Table of
Contents

Learning Wireless Java

By Qusay Mahmoud

Publisher : O'Reilly

Pub Date : December 2001
ISBN : 0-59600-243-2
Pages: 262

Learning Wireless Java is for Java developers who want to create applications for the
Micro Edition audience using the Connected, Limited Device Configuration and the
Mobile Information Device Profile (MIDP). These APIs specificaly for devices such as
mobile phones and pagers, allowing programmers to create MIDlet applications. This
book offers a solid introduction to 2ME and MIDP, including the javax.microedition
classes, as well as classes surrounding the features of the various platforms that the 2ME
supports.

http://www.oreillynet.com/cs/catalog/view/au/705?x-t=book.view

Brought to you by ownSky!!

Table of Content

Table Of CONENT ..ottt s esaesreeeenne s [
o 1] = T = PSSP SR Vii
N E o 1= o o TS U P U TPTRTRTRORIN vii
Contents Of TS BOOKciiiiiiiieieiririsie sttt vii
Comments and QUESLIONScoviiiieiieciee et ettt sree st sbe e ebe e beesbeesreeeabeenbeenbeens iX
Yo T 1Vl [=Te [o [1T £ X
Part I: Introducing Java 2 Platform, Micro Edition (J2ZME)cccceccevviieeveiecceee e 1
Chapter 1. OVerview Of JZME ... e 2
L. L WAL IS J2ME? ...ttt sttt se e naestense e eneeneens 2
1.2 Downloading the J2ME Wireless TOOIKItcccoerereieiiineneeeeeeeeee 6
1.3 A SIMPIE EXAMPIE ... 8
Chapter 2. The Connected Limited Device Configuration (CLDC).......c.ccccceeivenennne 15
2.1 Examining the CLDC iN Detall.........cccooeieiieieineiiseseseeeeeesese s 15
2.2 Using the Standalone CLDC and KVM........ccccoceiiiieieiecse e 22
2.3 CLDC NeXt GENEIALION.......cieeiriiiuiriestisie ettt 24
Chapter 3. The Mobile InformationDevice Profile (MIDP)........ccccceoeviviieveieneeee 25
3.1 Mobile INfOrmation DEVICES...........curiririeieerirese st 25
3.2 MOre ADOUL MIDIELSceiiiirieniisiesiese e 28
Part Il: Programming with the CLDCand the MIDP ... 33
Chapter 4. Working With MIDIELSccciiiiiieiereeree e 34
4.1 The ApPlication MBNAGETcccouoiiirieieeeeesese e e 35
4.2 Creating MIDIETScoo e 36
Chapter 5. MIDP GUI Programming.........c.ccoeoeeeerenenesessessesseseeesese e ssessessesseesnens 48
5.1 Why NOt REUSE the AW T2 ...ttt st e 48
5.2 The MIDP GUI APIS ..ottt 48
5.3 The High-LeVel MIDP APIS ...ttt 51
5.4 Creating Low-Level GUI COMPONENESc.cceevieiieeeerieiierie e 72
Chapter 6. MIDP EVENES.......cociieieceese ettt sttt s snaa st eeenrs 78
6.1 SCreen NAVIGATIONcceivieeeeieeeese e 78
6.2 Handling LOW-LEVEl EVENLSccooiiiiieeeeeeeee s 89
Chapter 7. NEtWOIKING ..o oo 94
4R R CT=T o 1= ol @] o 1T o 10] o L 9
7.2 MIDP CONNECHIVILY ...ttt 96
7.3 The HTTP Programming MOlccooeiiiiininirereseeeeeeeese s 99
7.4 Invoking Remote Applications from MIDIELSc.cccovvvvevieceecicc e 100
7.5 Wireless SeSSION TraCKiNg......ccccviveveieeiesie e s eee ettt sae e 111
7.6 MIDlet NetWOrking SECUIILY.......cccviieieceeee ettt e 112
Chapter 8. Database Programming.........cccoeveevereieeseseeieeseseeseeseeseeseseessessesssessens 113
8.1 The Record Management SYSIEMccccviieveiieee s 113
8.2 Programming with the RMS ..o 114
Chapter 9. The MIDP for Palm OS ..o 129
9.1 Installing the MIDP for Palm OSon the Windows Platform.............c.cccceeeeee. 129
9.2 Developing New APPIICALIONSccoiiirieieeeerese e 132
9.3 PRC Command-Line CONVEISION.cceecerereeneeeeeeesieeee e sieeee e enee e sneeneesees 137
9.4 Advanced Java APPlICALIONS.........ccccvieeie e 138

S T AN T = U I o 18 o | o | R 140
Part 11l: APl QUICK REFEIENCEcocveeciee ettt et et 141
Appendix A. The java.io Package........ccccevviiiiiiee et 142
javaio.BYtEATTay INPUESIFEAIM.........ccveiieeie ettt 142
javai0.BYteArrayOUIPULSITEEIM.........cvieeerierieete sttt 143

J =Yz Mo DT =1 oo L1 | S 143
JAVALTO.DA@l NPUESIIEAIM........ceeeiecieecie ettt ens 143

=Yz R e DI =@ U 11 | SO S 144

JAVALT0.DAtAOULPULSIIEAIM ..ottt se e neas 145
[z R =IO o der= o o] IS 145
JAVATOINPUESEIEAM ...t et r e e et e eenns 146
JaVaLi0.INPUESLrEAMREAETccve e 146
javaio.InterruptedI OEXCEPLIONccv ettt 147
JAVALTONOEXCEPLION.......eeviieieiesteee st sttt s re e be s re et s be e e tesneeeenrs 147
JAVALTO.OULPULSEIFEEIM.......c.viieieie ettt sttt ettt b e e e tesneenenras 147
JAVATI0.OULPUESIIEAMWVIITES ...t 148
JAVATOPIINESIIEAIM ... 148
[z R J == o U= S 149
javaio.UnsupportedENCOdiNGEXCEPLIONovereieeeeeeeeeeeeses e 149
javai0.UTFDataFOrmatEXCEPLIONcoeivireieeeeeeeeeees e 150
JE= Y= R0 A4 1 (= S 150
Appendix B. The java.lang Packagecccccoooeviiieie s 151
javalang. ArithmetiCEXCEPLION.........cccoceeece e 152
javalang.ArraylndexOutOf BOUNASEXCEPLION........ccveiveieeeirinieeesieseeeee e 152
javalang. Array StOreEXCEPLION.cov et 152
JAVAIANG.BOOIEAN ... e s 152
JAVAIBNG.BYLE......ooiieee e 153
JAVAIANG.CNEIACIET ..o e 153
[Y2 = 0 P 154
javalang.ClassCastEXCEPLION...........coiriiirireeeee e 155
javalang.ClassNOtFOUNAEXCEPLIONc.coviiirreieeeieeeeeese e 155
[Y2 = 0 o TP 155
Bz 0 A (o= o (o] o S 155
javalang.lllegal ACCESSEXCEPLION........cccouiiririee e 156
javalang.lllegal ArgumENtEXCEPLION.........cceeceeiieeecie e 156
javalang.lllegal M onitor StateEXCEPLION........cccvvivieeecie e 156
javalang.lllegal SLALEEXCEPIIONc.covieririreee e 156
javalang.lllegal ThreadStateEXCEPLiON.......cc.vvveririeieieeeee e 157
java.lang.IndexOutOf BOUNASEXCEPLION........c.cevviieierieiiieie ettt 157
javalang.Instantiati ONEXCEPLIONc.ceoviiriiriie e 157
JAVA NG INTEOES ... e 157
javalang.InterrUptEdEXCEPLION.coeeeee st 158
JE= Y= = o o o RSP 158
JAVAIBNGMEEN ... 159
javalang.NegativeArraySiZEEXCEPtION........cccevi e 159
javalang.NUITPOINErEXCEPLION.cceeieieeeese ettt et 160
javalang.NumberFOrmatEXCEPLiON..........cccviiiiriierieeee e 160
JAVAIBNG.ODJECL........cceieeeee e 160
javalang. OULOFMEMOIYETTOLccceiieeiesie ettt st st ens 161
javalang.RUNNEDIE.........ccooiiee e 161
JAVAIANG RUNIIME. ... e 161
javalang. RUNtIMEEXCEPLION........cceeiecieee st 162
javalang.SECUNtYEXCEPLIONccoi et 162
JAVAIBNG.SNOMT ... 162
JAVA NG SIITNG. .. 163
Javalang. StIINGBUFTENccuiiiee et 164
javalang.StringIndexOutOf BOUNASEXCEPLION........cceveireriiriesieseseeeeeeeeee e 165
JAVA NG SYSIEIM.....c.cee e 165
[Y= = o T = ST 166
JAVAaNG. TRIOWEDIE......ccviieicece e 167
javalang.VirtualMaChineEITOrccoiiiiiii e 167
Appendix C. The java.util Package........ccccoveiiiiiieie e 168

JAVAULIL.CAlENANcceeeieciee ettt b e et naeaenrs 168

JE= 022 00 L = =P 169
JAVAULHL.ENUMEIAiON ... e 170
java.util . Empty StaCKEXCEPLIONcceeeeciiceeie e 170
Java Uil Hashtable.........coouiiiee e e s 170
java.util.NOSUChEIemMENtEXCEPLION........cciiriirieieriereeeee e 171
JAVAULHLRANAOM ...t 171
L= N LS = o S 172
JE= Y22 0 L 2 = 172
JE= Y= 0 L T2 gl 1= = 172
JAVAULIL. TIMEZONE ...ttt ettt s re et sre e te e e e nns 173
JAVALULTLV ECLON ... 174
Appendix D. The javax.microedition.io Packagec.ccocverereirininenincneeeene 175
javax.microedition.io.CONNECLIONceeririie e 175
javax.microedition.io.ContentCONNECLION...........ccceeveiieee e 175
javax.microedition.io.Datagramcccceciieeiiii e 175
javax..microedition.io.DatagramCONNECiON..........cceoeeeerereriee e 176
javax.microedition.io.HttpCONNECLIONccccviieeececeere e 176
javax.microedition.io. I NPUECONNECHION..........ccciieerie e 177
javax.microedition.io.OUtPULCONNECTIONccrererierieneeeeeeee e 178
javax.microedition.io.StreamCONNECLIONccerereeeieeeeres e 178
javax.microedition.io.StreamConnectionNOLIfIer...........cccevveece e 178
javax.miCroedition.i0.CONNECLONcceiririne e 178
javax.microedition.io.ConnectionNOtFOUNAEXCEPLIONcccovrererenereeeeeeee 179
Appendix E. The javax.microedition.lcdui Packagecc.cceeoevviveeviiiieceseseene, 180
javax.microedition.|cdui.ChOICE...........ecveii e 180
javax.microedition.|cdui.CommandLiStENErccceorirerierenine e 181
javax.microedition.|cdui. ltemStateL iStENEY ..o 181
javaxX.microeditioNICAUILAIEIT.........cco e s 181
javax.microedition.ICAUi. AIEITTYPE.......occe et 182
javax.microedition.|CAUIL.CaNVEScoeiririie e 183
javax.microedition.|cdui.ChOICEGIOUPcccevuiiuieiesierie ettt 184
javax.microedition.|cdui.Commandcccevereereiieie e 184
javax.microedition.|cdui.DateFieldcoooiiiiiineccec e 185
javax.microedition.|Cdui.DiSplay...........coeriiirereceeeeeee e 186
javax.microedition.lcdui.Displayable..........cccceeiveeviiiece e 186
javax.microedition.|CAUILFONL. ..o 187
javax.microedition.|CAUILFOIM ..o 187
javax.microeditioN.ICAUI.GAUGE.cceeceie ettt 188
javax.microedition.|cdui.GraphiCs..........cccieeeeiiiece e 188
javax.microedition.|CAUIIMAJE..........cceiiirires e 189
javax.microedition.|cdui. Imageltem..........cov e 190
javax.microeditioN.ICAUILItEM..........coi e 190
Javax.miCroeditioN.ICAUILLISE........ccoiiieeieere e 190
javax.miCroedition.|CAUIL.SCrEENccoii i 191
javax.microedition.|cdui. SHNGIEM ... 191
javax.microeditioN.ICAUi. TEXIBOXccceceiieeese e 191
javax.microedition.|cdul. TEXIFIEId ... 192
javax.microeditioN.ICAUIL TICKEr ... 193
Appendix F. The javax.microedition.midlet Packagecccccevvveveeviiiieceseseesene, 194
javax.microedition.midlet.MIDIEL...........ccoooeeiiiicee e 194
javax.microedition.midlet.M1DletStateChangeEXCeption............covrvrereereerecnenne 194
Appendix G. The javax.microedition.rms Packageccccecvvvvrieevivieeceseseesiene 195
javax.microedition.rms.RecordComparatorcccocvieeveveeeeseseeie e eee e 195
javax.microedition.rms.ReCOrdENUMEratioN...........ccceieeeeveeeeseseeee e 195

javax.microedition.rms.RECOrdFIItErcccevuiiicece e 196

javax.microedition.rms.ReCOrdLiSIENErcoiv e 196
javax.microedition.rMS.RECOIASIOrE...........ccvviiiriererieee e 196
javax.microedition.rms.RecordStoreEXception............cccccvveeeevie e 197
javax.microedition.rms.InvalidRecordIDEXCEption...........ccccovevvveeceiicceesesee e 197
javax.microedition.rms.RecordStoreFull EXCEptioncccovvrerenincncniciceee 198
javax.microedition.rms.RecordStoreNotFoundException.............ccccvvveceesieceennenee. 198
javax.microedition.rms.RecordStoreNotOpenEXCeptioncccceevevieeerieseesnee. 198
APPENIX H. RESOUITES.......o ettt ettt re e eesae e e e eesneeneenees 199
H.1 AdditioNal RESOUITESceiiieeieieeiiee ettt seeenee e 199
[670] (0] o] 0 [0 o TN R TP PR PP RS 202

Copyright © 2001 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Rellly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Rellly logo are registered trademarks
of O'Reilly & Associates, Inc. JavaTM and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc., in the United States and other countries. O'Reilly
& Associates, Inc. isindependent of Sun Microsystems. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly & Associates, Inc. was aware of atrademark claim,
the designations have been printed in caps or initial caps. The association between the image of a
galago lemur and the topic of wireless Javais atrademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

Vi

http://safari.oreilly.com/
mailto:corporate@oreilly.com

Preface

Most Internet technologies are designed for desktop computers or enterprise servers running on
reliable networks with relatively high bandwidth. Handheld wireless devices, on the other hand,
have a more constrained computing environment. They tend to have less memory, less powerful
CPUs, different input devices, and smaller displays.

Since the mid-1990s, various architectures and protocols have been introduced to deal with these
congtraints. The Wireless Application Protocol (or WAP), which is a specification devel oped by
the WAP Forum (http://www.wapforum.org), takes advantage of several data-handling approaches
already in use. Developing wireless applications using WAP technologiesis similar to developing
Web pages with amarkup language (e.g., HTML or XML) because WAP technologies are
browser-based.

Ancther approach to developing wireless applications is to use the Java 2 Platform, Micro Edition
(J2METM). The JavaTM programming language already plays an important role in modern
programming. With WAP, you can use Java servlets and JavaServer PagesTM to generate
Wireless Markup Language (WML) pages dynamically. However, with 22ME, you can now write
applicationsin Java and store them directly on a cell phone. This adds a whole new dimension to
wireless programming.

Audience

This book is about programming with J2ME on wireless devices. If you're aready familiar with
the architecture, you probably noticed that the Connected Limited Device Configuration (CLDC)
and the Mobile Information Device Profile (MIDP) classes are not large. Therefore, thisbook is
correspondingly compact in size. The book acts as a quick guide for programmers who are
familiar with the Java 2 Standard Edition (J2SETM) and want to get up to speed quickly with the
J2ME. We assume that you are familiar with Java programming and have worked with the J2SE
classes. In addition, we assume that you are familiar with setting up Javato work under various
environments (Windows or Unix platforms), as well as compiling and running Java applications.

The book also serves as a quick reference for Java programmers who are interested in developing
wireless software applications. The examples presented throughout the book are a good starting
point for working with all the MIDP features, including user interface, networking, and databases.
However, we should point out that this book is not arehash of the entire J2SE class library.
Several of the classes of java. io, java. lang, and java.net areincluded in the CLDC and
MIDP libraries, but are less bulky than their J2SE counterparts. We assume that you aready know
how to use these classes, although we have included them in the API reference for compl eteness.

Contents of This Book

This book is divided into three parts. Part | gives an overview of the 2ME and includes
information about its architectural components: namely, configurations and profiles. Part | also
presents detailed coverage of the CLDC and the MIDP.

Chapter 1

Vii

http://www.wapforum.org/

This chapter introduces the J2ME environment and also explains configurations and
profiles. In addition, it shows you how to set up the 2ME Wireless Toolkit to compile,
preverify, and run asimple MIDlet using the command line with the Wireless Toolkit
emulator.

Chapter 2

This chapter discusses the CLDC, including its requirements, limitations, and the
differences between its classes and the classes of the J2SE. In addition, it looks briefly at
the standalone CLDC and KVM distribution.

Chapter 3

This chapter introduces the requirements, limitations, and classes of the MIDP, as well as
introducing MIDlets and their associated Java A pplication Descriptor (JAD) files.

Part Il contains programming details of the MIDP. It shows you how to program the phone
interface, handle events, make network connections, and work with databases.

Chapter 4

This chapter picks up where Chapter 3 left off, explaining the MIDlet lifecycle methods,
the Java application manager, and showing how to use the KToolbar application inside
the 2ME Wireless Toolkit to simplify MIDIet devel opment. We also discuss how to
deploy MIDlets and include step-by-step instructions on how to download a MIDlet into a
Motorolai85s or i50x J2M E-enabled phone.

Chapter 5

This chapter introduces the MIDP GUI model and its associated classes. In addition, it
gives detailed coverage of both the high-level and low-level MIDP GUI APIs.

Chapter 6

This chapter continues the discussion of the MIDP GUI APIs by describing how various
events take place surrounding the graphical components and commands. In addition, we
cover the CommandListener and I temStatelListener interfaces, aswell aslow-
level event handling.

Chapter 7

This chapter discusses the Generic Connection Framework provided by the CLDC and
shows how to implement an HTTP connection across the Internet, using aMIDlet. The
chapter also includes examples of how to send datato CGI scripts and Java servlets across
anetwork. Finally, the chapter briefly discusses wireless session tracking and security for
MIDlet data traveling across the airwaves.

Chapter 8
This chapter introduces the concept of data stores, which are simple databases that MIDP
applications can use to store persistent data beyond the lifetime of the MIDlet that created

them. In addition, the chapter includes a MIDIet that can be used to download stock
information from aremote web site.

Chapter 9

viii

This chapter gives aquick introduction to the MIDP implementation on the Palm
Connected Organizers, including step-by-step instructions on how to deploy MIDletsto a
PalmPilot.

Part |11 contains several chapters that are quick references for the 2ME CLDC and MIDP APIs.
There is also an appendix that contains bibliographic information and URLs to 2ME
specifications, white papers, wirel ess software development kits, and other information that is
important to developers.

Conventions Used in This Book
This book uses the following typographical conventions:
A Constant Width fontisused for:

e Anything that might appear in a Java program, including keywords, data types, constants,
method names, objects, variables, class names, and interface names

e All Java code examples

e Attributes that might appear in a manifest or JAD file

Anitalic font isused for:

e New termswhere they are defined

e Pathnames, filenames, directory names, and program names (unless the program nameis
the name of a Java class; then it appearsin constant width, like other class names)

e Internet addresses, such as domain names, URLS, and email addresses

A boldfacefont isused for:

e Examplelines of Java code to which we wish to draw attention

Comments and Questions

The information in this book has been tested and verified, but you may find that features or
libraries have changed, or you may even find mistakes. Y ou can send any errors you find, as well
as suggestions for future editions, to:

O'Rellly and Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

Y ou can aso send electronic messages. To be put on the mailing list or to request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

mailto:info@oreilly.com

bookquestions@oreilly.com

| would be pleased to receive feedback on this book. Y ou can contact me by email at:

gmahmoud@javacourses.com

The O'Reilly web site for this book is located at http://www.oreilly.com/catal og/wirel essava and
contains al the source examples for this book.

In addition, we have created another web site, http://www.javacourses.com/wireless, that includes
links to material that supports the use of this book for training and personal study. Thisweb site
provides the following supplements:

Additional source code for new applications

Links to online J2M E material, and information on other related books

J2ME tips and tricks

A set of overhead projector transparencies for instructors interested in using the book in
thelr training courses

e Up-to-date information on topics presented in the book

Acknowledgments

| am deeply grateful to my editor, Robert Eckstein, for all his comments, suggestions, and
guidelines throughout the development of this book. | did not know about all the contributions an
editor can make to a book until | worked with Bob. Thanks, Bob! Thanks a so to the production
team at O'Reilly for their hard work on this book.

Special thanks also to Monica Pawlan, Jenny Pratt, Dana Nouri, and Laureen Hudson of the Java
Developer Connection (JDC), who either provided comments or edited some of the examples used
in this book when they first appeared on the JDC. Also, thanks to the thousands of JDC members
who sent in comments and suggestions regarding my articles. Thanks also to the following people
who reviewed the contents of this book for accuracy: Ben Griffin, Marc Loy, and Jeff
Cunningham.

I would also like to thank my family for their support during my studies, especialy my brother, Dr.
Mohammad H. Hamdan, for teaching me the value of hard work.

Finaly, thanks to my wife, Reema, for her love, support, tolerance, and coffee, and my baby son
Y usef, who was born on October 14, 2001, for providing a fun home environment while | finished
this book.

mailto:bookquestions@oreilly.com
mailto:qmahmoud@javacourses.com
http://www.oreilly.com/catalog/wirelessjava
http://www.javacourses.com/wireless

Part I: Introducing Java 2 Platform, Micro
Edition (J2ME)

Part | isan introduction to the Java 2 Micro Edition (2ME) and J2ME programming. These
chapters will give you an overview of the 2ME, and quickly teach you everything you need to
know to get started with 2ME programming.

Chapter 1
Chapter 2

Chapter 3

Chapter 1. Overview of J2ME

This book is about wireless Java programming with the Java 2 Platform, Micro Edition (2ME).
Sun Microsystems, Inc. introduced 2ME at the JavaOne conference in June 1999 as the younger
sibling of both the Java 2 Standard Edition (J2SE) and the Java 2 Enterprise Edition (J2EE). At the
time, distributed programming was taking the Java devel oper community by storm, so most of the
participants at the show were more interested in what J2EE had to offer. However, over the next
two years, developers also realized that there was tremendous value in having small components
running Java. Two years later, at the 2001 JavaOne conference, Sun devoted an entire track for
individuals seeking to master the once arcane 2ME. Luckily, you don't need to attend JavaOne to
learn about J2ME. Instead, this book will help you through the myriad details of understanding
J2ME architecture and programming J2ME applications.

In this chapter, we will present an overview of J2ME's primary components, including virtual
machines, configurations, and profiles. Well then present a few short examples of J2ME-enabled
applications to whet your appetite and to show you how easy it isto get started with 2ME.

1.1 What Is J2ME?

J2ME isaversion of Sun Microsystems Javathat is aimed at the consumer and embedded devices
market, which includes el ectronic commodities such as cellular telephones, pagers, Persona
Digital Assistants (PDAS), set-top boxes, and other small devices. Since its release, over 600
companies have joined the development effort, including large corporations such as Palm, Nokia,
Motorola, and RIM. However, the direction that J2ME travelsis not shrouded in secrecy behind
closed corporate doors. Instead, development of J2ME is handled through the Java Community
Process (JCP), which alows anyone with an Internet connection to get involved.

J2ME provides a complete set of solutions for creating state-of-the-art networked applications for
small devices. It also promises to enable device manufacturers, service providers, and application
developers to deploy new applications and services to their customers. However, in doing so, it
does not sacrifice some of the founding guidelines of Java, which have become increasingly
important these days, namely cross-platform compatibility and security.

1.1.1 A High-Level View
From a high-level view, J2ME defines the following components:

e A seriesof Javavirtua machines, each for use on different types of small devices, each
with different requirements

e A group of libraries and APIsthat can be run under each of the virtual machines; these are
known as configurations and profiles

e Varioustools for deployment and device configuration

The first two components make up the J2ME runtime environment . Figure 1-1 provides a
relational view of the runtime environment. At its heart is a Java virtual machine, which runs on
top of adevice's host operating system. Above that is a specific J2ME configuration, which
consists of programming libraries that provide basic functionality based on the resource
requirements of the device. On top of the configuration are one or more J2ME profiles, which are
additional programming libraries that take advantage of kindred functionalities on similar devices.

Figure 1-1. The high-level architecture of J2ME runtime environment

Profiles
Configurations
Java Virtual Machines

Host Operating System

If you haven't worked with J2ME before, you're probably wondering about the top two layers. It's
important to distinguish between a configuration and a profile in the 2ME world, so let's
introduce them now.

1.1.2 Configurations

Cellular telephones, pagers, organizers, and other small devices are diverse in form, functionality,
and feature. However, they often use similar processors and have similar amounts of memory. For
these reasons, the J2ME designers created configurations. Configurations define a horizontal
grouping of products based on the available memory budget and processing power of each device.
Once thisinformation is known, the configuration then outlines the following:

e The Java programming language features supported
e TheJavavirtua machine features supported
e Thebasic Javalibraries and APIs supported

Currently, there are two standard configurations in the J2M E world: the Connected Limited Device
Configuration (CLDC) and the Connected Device Configuration (CDC). Let's look at the CDC
first.

1.1.2.1 The CDC

The CDC istargeted toward powerful devices that are intermittently connected to a network,
including set-top boxes, Internet TV's, home appliances, and car navigation systems. The CDC
contains a full-featured Java virtual machine, similar to that in use today with the J2SE. The
difference lies in the respective devices memory and display capabilities.

Here are the resource requirements for CDC devices, as given by the official 2ME
specifications: 2!

™ The J2ME cbc specifications are located on the Java Community Process web site as JSR-36,
which can be found at http://www.jcp.org/jsr/detail/36.jsp.

e Thedeviceis powered by a 32-bit processor.

e Thedevice has 2 megabytes or more of total memory available for Java. Thisincludes
both RAM and flash memory or ROM.

e Thedevicerequiresthe full functionality of the Java 2 "Blue Book" virtual machine.

e Thedevice has connectivity to some kind of network, often with awireless, intermittent
connection and with limited (often 9600 bps or less) bandwidth.

e Thedevice may have a user interface with some degree of sophistication, but a user
interface is not mandatory.

1.1.2.2 The CLDC

The second type of configuration is more prevalent in the 2ME world: the CLDC. This
configuration specifies a much smaller footprint for consumer and embedded devices than the
CDC. The CLDC was first distributed in October 1999 with the idea of creating a"lowest

http://www.jcp.org/jsr/detail/36.jsp

common denominator” Java platform for embedded devices, specifically in terms of networking,
I/O, security, and core libraries. Today, some of the devices that you might find powered by the
CLDC include mobile cell phones, two-way pagers, personal digital assistants (PDAS), and
personal organizers.

Here are the requirements for the 2ME CLDC, again from the official J2ME specifications:*

e Thedevice can have between 160 and 512 kilobytes of total memory available for the
Java platform, including both RAM and flash memory or ROM.

e Thedevice can have limited power, such as battery-powered operation.

e Thedevice has connectivity to some kind of network, often with awireless, intermittent
connection and with limited (often 9600 bps or less) bandwidth.2

2 Note that CLDC stands for Connected Limited Device Configuration, not Connectivity-
Limited Device Configuration. The difference between the CLDC and the CDC is not in the
type or speed of the network connection.

e In addition, the device may have a user interface with some degree of sophistication, but a
user interface is not mandatory.

The two products configurations, along with some of their respective products, are shown in
Figure 1-2.

Figure 1-2. J2ME architecture

(LDC DC

Java 2 micro edition

Note that although the two product groups are supported by different configurations, the line
between the two configurations is somewhat blurred. In the future, technological advances will
likely make this boundary more and more cloudy. However, for the moment, the important thing
to remember is that the boundary between the CLDC and the CDC is defined in terms of the target
device's memory budget, battery usage, and the presence or absence of a user interface.

1.1.3 Virtual Machines

As mentioned above, the CLDC and CDC configurations each define their own set of supported
features from the Java virtual machine. Consequently, each requires its own Java virtual machine.
The CLDC virtual machineisfar smaller than the virtual machine required by the CDC, since it
supports fewer features. The virtual machine for the CLDC is called the Kilo Virtual Machine
(KVM), and the virtual machine for the CDC is called the CV M.

1.1.3.1 The KVM

The KVM isacomplete Java runtime environment for small devices. It's atrue Java virtual
machine as defined by the Java Virtual Machine Specification, except for some specific deviations
that are necessary for proper functioning on small devices. It is specifically designed from the
ground up for small, resource-constrained devices with afew hundred kilobytes' total memory.

The KVM was originally created as aresearch project called "Spotless' at the Sun Microsystems
Laboratories. The aim of the virtual machine was to implement a Java virtual machine for the
resource-constrained Palm Connected Organizer 2!

Bl in fact, early incarnations of the KVM contained several Ul libraries based on the "spotless”
graphical toolkit.

1.1.3.2 The CVM

The CVM isdesigned for larger consumer and embedded devices., such as those found with the
CDC. It supports all Java 2 Version 1.3 virtual machine features and libraries for items such as
security, weak references, JNI, and Remote Method Invocation (RMI). The reference
implementation, currently available from Sun Microsystems, runs on Linux and VxWorks. Y ou
can download the reference implementation through the 2ME web site at
http://java.sun.com/j2me/.

Initialy, CVM was an acronym for "Compact” Virtua Machine. However, engineers at Sun
Microsystems realized that snappy marketers (or poor spellers) may confuse the "compact” in
CVM with theK in KVM. So, at present, the C does not stand for anything at all—it is simply
known asthe CVM.

1.1.4 Profiles

J2ME makes it possible to define Java platforms for vertical product markets by introducing
profiles. At the implementation level, aprofileis a set of APIsthat reside on top of a configuration
that offers the program access to device-specific capabilities. Following are some examples of
profiles that are currently offered through J2ME.

1.1.4.1 The MIDP

The MIDP is designed to be used with the CLDC, and provides a set of APIsfor use by mobile
devices, such as cellular phones and two-way pagers. The MIDP contains classes for user interface,
persistence storage, and networking. It also includes a standardized runtime environment that
allows new applications to be "downloaded" to end user devices. Small applications that run under
the MIDP are called MIDlets. Since this profile is aready released, the vast majority of this book
is dedicated to the MIDP.

1.1.4.2 The PDA profile

The PDA profileis based on the CLDC and provides user interface APIs (which are expected to
be a subset of the AWT) and data storage APIs for handheld devices. As of thiswriting, the PDA
profileisstill in the works and no reference implementation is available yet.

1.1.4.3 The Foundation profile

The Foundation profile extends the APIs provided by the CDC, but it does not provide any user
interface APIs. Asthe name "foundation" implies, this profile is meant to serve as a foundation for

other profiles, such as the Personal profile and the RMI profile.

1.1.4.4 The Personal profile

http://java.sun.com/j2me/

The Personal profile extends the Foundation profile to provide a graphical user interface (GUI)
capable of running Java Web applets. Since PersonalJavais being redefined as the Personal profile,
it will be backward compatible with PersonalJava 1.1 and 1.2 applications. As of this writing, no
reference implementation of the Personal profile is available.

1.1.4.5 The RMI profile

The RMI profile extends the Foundation profile to provide RMI for devices. Since it extends the
Foundation profile, the RMI profile is meant to be used with the CDC/Foundation and not the
CLDC/MIDP. The RMI profile will be compatible with J2SE RMI API 1.2.x or higher. However,
as of thiswriting, no reference implementation is available yet.

Figure 1-3 shows a global snapshot of current and future 2ME technologies.

Figure 1-3. J2ME environment

R Personal
MIDP PDA Foundation
[LoC Che
Ky VM

Host Operating System

1.2 Downloading the J2ME Wireless Toolkit

Now that you know your way around the 2ME landscape, let's get started with 2ME. However,
before we can compile and run any 2ME programs, we need to download and install the 2ME
Wireless Toolkit. Y ou can obtain the 2ME Wireless Toolkit at the following URL:
http://java.sun.com/products/j 2mewtoolKkit.

The version that we use in this book is 1.0.3 beta. It is available for the Microsoft Windows
98/ME and 2000 platforms, as well as Linux and Sun Solaris operating systems. The toolkit
requires the presence of at least Version 1.3 of the Java Development Kit (JDK) for the host
operating environment.

Once you've downloaded the Wireless Toolkit, double-click on it or execute the resulting binary
(depending on your platform) to activate the extraction. Thiswill uncompress the files needed to
install the Wireless Toolkit. Note that you may be directed to specify an existing JDK installation
on your system. If so, choose the latest stable release of the JDK that you currently have on your
system."! In addition, the distribution may also ask you if you would like to install a version of the
toolkit that interfaces with Forte TM for Java. If you would like to develop your J2ME applications
in the Forte for Java Integrated Devel opment Environment, choose the corresponding option. Be
sure that Forte is aready installed on your system before doing so.

4 Try to use a JDK instead of just a Java Runtime Environment (JRE). It's important that you have
the Javac compiler to create J2ME applications .

In this case, we're going to install the Java Wireless Toolkit on a Windows platform into the
directory C:\j2mewtk. After the installation is completed, this directory will contain all the
required classes and tools to run the MIDP applications. (If the installation program asks you to

http://java.sun.com/products/j2mewtoolkit

run the ktoolbar program, just ignore it for the moment.) However, we need to do afew more
things before we can get started with our examples.

First, we need to add the wireless toolkit binaries to your system path. Y ou can do that on
Windows with the following command (again, we've assumed that the Java Wireless Toolkit is
installed at C:\j2mewtk):

SET PATH=%PATH%;C:\j2mewtk\bin

If you edit your C:\AUTOEXEC.BAT file to add thisto the default system path, as shown below,
and restart your machine, then you will not have to repeatedly perform this step each time you
restart your system.

With Linux and Solaris, the equivalent command is:
export PATH=$PATH:install_directory/j2mewtk/bin

Once you've added that directory to your system path, you should be able to run the Java Wireless
Toolkit tools from any directory on your system. An easy way to test it isto execute the
prever ify command, without any arguments. Y ou should see output similar to the following:

C:\> preverify
Usage: PREVERIFY_EXE [options] classnames|dirnames ...

where options include:
-classpath <directories separated by ";">
Directories in which to look for classes
-d <directory> Directory in which output is written
@<fFilename> Read command line arguments from a text file.

In order for the toolkit to work properly, you'll need to have the J2SE tools (notably javac)
available on your system executable path as well. Instructions on how to do this are bundled with
the JDK, athough it really boils down to adding the binary path of the J2SE binariesto your
system path.

o If you're familiar with the 2ME Wireless Toolkit aready, you're likely
o wondering why we're not using KToolbar. We'll cover KToolbar in
'Y 4= Chapter 4. Inthe meantime, it helps to see how J2ME works under the
" hood.

To compile and run 2ME programs from the command line, enter the following commands.
Again, feel freeto set these system environment variables on the command line, or edit the
AUTOEXEC.BAT file (or similar) on your system for convenience.

SET J2MEWTK_HOME=C:\j2mewtk

SET MIDPAPI=%J2MEWTK_HOME%\ I ib\midpapi .zip

SET J2MECLASSPATH=%J2MEWTK_HOMEY%\wtkl ib\kenv.zip;
%I2MEWTK_HOMEY\wtk I ib\kvem. jar;%J2MEWTK_HOMEY%\wtklib\lime. jar

On the Linux and Solaris side, the following could be added to your . profile (or equivalent):

export J2MEWTK_HOME=/home/qgmahmoud/ j2mewtk

export MIDPAPI=$J2MEWTK_HOME/lib/midpapi.zip

export J2MECLASSPATH=$J2MEWTK_HOME/wtklib/kenv.zip:
$I2MEWTK_HOME/wtklib/kvem. jar : $I2MEWTK_HOME/wtklib/lime.jar

Note the that final linein either case isreally one ling; it's been continued here for clarity.

1.3 A Simple Example

The examples that we're going to demonstrate here, and throughout the rest of the book, are called
MIDlets. If you've programmed with Java applets or servlets before, then you'll likely recognize
the similarities in the "fill-in-the-method" program structure. Thisfirst example,

HelloMidlet. java, shown in Example 1-1, creates a text box and then prints the archetypal
"Hello World" in atext box.

Example 1-1. "Hello World"

import javax.microedition.midlet._*;
import javax.microedition.lcdui.*;

public class HelloMidlet extends MIDlet {

// The display for this MIDlet
private Display display;

// TextBox to display text
TextBox box = null;

public HelloMidlet() {
3

public void startApp() {
display = Display.getDisplay(this);
box = new TextBox(*'Simple Example'™, "Hello World", 20, 0);
display.setCurrent(box);

}

/**
* Pause is a no-op since there are no background activities or
* record stores that need to be closed.

*/

public void pauseApp() {

}

/**
* Destroy must cleanup everything not handled by the garbage
* collector. In this case there is nothing to cleanup.
*/

public void destroyApp(boolean unconditional) {

}
}

This MIDlet consists of a public class definition that extendsthe MIDI et classfound in
Javax.microedition.midlet. Thissuperclass forms the base of all MIDletsin J2ME. Our
Hel loMidlet class contains a constructor, as well asthe startApp(), pauseApp(), and
destroyApp () methods that have been inherited from the MIDl et class. Note that thereis no
main() method in this program. Instead, the startApp(), pauseApp(), and destroyApp()
methods are called by the underlying framework to start up the MIDlIet, to pause it, or to destroy it.

Let's start off by compiling our program on the command line. Using the command line is a bit
more complex than the KToolbar application that comes with the Wireless Toolkit, so in order to
simplify it, be sure that you have entered the additional environment variables shown above.

However, there are several steps that we need to perform when compiling J2ME applications, and
it's important to see each of the steps as they occur.

As you would expect, the program must be saved in afile called Hel loMidlet. java. However,
before you compileit, create a directory called tmpclasses. Then use the following command to
compile the MIDlet from the command line in Windows:

C:\midlets> javac -g:none -d tmpclasses -bootclasspath %MIDPAPI% -classpath
%J2MECLASSPATH% HelloMidlet.java

In Linux and Solaris, the command looks like the following:

>javac -g:none -d tmpclasses -bootclasspath $MIDPAPI -classpath
$I2MECLASSPATH
HelloMidlet. java

This command compiles the Java source file without any debugging info, and sets the appropriate
boot and J2ME classpaths to ensure that we don't pick up any J2SE classes. The end result of this
command is the creation of theHel loMidlet. class filein the tmpclasses directory.

With the J2SE, a class file was all you needed to run the application. However, all MIDlet classes
must be preverified before they can be run on atarget device. Why is this necessary? Remember
that one of the tasks of the standard Java virtual machine (the one that comes with the J2SE) isto
perform bytecode verification. Bytecode verification is one of the most important steps of the Java
security model. It performs such tasks as ensuring that the bytecodes of a Java class (and their
operands) are all valid; that the code does not overflow or underflow the VM stack; that local
variables are not used before they are initialized; that field, method, and class access control
modifiers are respected, and other important tasks. However, most of the bytecode verifier is not
included with the KVM due to size constraints. The preverifier ensures that the equivalent security
checks still take place.

Before you run the preverifier, create another directory called classes. Then, use this command to
preverify theHel loMidl et class:

C:\midlets> preverify -classpath %MIDPAPI%;tmpclasses -d classes tmpclasses
Or on Solarisand Linux:

> preverify -classpath $MIDPAPI:tmpclasses -d classes tmpclasses

The resulting output should look something like this:

[Output directory for verified classes: classes]

This command takes al the classes inside the tmpclasses directory (of which
HelloMidlet.class isthe only one) and preverifies them, writing the resulting classes to the

classes directory. Note that the names of the preverified classes remain exactly the same, whichis
why we created two separate directories to hold them.

i If you received an "lllegal constant pool index" class loading error and
s you're using JDK 1.4, try using JDK 1.3 until thisissue is resolved.
wh ..
g

The next step isto compress al the classesin the program (again, we have only one) as well as
thelr resources, into a Java Archive (JAR) file. Y ou can use the J2SE jar command to create a
JAR file. Make sure you are in the classes directory to execute the following command:

> jar cvf HelloMidlet.jar HelloMidlet.class

The program will compressthe Hel loMidlet classinto a JAR file, creating a manifest for it as
well.

Note that with the javac compiler, you can create MIDlets of practically any size. However, that
doesn't guarantee that they will fit on the target device for which you're writing the MIDIet. It
would niceif there were away to check if the target device can handle the MIDlet and run it
beforeit is downloaded. Obvioudly, if adevice can't handle the MIDlet, there is no reason to even
attempt a download.

To accomplish this, we need afile that manually specifies some pre-download properties,
including the size of the MIDlet and its storage requirements. This can be accomplished by
creating a Java Application Descriptor (JAD) file with your favorite text editor. Example 1-2
shows a sample JAD file that we can use. Note that you will need to change the MIDlet-Jar-Size
entry to correspond to the size of the JAR file that you just created. (In Chapter 3, we will explain
the JAD file syntax in more detail.)

Example 1-2. HelloMidlet.jad

MIDIet-1: Hello, ,HelloMidlet
MIDIet-Name: HelloMidlet
MIDIet-Version: 1.0
MIDIet-Vendor: ORA
MIDlet-Jar-URL: HelloMidlet.jar
MIDIet-Jar-Size: 863

Let's save this example JAD file as HelloMidlet.jad, again in the classes directory that holds the
JAR file. Finally, to run this MIDlet, invoke Sun's MIDP emulator to point at the JAD file using
the following command:

> emulator -Xdescriptor:HelloMidlet.jad

If everything worked correctly, you should see a phone similar to Figure 1-4, although the display
may be different. Here, the HelloMidlet is running in the default phone that comes with the Java
Wireless Toolkit. If you click on the MIDlet on the menu (use the directional arrow pad to move
the cursor and the button in the middle to select), and instruct it to "Launch” using the soft button
on the lower right, you should see output similar to Figure 1-4. Congratulations! Y ou just created
your first Java MIDlet!

Figure 1-4. HelloMidlet

10

ﬁ DefaultGrapPhone [[E E3

Fl

The gist of this programisin the startApp() method. Here, we obtain the current display that
the device uses, then create atext box with the words "Hello World" inside of it. Finally, we show
the text box on the current display. Don't worry if you don't understand these objects yet; the
architecture of MIDlets will become clearer as we move through the book.

1.3.1 A Login MIDlet

Let's move to a more advanced MIDIet. Example 1-3 shows a MIDIet with a hypothetical login
screen that prompts the user to log in. If the login isincorrect, the program will repeatedly ask the
user to try again.

Example 1-3. A login MIDlet

import javax.microedition.midlet.MIDlet;
import javax.microedition.lcdui.*;

public class LoginMidlet extends MIDlet implements CommandListener {
private Display display;
private TextField userName;
private TextField password;
private Form form;
private Command cancel;
private Command login;

public LoginMidlet() {
userName = new TextField('LoginlID:*", ™", 10, TextField.ANY);
password = new TextField("'Password:", """, 10, TextField.PASSWORD);
form = new Form(*'Sign in');
cancel = new Command(**Cancel', Command.CANCEL, 2);
login = new Command(‘'Login', Command.OK, 2);

}

public void startApp() {
display = Display.getDisplay(this);

11

form.append(userName) ;
form.append(password) ;
form.addCommand(cancel);
form.addCommand(login);
form.setCommandListener(this);
display.setCurrent(form);

¥

public void pauseApp() {
ks

public void destroyApp(boolean unconditional) {
notifyDestroyed();
¥

public void validateUser(String name, String password) {
if (name.equals('QM™) && password.equals('J2™)) {
menu();
} else {
tryAgainQ);

}

public void menu(Q) {
List services = new List('Choose one"™, Choice.EXCLUSIVE);
services.append("'Check Mail"™, null);
services.append(**Compose™, null);
services.append(""'Addresses', null);
services.append('Options™, null);
services.append("'Sign Out", null);
display.setCurrent(services);

}

public void tryAgain() {
Alert error = new Alert(“Login Incorrect™, "Please try again', null,
AlertType.ERROR);
error._setTimeout(Alert.FOREVER);
userName.setString('"");

display.setCurrent(error, form);

}

public void commandAction(Command c, Displayable d) {
String label = c.getLabel();
if(label .equals('Cancel™)) {
destroyApp(true);
} else if(label.equals('Login™)) {
validateUser(userName.getString(), password.getString());
}

}
}

Again, don't worry if you can't understand the entire program at this point; this exampleisjust
meant to give you aflavor of MIDP programming and some sample applications to compile and
run. Chapter 5 and Chapter 6 will explain the GUI classes (such asDisplay, Form, and
TextField), aswell asthe event-handling classes (such as Command) in much more detail.

That being said, let's present a beginner's overview of how thisMIDlet works. Asin the previous
example, LoginMidlet extendsthe MIDI et abstract class. It aso implements the

CommandL i stener interface by providing an implementation for the commandAction()
method. In this method, there are two commands: Login and Cancel. Thelabel of the command
ischecked: if itisCancel, the LoginMidlet is destroyed, and if it is Login, then the username
and passwords are validated.

