Palindrome.java, 293-296, 326
Palindrome program, sample run of, 296-297
Palindromes, identifying, 290
Panels, 58, 59
Parameter passing, 87
Parameters, references and use as, 84
Parameters of methods, and static storage allocation,

506
Parentheses, 336

and infix expressions, 305
Parent nodes, and nonlinked representation of binary

tree, 582
Parents, 530, 620, 629
parseInt method, 56, 110-111
Path, 44, 632
Path testing, 44
Pattern strings, characters appearing in, with their

meanings, 795
peek method, 283
peek operation, 256
percent format, 797
Peripheral devices, 3
Point class, 93, 123, 124
Point.java, 133 
Point object, 124
“Poor” responsibilities, 24
pop method, 276, 283
pop operation, 256, 259, 263, 272, 325, 344, 350-353,

360
effects of, 257
results of, 352

Postconditions, 38, 151, 162
in library analogy, 79

PostFix class, 317
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Postfix evaluator, specification for, 309-310
PostFixEvaluator class, 310, 311, 313, 314, 318
PostFixEvaluator.java, 315-317, 326
Postfix evaluator program, testing, 322
PostFixException class, 311, 318
PostFixException exceptions, 314
PostFixException.java, 326
Postfix expression evaluation algorithm,

306-307
Postfix Expression Evaluator, 456
Postfix expression evaluator case study,

304-322
Postfix expression evaluator program, screen

shots from, 317-318
Postfix expressions

calculator for evaluating, 304
evaluating, 305-306

Postfix format, converting infix expression to,
336

PostFix.java, 319-322, 326
Postfix notation, defined, 304
PostFix program, 310
Postfix traversal, and balancing binary search

tree, 577
Postorder traversal, 536, 537, 538, 568, 635
Preconditions, 37, 38, 79, 130, 151, 162, 398
Predefined exceptions, handling, 109
Predicates, 74, 143
Prefix operations, 80
Preorder traversal, 536, 537, 538, 568

and balancing binary search tree, 577, 579
prevLoc.next reference, 414, 419
prevLoc reference, 388, 390, 414
Primitive data types, 791

application level, 80-81
logical level, 80

Primitive integer types, 441
Primitive types, 69, 70, 74, 79, 752

built-in classes corresponding to, 110
literals for, 113
and stability, 719

Primitive variables, comparing, 87
Printers, 3
printList method, 147

“Print List” operation, 131
println method, 55
PrintReversed method, 500
printTree operation, 543-544, 572
printValues method, 675, 677
printWriter class, 55, 63, 212
printWriter method, 55
Priority Queue ADT, 612
Priority Queue implementations, 616

Big-O comparisons of, 628, 629
Priority queues, 132, 612-615, 630, 663,

665-666, 708
application level for, 614
array-based sorted list approach to, 615
binary search tree approach to, 615
heaps versus other representations of,

628-629
implementation level for, 614
logical level for, 612-614
reference-based sorted list approach to, 615
unsorted list approach to, 615

PriQOverflowException, 664
PriQueueInterface, 620, 664
PriQueueInterface.java, 612-613
PriQUnderflowException class, 614, 664
Private access, 120
Private recursive methods, defining, 500-501
Problem analysis, 2
Problem statement, with nouns circled and

verbs underlined, 207
Processing requirements, within program speci-

fication, 8
Processing time, and sorting algorithm, 674
Program design, 8-30, 64

information hiding, 10
object-oriented design, 14
stepwise refinement, 11-12
tools, 9
visual aids, 12-14

Programmer, 118, 119
“Programmer months,” 34
Programmer time, 786

and exotic hash functions, 737
and sorting, 711
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Programming
“by contract,” 38, 145, 146, 366, 398
dynamic, 519
object-oriented, 14
projects, 336-339
recursive, 477

Programming Pearls (Bently), 526
Programming recursively, 480-483

coding factorial function, 480-481
comparison to iterative solution, 482-483

Programs

evolving, 311-312
testing, 41-42
validation/verification of, 32

protected access modifier, 120
protected modifier, 372
Public access, 120
push method, code for, 350
push operation, 256, 258, 259, 263, 272, 275, 276, 325,