12

In the LoginMidlet's constructor, a Form object, two TextField objects, and two Command
objects are created. The TextField and Command objects are added to the form in the
startApp() method. In addition, pauseApp () and destroyApp() perform minimal tasks.

Here is how the program operates. if the Login command is given, the application callsthe

val idateUser () method to validate the username and password. If they are valid (in this case,
they are hardcoded into the program for smplicity), then the menu() method is called to simulate
alist of "useful services." Otherwise, the tryAgain() iscalled to display an error message and
to allow the user to reenter their name and password.

If you are using the command line to compile and execute, save this file named LoginMidlet.java,
make sure that you have a classes and a tmpclasses directory, and use javac:

C:\midlets> javac -g:none -d tmpclasses -bootclasspath %MIDPAPI% -classpath
%J2MECLASSPATH% LoginMidlet. java

If you are using Solaris or Linux, the command becomes:

>javac -g:none -d tmpclasses -bootclasspath $MIDPAPI -classpath
$I2MECLASSPATH
LoginMidlet.java

Next, remember that we must preverify the resulting class:
C:\midlets> preverify -classpath %MIDPAPI%;tmpclasses -d classes tmpclasses
or

> preverify -classpath $MIDPAPI:tmpclasses -d classes tmpclasses

Again, the preverified class is saved to the classes subdirectory in the current directory. Next,
compress the resulting classinto a JAR file:

jar cvf LoginMidlet.jar LoginMidlet.class

And finaly, create a JAD file that describes the resulting JAR file in detail, as shown in Example
1-4.

Example 1-4. LoginMidlet.jad

MIDlet-1: Login,,LoginMidlet
MIDlet-Name: LoginMidlet
MIDIet-Version: 1.0
MIDIet-Vendor: ORA
MIDlet-Jar-URL: LoginMidlet.jar
MIDlet-Jar-Size: 1786

Again, don't forget to change the size of the JAR file to match the size of the LoginMidlet.jar file
after you create it.

At this point, the MIDlet can be run as in the previous example, using the MIDP emulator of the
JavaWireless Toolkit, with the following command:

emulator -Xdescriptor:LoginMidlet.jad

13

In addition, the MIDlet can be run with any other emulator you may have available. For example,
to whet your appetite, Figure 1-5 shows the LoginMidlet running on the Motorola i85s emulator
(the i85sis a J2ME-enabled cell phone available from Motorola and Nextel).

Figure 1-5. LoginMidlet running in the Motorola i85s emulator (cropped)

) moromora

(Tl B
Signin____
LLoginCy

Pazzword:
i:!:ancsl + Logm

t F85s ;
O

1.3.2 Working with the Emulator

Note that the objects represented by the Command class are shown above the two "soft buttons' on
the phone (the buttons with the black circles). If a soft button below the command is pressed, the
command immediately above it is executed. Here, if the user enters the correct username and
matching password and presses the Login button, the menu of services will be displayed.
Otherwise, the alert will be displayed and the user can try again.

Also, you might be caught off guard the first time you try to enter text with your computer
keyboard. It doesn't work! That's because you must use the input keys on the phone to enter the
text. In this case, to enter the letter "G", press the number "4." To enter the letter "K", pressthe
number "5" twice. Note how each time you press a numeral, the system "cycles' through the letter
corresponding to that number. To move down to entering text for the password, use the down
arrow.

Well, that'sit! Y ou've just created two professional MIDlets using J2ME! In the next two chapters,

we're going to take a much closer look at the CLDC and the MIDP, two exciting new areas of
wireless Java devel opment.

14

Chapter 2. The Connected Limited Device
Configuration (CLDC)

The Connected Limited Device Configuration (CLDC) defines a standard, minimum-footprint
Java platform for small, resource-constrained devices. As we mentioned in Chapter 1, the CLDC
was designed as alowest common denominator of Javathat can be applicable to awide variety of
devices. However, features specific to a certain vertical market, such as cell phones or pagers, are
not found in the CLDC but are instead defined in profilesthat sit above it. Configurations
primarily target devices with similar amounts of memory and processing power.

This leadsto a very important point about the CLDC: there are no optional features. Everything
that the CLDC provides is usable on the devices that support it. After all, the primary goal of the
CLDC isto ensure portability and interoperability between applications running on various kinds
of resource-constrained devices, which is the main objective of programming in Java. In this
chapter, we discuss the CLDC and its virtual machine, the KVM, in detail.

2.1 Examining the CLDC in Detail

Let's start off with some specifics. According to the specification, the devices targeted by the
CLDC have the following characteristics:

160 KB to 512 KB of total memory

At aminimum, a CLDC device should have 128 KB of non-volatile memory for the Java
VM and the CLDC libraries, and at least 32 KB of volatile memory for the VM to use at
runtime, independent of any applications.

16-bit or 32-bit processor with at least 25 Mhz speed

These types of processors are pretty typical in today's handheld devices.
Connectivity to some kind of networking

With CLDC, thisis often atwo-way wireless connection with limited bandwidth.
Low power consumption

CLDC devices often operate under battery power. Hence, they have very low power
consumption.

Devicesthat fit these characteristics come in al shapes and sizes. Cell phones and pagers
immediately come to mind, but one could also install Java on bar code scanners, video and audio
equipment, navigation systems, and other wireless devices yet to come. In fact, as the nature of
these devices changes, you can expect that the base specifications for the CLDC will change as
well.

Given the constraints listed above, the CLDC currently provides the following functionality to its
devices:

e A subset of Javalanguage and virtual machine features

15

e A subset of core Javalibraries (java. lang and java.util)
e Basicinput/output (java. io)

e Basic networking support (javax.microedition.io)

e Security

Note, however, that the CLDC does not address application life cycle management, user interfaces,
event handling, or the interaction between the user and the application. Again, these features fall
into the domain of profiles, such as the MIDP, which are implemented on top of the CLDC and
add to its functionality.

2.1.1 What's Different About the Java Virtual Machine?

We mentioned that the CLDC does not have any optional features. As you might expect, this
means that a number of features have been eliminated from Java virtual machines that support the
CLDC, either because they are too expensive (in terms of memory or processing capability) to
implement, or because their presence would impose security problems. Therefore, if you're new to
programming with the CLDC, you should be aware of the following limitationsin CLDC VMs:

No floating point support
The CLDC does not support floating point numbers; therefore, CLDC-based applications
cannot use floating point types such as float or double. This decision was made

because most CLDC target devices do not have floating point support in their underlying
hardware.

No finalization

The CLDC API currently does not include the Object. final ize() method; you
cannot perform final cleanup operations on object data—-such as closing resources—
before an object is garbage-collected.

Limited error handling
Runtime errors are handled in an implementation-specific manner. The CLDC defines
only three error classes: java.lang.Error, java. lang.OutOfMemoryError, and
java.lang.VirtualMachineError. Non-runtime errors are handled in adevice-

dependent manner that often involves terminating the application or even resetting the
device.

No Java Native Interface (INI)

A Javavirtual machine supporting the CLDC does not implement the INI. There are
actually two good reasons for this: security, and the fact that implementing JNI is
expensive, given the memory constraints of CLDC target devices.

No user-defined class loaders

A Javavirtual machine supporting the CLDC must have a built-in class |oader that cannot
be overridden or replaced by the user. Thisis for security reasons.

No support for reflection

16

CLDC applications do not have the ability to use the reflection APIs on their objects or
classes. Because reflection is not supported, there is also no support for object
serialization or RMI.

No thread groups or daemon threads

While a Java virtual machine that supports the CLDC will implement multithreading, it
cannot support thread groups or daemon threads. If you want to perform thread operations
for groups of threads, use the collection objects to store the thread objects at the
application level.

No weak references

No application built on a Java virtual machine supporting the CLDC can require weak
references.

2.1.2 The KVM

The KVM, which was introduced in the previous chapter, is a compl ete Java runtime environment
for small devices. It isatrue Javavirtual machine as defined by the Java Virtual Machine
Specification, except for some deviations that are necessary for proper functioning on small
devices. The KVM was specifically designed for small, resource-constrained devices that have
only afew hundred kilobytes total memory.

The J2ME white paper™ describes the KVM as:

M See also the KVM white paper, located at http://java.sun.com/products/cldc/wp/KVMwp.pdf, for
much more detail on the KVM.

e Designed for both 16-bit and 32-bit CISC or RISC processors and clocked at processors
aslow as 25 Mhz

e Small, with a static memory footprint of 50 to 80 KB

e Highly portable, modular, and customizable

e Ascomplete and fast as possible, without sacrificing the other design goals listed above

The KVM was derived from aresearch project called Spotless at Sun Microsystems Laboratories.
The aim of the project was to implement a Java system for the Palm Connected Organizer.2 The
KVM iswritten in the C programming language (using about 24,000 lines of code), so it can be
easily ported to various platforms for which a C-language compiler is available. Findly, like a
regular VM, the KVM can load classes from a class path directory as well asfrom a JAR file.

2] ¢ you attended JavaOne 1999, you'll remember that this was a major attraction. They even held
a contest to see who could design the best KVM application.

2.1.2.1 Class Verification

In the J2SE Java virtual machine, the class verifier is responsible for rejecting invalid classfiles at
runtime. A VM supporting CLDC must be able to reject invalid class files as well. The class
verification process, however, is expensive and time-consuming: it typically takes anywhere from
35to 110 KB of runtime memory. Since the target size of the KVM is 50 to 80 KB of memory,
including a class verifier inside it would violate its size constraints.

The KVM designers decided to move most of the verification work off the device and onto the
desktop, where the classfiles are compiled, or onto the server machine, from which applications
are downloaded. This step (off-device class verification) is referred to as preverification; that's

17

http://java.sun.com/products/cldc/wp/KVMwp.pdf

why we had to run the preverify command on the examplesin Chapter 1. Once the
preverification is completed, the resulting class files often include extra information to ensure that
the runtime verifier can perform its job with only minimal effort and memory. (That's why the
preverified version of the LoginMidlet.class in Chapter 1 isdightly larger than the raw class
generated by the javac compiler.)

The additional output of the preverification processis the addition of a stack map attribute that
maps out critical areas of aclass. Thisadditiona attribute is used by the runtime verifier to
pinpoint critical areas inside the class that must be checked. Also, the preverifier will inline all
subroutines in the bytecodes of the classfile to prevent any problems at runtime. Don't wortry,
however. Even with the additional information, the preverified class files can still work with a
regular Java runtime verifier.

With the help of the preverification, the CLDC device is only responsible for running a quick scan
on the preverified class file to ensure that it was verified and does not contain any illegal
instructions. This cuts down significantly on the amount of memory needed for the runtime
verifier: only 100 bytes or so.

2.1.2.2 Security

The CLDC security model is more strict than what you're likely used to with the J2SE. This new
security model is primarily concerned with two aress:

Virtual machine-level security

An application executed by the KVM must not be able to harm the devicein which it is
running. Thisis guaranteed by the class verifier, which ensures that the class bytecodes
cannot contain references to invalid memory locations. It also ensures that the classes
loaded cannot execute in away that is not allowed by the Java Virtual Machine
Specification. Aswe mentioned, class verification for the CLDC/KVM is atwo-step
process: off-device preverification in conjunction with a minimal in-device verification.
In addition, native methods cannot be invoked at runtime.

Application-level security

Unlike the J2SE, the CLDC/KV M combination does not alow the customization of a
security manager. A JVM supporting CLDC provides a simple sandbox security model
that enforces security by ensuring that applications run in a closed environment, and that
applications may only call classes supported by the device.

2.1.3 What's Different About the Core Java Libraries?

The first thing that you'll probably notice when working with the CLDC isthat only a bare
minimum of Java APIs have been included. The reason for thisis obviousif you download the
Java 2 SDK: the standard edition APIs require close to 20 megabytes of memory! Thisis memory
that most small devices simply do not have. Hence, one of the primary goals in designing the core
CLDC librarieswasto boil the J2SE APIs off into a minimum set of libraries that could still be
used for meaningful application and profile development.

With that in mind, it's helpful to think of the CLDC library APIs as divided into two categories:
classes that are a subset of the J2SE APIs and new classes that are specific to the CLDC. Let's
look at the former group first.

2.1.3.1 Classes inherited from J2SE

18

The CLDC uses only thirty-seven classes from the J2SE platform. These classes come from the
java.lang, java.io, and java.util packages, which are derived from JDK 1.2 APIs. Note
that according to the 2ME specification, "Each class that has the same name and package name as
a J2SE class must be identical to, or a subset of, the corresponding J2SE class. The semantics of
the classes and methods cannot be changed, and the classes cannot add any public or
protected methods or fields that are not available in the corresponding J2SE class libraries." In
other words, you cannot add, but you can take away. And many classes have functionality taken
away.

The inherited classes and interfaces (not including exceptions) from the J2SE platform are shown
in Table 2-1.

Table 2-1. Inherited, non-exceptional classes
Package Classes

Boolean, Byte, Character, Class, Integer, Long, Math, Object, Runnable, Runtime,
Short, String, StringBuffer, System, Thread, Throwable

ByteArraylnputStream, ByteArrayOutputStream, Datal nput, DataOutput,
javaio |DatalnputStream, DataOutputStream, |nputStream, OutputStream, InputStreamReader,
OutputStreamWriter, PrintStream, Reader, Writer

javautil |Calendar, Date, Enumeration, Hashtable, Random, Stack, TimeZone, V ector

javalang

Because all inherited classes must throw precisely the same exceptions as regular J2SE classes,
the following 29 exception and error classes shown in Table 2-2 also derive from the J2SE APIs.

Table 2-2. Inherited exception and error classes
|Package| Class

ArithmeticException, ArraylndexOutOfBoundsException, ArrayStoreException,
ClassCastException, ClassNotFoundException, Error, Exception,

I1legal AccessException, Illegal ArgumentException, 11legal M onitor StateException,
java.lang|lllega ThreadStateException, IndexOutOf BoundsException, InstantiationException,
InterruptedException, OutOf MemoryException, NegativeArraySizeException,
NumberFormatException, NullPointerException, RuntimeException, SecurityException,
StringlndexOutOf BoundsException, VirtualMachineError

EOFEXxception, |OException, Interruptedl OException, UnsupportedEncodingException,
UTFDataFormatException

javautil |EmptyStackException, NoSuchElementException

javaio

When programming with the CLDC, there are many internal modifications to the J2SE classes
you're used to. Here are some of the more common classes that may cause problems.

2.1.3.2 String and StringBuffer

The following methods have been removed from the ubiquitous java. lang.String class,
either because they refer to floating-point data types or because their presence is redundant:

public void valueOf(float T)

public void valueOf(double d)

public int compareTolgnoreCase(String str)

public boolean equalslgnoreCase(String anotherStr)

public static copyValueOf(char[] data)

public static String copyValueOf(char[] data, int offset,
int count)

public String intern()

public int lastlindexOf(String str)

public int lastindexOf(String str, int fromlndex)

19

public boolean regionMatches(int toffset, String other,
int ooffset, int len)

public String toLowerCase(java.util.Locale locale)

public String toUpperCase(java.util_Locale locale)

For the same reasons, the following methods have been eliminated from the
java.lang.StringBuffer class.

public StringBuffer append(float f)
public StringBuffer append(double d)
public StringBuffer insert(int offset, float)
public StringBuffer insert(int offset, double d)
public StringBuffer insert(int index, char[] str,
int offset, int len)
public StringBuffer replace(int start, int end, String str)
public String substring(int start)
public String substring(int start, int end)

2.1.3.3 Runtime

The java. lang.Runtime class has eiminated most of its methods for the CLDC. Here, only
the following subset of methods is now available:

public void exit(int status);
public native long freeMemory();
public native void gc(Q);

public static Runtime getRuntime();
public native long totalMemory();

2.1.3.4 System

In addition, the java. lang.System class only has the following fields and methods available
toit:

public static final PrintStream err;
public static final PrintStream out;
public static native void arraycopy(Object src,
int src_position, Object dst, int dst_position, int length);
public static native long currentTimeMillis();
public static void exit(int status);
public static void gc(Q;
public static String
getProperty(String key);
public static native int identityHashCode(Object x);

2.1.3.5 Math

Finally, as you might expect, the java. lang.Math class has eliminated all methods dealing
with complex floating-point operations (which was the vast majority of methods in that class), and
now only has the following methods:

public static int abs(int a);

public static long abs(long a);

public static int max(int a, int b);
public static long max(long a, long b);
public static int min(int a, int b);
public static long min(long a, long b);

In many cases, the absence of these methods are only a minor inconvenience and suitable
workarounds can be used. J2M E functionalities that require the use of floating-point values,

20

however, may have to expand their floating-point values to integers with an implied decimal point
and improvise with the more limited set of integer operations.

2.1.4 What's Different About I/O and Networking?

Recadll that the J2SE providesthe java. io and java.net packagesfor I/0 and network
connectivity. The CLDC inherits some of the classesin the java. i o package. However, the
major differenceisthat it does not inherit classes related to file I/O. For example, the popular
FilelnputStream and Fi leOutputStream classes are not present. In addition, the
FileReader and FileWriter classes are not offered for reading and writing text data. Thisis
because not all CLDC devices support the concept of afilesystem.

Asfor the java.net package, the J2SE provides several classes for network connectivity.
However, none of these classes have been inherited because not all devices require TCP/IP or
UDP/IP. (Some devices may not even have an IP stack.) Instead, the CLDC expert group decided
to define amore generic set of classes for 2ME I/O and network connectivity. These classes are
known as the Generic Connection Framework, and are found in the javax.microedition.io
package.

2.1.4.1 The Generic Connection Framework
The Generic Connection Framework is a platform-independent framework that provides its
functionality without any dependence on the specific features of a device. In fact, this framework
is so generic that it doesn't implement any of the I/O or network connectivity interfaces; rather, the
profile above it provides such implementation.
Here's a quick rundown of how the Generic Connection Framework works: al connections are
created using the static open() method from the factory Connector class. If successful,
this method returns an object that implements one of the generic connection interfaces for the host
device. If you're a J2SE programmer, this will be much different than what you're used to.
However, it will also be much easier. To give you ataste of what thisislike, here are some
example connections from the J2M E specification that you might request froma CLDC
application and the appropriate syntax to implement them:
HTTP connection

Connector .open(*'http://www.ora.com:port™);
Socket connection

Connector .open(*'socket://www.ora.com:port™);
Communication with a port

Connector .open(*'comm:0;baudrate=9600"") ;
The goal of the above syntax isto isolate any differences in the protocol that you're attempting to

connect with into a simple string. Thisway, most of the application's code remains the same,
regardless of the protocol you use. The Generic Connection Framework is discussed in more detall

in Chapter 7.

2.1.5 Differences with Property Support in the CLDC

21

Virtual machines that support the CLDC, such asthe KV M, do not implement the

jJjava.util .Properties class, which follows from the lack of filesystem functionality that we
mentioned above. However, four system properties are supported for each 2ME/CLDC device,
and can be accessed by using the method System.getProperty(String key). Thefour
properties available are described in Table 2-3.

Table 2-3. System properties

. Default
System property Description value
microedition.platform 'Name of the host platform or device Inull
microedition.encoding Default character encoding "1SO8859 1"
microedition.configuration Name and.version of the support "CLDC-1.0"
configuration
microedition.profiles Name of the supported profiles null

There's very little to say here, except that you can use these properties to ensure that you're indeed
on a CLDC device that supports the proper encoding and profiles for your application. The MIDP
profile defines some additional properties, which we will discussin Chapter 3.

2.2 Using the Standalone CLDC and KVM

If you want to experiment with the raw KVM and CLDC classes, you can download the
standalone CLDC and KV M. As of thiswriting, the latest edition of the CLDC itself isversion
1.0.2. The CLDC 1.0.2 contains an updated version of the KVM. The KVM code has been
rewritten to improve performance and includes a faster bytecode interpreter, better garbage
collection, Java-level debugging APIs, preverifier improvements, and severa bug fixes. If you
wish to download the standalone CLDC and KVM, you can find it at the following address:
http://java.sun.com/products/kvm.

Note that thisis different than the 2ME Wireless Toolkit that we used in
“'@ Chapter 1. Thisdistribution does not contain any MIDP classes, nor does
it contain aMIDP emulator. Hence, it will only execute programs that
adhere to the base CLDC specification and not any MIDP functionality. If
you are solely interested in writing applications for the MIDP, you can
just read through this section without taking any action.

This distribution contains KVM implementations for Windows, Solaris, and Linux operating
systems, as well as the CLDC classes that can be used to compile and run applications. After
downloading and uncompressing the distribution, you should have a series of directories, as
shown in Table 2-4.

Table 2-4. CLDC/KVM directories

Directory Description
api The Java classes and source code for the CLDC
bin Binaries for each of the target platforms

\bui id \Utility that builds directories and makefiles for each target platform

\docs \PDF documentation, as well as compressed javadocs

Java Application Manager, which can be used to dynamically download classes into the

Jar KVM

22

http://java.sun.com/products/kvm

Kvm 'Source and build files pertaining to the KVM

samp les |Sample code that can be used with the CLDC

tools |Source for the various tools used with the CLDC

Feel free to look through the api directory to see what you have. It's not much, compared to the
J2SE. In any case, there are some interesting things that we can show you with the KVM and the
CLDC inthisdistribution. First, create a simple program that can be run with the CLDC as
follows:

public class CLDCTest {
public static void main(String[] args) {
System.out._printin("'Hello CLDCI!');
¥

}

Then, try compiling the program with the standard javac compiler. In the example below, we use
acommand line, similar to that in the first chapter, in order to ensure that only the CLDC classes
are used. Note that the subsequent series of commands assumes that you are in the base directory
of the CLDC/KVM distribution:

jJjavac -bootclasspath api/classes.zip CLDCTest. java

Remember that we must preverify our resulting class before running it with the KV M, like we did
in Chapter 1. Y ou can do so with the following command:

bin/[targetOS]/preverify -classpath api/classes.zip:. CLDCTest

As before, this should create a separate directory, here called output, where the preverified class
has been stored. Y ou can now run this class with the KV M, using the following command:

bin/[target0S]/kvm -classpath api/classes.zip:output CLDCTest
Hello CLDC!

Next, try modifying the source code so that it adds a declaration of the float variable:

public class CLDCTest {
float T;

public static void main(String[] args) {
System.out.printIn("'Hello CLDC!");
}

}

And again, try recompiling it and preverifying it with the above commands. If you try running the
resulting program, the KVM will flag the inclusion of afloating-point field in the class as an error:

ALERT: Bad field signature

Why didn't the compiler flag the use of the floating-point variable as an error? Remember that
you're using the javac compiler from J2SE to compile your J2ME programs, and that compiler is
all too familiar with the use of floating-point variables. Hence, it will assume that the primitive
data typesthat it knows about are fine for use with whatever VM is on the other side of the
compilation. In addition, the preverifier will not search for floating-point variables because its job
(at least, on the desktop side) isto look for security issues within classes, not to hunt down invalid
primitive data types. (Remember we mentioned earlier that preverified class files must work under
the regular J2SE.) Hence, the KVM itself hasto tell usthat one of our fieldsis not supported in the

23

virtual machine, which it does by scanning through the class files before executing them. There's
an important lesson here: just because the compiler and preverifier successfully trandated a source
file to aclass with only the CLDC classes on its bootclasspath doesn't mean that it will still run.

Y ou should always test it with the KVM aswell, to seeif the code has any VM issues.

That's not to say that if we used a method that is no longer in the CLDC classes, the compiler
wouldn't notice. For example, assume that we modified our code to be the following:

public class CLDCTest {

static String s = "Hello CLDC!";
static int r = s.compareTolgnoreCase(""HELLO CLDC!');

public static void main(String[] args) {
System.out._printin(s + ":" + r);
}

}
Thisyields the following compiler error:

CLDCTest.java:4: cannot resolve symbol
symbol : method compareTolgnoreCase(java.lang.String)
location: class java.lang.String

Here, the compiler flagged an error because the String class that was located on its
bootclasspath does not contain the method in question, compareTolgnoreCase(). Aswe
mentioned earlier in the chapter, this method has been omitted in the CLDC subset of
jJava.lang.String.

2.3 CLDC Next Generation

Finaly, let's briefly mention the CLDC Next Generation (NG). The CLDC NG is a specification
that is currently in development and that aims to define arevised version of the CLDC. The goal
of the CLDC NG isto make the CLDC more compliant with the Java language and virtual
machine specifications by reintroducing features such as floating-point support and improved
error-handling capabilities.

Some other goals of the CLDC NG will beto:

e Maintain backward compatibility with CLDC 1.0.

e Maintain small footprint (limit API growth).

e Continue focus on small, resource-constrained, connected devices.

e Investigate the possibility of adding aminimal security manager.

Note, however, that not many new APIswill be reintroduced to the CLDC with thisrevision.
Devices that require significantly more complete Java libraries should use the Connected Device
Configuration (CDC) instead. Y ou can follow the progress of the CLDC NG at the Java
Community Process web site at: http://www.jcp.org/.

24

http://www.jcp.org/

Chapter 3. The Mobile InformationDevice Profile
(MIDP)

The Mobile Information Device Profile (MIDP) is built on top of the CLDC, and defines an open
application devel opment environment for what Sun calls Mobile Information Devices (MIDs). In
simpler terms, MIDP isthe 2ME profile that is used for wireless devices, such as mobile phones
and pagers. This chapter expands on the previous chapter by introducing some of the fundamental
concepts of MIDP and offering programming guidelines that are used throughout the remainder of
this book.

Aswe mentioned in Chapter 1, the MIDP is governed by the Java Community Process. The MIDP
isJSR 37, which is part of the Java Community Process. Like the CLDC, the MIDP is an ever-
changing standard that actively solicits input from corporations and the general programming
community. Y ou can find more information on the MIDP at the following URL.:
http://java.sun.com/products/midp.

3.1 Mobile Information Devices

Again, let's start off with some specifics. The MIDP standard defines aMID as a device with the
following minimum characteristics:

Display

A screen size of at least 96 x 54 pixelswith at |east a 1-bit display depth
Input

A one-handed keyboard, two-handed keyboard, or touch screen
Memory

32 KB of volatile memory for the Java runtime (heap); 128 KB of non-volatile memory
for the MIDP components; and 8 KB of non-volatile memory for application-created
persistent data

Networking
A two-way intermittent connection, usually wireless, with limited bandwidth

Because the MIDP is built on top of the CLDC, it addresses the following areas that are omitted
by the CLDC:

Application Life Cycle Management

The MIDP includes the javax.microedition.midlet package, which contains
classes and methods for starting, pausing, and destroying applicationsin the host
environment.

User Interface and Events

25

http://java.sun.com/products/midp

The MIDP aso providesthe javax.microedition. Icdui packages, which include
classes and interfaces for creating GUI components for applications.

Network Connectivity

The MIDP extends the ContentConnection interface of the Generic Connection
Framework by providing the HttpConnection interface, aswell as a subset
implementation of the HTTP protocol.

Soring Data on Device

The MIDP also providesthe javax.microedition.rms package, which implements
arecord-based database management system. This provides applications with the
capability to store data on the device.

The MIDP has received wide corporate backing, from companies such as AOL, DDI, Ericsson,
Fujitsu, Hitachi, Matsushita, Mitsubishi, Motorola, NEC, Nokia, NTT DoCoMo, Palm, Research
in Motion (RIM), Samsung, Sharp, Siemens, Sony, Sprint, and Symbian. In the second quarter of
2001, Motorolareleased the first MIDP-enabled cellular phones, the i50x and the i85s.2 Over the
next year or two, you'l likely see an impressive amount of MIDP-enabled devices reach the

market.

™M The service for the i50x and i85s phones is provided in the United States and Canada by Nextel,
Inc.

3.1.1 Class Additions

The MIDP adds the following packages to those available through the CLDC, as shown in Table
31

Table 3-1. New packages in the MIDP

\ Package | Description

\j avax.microedition.lcdui |Graphica| interface components and events
javax.microedition.midlet Application life cycle
javax.microedition.rms Record storage

Here are the classes that are included with each of the new packages. The first package,
Javax.microedition. Icdui, contains interfaces and classes, listed in Table 3-2, that are
used to build graphical interfaces on the limited displays of CLDC devices. These classes are
discussed in detail in Chapter 5 and Chapter 6.

Table 3-2. Classes and interfaces in the javax.microedition.lcdui package

| Name | Type
[Choice lInterface
[CommandListener lInterface
ItemStatelListener Interface
Alert Class
AlertType Class

Canvas Class
[ChoiceGroup Class
|Command Class

26

DateField Class
Display Class
Displayable Class
Font Class
Form Class
Gauge Class
Graphics Class
Image Class
Imageltem Class
Item Class
List Class
Screen Class
Stringltem Class
TextBox Class
TextField Class
Ticker Class

The next package, javax.-microedition.midlet (see Table 3-3), adds only one class that
serves as the base class for all MIDIets. This class can only throw one exception as well, which
notifies listeners of a state changein the MIDIet. This classis discussed in detail in Chapter 4.

Table 3-3. Class and exception in the javax.microedition.midlet package

Name Type

MIDlet Class

MiIDIetStateChangeException Exception

Finaly, the javax.microedition.rms package provides four interfaces, one class, and five
exceptions (see Table 3-4) for performing persistent data storage on MIDP devices. The four
interfaces allow you to create implementing classes that customize how the record store compares,
enumerates through, filters, and handles events that occur with data records. These classes are
discussed in detail in Chapter 8.

Table 3-4. The classes, interfaces, and exceptions in the javax.microedition.rms

package
Name Type

RecordComparator Interface
RecordEnumeration Interface
RecordFilter Interface
RecordListener Interface
RecordStore Class
Inval idRecordIDException Exception
RecordStoreException Exception
RecordStoreFul IException Exception
RecordStoreNotFoundException Exception
RecordStoreNotOpenException Exception

27

In addition to these packages, the MIDP also adds two classes and one exception to those classes
inthe java. lang and java.uti I packages of the CLDC. These classes are similar to those
found in the Java SDK 1.3.

e java.lang.lllegalStateException (exception)
e jJava.util.Timer (class)
e jJava.util.TimerTask (class)

Asyou can see, there aren't many classes in the MIDP. However, that's not unexpected, given that
we need to fit MIDP programsin such alimited space. But don't worry. Well discuss each of the
new classes, interfaces, and exceptions of the MIDP as we progress through the remainder of the
book.

3.1.2 System Properties

The MIDP defines two additional property values (in addition to the eight in the previous chapter)
that can beretrieved using the java. lang.System.getProperty() method. These are
shown in Table 3-5:

Table 3-5. System properties defined by the MIDP

| System property | Description
microedition. local The current locale of the device (default: nul 1)
Imicroedition.profiles 'Must contain at least "MIDP-1.0"

Themicroedition. local property consists of the language and country code separated by a
dash "-". For example, "en-CA" for English Canada and "en-US" for English USA. Note that the
language code must be lowercase, and the country code must be uppercase.

3.2 More About MIDlets

In Chapter 1, we introduced you to MIDlets, applications that run on MIDP devices. MIDlets are
written as one or more Java classes whose objects are compressed into a JAR file. Like Java
applets, MIDP applications have an application life cycle while running on a mobile device.
Specifically, aMIDlet can bein one of three states:

e Paused
e Active
e Destroyed

Figure 3-1 shows the rules for transitioning between states.

Figure 3-1. MIDlet transition states

28

—p- Paused —
— Active
— Destroyed -+

Here isaquick rundown of how MIDP applications change state: when aMIDlet isfirst started, it
is placed in the paused state. After it's ready, the controlling software will then place the MIDlet in
the active state. At this point, the MIDIet is running and the user can interact with it. The
application can be placed back in the paused state by either the MIDP system or the program itself.
In addition, the MIDP can be moved to the destroyed state from either the paused or the active
state, again by either the MIDP system or the programmer. In the destroyed state, the MIDlet
should release all of the resources it currently has back to the MIDP system.

WEell cover thisin more detail in the following chapter, where we create and execute a MIDlet
with multiple states. In the meantime, this quick introduction brings us to the point where we must
first introduce some important concepts.

3.2.1 What Is a MIDlet Suite?

A MIDlet suiteis simply two or more MIDlets that are packaged in a JAR file. MIDlets within the
same suite can use the classes and resources contained in the JAR file, much like any standard
Java application, the classes of which are loaded by the same class |oader.

3.2.1.1 The JAR Manifest
The JAR file of aMIDlet suite often contains a manifest file with MIDlet attributes defined. These
attributes describe the contents of the JAR file, which isin turn used by the application

management software to identify and install the MIDlet suite. The attributes defined by the MIDP
specification arelisted in Table 3-6.

Table 3-6. JAR manifest attributes

Attribute name |Required Description
_ - The name and version of the J2ME configuration required. This
MicroEdition- B o - _
Configuration Yes uses the same format astheMicroEdition.configuration
system property (for example, "CLDC-1.0").
- - The name and version of the J2ME profile required. This usesthe
MicroEdition- - . -
Profile Yes same format asthemicroedition.profi les system property
(for example, "MIDP-1.0").
B The name, icon, and class, separated by commas, of the nth
viblet-n Y& MIDletin the MIDIet site.
MIDIet-Data- No The minimum number of bytes of persistent storage that the
Size MIDlet requires. The default is zero.
MIDIet- " .
Description No A description of theMIDI et suite.
MIDlet-lIcon No The pathname of a PNG file within the JAR file to identify the

29

MIDlet suite (not the individual MIDlets). It is used by the
application management software to display an icon to identify the

suite.
MIDIet-Info- Yes A pointer to a URL containing a detailed description of the
URL MIDlet suite.
MIDlet-Name Yes The name of the MIDlet suite.
MIDIet-Vendor |Yes The name of the organization (or vendor) providing the suite.

The version number of the MIDIet suite presented in the format
XX.YY.ZZ, where XX isthe magjor, YY isthe minor, and ZZ is
MIDIet-Version [Yes the micro. If the micro is omitted, the default is zero. Therefore,
the micro is optional. Thisinformation is used by the application
management software for install and upgrade uses.

Example 3-1 shows a sample manifest for aMIDlet suite (in this case, only two MIDlets) for a
shopping MIDlet.

Example 3-1. A sample manifest

MIDlet-Name: ShopOnLine

MIDlet-Version: 1.0

MIDlet-Vendor: SELKOM

MIDlet-Description: a shopping MIDlet

MIDlet-Info-URL: http://www.selkom.com/shop
MIDlet-Data-Size: 500

MIDlet-1: BuyMIDlet, /Zicons/buy.png, com.selkom.BuyMIDlet
MIDlet-2: PayMIDlet, /icons/sell._png, com.selkom.SellMIDlet
MicroEdition-Profile: MIDP-1.0

MicroEdition-Configuration: CLDC-1.0

3.2.2 Java Application Descriptor (JAD)

Using a manifest to describe the MIDlets in the suite is a bit problematic. In Chapter 1, we
mentioned that before downloading aMIDlet or aMIDlet suite to a device, the Java Application
Manager should check to make sure there is enough space for it. Using a manifest, however,
means that the Java Application Manager should download the JAR file in order to read the
manifest. Imagine downloading a MIDlet suite only to discover it cannot be installed on your
device because it requires the next generation MIDP. To avoid these problems, the MIDP
specification aso defines the Java Application Descriptor (JAD).

A JAD fileisatext filethat is similar to amanifest. Unlike a manifest, however, it is not packaged
inthe JAR file. Similar to amanifest, it consists of a series of attributes used to describe aMIDlet
suite. The possible attributes are shown in Table 3-7.

Table 3-7. JAD attributes

Attribute name |Required Description

MIDIet-Name |Yes The name of the MIDIet suite.

MIDIet- The version number of the MIDIet suite. The format is XX.Y'Y or
version Yes XX.YY.ZZ, where XX isthe mgjor, YY isthe minor, and ZZ isthe

micro that is optional. If the micro is omitted, the default is zero.

MIDIet-Vendor |Yes The vendor of the MIDlet suite.

MFIQE fet-dar- Iy The URL from which to download the MIDlet suite.
g:géet—\]ar— Yes The size of the MIDIet suite in bytes.

30

MIDlIet-

Description No A description of the MIDlet suite.

MIDIet-lcon |No The pathname of a PNG file for the suite. Theicon is used to
identify the suite.

mE fet-Info- 1\, A URL that describes the MIDIet suite in greater detail.

MIDlet-Data- No The minimum number of bytes of persistent storage the MIDlet

Size suite requires. If not specified, the default is zero.

Asyou can see from Table 3-5 and Table 3-6, there are some common attributes between the
manifest and the JAD file. The mandatory attributes that must be duplicated in both the manifest
and the JAD fileare: MIDlet-Name, MIDlet-Version, and MIDlet-Vendor.

Example 3-2 shows a JAD file for the same hypothetical MIDIet suite.

Example 3-2. A sample JAD file

MIDlet-Name: ShopOnLine
MIDIet-Version: 1.0

MIDlet-Vendor: SELKOM

MIDlet-Jar-URL:
http://www._selkom.com/shop/mid. jar
MIDlet-Jar-Size: 3544
MIDlet-Data-Size: 500

And that's the difference between a JAR manifest file and a JAD filein aMIDlet suite.

3.2.3 Programming Guidelines

Before we start programming with MIDlets, let's briefly discuss some guidelines that are useful
when devel oping applications for mobile information devices such as cell phones and PDASs that
you likely haven't considered before.

3.2.3.1 Performance

When programming for mobile devices with a small memory footprint, it is crucia to make your
applications run faster. The less time your application takes to run, the happier your customers
will be. For the J2SE programmer, here are some ways to help you achieve the best performance:

e Uselocal variablesinstead of fields. Accessing local variablesis quicker than accessing
class members.

e Minimize method calls.Remember that the Java virtual machine uses the stack to load and
store a stack frame for every method it executes. For example, instead of doing something
like:

for (int i=0; i<obj.getLength(); i++) {
// do something with array elements
}
where the length of the array is evaluated every time through the loop, it is much more

efficient to do this:

int len = obj.getLength();
for (int i=0; i<len; i++) {

// do something with array elements
}

31

Avoid string concatenation. This may cause alot of object creation and subsequent
garbage collection, and therefore decreases performance and increases the application's
memory usage. It's often more efficient to use StringBuffer instead.

Minimize object creation. Object creation leads to object destruction and reduces
performance. Instead, design objects that can be recycled. Instead of creating return
objects inside of methods, consider passing in areference to the return object and
modifying its values.

Avoid synchronization.If an operation takes longer than a fraction of a second to run,
consider placing it in a separate thread.

32

Part Il: Programming with the CLDCand the
MIDP

Part |1 starts by elaborating on some of the concepts introduced in Chapter 3. Later chapters show
how to program with the CLDC/MIDP APIs, including GUI, event handling, networking, and
databases. Chapter 9 shows how to convert MIDlets into executable Palm applications for
handheld devices running Palm OS v3.5 or higher.

Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

Chapter 9

33

Chapter 4. Working with MIDlets

MIDlets are very simple to implement. All MIDlets must extend the
jJavax.microedition.midlet.MIDIlet abstract class and implement certain methods in that
class. TheMIDI et abstract class provides the basic functionality required in all MIDlets. A
MIDlet runsin a controlled environment and therefore must implement certain methods that allow
the application manager (which installs and runs the MIDlet) to control the behavior of the
MIDlet. These methods are known as life cycle methods, since they reflect various states in which
aMIDlet can be.

You'l recall from the previous chapter that a MIDIet can bein one of three states: paused, active,
or destroyed. The state chart in Figure 4-1 shows the possible state transitions of a MIDlet, this
time with the addition of the methods that the Java Manager will call inside the MIDlet code
during those transitions.

Figure 4-1. MIDlet state transitions

!

— Paused —

pausedpp() startépp()
Active

destroyvipp() destrovipp()

- Destroyed -

Here, the javax.microedition.midlet.MIDIet abstract class defines threelife cycle
methods that are called during the state transitions. pauseApp(), startApp(), and
destroyApp(). These three methods were present in the example we developed in Chapter 1.
The responsibilities for these three life cycle methods are as follows.

public void startApp()
This method indicates that the MIDlet is moving from a paused state to an active state.
Here, the MIDlet will typically initialize any objects that are required while the MIDlet is
active, and set the current display.

public void pauseApp()
This method is called when the MIDlet is moving from an active state to a paused state.
This means that it will pause any threads that are currently active, aswell as optionally
setting the next display to be shown when the MIDlet is re-activated. Data can be
persisted, if necessary, and retrieved later when the MIDlet is activated again.

public void destroyApp(boolean unconditional)

This method indicates that the MIDlet is moving to the destroyed state. It should free or
close all resources that have been acquired during the life of the MIDlet. In addition, the
method should persist any data that it wishes to save for future use.

34

It isimportant to note that startApp() can be called more than once. In addition to being called
when the MIDlet isfirst activated to move the MIDlet from the paused state to the active state, it
can aso be called if the MIDIet has been paused during execution and wishes to again return to
the active state.

4.1 The Application Manager

The application manager, sometimes called the Application Management System (AMS) or
MIDlet management software, is software that is preinstalled on a MIDP device and that functions
as an operating environment. For example, on a Motorola i85s, the Java Apps menu item will start
the application manager, which immediately shows the Javalogo and the words "Mobile
Information Device Profile Compatible" and then displays a menu of the MIDlet suites that have
been installed on the phone.

However, the application manager must do more than simply show a menu of the MIDlet suites
that areinstalled. According to the MIDP specification, the application manager must be able to:

e Retrieve aMIDlet suite from somewhere, possibly through a serial connection, infrared
connection, or across a wireless connection to the Internet

e Instal aMIDlet suite on the MIDP device

e Perform version management on MIDlet suites that are installed

e Launch aMIDlet from a MIDIet suite and provide an operating environment for the KVM,
aswell as any system, MIDP, and CLDC classes

e Deleteaprevioudly installed MIDlet suite

AsaMIDlet programmer, you typically won't need to be concerned with the internals of the
application manager running on the device—it's unique to each device. However, some insight
into its responsibilitiesis important when designing MIDP applications. In this case, the MIDlet
life cycle methods can be called by the application manager to control the MIDlet state:

e When the user launches a MIDlet, the application manager creates a new instance of the
MIDlet class by calling its zero-argument constructor. Thistypically performsthe one-
time initialization. Once thisis done, the MIDIlet will be placed in a paused state.
However, if any exception occurs during the instantiation of the MIDlet class, the
application manager will move the class to the destroyed state.

o After the MIDlet has been placed in the paused state, the application manager calls
startApp() totransition it to the active state.

e The application manager can then call pauseApp () to move it from the active state to
the paused state, either via arequest from the program itself or from the operating
environment.

e destroyApp() can be called by the application manager to transition the MIDlet to the
destroyed state. The destroyApp() method takes aboolean argument to indicate if
the MIDlet should clean up or not.

Example 4-1 shows a MIDlet skeleton class that implements the life cycle methods of the
jJjavax.microedition.midlet_MIDlet class.

Example 4-1. MIDlet skeleton

import javax.microedition.midlet._*;

public class MyMIDlet extends MIDlet {

35

public MyMIDIet() {
// constructor
3

public void startApp() {
// entering active state
¥

public void pauseApp() {
// entering paused state
¥

public void destroyApp(boolean unconditional) {
// entering destroyed state
}

}

Believeit or not, this classis all you need to create a MIDlet. The only thing we should reiterateis
our earlier warning that startApp() can be called more than once. Hence, if you have any one-
time initialization that you wish to perform for your MIDlet, be sure that it is placed in the
constructor of the MIDlet object and not in the startApp() method.

Earlier, we mentioned that aMIDlet could change its own state if needed. The
Javax.microedition.midlet_MIDIet abstract class provides three methods that can be
called by aMIDlIet to control its own state transitions:

public void notifyPause()

A MIDlet may call this method to pauseitself. It can be called while in the active state, to
inform the Java Application Manager that the MIDlet has entered the paused state.

public void resumeRequest()

A MIDlet may call this method to express interest in entering the active state. The
application manager also cals this method to determine which MIDlet to activate, then it
calsits startApp() method.

public void notifyDestroyed()

A MIDlet calls this method to destroy itself. It can be called while in the active state or
the paused state, to indicate to the application manager that it has entered the destroyed
state. Note that the application manager will not call destroyApp(). Consequently, the
MIDlet manages the release of its resources.

4.2 Creating MIDlets

Now that you're familiar with MIDlet states and the application manager, |et's create another
MIDlet. Asyou've probably guessed by now, this involves the following five steps:

Write the MIDIet.

Compile the MIDlet's source code.
Preverify the MIDlet's classfile.
Package the application in aJAR file.
Create aJAD file.

grwdPRE

36

Let's review each of these steps. First, we'll look at the command-line technique that was shown in
Chapter 1. Then, we'll introduce the KToolbar application, which comes with the 2ME Wireless
Toolkit and which can make our lives much easier.

4.2.1 Write the MIDlet

Thefirst step in the development life cycle is to write the MIDlet. Example 4-2 shows asimple
MIDlet, PaymentMIDlIet. ThisMIDlet createsa L i st object of type EXCLUSIVE (that is, only
one option can be selected at atime), and adds three methods of paymentsto it. It displays alist of
options for the user to select amethod of payment.

Example 4-2. Sample MIDlet

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class PaymentMIDlet extends MIDlet {

// The display for this MIDlet
private Display display;

// List to display payment methods
List method = null;

public PaymentMIDlet() {
method = new List("'Method of Payment",
Choice.EXCLUSIVE);
}

public void startApp() {
display = Display.getDisplay(this);
method.append(*"Visa'", null);
method.append(**"MasterCard™, null);
method.append(*"Amex", null);
display.setCurrent(method);

}

/**
* Pause is a no-op since there are no background

* activities or record stores that need to be closed.
*/

public void pauseApp() {
3

/**

* Destroy must cleanup everything not handled by the
* garbage collector. In this case there is nothing to
* cleanup.