348-350
effects of, 257
results of, 349
results of, on empty stack, 350, 351

Push statistics, 313

Q
Quadratic probing, 732
Quadratic time, 185
Quality software, goals of, 4-6
Queue ADT

comparing implementation of, 364-366
specification, 287, 289

Queue class, definition of, 297-298
Queue elements, wrapping around, 301
QueueInterface class, 291
QueueInterface.java, 326
QueueInterface type, 634
QueueNode class, 356, 399
Queue operations

definitions of, 302
effects of, 288

Queues, 74, 132, 183, 250, 286-303, 325, 398, 630
alternate implementations, 365

application level for, 289-297
bad design for, 358
circular linked, 364
definition of, 286
fixed-front design approach, 298-299
floating-front design approach, 299-301
implementation level for, 297
implementing as linked structures, 356-366, 400-401
logical level for, 286-287
operations on, 287
size of, 364-365
test plan for, 303
using to store air routes, 640. See also Priority

queues
QuickSort algorithm, 185, 698-703

ordering list with, 698
quickSort method, 698, 700, 703, 711
Quotation marks, literal strings within, 113

R
Radio buttons, 460-461

instantiating/initializing, 461
layout of in panel, and display of, 461-462

Random class, 107
Random.java, 740
Random probing, 732
Readability, 802
readLine method, 56, 108, 109
readObject method, 660, 662
readObject statement, 663
RealEstate application, 761
RealEstate class, 211, 212
RealEstate.java, 224-231, 239 
Real estate listings case study, 206-232, 248

data flow of, 210
high-level processing of, 211

RealEstate program, 220-224, 543
“adding” house with poorly formatted information,

221
algorithm for, 222-223
“finding” house not on list, 221
graphical user interface of, 232

Real numbers, 70
rear instance variable, 301, 302, 357, 359, 360
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recDelete method, 562, 565, 566, 568
recInsert method, 556, 557, 559, 560
recIsThere method, 553-554
recNumberOfNodes method, 546, 547, 550
Records, 82
Recursion

and binary tree traversal problem, 572
classic example of, 477-480
depth of, 514, 518, 520, 552
description of, 476-480
direct, 476
and dynamic storage allocation, 508-514
inappropriate, 491
indirect, 476
iteration substituted for, 514-516
iteration versus, 552-553
removing, 514-518
stacking substituted for, 516-518
and static storage allocation, 505-508
tail, 516, 707
workings of, 505-514

Recursive algorithms, 480, 496, 521
implementations of, as nonrecursive meth-

ods, 514
Recursive approach, code for, 515
Recursive calls, 476, 480, 514

and run-time stack, 511
and tail recursion, 516

Recursive cases, 488
Recursive definition, 477, 490
Recursive insertion, 501-504
recursiveInsert method, 503, 504
Recursive linked-list processing, 498-504

insert operation, 501-504
reverse printing, 498-501

Recursive method, 480
for solving Combinations example, 489-490
for Towers of Hanoi problem, 493

Recursive method implementations, iterative
method implementations versus,
546-553, 601-602

Recursive methods
debugging, 488
verifying, 483-484

writing, 484-488
Recursive (or general) case, 480
Recursive programming, 519, 520
Recursive solutions

decisions regarding use of, 518-520
iterative solution compared to, 482-483
to Number of Combinations problem,

489-490, 491
Recursive Version, of isThere method, 485-488
Reference, nonprimitive types handled by, 84
Reference-based ADT implementation,

array-based ADT implementations ver-
sus, 368

Reference-based approach, for class LinkedList,
367

Reference-based lists, 431, 432, 659
Reference-based sorted list approach, with pri-

ority queues, 615
References

null, 390
ramifications of using, 85-87
sorting arrays with, 712

Reference types, 71, 84, 112
Reference variables, passing as argument, 87
register method, 312
Regression testing, 1, 32
Rehashing, 730-732, 739

collisions handled with, 731
reheapDown algorithm, 625-627
reheapDown heap utility, 707
reheapDown method, 624, 628, 704, 705, 708,