*/

public void destroyApp(boolean unconditional) {

}
}

4.2.2 Compile the Source Code

To compile the source code with the command-line tools of the Java Wireless Toolkit, use the
Javac command. Remember that you should use the -bootclasspath option to make sure the
source code is compiled against the correct CLDC and MIDP classes.

37

C:\midlets> javac -bootclasspath C:\j2mewtk\lib\midpapi.zip
PaymentMIDlet. java

This command produces the PaymentMidlet.class filein the current directory. Thisisa
dightly simplified version of the command we used in Chapter 1, which puts the resulting class
filein atemporary directory.

4.2.3 Preverify the Class File

The next step isto preverify the classfile using the prever i fy command:

C:j2mewtk\bin> preverify -classpath C:\midlets;C:\j2mewtk\lib\midpapi.zip
PaymentMIDlet

Again, adightly different approach. This command creates an output subdirectory in the current
directory and writes anew file PaymentMIDlet.class. Thisisthe preverified class that the
KVM can run with its modified class verifier.

4.2.4 Package the Application in a JAR File

In order to enable dynamic downloading of MIDP applications, the application must be packaged
inaJARfile. To create a JAR file, use the jar command:

C:\midlets> jar cvf payment.jar PaymentMidlet.class

4.2.5 Create a JAD File

A JAD fileis necessary if you want to run a CLDC-compliant application. Example 4-3 shows a
sample JAD file for the payment MIDlet.

Example 4-3. A sample JAD file

MIDIet-1: payment, ,PaymentMIDlet
MIDlet-Name: Payment
MIDlet-Version: 1.0
MiIDlet-Vendor: ORA
MIDIet-Jar-URL: payment.jar
MIDlet-Jar-Size: 961

Once you have the JAD file, you can test your application using the MIDP emulator using the
emulator command of the Java Wireless Toolkit, as shown here;

C:\j2mewtk\bin> emulator -Xdescriptor:C;\midlets\payment.jad
If al goeswell, activate the MIDlet and you will see output similar to Figure 4-2.

Figure 4-2. Running the payment MIDlet

[Fall B I
{Mlathod of Payment |
L

@

I ame

38

If your MIDP application consists of multiple MIDlets, they can all bein one JAR file asaMIDlet
suite. However, you would need to specify them in the JAD file using the MIDlet-n entry, where n
is the number of the MIDlet. Consider the JAD file in Example 4-4, with three hypothetical
MIDlets.

Example 4-4. Three hypothetical MIDlets

MIDlet-1: Buy, , BuyMidlet
MIDlet-2: Sell, , SellMidlet
MIDIet-3: Trade, , TradeMidlet
MIDlet-Name: Trading
MIDIet-Version: 1.0
MIDIet-Vendor: ORA
MIDlet-Jar-URL: trade.jar
MIDIet-Jar-Size: 2961

If you run this JAD file, you would see something similar to Figure 4-3.

Figure 4-3. MIDlet suite

F el =
Choose One: |
sal
Trade

About |

A MIDP application may consist of multiple MIDlets, as shown in Figure 4-3. Similarly, a
desktop application consists of menus and options, as shown in Figure 4-4.

Figure 4-4. Desktop application

File Edt VYew Favoiles Teols Help

Hew]

DOpen.. Cirkd Rahesh

4.2.6 Simplifying the Development

Y ou have now seen how to compile, preverify, create JAR and JAD files, and run MIDlets from
the command line. Thisisfine if you want to understand what's happening behind the scenes.
However, thereis an alternative. An integrated development environment, such as the 2ME
Wireless Toolkit, can be used to simplify the devel opment and deployment of MIDlets. The 2ME
Wireless Toolkit comes with an application called KToolbar. The following steps show how to
use the KToolbar to set up asimple MIDlet, develop the application, packageit, and runiit.

1. In Microsoft Windows, choose Start - Programs —>2ME Wireless Toolkit =
KToolbar to start the development environment. Figure 4-5 shows the resulting KToolbar
screen.

Figure 4-5. KToolbar screen

39

B2 2ME Wireless Toalkit

i_01 NewProject, || 5 Opan Projest ., I = | DavicaT

Cceate & new PEoject OC open an existing ane

Click on the New Project button to create a new project called payment, and call the
MIDlet class PaymentMIDIlet, as shown in Figure 4-6.

Figure 4-6. New project

I' Hew Propect ...

Froject MName |p ayment

MiD et Class Mame [Paymentit|Doel

Create Projact i Cancel |

Once you click on Create Project in Figure 4-6, you will get a setting project window, as
shown in Figure 4-7. Thiswindow allows you to modify the MIDlet attributes. All the
required attributes are shown in Figure 4-7.

Figure 4-7. Required attributes

[53 Settings for project "payment”

Key | Value |
WIDet-Jar-Size 100
Wil =t-Ja- LR L paymert jar
I et-Mame payment
miDIet-Vendar Sun Microsystems
MIDIet-Version 1.0
mWicroEdilion-Configurati... |(CLDC-1.0
MicroEdition-Profile MIDP-1.0

0K | Cancal |

If you click on the Optional tab, you will get awindow with all the optional attributes,
which are shown in Figure 4-8.

Figure 4-8. Optional attributes

40

"Firgth I DIet™

I."_!‘-' Settings for project
Required Optional | wiDiets |

ey | Value |
MiDet-Data-Size
MIDet-Delete-Confinm
MiDIel-Description
I &1 0n
MID et Info- IRL
MIDet-Install-Motify

Add |

QK | Cancel |

5. Onceyou click OK, you will get the original KToolbar screen with information to
indicate where to save your source and resource files. Assuming the Wireless Toolkit is
installed in the directory C:\J2MEWTK, then you will be told to save your Java source
filesin C:\J2MEWTK\apps\payment\src and your resource files (e.g., icons) in
C:\JI2MEWTK\apps\payment\res.

Now, use your favorite text editor and write PaymentMIDIet, or smply copy the source from
Example 4-2. Then, save it in the required location and click on the Build button to compile it.
Note that the KToolbar application performs all the steps of compiling the application,
preverifying the classes, compressing them into a JAR file, and creating a corresponding JAD file
for you. All you haveto do isto click the Run button to run it. Then you can test your MIDlet
using a default phone, Motorolasi85s, or aPalm OS, as shown in Figure 4-9.

Figure 4-9. Select a testing device (upper right corner of KToolbar)

M= E3

‘roject .. | [settings .. | £ Build | = Run | Debug |Dmna:lDeTaultGra';Phnne =
DefaultColarPhone

DefaultGrayPhone
MinimumP hone

payment, jar Falmls_Devica
payment, jad RiMJavaHandheld
055

Choose your favorite testing device to test the MIDlet. For example, Figure 4-10 shows the
PaymentMIDIet running in adefault gray phone device.

Figure 4-10. PaymentMIDlet on the default phone

41

Eﬂuldultﬁmyphmlu || x|
F—

Figure 4-11 shows the PaymentMIDI et running on Motorolasi85s device.

Figure 4-11. PaymentMIDlet on the Motorola i85s

Emulation Only

42

Figure 4-12 shows the same application running on a Palm Pilot and Figure 4-13 shows the
PaymentMIDIlet application running on RIM's BlackBerry. Chapter 9 discusses how to install
the Java Application Manager on areal Palm OS device and how to convert existing MIDlets into
PRC executable files for handheld devices running Palm OS 3.5 or higher.

Figure 4-12. PaymentMIDlet on Palm OS

' Palm 0S5~ Emulator E
P e

+ MlasterCard
+ fimes

Figure 4-13. PaymentMIDlet running on RIM's BlackBerry

[=3 RIMJavaH andheld M= E3 |

BLACKBERAY

4.2.7 Deploying MIDlets

As of thiswriting, deploying MIDletsis still an experimenta process. However, the Java
application manager that comes with the MIDP reference implementation now provides some

clues about how we can deploy MIDlets to various devices. Specifically, MIDlets can be installed
in two ways.

e Using adata cable or other dedicated physical connection from alocal host computer
e Using anetwork to which the deviceis intermittently connected

The first method works well with PDAs, which are often used with a host computer, with which
the PDAs frequently synchronize their data. For example, the MIDP for Palm implementation,
which is discussed in Chapter 9, is agood example of this; its application manager allows MIDlet
suites to be installed from a host PC during the synchronization process.

The second method is more popular when installing MIDlets on cell phones and other wireless
devices. With these devices, the most likely delivery transport is the wireless network itself. The
process of deploying MIDlet suites over anetwork is referred to as over-the-air (OTA)
provisioning. OTA provisioning is not yet part of the MIDP specification, but it islikely to
become the dominant mechanism for distributing MIDlets and will probably be included in the
formal specification soon.

4.2.7.1 Deploying OTA

As of thiswriting, OTA provisioning isjust starting to be used with J2ME devices such as the
Motorolai85s/i50x series of cell phones. OTA provisioning allows MIDIet providers to install
their MIDlet suites viaweb servers that provide hypertext links. This allows you to download
MIDlet suitesto a cell phone viaa WAP or Internet microbrowser. Hereis a brief description of
how this process works.

First, to deploy a MIDlet from aweb server, you need to reconfigure your web server by adding a
new MIME type:

text/vnd.sun. j2me.app-descriptor jad

How to add the MIME type depends on what server you are running. For example, if you're
running Apache Tomcat, you would add a new MIME type by adding a new entry in the web.xml
server configuration file, asfollows:

<mime-mapping>

<extension>jad</extension>

<mime-type>text/vnd.sun. j2me.app-descriptor</mime-type>
</mime-mapping>

Y ou would then use the following type of procedureto install a MIDIet suite from aweb page:

1. Click onalink, which will probably request afile with a JAD extension, such asthe
following:

Click here to install the MIDlet suite

2. Theserver will then send the MyApp.jad file to the phone with the MIME type set to
text/vnd.sun. j2me.app-descriptor, asdescribed earlier. Recall that the JAD
file must contain theMIDlet-Jar-URL and MIDlet-Jar-Size properties, which tell
the device where to download the MIDlet suite, aswell as the suite's size in bytes.

3. The Java application manager on the phone will then ask if you want to install the MIDlet
into the phone, assuming that the phone has the resources to run the MIDlet (i.e., that
there's enough space on the device to hold the MIDl et suite).

4. If you answer yes, the entire JAR file will be downloaded from the server, using the
properties specified in the JAD file.

Oncethe MIDlet is downloaded, it will be installed the first time you try to use it. A downloaded
MIDlet stays on the device until you remove it (unlike Java applets).

4.2.7.2 Deploying to the Motorola i50x/i85s

Y ou can also download J2ME applications to a Motorola/Nextel i50x or i85s device from your
desktop through a data cable. This cable does not come with the phone itself, but can be ordered
online from Nextel. The iDEN update software can then be downloaded from the iDEN
development site (http://www.motorola.com/idendev).

In addition, you can also purchase a data cable that comes with a CD-ROM containing the iDEN
update software from Nextel from this site. Obtaining the software may involve authorization
from your carrier, which can take between one and five days. Once you are granted authorization,
however, you can install applications on up to five individual phones. The following paragraphs
describe how to use the MotorolaiDEN update software to download a 2ME MIDIet to your
phone.

After you have obtained the update software, start it up and choose the 2ME Devel opers tab on
the far left. Thiswill result in a screen similar to that in Figure 4-14. From here, you can choose a
JAD file to download the application into your phone through the data cable. Note that the JAD
file and the JAR file must reside in the same directory and must have the same filename
(excluding the extension).

Figure 4-14. Motorola iDEN update software

"= iDEM Lipdate Softeane Application - Motomla
Fie Dphonz Help

Siop FAelesh Frefls Resel Home

-Q. Fa2lSR Update RIS

HOME

APPLICATIONS
Please select the application you would like to purchase.

CHECHK FOR UFDATES

| ¥

-4
= 5
Gr
gt

Dats Marmory available on pour phona: 220 Kbykes

RESTORE SOFTWARE

UFDATE HISTORY Title Category Data PFrogram Price

Memory 1
REMIOVE FILES (Fhbytas) (Kbytas]
HELP REGQUEST & d i laad
I UsifEes A0 : 0. CRnisE|

FAGE el Praductivity 3 96 §0.00 oS

1 | ail

For the most part, downloading an application to the phone is easy. However, the Motorolai85s
and i50x phones will perform a number of checks to ensure the integrity of the application while
installing it. Y ou should observe the following rules to ensure that the phone will install the
application.

The JAD file downloaded to the i85s or i50x must contain at least the following entries, which are
case-sengitive:

MIDIet-Name:
MIDIet-Version:
MIDIet-Vendor:
MIDlIet-Jar-Size:
MIDIet-Jar-URL:

45

http://www.motorola.com/idendev

It can aso contain the following optional entries:

MIDlet-Description:
MIDIet-Info-URL:
MIDlet-Data-Size:

In addition, the JAD file can contain any other MIDlet-specific information that does not begin
with the letters "MIDlet-".

Remember from Chapter 3 that the JAR file must contain a manifest with at least the following
information, which must be identical to the datain the JAD file:

MIDIet-Name:
MIDIet-Version:
MIDIet-Vendor:

If you do not include this information in the manifest, the phone will respond with a " Descriptor
Error" when it is attempting to install the application. If this happens, simply press the Menu
button while the MIDIet is selected and remove it from the system.

Here are some other things to note when downloading to the Motorola i85s or i50x:

e TheJAD fileis case-sensitive.

e Themaximum file length for both the JAD and the JAR fileis 16 characters, which
includes the four characters for the extension (e.g., .JAD or .JAR).

e Thebyte size of the JAR file must be accurately stated in the JAD file.

e Each of the attributes in the JAD and JAR file manifests must have a value associated
with it. Y ou cannot leave an attribute value blank.

e Classeswhich are instantiated using the Class . forName () method must be identified
in the JAD file using the attribute: iDEN-Instal l-Class-n:, where n isapositive
integer. The class name s listed afterward without the . class extension.

Example 4-5 shows the manifest information that we would be using if we wanted to download
the HelloMidlet application from Chapter 1 to the Motorolai85s. Remember that the manifest
must contain the three specified attributes (MIDlet-Name, MIDlet-Version,and MIDlet-
Vendor) and that they must be identical to the valuesin the JAD file. If they differ, the phone will
not install the MIDlet. We have also included the MIDlet class identification information and the
profile and configuration version numbers, which we recommend that you include in your MIDlet
manifests as well.

Example 4-5. Manifest.mf

MIDIet-Name: HelloMidlet
MIDIet-Vendor: ORA

MIDIet-Version: 1.0.0

MIDIet-1: HelloMidlet, ,HelloMidlet
MicroEdition-Profile: MIDP-1.0
MicroEdition-Configuration: CLDC-1.0

At this point, let's create a compressed JAR file of the classes that make up the MIDlet. With the
manifest and the preverified classin the same directory, enter the following command:

>jar cvfm HelloMidlet. jar manifest.mf HelloMidlet.class

Once that is completed, you'll need to create the JAD file. Example 4-6 shows the JAD file for our
HelloMidlet application. Note that we had to change the value of theMIDlet-Jar-Size

46

attribute to match the size, in bytes, of the JAR file that we just created. In this case, it turned out
to be 954 bytes with the additional manifest information.

Example 4-6. HelloMidlet.jad

MIDlet-1: HelloMidlet, ,HelloMidlet
MIDlet-Jar-Size: 954

MIDlet-Jar-URL: http://www.oreilly.com/
MIDIet-Name: HelloMidlet

MiIDlet-Vendor: ORA

MIDIet-Version: 1.0.0
MIDlet-Description: A sample application

Now we're ready to go. Again, be sure that the JAD file and the JAR file have the same name and
reside in the same directory. Then use the iDEN software tools to download the application to
your phone. It should only take afew seconds once you've chosen the target JAD file. After the
download has completed, start the Java Application Manager on the phone (Java Apps under the
Main Menu) and select the HelloMidlet application. Press the soft button to install it. Y ou are now
installing your first Java MIDlet on area device. If everything goes okay, you can run your
program after it completes the installation and verification steps.

47

Chapter 5. MIDP GUI Programming

User interface requirements for handheld devices are different from those for desktop computers.
For example, the display size of handheld devicesis smaller, and input devices do not always
include pointing tools such as a mouse or pen input. For these reasons, you cannot follow the same
user-interface programming guidelines for applications running on handheld devices that you can
on desktop computers.

The CLDC itsdlf does not define any GUI functionality. Instead, the official GUI classes for the
J2ME areincluded in profiles such as the MIDP and are defined by the Java Community Process
(JCP). You'll note that the GUI classes included in the MIDP are not based on the Abstract
Window Toolkit (AWT). That seems like amajor issue, which brings us to the following question.

5.1 Why Not Reuse the AWT?

After agreat deal of consideration, the MIDP Expert Group decided not to subset the existing
AWT and Project Swing classes for the following reasons:

e AWT isdesigned for desktop computers and optimized for these machines.

e AWT assumes certain user interaction models. The component set of the AWT is
designed to work with a pointing device such as a mouse; however, many handheld
devices, such as cell phones, have only a keypad for user input.

e AWT hasarich feature set, and includes support for functionality that is not found or is
impractical to implement on handheld devices. For example, the AWT has extensive
support for window management, such as resizing overlapping windows. However, the
limited display size of handheld devices makes resizing a window impractical. Therefore,
the window and layout managers within the AWT are not required for handheld devices.

e When auser interacts with an AWT-based application, event objects are created
dynamically. These objects exist only until each associated event is processed by the
application or system, at which time the object becomes eligible for garbage collection.
The limited CPU and memory of handheld devices, however, cannot handle the burden.

5.2 The MIDP GUI APIs

Because of the issues outlined earlier, the MIDP contains its own abbreviated GUI, which is much
different from AWT. The MIDP GUI consists of both high-level and low-level APIs, each with
their own set of events. This chapter discusses and shows examples of using objects from both the
high-level and low-level APIs. Handling events from APIs, however, is deferred to the next
chapter.

The high-level API is designed for applications where portability between mobile information
devicesisimportant. To achieve portability, the APl employs a high-level abstraction and gives
you little control over itslook and feel. For example, you cannot define the visual appearance
(shape, color, or font) of the high-level components. Most interactions with the components are
encapsulated by the implementation; the application will not be aware of them. Consequently, the
underlying implementation does the necessary adaptation to the device's hardware and native user
interface style. Classes that implement the high-level API all inherit the
jJjavax.microedition. Icdui .Screen class.

48

The low-level API provides little abstraction. It is designed for applications that need precise
placement and control of graphic elements, as well as access to low-level input events. This AP
gives the application full control over what is being drawn on the display. The
Javax.microedition. Icdui.Canvas and javax.microedition. Icdui .Graphics
classes implement the low-level API. However, we should point out that MIDlets that access the
low-level API are not guaranteed to be portable, because this API provides mechanisms to access
detailsthat are specific to a particular device.

5.2.1 The MIDP GUI Model

Here's how the MIDP GUI model works, in anutshell. In order to show something on aMIDP
device, you'll need to obtain the device's display, which is represented by the
jJavax.microedition. Icdui.Display class. TheDisplay classisthe one and only
display manager that isinstantiated for each active MIDlet and provides methods to retrieve
information about the device's display capabilities.

Obtaining the device's display is easy. However, this object by itself isn't very interesting. Instead,
the more interesting abstraction is the screen, which encapsulates and organizes graphics objects
and coordinates user input through the device. Screens are represented by the
Javax.microedition. Icdui .Screen object and are shown by the Display object by
caling its setCurrent() method. There can be several screensin an application, but only one
screen at atime can be visible (or current) in adisplay, and the user can traverse only through the
items on that screen. Figure 5-1 shows the one-to-many relationship between the display and its
screens.

Figure 5-1. Relationship between display and screens

isplay
Famll -]

IChonse one
plethiod of payment
oz I
MasterCard
Ame
Sereen Sreen
Famil Eh Fauil [l
Choose one IConfiguring App
ethod of peyment Frogress
- —— {1
Mester Cad

[Current)
There are three types of screensin the MIDP GUI:

e Screensthat entirely encapsulate a complex user interface component, suchasaList or
TextBox component (the L ist component isshown in Figure 5-8 and the TextBox
component is shown in Figure 5-5). The structure of these screensis predefined, and the
application cannot add other components to these screens.

e Generic screensthat use a Form component. The application can add text, images, and a
simple set of related Ul components to the form, which acts as a container.

e Screens used within the context of the low-level API, such as a subclass of the Canvas or
Graphics class.

49

5.2.2 The Icdui Package

All MIDP GUI

classes are contained in the javax.microedition. lcdui package. This

package contains three interfaces and twenty-one classes, as shown in Table 5-1 and Table 5-2.

Table 5-1. lcdui interfaces

Interface Description
Choice Definesan API for a user interface component that implements a
selection from a predefined number of choices
CommandListener Used by app_lications that need to receive high-level events from
implementations
- Used by applications that need to receive events that indicate changesin
I'tenStatelistener the internal state of the interactive items
Table 5-2. Icdui classes
| Class | Description
Alert A screen that shows data to the user and waits for a certain period of time before
proceeding to the next screen.
AlertType A utility classthat indicates the nature of the alert.
C The base class for writing applications that need to handle low-level events and to
anvas . ; ! .
issue graphics calls for drawing to the display.
‘Cho iceGroup \A group of selectable elements intended to be placed within a Form.
|Command /A construct that encapsul ates the semantic information of an action.
_ An editable component for presenting calendar data and time information that
DateField .
may be placed into aForm.
- A utility that represents the manager of the display and input devices of the
Display
system.
Displayable \An object that has the capability of being placed on the display.
Font A utility that represents font and font metrics.
Form A screen that contains an arbitrary mixture of items (images, text, text fields, or
choice groups, for instance).
Gauge A utility that implements a bar graph display of avalue intended for usein aform.
Graphics A utility that provides a simple two-dimensional geometric rendering capability.
Image A utility that holds graphical image data.
Image I tem 2 eL::iIity that provides layout control when Image objects are added to aform or
Item A superclassfor all components that can be added to aForm or Alert.
LList /A screen containing alist of choices.
\Screen \The superclass of al high-level user interface classes.
Stringltem |Anitemthat can containaString.
TextBox A screen that allows the user to enter and edit text.
TextField |An editable text component that can be placed into aForm.
Ticker A ticker-type piece of text that runs continuously across the display. It can be
attached to all screen types except Canvas.

The class diagram in Figure 5-2 shows the major classes and the relationships between them.

Figure 5-2. Class diagram of the major classes in the lcdui package

50

5.3 The High-Level MIDP APIs

Now, let's see how the various classes in the high-level API can be used to create GUI components.
We will cover two parts of this process: working with screens and the components that subclass
them, and working with forms and the components that can be arranged in them.

5.3.1 Working with Screens

Having seen an example of a screen, afew questions immediately come to mind: how do you
manage screens, how do you navigate through them, and how do you manage the display and the
input devices? The answer isthat all this functionality isimplemented by the Display class,
which includes methods for requesting that objects be displayed on the device, and for retrieving
properties of the device.

5.3.1.1 Display

A reference to the device's display can be obtained by providing a MIDlet reference to the
static getDisplay() method.

public static Display getDisplay(MIDlet c);

Thisistypically done in the startApp() method of a MIDlet, asfollows:

public class MyMIDlet extends MIDlet {
Display display = null;

public MyMIDlet() { // constructor
¥

public void startApp() {
display = Display.getDisplay(this);

// other methods

51

o The getDisplay() method should be called after the beginning of the
s MIDlet's startApp() method, as shown earlier. It should never be
‘. @5 called from the MIDlet's constructor, as per the MIDP specification, as it
" may not be properly initialized by the application manager at that time.

After you obtain areference to the device's display, you simply need to create a GUI component to
show. Note that all of the GUI components in Figure 5-2 implement the Displayable abstract
class. Y ou can pass the GUI component you create to one of Display'stwo setCurrent()
methods:

public void setCurrent(Displayable d);
public void setCurrent(Alert alert, Displayable d);

The second method is used when you want to show atemporary aert message followed by the
displayable GUI element. Well discuss dertslater on in this chapter.

To find out what is currently being displayed on the device, use the getCurrent() method,
which returns areference to the Displayabl e object that is currently being displayed.

public Displayable getCurrent();

In addition, the Display class (which isreally the manager of the device) provides two methods
for querying the display to determine the types of colors it supports:

public void boolean isColor();
public int numColors();

The first method, isColor (), returns aboolean: true if the device supports color and false if
it only supports grayscale. The numColors() method returns an integer number of distinct
colors supported by the device.

5.3.1.2 Screen

As we mentioned before, the basic unit of interaction between the user and the device is the screen,
which is an object that encapsul ates device-specific graphics user input. As you can see from the
class diagram in Figure 5-2, there are four types of high-level screens, shown by the subclasses:
TextBox, List, Alert, and Form.

However, Screen is an abstract class with some functionality of its own. Every Screen can
have two additional characteristics: atitle and aticker. The screen titleissimply aString that
appears above the screen contents. The ticker is agraphical component that appears above the title
and can be used to scroll information across to the user. Both are optional, athough the title will
default to astandard string. If the ticker is omitted, it is not shown at al and the space is given
instead to the screen. We'll discuss the Ticker component shortly. However, Figure 5-3 shows
the relative positions of the title and the ticker propertiesin aScreen object.

Figure 5-3. Titles and tickers on a screen

52

b Ticker
—Title

b—Acreen conterits {e.g. List)

The following methods of the Screen class can be used to set and retrieve the title and the ticker,
respectively.

public void setTitle(String title);
public String getTitle();

public void setTicker(Ticker ticker);
public Ticker getTicker();

5.3.1.3 Ticker

The Ticker classimplements atickertape, or a piece of text that runs continuously across the
display. A ticker can be attached to one or more of the four screens discussed earlier, namely:
Alert, TextBox, List, and Form. To create aticker object, use the Ticker constructor:

public Ticker(String str);
Y ou can access the string used in the ticker with the following methods:

public String getString();
public void setString(String s);

Once aticker is created, it can be attached to a screen using the screen's setTicker () method.
For example, the following snippet of code creates aL i st screen and attaches aticker to it:

Display display = Display.getDisplay(this);

List list = new List(""Trade Stocks', Choice.EXCLUSIVE);
list.append("'Buy", null);

list_append(Sell™”, null);

list.setTicker(new Ticker(*Welcome to my discount broker™));
display.setCurrent(list);

Figure 5-4 shows what aticker looks like. It islocated above the Li st component in the display.
Figure 5-4. An example of a ticker

Tl =
o my discourd brok f—Tjcker
Trade Stocks

There are afew points to note about aticker:

e No method calls are provided for starting and stopping the ticker.

e Theticker string scrolls continuously. In other words, when the string finishes scrolling
off the display, the ticker starts over at the beginning of the string. It may help to add
some spaces at the end of the ticker string so the message ends do not appear tied together.

53

e Thedirection and the speed of the scrolling are determined by the MIDP implementation.
5.3.1.4 TextBox

A TextBox object is ascreen that allows the user to enter and edit text. Y ou can use a TextBox
if your MIDlet needs some kind of input such as a name, a phone number, an email address, or a
password. To create a TextBox object, you need to specify four parameters, as shown in the
TextBox's constructor:

public TextBox(String title, String text, int maxSize, int constraints);

The title isreused asthe screen title, while the text and maxSize are used to determine the
initial (or default) text and maximum size of the text box. Finally, constraints can be used to limit
the user'sinput. The constraints used are static constant integers of the TextField class, which
are shared between TextField and TextBox, and are asfollows:
TextField.ANY

The user is allowed to enter any character.
TextField.EMAILADDR

Input must be an email address.
TextField.NUMBER

Input must be an integer value.

TextField.PASSWD

The text entered will be masked (replaced by asterisks), so the characters typed are not
visible.

TextField.PHONENUMBER

Input must be a phone number.
TextField.URL

Input must be a URL.

If you use a constraint other than TextField.ANY, the implementation will perform validation
to make sure that the characters that are input conform to the requested type. (For example,
TextField.NUMBER will not alow lettersto be entered.) Thisisthe only validation that is
performed.

Note that the TextField.PASSWD constraint can be combined with any of the other constraints
using the bitwise OR "[" operator. For example, if you wanted to create a TextBox that
constrained input to a phone number but also wanted to keep the entered data hidden, you would
create the object asfollows:

TextBox t = new TextBox(“Tel™, ", 12, TextField.PHONENUMBER |
TextField.PASSWD);

If you wish to set or retrieve the current constraints that are active for the TextBox, use the
following methods:

public int getConstraints();
public void setConstrants(int c);

Ancther thing that we should point out is that atext box has a capacity , or amaximum size,
which is the number of characters of text that it can hold. However, each MIDP implementation
may place a boundary on the maximum size, which could be smaller than the size the application
requested. The maximum size imposed by the implementation can be retrieved using the
getMaxSize() method and (potentially) reset using the setMaxSize () method.

public int getMaxSize();
public void setMaxSize(int size);

A well-written MIDP application should always compare the requested size against the current
maximum size.

o &

o In the current MIDP reference implementation from Sun Microsystems,
ar getMaxSize() aways returns the requested size by the MIDIet. But
**. 4= don't let that get you out of the habit of checking.

You can set or retrieve the entire text in the TextBox with the setString() and getString()
methods:

public String getString();
public void setString(String s);

In addition, if you would like to see the number of charactersin the text that has been entered, use
the size () method, which returns an integer:

public int size();

Y ou can aso manipulate the text in the TextBox quite easily by deleting, inserting, or replacing
the current text using the following methods:

public void delete(int offset, int length);

public void insert(char[] data, int offset, int length, int position);
public void insert(String src, int position);

public void setChars(char[] data, int offset, int length);

Finaly, if you want to find out which position the caret, a'so known as the insertion beam, is
currently in front of, TextBox includes the following method:

public int getCaretPosition();

Here's a simple example. The following snippet of code creates a TextBox object with the label
"TextBox" and initial text set to "Thisisatext box". The maximum sizeis 20 characters, which
can be any type of characters.

TextBox tb = new TextBox(''TextBox"™, "This is a textbox"™, 20, TextField.ANY);
Display display = Display.getDisplay(this);
display.setCurrent(tb);

55

If you write a complete MIDlet and run it in an emulator, you will see something similar to Figure
5-5. Notethat if the text to be displayed is larger than the size of one screen, the implementation
will let the user scroll to view and edit any part of the text. How thisis done is implementation-
dependent.

Figure 5-5. A TextBox example

T will AEC =
TewtBox
ThIZ 15 & tesdio

5.3.1.5 Alert

An aert isan ordinary screen that can contain text and an image. It informs the user about errors
and other exceptional conditions. An alert can either be modal or timed.

A modal alert remains on the screen until the user dismissesit, at which point it returns to either
the screen that was displayed before it, or a screen specifically chosen by the application. Thisis
useful if you require the user to make a choice. For example, you might display a message such as
"Areyou sure?' and offer "Yes" and "No" options. Note that a MIDP implementation will
automatically provide away to dismiss a modal alert. Sun's reference implementation, for example,
provides aDone command mapped to a soft button.

A timed alert, on the other hand, is displayed for a certain amount of time (typically afew
seconds). It is useful for displaying an informative message that does not need to be acknowledged
by the user. For example, you might want to display a message that says Y our message has been
sent”. However, note that if you specify atimed alert that has too much content to be displayed all
at once, it automatically becomes amodal alert!

An alert can be created as an instance of the Al ert class, which has the following two
constructors:

public Alert(String title);
public Alert(String title, String alertText, Image alertlmage,
AlertType alertType);

Thefirst constructor creates atimed alert. However, as you probably noticed, the timeout value is
not specified in the constructor. Instead, the alert will use the default timeout value, which can be
obtained for each device using the immutable getDefaul tTimeout() method. If you want to
change the aert's timeout, use the setTimeout() method with an integer that specifies the
timeout in milliseconds. To obtain the current timeout for the alert, use the getTimeout()
method.

public int getDefaultTimeout();
public int getTimeout();
public void setTimeout(int t);

For example, the following snippet of code creates atimed alert with atimeout value set to four
seconds:

Alert alert = new Alert("title™);
alert_setTimeout(4000);

56

Y ou can aso passin the constant value Alert . FOREVER. Thiswill keep the alert up indefinitely,
which has the side effect of turning atimed dialog into a modal dialog.

alert.setTimeout(Alert.FOREVER);

Y ou can create a more specialized alert using the second constructor. This constructor allows you
to associate an icon with the alert, using an Image object. Also, an alert may have atype
associated with it to provide an indication of the nature of the alert. The MIDP implementation
may use thistype to play an appropriate sound when the aert is presented to the user. The
AlertType class providesfive types of derts: AlertType.ALARM,
AlertType.CONFIRMATION, AlertType.ERROR, AlertType. INFO, and
AlertType.WARNING. As an example, the following snippet of code creates an alert of type
AlertType.CONFIRMATION, and it does nhot have an icon associated with it:

public Alert(String title, String messageString, Image alertlimage,
AlertType alertType);

Note that any or al of the parameters in the second constructor may be null if you wish to omit the
image, the title, the text, or the alert type. The additional properties set in the constructor each has
its own set of accessors within the Alert class:

public Image getlmage();

public String getString();

public AlertType getType();

public void setlmage(lmage img);
public void setString(String str);
public void setType(AlertType type);

Now, let's see examples of both timed and modal aerts. The following snippets of code create a
TextBox aobject and atimed alert. When the MIDIet is activated, the alert will be displayed, and
after five seconds the text box will be displayed automatically, courtesy of the
Display.setCurrent() method.

TextBox tb = new TextBox(''text box',
"Welcome to MIDP GUI Programming'™, 40, TextField.ANY);
Alert timedAlert = new Alert('Confirmation®,
"Your message has been sent!™, null, AlertType.CONFIRMATION);
TimedAlert._setTimeout(5000);
Display display = Display.getDisplay(this);
Display.setCurrent(timedAlert, tb);

Figure 5-6 shows how the code above is displayed. The alert, which says ™Y our message has been
sent!" isdisplayed first. After five seconds, the current display returns to the text box that says
"Welcome to MIDP GUI Programming."

Figure 5-6. An example of a timed alert

Taml B | | T ol RET (=]
Confirmation TextBox

VO MEssage Nas | | |yaeicome to MIDP
Ean sent! LI Programeming

Asyou can see from the previous example, timed alerts do not need user intervention. On the
other hand, modal alerts stay up until the user dismisses them, as shown in the following example.

57

TextBox tb = new TextBox(''text box', "Welcome to MIDP Programming',
40, Textfield.ANY);
Alert modalAert = new Alert("Error",
“"Network error. Please try again later.",
null, AlertType.ERROR);
modalAlert._setTimeout(Alert_FOREVER);
Display display = Display.getDisplay(this);
display.setCurrent(modalAlert, tb);

In this case, the network error screen stays up until the user dismissesit, using the soft button that
corresponds to the Done command, as shown in Figure 5-7. The Done command, for modal aerts,
is provided automatically by Sun's MIDP reference implementation. In this example, the text box
screen becomes the current screen only after the user dismisses the alert.

Figure 5-7. An example of a modal alert

T unl B | | T wml REC B
etwork Error TewxtBox
Is] Cm&eu::hnn-. Welcome 1o MIDP
leseza try again Ll Broor amming

afer.

Dang

5.3.1.6 List

A list isascreen containing selectable choices. Both List and ChoiceGroup have common
behavior defined by the Choi ce interface. The user can interact with alist by moving from
element to element. Note that this high-level API interaction does not cause any programming
events to be fired back to the application. That only occurs when a selection has been made.

A list can be created as an instance of the Li st class, which has the following two constructors:

public List(String title, int listType);
public List(String title, int listType, String[] stringElements,
Image[] imageElements);

The first constructor is used to create an empty list, specifying the title and the type of the list.
There are three types of list choices that can be passed in for the second parameter: IMPLICIT,
EXCLUSIVE, and MULT IPLE. These options can be specified using the constants provided in the
Choice interface, which isimplemented by the List class.

e AnEXCLUSIVE type of list has no more than one choice selected at atime, which is
similar to agroup of radio buttonsin the AWT world.

e AnIMPLICIT typeisan EXCLUSIVE choice where the focused choiceisimplicitly
selected, much like a drop-down menu.

e TheMULTIPLE typeisalist that can have arbitrary number of choices selected at atime,
and presents itself as a series of checkboxes.

As an example, the following snippet of code creates alist of type EXCLUSIVE, thetitle of which
is"Choose one".

List list = new List("’Choose one"™, Choice.EXCLUSIVE);

Once you have created an empty list, you can insert, append, or replace choicesin the list. Each
choice has an integer index that representsiits position in the list. The first choice starts at 0 and

58

extends to the current size of the list minus one. The Li st class provides the following methods
for these operations.

public int append(String stringElement, Image imageElement);
public void insert(int index, String stringElement, Image imageElement);
public void set(int index, String stringElement, Image imageElement);

Note that a choice is composed of atext string and an optional image. For example, hereis how to
add a couple of choicesto the earlier list. Note that the append () method returns the index that
was assigned to the choice that was passed in, in case we might need it later.

int savelndex = list.append(‘'save”™, null);
int deletelndex = list.append(*“'delete™, null);

Y ou can delete any index in the list using the following method:

public void delete(int index);

If you want to retrieve the string el ement or the image element for any index, the following
methods will do the trick:

public String getString(int index);
public Image getlmage(int index);

If you want to set, unset, or retrieve the currently selected index in the list, or query any index to
seeif itis currently selected, use the following methods:

public int getSelectedIndex()
public boolean isSelected(int index);
public setSelectedIndex(int index, boolean selected);

Finally, you can use a boolean array to set the selection state of the entire list. Thisis known asthe
selection flag, and can be accessed using the following methods. Note that the
getSelectedFlags() method does not return a boolean array, but instead modifies one that
has been passed in (and returns the number of elements that are selected as an integer); thisisa
common optimization technique that prevents the creation of a new array each time the method is
called. The array must be at least as long as the number of elementsin thelist. If it islonger, then
the array elements beyond it are set to false.

public int getSelectedFlags(boolean[] selectedArray);
public void setSelectedFlags(boolean[] selectedArray);

For alist of type MULTIPLE, the setSelectedFlags() method sets the selected state of every
element in the list. For alist of type EXCLUSIVE or IMPLICIT, exactly one element in the
boolean array must be set to true; if no element is true, then the first element will be selected.
If two or more elements are true, the implementation chooses the first true element and selectsiit.

Let's look at some examples of the List component. The following snippet of code shows an
example where alist of type EXCLUSIVE is created and displayed:

Display display = Display.getDisplay(this);
List menu = new List("Edit", Choice.EXCLUSIVE);
menu.append(*'Save');

menu.append(*'Move to');

menu.append('delete™);
display.setCurrent(menu);

59

In thislist, only one choice can be selected, as shown in Figure 5-8.

Figure 5-8. A list of an EXCLUSIVE choice

T il =1l
ssage
Sawe
Mowe to

Bre-e ||

If you change the type of the list to IMPLICIT, then the result would be similar to Figure 5-9.
Note that the radio buttons have disappeared.

Figure 5-9. A list of an IMPLICIT choice

T il ==t
ssage

avs

elete

Similar to an EXCLUSIVE type, only one choice can be selected at atime in this list; however, the
focused choice will be implicitly selected, instead of having to select it to color in acircle on the
left. Thethird type of list isSMULT IPLE, where multiple selections can be made, as shown in
Figure 5-10.

Figure 5-10. A list of a MULTIPLE choice

atendsta com

Aswe mentioned before, choicesin alist are referred to by indices, which are consecutive integers
in the range zero to the size of thelist, minus 1 (e.g., size() - 1).Zero (0) refersto thefirst
choiceand size() - 1 referstothelast choice. For example, to delete the "Move To" choicein
Figure 5-9:

list_delete(1);

Here, we use the second L i st constructor to create alist, specifying itstitle, the type of thelist,
and an array of strings and imagesto be used asitsinitial contents. The following code creates a
list with two initial choices and no images:

List list2 = new List(""Make a selection™, Choice.EXCLUSIVE,
{"Add", "Delete"}, null);

60

The number of elementsin thelist is determined by the length of the stringElements array
passed into the constructor, which cannot be nul I. The imageElements array, however, can be
null. However, if itisnon-nul I, it must be the same length asthe stringElements array.

5.3.2 Working with Forms

In addition to screen-based components, you also have the ability to use forms to combine
multiple components into one screen. This section discusses the Form class aswell asthe
components that can be placed on aform.

5.3.2.1 Form

A Form object is a screen that contains an arbitrary mixture of items, including read-only and
editable text fields, images, date fields, gauges, and choice groups. As we mentioned before, any
subclass of the Item class (which well discuss shortly) can be placed on a Form object. The
Form class has the following two constructors:

public Form(String title);
public Form(String title, Item[] items);

Thefirst constructor is used to create a new empty form, specifying only itstitle. The second
constructor is used to create a new form with atitle and initial contents. As an example, the
following line of code creates an empty form that has the title "Choose an Item”, as shown in
Figure 5-11. Thisis basically aregular screen.

Figure 5-11. An empty form

Form form = new Form(*'Choose an Item');

The Form object does not use any sort of layout manager. Instead, the Form object will arrange its
components much like alist, usually top to bottom. And like the choices within alist, items within

aform can be edited using appropriate operations such asinsert, append, and delete. The methods

of the Form class, along with their signatures, are listed below.

First, to append an image to the end of the form, you can use the following method:

public int append(Image img);

This method appends an object that subclasses the 1tem object:

public int append(ltem item);

Y ou can aso append a generic string, using the following method:

public int append(String str);

This method deletes the item at the given position in the form, shrinking the size of the form by
one.

61

public void delete(int itemNum):

Y ou can access any item in the form at its given position using the following method. The
contents of the form will be left unchanged.

public Item get(int itemNum);

This method inserts an item in the form just prior to the index specified:

public void insert(int itemNum, lItem item);

The following method replaces the previous item by setting the item referenced by i temNum to
the specified 1tem given:

public int set(int itemNum, Item item);

Finaly, in order to find the current number of itemsthat are in the form, use the size () method:

public int size();

The GUI components that can be placed on aform are the following: ChoiceGroup,
DateField, Gauge, Imageltem, Stringltem, and TextField. All of theseitems are
subclasses of the 1 tem abstract class. We will see how to place these items on aform shortly. But
first, let's introduce each one in turn.

5.3.2.2 Item

The I'tem abstract class acts as the base class for al components that can be placed either on a
form or an alert. All 1tem objects have alabel (i.e., astring attached to the item), which can be
accessed using the following methods:

public String getLabel();
public void setLabel(String s);

These are the only two methods in this abstract class.
5.3.2.3 ChoiceGroup

A ChoiceGroup object represents a group of selectable choices to be placed on a Form object.
Similar to the List class, it implementsthe Choice interface. It also extends the 1tem abstract
class. This object may mandate that a single choice be made, or it may allow multiple choices. The
ChoiceGroup class has the following two constructors:

public ChoiceGroup(String label, int choiceType);
public ChoiceGroup(String label, int choiceType,
String[] stringElements, Image[] imageElements);

The first constructor is used to create an empty choice group, specifying its label and type. Since
this class implements the Choi ce interface, you might think that there are three types of choices
you can use. However, when using a choice group, only two choices are available: EXCLUSIVE
and MULTIPLE. The IMPLICIT typeis not available for use with a choice group, like it was with
the List component. There is no need to have a"menu” like choice field inside of aform.
(Remember that EXCLUSIVE is a choice having exactly one choice selected at atime; and

MULT IPLE isachoice that can have an arbitrary number of choices selected at atime.)

62

The second ChoiceGroup constructor can be used to create a new choice group, specifying its
title and type, as well as an array of strings and images to be used asitsinitial contents.

Once you have created an empty choice, you can insert, append, or replace choicesin it, exactly as
inaList component. Again, each choice has an integer index that represents its position in the
list. Thefirst choice starts at 0 and extends to the current size of thelist, minus one. The
ChoiceGroup class provides the following methods for these operations.

public int append(String stringElement, Image imageElement);
public void insert(int index, String stringElement, Image imageElement);
public void set(int index, String stringElement, Image imageElement);

Note that a choice is composed of atext string and an optional image. For example, hereis how to
add a couple of choicesto the earlier list. Note that the append () method returns the index that
was assigned to the choice that was passed in, in case we might need it later.

int savelndex = list.append(‘'save’, null);
int deletelndex = list.append(“'delete™, null);

In addition, you can delete any index in the choice group using the following method:

public void delete(int index);

If you want to retrieve the string element or the image element for any index, the following
methods are useful:

public String getString(int index);
public Image getlmage(int index);

If you want to set, unset, or retrieve the currently selected index in the choice group, or query any
index to seeif itis currently selected, use the following:

public int getSelectedIndex()
public boolean isSelected(int index);
public setSelectedIndex(int index, boolean selected);

Finaly, just as with the List component, you can use a boolean selection flags array to set the
selection state of the entire choice group. Again, the getSelectedFlags() method does not
return a boolean array, but instead modifies one that has been passed in (and returns the number of
elements that are selected as an integer as an optimization technique). The array must be at least as
long as the number of elementsin thelist. If it islonger, then the array elements beyond it are set
to false.

public int getSelectedFlags(boolean[] selectedArray);
public void setSelectedFlags(boolean[] selectedArray);

For alist of type MULTIPLE, the setSelectedFlags() method sets the selected state of every
element in thelist. For alist of type EXCLUSIVE, exactly one element in the boolean array must
be set to true; if no element is true, then the first element will be selected. If two or more
elements are true, the implementation chooses the first true element and selectsit.

The following snippet of code creates a new empty ChoiceGroup object whosetitleis
"Selection”, and whose type is EXCLUS I VE:

ChoiceGroup choices = new ChoiceGroup(*'Method of payment™,
Choice.EXCLUSIVE);

63

The following code adds several new choices to the choice group.

choices.append(**Visa™, null);
choices.append(*'"Master Card"™, null);
choices.append(*"Amex™, null);

Similar to choices within alist, choices within a choice group can be edited using the familiar
insert, append, and delete methods. In addition, choices are referred to by their indexes. For
example, to delete the last choice:

choices.delete(2);

It isimportant to note that once a choice group has been created and populated, it cannot be
displayed using setCurrent(), asalist can. A choice group is a subclass of item and has to be
placed on aform, which can in turn be displayed using setCurrent().

Form form = new Form("'Choose one');
form.append(choices);
Display.setCurrent(form);

Figure 5-12 shows an example of an EXCLUS1VE choice group, and Figure 5-13 shows an
example of aMULTIPLE choice group. Again, the IMPLICIT choiceis not available for use with
the ChoiceGroup class; if you attempt to useiit, an 1 I legal ArgumentException will be
thrown.

Figure 5-12. An EXCLUSIVE choice group

F antl [
hiose one

Method of payment

g |
MasterCard
Ame

Figure 5-13. A MULTIPLE group choice

5.3.2.4 DateField

A DateField abject is an editable component for representing calendar date and time
information that can be placed on aForm object. It can be configured to accept date or time
information, or both. A DateField object can be created using one of the following two
constructors:

public DateField(String label, int mode);
public DateField(String label, int mode, TimeZone timeZone);

64

Thefirst constructor is used to create aDateField object with the specified label and mode.
This mode can be specified providing one of the static fields: DateField.DATE,
DateField.TIME, or DateField.DATE_TIME. The DateField.DATE input mode allows
you to set date information, DateField. TIME alowsfor clock time information (hours and
minutes), and DateField.DATE_TIME alowsfor setting both.

The DateField object has the following methods to access the properties added onto the Form
object (remember that the label property is defined in the 1'tem abstract class):

public Date getDate()

public int getlnputMode()

public void setDate(Date date);
public void setlnputMode(int mode);

In addition, you can use the toString() method to output a string-based copy of the date or
time data.

public String toString();

As an example, the following code creates aDateField object with the label as"Today's date”
and the mode asDateField.DATE:

DateField date = new DateField(''Today"s date', DateField.DATE);

To display adatefield, first create a Form object, and then use the append () method of the form
to add the date field.

Form form = new Form("'Date Info'™);
form.append(date);
Display.setCurrent(form);

In this example, since the DATE input mode is selected, the MIDlet would display a <date> item
for the user to select, as shown in Figure 5-14. Once selected, it will display the current calendar
date, and you should be able to set anew date.

Figure 5-14. A date field representing the calendar date

Tl (=]
A0 k
Al p
i22448

6 T & 0iDiliz

121415 1617 18 19

I EE TE 1425 R

170 70 1091

Back Save

If theDateField.TIME input modeis used, the MIDlet would display a <time> item for the
user to select, as shown in Figure 5-15. Once selected, the current clock time information will be
displayed, and you can likewise set a new time.

Figure 5-15. A date field representing clock time information

65

I;nlll ==] D
Time Info at is the time 7

vwhat = the time?
!

@:DE Phele
Back Save

Finaly, if the DateField.DATE_TIME input mode is used, the MIDlet would display the items
<date> and <time> and you would be allowed to choose one at atime.

Note that you can initialize the date and time before displaying the component. Y ou can do so
using the following snippet of code:

d = new DateField("Today: ', DateField.DATE);
d.setDate(new Date()):

form = new Form("'Date & Time');
form._append(d); display.setCurrent(form);

At this point, the date field displays the current date and time, as shown in Figure 5-16.

Figure 5-16. A date field represented with the DATE_TIME constant

The second DateField constructor is used to create adate field specifying its label, input mode,
and time zone information. For example, the following snippet of code createsaDateField
object where the time zoneis GMT:

DateField date = new DateField(''date', DateField.DATE,
TimeZone.getTimeZone("'GMT™));

If the TimeZone field isnul I, the default time zone (based on the time zone where the program
isrunning) is used. Hence, the following two lines of code do exactly the same thing:

DateField datel = new DateField(''date™, DateField.DATE);
DateField date2 = new DateField(*'date’, DateField.DATE,
TimeZone.getDefault());

The TimeZone classis part of the java. uti I package, which has been inherited from the J2SE.
5.3.2.5 Gauge

A Gauge object represents a bar graph display that can be used within aform. The Gauge class
has the following constructor:

public Gauge(String label, boolean interactive, int maxValue,
int initialvalue);

This constructor is used to create a new Gauge object with the given label, in interactive or non-
interactive mode, with the given maximum and initial values. In interactive mode, the user is

66

allowed to modify the gauge's current value; in non-interactive mode, the user is not allowed to
change the value at dl (e.g., what you might see in a progress bar). Y ou can query whether the
gaugeis currently in interactive mode with the following method:

public boolean islInteractive();

The Gauge object also provides the following methods to access the current value and maximum
value properties that we saw in the constructor:

public int getMaxValue();

public int getValue();

public void setMaxValue(int maxValue);
public void setValue(int value);

A gauge will always maintain a current value between zero and the maximum val ue specified. For
example, the following snippet of code creates an interactive gauge where the maximum value is
20 and theinitial valueisO:

Gauge gauge = new Gauge(‘'graph, true, 20, 0);

Once aGauge object is created, it can be placed on aForm component, like the other components
that we've seen:

Form form = new Form(item');
form.append(gauge) ;

This interactive gauge is shown in Figure 5-17. Note that the style of the gauge is of an ascending
arc from right to left, as you might see on aLED volume control.

Figure 5-17. An example of an interactive gauge

If the gauge is used to reflect progress, the application will need to keep updating it. In this case, it
will need to keep areferenceto it handy and repeatedly call setValue () to reflect the current
progress.

The following snippet of code shows an example of a non-interactive gauge that reflects a
progress bar:

Display display = Display.getDisplay(this);

Gauge progressbar = new Gauge(''Progress', false, 20, 9);
Form form = new Form(*'Configuring App);
form.append(progressbar) ;

This progress bar is shown in Figure 5-18. Note here that the non-interactive form of agauge is
level from right to left.

Figure 5-18. A non-interactive gauge representing a progress bar

67

5.3.2.6 Image and Imageltem

An Image I tem object is an image component that contains a reference to an Image object. First,
let's briefly introduce the Image class. We will revisit it again later when we talk about low-level
APIs.

The Image classis used as a graphical image data holder. Depending on how they are created,
images can either be immutable or mutable. Immutable images are generally created by loading
image data from resource bundles, from files, or across a network. Once they are created, they
may not be modified. Mutable images, on the other hand, are created in off-screen memory and
can be modified.

Images that are to be placed within an Alert, Form, or Image I tem must be immutable, since
the implementation will use them to update the display without notifying the application.
Otherwise, the containing Alert or Form would have to be updated on every graphics call.

A mutable image can be created using one of the static create Image () methods of the Image
class.

public static Image createlmage(int width, int height);

The other three static create Image () methods are used to create immutable images:

public static Image createlmage(lmage image);

public static Image createlmage(String name);

public static Image createlmage(byte[] imageData, int imageOffset,
int imagelLength);

Here is an example of creating an immutable image from a graphicsfile:
Image image = Image.createlmage(''/Duke.png');
This image can then be placed on aForm object in the typical fashion:

Form form = new Form('‘Duke');
form.append(image) ;

Note that the graphics file has the extension png. This acronym stands for Portable Network
Graphics. All MIDP implementations are required to support images stored in at least Version 1.0
of PNG. As of thiswriting, no other graphics formats are accepted. Also, if you're using the
emulator within 22ME Wireless Toolkit's KToolbar application, note that the reference to Duke
using /duke.png means that the Duke is in the res directory, c:\j2mewtk\apps\Myproject\res.
Figure 5-19 depicts the screen shown with this example.

Figure 5-19. Placing an Image object on a form

68

The Image class has afew methods that can come in handy to discover the height, width, and
mutabl e status of any image:

public int getHeight(Q);
public int getWidth();
public boolean isMutable();

In addition, if the image is mutable, you can obtain aGraphics object of the image using the
following method. (We'l cover thisin much more detail when we discuss the low-level graphics
APL)

public Graphics getGraphics();

Now, let's see how to use the Image I tem class, which provides control and layout when Image
objects are added to aform or an aert. To create an Imageltem object, use the Image I tem
constructor:

public Imageltem(String label, Image img, int layout,
String altText);

This constructor is used to create a new immutable Image I tem object with a given label, image,
layout directive, and alternative text string. The al tText parameter specifies a string to be
displayed in place of theimage if it exceeds the capacity of the display. The layout parameter isa
combination of the following values, which are static field members of the Image I tem class:
Imageltem.LAYOUT CENTER

The image should be horizontally centered.
Imageltem.LAYOUT_DEFAULT

Y ou should use the default formatting of the container of the image.
Imageltem.LAYOUT LEFT

The image should be close to the left edge of the drawing area.
Imageltem.LAYOUT_NEWLINE_AFTER

A new line should be started after the image is drawn.
Imageltem.LAYOUT NEWLINE BEFORE

A new line should be started before the image is drawn.

Imageltem.LAYOUT_RIGHT

69

The image should be close to the right edge of the drawing area.
There are some rules on how the above layout values can be combined:

e Imageltem.LAYOUT DEFAULT cannot be combined with any other directive.

e Imageltem.LAYOUT LEFT, Imageltem.LAYOUT RIGHT, and
Imageltem.LAYOUT_CENTER are mutually exclusive.

e Youcancombine Imageltem.LAYOUT_LEFT, Imageltem.LAYOUT_RIGHT, and
Imageltem.LAYOUT CENTER with Image ltem.LAYOUT NEWLINE_AFTER and
Imageltem.LAYOUT_NEWLINE_BEFORE

il The layout directives serve merely as a hint, but it may be ignored by the

';._ implementation. Such is the case with Sun's MIDP reference
“ 4. implementation.

iyt

The Image I tem class also contains the following methods to access the properties that we just
saw in the constructor:

public String getAltText();

public Image getlmage();

public int getLayout();

public void setAltText(String altText);
public void setlmage(lmage img);

public void setLayout(int layout);

o, to create an Image I 'tem object, use the above Image I tem constructor:

Image img = Image.createlmage(*'/Duke._png™);
Imageltem imageltem = new Imageltem(*Image’™, img,
Imageltem_.LAYOUT_CENTER, "img"™);

Form form = new Form('‘Duke');
form.append(imageltem);

This example would produce a screen similar to that in Figure 5-19, except that this one would
have atitle for the Image I tem object.

5.3.2.7 Stringltem

A Stringltem object isatext component item that may contain a string that cannot be edited by
theuser. A Stringltem hasalabel that can be modified by the application. The contents of
Stringltem can be modified by the application as well. Here is the constructor:

public Stringltem(String label, String contents);

Creating aStringltem object is easy:

Stringltem si = new Stringltem('label’, '"contents™);

The setText() and getText() methods are used to set and get the String I tem contents; the
setLabel () and getLabel () methods, which are defined in the 1 tem abstract class, are used
to set and get the label of the Stringltem:

public void setText(String Ss);
public void setLabel(String 1);

70

public String getText();
public String getLabel();

The following snippet of code creates a Stringltem object and placesit within aForm object.
The form is then set to be the current screen, as shown in Figure 5-20.

Figure 5-20. The user cannot edit the contents of a Stringltem object

Tartll ==
Greetings

Siring tem:
Helo Wiord!

Display display = display.getDisplay(this);

Stringltem si = new Stringltem(*"String item:\n", "Hello World!");
Form form = new Form("'Greetings'™);

form.append(si);

display.setCurrent(form);

5.3.2.8 TextField

UnlikeStringltem, aTextField object is an editable text component that may be placed on a
Form. Similar to a TextBox, however, aTextField has a capacity (or amaximum size), which
is the number of charactersthat can be stored in the object. Again, the MIDP implementation may
place a boundary on the maximum size, which could be smaller than the size the application
requested. The maximum size imposed by the implementation can be retrieved using
getMaxSize(). But, as mentioned earlier, in Sun's MIDP reference implementation, the
getMaxSize() method returns the size requested by the application.

UseaTextField object if your MIDlet requires input from the user. A TextField object can
be created as an instance of the TextField class, which has the following constructor:

public TextField(String label, String text, int maxSize, int
constraints);

This constructor is used to create anew TextField object with the given label, initia contents,
maximum size in characters, and constraints. The constraints field is used to limit the user's input.
The constraints are the TextField's static constants, which are shared with TextBox as
discussed earlier, and they are: TextField.ANY, TextField.EMAILADDR,
TextField.NUMBER, TextField.PASSWD, TextField.PHONENUMBER, and
TextField.URL. Again, if you use a constraint other than TextField.ANY, the TextField
will perform a simple validation to make sure that the characters that are input are of the requested

type.

If you wish to set or retrieve the current constraints that are active for the TextField, usethe
following methods:

public int getConstraints();
public void setConstrants(int c);

The maximum size imposed by the implementation can be retrieved using the getMaxSize ()
method, and (potentially) reset using the setMaxSize () method.

public int getMaxSize();
public void setMaxSize(int size);

71

Y ou can set or retrieve the entire text in the TextField with the setString() and
getString() methods:

public String getString();
public void setString(String s);

In addition, if you would like to see the number of charactersin the text that has been entered, use
the size () method, which returns an integer:

public int size();

The methods to delete, insert, or replace the current text are identical to TextBox:

public void delete(int offset, int length);

public void insert(char[] data, int offset, int length, int position);
public void insert(String src, int position);

public void setChars(char[] data, int offset, int length);

Finaly, if you want to find out which position the caret, also known as the insertion beam, is
currently in front of, TextField includes the following method:

public int getCaretPosition();

The following code shows this component in action. It creates alogin form with two text fields,
one for loginlD and the other for the password. Once started, you can enter your username and a
password, as shown in Figure 5-21.

Figure 5-21. Example of TextField

I‘Fnlll =1
b bn
L ogmniCr

omEhemoL

Fazzworct

e

+*

Display display = Display.getDisplay(this);

TextField userName = new TextField("LoginlID:", ", 10,
TextField.ANY);

TextField password = new TextField(*'Password:", "', 10,
TextField.PASSWORD) ;

Form form = new Form(*'Sign in"™);

form.append(userName) ;

form.append(password) ;

display.setCurrent(form);

5.4 Creating Low-Level GUI Components

In the high-level API, you have no control of what is displayed on the screen and very little
freedom to "play" with the components programmatically. The implementation is responsible for
selecting the best approach for the device. Some applications, however, such as games, may need
more control over what is drawn on the screen. The MIDP javax.microedition. Icdui
package also provides alow-level API for handling such cases.

72

In order to directly draw lines, text, and shapes on the screen, you must use the Canvas class. The
Canvas class provides a blank screen on which aMIDlet can draw. For example, let's draw the
string "HellowWorld" on the screen. There's asimple way to do this: subclass the Canvas class,
which is an abstract class that extendsDisplayable, and override the paint() method. The
resulting class, MyCanvas, is shown in Example 5-1.

The implementation of the paint() method uses the drawing capabilities of the
jJavax.microedition. Icdui .Graphics class. In the paint() method, the drawing color
is set to red, then arectangle isdrawn in the current color. The methods getWidth() and
getHeight() return the width and height of the Canvas, respectively. The next call to
setColor () setsthe drawing color to white; then the string "Hello World!" is drawn in the top
left corner of the screen.

Example 5-1. Subclassing Canvas

import javax.microedition.lcdui.*;

public class MyCanvas extends Canvas {
public void paint(Graphics g) {
g.setColor(255, 0, 0);
g-FillRect(0, 0, getWidth(), getHeight());
g.setColor (255, 255, 255);
g-drawString("'Hello World!", O, O, g-TOP | g-LEFT);
¥
}

Now, in order to view the MyCanvas, it must be instantiated and displayed. Since Canvas isa
subclass of Displayable, it can be displayed the same way any other screen using the
setCurrent() method. Example 5-2 shows the resulting MIDIet.

Example 5-2. Instantiating and displaying MyCanvas

import javax.microedition.midlet._*;
import javax.microedition.lcdui.*;

public class MyMidlet extends MIDlet {
public MyMidlet() { // constructor

}

public void startApp() {
Canvas canvas = new MyCanvas();
Display display = Display.getDisplay(this);
display.setCurrent(canvas);

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {

}
}

If you run thisin the Wireless Toolkit emulator, you will see something similar to Figure 5-22.
Note from Example 5-1 that the colors are set to red and white, but since a grayscale display is
being used, the colors are mapped to appropriate shades of black and white. Try switching
displays to see which devices give a better feel for the colors.

Figure 5-22. Drawing "Hello World!" on a Canvas

73

5.4.1 Drawing Graphics

The (0,0) coordinate represents the upper left corner of the display. The numeric value of the x-
coordinate increases from left to right, and the numeric value of the y-coordinate increases from
top to bottom. A pplications should always check the dimensions of the drawing area by using the
following methods of the Canvas class:

public int getHeight();
public int getWidth(Q);

These two methods return the height and width of the displayable area in pixels, respectively.

The drawing model used is called pixel replacement. It works by replacing the destination pixel
value with the current pixel value specified in the graphics objects being used for rendering. A 24-
bit color mode is provided with 8 bits each for Red, Green, and Blue (RGB). However, since not
all devices support color, colors requested by applications will be mapped into colors available on
the devices. A well-written application, however, may check if a device supports color. This can
be done using the isColor () and numColors() methods of the Display class, which we
covered earlier in the chapter.

The Graphics class provides the setColor () and getColor () methods for setting and
getting the color. Unlike the AWT/Swing, however, thereis no setBackground() and
setForeground(), so you need to explicitly call il IRect(), asshownin Example 5-1.
Most of the other methods in the Graphics class are self-explanatory and similar to methodsin
the AWT version of this class. However, let's go over afew of them here to see how they work in
the 22M E environment.

5.4.2 Double Buffering

The double buffering technique is often used to perform smooth effect animation. In this
technique, you do not draw to the display, but instead to a copy of the display (an off-screen buffer)
that is maintained in memory. When you are done drawing to the buffer, you then copy the
contents of the buffer to the display. The rationale here is that copying the contents of memory to
the display isfaster than drawing by using primitives.

To implement double buffering, first create a mutable image with the size of the screen:

int width = getWidth();
int height = getHeight();
Image buffer = Image.createlmage(width, height);

Next, obtain a graphics context for the buffer:

Graphics gc = buffer.getGraphics();

Now, you can draw to the buffer:

74

// animate
// ..
gc.drawRect(20, 20, 25, 30);

When you need to copy the buffer to the screen, you can override the paint() method to draw
the buffer to the device display:

public void paint(Graphics g) {
g-drawlmage(buffer, 0, 0, 0);
s

] Note that some MIDP implementations are already double-buffered, and
e . therefore this work may not be necessary. To check if the graphics are
' 4= double-buffered by an implementation, use the Canvas .
isDoubleBuffered() method.

5.4.3 Threading Issues

The MIDP GUI APIs are thread-safe. In other words, the methods can be called at any time from
any thread. The only exception isthe serviceRepaints() method of the Canvas class, which
immediately callsthe paint() method to force immediate repainting of the display. This means
that if paint() triesto synchronize on any object that is already locked by the application when
serviceRepaints() iscaled, the application will deadlock. To avoid deadlocks, do not lock
an object that will be used by the paint() method if serviceRepaints() isinvolved.

In addition, you can use the cal 1Serial ly() method of the Display classto execute code
after all pending repaints are served, as shown in the following segment of code:

class TestCanvas extends Canvas implements Runnable {
void doSomething() {
// code fragment 1
callSerially(this);

}

public void run() {
// code fragment 2

+
}

Here, the object's run() method will be called after the initial call.
5.4.4 Fonts

Fonts cannot be created by applications. Instead, an application requests a font based on attributes
(i.e., size, face, style) and the underlying implementation will attempt to return afont that closely
resembles the requested font. The Font class represents various fonts and metrics. There are three
font attributes defined in the Font class, and each may have different values, asfollows:
Face

MONOSPACE, PROPORT IONAL, SYSTEM
Sze

SMALL, MEDIUM, LARGE

75

Syle
BOLD, ITALIC, PLAIN, UNDERLINED

For example, to specify amedium size font, use Font.S1ZE_MED IUM, and to specify an italic
style, use Font.STYLE_ITALIC, and so on. Valuesfor the style attributes may be combined
using the OR (]) operator; values for the other attributes may not be combined. For example, the
value of this style attribute specifies a plain, underlined font:

STYLE_PLAIN | STYLE_UNDERLINED

However, the following isillegal:
SIZE_SMALL | SIZE_MEDIUM
Thisisasoillegal:

FACE_SYSTEM | FACE_MONOSPACE

Each font in the system is actually implemented individually, so in order to obtain an object
representing afont, use the getFont () method. This method takes three arguments for the font
face, size, and style, respectively. For example, the following snippet of code obtains a Font
object with the specified face, style, and size attributes:

Font font = Font.getFont(FACE_SYSTEM, STYLE_PLAIN, SIZE_MEDIUM);

If amatching font does not exist, the implementation will attempt to provide the closest match,
which isawaysavalid Font object.

Once afont is abtained, you can use methods from the Font class to retrieve information about
that font. For example, you can use the methods getFace (), getSize(), and getStyle() to
retrieve information about the face, size, and style of the font, respectively.

Let'slook at an example. The code in Example 5-3 subclasses the Canvas class. In this example,
the drawing color is set to white, arectangle is drawn in the current color, then the drawing color
is set to black. The rest of the code draws the system fonts on the device screen, as shown in

Figure 5-23.

Figure 5-23. Drawing system fonts on the device screen

T ail ==
System Font
edum Size

old Style

Raike Shyks
Lindaringd Sty

Example 5-3. Using fonts

import javax.microedition.lcdui.*;

public class FontCanvas extends Canvas {
public void paint(Graphics g) {
g-setColor (OXFFFfff);
g.FillRect(0, 0, getWidth(), getHeight());

76

g.setColor(0x000000);

g.setFont(Font.getFont(Font.FACE_SYSTEM, Font.STYLE_PLAIN,
Font.SI1ZE_LARGE));

g.drawString("'System Font"™, O, O, g.LEFT | g.TOP);

g-setFont(Font.getFont(Font_FACE_SYSTEM, Font._STYLE_PLAIN,
Font.SIZE_MEDIUM));

-drawString(*'Medium Size"™, 0, 15, g.LEFT | g-TOP);

.setFont(Font.getFont(Font.FACE_SYSTEM, Font.STYLE_BOLD,
Font.SI1ZE_MEDIUM));

.drawString("'Bold Style"™, 0, 30, g.LEFT | g-TOP);

-setFont(Font.getFont(Font.FACE_SYSTEM, Font.STYLE_ITALIC,
Font.SIZE_MEDIUM));

.drawString(ltalic Style"™, 0, 45, g.LEFT | g-TOP);

-setFont(Font.getFont(Font.FACE_SYSTEM,
Font.STYLE_UNDERLINED, Font.SIZE_MEDIUM));

-drawString(*'Underlined Style™, 0, 60, g.-LEFT | g-TOP);

Q Q Q Q Q Q

«Q

}
}

Now, we instantiate the FontCanvas class and display it, as shown in Example 5-4.

Example 5-4. Instantiating and displaying the FontCanvas class

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class FontMidlet extends MIDlet {
public FontMidlet() { // constructor

}

public void startApp({
Canvas canvas = new FontCanvas();
Display display = Display.getDisplay(this);
display.setCurrent(canvas);

}

public void pauseApp() {
hs

public void destroyApp(boolean unconditional) {

}
}

5.4.5 Guidelines for GUI Programming for MIDP Devices

As we close this chapter, keep in mind some important guidelines when designing MIDlets with
graphical API functionality:

e Besureto makethe MIDlet user interface simple and easy to use. Remember that your
applicationswill likely be used by novice users who probably haven't used a 2ME-
enabled phone and may not be familiar with itsinterface.

e Usethe high-level API as much as possible, so that your MIDlets are portable across
different handheld devices.

e If your application requires you to use the low-level API, keep to the platform-
independent part of the low-level API. This means that your MIDlets should not assume
any other keys than those defined in the Canvas class. We'l discuss thisin more detail in
the next chapter.

e MIDlets should never assume any specific screen size; instead, they should query the size
of the display and adjust accordingly.

e Entering alphanumeric data through a handheld device can be tedious. If possible, provide
alist of choices from which the user can select.

77

Chapter 6. MIDP Events

In AWT and Swing, events are generated when a user interacts with an application. For example,
if the user selects Save from the File menu, the application is notified of this action and responds
to the generated event. The same model holds true for the MIDP. However, as mentioned in the
previous chapter, there are two MIDP user interface APIs. high-level and low-level. Therefore,
there are two kinds of events: high-level (such as selecting an item from alist) and low-level (such
as pressing a key on the device).

This chapter discusses event handling in the MIDP and shows, through examples, how to handle
high-level and low-level MIDP events generated by the components of the previous chapter. We
start with an explanation of asimple application of events: navigating between screens.

6.1 Screen Navigation

A MIDlet developer needs to provide ways for the user to navigate through the different screens
that make up the MIDIet. Because we can only show one screen at atime, however, we need to tie
amechanism to each screen that indicates to the MIDlet that the user has completed working with
the current Displayable screen. We can do this by using the Command class, which is part of
the javax.microedition. Icdui package. Let'stake acloser look at the Command class now.

6.1.1 Commands

Just like a design pattern with the same name, the Command class encapsul ates the semantic
information of an action. Note that it only contains information about a command, not the actual
functionality that is executed when a command is activated. Here is the constructor of the
Command class:

public Command(String label, int commandType, int priority);

Thisisthe only constructor for the Command class. Hence, creating a Command object is
extremely simple:

Command infoCommand = new Command('Info', Command.SCREEN, 2);

The Command class constructor takes three parameters, and therefore contains the following three
lightweight pieces of information: label, command type, and priority.

e Thelabel isastring used for the visual representation of the command. For example, the
label may appear next to a soft button on the device or as an element in a menu.

e The command type element specifies the command's intent. The predefined types are
actually static integers in the Command class: BACK, CANCEL, EXIT, HELP, I1TEM, OK,
SCREEN, and STOP.

e Thepriority value describes the importance of this command relative to other commands
on the screen. A priority value of 1 indicates the most important command; higher
priority values indicate commands of lesser importance.

Each component that extends Displayable (such as Screen or Canvas) has the following
methods available to it:

78

public void addCommand(Command c);
public void removeCommand(Command c);

These methods allow you to bind acommand to aDisplayable object. (That's pretty much all
of them; recall Figure 5-2.) When the MIDIlet executes, the device assigns avisua representation
of the command (typically a soft button or menu item) and chooses its placement based on the
command type, placing similar commands based on their priority values. Consider the following
example, where a TextBox object is created along with three commands. The commands are
added to the TextBox abject, and the current screen is then set to be the TextBox object:

Display display = Display.getDisplay(this);

TextBox tb = new TextBox(''MIDP', "Welcome to MIDP", 40,
TextField.ANY);

Command exitCommand new Command("Exit"™, Command.SCREEN, 1);

Command 1nfoCommand new Command(*'Info™, Command.SCREEN, 2);

Command buyCommand = new Command(*'Buy'', Command.SCREEN, 2);

tb.addCommand(exitCommand) ;

tb.addComment(infoCommand) ;

tb.addCommand (buyCommand) ;

display.setCurrent(tb);

Look carefully at what this code displaysin Figure 6-1. Here, the application manager maps the
Ex it command to the screen using the soft button on the lower left, but then creates aMenu
command to hold the Info and Buy commands. Clicking the right soft button under Menu takes
you to a screen with atwo-button menu: Info and Buy. Thisis because the Info and Buy
commands are of lesser priority than the Exit command.

Figure 6-1. Exit, Info, and Buy commands

o e

FirstMiDiet Mexu

ilaiceme to sI0F] | |1
2 Buy

|t Mo | Back

The genera strategy that the application manager will follow isto assign as many commands with
ahigh priority to as many soft buttons as are available. If there are not enough soft buttons, the
implementation will likely group the remaining in a secondary menu that can be selected using a
Menu soft button, as shown above. However, the exact rules for how each device handles this type
of situation are implementation-dependent.

The Command class provides only the following three methods for retrieving the type, label, and
priority values:

public int getCommandType();
public String getLabel();
public int getPriority();

Note that there is no way to reset these object properties once they are set in the constructor.

79

ol The MIDP Ul API lets you set up a screen with no commands, but thisis
o generally not useful because the user cannot move to another screen. It is
w 4= important to note that the Command class can be used with both the high-
" level and the low-level APIs. Hence, commands can be placed on Screen
objects aswell as Canvas objects.

Aswe mentioned before, the command itself only contains information about a command, not the
actual action that happens when a command is activated. The action is defined in a
CommandL istener, which is a callback object that is associated with the screen.

6.1.2 The CommandListener Interface

When a user interacts with aMIDIet, such as by selecting an itemin alist or interacting with a
Gauge, events are generated. Y our application is then notified to handle these events through the
use of callbacks. Callbacks are actually invocations of programmer-defined methods performed by
the underlying application in response to actions taken by a user at runtime.

Callbacks are used in many programming environments, especially in GUI construction kits. For
example, the AWT API makes heavy use of callbacks. When a user interacts with a component,
for example, the interface code calls back the computational code to respond to the user's action.

In some languages such as C/C++, callbacks are implemented by passing a function pointer to
another function. The receiving function uses the function pointer to invoke another function when
aparticular event occurs. Because the Java programming language does not have pointers,
however, callbacks are implemented with interfaces. An interface defines a set of methods, but
unlike a class, it does not implement their behavior. Instead, you provide interface method
implementations for the class that implements the interface.

There are four kinds of user interface callbacksin the MIDP:

e Abstract commands that are part of the high-level API

e Low-level eventsthat represent single-key presses and rel eases

e Cadlstothepaint() method of aCanvas class

e CadlstoaRunnable object's run() method, requested by a call to the
callSerially() method of theDisplay class

Note that all user-interface callbacks are serialized by the application manager. In other words,
they all occur one after another in asingle thread of execution, and never at the same time. User
interface callbacks are called as soon as the previous callback returns. In addition, the MIDP user
interface API is thread-safe and includes a mechanism for event synchronization. An application
can usethe callSerial ly() method of the Display classto execute an operation serially
with events.

Both Screen and Canvas objects can have listeners for commands that are sent when user
interaction occurs. For an object to be alistener, it must implement the CommandListener
interface. Y ou can register alistener by using the setCommandListener () method, whichis
part of the Displayable class and isinherited by both Screen and Canvas. Note that there
can only be one CommandL istener object for each Displayable that the MIDlet has created.

public void setCommandListener(CommandListener c);

The CommandListener interfaceisfor MIDlets that need to receive high-level eventsfrom the
implementation. This interface has one method that a listener must implement, which isthe
commandAction() method.

80

public void commandAction(Command c, Displayable d);

Thefirst parameter is a command object that identifies the command (if any) that has been added
to Displayable with the addCommand () method and invoked. The second parameter isthe
Displayable object where the event occurred.

6.1.2.1 Handling simple events

Let'slook at asimple example. In Example 6-1, aL i st component is created and filled with the
strings " 1tem1™, "1tem2™, " Item3™, and " Item4’ . The prepare() method is called
whenever an item is selected. The testltem#() methods (where # isanumber between 1 and 4)
each call the prepare() method and set the name of the menu.

Example 6-1. Handling high-level events

import javax.microedition.lcdui.*;
import javax.microedition.midlet._*;

public class EventExl extends MIDlet implements CommandListener {

// display manager
Display display = null;

// a menu with items
List menu = null; // main menu

// textbox
TextBox input = null;

// command

static final Command backCommand = new Command(‘‘Back™,
Command .BACK, 0);

static final Command mainMenuCommand = new Command(‘Main',
Command.SCREEN, 1);

static final Command exitCommand = new Command(“'Exit",
Command.STOP, 2);

String currentMenu = null;

// constructor
public EventEx1() {

}

/**
* Start the MIDlet by creating a list of items and associating
* the exit command with it.
*/

public void startApp() throws MIDlIetStateChangeException {
display = Display.getDisplay(this);
menu = new List("'Menu Items"™, Choice.IMPLICIT);
menu.append(*'lteml™”, null);
menu.append(*'l1tem2"”, null);
menu.append(*'1tem3"”, null);
menu.append(*'l1temd"”, null);
menu .addCommand (exitCommand) ;
menu.setCommandListener(this);

mainMenu();

}

public void pauseApp() {
display = null;
menu = null;

81

input = null;

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();
}

// main menu

void mainMenu() {
display.setCurrent(menu);
currentMenu = "Main"';

}

/**
* a generic method that will be called when any of
* the items on the list are selected.
*/

public void prepare() {
input = new TextBox(“'Enter some text: ', ", 5,
TextField.ANY);
input.addCommand(backCommand) ;
input.setCommandListener(this);
display.setCurrent(input);
}

/**
* Test iteml.
*/
public void testlteml() {
prepare();
currentMenu = "iteml";

}

/**
* Test item2.
*/
public void testltem2() {
prepare();
currentMenu = “item2";

}

/**
* Test item3.
*/
public void testltem3() {
prepare();
currentMenu = "item3";

}

/**
* Test item4.
*/
public void testltem4() {

prepare();
currentMenu = “item4";

¥
/**
* Handle events.
*/
public void commandAction(Command c, Displayable d) {
String label = c.getLabel();

it (label.equals("Exit™)) {

82

destroyApp(true);
} else if (label._equals(*'Back™)) {

if(currentMenu.equals(iteml™) ||
currentMenu.equals(item2™) ||
currentMenu.equals("item3™) ||
currentMenu.equals(itemd™)) {
// go back to menu
mainMenu();

¥

} else {
List down = (List)display.getCurrent();
switch(down.getSelectedIndex()) {
case 0: testlteml();break;

case 1: testltem2();break;
case 2: testltem3();break;
case 3: testltem4();break;

}
}
}
}

The EventEx1 classimplements the CommandL i stener interface by providing an
implementation for the commandAction() method. In thisimplementation, the label of the
command passed into the callback method is checked. If the label equalsExit, the MIDlet is
destroyed. If the label equals Back and the current menuis " I'tem1™, " 1tem2", "1 tem3", or
"1tem4", the program goes back to the main menu. Otherwise, the selected item is found and the
appropriate method is called. Note that when you have an item list, you can use the
Display.getCurrent() method to return the list, and then switch between the items to
determine which item is selected. If you run the EventEx1 MIDlet, you should see output similar

to Figure 6-2.

Figure 6-2. Handling high-level events

ol B | [Foul sbe = |
Ienu ems Enter zome [exl
Eem] Helo|
amd
Eme
Exil Back

6.1.2.2 Creating GUI components and handling events

Now let'slook at another example that demonstrates how to create various GUI components and

to handle their events. The MIDIet in this example allows you to test lists, forms, choices, gauges,
text fields, and text boxes. The EventEx2 MIDIlet shown in Example 6-2 makes use of the
following classes, listed in a phabetical order, from the javax.microedition. Icdui package
Alert, AlertType, Command, DateField, Display, Displayable, Form, Gauge, List,
TextBox, TextField, and Ticker, aswell asthe CommandListener interface.

Example 6-2. Constructing and testing GUl components

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class EventEx2 extends MIDlet implements CommandListener {
// display manager

Display display = null;

83

// a menu with items
List menu = null; // main menu

// list of choices
List choose = null;

// textbox
TextBox input

null;

// ticker
Ticker ticker = new Ticker(*Test GUI Components'™);

// alerts
final Alert soundAlert = new Alert(“sound Alert™);

// date
DateField date = new DateField("'Today"s date: ",
DateField.DATE);

// form
Form form = new Form("'Form for Stuff');

// gauge
Gauge gauge = new Gauge(''Gauge Label™, true, 10, 0);

// text field
TextField textfield = new TextField("'TextField Label', "abc",
50, 0);

// command

static final Command backCommand = new Command(‘'Back™,
Command .BACK, 0);

static final Command mainMenuCommand = new Command(‘Main',
Command.SCREEN, 1);

static final Command exitCommand = new Command(“Exit",
Command.STOP, 2);

String currentMenu = null;

// constructor.
public EventEx2() {
s

/**

* Start the MIDlet by creating a list of items and associating
* the exit command with it.

*/

public void startApp() throws MIDlIetStateChangeException {
display = Display.getDisplay(this);
menu = new List("'Test Components'™, Choice.IMPLICIT);
menu.append(*'Test TextBox'™, null);
menu.append("'Test List", null);
menu.append(*'Test Alert”, null);
menu.append(*'Test Date', null);
menu.append(*'Test Form"™, null);
menu .addCommand (exitCommand) ;
menu.setCommandListener(this);
menu.setTicker(ticker);

mainMenu(Q);

}

public void pauseApp() {
display = null;
choose = null;
menu = null;
ticker = null;

form = null;

input = null;

gauge = null;

textfield = null;
}

public void destroyApp(boolean unconditional) {
notifyDestroyed();
¥

// main menu
void mainMenu() {
display.setCurrent(menu);

currentMenu = "Main";
hs
/**
* Test the TextBox component.
*/

public void testTextBox() {

input = new TextBox(“'Enter Some Text:', "', 5,
TextField.ANY);

input_setTicker(new Ticker(“'testTextBox));
input.addCommand(backCommand) ;
input._setCommandListener(this);
input.setString(""");
display.setCurrent(input);

currentMenu = "input';
}
/**
* Test the List component.
*/

public void testList() {
choose = new List("Choose Items™, Choice.MULTIPLE);
choose.setTicker(new Ticker("listTest));
choose . addCommand (backCommand) ;
choose.setCommandListener(this);
choose.append(*'lItem 1, null);
choose.append(*'lItem 2', null);
choose.append(ltem 3", null);
display.setCurrent(choose);

currentMenu = "list";
}
/**
* Test the Alert component.
*/

public void testAlert() {
soundAlert.setType(AlertType.ERROR) ;
soundAlert.setString(""** ERROR **');
display.setCurrent(soundAlert);

/**
* Test the DateField component.
*/
public void testDate() {
java.util_Date now = new java.util_Date();
date.setDate(now) ;
Form £ = new Form("Today"s date');
f.append(date);
f.addCommand(backCommand) ;
T.setCommandListener(this);
display.setCurrent(f);
currentMenu = "date";

85

/**
* Test the Form component.
*/
public void testForm() {
form.append(gauge) ;
form.append(textfield);
form.addCommand(backCommand) ;
form.setCommandListener(this);
display.setCurrent(form);
currentMenu = "form";

}

/**
* Handle events.
*/
public void commandAction(Command c, Displayable d) {
String label = c.getLabel();
it (label.equals("Exit™)) {
destroyApp(true);
} else if (label.equals('Back™)) {
if(currentMenu.equals('list™) ||
currentMenu.equals("input™) ||
currentMenu.equals(‘'date™) ||
currentMenu.equals('form™)) {
// go back to menu
mainMenu(Q);

}

} else {
List down = (List)display.getCurrent();
switch(down.getSelectedindex()) {

case 0: testTextBox():;break;
case 1: testList();break;
case 2: testAlert();break;
case 3: testDate();break;
case 4: testForm();break;

}
}
}
}

To test the EventEx2 MIDlet using the 2ME Wireless Toolkit, do the following:

1. Createanew project (cal it Example 6-2) and aMIDlet class (call it EventEx2), copy
the code to the appropriate location, and compileit.

2. RuntheEventEx2 MIDlet in the emulator.

3. You should see the name of the project (Example 6-2) in the application manager, as
shown in Figure 6-3.

Figure 6-3. Project Example 6-2 MIDlet

T il
o Qe

Aot

4. Activatethe MIDlet.
5. Asthe MIDIet runs, you see a menu with the following options: Test TextBox, Test List,
Test Alert, Test Date, and Test Form, as shown in Figure 6-4.

86

Figure 6-4. EventEx2 MIDlet

Taszt GU Comgon
Tesl Compornents
Teat List
Tezt Alert

fracad Fusba

Exi *

6. Choose atest to perform.
Testsfrom the EventEx2 MIDlet are shown in Figure 6-5.

Figure 6-5. The TextBox, List, and Alert tests

teatTendBon:
Erler Some Text

TexthBox

A Test List

3 Matt —— Alert

If you have a soundcard, you will hear awarning sound with the alert. The remaining tests from
the EventEx2 MIDIlet are shown in Figure 6-2.

Figure 6-6. DateField, Calendar, and Form, with Gauge and TextField tests

Sedecting the date brings
up-a dare mmﬁaneﬂmu
an navigate through

10 11 68 12 14 15 1
17 18 10
14 25 70 T il =D
] Form for Stuff —Form and Gauge

auge Label and Text Feld

.IIIIIIII!
Eﬂ Label
e

*i

6.1.3 The ItemStateListener Interface

87

Applications use the 1 temStatel i stener interface to receive events that indicate changesin
the internal state of items within a Form screen. Items within a Form screen may be changed
when the user performs any of the following actions:

e Adjuststhe value of an interactive Gauge.

o Entersor modifiesthevauesof aTextField.

e Entersanew dateor timeinaDateField.

e Changesthe set of selected valuesin aChoiceGroup.

This interface has only one method that alistener must implement:

public void itemStateChanged(ltem item);

You can use the setltemStateListener() method of the Form class to register alistener for
these conditions, as shown in the next section.

6.1.3.1 Changing the date

In Example 6-3, aDateField object is created and added to aform. When you click on the date,
you can change it by navigating through the calendar. When the date is changed, a message

appears.
Example 6-3. Implementing the ltemStateListener interface

import javax.microedition.midlet._*;
import javax.microedition.lcdui.*;

public class EventEx3 extends MIDlet {
Display display;

public EventEx3() {
display = Display.getDisplay(this);

public void destroyApp (boolean unconditional) {
notifyDestroyed();
System.out.printin("'App destroyed ");

}

public void pauseApp O {
display = null;
System.out._printIin("App paused.™);
¥

public void startApp O {
Form form = new Form(*’Change Date');

ItemStateListener listener = new ltemStateListener() {
java.util.Calendar cal = java.util._Calendar.
getlnstance(Java.util_TimeZone.getDefault());

public void itemStateChanged(ltem item) {
cal _.setTime(((DateField)item).getDate());
System.out.printIn('"\nDate has changed™);

}
¥

// register for events
form._setltemStateListener(listener);

// get today"s date
java.util.Date now = new java.util.Date();

88

DateField dateltem = new DateField("'Today"s date:",
DateField.DATE);
dateltem.setDate(now);

// add date to the Form screen
form.append(dateltem);
display.setCurrent(form);

}
}

Here, the 1temStatelListener interfaceisimplemented as an anonymous inner class by
providing an implementation to the i temStateChanged() method. If you run the EventEx3
MIDlet, you should see output similar to Figure 6-7.

Figure 6-7. Implementing the IltemStatelListener interface

Faull B | [T [T B [Tl B |
IChoose One: Fiariye Datle | [Today's dete hanige Date |
[Rp——l ; 42001 b
nolay's dete: | b nday's dale
11345080
e 9100112 13 14
115 16 17 12 10 20 21
[InmMEsT N
| 1 EE |
Ahout 1 Save |

6.2 Handling Low-Level Events

If you use the Canvas class to write applications to access low-level input events or to issue
graphics calls for drawing to the display, you must handle low-level events. Game applications are
likely to use the Canvas class because it provides methods to handle game actions and key events.
The key events are reported with respect to keycodes that are directly bound to concrete keys on
the device.

The Canvas class, which isasubclass of Displayable, alows the application to register a
listener for commands, but it requires applications to subclass the listener first. Also, while screens
allow the application to define alistener and register it with an instance of the Screen class, the

Canvas class does not allow this, because several listener interfaces need to be created, one for
each kind of event.

6.2.1 Key Events

Every key for which events are reported is assigned a keycode. The MIDP defines the following
keycodes in the Canvas class:

KEY_NUMO

The keycode for key 0
KEY_NUM1

The keycode for key 1

KEY_NUM2

89

The keycode for key 2
KEY_NUM3

The keycode for key 3
KEY_NUM4

The keycode for key 4
KEY_NUM5

The keycode for key 5
KEY_NUM6

The keycode for key 6
KEY_NUM7

The keycode for key 7
KEY_NUMS8

The keycode for key 8
KEY_NUM9

The keycode for key 9
KEY STAR

The keycode for the star key "*"
KEY_POUND

The keycode for the pound key "#'
Asyou probably guessed, these are the keys 0..9, *, and #. Other keys might exist on some devices,

but for portability, applications should use only the standard keycodes. The getkeyName ()
method is used to retrieve an informative string for akey.