709
reheapDown operation, 617

in action, 625
specification for, 618

reheapUp method, 623, 628
reheapUp operation, 619

in action, 622
specification for, 618

Relational operators, and large integers, 441
Reliability, 60
RemoveLast, specification for, 38
remove method, 284
“Report List Size” operation, 131
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Requirements, 4
elicitation, 2
verification, 60

Reserved words, 789
Reset button, RealEstate program, 223
reset method, 156, 160, 189, 193, 251, 373, 374

and BinarySearchTree class, 569
and binary search tree specification, 540
and circular linked list, 409

reset operation, 143, 149, 396
Big-O efficiency of, 575
and binary search tree specification, 540

Responsibilities
of class in CRC card, 13
and scenario walk-throughs, 27, 28, 29, 30

retrieve method, 196, 251, 375, 376-377, 462
retrieve operation, 238, 396

Big-O efficiency of, 575
and isThere operation, 553-556
and linear probing, 728
specification of, 199, 200
tracing, 554
and Word Frequency Generator case study, 590

Retrieving items, from list, 378, 379
return statement, 189
Reusability, 23

and quality software, 5-6
and separating views on data, 132
with Unsorted List ADTs/Sorted List ADTs, 163-164

Reverse Polish notation, 304
Reverse printing, 498-501
revPrint method, 516, 519, 774

code for, 500
nonrecursive version of, 517, 518
recursive, 499
Three-Question Method for verifying, 501

Right child, 532, 535, 536, 620
and nonlinked representation of binary tree, 582

Right children, 544
rightFirst, and merge method, 694
Right subtrees, 532, 535

and balancing binary search trees, 577
and binary tree traversals, 536, 537
and inOrder method, 570, 571

and iterative numberOfNodes, 551
and recursive numberOfNodes, 547

RobustMath approach, 771
Robustness, 36

of classes, 105
testing for, 43

Root nodes, 532, 704
of binary search tree, 557
in heap, 616, 617
maximum value of heap in, 704

Roots, 530
and binary tree traversals, 536

“Round-trip gestalt design,” 11, 750
RPN. See Reverse Polish notation
Run-time errors, 35, 109
RuntimeException, 257, 258
RunTimeException class, 110, 276
Run-time stacks, 511, 514, 518, 521

S
Sample inputs/expected outputs, within program speci-

fication, 8
SaveCircle.java, 655, 664
SaveSCircle.java, 661, 664
Scenario analysis

for real estate listings case study, 210-212
for word frequency generator case study, 588-590

Scenarios, 23
for automated teller machine, 7-8
walk-throughs, 27-30

SCircle class, 660
SCircle.java, 660, 664
SCircle objects, 661

retrieving array of, 663
saving array of, 662-663

Searching, 720-723, 744-745
binary, 723
high-probability ordering, 722
key ordering, 722-723
linear, 721
techniques, 720

SelectionSort
number of comparisons required to sort arrays of

different sizes with, 682
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SelectionSort algorithm, 678
snapshot of, 679

selectionSort method, 679, 680, 681, 689, 714,
715

Selector methods, 74
Self-organizing (or self-adjusting) lists, 722
Self-referential class, 345
Self referential structures, 342, 344-345
Sequential array-based list implementation, 147
Serializable interface, 660, 662, 663
Serializable.java, 665
Serialization facilities, 425
setActionCommand statements, 461
Set class, 765
setDefaultCloseOperation, 59, 809, 810
setError method, 55
setHorizantalAlignment method, 233
setNegative method, 444
Set notation, 630
Sets, 281
setSelected method, 461
setText method, 234
Shallow copying, 69, 123, 125
Shape property, 615, 616, 618, 619, 663, 704
ShortBubble, analysis of, 686-687
shortBubble method, 689
ShortestPaths algorithm, 643, 645-646
short type, 80, 81
showHouse method, 223
show method, 59
Side effects, 289
Signature, 152
sign instance variable, 444
Simple observers, 152-153
Simple sorts, 677-689, 740

analyzing bubble sort, 685-687
analyzing insertion sort, 689
analyzing selection sort, 681-682
bubble sort, 682-685
insertion sort, 687-689
straight selection sort, 678-681