6.2.2 Game Actions

If your application needs arrow keys and gaming-related events, use game actions instead of
keycodes. Canvas defines the following constants as well:

upP

A constant for the UP game action

DOWN

90

A constant for the DOWN game action

LEFT

A constant for the LEFT game action

RIGHT

A constant for the RIGHT game action

FIRE

A constant for the FIRE game action

GAME_A

A constant for the general purpose "A" game action

GAME_B

A constant for the general purpose "B" game action

GAME_C

A constant for the general purpose "C" game action

GAME_D

A constant for the general purpose "D" game action

While each keycode is mapped to one game action, a game action can be associated with more

than one keycode. The tranglation between the two is done with the getkKeyCode () and
getGameAction() methods.

If your application uses game actions and you want the application to be
_ portable, you should trandlate key events into game actions with the
. 4= getGameAction() method and test the result. For example, the game

actions UP, DOWN, LEFT, and RIGHT can be mapped differently on
different devices. The getGameAction() method returnsthe RIGHT
game action, for example, when the user presses the key that is a natural
right on the device.

6.2.3 Event Delivery Methods

The following methods of the Canvas class are available for handling low-level events:

protected
protected
protected
protected
protected
protected

void
void
void
void
void
void

keyPressed(int keyCode);
keyReleased(int keyCode);
keyRepeated(int keyCode);
pointerPressed(int x, int y);
pointerDragged(int x, int y);
pointerReleased(int x, Int y);

91

These methods are callbacks that you should override in a class that extends the Canvas class.
There are a couple of important things to note here:

e ThekeyRepeated() method might not be available on all devices. Y our application
should check the availability of repeat actions by calling the hasRepeatEvents()
method.

e The pointer events may not be present on all devices, so before using the
pointerPressed(), pointerDragged(), and pointerReleased() methods,
your application should check if a pointer mechanism is available by calling the
hasPointerEvents() and hasPointerMotionEvents() methodsfirst.

6.2.3.1 Handling low-level events

Example 6-4 shows how to handle low-level events. In this example, the Canvas classis
subclassed to use an anonymous inner class, an implementation is provided for the keyPressed ()
and keyRe leased () methods, and an empty implementation is provided for the paint()
method. When akey is pressed or released, the application prints the value of that key.

Example 6-4. Handling low-level events

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class EventEx4 extends MIDlet {
Display display;
Command exit;

public EventEx4() {
display = Display.getDisplay(this);

public void destroyApp (boolean unconditional) {
}

public void pauseApp O {
System.out.printIn(""App paused.™);
}

public void startApp O {
display = Display.getDisplay(this);

Canvas canvas = new Canvas() { // anonymous class
public void paint(Graphics g) {
}

protected void keyPressed(int keyCode) {
if (keyCode > 0) {
System.out.printIn(“’keyPressed " +((char)keyCode));
} else {
System.out.println(’keyPressed action "
+getGameAction(keyCode));
by
¥

protected void keyReleased(int keyCode) {
if (keyCode > 0) {
System.out.printin('’keyReleased " +((char)keyCode));
} else {

System.out.printin("'’keyReleased action "
+getGameAction(keyCode));

}

}; 7/ end of anonymous class

92

exit = new Command("Exit", Command.STOP, 1);
canvas.addCommand(exit);
canvas.setCommandListener(new CommandListener() {
public void commandAction(Command c, Displayable d) {
if(c == exit) {

notifyDestroyed();
} else {
System.out.printin(’'Saw the command: "'+c);
}
3
¥

display.setCurrent(canvas);

}
}

If you run the EventEx3 MIDlet and activate it, you should see output similar to that in Figure 6-
2.

Figure 6-8. Handling low-level events

[J2ME Wirelez: Toolkit - EventEx -. DelauhfragPh

Ella Edit Froject Help

[Mew Project . I & Open

Froject "EventExapple’™ loade
Froject settinga saved
Building "EventExanple3”
Wrote C:%JEMEWTE\apps\EventEx
Wrote C:\JZMEWTR)appa\Eventiy
Build complete

Gaving £ile: /C: /VZHEVTE/appa/
Could nov create icon Info:[|
keyReleaszed 1

keyPressed 2

keyReleased 2

keyPraazed 3

keyReleased 3

keyPressed action 2
keyRelea=sed action 2
keyPreased action &
keyReleased action 8
KHeyPressed saccion L
keyReleazed action 1
keyPressed action 5
keyReleased action 5
keyPreazsed 9

keyReleased 9

An alternative implementation for the keyPressed () method isto interpret the keys at runtime,
as shown in the following segment of code:

public void keyPressed(int keyCode) {
int action = getGameAction(keyCode);
switch(action) {
case LEFT: System.out.printIn("*MOVE TO THE LEFT™);break;
case RIGHT: System.out.printIn("MOVE TO THE RIGHT");break;
// and so on....

}
}

93

Chapter 7. Networking

Way back in Chapter 1, we briefly introduced the CLDC Generic Connection Framework. Let's
quickly review why it was necessary to create an entirely new networking library for the CLDC.

The java.io and java.net packages of the J2SE are not suitable for handheld devices with a
small memory footprint, for the following reasons:

e Device manufacturers who work with circuit-switched networks require stream-based
connections such as the Transport Control Protocol (TCP), which is a connection-oriented
protocol.

e Device manufacturers working with packet-switched networks require datagram-based
connections such as the User Datagram Protocol (UDP), which is a connectionless
protocol.

e Other handheld devices have specific mechanisms for communications.

All this variation makes designing networking facilities for the CLDC quite achallenge. This
challenge has led to the design of a set of related abstractions that can be used at the programming
level instead of using different abstractions for different forms of communications. For example,
the J2SE java.net package provides a set of related abstractionsin the form of over 20
networking classes, including Socket, ServerSocket, and DatagramSocket. With the
CLDC, however, we need to go a step further to save space.

7.1 Generic Connections

In the Generic Connection Framework, all connections are created using the static open()
methods from asingle class. javax.microedition. io.Connector . If successful, these
methods return an object that implements one of the generic connection interfaces. Figure 7-1
shows how these interfaces form an inheritance hierarchy. The Connection interface (don't
confuse Connection with Connector) isthe base interface.

Figure 7-1. Connection interface hierarchy

Connection

I 3

SereamConnectionMotifier DatagramConnection

InputConnection (tputConnection

| |
7

Stream{onnection

{.

ContentConnection

e TheConnection interface represents the most basic connection type. It can only be
opened and closed.

94

e The InputConnection interface represents a device from which data can be read. Its
openlnputStream() method returns an input stream for the connection.

e TheOutputConnection interface represents a device to which data can be written.
Likewise, its openOutputStream() method returns an output stream for the
connection.

e TheStreamConnection interface combines the input and output connections.

e TheContentConnection interface extends the StreamConnection interface. It
provides access to some of the basic metadata information provided by HTTP
connections.

e TheStreamConnectionNotifier interface waitsfor a connection to be established.
It returns an object that implements the StreamConnection interface, on which a
communication link has been established.

e TheDatagramConnection interfaceis used to represent a datagram endpoint.

The ssimplest open() method of the Connector class has the following syntax:
public Connection open(String name) throws java.io.lOException;

The String parameter has the format **scheme: targetaddress;parameters' and
conforms to the URL syntax in RFC 2396. Here are afew examples:

Establish an HTTP connection
Connector.open(""http://www.ora.com™);
Sart a socket connection
Connector.open(*'socket://www.ora.com:80");
Establish a datagram connection
Connector.open(*'datagram://192.168.2.101:2345");
Communicate with a port
Connector .open(*'comm:0;baudrate=9600"") ;
Open files
Connector .open('file:/myfile_txt™);

The goal of the above syntax isto isolate the differences between the setup of one protocol and
another protocol into asimple string that characterizes the type of connection. Most of the
application's code remains the same, regardless of the protocol you use. Y ou will see the benefits
of thisin the examples later in this chapter.

95

& &

i~ The connection examples above are for illustration only. The CLDC itself
s does not provide any protocol implementations, because no
ul . & implementations should be provided at the configuration level. In

* addition, a 2ME profile such as the MIDP does not have to provide
implementations for all of the protocols mentioned earlier. The MIDP
implementation from Sun Microsystems, for example, provides an
implementation for the HTTP protocol, but it does not provide
implementations for socket or datagram connections.

The Connector class provides two other static open() methods that can be used to open
connections, which have the following signatures:

public static Connection open(String url, int mode)
throws java.io.lOException;

public static Connection open(String url, int mode, boolean timeouts)
throws java.io.lOException;

The first method takes two parameters. the URL for the connection and the access mode. The
access mode is used to indicate to the protocol handler the intentions of the calling code. The
access mode can be one of the following constants, which are defined in the Connector class:

public static final int READ;
public static final int WRITE;
public static final int READ_WRITE;

Y ou can use these constants to specify if the connection is going to be exclusively read from
(READ), exclusively written to (WVRITE), or both (READ_WRITE). If the access mode parameter is
omitted, the READ_WRITE default will be used. It isimportant, however, to note that these flags
are protocol-dependent. For example, a connection to a printer would not allow READ access.

The other open () method takes an additional third parameter, which is a boolean flag to indicate
that the calling code wants to receive a timeout exception in the form of a
jJjava.io.InterruptedlOException. Thetimeout valueisnot given, asit is protocol-
dependent, and there is no guarantee that the underlying protocol implementation will throw the
timeout exception. If this parameter is omitted, then no timeout exceptions will be thrown.

7.2 MIDP Connectivity

The MIDP extends the CLDC Generic Connection Framework to provide support for the HTTP
protocol. Why HTTP? Well, HTTP can be implemented using both IP protocols (such as TCF/IP)
or non-1P protocols (such as WAP and I-mode). In the latter case, the device would have to utilize
agateway that could perform URL naming resolution to access the Internet, as shown in Figure 7-
2.

Figure 7-2. The benefit of HTTP support

96

Gateway e

Server
o All of the MIDP 1.0 implementations must provide support for the HTTP
o protocol. Therefore, we encourage you to only use protocols supported by
w) #: theMIDP (i.e, HTTP), asthiswill allow the application to be portable

across all mobile information devices.

The idea of having the MIDP support the HTTP protocol is very clever. For network programming,
you can revert to the HTTP programming model, and your applications will run on any MIDP
device, whether it isa GSM phone with a WAP stack, a phone with I-mode, a Palm VI wireless,
or a handheld device with Bluetooth.

7.2.1 The HttpConnection Interface

TheHttpConnection interfaceis part of the javax.microedition. io package. This
interface defines the necessary methods and constants to exchange data through an HTTP
connection. It has the following methods (the constants, which have been omitted here to save
space, are documented in Appendix D):

public interface HttpConnection extends ContentConnection {
// public instance methods
public long getDate() throws I0Exception;
public long getExpiration() throws I0Exception;
public String getFile();
public String getHeaderField(int n) throws I10Exception;
public String getHeaderField(String name) throws I0Exception;
public long getHeaderFieldDate(String name, long def) throws I10Exception;
public int getHeaderFieldInt(String name, int def) throws I0Exception;
public String getHeaderFieldKey(int n) throws I10Exception;
public String getHost();
public long getLastModified() throws I0Exception;
public int getPort();
public String getProtocol();
public String getQuery();
public String getRef();
public String getRequestMethod();
public String getRequestProperty(String key);
public int getResponseCode() throws I0Exception;
public String getResponseMessage() throws I0Exception;
public String getURL(Q);
public void setRequestMethod(String method) throws I0Exception;
public void setRequestProperty(String key, String value) throws
I0Exception;

}

97

The HTTP protocol is arequest-response application protocol in which the parameters of the
request must be set before the request is sent. The connection could be in one of the three
following states:

Setup

No connection has been established yet.
Connected

A connection has been made and the request has been sent; a response is expected soon.
Closed

The connection has been closed. Some methods will throw an 10Exception if called.

Only in the setup state can the methods setRequestMethod() and setRequestProperty()
be invoked. These can be used to cover the HTTP headers that are typically seeninan HTTP
request. For example, suppose you have the following connection:

HttpConnection ¢ = (HttpConnection)
Connector .open(""http://www.ora.com™);

Y ou can set the request method to be of type POST asfollows:

c.setRequestMethod(HttpConnection.POST);

Y ou can aso use the setRequestProperty() method to set some of the HTTP header
information. For example, you can set the User-Agent property as follows:

c.setRequestProperty('User-Agent™,
"Profile/MIDP-1.0 Configuration/CLDC-1.0");

The following methods of HttpConnection (or its sub-interfaces), which cause datato be
transmitted or received, will cause a state transition from the setup state to the connected state:

public long getDate() throws java.io.l0OException

public String getEncoding()

public long getExpiration() throws java.io.lOException

public String getHeaderField(String name) throws

Java.io. I0Exception

public long getHeaderFieldDate(String name, long def) throws
Java.io. l0Exception

public int getHeaderFieldInt(String name, int def) throws
Java.io. l0Exception

public String getHeaderFieldKey(int n) throws

Java.io. I0Exception

public long getLastModified() throws java.io.l0OException
public long getLength()

public int getResponseCode() throws java.io.l0Exception
public String getResponseMessage() throws java.io.l0Exception
public String getType()

public DatalnputStream openDatalnputStream(String name) throws
Java.io. l0Exception

public DataOutputStream openDataOutputStream(String name)
throws java.io. I0Exception

98

public InputStream openlnputStream(String name) throws
Java.io. I0Exception

public OutputStream openOutputStream(String name) throws
Java.io. I0Exception

While the connection is open (i.e., in the connected state), the following methods can be safely
invoked:

public void close() throws java.io.l0OException
public String getFile()

public String getHost()

public int getPort()

public String getProtocol()

public String getQuery(Q)

public String getRequestMethod()

public String getRequestProperty(String key)
public String getURL()

Before we look at sample applications, let's briefly review some of the concepts that our examples
will be using: the HTTP programming model, CGl, and Java servlets.

7.3 The HTTP Programming Model

HTTP is arequest-response application protocol. When programming with Java HTTP libraries,
such as the Generic Connection Framework, the parameters of the request must always be set
before the request is sent. This allows the entire request, including parameters, to be sent at the
same time.

7.3.1 Request Methods

There are two commands to send data from a form on aweb page to a CGlI script or aservlet
hosted by the HTTP server. These commands are GET and POST. Each of these has a different
way of sending data to the server.

e For the GET method, the input values are sent as part of the URL in the QUERY_STRING
environment variable.

e For the POST method, datais sent as an input stream and its length is saved in the
CONTENT_LENGTH environment variable.

The POST method is more secure, and you can send more data using it. As an example, consider
the following HTML code for the form shown in Figure 7-3.

Figure 7-3. Form with one field (GET method)

Student# ;|

Ratrigna harks I

<form action=http://www.somesite.com/cgi-bin/getgrade.cgimethod="GET">

99

Student#:

<input type="text" name="idnum" size=30>

<input name="RetrieveMarks" value="Retrieve Marks" type="'submit'>
</form>

Thisformis handled by the script at http: //mww.somesite.corm/cgi-bin/getgrade.cgi. Note that the
form uses the GET method to transmit the information. When the user enters a student number,
such as 112233, and clicks the Retrieve Marks button, the form datais sent to the CGI script as
part of the URL. Hence, the encoded URL is: http://www.somesite.com/cgi-
bin/getgrade.cgi?idnum=112233.

In the case of POST, however, input values are not sent as part of the URL. They are sent asan
input stream in a separate message.

If the user enters a string with spaces, al spaces are replaced by the pluses (+). Also, if the form
requires multiple input values for different fields, the fields are separated by an ampersand (&).
For example, if the above form has two input fields—one for the student name and the other for
the student number—the names of the fields are name and idnum, respectively. Suppose the input
values are "Sam Lee" for name and "112233" for idnum. Then the encoded URL would be:

http: //Amww.somesite.com/cgi-bin/getgrade.cgi ?name= Sam+ Lee&idnum=112233.

7.3.2 Servlets

Java servlets also support a request and response programming model. When a client sends a
request to the server, the server relays the request to the servlet. The servlet then constructs a
response that the server relays back to the client. Unlike CGI scripts, however, servlets are written
in Java and run within the same process asthe HTTP server.

When a client request is made, the server first calls upon the service() method of the serviet
and passes it arequest and response object. The servlet then determines whether this request isa
GET or POST operation, and calls either the HttpServiet.doGet() or
HttpServlet.doPost() methods as needed. Both the doGet () and doPost() methods take
arequest object, HttpServletRequest, and aresponse object, HttpServletResponse, as
parameters.!

M This is just enough information to get you through this chapter. If you'd like to learn more about
Java servlets, we recommend Java Servlet Programming by Jason Hunter (O'Reilly).

7.4 Invoking Remote Applications from MIDlets

Now let'slook at some examples of fetching HTTP pages and invoking CGI scripts and servlets
from MIDlets using the connection framework.

7.4.1 Fetching a Page

Example 7-1 shows how to read the contents of afile referenced by aURL, using a
StreamConnection. An HttpConnection can also be used, but since no HT TP-specific
behavior is needed here, the StreamConnection isused. The application is very simple. The
Connector . open() method opens a connection to the URL and returns a
StreamConnection object. Then an InputStream isopened through which to read the
contents of the file, one character at atime, until the end of the file (signaled by a character value

100

of -1) isreached. In the event that an exception is thrown, both the stream and connection are
closed.

Example 7-1. Fetching a page referenced by a URL

import java.io.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
public class FetchPageMidlet extends MIDlet {
private Display display;
String url = "http://www. javacourses.com/hello.txt";

public FetchPageMidlet() {
display = Display.getDisplay(this);

/**
* This will be invoked when we start the MIDlet
*/
public void startApp() {
try {

getViaStreamConnection(url);

} catch (10Exception e) {
//Handle Exceptions any other way you like.
System.out._printIn(’"10Exception " + e);
e.printStackTrace();

}

}

/**

* Pause, discontinue

*/

public void pauseApp() {

}
/**

* Destroy must cleanup everything.
*/

public void destroyApp(boolean unconditional) {
}
/**

* read url via stream connection
*/

void getViaStreamConnection(String url) throws I0Exception {
StreamConnection ¢ = null;
InputStream s = null;
StringBuffer b = new StringBuffer();
TextBox t = null;

try {
c = (StreamConnection)Connector.open(url);
s = c.openlnputStream();
int ch;

while((ch = s.read()) = -1) {
b_append((char) ch);
¥

System.out.printin(b.toString());
t = new TextBox("'Fetch Page', b.toString(), 1024, 0);
} finally {
if(s = null) {
s.close();

101

if(c = null) {
c.close();

3
// display the contents of the file in a text box.

display.setCurrent(t);

}
When you run and activate FetchPageMidlet, you should see a screen similar to Figure 7-4.

Figure 7-4. Fetching a page reference by a URL

Fanl & | [l ARC [
Choogs One Felch FEQE

aire to MIDP
About

7.4.2 Invoking a CGI Script (GET)

The following example shows how to invoke a CGlI script from an HTTP server, capturing and
displaying the results on the handheld device screen. This example uses an HttpConnection
object, which is returned by the call to the Connector .open() method. The call to
setRequestMethod() setsthe request method to GET, followed by two callsto
setRequestProperty(), whichin turn set the HTTP request header properties User-Agent
and Content-Language. In this example, a script isinvoked with a student ID number encoded
as part of the URL. The script searches a database file and returns the final grade for the student
corresponding to the ID number.

o &

-t The URL has the form http://www.javacour ses.convcgi-
o bin/getgrade?idnum=182016. Alternatively, you can do this with the
' 4= commented-out code shown below in bold. The latter technique can also
" beusad if the student ID number isto be entered by the user, as you will
see in the next example.

This example's source code is shown in Example 7-2.

Example 7-2. Invoking a CGI script (GET method)

import java.io.*;

import javax.microedition.io.*;
import javax.microedition.lcdui.*;
import javax.microedition.midlet._*;

/**
* An example MIDlet to invoke a CGl script (GET method).
*/
public class InvokeCgiMidletl extends MIDlet {
private Display display;

String url = "http://www.javacourses.com/cgi-
bin/getgrade.cgi?idnum=182016"";

102

public InvokeCgiMidletl() {
display = Display.getDisplay(this);

/**
* Initialization. Invoked when we activate the MIDlet.
*/
public void startApp() {
try {

getGrade(url);

} catch (10Exception e) {
System.out._printIn(’"10Exception " + €);
e.printStackTrace();

}
}

/**
* Pause, discontinue
*/
public void pauseApp() {
e

/**
* Destroy must cleanup everything.
*/
public void destroyApp(boolean unconditional) {

}

/**
* Retrieve a grade....
*/

void getGrade(String url) throws I10Exception {
HttpConnection ¢ = null;
InputStream is = null;
OutputStream os = null;
StringBuffer b = new StringBuffer();
TextBox t = null;
try {
c = (HttpConnection)Connector.open(url);
// set the request method to GET
c.setRequestMethod(HttpConnection.GET);
// set some HTTP request headers
c.setRequestProperty(*“'User-Agent","Profile/MIDP-1.0
Configuration/CLDC-1.0");
c.setRequestProperty(*"Content-Language'™, "en-CA™);
0s = c.openOutputStream();
/*
//Retrieve info for ID number 182016
String str = "?idnum=182016"";
byte postmsg[] = str.getBytes();
for(int i=0;i<postmsg.length;i++) {
os.writeByte(postmsg[i]);

}
os.flush(Q);

*/

is = c.openDatalnputStream();
int ch;

while ((ch = is.readQ)) = -1) {

b_.append((char) ch);
System.out.printIn((char)ch);

} finally {
f(is!= null) {

is.close();

+
t = new TextBox("Final Grades', b.toString(), 1024, 0);
i
i

}
if(os = null) {

103

os.close();

if(c = null) {
c.close();
¥
}

display.setCurrent(t);

}
}

When you run and activate InvokeCgiMidletl, you should see a screen similar to Figure 7-5.

Figure 7-5. Invoking a CGl script (GET method)

Fonl & | [Tl ARC (5]
Choose One Firal Srades

Hefio Meme: ' our
final grade iz 4

About

7.4.3 Invoking a CGI Script (POST)

Now let's talk about making HT TP requests using POST. In this example, the input is sent to the
CGil script, called pgrade.cgi, in a message.

The URL variable, defined in Example 7-3, specifies the location of the pgrade.cgi CGI script. In
this example, an HTTP connection is opened to the CGlI script, followed by opening input and
output streams on the connection. Data for the script is sent through the output stream, and the
response is received through the input stream. The CGI script in this example, which iswritten in
Perl, takes a student number input value. If the student number is found in the database file, the
script retrieves the corresponding final grade and returns the grade to the calling client. In the case
of MIDlets, however, there are no HTML forms, so here the message name=182016 is sent to the
CGil script. The source code for this example is shown in Example 7-3. Note that when using the
POST method, the CONTENT_TYPE header must be set to app I i cation/x-www-Fform-
urlencoded, because this content type:

e Specifies normal data encoding.

e Converts blanksto plus (+) signs.

e Converts non-al phanumeric characters to hexadecimal numbers preceded by a percent
sign (%).

e Places an ampersand (&) between each name=value pair.

In short, this content type prevents data corruption during the transmission of form data from the
browser to the server.

Example 7-3. Invoking a CGl script (POST method)

import java.io.*;

import javax.microedition.io.*;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

/**

* An example MIDlet to invoke a CGl script (POST method is used).
*/

104

public class InvokeCgiMidlet2 extends MIDlet {
private Display display;
String url = "http://www. javacourses.com/cgi-bin/pgrade.cgi';

public InvokeCgiMidlet2() {
display = Display.getDisplay(this);

/**
* Initialization. Invoked when we activate the MIDlet.
*/
public void startApp({
try {

getGrade(url);

} catch (10Exception e) {
System.out.printin(""10Exception " + €);
e_printStackTrace();

}

}

/**
* Pause, discontinue
*/
public void pauseApp() {
e

/**

* Destroy must cleanup everything.

*/

public void destroyApp(boolean unconditional) {

}

/**
* Retrieve a grade....
*/

void getGrade(String url) throws I10Exception {
HttpConnection ¢ = null;
InputStream is = null;
OutputStream os = null;
StringBuffer b = new StringBuffer();
TextBox t = null;
try {
c = (HttpConnection)Connector.open(url);
c.setRequestMethod(HttpConnection.POST);
c.setRequestProperty(""CONTENT-TYPE",
"application/x-www-form-urlencoded™);
c.setRequestProperty(*'User-Agent™,
"Profile/MIDP-1.0 Configuration/CLDC-1.0");
c.setRequestProperty(*"Content-Language'™, "en-CA™);
0s = c.openOutputStream();

// send input

String str = "name=182016";

byte postmsg[] = str.getBytes();

for(int 1=0;i<postmsg.length;i++) {
os.write(postmsg[i]);

}

os.flush(Q);

is = c.openDatalnputStream();

int ch;

// receive output

while ((ch = is.readQ)) = -1) {
b.append((char) ch);
System.out.printin((char)ch);

}

105

t = new TextBox("'Final Grades'", b.toString(), 1024, 0);
} finally {
if(is!= null) {
is.close();
}

if(os = null) {
os.close();

}

if(c = null) {
c.close();

¥

}
display.setCurrent(t);

¥
}
When you run and activate the InvokeCgiMidlet2, you should see output similar to Figure 7-6.

Figure 7-6. Invoking a CGl script (POST method)

Fonl & | [Tl ARC |
hooze One; Fireal Grades

Helio hame: ‘Your
final grade iz 4

7.4.4 Invoking a Servlet

Y ou can invoke a serviet from a MIDlet the same way you would invoke a CGlI script: by opening
an HTTP connection and obtaining input/output streams on that connection. This section presents
two examples.

e Thefirst exampleinvokes a servlet using the GET operation and collects and displays the
results.

¢ Inthe second example, the servlet accepts input obtained from the user of the handset and
invoked with the POST method.

7.4.4.1 FirstMidletServlet

In this example, InvokeServietMidletl isinvoked with the GET method and the responseis
received and displayed on the handset. No input is sent to the serviet. When invoked, the servlet
sendsthe *Servlet Invoked!" string and the date back to the client. The source code for the
InvokeServietMidletl isin Example 7-4.

Example 7-4. Invoking a servlet with no input values

import java.io.*;

import javax.microedition.io.*;
import javax.microedition.lcdui.*;
import javax.microedition.midlet._*;

/**
* An example MIDlIet to invoke a servlet.
*/

public class InvokeServletMidletl extends MIDlet {

106

private Display display;

String url = "http://127.0.0.1:8080/examples/serviet/HelloServiet";

public InvokeServietMidletl() {
display = Display.getDisplay(this);

/**
* Initialization. Invoked when we activate the MIDlet.
*/
public void startApp() {
try {

invokeServilet(url);

} catch (10Exception e) {
System.out._printIn(’'10Exception " + e);
e.printStackTrace();

}
¥
/**
* Pause, discontinue
*/
public void pauseApp() {
¥
/**
* Destroy must cleanup everything.
*/
public void destroyApp(boolean unconditional) {
¥
/**
* Retrieve a grade....
*/

void invokeServlet(String url) throws 10Exception {

HttpConnection ¢ = null;

InputStream is = null;

StringBuffer b = new StringBuffer();

TextBox t = null;

try {
c = (HttpConnection)Connector.open(url);
c.setRequestMethod(HttpConnection.GET);
c.setRequestProperty("User-Agent","Profile/MIDP-1.0

Configuration/CLDC-1.0");
c.setRequestProperty(*'Content-Language', "en-CA™);
is = c.openDatalnputStream();
int ch;
while ((ch = is.read()) = -1) {
b.append((char) ch);

t = new TextBox(“First Servlet”, b.toString(), 1024, 0);
} finally {
ifCis!= null) {
is.close();

}

if(c = null) {
c.close();

}

}
display.setCurrent(t);

}
}

107

The source code for the He I 1oServlet, which sends the message "'Servlet Invoked!" and
the date back to the client, is shown in Example 7-5. Y ou will need aweb server that is capable of
running servlets to make this work, such as the freely distributed Apache Tomcat.

Example 7-5. HelloServlet

import java.io.*;

import java.util._*;

import javax.servlet.*;
import javax.servlet_http.*;

/**
* The simplest possible servlet.
*/

public class HelloServlet extends HttpServilet {
public void doGet(HttpServletRequest request, HttpServletResponse
response) throws I10Exception, ServletException {
response.setContentType(*'text/plain’);
PrintWriter out = response.getWriter();
out_printIn('Servlet Invoked!™);
out.printin(new Date());
}
}

When you run and activate the InvokeServiletMidletl, you should see something similar to
Figure 7-7.

Figure 7-7. FirstServletMidlet output

¥ il ABC = |
Firsd Serviel
Sarviet invakead!
Mon Fab 26 1222
03 EST 2001

7.4.4.2 SecondMidletServlet

Now let's see how to invoke a servlet that expects input with the POST method. Thisisamore
sophisticated example than the previous one. In this example, the InvokeServietMidlet2
prompts the user to enter a value (the first name). When the user presses the key that corresponds
to the Submit command, the RequestServiet isinvoked. RequestServlet then retrieves
the input values of the request from the buffer and returns them back to the client, showing that
the servlet received the POST request. Note that the servlet and the MIDIet in this example run on
the same machine. The source code for the InvokeServietMidlet2 isshown in Example 7-6.

Example 7-6. Invoking a servlet with an input value

import javax.microedition.rms.*;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.*;
import java.io.*;

import java.util_Vector;

public class InvokeServletMidlet2 extends MIDlet implements CommandListener

{
Display display = null;

108

List menu = null;
TextBox input = null;
String user = null;

// note that the servlet and MIDIet run on the same machine

String url =
"http://127.0.0.1:8080/examples/servilet/RequestServiet2";

static final Command backCommand = new Command(‘‘Back™,
Command .BACK, 0);

static final Command submitCommand = new Command(*‘Submit',
Command.OK, 2);

static final Command exitCommand = new Command(“Exit",
Command.STOP, 3);

String currentMenu = null;

public InvokeServietMidlet2() {
}

public void startApp() throws MIDlIetStateChangeException {
display = Display.getDisplay(this);
menu = new List("Invoke Servlet™, Choice.IMPLICIT);
menu.append("'Add a user', null);
menu .addCommand (exitCommand) ;
menu.setCommandListener(this);
mainMenu();

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
notifyDestroyed();
}

void mainMenu() {
display.setCurrent(menu);
}

public void addName() {

input = new TextBox(“Enter first name:", ", 5,
TextField.ANY);

input._addCommand(submitCommand) ;
input.addCommand(backCommand) ;
input._setCommandListener(this);
input.setString(""");
display.setCurrent(input);

¥

void invokeServlet(String url) throws 10Exception {
HttpConnection ¢ = null;
InputStream is = null;
OutputStream os = null;
StringBuffer b = new StringBuffer();
TextBox t = null;
try {
c = (HttpConnection)Connector.open(url);
c.setRequestMethod(HttpConnection.POST);
c.setRequestProperty(""CONTENT-TYPE™",
"application/x-www-form-urlencoded™);
c.setRequestProperty(*'User-Agent™,
"Profile/MIDP-1.0 Configuration/CLDC-1.0");
c.setRequestProperty(*'Content-Language'™, "en-CA™);

0s = c.openOutputStream();

String str = '"'name="tuser;

byte postmsg[] = str.getBytes();
System.out._printin(’'Length: "+str.getBytes());
for(int i=0;i<postmsg.length;i++) {

109

os.write(postmsg[i]);
b
// or you can easily do:
//0s . write(("'name="+user) .getBytes());
os.flush(Q);

is = c.openDatalnputStream();

int ch;

while ((ch = is.readQ)) = -1) {
b_append((char) ch);
System.out.print((char)ch);

}

t = new TextBox("'Second Servlet", b.toString(), 1024, 0);

t.addCommand(backCommand) ;

t.setCommandListener(this);

} finally {

if(is!l= null) {

is.close();

}
if(os = null) {
os.close();

}

if(c = null) {
c.close();

}

}
display.setCurrent(t);

}

public void commandAction(Command c, Displayable d) {

String label = c.getLabel();

it (label.equals("Exit™)) {
destroyApp(true);

} else if (label.equals(*'Back™)) {
mainMenu();

} else if (label.equals("Submit™)) {
user = input.getString();
try {

invokeServilet(url);

}catch(10Exception e) {}

} else {
addName () ;

}

}
}

The source code for the RequestServliet, which retrieves the POST request from the buffer and
sends the input values back to the client, is shown in Example 7-7.

Example 7-7. RequestServlet

import java.io.*;

import java.text.*;

import java.util._*;

import javax.servilet.*;

import javax.servlet_http.*;

/**

* Example servlet showing request headers
*/

public class RequestServilet extends HttpServlet {
public void doPost(HttpServletRequest request, HttpServletResponse
response) throws I10Exception, ServletException {
response.setContentType(*'text/plain’);
PrintWriter out = response.getWriter();
BufferedReader br = request.getReader();

110

String buf = br.readLine();
out_print(*'Rec: "+buf);

}
}
:_’_7‘,- In order to use ServletRequest.getParameter(String) to
o, retrieve the input values from the MIDlet in Example 7-6, the

‘W 4= CONTENT_TYPE header must be set to appl i cation/x-www-Form-
" urlencoded, asdiscussed earlier in this chapter.

When you run InvokeServiletMidlet2 and invoke it by entering your name, you should see
something similar to Figure 7-8.

Figure 7-8. SecondMidletServlet output

Famtl B | [Tl ED | [Vl e & | [Falill ED
Chooss One maoke Serviet Erter first nams; | Becond Sarvied

LIy ReC: name=2usay
Aot E:it Back Submif] |Back

7.5 Wireless Session Tracking

The term session tracking means maintaining state information about a series of requests from the
same client. Maintaining such information for clients that use HTTP is a problem. Why? Because
HTTP is arequest-response protocol, which means the connection between the client and the
server is not maintained for the duration of the conversation. In other words, HTTP is a stateless
protocol. This means you cannot depend on the underlying connection protocol to maintain state
information; you must find other ways to perform session tracking.

The two most widely used techniques for session tracking are cookies and URL rewriting. A
cookieis apiece of datathat a Web server sendsto the client. This piece of datais stored by the
client and used the next time the client makes a request from that server. However, if cookies are
disabled by the browser or, more importantly, if the browser itself does not support them (asisthe
case with most current wireless devices), then cookies are not of much use. However, you can
send and receive cookies through the use of the HttpConnection.setRequestProperty()
and HttpConnection.getHeaderField() methods. To send a cookieto a server, smply set
the value of the cooki e request property before sending the message.

String myLocalCookieVariable;

HttpConnection connection = (HttpConnection)Connection.open(someURL);
Connection.setRequestProperty(‘'cookie’, myLocalCookieVariable);

When you receive a response back from the server, you can parse the resulting Set-cookie
header field asfollows:

is = c.openlnputStream();
String cookie = connection.getHeaderField(*'Set-cookie™);
IT (cookie '= null)
myLocalCookieVariable = cookie.substring(0, cookie.indexOf(";"));

111

The other technique for session tracking is URL rewriting. Thistechnique isideal for clients that
do not support cookies or have cookies disabled. With this technique, the session information is
encoded into URLs that the server generates. This means that instead of returning this URL
(http://mwww.somesite.convserviet/shop/catal og.html), the server generates the following URL, or
something similar, instead

(http://mwww.somesite.convserviet/shop/catal og.html; jsessionid=cl98373673At).

The information that would otherwise be stored in a cookie is appended to the URL. Y ou can
parse this information out into a String after it arrives, using atechnique similar the one we used
with cookies in the previous section. The server will look for thisinformation when arequest is
made from the client. The exact syntax of the encoded URL depends on the underlying server
environment. However, the Java Serviet API provides facilities such asthe
response.encodeURL(String) and response.encodeRedirectURL(String)
methods, which you can use for session tracking.

7.6 MIDlet Networking Security

Over the past few years, concerns about security on the Internet have heated up immensaly. It's
common in this day and age to hear of companies whose data has been hacked and from whom
valuable credit card information has been stolen. It probably won't be long before people can
"sniff" the data going through cell phones just as easily as data traveling across the Internet. What
can you do? Fortunately, computers these days are capable of using encryption techniques to
scramble data as it travel s through the unsafe corridors of the Internet. In fact, one of the most
popular forms of encryption uses awide variety of cryptographic techniques to protect your data.
It's called Secure Sockets Layer (SSL) and is built into practically every web browser.

Will you need encryption for your MIDlet programs? That's a hard question to answer. Many
wireless protocols already use a sophisticated level of scrambling—far more than an average
"sniffer" can decode. And while cryptographic software can be relatively small and easy to use on
adesktop, using it on a cell phone can quickly expend both your processing power and program
space. Understanding cryptography can take abit of time as well 2 However, if you absolutely
must have security on your cell phone to protect data traveling on the Internet, we recommend
checking out the open source lightweight API software from "The Legion of the Bouncy Castle"
(http://www.bouncycastle.org).

2 a great place to start, however, is Bruce Schneier's Applied Cryptography, Second Edition
(Wiley).

112

http://www.bouncycastle.org/

Chapter 8. Database Programming

A database is anon-volatile place for storing the state of objects. For some applications, you might
need objects to exist even after the application that created them closes. Without a storage
mechanism, objects and their states are destroyed when an application closes. However, if you
save objects to a persistent storage facility, such as a database, they can be read in later by the
same application or even other applications.

The persistent storage facilities provided in the J2SE platform, such as the JDBC and Object
Serialization APIs, are too large for handheld devices with a small memory footprint. Storage
requirements vary significantly from one resource-constrained device to another. 2ME and the
MIDP solve this problem by using the Record Management System (RMS).

This chapter introduces the details of the MIDP RMS, a persistent storage facility for MIDlets,
and shows you how to develop MIDP database applications, using an example involving stocks.
Throughout this chapter, the terms record store and database are used interchangeably.

8.1 The Record Management System

An RMS database (or record store) consists of a collection of records that remain persistent after
the MIDlet closes. When you invoke the MIDlet again, it can retrieve data from the persistent
record store. However, to use the RM S, we need to get familiar with some of the classes and
concepts provided by the javax.microedition.rms package.

8.1.1 Record Stores

Record stores, which are binary files, are actually platform-dependent because they are created in
platform-unique locations. MIDlets within a single application (a MIDlet suite) can create
multiple record stores with different names. The RMS APIs provide the following types of
functionality.

e They allow MIDlets to manipulate (add and remove) records within arecord store.
e They allow MIDlets in the same application or suite to share records (access each other's
record store directly).

Note that no mechanism, however, is provided for sharing records between MIDlets in different
MIDlet suites.

Record stores have names that are case-sensitive and cannot be more than 32 characters in length.
A MIDIet cannot create two record stores with the same name in the same application. However, it
can create arecord store with the same name in another application. When you create a new
record store in an emulator, it istypically stored under a directory called NOJAM. For example,
let's assume you are using the Wireless Toolkit and it isinstalled under C:\J2MEWTK. If your
project name is SockQuotes and your record store is mystocks, the record store is created under
C:\I2ZMEWTK\NOJAM and has the name mystocks.db.

The MIDP RM S implementation ensures that all individual record store operations are atomic,
synchronous, and serialized, so no corruption occurs with multiple access. However, if your
MIDlets use multiple threads to access arecord store, it is your responsibility to synchronize this
access. Otherwise, some of your records might accidentally be overwritten if your application is
not thread-safe.

113

8.1.2 The javax.microedition.rms Package

The javax.microedition.rms package consists of four interfaces, one class, and five
exception classes.

8.1.2.1 Interfaces

Table 8-1 lists the four interfaces in the javax.microedition. rms package.

Table 8-1. The interfaces in javax.microedition.rms

Interface Description

RecordComparator |Thisinterface definesacomparator to compare two records.

RecordEnumeration|Thisinterface represents a bidirectional record enumerator.

Thisinterface defines afilter to examine arecord and check if it matches,

Recordrilter based on a criteria defined by the application.

This interface receives records that were added, changed, or deleted from

RecordListener
arecord store.

8.1.2.2 Classes

Thereisone class in this package, as shown in Table 8-2.

Table 8-2. The class in javax.microedition.rms

\ Class | Description

[RecordStore This class represents a record store.

8.1.2.3 Exceptions

There are five exceptions in the package, as shown in Table 8-3.

Table 8-3. The exceptions in javax.microedition.rms

Exception Description

InvalidRecordI DException This exception is thrown to indicate that the RecordID isinvalid.

This exception is thrown when a general exception isthrown by

RecordStoreException theRecordStore class.

RecordStoreFul|Exception This exception is thrown when the record store filesystem isfull.

RecordStoreNotFoundException E:i (;axceptlon is thrown when the record store could not be

RecordStoreNotOpenException This exception is thrown to indicate an operation on a closed
record store.

8.2 Programming with the RMS

Database programming with the RMS is relatively straightforward. A record store consists of a
collection of records that is uniquely identified by itsrecord ID, which is an integer value. The
record ID isthe primary key for the records. The first record has an ID of 1, and each additional
record isassigned an ID that isthe previous value plus 1. Therecord ID is stored as an integer
value, which gives the theoretical limit of 2,147,483,647 records.t!

114

M gyt if your devices had at least 2.1 gig of memory, you probably wouldn't need to use the J2ME!

8.2.1 Opening, Closing, and Deleting a Record Store

To open arecord store, you need to be familiar with the static openRecordStore () method of
theRecordStore class.

public static RecordStore openRecordStore(String recordStoreName,
Boolean createlfNecessary) throws RecordStoreException,
RecordStoreFul lException, RecordStoreNotFoundException

Here is an example of using this method:

RecordStore db = null;

try {
db = RecordStore.openRecordStore(*'myDBfile™, true);
} catch (RecordStoreNotFoundException rsnfe) {
// Handle exception
} catch (RecordStoreFullException fsfe) {
// Handle exception
} catch (RecordStoreException rse) {
// Handle exception
}

Assuming that everything works right, this line of code creates a new database file named
myDBfile. The second parameter, a boolean which is set to true, saysthat if the record store does
not exist, then you should create it.

If the openRecordStore() methodis called by aMIDlet when the
record store is already open by another MIDlet in the same MIDlet suite,
the method returns a reference to the same RecordStore object.

Once we've opened arecord store, we will eventually need to closeit. We can do thiswith the
following RecordStore method:

public void closeRecordStore() throws RecordStoreNotOpenException,
RecordStoreException

It isimportant to note that the record store will not actually be closed until
closeRecordStore() iscaled as many times as openRecordStore() was called.
Therefore, the programmer must balance the number of close calls and open calls before the
record storeis actually closed. Keeping arecord store open can take up agreat deal of memory.
Consider closing arecord store even when aMIDlet is placed in the paused state.

Sometimes it's necessary to locate a particular record store among several that are currently on the
device. If you want to find out the names of all the record stores currently on the device, use the
following static method:

public static String[] listRecordStores()

Y ou can delete an entire record store from the database, using the following static RecordStore
method:

public static void deleteRecordStore(String recordStoreName) throws
RecordStoreException, RecordStoreNotFoundException

115

Y ou can find out the size of the currently opened record store in bytes, using the getSize()
method:

public int getSize() throws RecordStoreNotOpenException

In addition, if you want to find out how many bytes the current record store can still grow, use the
following:

public int getSizeAvailable() throws RecordStoreNotOpenException

Finally, you can use the getVersion() method of the RecordStore to find out the "version"
of the current record store. Here, the version does not have anything to do with the version of
software that the database is using. Instead, the version is actually an integer stored with the record
store that increments each time arecord is added, modified, or deleted.

public int getVersion() throws RecordStoreNotOpenException

8.2.2 Creating and Modifying Records

A record issimply an array of bytes. Y ou can use the DatalnputStream,
DataOutputStream, ByteArraylnputStream, and ByteArrayOutputStream classesto
pack and unpack datain and out of byte arrays. For example, suppose you have the following
record, represented by asingle string: ""Firstname, LastName, Age'. To add thisrecordto
the record store, you can use the addRecord () method:

public int addRecord(byte[] data, int offset, int numBytes) throws
RecordStoreNotOpenException, RecordStoreException,
RecordStoreFul IException

This method adds all or part of the contents of a byte array of data, starting at the offset
specified and continuing the numBytes, and placesit in the record store. The method then returns
the index assigned to that record in the database. Continuing from the previous example:

try {
ByteArrayOutputStream baos = new ByteArrayOutputStream();

DataOutputStream dos = new DataOutputStream(baos);

N
*

Here we have created two streams (1) a byte array that is managed
internally by the virtual machine. This array will hold the data
we"ll write to the record store. (2) the data output stream is a
filter that provides methods for writing primitive data types.

The internal byte array will contain portable binary data....and is
used for prtability reasons. If we write a float into the byte array,
we"ll get a float back no matter how the underlined system represents
a float using 32 bits or 64 bits or ...

ok X ok X b X % ¥

*/
dos.writeUTF(record);
Byte b[] = baos.toByteArray();
recordNumber = db.addRecord(b, O, b.length);
} catch (Exception e) {
// Handle exceptions
}

Here, we construct a DataOutputStream for writing the record to the record store, then convert
the ByteArrayOutputStream to abyte array. Finally, weinvoke addRecord () to add the
record to the record store. Thisis not the only way to construct and add a new record to arecord

116

store, however. Instead of creating a series of linked streams, it is easier to convert astring into a
series of bytes using the getBytes() method of String:

try {
String record = "Firstname, Lastname, Age";

Byte b[] = record.getBytes();

recordNumber = db.adRecord(b, 0, b.length);
} catch (Exception e) {

// Handle Exceptions
}

Y ou can aso use the setRecord() method if you want to explicitly reset an indexed record in
the record store. This works the same as addRecord (), except that the first parameter isthe
specific record ID that you wish to set:

public void setRecord(int recordld, byte[] newData, int offset,
int numBytes) throws RecordStoreNotOpenException,
InvalidRecordIDException, RecordStoreException,
RecordStoreFul IException

To read arecord from the record store, you can use one of two getRecord() methods:

public byte[] getRecord(int recordID) throws
RecordStoreNotOpenException, InvalidRecordIDException,
RecordStoreException

public int getRecord(int recordID, byte[] buffer, int offset)
throws RecordStoreNotOpenException, InvalidRecordIDException,
RecordStoreException

The first method returns a byte array containing the entire record that was stored at the specified
record I1D. The second method will attempt to fill the byte array passed in starting at the specified
offset with the contents of the specified record ID. The second method will return the amount of
bytes actually copied as an integer. Be sure that there is enough room in the byte array to handle
the data from the record, or an exception will be thrown.