Single-source shortest-path problem, 642-647
Singly linked lists, insertions into, 419
SIZE constant, 679, 681, 686

size method, 277, 285
Skewed trees, 561, 576, 578
SListNode class, 436
Smaller-Caller Question, 483, 484, 488, 515

for verifying isThere method, 487
for verifying revPrint, 501

smallest() string, 758
SNewCircle objects, 662
Software, 3

life cycle activities, 1
quality, 4-6
requirements, 1
specifications, 1, 2, 4. See also Verification

of software correctness
Software crisis/software challenge, 61
Software engineering, 1-68, 3

program design, 8-30
software process, 2-8
verification of software correctness, 30-60

Software process, 2-8, 3, 64
goals of quality software, 4-6
and hardware, 3
and ideaware, 3-4
life cycle in, 2-3
and software, 3
specifications, 6-8

someName package, 102
SortCircle class, 714, 715
SortCircle.java, 739
Sorted array-based lists, 574
SortedLinkedList class, 367, 396, 407

and reverse printing, 498-501
revPrint as private method of, 500
setup for, 386

SortedLinkedList2 class, 503
nonrecursive version of revPrint in, 518

SortedLinkedList.java, 392-393, 399
SortedLinkedList2.java, 521 
Sorted linked lists, four insertion cases for, 391
SortedList, 238
Sorted List ADT, 162, 237, 238, 406

comparison of unsorted list ADT and, 189-
190, 247

partial specification of, 169-170
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Sorted List ADT (continued)
similarity between Binary Search Tree ADT and,

542-543
SortedList class, 205, 214, 216, 217, 231, 366, 396, 780

UML diagram for, 203
Sorted list implementations, comparing, 394-395
SortedList.java, 200-203, 206, 239
SortedList2.java, 521 
Sorted list operations, Big-O comparison of, 395
Sorted lists, 140, 398

implementing as linked structures, 386-395, 403-404
relationship between unsorted lists and, 162-163
retrieving in, 174
storage of, in array of nodes, 425

SortedMap interface, 285
SortedObjectList class, 193
SortedStringList class, 169, 193, 237, 251

UML diagram for, 180
SortedStringList.java, 40, 181, 238
Sorting, 674-677, 740

efficiency, 710-711
eliminating calls to methods, 711
objects, 712
and programmer time, 711
and space considerations, 712
and stability, 719-720
test harness for, 675-677
testing, 710

Sorting algorithms
Big-O comparison of, 738
bubble sort, 682-687
heap sort, 704
insertion sort, 687-689
merge sort, 690-697
0(N log2N), 689-709
quick sort, 698-703
straight selection sorting, 678-682

SortList class, 222
SortNodes algorithm, 707
Sorts

efficiency and recursive versions of, 711
stable, 719. See also Bubble sorts; Insertion sorts;

Simple sorts; Sorted lists
Sorts class, 675, 679, 705, 707, 710
Sorts.java, 675-677, 739

Sorts2.java, 716-718, 739
Space considerations, efficiency, sorting algorithm

choices and, 712
Special cases

and deleting from circular list, 411, 412, 413
and insert method, 414, 415

SpecializedList ADT, 434-462, 471-472
implementation of, 436-440
inserting at front and at end, 439
specification for, 434