To extract the data from a byte array, we can do the opposite of what we did before: construct
input streams instead of output streams. Here is an example:

String in = null;

try {
byte[] record = new byte[db.getRecordSize(recordNumber)];
db.getRecord(recordNumber, record, 0);
ByteArraylnputStream bais = new ByteArraylnputStream(record);
DatalnputStream dis = new DatalnputStream(bais);
in = dis.readUTF(Q);

} catch (Exception e) {
// Handle exceptions

}

Or, if we don't want to filter the data through any sort of stream, we can take the easy route and
simply pass the byte array directly into the String constructor:

String in = null;

try {
byte[] record = new byte[db.getRecordSize(recordNumber)];
db.getRecord(recordNumber, record, 0);
in = new String(record);
} catch (Exception e) {
// Handle exceptions

117

}

To delete arecord from the record store, you have to know the record ID of the record to be
deleted. To delete the record, use the delleteRecord() method.

public void deleteRecord(int recordID) throws
RecordStoreNotOpenException, InvalidRecordIDException,
RecordStoreException

Note that the other records will not change their ID. In fact, the record store will not reuse the ID
of arecord onceit is deleted.

There are anumber of other methods that you can use in the RecordStore class. If you want to
find out when the record store was last modified, you can use the following method:

public long getLastModified() throws RecordStoreNotOpenException

This method returns a date in the form of a long, which is equivalent to the format used by
System.currentTimeMillis(). Thiscan be passed into the constructor of the
jJava.util .Date object, which can in turn be used by the java.util .Calendar object, as
well asthe javax.microedition. Icdui .DateField component

If you want to know the name of the current record store, use the getName () method:

public String getName() throws RecordStoreNotOpenException

If you want to find out the next 1D that the database will use when storing a record, you can use
the getNextRecordID() method:

public int getNextRecordID() throws RecordStoreNotOpenException,
RecordStoreException

To get atally of the number of records currently in the record store, use the following method:

public int getNumRecords() throws RecordStoreNotOpenException

If you wish to find out the number of bytesin a currently stored record, use the
getRecordSize() method (aswe did in one of the previous examples to initialize the receiving

byte array):

public int getRecordSize(int recordld) throws
RecordStoreNotOpenException, InvalidRecordIDException,
RecordStoreException

Finaly, there is one other method that RecordStore includes that allows us to enumerate all the
records located in the current record store. It looks like the following:

public RecordEnumeration enumerateRecords(RecordFilter filter,
RecordComparator comparator, boolean keepUpdated) throws
RecordStoreNotOpenException

This method will list all the records in the record store, first using the appropriate filter to select
those records, then sorting them using the record comparator, and finally returning the results
inside a specially designed enumeration object. However, there are several interfaces that we need
to go over first before we can grasp the broad picture of what this method does.

118

8.2.3 Filtering Records

First, the enumerateRecords() method must determine which records will be included in the
enumeration that you are requesting. The method determines this by passing in an object that
implementsthe javax.microedition.rms.RecordFi lter interface. Luckily, only one
method in this interface needs to be implemented:

public boolean matches(byte[] candidate);

This method takes in a byte array that represents a candidate record from arecord store. The
implementation must return a boolean that indicates whether the record should be included in the
enumeration. If the method returns true, the record will be included; if it's fal se, it will not be.
If you want all records to be included in the enumeration, simply passin nul I to that parameter
of the enumerateRecords() method.

Here is a sample implementation for the RecordFi I ter interface that only accepts String-
based records that start with the letters **JULY"":

import javax.microedition.rms.*;
public class MyFilter implements RecordFilter {

public boolean matches(byte[] candidate) {
String ¢ = new String(candidate);
if (c.startsWith('JULY™))
return true;
else
return false;

}
8.2.4 Comparing Records

The enumerateRecords () method has the ability to sort the records that it is returning. If you
would like it to do so, you must give it the ability to compare records in the record store. For this,
your application must provide an object that implements the
Javax.microedition.rms.RecordComparator interface. Again, thisisrelatively simple,
as you must implement only one method in this interface:

public int compare(byte[] recordl, byte[] record2)

The return value of this method indicates how the two records compare, and it can be one of three
constants. For example, suppose you want to lexigraphically compare two strings that you
retrieved from two records. Here is a sample implementation:

import javax.microedition.rms.*;
public class MyComparator implements RecordComparator {
public int compare(byte recordl[], byte record2[]) {

String namel
String name2

new String(recordl);
new String(record2);

int num = namel.compareTo(name2);
if(num > 0) {

return RecordComparator . FOLLOWS;
} else if (num < 0) {

119

return RecordComparator.PRECEDES;

} else {
return RecordComparator.EQUIVALENT;
}

}
}

The constants that the object should return, RecordComparator . FOLLOWS,
RecordComparator .PRECEDES, and RecordComparator.EQUIVALENT, are declared in
the RecordComparator interface and have the following meanings:

RecordComparator.FOLLOWS

Thefirst record follows the second record in terms of search or sort order.
RecordComparator . PRECEDES

The first record precedes the second record in terms of search or sort order.
RecordComparator .EQUIVALENT

The two records are the same.

If the ID of each of the records is acceptable as an order, then you can passin nul I to that
parameter of the enumerateRecords() method.

8.2.5 Enumerating Records

Finaly, the enumerateRecords () method will return to you an object that implements the
Javax.microedition.rms.RecordEnumeration interface. Thisinterfaceis used to
provide a standard set of methods to access the enumeration, and acts like a more sophisticated
version of the java.util .Enumeration class. It looks like the following:

public interface RecordEnumeration {

public void destroy();

public boolean hasNextElement();

public boolean hasPreviousElement();

public boolean isKeptUpdated();

public void keepUpdated(boolean keepUpdated);

public byte[] nextRecord() throws InvalidRecordIDException,
RecordStoreNotOpenException, RecordStoreException;

public int nextRecordld() throws InvalidRecordIDException;

public int numRecords();

public byte[] previousRecord() throws InvalidRecordIDException,
RecordStoreNotOpenException, RecordStoreException;

public int previousRecordID() throws InvalidRecordIDException;

public void rebuild();

public void reset();

}

If you recall the signature of the enumerateRecords() method, you'll remember that it had a
third parameter, which was a boolean, called keepUpdated. The function of this boolean isto
have the enumeration monitor the current record store. If there are several threads updating the
record store at any given time, the enumeration may not have the correct values inside it.

120

However, if the boolean parameter to enumerateRecords() issetto true, the
RecordEnumeration becomes alistener to the record store. If there are any changes to the
records, the RecordEnumeration will update itself automatically. However, if the boolean
valueisset to false, the RecordEnumeration will not update itself until the rebui ld()
method is called. Which method to useis entirely your choice. However, keep in mind that each
call to enumerateRecords() can take quite abit of time to complete. If you have alarge data
store, it may be better to implement another strategy.

The following methods of RecordEnumeration will aso set and retrieve the boolean property
to keep the enumeration updated with any changes to the record store:

public void keepUpdated(boolean keepUpdated);
public boolean isKeptUpdated();

To find out how many records have been filtered into the enumeration itself, use the following
method. (Note the number of filtered records may not be the same as the total amount of records
in the record store.)

public int numRecords();

If you wish to find out if the enumeration has an element before or after the current position, you
can use the following methods. Note that the enumeration will loop around in the event that it
travels before the first element or after the final element.

public boolean hasPreviousElement();
public boolean hasNextElement();

If you wish to find the record ID that the previous methods refer to, use these methods:

public int nextRecordld() throws InvalidRecordIDException;
public int previousRecordID() throws InvalidRecordIDException;

Y ou can obtain the next and previous records themselves using the following methods:

public byte[] nextRecord() throws InvalidRecordIDException,
RecordStoreNotOpenException, RecordStoreException;

public byte[] previousRecord() throws InvalidRecordIDException,
RecordStoreNotOpenException, RecordStoreException;

This method returns the current position of the enumeration to the state it was at when the
enumeration was first created:

public void reset();

And findly, if you want to release all the data that has been stored in the enumeration in order to
gain back the memory used, utilize the following method:

public void destroy();
8.2.6 Listening to Record Stores
If you wish to monitor any changes that take place in arecord store, you can create an object that

implementsthe javax.microedition.rms.RecordListener interface. Thisinterface
contains only three methods:

public interface RecordListener {

121

public void recordAdded(RecordStore recordStore, int recordiD);
public void recordRemoved(RecordStore recordStore, int recordID);
public void recordModified(RecordStore recordStore, int recordID);

}

As you probably guessed, the first method will be called if arecord is added, the second will be
caled if arecord isremoved, and the third method will be called if arecord is modified. All three
methods have the same two parameters. Thefirst is areference to the RecordStore object, and
the second parameter is an integer that refers to the actual record store ID that was changed.

Once you've created an object that implements the RecordL i stener interface, you can add or
remove it from the list of listeners of arecord store by using the following two methods of the
RecordStore class:

public void addRecordListener(RecordListener listener);
public void removeRecordListener(RecordListener listener);

8.2.7 A Stock Database

Now let's see how we would use the RM S package to build a stock database. This example
demonstrates how to work with the RMSto build areal MIDIet application. The application builds
on the network programming experience we gained in Chapter 7 and is similar to the
StockMIDIet demo that comes with the MIDP. The MIDlet for this example does the following:

e Creates arecord store (database).
Adds new records (stocks) to the record store.
e Viewsthe stocksin the database.

To add a stock to the database, the user enters the stock symbol (such as SUNW, IBM, IT, MS,
GM, or Ford). The MIDIet retrieves the corresponding stock quote from Y ahoo! Finance
(http://quote.yahoo.com), constructs a record, and adds it to the database. To view the stocksin the
database, the MIDlet iterates through the records in the record store and prints them on the display
in anice format. The implementation of this MIDlet consists of the following three classes:
Stock. java, StockDB. java, and QuotesMIDlet. java.

8.2.7.1 The Stock.java Class

This class parses a string obtained from Y ahoo! Finance or from the record store into fields that
represent, for example, the name of the stock or its price. The string returned from Y ahoo!
Finance has the following format:

NAME TIME PRICE CHANGELOWHIGHOPENPREV
"SUNW™,"2:1PM - 79.75",+3.6875,"64.1875 - 129.3125",78,76.0625

In the MIDlet shown in Example 8-1, the fields retrieved are the name of the stock, the time, and
the price.

Example 8-1. Parses a string obtained from Yahoo! Finance or from a database

public class Stock {
private static String name, time, price;
// Given a quote from the server,

// retrieve the name,
// price, and date of the stock

122

public static void parse(String data) {
int index = data.indexOf(""");
name = data.substring(++index, (index = data.
indexOf (""", index)));
index +=3;
time = data.substring(index, (index = data.
indexOf("-", index))-1);
index +=5;
price = data.substring(index, (index = data.
indexOf("<", index)));
¥

// Get the name of the stock from

// the record store

public static String getName(String record) {
parse(record);
return(name);

}

// Get the price of the stock from

// the record store

public static String getPrice(String record) {
parse(record);
return(price);

}
}

8.2.7.2 The StockDB.java Class

This class provides methods that perform the following operations:
Opens a new record store.

Adds a new record to the record store.

Closes the record store.
Enumerates through the records.

Once you understand how to open arecord store, add a new record, and close the record store, the
code in Example 8-2 is easy to follow.

Example 8-2. Provide methods for record store operations

import javax.microedition.rms.*;
import java.util_Enumeration;
import java.util_Vector;

import java.io.*;

public class StockDB {
RecordStore recordStore = null;
public StockDB(Q) {}

// Open a record store with the given name
public StockDB(String fileName) {
try {
recordStore = RecordStore.openRecordStore(fileName, true);
} catch(RecordStoreException rse) {
rse.printStackTrace();
}

}

// Close the record store
public void close() throws RecordStoreNotOpenException,
RecordStoreException {
if (recordStore.getNumRecords() == 0) {
String fileName = recordStore.getName();

123

recordStore.closeRecordStore();
recordStore.deleteRecordStore(fileName);
} else {
recordStore.closeRecordStore();
}

}

// Add a new record (stock)
// to the record store

public synchronized void addNewStock(String record) {

ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream outputStream = new DataOutputStream(baos);
try {

outputStream.writeUTF(record);
} catch (10Exception ioe) {

System.out._printin(ioe);

ioe.printStackTrace();

}

byte[] b = baos.toByteArray();

try {
recordStore.addRecord(b, 0, b.length);

} catch (RecordStoreException rse) {
System.out.printin(rse);
rse.printStackTrace();

}

}

// Enumerate through the records.
public synchronized RecordEnumeration enumerate() throws
RecordStoreNotOpenException {
return recordStore.enumerateRecords(null, null, false);
}
}

8.2.7.3 The QuotesMIDlet.java Class
Finally, the QuotesMIDIlet classisthe actual MIDlet that performs the following tasks:

e Create commands (List Stocks, Add a New Stock, Back, Save, Exit)
e Handle command events
e Connect to Yahoo! Finance and retrieve quotes

e Invoke methods from Stock and StockDB to parse quotes and add new stocks to the
record store

The source for thisfileislisted in Example 8-3.

Example 8-3. A MIDlet for the stock database

import javax.microedition.rms.*;
import javax.microedition.lcdui.*;
import javax.microedition.midlet._*;
import javax.microedition.io.*;
import java.io.*;

import java.util_.Vector;

public class QuotesMIDlet extends MIDlet implements CommandListener {
Display display = null;
List menu = null; // main menu
List choose = null;
TextBox input = null;
Ticker ticker = new Ticker("'Database Application');
String quoteServer =
"http://quote.yahoo.com/d/quotes.csv?s="";

124

String quoteFormat = "&f=slclwop™; // The only format supported

static final Command backCommand = new Command(‘'Back™,
Command .BACK, 0);

static final Command mainMenuCommand = new Command(‘Main',
Command.SCREEN, 1);

static final Command saveCommand = new Command(‘'Save",
Command.OK, 2);

static final Command exitCommand = new Command(“Exit",
Command.STOP, 3);

String currentMenu = null;

// Stock data
String name, date, price;

// record store
StockDB db = null;

public QuotesMIDlet() { // constructor
¥

// start the MIDlet
public void startApp() throws MIDIetStateChangeException {
display = Display.getDisplay(this);
// open a db stock file
try {
db = new StockDB(''mystocks™);
} catch(Exception e) {}
menu = new List("’'Stocks Database', Choice.IMPLICIT);
menu.append(*'List Stocks'™, null);
menu.append("*Add A New Stock™, null);
menu .addCommand(exitCommand) ;
menu.setCommandListener(this);
menu.setTicker(ticker);

mainMenu(Q);

}

public void pauseApp() {
display = null;
choose = null;
menu = null;
ticker = null;

try {
db.close();

db = null;
} catch(Exception e) {}
¥

public void destroyApp(boolean unconditional) {
try {
db.close();
} catch(Exception e) {}
notifyDestroyed();

}

void mainMenu() {
display.setCurrent(menu);
currentMenu = "Main"';

}

// Construct a running ticker

// with stock names and prices

public String tickerString() {
StringBuffer ticks = null;

try {
RecordEnumeration enum = db.enumerate();

125

ticks = new StringBuffer();
while(enum.hasNextElement()) {
String stockl = new String(enum.nextRecord());
ticks.append(Stock.getName(stockl));
ticks.append(™ @ ");
ticks.append(Stock.getPrice(stockl));
ticks.append(™ ");

}
} catch(Exception ex) {}
return (ticks.toString());

}

// Add a new stock to the record store

// by calling StockDB.addNewStock()

public void addStock() {
input = new TextBox("'Enter a Stock Name:', "', 5,

TextField.ANY);

input.setTicker(ticker);
input._.addCommand(saveCommand) ;
input.addCommand(backCommand) ;
input._setCommandListener(this);
input.setString('"");
display.setCurrent(input);
currentMenu = "Add";

}

// Connect to quote.yahoo.com and
// retrieve the data for a given
// stock symbol.
public String getQuote(String input) throws I0Exception,
NumberFormatException {
String url = quoteServer + input + quoteFormat;
StreamConnection ¢ = (StreamConnection)Connector .open(
url, Connector.READ_WRITE);
InputStream is = c.openlnputStream();
StringBuffer sb = new StringBuffer();
int ch;
whille((ch = is.read()) '= -1) {
sb.append((char)ch);

return(sb.toString());
}

// List the stocks in the record store
public void listStocks() {
choose = new List("Choose Stocks™, Choice.MULTIPLE);
choose.setTicker(new Ticker(tickerString()));
choose . addCommand (backCommand) ;
choose.setCommandListener(this);
try {
RecordEnumeration re = db.enumerate();
while(re._hasNextElement()) {
String theStock = new String(re.nextRecord());
choose .append(Stock.getName(theStock)+" @ ' +
Stock.getPrice(theStock),null);

}
} catch(Exception ex) {}
display.setCurrent(choose);
currentMenu = "List";

}

// Handle command events
public void commandAction(Command c, Displayable d) {
String label = c.getLabel();
if (label.equals("Exit™)) {
destroyApp(true);
} else if (label._equals(Save™)) {
if(currentMenu.equals(*Add™)) {

126

// add it to database
try {

String userlnput = input.getString();
String pr = getQuote(userlinput);
db.addNewStock(pr);
ticker.setString(tickerString());

} catch(10Exception e) {
} catch(NumberFormatException se) {

}

mainMenu();

}
} else if (label._equals(*'Back™)) {

if(currentMenu.equals(List™)) {
// go back to menu
mainMenu();

} else if(currentMenu.equals("Add™)) {
// go back to menu
mainMenu(Q);

}
} else {
List down = (List)display.getCurrent();
switch(down.getSelectedIndex()) {
case 0: listStocks();break;
case 1: addStock();break;

}
}
}
}

8.2.8 Testing QuotesMIDlet
To test QuotesMIDIlet, usethe 2ME Wireless Toolkit as we have throughout the book:

1. Create anew project and compile the code.
2. Runthe MIDIet in the emulator. Y ou should see QuotesMID et running in the emulator,
as shownin Figure 8-1.

Figure 8-1. QuotesMIDlet

Tl =
hooee Gnec

Aol

3. Activate QuotesMIDIet. You should see a menu with the following two options: List
Stocks, and Add aNew Stock, as shown in Figure 8-2.

Figure 8-2. QuotesMIDlet stock database

127

4. Choosethe Add aNew Stock option and add a few stocks. Figure 8-3 shows that the
stocks IBM, GM, and NOR were added in this example.

Figure 8-3. Adding new stocks

Detabase 4p 10 i 95 E25 5 GM @ 50,3125
Erter a Stock ar & Stock Eritar a Stock
Mame: |- Pleene:
e am-ﬁ por]
iHBﬁc Save gEkach | lBa-c:k Savey

5. Go back and choose the View Stocks option. Figure 8-4 shows that this option reads the
record store and retrieves all the records (stocks) that have been added.

Figure 8-4. Viewing the record store

Have fun keeping track of your stocks! In the next chapter, we will discuss how to install MIDlets
such as this on Palm computing platforms.

128

Chapter 9. The MIDP for Palm OS

An early access release of the MIDP for Palm OS was released just before JavaOne 2001, in early
June, and the First Customer Shipping (FCS) of the MIDP for Palm OS 1.0 was released in mid-
October, 2001. The MIDP for Palm OS is a J2ME application runtime environment based on the
CLDC 1.0 and MIDP 1.0 specifications. It istargeted at handheld devices (such as Palm Pilat,
Handspring Visor, and so on) running Palm OS version 3.5 or higher.

This chapter explains how to install the MIDP for Palm OS on your handheld device, and then
how to convert existing MIDlets, developed in earlier chapters, into Palm Resource Code (PRC)
files (executable Palm OS applications). The 2ME Wireless Toolkit 1.0.3 supports the MIDP for
Palm OS. Hence, it is possible to test MIDlets using a Palm OS device, as shown in Chapter 4.

9.1 Installing the MIDP for Palm OSon the Windows
Platform

Toinstall the MIDP for Palm OS, you need to perform the following steps:

1. Download the MIDP for Palm OS. This package (midp4palm-1_0.Zip), which isless than
one megabyte, isthe early access release of the MIDP for Palm OS implementation. Y ou
can download it from the Java web site at http://java.sun.com/products/midp4pal m.

2. Unzip the package. Do thisin the root directory C:\. This gives you anew folder called
midp4palm1.0 that contains tools and sample applications. Check to make sure you have a
file called MIDP.prc in the PRCfiles directory, which is the application runtime
environment that supports the MIDP for Palm OS.

At this point, you are ready to install the MIDP for Palm OS on your Palm device.

9.1.1 Installing the MIDP for Palm OS on the Device

Use the HotSync application that came with the PalmPilot to install the MIDP.prc on your Paim
OS device.

1. Place your Pam devicein the cradle.

2. Using your Palm Desktop software on the PC (or asimilar program), click the Install icon
and browse to C:\midp4pal m1.0\PRCfiles to select MIDP.prc, as shown in Figure 9-1.
Press the HotSync button on the cradle to install the file.

Figure 9-1. Using Palm Desktop to install MIDP.prc

129

http://java.sun.com/products/midp4palm

| Guzay Mahmeoud

Filefz) hzted balow wil be instabed on ypour hancheld the nest
e wou peifoim & HotSune operation:

Fie Mame | Fie Sie= | Add...
MIDP pre T ,...,m.,....,j

I lf:; Ueer [Qusay Mahmoud =]
-
@
TaDo

e Tipz:
iﬁ’ [&y Find ather spplhications bo instal an pour handheld at

Expenz * ¢ hbtp e paim.com
i | The 'Aekf buton kooks frst i the \ADD-ON folder
Irestal ingida your C:\PALM foldes. Thiz folder iz a
canvenient place ha share downloaded handheld
ez,
Rieady T ER

3. Gotothe application directory on your Palm and check to seeif the Java HQ isthere. The
Java HQ is the application runtime environment that supports the MIDP for Palm OS.
Note that the Java Manager environment takes up roughly 600K of your Palm OS device's
storage.

Y ou should see the Java HQ icon, as shown in Figure 9-2. If you do not seeit, click on another
application (e.g., Calculator) and then go back to the application directory to reset the display.

Figure 9-2. Java HQ special icon on Palm

" - il

Seourity ToDolist Weloome

If you tap the Java HQ icon, you'll see the About screen, as shown in Figure 9-3. This contains the
copyright notice and gives you the option to change the Java HQ preferences that apply to every
Java application running on the device. More information on the Java HQ preference settingsis
presented later in this chapter.

Figure 9-3. Java HQ About screen

130

fAbewt Jowa™ HE (1]
=]
e
'| - :Ef} I| ::l:m@ﬂ:tnrm.ln:.
| -E Fhgvte Fagarvad
= lus j
|I q. . | Use is subject to

| " fcenoe terms.
| AV | Third-pary
'—'—.__'___I safiwore,
inechading font
Wersion 1.0

Now you are ready to install other Java applications on your Palm.

9.1.2 Running Sample Applications

There are several applications for the Palm that are written in Java and that come with the
software you just installed. All the files with the .prc extension in the directory

C:\midp4pal m1.0\PRCfiles are MIDP-based Java applications for the Palm. Y ou can use the
HotSync to install them.

As an example, use the HotSync and install the files Games.prc and Demos.prc. Once you have
installed these two files, you will see two new icons, as shown in Figure 9-4.

Figure 9-4. Installing sample MIDP-based Java applications

B B e

Frddrais Cale Data Bk

B © =

Drerree Expenss RS

@ e e

HatSyne lawa™HO Flal

@ e @&

tdarr Pod Preds Seority -

A MIDP-based Java application for the Palm runs just like any other Palm application. Simply tap
the corresponding icon. Note that the Java HQ must already be installed. When you launch a Java
application on the Palm, the Java HQ (which is equivalent to the application manager) runs
automatically. Also, it isimportant to note that the first time you launch an application, you are
asked to read and accept the MIDP license; the application starts automatically once you tap
Accept, as shown in Figure 9-5.

Figure 9-5. Running Java applications on the Palm for the first time

[License login:Sign in |

Sun dlicrosystans, Inc < LogindD: arennud
—=Fn | Possword: | Frompt-|
[|

= A
RERD THE TERMS OF THIS A GREEMIENT |I ‘_‘_'-.J}""III
|

Binary Code Licenze Agraement

ml

RHD FAY FROANDED SUFFLEMENTAL
LICEMSE TERMS (COLLECTIVELY ax A |
"RGHEEMENT ") CRREFULLY BEFORE I | A I|
CPEMPES THE SOFTYWRE MEDA =k

—

Enter a possusord:
PRCCAGE. BY OPEMING THE FEEERESELE

T ——d

SOFTIRRE WIEDS PRCKAGE WO

Frarting Java™™ Virtesl Blackine, .
|: Recegt] E Patlne ‘.| -CIK -(unf.d

If you open an application suite (such as Demos), you are prompted to choose which application
you want to run, as shown in Figure 9-6. Select an application to run by tapping on its arrow.

Figure 9-6. Selecting an application to run from a suite

131

= EET
23 Propertie:
3 Hutpiaw

9.2 Developing New Applications

Y ou can easily develop new Java applications for the Palm if you are familiar with the MIDlet
programming model. If you have run the MIDlets in earlier chapters, or have developed new ones,
you can easily turn them into Palm applications by using a converter tool, which we will describe
later in this chapter. The development life cycle of a Palm application can be summarized in the
following three steps:

1. Develop aMIDlet or aMIDIet suite.
2. Convert the JAR/JAD file pair into a PRC file (executable Palm application).
3. Install the PRC file on the Palm and test the application.

9.2.1 Develop a MIDlet

As aways, you can use either the Sun Microsystems Wireless Toolkit or your favorite
development environment to develop a MIDlet. Example 9-1 lists the MIDlet that was devel oped
in Chapter 6, which shows how to create various GUI components. The MIDIet for this example
allows you to test lists, forms, choices, gauges, text fields, and text boxes.

Example 9-1. GuiTests.java

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class GuiTests extends MIDlet implements CommandListener {

// display manager
Display display = null;

// a menu with items
List menu = null; // main menu

// list of choices
List choose = null;

// textbox
TextBox input = null;

// ticker
Ticker ticker = new Ticker("Test GUI Components');

// alerts
final Alert soundAlert = new Alert("sound Alert™);

// date

DateField date = new DateField("'Today"s date: "
DateField.DATE);

132

// form
Form form = new Form("*Form for Stuff');

// gauge
Gauge gauge = new Gauge(''Progress Bar"™, false, 20, 9);

// text field
TextField textfield = new TextField("'TextField Label', "abc",
50, 0);

// command

static final Command backCommand = new Command(‘‘Back™,
Command.BACK, 0);

static final Command mainMenuCommand = new Command(“‘Main’,
Command.SCREEN, 1);

static final Command exitCommand = new Command("Exit",
Command.STOP, 2);

String currentMenu = null;

// constructor.
public GuiTests() {

}

/**
* Start the MIDlet by creating a list of items and associating
* the exit command with it.
*/

public void startApp() throws MIDletStateChangeException {
display = Display.getDisplay(this);
// open a db stock file

menu = new List("'Test Components'™, Choice.IMPLICIT);
menu.append(*'Test TextBox", null);

menu.append(*'Test List", null);

menu.append(“'Test Alert”, null);

menu.append(*'Test Date', null);

menu.append("'Test Form"”, null);

menu .addCommand (exitCommand) ;
menu.setCommandListener(this);
menu.setTicker(ticker);

mainMenu() ;

}

public void pauseApp() {

display = null;

choose = null;

menu = null;

ticker = null;

form = null;

input null;

gauge null;
textfield = null;

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();
}

// main menu

void mainMenu() {
display.setCurrent(menu);
currentMenu = "Main"';

}

/**
* Test the TextBox component.

133

*/

public void testTextBox() {
input = new TextBox(''Enter Some Text:", "', 10,

TextField.ANY);

input.setTicker(new Ticker("Testing TextBox™));
input.addCommand(backCommand) ;
input.setCommandListener(this);
input_setString(*'""");
display.setCurrent(input);

currentMenu = "input';
b
/**
* Test the List component.
*/

public void testList() {
choose = new List(""Choose Items™, Choice_MULTIPLE);
choose.setTicker(new Ticker("'Testing List'));
choose . addCommand (backCommand) ;
choose.setCommandListener(this);
choose.append(**lItem 1, null);
choose.append(ltem 2", null);
choose.append(*'lItem 3, null);
display.setCurrent(choose);

currentMenu = "list";
¥
/**
* Test the Alert component.
*/

public void testAlert() {
soundAlert._setType(AlertType.ERROR) ;
//soundAlert.setTimeout(20);
soundAlert._setString(*"** ERROR **');
display.setCurrent(soundAlert);

}

/**
* Test the DateField component.
*/
public void testDate() {
java.util_Date now = new java.util._.Date();
date.setDate(now) ;
Form £ = new Form(*Today"s date');
f.append(date);
f.addCommand(backCommand) ;
T.setCommandListener(this);
display.setCurrent(f);

currentMenu = "'date"';
¥
/**
* Test the Form component.
*/

public void testForm() {
form.append(gauge) ;
form.append(textfield);
form.addCommand(backCommand) ;
form.setCommandListener(this);
display.setCurrent(form);
currentMenu = "form";

}

/**
* Handle events.
*/
public void commandAction(Command c, Displayable d) {

134

String label = c.getLabel();
if (label.equals("Exit™)) {
destroyApp(true);
} else if (label._equals(*'Back™)) {
if(currentMenu.equals('list™) ||
currentMenu.equals(input™) ||
currentMenu.equals('date™) ||
currentMenu.equals('form™)) {
// go back to menu
mainMenu();

}

} else {
List down = (List)display.getCurrent();
switch(down.getSelectedIndex()) {
case 0: testTextBox();break;
case testList();break;
case testAlert();break;
case testDate();break;
case testForm() ;break;

ArWNEFLO

}
}

9.2.2 Convert a MIDlet into a PRC file

This section will explain how to convert aMIDlet file into a PRC file. First, build the MIDlet in
Example 9-1 and make sure there are no compilation errors. Most devel opment tools will create
the JAR and JAD files for you automatically. These are the two files needed to convert aMIDlet
or aMIDlet suite into a PRC file. If you are using the Wireless Toolkit, the JAR and JAD files can
be found in the bin directory of your project.

The MIDP for Palm OS comes with a converter tool to convert aMIDlet JAR/JAD into an
executable Palm application. To run the PRC converter tool, you can use the batch file distributed
with the release. However, if you have set the JAVA_HOME environment variable on your
desktop, edit the CONVERTER.BAT file and change al the JAVA_PATH references to

JAVA HOME. Then run the converted batch file. Alternatively, you can run the tool using the
command:

C:\midp4palml.O\converter> java -jar Converter.jar

The converter.jar archive contains the implementations for the PRC converter toal. If the above
command runs successfully, you should see awindow similar to Figure 9-7.

Figure 9-7. PRC converter tool

135

[E5 PAC Converter Tool [l[m] E3

File Help

=R

U »

The FRC Conwerter Tool
converts Java applications
(MIDIets) mio pre files that
can be installed onto Palm O3
dewices. MIDlets are composed |
of two parts: a jadland jar file |

Click on the = icon to find
Jadf @r files to conwert to 2

pre =

Now, select Convert from the File menu, and navigate to the directory where the JAD and JAR
files are located (as with deployment on the Motorola i85s and the i50x, they must be in the same
directory). Select the JAD file to be converted, then click on the Convert button to convert the file
into a PRC file. If everything is okay, you will see a success message, as shown in Figure 9-8.

Figure 9-8. Converting JAD/JAR to PRC

kg PHL Lo kas Chooze pour JAD files
_Ilﬂ ﬂ“‘v Ll i] ban r 1| 23] ERIES
=a .; = A ||
| A LAD kel
D guljsc . JAD infm.
File: 0\ Imestkiappsigaibin'aa g [i mevetc
Resuli: [apps
Destination: O 2mesdkanpsaninie@n pre T ui
[bin
= D
il mame: [guijad Commrt :
ol | e Apgiication Descriptos fles (jad) = Cancel I

By default, the converted PRC file will be saved in the same directory asthe JAD/JAR file pair. If
you like, you can save all converted PRC files under another directory by choosing Preferences
from the Converter's File menu. Then you can select afolder of your choice for output.

9.2.3 Install and Test

Once the JAD/JAR file pair have been converted to a PRC file, you can install the PRC file on
your Palm OS device using HotSync. Once installed, you can run it and select components to test,
as shown in Figure 9-9. Here, we have tested aform with a progress bar, atext field, an alert, and
adate.

Figure 9-9. Testing a MIDP application for the Palm OS

136

RECIETE o (o o I o> cory, W o ot |

= IR | Frogress Bur: B Tt Tusenfe: 4 2001 b

D TestLint | B Test List san | Fab | ar | Fpr [Wiey] Jen
) Tt lert TextField Label e ier | P T v [
3 T Dot b (T Tkt Dt o

E£2) Test Form B Test Farm EMOT W T ; g

(4 &8 & 7 am
R = I T | S)
[N | R - |
I 26 2r 3 v 30

) *"ERROR %%

@ Badh n oy

9.3 PRC Command-Line Conversion

The PRC GUI-based converter tool is easy to use. However, this comes at the expense of
functionality. For example, what if you wish to associate a new icon with your application rather
than have the default icon? Y ou can use the command-line converter to complete this and other
tasks.

The MIDP for Palm OS distribution comes with a command-line tool for converting JAR filesto
PRC files. The tool isthe MakeMIDPApp, which is part of the converter.jar archive. To run this
converter, use the command:

C:\mid4palml.O\converter> java -cp converter.jar
com.sun.midp.palm.database .MakeMIDPApp
[options] JARTile

The options for this command are shown in Table 9-1:

Table 9-1. Command-line PRC converter tool options

\ Option \ Description
-V V erbose output

-V -V More information

-verbose Sameas -v

File containing icon (in bmp, pbm, or bin Palm resource format) for the list

| <file> . L
fcon<file viewof the application

;iT?; reon File containing asmall icon for the Palm OS device'sicon view
-name <name> Short name for the application, for the Palm OS device'sicon view
-longname _— T

<names> Long name for the application, for Palm OS device list view

~creator <crid> Creator ID for the application

-type <type> Typefile for the application (default is appl)

-outfile <file>|Name of the PRC fileto create

-0 <file> Sameas -outfile
-version Change version
<string> geV:

I~help Print help information

\—jad <JADfile> \A JAD fileis specified (MIDlet suite packaging)

With the command-line tool, you can produce PRC files from a single MIDlet or from a MIDl et
suite. For example, the following command can be used to convert a JAR file (containing one
MIDlet or aMIDlet suite) to aPRC file:

137

C:\midp4palml.O\converter> java -cp Converter.jar
com.sun.midp.database._MakeMIDPApp -type
Data gui.jar

This command will produce a PRC file called gui.prc from the JAR file gui.jar. Note that the type
of application being converted can be either appl ot Data (case-sensitive). If you don't provide
the —type option, then MakeMIDPApp uses the default type, whichiisappl. It isimportant to
note, however, that if you don't provide a creator ID with the -creator option, you must set the
type to Data. The creator ID specifies the unique, four-character identifier for a Palm application.
Every Pam application must have a creator 1D, and if you do not provide one, then
MakeMIDPApp will automatically generate a creator 1D for your application. To find out the
creator ID, usethe -v -v option.

Any application converted using the GUI-based converter tool or the command-linetool is, by
default, not beamable from the Palm launcher screen, as shown in Figure 9-10. If you use the
command-line tool, however, and provide a creator ID, then the application will be beamable.

Figure 9-10. An application cannot be beamed (by default)

Garnes

23

a -
qui] L |
HostExglil 1

@ o y-praTected apps
and datobases connet
e bramed. These ars
listed with a lock icon
meEH T To them,

Lok)

=

9.4 Advanced Java Applications

Y ou have seen how to develop a simple Java application for the Palm that creates various GUI
components. What about advanced applications that use networking and databases? Well, the
MIDP for Palm OS supports all the MIDP features, including the Generic Connection Framework
and the RMS. So, now let's look at a couple of sample applications developed in Chapter 7 and

Chapter 8.

First, however, there are two things that need to be set if you want to test network-based
applications from the Palm OS Emulator (POSE).

1. Redirect Netlib callsto host TCP/IP. To do this, right-click on the POSE window, select
Setting éProperties, and check the Redirect NetLib callsto host TCP/IP, as shown in
Figure 9-11.

Figure 9-11. POSE property settings

138

Communicabions
Seral Pott | | |
Cancel

Sounds
¥ Enable zound:

Clozng / Quittng

™ Always save session
I Ask bo 2ave sezmion
™ Meyer save session

HolSyne Ls=1 Mame
IF'aI'n 0% Emulator

2. Enable Networking. To do this, tap the Java HQ icon, then tap Preferences and select
Networking Enabled, as shown in Figure 9-12.

Figure 9-12. Java HQ networking preferences

fAbout Jova™ Ha B Jad Prefurences
=" Iapyright & 2001 4
ll‘d_-] Igu:j ! Praferanies: w Gobal
Micrasysteme, Ind _
|| ‘.‘:7"-’?) Alrights reserved Lalars: w 254 Jolors
I Uee i suabject 1w Drawing Speed: « Fon
[avrp | heefde bermg . e
I| i W L | Thed-party App Memnory: w
e) Nateorking:
ichading font HTTP Prouy: | Entar- |
Versien 1.0 h
)

The Java HQ allows you to set special preferences. For example, it allows you to set how much
memory is used to run Java applications, how many colors are used, the drawing speed, how your
device will connect to the Internet, and how the controls should be displayed on the screen. Y ou
can easily set al of these options using the Java HQ. However, if you are running an application
and would like to set some preferences, select the Preferences item from the Options menu. Y ou
can choose whether you want to set Application preferences, Global preferences, or Java HQ
preferences, as shown in Figure 9-13. Application preferences affect only the Java application you
are running; Global preferences affect every Java application running in your device.

Figure 9-13. Preference settings for the Java HQ and its applications

Fctions Go

| misi- T &ar Casnn T G Corre
=i JovaPratersnces . <R || Jova Preferences
(51 Tou Preferences Help .

T Tert Rlare : Hb-.-:l.l-.r- n |
%) Tast Dnte | | Gome Controls: = Tane cuctons
(=2 Tast Forma || Put Keypad on: = Hone
Screen Buttons: « On

Codars: + 256 Colare

| | Drawing Speed: = Fan

(Esit] =K Conwed] [Reiet]

9.4.1 Fetching a Page Using HttpConnection

In Chapter 7, aMIDlet was developed to retrieve the contents of afile from aremote server using
the HttpConnection interface. The MIDIet that implements this functionality is

139

SecondExample.java. Create a new project in the Wireless Toolkit and use SecondExample.java as
its source file. Build it, locate the JAR and JAD files, and use the PRC converter tool to convert
them into aPRC file. Install the PRC file on POSE and then run the application. If all goeswell,
you should see something similar to Figure 9-14.

Figure 9-14. Retrieving a file from a remote server

[neile agoin... I

'Iu'ftb\:\me o ML for Palm O5

9.4.2 Retrieving Stock Quotes and Working with Databases

In Chapter 8, aMIDlet was developed that allows you to create a database, add stocks (which are
retrieved from Y ahoo! Finance) to the database, and view the database. Download the files
Sock.java, SockDB.java, and QuotesMIDlet.java. Build the application and create the JAR and
JAD file pair. Then use the PRC converter tool to produce a PRC file. Install the PRC file on
POSE and then run it. Add afew stocks and then view the stocks from the database. If everything
goes well, you should see something similar to Figure 9-15.

Figure 9-15. Stock quotes

[svacks Dare. [EINARAELR]| Choose Stocks [INIAERNEEN

3 Lisn Srocks [SUM 1550
& DT | 1T 135
[AL @ 5041

Bl 1157E

(Ez)

9.5 A Final Thought

The Palm OS implementation of MIDP provides a runtime environment and tools that allow you
to convert your MIDlets into Palm applications without writing a single line of code. | do not
know of any easier way to develop fully functional Java applications for the Palm. These
applications can be used just like any other Palm application; they run like any Palm program and
can be removed from your Palm OS device the same way that you would remove any other
application. However, it remains to be seen whether the MIDP for Palm OS is here to stay, or if it
will be superseded by the PDA Profile for 2ME, which is based on the CLDC and will provide
user interface and data storage APIs for handheld devices. As of thiswriting, the PDA profileis
till in the works and no reference implementation is available.