SpecializedList class, 434, 441, 446, 462, 771
SpecializedListInterface.java, 434-436, 463
SpecializedList.java, 437, 463
SpecializedList object, 446
Specification errors, cost of, based on discovery of, 34
Specifications

and design errors, 33-35
understanding the problem, 6-7
and verification activities, 61
writing detailed, 7-8

split method, 699
split operation, 701
splitPoint, 699, 702
splitVal, 699, 700, 701, 702
SquareMatrix ADT specification, 754
Stability, of sorting algorithm, 719-720
Stable sorts, 719
Stack ADTs, 105

comparison of implementations of, 355-356
specification for, 263-264
test plan for, 279, 280

Stack class, 274, 281, 282, 283
Stacking, substitution of, for recursion, 516-518
StackInterface, 266, 268, 274, 277, 291
StackInterface interface, 347
StackInterface.java, 263-264
StackNode class, 345, 399

results of stack operations using, 346
StackNode object, 351, 353
Stack operations

results of, using array, 343
results of, using StackNode, 346
results of, without using array-losing references,

344
testing of, and description of action, 280
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StackOverflowException class, 258, 275, 276,
277

StackOverflowException.java, 326
Stack overflows, 275, 277, 279
Stacks, 74, 132, 183, 250, 255-280, 325, 398,

520, 630
application level, 264-272
array-based implementation of, 272
contents of, 258, 263
defined, 255
definitions of stack operations, 274-277
for evaluating postfix expression, 306-308
exceptional situations with, 256-258
implementation level, 272
linking as linked structures, 342-356, 399
logical level, 255-256
operations on, 256
real-life, 255
run-time, 511
Stack ADT specification, 263-264
for storing airline routes, 636

Stack[topIndex], 275
Stack underflow, 276, 279
StackUnderflowException class, 257, 258, 353
StackUnderflowException.java, 326
startIndex method, 681
start method, 805
startPosition, 487
startVertex method, 635, 647
Statement coverage, 44
Static allocation of space, for program with

three functions, 507
static method, 313
Static storage, linked lists in, 424
Static storage allocation, 521

and recursion, 505-508
Stepwise refinement, 1, 11-12, 12
stop method, 805
Storage allocation

dynamic, 505, 508-514, 520
static, 505-508, 521

Storage devices, 3
Straight selection sort, 674, 678-681, 682

analyzing, 681-682
example of, 678

Streams, 55
String class, 63, 589

application level viewpoint of, 113
concat method exported by, 114
logical level viewpoint of, 112

String concatenation operator, 114
String(item) copy constructor, 194
StringList class, 237, 251
StringList.java, 34, 165-166, 238
StringList method, 251
String lists, 193
String Lists package, 240
String literals, 113
String object, 112, 113
Strings, 112
StringTokenizer class, 314, 327
StringTokenizer object, 314
String tokenizing, 314
String variables, 112
StripZeros approach, 771
Structured composite types, 74, 79
Structured data types, 71
Structures

saving in text files, 658-659
serializing, 662-663
storing in files, 654-663, 672

Style, 799, 803
Subarrays

merging, 696, 697
and merging sorted halves, 692

Subclasses, 18, 22
Subcontainers, in PostFix Evaluator, 323
Subdirectories, packages and, 103
Subinterface, 284
subList, 502
Subtraction, 304

with Large Integer Calculator, 455
and large integers, 441

Subtraction operation (-), 71, 80
subtractLists operation, 446, 450-451
Subtrees, 530
Summary methods, 74
Sun Microsystems, Inc., web site, 54, 106
Superclasses, 18, 22, 284
super reserved word, 19
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swap method, 675, 680
Swap operation, 711
Swapping

and bubble sorts, 683, 685
and heap sort, 704
and high-probability ordering, 722
and insertion sort, 687
and reheapDown, 618
and reheapUp, 622
and sorting efficiency, 674

Swing, 50
AWT converted to, 808-812

SwingCalculator class, 810
Swing components, 57, 233
switch statements, and recursive solutions, 483
Symbol table, 505
Synchronization, 283
Syntax

errors, 21, 35
and formal ADT specifications, 250, 251
for packages, 101

System class, 63, 107
System.exit method, 276
System.out method, 276
System stack trace, 265