140

Part lll: API Quick Reference

Part 111 presents quick-reference material for the 2ME CLDC and MIDP APIs.
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

Appendix H

141

Appendix A. The java.io Package

java.io.ByteArraylnputStream

java.io.ByteA rrayOutputStream

java.io.Datal nput

java.io.Datal nputStream

java.io.DataOutput

java.io.DataOutputStream

java.io.EOFEXxception

java.io.lnputStream

java.io.lnputStreamReader

java.io.Interruptedl OEXception

java.io.l OException

java.io.OutputStream

java.io.OutputStreamWriter

java.io.PrintStream

java.io.Reader
java.io.UnsupportedEncodingException

java.io.UTFDataFormatException
java.io.Writer

java.io.ByteArrayl nputStream

Thisclassisidentical to its J2SE counterpart. It isa subclass of InputStream, which reads data
in as a series of bytes.

public class ByteArraylnputStream extends java.io.lnputStream {
// protected fields
protected byte[] buf;
protected int count;
protected int mark;
protected int pos;

// constructors
public ByteArraylnputStream(byte[] buf);
public ByteArraylnputStream(byte[] buf, int offset, int length);

// public instance methods

public synchronized int available();

public synchronized void close() throws java.io.lOException;
public void mark(int readAheadLimit);

public boolean markSupported();

public synchronized int read();

public synchronized int read(byte[] b, int off, int len);

142

public synchronized void reset();
public synchronized long skip(long n);

}

java.io.ByteArrayOutputStream

Thisclassisadlightly smaller version of its J2SE counterpart. It is a subclass of
Java.io.OutputStream, which writes data out as a series of bytes.

public class ByteArrayOutputStream extends java.io.OutputStream {
// protected fields
protected byte[] buf;
protected int count;

// constructors
public ByteArrayOutputStream();
public ByteArrayOutputStream(int size);

// public instance methods

public synchronized void close() throws java.io.lOException;
public synchronized void reset();

public int size();

public synchronized byte[] toByteArray();

public String toString();

public synchronized void write(int b);

public synchronized void write(byte[] b, int off, int len);

java.io.Datal nput

Thisinterface is a dightly smaller version of its J2SE counterpart. It defines methods to read
primitive data types from a platform-dependent binary format.

public interface Datalnput {
// public methods
public boolean readBoolean() throws java.io.lOException;
public byte readByte() throws java.io.lOException;
public char readChar() throws java.io.lOException;
public void readFully(byte[] b) throws java.io.lOException;
public void readFully(byte[] b, int off, int len)

throws java.io.lOException;

public int readlnt() throws java.io.lOException;
public long readLong() throws java.io.lOException;
public short readShort() throws java.io.lOException;
public int readUnsignedByte() throws java.io.lOException;
public int readUnsignedShort() throws java.io.lOException;
public String readUTF() throws java.io.lOException;
public int skipBytes(int n) throws java.io.lOException;

java.io.Datal nputStream

143

Thisclassisadightly smaller version of the J2SE DatalnputStream class. The class can be
used to read in primitive data types from a platform-dependent source. Most of the methods of this
class read from the stream and return a Java primitive data type. Other important methods include
avai lable(), which returns the number of available bytes that can be read without blocking;
the generic read () methods, which read in a specified amount of data, blocking if the data is not
available yet. Also, skipBytes() skipsover anumber of bytesin the stream, blocking if the
datais not yet available. Finaly, readFul Iy () reads the specified amount of datainto a byte

array.

public class DatalnputStream extends java.io.lnputStream
implements java.io.Datalnput {
// protected fields
protected InputStream in;

// constructor
public DatalnputStream(InputStream in);

// static methods
public static final String readUTF(Datalnput in)
throws java.io.lOException;

// public instance methods
public int available() throws java.io.lOException;
public void close() throws java.io.lOException;
public synchronized void mark(int readlimit);
public boolean markSupported();
public int read() throws java.io.lOException;
public final int read(byte[] b) throws java.io.lOException;
public final int read(byte[] b, int off, int len)

throws java.io.lOException;
public final boolean readBoolean() throws java.io.lOException;
public final byte readByte() throws java.io.lOException;
public final char readChar() throws java.io.lOException;
public final void readFully(byte[] b) throws java.io.lOException;
public final void readFully(byte[] b, int off, int len)

throws java.io.lOException;
public final int readlnt() throws java.io.lOException;
public final long readLong() throws java.io.lOException;
public final short readShort() throws java.io.lOException;
public final int readUnsignedByte() throws java.io.lOException;
public final int readUnsignedShort() throws java.io.lOException;
public final String readUTF() throws java.io.lOException;
public synchronized void reset() throws java.io.lOException;
public long skip(long n) throws java.io.lOException;
public final int skipBytes(int n) throws java.io.lOException;

java.io.DataOutput

Thisinterface isa dightly smaller version of its J2SE counterpart. It defines methods to write
primitive data types to a platform-dependent binary format.

public interface DataOutput {
// public methods
public void write(int b) throws java.io.lOException;
public void write(byte[] b) throws java.io.lOException;
public void write(byte[] b, int off, int len) throws java.io.lOException;

144

public void writeBoolean(boolean v) throws java.io.lOException;
public void writeByte(int v) throws java.io.lOException;

public void writeChar(int v) throws java.io.lOException;

public void writeChars(String s) throws java.io.lOException;
public void writelnt(int v) throws java.io.lOException;

public void writeLong(long v) throws java.io.lOException;
public void writeShort(int v) throws java.io.lOException;
public void writeUTF(String str) throws java.io.lOException;

java.io.DataOutputStream

Thisclassisadightly smaller version of the J2SE DataOutputStream class. The class can be
used to write out primitive data types to a platform-dependent source. Most of the methods of this
class write a Java primitive data type to a stream. Thewr i te () methods write out asingle byte
or abyte array (or portion thereof) to the output stream. Flush () flushes out the I/O buffer, and
close () closesthe output stream.

public class DataOutputStream extends java.io.OutputStream
implements java.io.DataOutput {
// protected fields
protected OutputStream out;

// constructor
public DataOutputStream(OutputStream out);

// public instance methods

public void close() throws java.io.lOException;

public void flush() throws java.iolOException;

public void write(int b) throws java.io.lOException;

public void write(byte[] b, int off, int len) throws java.io.lOException;
public final void writeBoolean(boolean v) throws java.io.lOException;
public final void writeByte(int v) throws java.io.lOException;

public final void writeChar(int v) throws java.io.lOException;

public final void writeChars(String s) throws java.io.lOException;
public final void writelnt(int v) throws java.io.lOException;

public final void writeLong(long v) throws java.io.lOException;
public final void writeShort(int v) throws java.io.lOException;
public final void writeUTF(String str) throws java.io.lOException;

java.io.EOF Exception

Thisexception isidentical to its J2SE counterpart. It signifies that the end of the file has been
reached.

public class EOFException extends java.io.lOException {
// constructors
public EOFException();
public EOFException(String s);

}

145

java.io.lnputStream

This abstract classisidentical to the J2SE InputStream class. All input streams must extend
this class. Applications that define a subclass of InputStream must aways implement the
abstract read () method, which reads in asingle byte of dataor -1 if there is no more data to be
read. Other important methods include avai lable (), which returns the number of available
bytes that can be read without blocking, as well as skip (), which skips over the specified

number of bytes. Finally, close () will close the input stream, releasing any resources associated
with it.

public abstract class InputStream {
// constructor
public InputStream();

// public instance methods

public int available() throws java.io.lOException;

public void close();

public synchronized void mark(int readlimit);

public boolean markSupported();

public abstract int read() throws java.io.lOException;

public int read(byte[] b) throws java.io.lOException;

public int read(byte[] b, int off, int len) throws java.io.lOException;
public synchronized void reset() throws java.io.lOException;

public long skip(long n) throws java.io.lOException;

java.io.l nputStreamReader

Thisclassis adightly modified version of the InputStreamReader class used in J2SE. The
class creates a character input stream, which trandates data coming from a byte input stream,
based on a specific encoding. The read () method reads in a single character value or an array of
characters. The skip() method skips over the specified number of characters. The ready ()
method returns a Boolean, indicating whether the stream is ready to be read.

public class InputStreamReader extends java.io.Reader {
// constructors
public InputStreamReader(InputStream is);
public InputStreamReader(InputStream is, String enc)
throws java.io.UnsupportedEncodingException;

// public instance methods
public void close() throws java.io.lOException;
public void mark(int readAheadLimit) throws java.io.lOException;
public boolean markSupported();
public int read() throws java.io.lOException;
public int read(char[] cbuf, int off, int len)
throws java.io.lOException;
public boolean ready() throws java.io.lOException;
public void reset() throws java.io.lOException;
public long skip(long n) throws java.io.lOException;

146

java.io.l nterruptedl OException

This exception isidentical to its J2SE counterpart. It signifies that an input or output operation
was interrupted. The bytesTransferred field indicates the number of bytes that were
successfully transferred before the interruption took place.

public class InterruptedlOException extends java.io.lOException {
// public fields
public int bytesTransferred;

// constructors

public InterruptedlOException();
public InterruptedlOException(String s);

java.io.l OException

This exception isidentical to its J2SE counterpart. It signifies that an error occurred during data
input or output. Many exceptions in this package extend 10Exception.

public class I0Exception extends java.lang.Exception {
// constructors
public 10Exception();
public 10Exception(String Ss);

}

java.io.OutputStream

This abstract classis the superclass of al types of output streams. Classes that extend
OutputStream must provide an implementation for the abstract wr i te() method. Other
methods include Flush (), which flushes the output buffer, and close (), which closes the
output stream and releases any resources associated with it.

public abstract class OutputStream {
// constructor
public OutputStream();

// public instance methods
public abstract void write(int b) throws java.io.lOException;
public void write(byte[] b) throws java.io.lOException;
public void write(byte[] b, int off, int len)

throws java.io.lOException;
public void flush() throws java.io.lOException;
public void close() throws java.io.lOException;

147

java.io.OutputStreamWriter

This classis adightly modified version of the OutputStreamReader classused in J2SE. The
class outputs data from a character input stream, based on a specific encoding, to a byte input
stream. Thewrite() methods output a single character, an array (or sub-array) of characters, or
astring (or sub-string) to the output stream. Other methods include Flush (), which flushes the
output buffer, and close (), which closes the output stream and releases any resources associated
with it.

public class OutputStreamWriter extends java.io._Writer {
// constructors
public OutputStreamWriter(OutputStream o0s);
public OutputStreamWriter(OutputStream os, String enc)
throws java.io.UnsupportedEncodingException;

// public instance methods

public void write(int ¢c) throws java.io.lOException;

public void write(char[] cbuf, int off, int len)
throws java.io.lOException;

public void write(String str, int off, int len)
throws java.io.lOException;

public void flush() throws java.io.lOException;

public void close() throws java.io.lOException;

java.io.PrintStream

This classis dightly modified from the J2SE class of the same name. The PrintStream class
outputs textual representations of various data. Note that the PrintStream never throws an
10Exception, unlike other streams. Instead, you should use the checkError () method to
determine if an exceptional condition has occurred.

public class PrintStream {

// constructor

public PrintStream(OutputStream out);
// protected instance methods
protected void setError();

// public instance methods
public boolean checkError();
public void close();

public void flush(Q);

public void print(boolean b);
public void print(char c);
public void print(char[] s);
public void print(int i);
public void print(long I);
public void print(Object obj);
public void print(String s);
public void printIn(Q);

public void printin(boolean x);
public void printIn(char x);

148

public void
public void
public void
public void
public void
public void
public void

java.io.Reader

printin(char[] x);

printIn(int x);

printin(long x);

printIn(Object x);

printIn(String x);

write(int b);

write(byte[] buf, int off, int len);

This abstract classisidentical to the J2SE Reader class. It isthe superclassfor all classes that
read character streams. The only methods that a Reader subclass must implement are the abstract
read() and close () methods, although many implementations override other methods. Other
important methods include skip (), which skips over the specified number of characters, and
close (), which closes the input stream and releases any resources associated with it. Finaly, the
ready () method returns a Boolean, indicating if the stream can have more data read fromit.

public abstract class Reader {
// protected fields
protected Object lock;

// constructors
protected Reader();
protected Reader(Object lock);

// public instance methods
public abstract void close() throws java.io.lOException;
public void mark(int readAheadLimit) throws java.io.lOException;
public boolean markSupported();
public int read() throws java.io.lOException;
public int read(char[] cbuf) throws java.io.lOException;
public abstract int read(char[] cbuf, int off, int len)
throws java.io.lOException;
public boolean ready() throws java.io.lOException;

public void

reset() throws java.io.lOException;

public long skip(long n) throws java.io.lOException;

java.io.UnsupportedEncodingException

This exception isidentical to its J2SE counterpart. It is thrown when the requested character
encoding is not supported by the current operation.

public class UnsupportedEncodingException extends java.io.lOException {
// public constructors
public UnsupportedEncodingException();
public UnsupportedEncodingException(String s);

}

149

java.io.UTFDataF ormatException

This exception isidentical to its J2SE counterpart. It is thrown when a malformed UTF-8 string
has been detected.

public class UTFDataFormatException extends java.io.lOException {
// constructors
public UTFDataFormatException();
public UTFDataFormatException(String s);

}

java.io.Writer

This abstract classisidentical to the J2SE Writer class. It isthe superclass for all classes that
write character streams. The only methods that aWr i ter subclass must implement are the
abstract write(), flush(), and close () methods, although many implementations override
other methods. Several write () methods are provided to output single characters, arrays (or sub-
arrays), or characters, strings, and substrings.

public abstract class Writer {
// protected fields
protected Object lock;

// constructors
protected Writer();
protected Writer(Object lock);

// public instance methods
public abstract void close() throws java.io.lOException;
public abstract void flush() throws java.io.lOException;
public void write(int ¢c) throws java.io.lOException;
public void write(char[] cbuf) throws java.io.lOException;
public abstract void write(char[] cbuf, int off, int len)
throws java.io.lOException;
public void write(String str) throws java.io.lOException;
public void write(String str, int off, int len)
throws java.io.lOException;

150

Appendix B. The java.lang Package

java.lang.ArithmeticException

java.lang.ArraylndexOutOf BoundsException

java.lang.ArrayStoreException

java.lang.Boolean

java.lang.Byte

java.lang.Character

javalang.Class
java.lang.ClassCastException
java.lang.ClassNotFoundException

java.lang.Error
java.lang.Exception

java.lang.lllegal AccessException

java.lang.lllegal ArgumentException

java.lang.lllegalMonitor StateException

java.lang.lllegal StateException
java.lang.lllegal ThreadStateException

java.lang.IndexOutOf BoundsException

java.lang.l nstanti ationException

java.lang.Integer
java.lang.lnterruptedException
java.lang.Long

java.lang.Math
java.lang.NegativeArraySizeException

java.lang.Null PointerException

java.lang.NumberFormatException

java.lang.Object
java.lang.OutOf M emoryError

java.lang.Runnable

java.lang.Runtime

java.lang.RuntimeException

java.lang.SecurityException
java.lang.Short

java.lang.String
java.lang.StringBuffer

java.lang.StringlndexOutOf BoundsException
java.lang.System

151

java.lang.Thread
java.lang.Throwable

java.lang.Virtua M achineError

java.lang.ArithmeticException

This exception isidentical to its J2SE counterpart. It signifiesan illegal arithmetic condition, the
most common of which isadivision by zero.

public class ArithmeticException extends java.lang.RuntimeException {
// constructors
public ArithmeticException();
public ArithmeticException(String s);

}

java.lang.Arrayl ndexOutOfBoundsException

This exception isidentical to its J2SE counterpart. It signifies that an attempt was made to access
an array with either a negative index value or an index value greater than or equal to the array size.

public class ArraylndexOutOfBoundsException extends
Java.lang. IndexOutOfBoundsException {
// constructors
public ArraylndexOutOfBoundsException();
public ArraylndexOutOfBoundsException(int index);
public ArraylndexOutOfBoundsException(String s);

java.lang.ArrayStoreException

This exception isidentical to its J2SE counterpart. It signifies that an attempt was made to store
the wrong type of object into an array.

public class ArrayStoreException extends java.lang.RuntimeException {
// constructors
public ArrayStoreException();
public ArrayStoreException(String s);

}

java.lang.Boolean

152

Thisclassis asmaller counterpart to the J2SE Boo lean class. It provides an object wrapper
around the boolean primitive data type. The boolean isthe object's only field, which is set by
the constructor and accessed using the booleanVvalue () method.

public final class Boolean {
// public constructor
public Boolean(boolean value);

// public instance methods

public boolean booleanValue();
public boolean equals(Object obj);
public int hashCode();

public String toString();

java.lang.Byte

This classis asmaller counterpart to the J2SE By te class. It provides an object wrapper around
the by te primitive data type. The class provides minimum and maximum constant values that can
be used to test the legal size of the byte. The value of the object’s byte is accessed using the
byteValue() method. In addition, the two parseByte() methods can take a number from a
specified string or an optionally specified radix and return it as a byte.

public final class Byte {
// constants
public static final byte MIN_VALUE;
public static final byte MAX_VALUE;

// public constructor
public Byte(byte value);

// static methods

public static byte parseByte(String s) throws NumberFormatException;

public static byte parseByte(String s, int radix) throws
NumberFormatException;

// public instance methods
public byte byteValue();

public boolean equals(Object obj);
public int hashCode();

public String toString();

java.lang.Character

Thisclassis asmaller counterpart to the J2SE Character class. It provides an object wrapper
around asingle char primitive datatype. The class contains several static methods for testing the
type of character stored, as well asfor converting between uppercase and lowercase letters. Use
the static digit() method to convert the character to a decimal value, using the specified radix

153

(e.g., radix 8 for octal). To dump the stored character back into a primitive char datatype, use the
charValue() method.

public final class Character {
// constants
public static final int MIN_RADIX;
public static final int MAX_RADIX;
public static final char MIN_VALUE;
public static final char MAX_VALUE;

// static methods

public static int digit(char ch, int radix);
public static boolean isDigit(char ch);
public static boolean isLowerCase(char ch);
public static boolean isUpperCase(char ch);
public static char toLowerCase(char ch);
public static char toUpperCase(char ch);

// public constructor
public Character(char value);

// public instance methods

public char charValue();

public boolean equals(Object obj);
public int hashCode();

public String toString();

java.lang.Class

This classis amuch smaller counterpart to the J2SE Class class. It represents a Java class, array,
or interface. A class can be dynamically loaded using the static forName () method, which takes
the fully qualified name of the class and returns aClass object. The isArray() and
isInterface() methodstest whether the classis an array or interface, respectively. To test if a
specific object is an instance of this class, pass the object into the isInstance () method. Use
the newlnstance () method to create an object by invoking its zero-argument constructor.
Finaly, getResourceAsStream() can be used to load external resources (such as bitmap
images) into an input stream.

public final class Class {

// static methods
public static native Class forName(String className)
throws java.lang.ClassNotFoundException;

// public instance methods

public String getName();

public InputStream getResourceAsStream(String name);

public boolean isArray();

public boolean isAssignableFrom(Class cls);

public boolean isInstance(Object obj);

public boolean islInterface();

public Object newlnstance() throws java.lang.InstantiationException,
jJjava.lang.lllegalAccessException;

public String toString();

154

java.lang.ClassCastException

This exception isidentical to its J2SE counterpart. It signifiesan illegal attempt to cast an object to
aclass of which the object is not an instance.

public class ClassCastException extends java.lang.RuntimeException {
// constructors
public ClassCastException();
public ClassCaseException(String s);

}

java.lang.ClassNotFoundException

This exception isidentical to its J2SE counterpart. It signifies that a requested class could not be
found by the class loader.

public class ClassNotFoundException extends java.lang.Exception {
// constructors
public ClassNotFoundException();
public ClassNotFoundException(String s);

}

java.lang.Error

Thisclassisidentical to its J2SE counterpart. It forms the base of the J2ME error hierarchy. Errors
in Javatypically mean that a severe condition has occurred and therefore should not be caught.

public class Error extends java.lang.Throwable {
// constructors
public Error();
public Error(String s);

}

java.lang.Exception

Thisclassisidentical to its J2SE counterpart. It forms the base of the J2ME exception hierarchy.

public class Exception extends java.lang.Throwable {
// constructors
public Exception();

155

public Exception(String s);
}

java.lang.lllegal AccessException

This exception isidentical to its J2SE counterpart. It signifiesthat a class or initializer is not
accessible to the caller.

public class IllegalAccessException extends java.lang.Exception {
// constructors
public lllegalAccessException();
public IllegalAccessException(String s);

}

java.lang.l llegal ArgumentException

This exception isidentical to its J2SE counterpart. It signifiesthat an illegal argument has been
passed to a method.

public class IllegalArgumentException extends java.lang.RuntimeException {
// constructors
public IllegalArgumentException();
public lllegalArgumentException(String s);

}

java.lang.lllegalMonitor StateException

This exception isidentical to its J2SE counterpart. It indicates that an illegal monitor state has
occurred in athread that isitself either waiting or attempting to notify awaiting thread.

public class IllegalMonitorStateException extends java.lang.RuntimeException

// constructors
public lllegalMonitorStateException();
public IllegalMonitorStateException(String s);

}

java.lang.lllegal StateException

This exception isidentical to its J2SE counterpart. It isthrown when anillegal transition is
requested, such asinvoking a method at anillegal or inappropriate time.

156

public class IllegalStateException extends java.lang.RuntimeException {
// public constructors
public IllegalStateException();
public lllegalStateException(String s);

}

java.lang.lllegal ThreadStateException

This exception isidentical to its J2SE counterpart. It isthrown when illegal transitions are
requested on a thread that is not in the appropriate state.

public class IllegalThreadStateException extends
jJava.lang.lllegalArgumentException {
// constructors
public lllegalThreadStateException();
public IllegalThreadStateException(String s);

}

java.lang.l ndexOutOfBoundsException

Thisexceptionisidentical to its J2SE counterpart. It isthrown when an index has exceeded the
bounds placed onit.

public class IndexOutOfBoundsException extends java.lang.RuntimeException {
// constructors
public IndexOutOfBoundsException();
public IndexOutOfBoundsException(String s);

}

java.lang.l nstantiationException

Thisexception isidentical to its J2SE counterpart. It isthrown when an attempt is made to
instantiate an interface or an abstract class.

public class InstantiationException extends java.lang.Exception {
// constructors
public InstantiationException();
public InstantiationException(String s);

}

java.lang.I nteger

157

Thisclassis asmaller counterpart to the J2SE Integer class. It provides an object wrapper
around asingle int primitive datatype. The class contains severa static methods for converting
an int to various formats, as well as two valueOf () methods to convert astring with an
optionally specified radix back into an Integer. To dump the stored character back into a
primitive int, long, or short datatype, usethe intvValue(), longvalue(), or
shortValue() methods, respectively.

public final class Integer {
// public constants
public static final int MIN_VALUE;
public static final int MAX_VALUE;

// static methods
public static int parselnt(String s, iInt radix) throws
java. lang.NumberFormatException;
public static int parselnt(String s) throws
java. lang.NumberFormatException;
public static String toBinaryString(int i);
public static String toHexString(int i);
public static String toOctalString(int i);
public static String toString(int i);
public static String toString(int i, int radix);
public static Integer valueOf(String s, int radix) throws
java. lang.NumberFormatException;
public static Integer valueOf(String s) throws
jJava. lang.NumberFormatException;

// public constructor
public Integer(int value);

// public instance methods

public byte byteValue();

public boolean equals(Object obj);
public int hashCode();

public int intvalue();

public long longvValue();

public short shortvValue();

public String toString();

java.lang.I nterruptedException

This exception isidentical to its J2SE counterpart. It is thrown when athread has been interrupted.

public class InterruptedException extends java.lang.Exception {
// constructors
public InterruptedException();
public InterruptedException(String s);

}

java.lang.Long

158

Thisclassisasmaller counterpart to the J2SE Long class. It provides an object wrapper around a
single long primitive data type. The class provides minimum and maximum constant values that
can be used to test the legal size of a long. The value of the abject's long is accessed using the
longValue() method. In addition, the parseByte()and toString() methods can convert a
number from aString to a long, and vice versa, with an optionally specified radix.

public final class Long {

// public constants
public static final long MIN_VALUE;
public static final long MAX_VALUE;

// static methods
public static long parseLong(String s) throws
jJava. lang.NumberFormatException;
public static long parseLong(String s, int radix) throws
java. lang.NumberFormatException;
public static String toString(long i);
public static String toString(long i, int radix);

// public constructor
public Long(long value);

// public instance methods

public boolean equals(Object obj);
public int hashCode();

public long longvValue();

public String toString();

java.lang.Math

This classis amuch smaller counterpart to the J2SE Math class. Because J2ME does not support
floating-point variables, the class only provides six static methods for determining the absolute
value of an int or a long, aswell asthe smaller (minimum) and larger (maximum) of two int
or long variables.

public final class Math {

// static methods
public static int abs(int a);
public static long abs(long a);
public static int max(int a, int b);
public static long max(long a, long b);
public static int min(int a, int b);
public static long min(long a, long b);
}

java.lang.NegativeArraySizeException

This exception isidentical to its J2SE counterpart. It signifies an attempt to instantiate an array
with a negative number of elements.

159

public class NegativeArraySizeException extends java.lang.RuntimeException {
// constructors
public NegativeArraySizeException();
public NegativeArraySizeException(String s);

}

java.lang.NullPointer Exception

This exception isidentical to its J2SE counterpart. It signifies an attempt to reference an object
that has not yet been instantiated.

public class NullPointerException extends java.lang.RuntimeException {
// constructors
public NullPointerException();
public NullPointerException(String s);

}

java.lang.Number FormatException

This exception isidentical to its J2SE counterpart. It signifies that the format of a number isillegal
for the invoked operation.

public class NumberFormatException extends
java.lang. IllegalArgumentException {
// constructors
public NumberFormatException();
public NumberFormatException(String s);

}

java.lang.Object

Thisclassisadlightly smaller counterpart to the J2SE Ob ject class. It forms the base of the
object hierarchy in Java; in other words, all classes are subclasses of Object. Theequals()
method tests for a byte-for-byte equivalence between the data of two objects. (Be sure not to
confuse this with the == operator, which ssimply tests if two references point to the same object.)
getClass() returnsaClass object associated with this object. The threewa it () methods, as
well asnotify() and notifyAll (), are used for thread synchronization on an object. Aswith
any J2SE object, subclasses should override toString() and hashCode() if appropriate (e.g.,
creating an object that acts asakey in aHashtable). Finaly, note that the fFinalize()
method has been eliminated in the J2ME version of Object.

public class Object {
// public constructor
public Object();

160

// public instance methods
public boolean equals(Object obj);
public final Class getClass();
public int hashCode();
public final void notify();
public final void notifyAll();
public String toString();
public final void wait() throws java.lang.InterruptedException;
public final void wait(long timeout) throws
jJjava.lang. InterruptedException;
public final void wait(long timeout, int nanos) throws
jJava.lang. InterruptedException;

java.lang.OutOfMemoryError

Thiserror isidentical to its J2SE counterpart. It signifies that the virtual machine has run out of
memory.

public class OutOfMemoryError extends java.lang.VirtualMachineError {
// constructors
public OutOfMemoryError();
public OutOfMemoryError(String s);

}

java.lang.Runnable

Thisinterface isidentical to the Runnable interfacein J2SE. It consists of only one method,
run(), which is often used in conjunction with threads.

public interface Runnable {
// methods
public void run(Q);

}

java.lang.Runtime

This classis a stripped-down version of the J2SE Runtime class. Aside from the static
getRuntime() method, which ensures asingle Runtime object for the system, this class
consists of only four methods to encapsul ate platform-dependent system functions: two for
monitoring total and currently used memory, one for garbage collection, and one to exit the
program.

public class Runtime {
// static methods
public static Runtime getRuntime();

161

// public instance methods
public void exit(int status);
public native long freeMemory();
public native void gc(Q);

public native long totalMemory();

java.lang.RuntimeException

This exception isidentical to its J2SE counterpart. It is a superclass of anumber of exceptions that
signify that an unexpected condition has occurred at runtime. Applications are not required to
catch runtime exceptions, as they can be thrown at any time.

public class RuntimeException extends java.lang.Exception {
// constructors
public RuntimeException();
public RuntimeException(String s);

}

java.lang.SecurityException

Thisexception isidentical to its J2SE counterpart. It signifies that an operation is not allowed due
to security reasons.

public class SecurityException extends java.lang.RuntimeException {
// constructors
public SecurityException();
public SecurityException(String s);

}

java.lang.Short

Thisclassis asmaller counterpart to the J2SE Short class. It provides an object wrapper around
asingle short primitive data type. The class provides minimum and maximum constant values
that can be used to test the legal size of ashort. The value of the object's short is accessed using
the shortValue() method. In addition, the parseShort() methods can convert a number
fromaString toashort, and vice versa, with an optionally specified radix.

public final class Short {
// public constants
public static final short MIN_VALUE;
public static final short MAX_VALUE;

// static methods
public static short parseShort(String s) throws

162

java. lang.NumberFormatException;
public static short parseShort(String s, int radix) throws
java. lang.NumberFormatException;

// constructor
public Short(short value);

// public instance methods

public boolean equals(Object obj);
public int hashCode();

public short shortvalue();

public String toString();

java.lang.String

This class represents a scaled-down version of the J2SE String object. The String object holds
a concatenation of charactersin animmutable format. The static valueOf () methods are used to
convert the value of a primitive datatype into aString. compareTo() performsa
lexicographical comparison between two strings. startsWith() and endsWith() test whether
the string begins or ends with the specified characters. index0f() and lastindex0f()

specify the offset from the beginning of the first or last occurrence of a string. substring()
creates a smaller string from the specified character offsets. trim() removes white spaces from
both ends of the string.

public final class String {

// static methods

public static String valueOf(boolean b);

public static String valueOf(char c);

public static String valueOf(char[] data);

public static String valueOf(char[] data, int offset, int count);
public static String valueOf(int i);

public static String valueOf(long 1);

public static String valueOf(Object obj);

// public constructors

public String(Q;

public String(String value);

public String(char[] value);

public String(char[] value, int offset, int count);

public String(byte[] bytes, int off, int len, String enc)

throws java.io.UnsupportedEncodingException;

public String(byte[] bytes, String enc) throws
Java.io.UnsupportedEncodingException;

public String(byte[] bytes, int off, int len);

public String(byte[] bytes);

public String(StringBuffer buffer);

// public instance methods

public char charAt(int index);

public int compareTo(String anotherString);

public String concat(String str);

public boolean endsWith(String suffix);

public boolean equals(Object anObject);

public byte[] getBytes();

public byte[] getBytes(String enc) throws
Java.io.UnsupportedEncodingException;

public void getChars(int srcBegin, int srcéEnd, char[] dst, int dstBegin);

163

public int hashCode();

public int indexOf(int ch);

public int indexOf(int ch, int fromlndex);

public int indexOf(String str);

public int indexOf(String str, int fromlndex);

public int lastindexOf(int ch);

public int lastindexOf(int ch, int fromlndex);

public int length();

public boolean regionMatches(boolean ignoreCase, int toffset, String
other,

int ooffset, int len);

public String replace(char oldChar, char newChar);

public boolean startsWith(String prefix, int toffset);

public boolean startsWith(String prefix);

public String substring(int beginlndex);

public String substring(int beginlndex, int endlndex);

public char[] toCharArray();

public String toLowerCase();

public String toString();

public String toUpperCase();

public String trim();

java.lang.StringBuffer

This classis a scaled-down version of the J2SE StringBuffer class. It creates an editable
concatenation of characters. Use the append() and insert() methods to add characters to the
middle or end of the StringBuffer. Utilize the capacity() and ensureCapacity()
methods to ensure that the size requirements of the buffer are sufficient. The delete() and
deleteCharAt() methods can be used to remove portions of the buffer. The reverse()
method will replace the current string with a backward copy of itself.

public final class StringBuffer {
// public constructors
public StringBuffer();
public StringBuffer(int length);
public StringBuffer(String str);

// public instance methods

public StringBuffer append(boolean b);

public synchronized StringBuffer append(char c);

public synchronized StringBuffer append(char[] str);

public synchronized StringBuffer append(char[] str, int offset, int len);

public StringBuffer append(int i);

public StringBuffer append(long 1);

public synchronized StringBuffer append(Object obj);

public synchronized StringBuffer append(String str);

public int capacity(Q);

public synchronized char charAt(int index);

public synchronized StringBuffer delete(int start, int end);

public synchronized StringBuffer deleteCharAt(int index);

public synchronized void ensureCapacity(int minimumCapacity);

public synchronized void getChars(int srcBegin, int srckEnd,
char[] dst, int dstBegin);

public StringBuffer insert(int offset, boolean b);

public synchronized StringBuffer insert(int offset, char[] str);

public synchronized StringBuffer insert(int offset, char c);

public StringBuffer insert(int offset, int i);

public StringBuffer insert(int offset, long I);

public synchronized StringBuffer insert(int offset, Object obj);

164

public synchronized StringBuffer insert(int offset, String str);
public int length();

public synchronized StringBuffer reverse();

public synchronized void setCharAt(int index, char ch);

public synchronized void setLength(int newLength);

public String toString();

java.lang.Stringl ndexOutOf BoundsException

This exception isidentical to its J2SE counterpart. It signifiesthat anindex into aString or
StringBuffer iseither negative or too large.

public class StringlndexOutOfBoundsException extends
Java.lang. IndexOutOfBoundsException {
// constructors
public StringlndexOutOfBoundsException();
public StringlndexOutOfBoundsException(int index);
public StringlndexOutOfBoundsException(String s);

java.lang.System

This classisamuch smaller version of the J2SE System class, which provides static methods to
access system functionality. The err and out streams represent their standard 1/0 equivalents.
The getProperty() method returns a named property from the system propertieslist. (Note
that the MIDP APIsredefinethe microedition. locale property to include at least "MIDP-
1.0")
The following list describes the characteristics of several properties.
microedition.platform

Name of the host platform/device (CLDC)
microedition.encoding

Default character encoding (CLDC)
microedition.configuration

Name/version of the configuration (CLDC)
microedition.profiles

Names of the supported profiles (CLDC)

microedition.locale

165

Current locale (MIDP)

The arraycopy() method is preserved from the J2SE System class; it copies a section of an
array from a source to adestination. currentTimeMi I lis() returnsthe current timein
milliseconds from the epoch, midnight GMT, January 1, 1970. The exit() method terminates
the application with a status code. gc () performs a system-wide garbage collection.

public final class System {
// public instance fields
public static final PrintStream err;
public static final PrintStream out;

// static methods

public static native void arraycopy(Object src, int src_position, Object
dst,

int dst_position, int length);

public static native long currentTimeMillis(Q)

public static void exit(int status);

public static void gc(Q);

public static String getProperty(String key);

public static native int identityHashCode(Object x);

java.lang.Thread

This classis a scaled-down version of the J2SE Thread class, which represents a system thread in
the Java virtual machine. Classes can create threads by either extending the Thread class and
providing a run() method, or passing aRunnab I e object into the Thread constructor. Threads
execute when the start() method is called, and will continue until the end of the run()
method, unless run() isinterrupted. The isAlive() method returnsaboolean that indicates
if the current thread is executing.

activeCount() returnsthe total number of threads active. The getPriority() and
setPriority() methods can access the integer priority level of the thread, which can be used
in conjunction with the three constants, MIN_PRIORITY, NORM_PRIORITY, and
MAX_PRIORITY. currentThread() returns areference to the thread that is currently active.
sleep() will cause the current thread to halt execution for the specified amount of time, while
yield() gives up control to other threads of equal priority that are waiting to run. Finally,
Join() will suspend execution until the target thread has completed or is interrupted.

public class Thread implements Runnable {
// public constants
public static final int MIN_PRIORITY;
public static final int NORM_PRIORITY;
public static final int MAX_PRIORITY;

// static methods

public static native int activeCount();

public static native Thread currentThread();

public static native void sleep(long millis) throws
jJjava.lang. InterruptedException;

public static native void yield();

// constructors
public Thread();

166

public Thread(Runnable target);

// public instance methods

public final int getPriority();

public final native boolean isAlive();

public final void join();

public void run(Q);

public final void setPriority(int newPriority);
public native synchronized void start();

public String toString();

java.lang.Throwable

This classis a scaled-down version of the J2SE Throwabl e class. It is the superclass of al errors
and exceptions in the Java language, and only objects that extend this class can be thrown or
caught in the Java virtual machine. The getMessage () method returns any error messages that
are set in the constructor. printStackTrace () creates a stack trace that shows precisely where
a specific error occurred in an application.

public class Throwable {
// constructors
public Throwable();
public Throwable(String message);

// public instance methods
public String getMessage();
public void printStackTrace();
public String toString();

java.lang.VirtualMachineError

Thiserror isidentical to its J2SE counterpart. It signifies that the virtual machine does not have
the required resources to complete an operation.

public abstract class VirtualMachineError extends java.lang.Error {
// constructors
public VirtualMachineError();
public VirtualMachineError(String s);

}

167

Appendix C. The java.util Package

java.util.Calendar

java.util.Date

java.util.Enumeration

java.util.EmptyStack Exception

java.util.Hashtable

java.util.NoSuchElementException

java.util.Random

java.util.Stack

java.util. Timer

java.util. TimerTask

java.util.TimeZone

java.util.V ector

java.util.Calendar

This abstract classis a scaled-down version of the J2SE Calendar class. Subclasses can use the
functionality provided to calculate and compare dates. Calendar defines a number of constants
for time-related items such as the days of the week and the months of the year. Other constants,
such asDAY_OF MONTH and HOUR_OF_DAY, are used with the various get and set methods to
indicate which fields are desired. The getlInstance () methods are used to create an instance of
the Calendar; note that the constructor is not public.

public abstract class Calendar {
// constants
public static final int YEAR;
public static final Int MONTH;
public static final int DATE;
public static final int DAY_OF_MONTH;
public static final int DAY_OF WEEK;
public static final int AM_PM;
public static final int HOUR;
public static final int HOUR_OF_DAY;
public static final int MINUTE;
public static final int SECOND;
public static final int MILLISECOND;
public static final int SUNDAY;
public static final int MONDAY;
public static final int TUESDAY;
public static final int WEDNESDAY;
public static final int THURSDAY;

168

public static final int FRIDAY;
public static final int SATURDAY;
public static final int JANUARY;
public static final int FEBRUARY;
public static final int MARCH;
public static final Int APRIL;
public static final int MAY;
public static final int JUNE;
public static final int JULY;
public static final int AUGUST;
public static final int SEPTEMBER;
public static final int OCTOBER;
public static final int NOVEMBER;
public static final int DECEMBER;
public static final Int AM;
public static final int PM;

// constructor
protected Calendar();

// static methods
public static synchronized Calendar getlnstance();
public static synchronized Calendar getlnstance(TimeZone zone);

// protected instance methods
protected long getTimelnMillis();
protected void setTimelnMillis(long millis);

// public instance methods

public boolean after(Object when);

public boolean before(Object when);

public boolean equals(Object obj);

public final int get(int field);

public final Date getTime();

public TimeZone getTimeZone();

public final void set(int field, int value);
public final void setTime(Date date);

public void setTimeZone(TimeZone value);

java.util.Date

The Date classisasmaller version of its J2SE counterpart. It represents an instance in time,
specified as the number of milliseconds since the epoch (midnight GMT, January 1, 1970). To
create a Date object that represents the current system time, do the following:

Date currentDate = new Date();
Thisisequivalent to:

Date currentDate = new Date(System.currentTimeMillis());

Y ou can also access the date and time represented by this object with the getTime () and
setTime() methods.

public class Date {
public Date();
public Date(long date);

169

public long getTime();

public void setTime(long time);
public boolean equals(Object obj);
public int hashCode();

java.util. Enumeration

Thisinterface isidentical to the Enumeration interface of the J2SE. Classes that implement this
interface allow the programmer to iterate through a series of values, such as the keys or el ements
in a hashtable.

public interface Enumeration {
public boolean hasMoreElements();
public Object nextElement();

}

java.util. EmptyStackException

This exception isidentical to its J2SE counterpart. It signifies that an operation was performed on
a stack that was empty.

public class EmptyStackException extends java.lang.RuntimeException {
// constructors
public EmptyStackException();

}

java.util.Hashtable

This classis a scaled-down version of the J2SE Hashtabl e class. It provides a thread-safe
implementation of a hashtable, which allows for efficient storage and lookup of atarget element
based on the hash code of another object that serves asits "key." Objects are placed in the
hashtable with the put () method, retrieved with the get () method, and deleted with the
remove () method. The contains() and containsKey() methods indicate whether the
specified element or key is present in the hashtable. clear () removes al entries from the
hashtable, at which point isEmpty () will return true. Theelements() and keys() methods
return an Enumeration object that you can use to iterate through the hashtable elements or key
objects.

public class Hashtable {
// constructors
public Hashtable(int initialCapacity);
public Hashtable();

170

// protected instance methods
protected void rehash();

// public instance methods

public synchronized void clear();

public synchronized boolean contains(Object value);
public synchronized boolean containsKey(Object key);
public synchronized Enumeration elements();

public synchronized Object get(Object key);

public boolean isEmpty();

public synchronized Enumeration keys();

public synchronized Object put(Object key, Object value);
public synchronized Object remove(Object key);
public int size();

public String toString();

java.util.NoSuchElementException

This exception isidentical to its J2SE counterpart. It signifies that there are no elements available
for the requested operation.

public class NoSuchElementException extends java.lang.RuntimeException {
// constructors
public NoSuchElementException();
public NoSuchElementException(String s);

}

java.util.Random

Thisclassisasmaller version of the J2SE Random class and is used as a pseudo-random number
generator. The constructor takes along integer seed, which it uses to initialize the random number
generator. The nextInt() and nextLong() methods can then be used to create random
numbers of the appropriate data type. The seed can be reset using the setSeed () method.

public class Random {
// constructors
public Random();
public Random(long seed);

// protected instance methods
protected int next(int bits);

// public instance methods
public int nextInt();

public long nextLong();

public void setSeed(long seed);

171

java.util.Stack

Thisclassisidentical to the J2SE Stack class. It extendsthe Vector classto alow asimple
Last-In-First-Out (LIFO) stack, where elements are placed on the top of the stack using the push ()
method and removed from the top using the pop () method. peek () returns the object at the top
of the stack without actually removing it. search() will search the stack for the specified object,
returning the index of the element if found or -1 if it is not found.

public class Stack extends java.util._Vector {
// constructor
public Stack();

// public instance methods
public boolean empty();

public Object peek();

public Object pop();

public Object push(Object item);
public int search(Object 0);

java.util. Timer

This class defines a facility for threads to schedule tasks for future execution in a background
thread. There are four versions of the schedule () method; each schedules tasks to execute at a
specific time using aDate object or after a specific delay in milliseconds. The
scheduleAtFixedrate() method can be used to schedule tasks for repeated execution in
intervals relative to the scheduled execution time of the first execution. If an execution is delayed
for any reason (such as garbage collection or other background activity), two or more subsequent
executions are scheduled at shorter intervals to catch up.

public class Timer {

// public constructors

public Timer();

// public instance methods

public void cancel();

public void schedule(TimerTask task, Date time);

public void schedule(TimerTask task, long delay);

public void schedule(TimerTask task, Date firstTime, long period);

public void schedule(TimerTask task, long delay, long period);

public void scheduleAtFixedRate(TimerTask task, Date firstTime, long
period);

public void scheduleAtFixedRate(TimerTask task, long delay, long period);
}

java.util. TimerTask

172

TimerTask isan abstract class that acts as the base class for all scheduled tasks. A task can be
scheduled for one-time or repeated execution by a Timer. To define atask, create a subclass of
TimerTask and implement the run() method. For example:

import java.util_*;
public class MyTask extends TimerTask {
public void run() {
System.out.printIn("'Run Task™);
}

}

The run() method is being implemented simply because the TimerTask implements the
Runnable interface. The run() method isinvoked by the Timer classto run the task.