T
Tables, 12
Tail recursion, 516, 707
TDBinarySearchTree, 572
TDBinarySearchTree.java, 597
TDIncDate class, 57
TDIncDate.java, 51, 62
TDIncDate program, 218

frame output performed by, 59
I/O commands in, 53

TDListHouse program, 216
TDSortedList.java, 206, 239
TDUnsortedStringList.java, 160, 238
Terminals, 3
TestCircle class, 83
TestCircle.java, 83, 133
TestDataA file, 50, 54, 62

TestDataB file, 54
Test-data generators, 3
Test drivers, for IncDate class, 51-53
TestExercise35 class, 760
Test harness, 675-677, 680, 684, 710
Testing, 30, 31, 61, 86

approaches to, 43
binary search tree operations, 572-574
black-box, 43
clear (white) box, 44
exhaustive, 42
Java data structures, 46-59
path, 44
program, 41-42
regression, 32
unit, 42
and verification, 2
Word Frequency Generator program, 596

testlist1.dat, 162, 239 
testlist2.dat, 239
test1.in, 273, 326
test1.out, 273, 326
testout1.dat, 162, 239 
testout2.dat, 239
TestOutputA file, 54
TestOutputB file, 54
testP1.in, 297, 326
testP1.out, 297, 326
Test plans, 44

for abstract data type sorted list, 181
for abstract data type unsorted list, 159-162
identifying, 48-49
for LargeInt class, 454
for queues, 303
in real estate listings case study, 231-232
for Stack ADT, 279, 280

Text boxes, 58
Text fields, for Real Estate program, 233
Text files

object data saved in, 655-658
structures saved in, 658-659

Threads, 114
Three-Question Method, 483-484, 488, 522
Throwable class, 107, 108
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Throwing an exception, 107, 126, 127
throw statement, 41, 107, 110
Time/space tradeoffs, 116
tokenize object, 314
toLowerCase method, 292
toMove element, 624
Tool class, 100
Top-down approach, 749
Top-down stepwise refinement, 11, 23
topIndex instance variable, 274, 275, 277
top method, 283
top operation, 256, 257, 259, 263, 268, 272,

277, 344, 353, 354
toString method, 21, 22, 55, 113, 444
toString operation, 441
total, 312
toVertex attribute, 643
toVertex operation, 650, 651
Towers class, 493
Towers.java, 494-496, 521 
Towers of Hanoi example, 491-496
Traces, system stack, 265
Trailer nodes, 422, 462
Trailing references, and insert operation, 501
Transformer method, 19
Transformers, 74, 91, 131

List ADT operations classified into, 142-143
Traveling salesman problem, 185
Traversal definitions, 536, 568
Traversals

and binary search tree specification, 540
binary tree, 536-538
graph, 635
inorder, 577, 578, 581
postfix, 577
preorder, 577, 579
shortest-path, 643, 644

Tree iteration, 543-544
Trees, 74, 132, 183, 398, 530-538, 598-600,

632
balanced, 552, 574, 597
binary, 532-534
binary search, 534-536
binary tree traversals, 536-538

defined, 530
degenerate, 574
depth of recursion and height of, 552
height of, 533
hierarchical relationships modeled by, 531
new nodes inserted into, 556-560
recursion with, 549
skewed, 561, 576, 578
unsorted array with, 705. See also Binary

search trees; Binary trees; Left subtrees;
Nodes; Right subtrees

Tree shape, insertion order and, 560-561
Tree traversals. See Traversals
trimList method, 245
try block, 109
try-catch statement, 41, 108, 277, 662
TryComb.java, 490, 521 
tryDelete boolean, 757
TryFact.java, 483, 521 
try statement, 110
Two-dimensional arrays, 95-97
Two-element subarrays, 697
TwoWayListInterface, ListInterface extended by,

421, 422
TwoWayListInterface.java, 463
Type

hierarchies, 92
meaning of, 100

U
UML. See Unified Modeling Language
UML class diagrams

for list approach, 254
for list framework, 397

UML diagrams, 23
for list framework, 203
for SortedStringList class, 180
for UnsortedStringList class, 159

UML state diagram, 1
Unary minus (-), 80
Unary plus (+), 80
Unchecked exceptions, 110

and priority queues, 613
Undirected graphs, 630, 631, 632
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Unicode
ASCII subset of, 792-793
character set, 55

Unified Modeling Language, 12
class diagrams, 12, 13

Unique keys, 141
Unit testing, 42
Unsorted array, and its tree, 705
UnsortedLinkedList class, 367, 382, 396
UnsortedLinkedList.java, 383, 399
Unsorted List ADT, 237, 238, 279, 485

comparison of sorted list ADT algorithms and, 189-
190, 247

elements in, 538
instance variables of, 150
operation to be tested and description of action, 161

Unsorted List ADT specification, 144-145, 250
Unsorted list approach, with priority queues, 615
UnsortedList class, 204, 366, 396

UML diagram for, 203
Unsorted list implementations, comparing, 384-386
Unsorted list operations, Big-O comparison of, 385
Unsorted lists, 398

algorithm for list retrieval from, 376
deleting items in, 157
implementing as linked structure, 380-386, 402-403
relationship between sorted lists and, 162-163
retrieving items in, 154

UnsortedStringList, 237
UML diagram for, 159, 168

UnsortedStringList2, 237
UML diagram for, 168

UnsortedStringList class, 164, 251
UnsortedStringList.java, 150, 238
UnsortedStringList methods, 152
UnsortedStringList2.java, 166-168, 238
UnsortedStringList3.java, 521
Unstructured composite types, 71, 74, 79
UseDates class, 128
UseDates program, 127-129
UseGraph class, 664
UseGraph.java, 640, 645
User interface

for real estate listings case study, 209

for word frequency generator case study, 586
Users, 119
util package, Random class in, 107

V
Validation, 1
Value, of variable, 81
values array, 675, 677, 679, 704
Variables, value of, 81
Vector class, 114, 282
Verbs

and method names, 367
in problem description, 24
in real estate listings case study, 207
for word frequency generator case study, 585

Verification, 1
life-cycle activities, 61
of program correctness, 65-66
requirements, 60. See also Testing

Verification of software correctness, 30-60
and bugs, 33
code coverage, 44
compile-time errors, 35
data coverage, 42-43
debugging, 44-46
designing for correctness, 36-37
design review activities, 39-40
exceptions, 40-41
practical considerations, 59-60
preconditions and postconditions, 37-38
program testing, 41-42
run-time errors, 35-36
specifications and design errors, 33-35
testing Java data structures, 46-59
test plans, 44

Vertex (vertices), 633
adjacent, 632
defined, 630
marking on graph, 637

V(graph), 647
Viruses, and free components, 104
Visibility, 120, 151
Visiting, and traversals, 536
Visual aids, 12-14
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W
Walk-throughs, 27-30, 40
Weighted Graph ADT, additions to, 637-638
WeightedGraph class, 649 
WeightedGraphInterface, 664
WeightedGraphInterface.java, 634-635
WeightedGraph.java, 649-650
Weighted graphs, 632, 633, 648
weightIs method, 633
weightIs operation,

code for, 651-652
Well-formed expressions, 265
while loops, 265, 377
White-box strategy,

and LargeInt operation, 454
White (or clear) box testing, 1, 44
WindowAdapter class, 63
Window listeners, 235
WordFreq class, 586, 587, 589, 590
WordFreq.java, 591-592, 597
Word Frequency Generator case study,

585-597, 609-610
Word Frequency Generator program, 593-596

example of run of, 596
Work. See Big-0 notation
Workability, software, 4
Wrapper classes, 57, 110
writeObject method, 660, 662
writeObject statement, 663
Writer class, 55, 56
Writing, detailed specifications, 7

X
xValue 

and Comparator object ordering SortCircles
based on, 714

values, 86

Y
yValue 

SortCircle objects sorted by, 715
values, 86

Z
ZIP file format, 106
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