After you define atask, you schedule it for execution by creating a Timer object and invoking the
schedule() method, as shown here:

Timer timer = new Timer();

TimerTask task = new MyTask();

// wait five seconds before executing

timer.schedule(task, 5000);

// wait two seconds before executing then execute every five seconds
timer.schedule(task, 2000, 5000);

Here we are using two of the four versions of the schedulle () method of the Timer class.

public abstract class TimerTask implements java.lang.Runnable {
// protected constructors
protected TimerTask();
// public instance methods
public boolean cancel();
public abstract void run();
public long scheduledExecutionTime();

java.util.TimeZone

This classis a scaled-down version of the J2SE TimeZone class. It represents a geographic time
zone and can be used in conjunction with the Calendar abject. Time zones can be created by
passing in an ID, such as"America/Chicago” or "GMT," to the static getTimeZone () method.
To check the available IDs recognized by this class, call the getAvai lablelDs() method. An
object representing the current time zone of the device can be obtained with the static
getDefault() method. getOffset() returns an integer milliseconds offset, which you add to
the GMT timein order to get the current time, taking into account daylight savings, while
getRawOffset() simply returns the geographic offset in milliseconds. To test whether the
TimeZone object is currently using daylight savings in its calculations, call
useDaylightTime().

public abstract class TimeZone {
// constructor
public TimeZone();

// static methods

public static TimeZone getTimeZone(String ID);
public static TimeZone getDefault();

173

public static String[] getAvailablelDs();

// public instance methods methods

public abstract int getOffset(int era, int year, int month, int day,
int dayOfWeek, int millis);

public abstract int getRawOffset();

public abstract boolean useDaylightTime();

java.util.Vector

This classis a scaled-down version of the J2SE Vector class. The class represents a dynamic
array that can grow and shrink as necessary. A vector starts with an array of a preset capacity, set
either through the constructor or the ensureCapacity () method, and increases the size if
needed. Elements can be added to the vector using the addElement() method. The index0f()
method can be used to obtain the index of a desired element in the array, which can be removed
using the e lementAt () method. Note that the object returned is simply an Object; be sureto
recast it to the appropriate type. Y ou can remove elements using the removeElement() and
removeElementAt() methods. size() returnsthe size of the element array. trimToSize()
reduces the size of the vector's array to match the current number of elements.

public class Vector {
// protected fields
protected int capacitylncrement;
protected int elementCount;
protected Object[] elementData;

// constructors

public Vector();

public Vector(int initialCapacity);

public Vector(int initialCapacity, int capacitylncrement);

// public instance methods

public synchronized void addElement(Object obj);

public int capacity();

public boolean contains(Object elem);

public synchronized void copylnto(Object[] anArray);

public synchronized Object elementAt(int index);

public synchronized Enumeration elements();

public synchronized void ensureCapacity(int minCapacity);
public synchronized Object firstElement();

public int indexOf(Object elem);

public synchronized int indexOf(Object elem, int index);
public synchronized void insertElementAt(Object obj, int index);
public boolean isEmpty();

public synchronized Object lastElement();

public int lastindexOf(Object elem);

public synchronized int lastindexOf(Object elem, int index);
public synchronized void removeAllElements();

public synchronized boolean removeElement(Object obj);
public synchronized void removeElementAt(int index);

public synchronized void setElementAt(Object obj, int index);
public synchronized void setSize(int newSize);

public int size();

public synchronized String toString();

public synchronized void trimToSize();

174

Appendix D. The javax.microedition.io Package

This package provides al the 1/O mechanismsin the CLDC. The package consists of eight
interfaces, one class, and one exception class.

javax.microedition.io.Connection

This interface defines the basic type of generic connection. The close() method is used to close
aconnection. Closing an already closed connection has no effect.

public interface Connection {
// public instance methods
public void close() throws I0Exception;

}

javax.microedition.io.ContentConnection

This interface defines the stream connection over which content is passed. The getEncoding()
method returns a string describing the encoding of the content, and getType () returnsthe type
of content provided.

public interface ContentConnection extends StreamConnection {
// public instance methods
public String getEncoding();
public String getLength(Q);
public long getType();

}

javax.microedition.io.Datagram

This interface represents the generic datagram interface. It acts as a holder for data to be sent to or
received from a datagram connection.

public interface Datagram extends Datalnput, DataOutput {
// public instance methods
public String getAddress();
public byte[] getData();
public int getLength(Q);
public int getOffset();
public void reset();
public void setAddress(Datagram reference);
public void setAddress(String address) throws I0Exception;
public void setData(byte[] buffer, int offset, int len);
public void setLength(int len);

175

javax..microedition.io.DatagramConnection

This interface defines the methods that a datagram connection must have. A datagram connection
can be established in a client mode or a server mode. For example, in a server mode (client
initiates communication and server accepts connections), there is no need to specify the hostname:
datagram://2233. And, in client mode, the hosthame must be specified so that the client knows
with whom to initiate communication: datagram://134.15.13.1:2233. Note that the port number in
both modes is the same. In server mode, the same port number is used for both sending and
receiving, and in client mode, the reply-to port is aways dynamically allocated.

public interface DatagramConnection extends Connection {
// public instance methods
public int getMaximumLength() throws I0Exception;
public int getNominalLength() throws I0Exception;
public Datagram newData(byte[] buf, int size) throws I0Exception;
public Datagram newData(byte[] buf, int size, String addr) throws
I0Exception;
public Datagram newDatagram(int size) throws I0Exception;
public Datagram newDatagram(int size, String addr) throws I0Exception;
public void receive(Datagram dgram) throws 10Exception;
public void send(Datagram dgram) throws I0Exception;

}

javax.microedition.io.HttpConnection

This interface defines the necessary constants and methods for an HT TP connection. For some
usage examples, see Chapter 7.

public interface HttpConnection extends
Javax.microedition.io.ContentConnection {
// public class fields

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final

String GET = "GET";
String HEAD ""HEAD"';
String POST = "POST";

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

HTTP_ACCEPTED = 202;
HTTP_BAD_GATEWAY = 502;
HTTP_BAD_METHOD = 405;
HTTP_BAD_REQUEST = 400;
HTTP_CLIENT_TIMEOUT = 408;
HTTP_CONFLICT = 409;
HTTP_CREATED = 201;
HTTP_ENTITY_TOO_LARGE = 413;
HTTP_EXPECT FAILED = 417;
HTTP_FORBIDDEN = 403;
HTTP_GATEWAY_TIMEOUT = 504;
HTTP_GONE = 410;
HTTP_INTERNAL_ERROR = 500;
HTTP_LENGTH_REQUIRED = 411;
HTTP_MOVED_PERM = 301;
HTTP_MOVED_TEMP = 302;
HTTP_MULT_CHOICE = 300;
HTTP_NO_CONTENT = 204;

176

public static final int HTTP_NOT_ACCEPTABLE = 406;
public static final int HTTP_NOT_AUTHORITATIVE = 203;
public static final int HTTP_NOT_FOUND = 404;

public static final int HTTP_NOT_IMPLEMENTED = 501;

public static final int HTTP_NOT_MODIFIED = 304;

public static final int HTTP_OK = 200;

public static final int HTTP_PARTIAL = 206;

public static final int HTTP_PAYMENT_REQUIRED = 402;

public static final int HTTP_PRECON_FAILED = 412;

public static final int HTTP_PROXY_AUTH = 407;

public static final int HTTP_REQ TOO LONG = 414;

public static final int HTTP_RESET = 205;

public static final int HTTP_SEE_OTHER = 303;

public static final int HTTP_TEMP_REDIRECT = 307;

public static final int HTTP_UNAUTHORIZED = 401;

public static final int HTTP_UNAVAILABLE = 503;

public static final int HTTP_UNSUPPORTED_ RANGE = 416;

public static final int HTTP_UNSUPPORTED TYPE = 415;

public static final int HTTP_USE_PROXY = 305;

public static final int HTTP_VERSION = 505;

// public instance methods

public long getDate() throws I0Exception;

public long getExpiration() throws I0Exception;

public String getFile();

public String getHeaderField(int n) throws 10Exception;

public String getHeaderField(String name) throws I0Exception;

public long getHeaderFieldDate(String name, long def) throws 10Exception;

public int getHeaderFieldInt(String name, int def) throws I0Exception;

public String getHeaderFieldKey(int n) throws I10Exception;

public String getHost();

public long getLastModified() throws I0Exception;

public int getPort();

public String getProtocol();

public String getQuery();

public String getRef();

public String getRequestMethod();

public String getRequestProperty(String key);

public int getResponseCode() throws I0Exception;

public String getResponseMessage() throws I0Exception;

public String getURL();

public void setRequestMethod(String method) throws I0Exception;

public void setRequestProperty(String key, String value) throws
10Exception;

}

javax.microedition.io.l nputConnection

This interface defines the capabilities that an input stream connection must have. The
openlnputStream() method opens and returns an input stream for a connection, and
openDatalnputStream() opensand returns adatainput stream for a connection.

public interface InputConnection extends Connection {
// public instance methods
public DatalnputStream openDatalnputStream() throws I0Exception;
public InputStream openlnputStream() throws I0Exception;

}

177

javax.microedition.io.OutputConnection

This interface defines the capabilities that an output stream connection must have. The
openOutputStream() opensand returns an output stream for a connection, and
openDatalOutputStream() opens and returns a data output stream for a connection.

public interface OutputConnection extends Connection {
// public instance methods
public DataOutputStream openDataOutputStream() throws I0Exception;
public OutputStream openOutputStream() throws I0Exception;

}

javax.microedition.io.StreamConnection

This interface defines the capahilities that a stream connection must have. It does not define any
methods of its own, but it inherits all methods from InputConnection and
OutputConnection.

public interface StreamConnection extends InputConnection, OutputConnection

// all methods inherited from InputConnection and OutputConnection

}

javax.microedition.io.StreamConnectionNotifier

This interface defines the capabilities that a connection notifier must have. The
acceptAndOpen() method returns a StreamConnection that represents a server-side socket
connection.

public interface StreamConnectionNotifier extends Connection {
// public instance methods
public StreamConnection acceptAndOpen() throws I0Exception;

}

javax.microedition.io.Connector

This class acts as a placehol der for the class methods that are used to create al the connection
objects. When opening a connection, an access mode can be specified as READ, WRITE, or
READ_WRITE. This means that a connection can be used for reading, writing, or both. This,
however, is protocol-dependent, as some protocol connections may not allow READ access (a

178

connection to a printer, for example). In thiscasean Il legal ArgumentException will be
thrown. If no access mode is specified, then the default READ_WRITE will be used.

public class Connector {
// public class fields
public static final int READ = 1;
public static final int WRITE = 2;
public static final int READ_WRITE = (READ|WRITE);

// public class methods

public static Connection open(String name) throws I0Exception;

public static Connection open(String name, int mode) throws I0Exception;

public static Connection open(String name, int mode, boolean timeouts)
throws I0Exception;

public static DatalnputStream openDatalnputStream(String name) throws
10Exception;

public static DataOutputStream openDataOutputStream(String name) throws
10Exception;

public static InputStream openlnputStream(String name) throws I0Exception;

public static OutputStream openOutputStream(String name) throws
10Exception;

javax.microedition.io.ConnectionNotF oundException

This exception is thrown to signal that a connection target could not be found.

public class ConnectionNotFoundException extends I0Exception {
// public contructors
public ConnectionNotFoundException();
public ConnectionNotFoundException(String s);

}

179

Appendix E. The javax.microedition.lcdui Package

This package provides a set of features for the implementation of user interfaces for MIDP
applications. This package consists of three interfaces and twenty-one classes. The MIDP User
Interface API consists of two APIs. high-level and low-level. The classes implementing the high-
level APl are the subclasses of Screen. The classes Canvas and Graphics implement the low-
level API.

javax.microedition.lcdui.Choice

This interface defines an API for user interface components, such as List and ChoiceGroup,
implementing selection from a predefined number of choices. Each element of achoiceis
composed of atext string and an optional image. If you do not want the element to have an image,
passinnull.

There are three types of choices:

EXCLUSIVE

Presents a series of elements and interacts with the user. When the user selects an element,
it is shown to be selected using a distinct visual representation. Exactly one element must
be selected at any given time.

IMPLICIT

Serves as an EXCLUS I VE choice where the focused element isimplicitly selected when a
command isinitiated.

MULTIPLE

Presents a series of elements and allows the user to select multiple elements.

public interface Choice {

// public class fields

public static final int EXCLUSIVE = 1;

public static final int IMPLICIT 2;

public static final int MULTIPLE 3;

// public instance methods

public int append(String stringPart, Image imagePart);

public void delete(int elementNum);

public Image getlmage(int elementNum);

public int getSelectedFlags(boolean[] selectedArray);

public int getSelectedindex();

public String getString(int elementNum);

public void insert(int elementNum, String stringPart, Image
imagePart);

public boolean isSelected(int elementNum);

public void set(int elementNum, String stringPart, Image imagePart);

public void setSelectedFlags(boolean[] selectedArray);

public void setSelectedIndex(int elementNum, boolean selected);

public int size();

180

javax.microedition.lcdui.CommandListener

This interface should be implemented by MIDlets that need to receive high-level events from the
implementation. The commandAction() method indicates that a command event has occurred
onDisplayable.

public interface CommandListener {
// public instance methods
public void commandAction(Command c, Displayable d);

}

javax.microedition.lcdui.l temStateL istener

Thisinterface isimplemented by MIDlets that need to receive events that indicate changesin the
internal state of the interactive items within aForm screen. The i temStateChanged() method
is called when the internal state of an item has been changed by the user. This happens when the
user changes the set of selected valuesin aChoiceGroup, adjusts the value of an interactive
Gauge, enters or modifiesthevalueinaTextField, or entersanew date or timein a
DateField.

public interface ltemStatelListener {
// public static methods
public void itemStateChanged(ltem item);

}

javax.microedition.lcdui.Alert

This class implements an alert, which is an ordinary screen that can contain text and images and
that handles events like other screens. The purpose of an aert isto inform the user about errors
and other exceptional conditions.

The aert screen usually waits for a certain period of time before proceeding to the next screen.
Alternatively, the alert timer can be set to infinity, using setTimeout(Alert.FOREVER). In
this case, the implementation allows the user to dismiss the dert.

An aert may have atype (seethe AlertType class) that the implementation may use to play an
appropriate sound when the alert is presented to the user. To set the alert type, use setType().

public class Alert extends Screen {
// public class fields
public static final int FOREVER = -2;
// public constructors
public Alert(String title);

181

public Alert(String title, String alertText, Image image, AlertType
alertType);

// public instance methods

public void addCommand(Command cmd) ;

public int getDefaultTimeout();

public Image getlmage();

public String getString(Q);

public int getTimeOut();

public AlertType getType();

public void setCommandListener(CommandListener 1);

public void setlmage(lmage image);

public void setString(String str);

public void setTimeout(int time);

public void setType(AlertType type);

javax.microedition.lcdui.AlertType

This class provides an indication of the nature of alerts. The alert type allows the implementation
to directly signal the user without changing the current Displayable. The playSound()
method can be used to generate a sound to aert the user. The predefined types of aerts are:

INFO
Provides non-threatening information to the user.
WARNING
Warns the user of apotentially dangerous operation.
ERROR
Alertsthe user of a dangerous operation.
ALARM
Lets the user know of an event of which he previously requested to be notified.
CONFIRMATION

Confirms user action.

public class AlertType {
// public class fields
public static final AlertType ALARM;
public static final AlertType CONFIRMATION;
public static final AlertType ERROR;
public static final AlertType INFO;
public static final AlertType WARNING;
// protected constructors
protected AlertType();
// public instance methods
public boolean playSound(Display display);

182

javax.microedition.lcdui.Canvas

Canvas is an abstract class, which is the base class for writing MIDlets that need to implement
low-level events and to issue graphics calls for drawing on the display. Since this class will be
used heavily for game applications, it provides ways to handle game actions, key events, and
pointer events.

public abstract class Canvas extends Displayable {
// public class fields

public static final int DOWN = 6;

public static final int FIRE = 8;

public static final int GAME_A = 9;
public static final int GAME_B = 10;
public static final int GAME_C = 11;

public static final int GAME_D = 12;

public static final int KEY_NUMO = 48;
public static final int KEY_NUM1 = 49;
public static final int KEY_NUM2 = 50;
public static final int KEY_NUM3 = 51;
public static final int KEY_NUM4 = 52;
public static final int KEY_NUM5 = 53;
public static final int KEY_NUM6 = 54;
public static final int KEY_NUM7 = 55;
public static final int KEY_NUM8 = 56;
public static final int KEY_NUM9 = 57;

public static final int KEY_POUND = 35;
public static final int KEY_STAR = 42;
public static final int LEFT = 2;

public static final int RIGHT = 5;

public static final int UP = 1;

// protected constructors

protected Canvas();

// protected instance methods

protected void hideNotify();

protected void keyPressed(int keyCode);
protected void keyReleased(int keyCode);
protected void keyRepeated(int keyCode);
protected abstract void paint(Graphics g);
protected void pointerDragged(int x, int y);
protected void pointerPressed(int x, Int y);
protected void pointerReleased(int x, iInt y);
protected void showNotify();

// public instance methods

public int getGameAction(int keyCode);
public int getHeight();

public int getKeyCode(int gameAction);
public String getKeyName(int keyCode);
public int getWidth(Q);

public boolean hasPointerEvents();

public boolean hasPointerMotionEvents();
public boolean hasRepeatEvents();

public boolean isDoubleBuffered();

public final void repaint();

public final void repaint(int x, int y, int width, int height);
public final void serviceRepaints();

183

javax.microedition.lcdui.ChoiceGroup

This class implements a group of selectable elementsintended to be placed within a Form. The
group may have amode that requires a single choice to be made or that allows multiple choices. It
is up to the implementation to decide on the graphical representation of these modes, but it must
provide visually different graphics for different modes—for example, radio buttons for single-
choice mode and checkboxes for multiple-choice mode.

public class ChoiceGroup extends Item implements Choice {

// public constructors

public ChoiceGroup(String label, int choiceType);

public ChoiceGroup(String label, int choiceType, String[] stringElements,

Image[] imgElements);

// public instance methods

public int append(String stringPart, Image imagePart);

public void delete(int elementNum);

public Image getlmage(int elementNum);

public int getSelectedFlags(boolean[] selectedArray);

public int getSelectedlndex();

public String getString(int elementNum);

public void insert(int elementNum, String stringElement, Image
imageElement);

public boolean isSelected(int elementNum);

public void set(int elementNum, String stringPart, Image imagePart);

public void setsSelectedFlags(boolean[] selectedArray);

public void setSelectedlndex(int elementNum, boolean selected);

public int size();

javax.microedition.|cdui.Command

This class encapsul ates the semantic information of an action. The command itself contains only
information about a command, but not the actual action that happens when a command is activated.
The action is defined in aCommandL i stener object associated with the screen. The Command
class constructor takes three parameters, and therefore contains the following three pieces of
information: label, command type, and priority.

Label
A string used for the visual representation of the command. For example, the label may
appear next to a soft button on the device or as an element in a menu.

Command Type
Aninteger that specifies the command intent. The defined types are: BACK, CANCEL,
EXIT, HELP, ITEM, OK, SCREEN, and STOP. The meaning of these typesis explained in
Table E-1.

Table E-1. Command types
Command I
Description
Type

184

BACK

\A navigation command that returns the user to the logically previous screen.

A command that is a standard negative answer to a dialog implemented by the
current screen. With this command type, the application hints to the implementation

CANCEL that the user wants to dismiss the current screen without taking any action, and
usually that the user wants to go back to the prior screen. Hence, CANCEL is often
interchangeable with BACK.

EXIT \A command used for exiting from the application.

HELP A command that specifies arequest for online help.

ITEM An application with this command type hints to the implementation that the
command is specific to a particular item on the screen.
A command that is a standard positive answer to a dialog implemented by the current

OK screen. With this command type, the application hints to the implementation that the
user will use this command to ask the application to confirm the data that has been
entered in the current screen and to proceed to the next logical screen.

SCREEN A command of this type specifies acommand that pertains to the current screen.
A command that will stop some currently running process or operation. Examples of

STOP such processes might include downloading or sending data. Note that using the STOP
command does not necessarily lead to a switch to another screen.

Priority

Aninteger value that describes the importance of the command relative to other

commands on the screen. A priority value of 1 indicates the most important command,
and higher priority values indicate commands of lesser importance.

A typical implementation first chooses the placement of a command based on the type of

command and then places similar commands based on a priority order. This means that
the command with the highest priority (lowest integer) is placed so that the user can
trigger it directly, and that commands with lower priority are placed on a menu.

public class Command {

// public class fields

public static final int BACK = 2
public static final int CANCEL =
public static final int EXIT = 7;
public static final int HELP = 5;
public static final int ITEM = 8
public static final int OK = 4;
public static final int SCREEN
public static final int STOP =
// public constructors

public Command(String label, int commandType, int priority);
// public instance methods

public int getCommandType();

public String getLabel();

public int getPriority();

(1]
=

javax.microedition.lcdui.DateField

This class implements an editable component for presenting calendar (date and time) information
that may be placed in aform.

185

public class DateField extends Item {
// public class fields
public static final int DATE = 1;
public static final int DATE_TIME = 3;
public static final int TIME = 2
// public constructors
public DateField(String label, int mode);
public DateField(String label, int mode, TimeZone timeZone);
// public instance methods
public Date getDate();
public int getlnputMode();
public void setDate(Date date);
public void setlnputMode(int mode) throws IllegalArgumentException;

javax.microedition.lcdui.Display

This class implements the manager of the display and input devices of the system. It includes
methods for requesting that objects be displayed on the devices, and for retrieving properties of
the devices. The setCurrent() method is used for setting the current Displayable and the
getCurrent() method for retrieving the current Displayable. ThecallSerially()
method causes the Runnab I e abject to have its run() method called later. This method can be
used by applications to run an animation that is properly synchronized with the repaint cycle.

public class Display {
// public class methods
public static Display getDisplay(MIDlet m);
// public instance methods
public void callSerially(Runnable r);
public Displayable getCurrent();
public boolean isColor();
public int numColors(Q);
public void setCurrent(Alert alert, Displayable display);
public void setCurrent(Displayable display);

javax.microedition.lcdui.Displayable

This classis an object that has the capability of being placed on the display, and it may have
commands and listeners associated with it. Subclasses define the contents and their interactions
with the user. Both Canvas and Screen are direct subclasses of Displayable.

public abstract class Displayable {
// public instance methods
public void addCommand(Command cmd);
public boolean isShown();
public void removeCommand(Command cmd);
public void setCommandListener(CommandListener 1);

186

javax.microedition.lcdui.Font

This class represents fonts and font metrics. Applications query for fonts based on font attributes
and the system will attempt to provide afont that matches the requested attributes as closely as
possible. Some of these attributes are style, size, and face. Vauesfor the style attribute may be
combined using the logical OR operator (e.g., STYLE_BOLD | STYLE_ITALIC), whereasvaues
for the other attributes may not be combined (e.g., SIZE_LARGE | SIZE_SMALL isillegal).

public final class Font {
// public class fields
public static final int FACE_MONOSPACE = 32;
public static final int FACE_PROPORTIONAL = 64;
public static final int FACE_SYSTEM = O;
public static final int SIZE_LARGE = 16;
public static final int SIZE_MEDIUM = O;
public static final int SIZE_SMALL =
public static final int STYLE_BOLD =
public static final int STYLE_ITALIC 2;
public static final int STYLE_PLAIN = O;
public static final int STYLE_UNDERLINED = 4;
// public class methods
public static Font getDefaultFont();
public static Font getFont(int face, int style, iInt size);
// public instance methods
public int charsWidth(char[] ch, int offset, int length);
public int charWidth(char ch);
public int getBaselinePosition();
public int getFace();
public int getHeight();
public int getSize();
public int getStyle();
public boolean isBold();
public boolean isltalic(Q);
public boolean isPlain();
public boolean isUnderlined();
public int stringWidth(String str);
public int substringWidth(String str, int offset, int len);

8;
1;

javax.microedition.lcdui.Form

This class extends the Screen class, and therefore aform is a screen that contains an arbitrary
mixture of items (e.g., images, text, date fields, etc). Asagenera rule, any subclass of the I tem
class may be contained within aform.

public class Form extends Screen {
// public constructors
public Form(String title);
public Form(String title, Iltem[] items);
// public instance methods
public int append(Image img);
public int append(ltem item);
public int append(String str);
public void delete(int itemNum);
public Item get(int itemnum);
public void insert(int itemNum, ltem item);

187

public void set(int itemNum, Iltem item);
public void setltemStateListener(ltemStateListener listener)
public int size();

}

javax.microedition.lcdui.Gauge

This class implements a bar graph, optionally interactive, that displays values intended for usein a
form.

public class Gauge extends Item {
// public constructors
public Gauge(String label, boolean interactive, iInt max, int initial);
// public instance methods
public int getMaxValue();
public int getvalue();
public boolean islInteractive();
public void setMaxValue(int maxValue);
public void setValue(int value);

javax.microedition.lcdui.Graphics

This class provides a simple two-dimensional geometric rendering capability. It provides drawing
primitives for text, images, lines, rectangles, and arcs. Pixel replacement isthe only drawing
operation provided.

public class Graphics {
// public class fields
public static final int BASELINE
public static final int BOTTOM =
public static final int DOTTED = 1;
public static final int HCENTER = 1;
public static final int LEFT = 4
public static final int RIGHT
public static final int SOLID =
public static final int TOP = 16;
public static final int VCENTER = 2;
// public instance methods
public void clipRect(int x, int y, int width, int height);
public void drawArc(int x, int y, int width, int height, int startAngle,
int

= 64;
32;
1

8
0-

arcAngle);
public void drawChar(char character, int x, int y, int anchor);
public void drawChars(char[] data, int offset, int length, int x, int vy,
int
anchor);
public void drawlmage(lmage img, int x, int y, int anchor);
public void drawLine(int x1, int yl, int x2, int y2);
public void drawRect(int x, int y, int width, int height);
public void drawRoundRect(int x, int y, int width, int height, int
arcWidth, int
arcHeight);
public void drawString(String str, int x, int y, int anchor);

188

public void drawSubString(String str, int offset, int len, int x, int vy,
int
anchor);
public void fillArc(int x, int y, int width, int height, int startAngle,
int
arcAngle);
public void FfillRect(int x, int y, int width, int height);
public void fillRoundRect(int x, int y, int width, int height, iInt
arcWidth, int
arcHeight);
public int getBlueComponent();
public int getClipHeight();
public int getClipWidth(Q);
public int getClipX(Q;
public int getClipY(Q);
public int getColor();
public Font getFont();
public int getGrayScale();
public int getGreenComponent();
public int getRedComponent();
public int getStrokeStyle();
public int getTranslateX();
public int getTranslateY();
public void setClip(int x, int y, int width, int height);
public void setColor(int RGB);
public void setColor(int red, int green, int blue);
public void setFont(Font font);
public void setGrayScale(int value);
public void getStrokeStyle(int value);
public void translate(int style);

javax.microedition.lcdui.l mage

Thisclassis used to hold graphical image data. Images are either mutable or immutable,
depending upon how they are created. Mutable images are created in offscreen memory and
immutable images are generally created by loading images from resource bundles, files, or the
network.

All the MIDP implementations are required to support images stored in PNG format.

public class Image {

// public class methods

public static Image createlmage(byte[] imageData, int imgOffset, int
imgLength);

public static Image createlmage(lmage source);

public static Image createlmage(int width, int height);

public static Image createlmage(String name);

// public instance methods

public Graphics getGraphics();

public int getHeight();

public int getWidth();

public boolean isMutable();

189

javax.microedition.lcdui.l magel tem

This class provides layout control when Image objects are added to aform or to an alert.

public class Imageltem extends Item {
// public class fields
public static final int LAYOUT_CENTER = 3;
public static final int LAYOUT_DEFAULT = O;
public static final int LAYOUT_LEFT = 1;
public static final int LAYOUT_NEWLINE_AFTER = 0x100;
public static final int LAYOUT NEWLINE_BEFORE = 0x200;
public static final int LAYOUT_RIGHT = 2;
// public constructors
public Imageltem(String label, Image img, int layout, String altText);
// public instance methods
public String getAltText();
public Image getlmage();
public int getLayout();
public void setAltTest(String text);
public void setlmage(lmage img);
public void setLayout(int layout);

javax.microedition.lcdui.l tem

This abstract classis the base class for any component that can be added to aform or an aert. All
item objects have alabel field (a string that is attached to the item). Direct subclasses are;
ChoiceGroup, DateField, Gauge, Imageltem, Stringltem, and TextField.

public abstract class Item {
// public instance methods
public String getLabel();
public void setLabel(String label);

}

javax.microedition.lcdui.List

This classis ascreen containing alist of choices. A user can interact with alist either by
traversing from element to element, or by scrolling.

public class List extends Screen implements Choice {

// public class fields

public static final Command SELECT_COMMAND;

// public constructors

public List(String title, int listType);

public List(String title, int listType, String[] stringElements, Image[]
imageElements);

// public instance methods

public int append(String stringPart, Image imagePart);

public void delete(int elementNum);

190

public Image getlmage(int elementNum);

public int getSelectedFlags(boolean[] selectedArray);

public int getSelectedIindex();

public String getString(int elementNum);

public void insert(int elementNum, String stringPart, Image imagePart);
public boolean isSelected(int elementNum);

public void set(int elementNum, String stringPart, Image imagePart);
public void setSelectedFlags(boolean[] selectedArray);

public void setSelectedIndex(int elementNum, boolean selected);

public int size();

javax.microedition.lcdui.Screen

This abstract class is the common superclass of al high-level user interface classes. It provides
methods to add an optional title and atickertapeto theDisplayable class.

public abstract class Screen extends Displayable {
// public instance methods
public Ticker getTicker();
public String getTitle();
public void setTicker(Ticker ticker);
public setTitle(String s);

javax.microedition.lcdui.Stringl tem

This class, which extends the Item class, is an item that can contain a string.

public class Stringltem extends Item {
// public constructors
public Stringltem(String label, String text);
// public instance methods
public String getText();
public void setText(String text);

javax.microedition.lcdui. TextBox

This class, which extends the Screen class, is a screen that allows the user to enter and edit text.
A TextBox object has atitle, a default string, amaximum size, and a constraint.

public class TextBox extends Screen {
// public constructors
public TextBox(String title, String text, int maxSize, int constraints);
// public instance methods
public void delete(int offset, int length);

191

public int getCaretPosition();

public int getChars(char[] data);

public int getConstraints();

public int getMaxSize();

public String getString(Q);

public void insert(char[] data, int offset, int length, int position);
public void insert(String src, int position);

public void setChars(char[] data, int offset, int length);
public void setConstraints(int constraints);

public int setMaxSize(int maxsize);

public void setString(String text);

public int size();

javax.microedition.lcdui.TextField

This class, which extends the I tem class, is an editable text component that may be placed into a
form. A TextField object has alabel, adefault string, a maximum size, and some constraints.
The constraints, which are shared with TextBox, are:

ANY

The user is allowed to enter any text.
EMAITLADDR

The user is allowed to enter an email address.
NUMERIC

The user is allowed to enter only an integer value.
PASSWORD

The text entered must be masked (replaced with ™*'), so that the characters typed are not

visible.
PHONENUMBER

The user is allowed to enter a phone number.
URL

The user is dlowed to enter aURL.

public class TextField extends Item {
// public class fields
public static final int ANY = 0O
public static final int CONSTRAINT_MASK = OxXFFFF;
public static final int EMAILADDR = 1
public static final int NUMERIC = 2
public static final int PASSWORD = 0x10000
public static final int PHONENUMBER = 3
public static final int URL = 4

192

// public constructors

public TextField(String label, String text, int maxSize, int
constraints);

// public instance methods

public void delete(int offset, int length);

public int getCaretPosition();

public int getChars(char[] data);

public int getConstraints();

public int getMaxSize();

public String getString();

public void insert(char[] data, int offset, int length, int
position);

public void insert(String src, int position);

public void setChars(char[] data, int offset, int length);

public void setConstraints(int constraints);

public int setMaxSize(int maxSize);

public void setString(String text);

public int size();

javax.microedition.lcdui.Ticker

This class implements a tickertape, which is a piece of text that runs continuously across the
display. The direction and speed of scrolling are determined by the implementation.

public class Ticker {
// public constructors
public Ticker(String str);
// public instance methods
public String getString(Q);
public void setString(String str);

193

Appendix F. The javax.microedition.midlet Package

This package defines MIDP applications and the interactions with their environment. It consists of
one class and one exception class.

javax.microedition.midlet.MIDlet

This abstract classis the base class of al MIDlet applications. The methods specified in this class
allow MIDlet management software to create, start, pause, and destroy a MIDlet. Hence, aMIDlet
can bein one of three states: paused, active, or destroyed.

A MIDlet becomes active when the startApp() method iscaled. In this state, the MIDlet may
hold resources. To change the MIDlet's state to pause, the pauseApp () method isused. The
destroyApp() method is used to terminate and enter the destroyed state. In the destroyed state,
the MIDlet must release all resources and save any persistent data. This method can be called from
the active and paused states. If destroyApp() ispassed true, the MIDIet must clean up and
release al resources. If false, the MIDIet may throw MIDletStateChangeException,
indicating it does not want to be destroyed.

public abstract class MIDlet {
// protected constructors
protected MIDlet();
// protected instance methods
protected abstract void destroyApp(boolean unconditional) throws
MIDletStateChangeException;
protected abstract void pauseApp();
protected abstract void startApp() throws MIDletStateChangeException;
// public instance methods
public final String getAppProperty(String key);
public final void notifyDestroyed();
public final void notifyPaused();
public final void resumeRequest();

javax.microedition.midlet.MI DletStateChangeException

This exception is thrown to signal that arequest MIDlet state change failed.

public class MIDletStateChangeException extends java.lang.Exception {
// public constructors
public MIDletStateChangeException();
public MIDletStateChangeException(String s);

}

194

Appendix G. The javax.microedition.rms Package

This package provides a mechanism for MIDlets to persistently store and retrieve data. This
mechanism is modeled after a simple record-oriented database and it is called the Record
Management System (RMS). This package consists of four interfaces, one class, and five
exception classes.

javax.microedition.rms.RecordCompar ator

This interface defines several constants and the compare () method that can be used to compare
two records to check if they match, or what their relative sort order is. A class that needs to
compare two candidate records should implement this interface by providing an implementation
for the compare () method. The constants defined in this interface have the following meaning in
terms of sort order:

EQUIVALENT

The two records are the same but not necessarily identical.
FOLLOWS

Recl follows rec2.
PRECEDES

Recl precedes rec2.

The compare () method returns EQUI'VALENT if recl and rec2 are equivalent in terms of sort
order, PRECEDES if recl precedesrec2, or FOLLOWS if recl follows rec2.

public interface RecordComparator {
// public class fields
public static final int EQUIVALENT = O;
public static final int FOLLOWS = 1;
public static final int PRECEDES = -1;
// public instance methods
public int compare(byte recl[], byte rec2[]):

javax.microedition.rms.RecordEnumeration

This interface maintains a sequence of the record IDs of the recordsin arecord store. The
enumerator iterates over al the records in an order determined by an optional record comparator.
In order to iterate over asubset of the records, afilter can be supplied.

public interface RecordEnumeration {
// public instance methods

195

public void destroy() throws IllegalStateException;

public boolean hasNextElement();

public boolean hasPreviousElement();

public boolean isKeptUpdated();

public void keepUpdated(boolean keepUpdated);

public byte[] nextRecord() throws InvalidRecordIDException,
RecordStoreNotOpenException, RecordStoreException;

public int nextRecordld() InvalidRecordIDException;

public int numRecords();

public byte[] previousRecord() throws InvalidRecordIDException,
RecordStoreNotOpenException, RecordStoreException;

public int previousRecordld() InvalidRecordIDException;

public void rebuild(Q);

public void reset();

javax.microedition.rms.RecordFilter

This interface defines afilter that examines arecord to check if it matches an application-defined
criteria. It can be used for searching or subsetting records. The matches() method returns true
if the candidate record is selected by the RecordFi l ter.

public interface RecordFilter {
// public static methods
boolean public boolean matches(byte candidate[]);

}

javax.microedition.rms.RecordListener

This interface provides alistener for receiving record events (such as change, add, delete) from a
record store. The recordAdded () method is called when arecord has been added to arecord
store, recordChanged() iscaled after arecord in a store has been changed, and
recordDeleted() iscalled after arecord has been deleted from arecord store.

public interface RecordListener {
public void recordAdded(RecordStore recordStore, int recordld);
public void recordChanged(RecordStore recordStore, int recordld);
public void recordDeleted(RecordStore recordStore, int recordld);

}

javax.microedition.rms.RecordStore

This class represents a record store, which is a collection of records that remains persistent across
multiple invocations of the MIDlet. To open a new record store, use openRecordStore()
where the name of the record store is case-sensitive and may consist of any combination of up to

196

32 Unicode characters. This class provides several self-explanatory methods for adding and
deleting records, enumerating through records, and so on.

public class RecordStore extends Object {
// public class methods
public static void deleteRecordStore(String recordStoreName) throws
RecordStoreException, RecordStoreNotFoundException;
public static String[] listRecordStores();
public static RecordStore openRecordStore(String recordStoreName, boolean
createlfNecessary) throws RecordStoreException, RecordStoreFul lException,
RecordStoreNotFoundException;
// public instance methods
public int addRecord(byte data[], int offset, int numBytes) throws
RecordStoreNotOpenException, RecordStoreException,
RecordStoreFul lException;
public void addRecordListener(RecordListener listener);
public void closeRecordStore() throws RecordStoreNotOpenException,
RecordStoreException;
public void deleteRecord(int recordld) throws RecordStoreNotOpenException,
InvalidRecordIDException, RecordStoreException;
public RecordEnumeration enumerateRecords(RecordFilter filter,
RecordComparator comparator, boolean keepUpdated)
throws RecordStoreNotOpenException;
public long getLastModified() throws RecordStoreNotOpenException;
public String getName() throws RecordStoreNotOpenException;
public int getNextRecordID() throws RecordStoreNotOpenException,
RecordStoreException;
public int getNumRecords() throws RecordStoreNotOpenException;
public byte[] getRecord(int recordld) throws RecordStoreNotOpenException,
InvalidRecordIDException, RecordStoreException;
public int getRecord(int recordld, byte buffer[], int offset) throws
RecordStoreNotOpenException, InvalidRecordIDException,
RecordStoreException;
public int getRecordSize(int recordld) throws RecordStoreNotOpenException,
InvalidRecordIDException, RecordStoreException;
public int getSize() throws RecordStoreNotOpenException;
public int getSizeAvailable() throws RecordStoreNotOpenException;
public int getVersion() throws RecordStoreNotOpenException;
public void removeRecordListener(RecordListener listener);
public void setRecord(int recordld, byte[] newData, int offset, int
numBytes) throws RecordStoreNotOpenException, InvalidRecordIDException,
RecordStoreException, RecordStoreFul lException;
}

javax.microedition.rms.RecordStoreException

This exception is thrown when a general exception occurred in arecord store operation.

public class RecordStoreException extends Exception {
// public constructors
public RecordStoreException();
public RecordStoreException(String message);

}

javax.microedition.rms.| nvalidRecordl DException

197

This exception is thrown when an operation could not be completed because the record ID was
invalid.

public class InvalidRecordIDException extends RecordStoreException {
// public constructors
public InvalidRecordIDException();
public InvalidRecordIDException(String message);

}

javax.microedition.rms.RecordStoreF ul|[Exception

This exception is thrown when an operation could not be completed because the record store file
storageisfull.

public class RecordStoreFul lException extends RecordStoreException {
// public constructors
public RecordStoreFullException();
public RecordStoreFul lException(String message);

}

javax.microedition.rms.Recor dStoreNotF oundException

This exception is thrown when an operation could not be completed because the record store could
not be found.

public class RecordStoreNotFoundException extends RecordStoreException {
// public constructors
public RecordStoreNotFoundException();
public RecordStoreNotFoundException(String message);

}

javax.microedition.rms.RecordStoreNotOpenException

This exception is thrown when an operation was attempted on a closed record store.

public class RecordStoreNotOpenException extends RecordStoreException {
// public constructors
public RecordStoreNotOpenException();
public RecordStoreNotOpenException(String message);

}

198

Appendix H. Resources

Section H.1. Additional Resources

H.1 Additional Resources

All Java specifications are devel oped using the Java Community Process, which is the program
that Sun Microsystemsis using for revising existing specifications and developing new ones. The
Java Community Process Web siteis http://www.jcp.org. Each specification is known as a Java
Specification Request (JSR) and is assigned a unique number.

Unlike J2SE or J2EE, there is no J2ME specification, per se. All the specifications below
comprise the 2ME specification. Note, however, that JSR068 is the next-generation 2ME
specification and will introduce building blocks, to make the creation of profiles an easier task.
CLDC Specification (JSR-30)

http://www.jcp.org/jsr/detail/30.jsp

CLDC Next Generation (JSR-139)

http://www.jcp.org/jsr/detail/139.jsp

MIDP Specification (JSR-37)

http://www.jcp.org/jsr/detail/37.jsp

Mobile Information Device Next Generation (JSR-118)

http://www.jcp.org/jsr/detail/132.jsp

PDA Profile Specification (JSR-75)

http://www.jcp.org/jsr/detail /75.jsp

CDC Specification (JSR-36)

http://www.jcp.org/jsr/detail/36.jsp

Foundation Profile Specification (JSR-46)

http://www.jcp.org/jsr/detail/46.jsp

Personal Profile Specification (JSR-62)

http://www.jcp.org/jsr/detail/62.jsp

RMI Profile Specification (JSR-66)

199

http://www.jcp.org/
http://www.jcp.org/jsr/detail/30.jsp
http://www.jcp.org/jsr/detail/139.jsp
http://www.jcp.org/jsr/detail/37.jsp
http://www.jcp.org/jsr/detail/132.jsp
http://www.jcp.org/jsr/detail/75.jsp
http://www.jcp.org/jsr/detail/36.jsp
http://www.jcp.org/jsr/detail/46.jsp
http://www.jcp.org/jsr/detail/62.jsp

http://www.jcp.org/jsr/detail/66.jsp

Java Game Profile (JSR-134)

http://www.jcp.org/jsr/detail/134.jsp

J2ME Multimedia API Specification (JSR-135)

http://www.jcp.org/jsr/detail/135.jsp

H.1.1 J2ME White Papers
KVM

http://java.sun.com/products/cldc/wp

Applications for Mobile Devices

http://java.sun.com/j 2me/docs/pdf/midpwp.pdf

H.1.2 J2ME Technologies
J2ME

http://java.sun.com/{2me

CLDC and KVM

http://java.sun.com/products/cldc

MIDP

http://java.sun.com/products/midp

MIDP for Palm OS

http://java.sun.com/

CDC and CVM

http://java.sun.com/products/cdc

H.1.3 J2ME Development Kits
J2ME Wireless Toolkit

http://java.sun.com/products/j2mewtool kit

Metrowerks CodeWarrior for 22ME

http://www.metrowerks.com/desktop/java

200

http://www.jcp.org/jsr/detail/66.jsp
http://www.jcp.org/jsr/detail/134.jsp
http://www.jcp.org/jsr/detail/135.jsp
http://java.sun.com/products/cldc/wp
http://java.sun.com/j2me/docs/pdf/midpwp.pdf
http://java.sun.com/j2me
http://java.sun.com/products/cldc
http://java.sun.com/products/midp
http://java.sun.com/
http://java.sun.com/products/cdc
http://java.sun.com/products/j2mewtoolkit
http://www.metrowerks.com/desktop/java

Zucotto WHITEboard SDK

http://www.zucotto.com/whiteboard/index.html

RIM BlackBerry Java IDE

http://devel opers.rim.net/tool §/jde/index.shtml

H.1.4 J2ME Developer Resources
Java Developer Connection

http://devel oper.java.sun.com/devel oper

Java Wireless Developer Initiative

http://java.sun.com/wireless

Wireless Developer Network

http://www.wirelessdevnet.com

Micro Java Network

http://www.microjava.com

Java Mobile Community

http://www.javamobile.org

Java Enabled Phones and PDAs

http://www.javamobiles.com

KVM World

http://www.kvmworld.com

KVM-Interest Mailing List Archive

http://archives.java.sun.com/kvm-interest.html

H.1.5 XML Parsers for J2ME
TinyXML Parser

http://gibaradunn.srac.org/tiny

NanoXML Parser

http://nanoxml.sourceforge.net

201

http://www.zucotto.com/whiteboard/index.html
http://developers.rim.net/tools/jde/index.shtml
http://developer.java.sun.com/developer
http://java.sun.com/wireless
http://www.wirelessdevnet.com/
http://www.microjava.com/
http://www.javamobile.org/
http://www.javamobiles.com/
http://www.kvmworld.com/
http://archives.java.sun.com/kvm-interest.html
http://gibaradunn.srac.org/tiny
http://nanoxml.sourceforge.net/

Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animal on the cover of Learning Wireless Java is a Senegal galago. Galagos, also called bush
babies, are native to forest and bush regions of sub-Saharan Africa, including the island of
Zanzibar. Galagos have lightly built bodies with long hind legs for leaping. The flattened tips of
their toes are padded with thick skin for gripping tree trunks and branches, and on each of their
back feet, the index toe has an extended claw for grasping. Galagos leap from branch to branch,
tree to tree, sometimes jumping as far as 15 feet.

The galago has soft, woolly fur, either brown or gray in color. Itsface is small and pointy, with
large eyesthat allow it to see well in the dark. Its large, mobile ears can move either independently
or ssimultaneously. The combination of the galago's huge eyes and mobile ears not only give the
animal its trademark quizzical expression, but also aid the nocturnal galago after dark. At night,
families of up to 20 galagos defend territories 15 to 20 acresin size. When a predator approaches,
the galago emits a rasping shout that sounds much like an excited child. During the day, each
family crowds into an enclosed space, such as a hollowed tree trunk, to sleep.

Galagos eat mostly insects, such as grasshoppers, dung beetles, and caterpillars, but they are also
quick enough to catch mice, lizards, and small birds. In addition, they eat fruit, seeds, and flowers,
sometimes aiding in pollination. In some parts of Africa, the Galago senegalensis, or "lesser bush
baby," is kept as a pet.

Claire Cloutier was the production editor and copyeditor for Learning Wireless Java. Sue Willing
was the proofreader. Ann Schirmer and Jeff Holcomb provided quality control. Judy Hoer wrote
the index. Edie Shapiro, Derek Di Matteo, and Phil Dangler provided composition assistance.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman.
The cover image is a 19th-century engraving from The Royal Natural History. Emma Colby
produced the cover layout with Quark TMX Press 4.1, using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. Mihaela
Maier converted the files from Microsoft Word to FrameMaker 5.5.6, using tools created by Mike
Sierra. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe
Photoshop 6. The tip and warning icons were drawn by Christopher Bing. Linley Dolby and
Rachel Wheeler wrote this colophon.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools
written and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

202

	Table of Content
	Preface
	Audience
	Contents of This Book
	Conventions Used in This Book

	Comments and Questions
	Acknowledgments

	Part I: Introducing Java 2 Platform, Micro Edition (J2ME)
	Chapter 1. Overview of J2ME
	1.1 What Is J2ME?
	1.1.1 A High-Level View
	Figure 1-1. The high-level architecture of J2ME runtime environment

	1.1.2 Configurations
	1.1.2.1 The CDC
	1.1.2.2 The CLDC
	Figure 1-2. J2ME architecture

	1.1.3 Virtual Machines
	1.1.3.1 The KVM
	1.1.3.2 The CVM

	1.1.4 Profiles
	1.1.4.1 The MIDP
	1.1.4.2 The PDA profile
	1.1.4.3 The Foundation profile
	1.1.4.4 The Personal profile
	1.1.4.5 The RMI profile
	Figure 1-3. J2ME environment

	1.2 Downloading the J2ME Wireless Toolkit
	1.3 A Simple Example
	
	Example 1-1. "Hello World"
	Example 1-2. HelloMidlet.jad
	Figure 1-4. HelloMidlet

	1.3.1 A Login MIDlet
	Example 1-3. A login MIDlet
	Example 1-4. LoginMidlet.jad
	Figure 1-5. LoginMidlet running in the Motorola i85s emulator (cropped)

	1.3.2 Working with the Emulator

	Chapter 2. The Connected Limited Device Configuration (CLDC)
	2.1 Examining the CLDC in Detail
	2.1.1 What's Different About the Java Virtual Machine?
	2.1.2 The KVM
	2.1.2.1 Class Verification
	2.1.2.2 Security

	2.1.3 What's Different About the Core Java Libraries?
	2.1.3.1 Classes inherited from J2SE
	Table 2-1. Inherited, non-exceptional classes
	Table 2-2. Inherited exception and error classes
	2.1.3.2 String and StringBuffer
	2.1.3.3 Runtime
	2.1.3.4 System
	2.1.3.5 Math

	2.1.4 What's Different About I/O and Networking?
	2.1.4.1 The Generic Connection Framework

	2.1.5 Differences with Property Support in the CLDC
	Table 2-3. System properties

	2.2 Using the Standalone CLDC and KVM
	
	Table 2-4. CLDC/KVM directories

	2.3 CLDC Next Generation

	Chapter 3. The Mobile InformationDevice Profile (MIDP)
	3.1 Mobile Information Devices
	3.1.1 Class Additions
	Table 3-1. New packages in the MIDP
	Table 3-2. Classes and interfaces in the javax.microedition.lcdui package
	Table 3-3. Class and exception in the javax.microedition.midlet package
	Table 3-4. The classes, interfaces, and exceptions in the javax.microedition.rms package

	3.1.2 System Properties
	Table 3-5. System properties defined by the MIDP

	3.2 More About MIDlets
	
	Figure 3-1. MIDlet transition states

	3.2.1 What Is a MIDlet Suite?
	3.2.1.1 The JAR Manifest
	Table 3-6. JAR manifest attributes
	Example 3-1. A sample manifest

	3.2.2 Java Application Descriptor (JAD)
	Table 3-7. JAD attributes
	Example 3-2. A sample JAD file

	3.2.3 Programming Guidelines
	3.2.3.1 Performance

	Part II: Programming with the CLDCand the MIDP
	Chapter 4. Working with MIDlets
	
	
	Figure 4-1. MIDlet state transitions

	4.1 The Application Manager
	
	Example 4-1. MIDlet skeleton

	4.2 Creating MIDlets
	4.2.1 Write the MIDlet
	Example 4-2. Sample MIDlet

	4.2.2 Compile the Source Code
	4.2.3 Preverify the Class File
	4.2.4 Package the Application in a JAR File
	4.2.5 Create a JAD File
	Example 4-3. A sample JAD file
	Figure 4-2. Running the payment MIDlet
	Example 4-4. Three hypothetical MIDlets
	Figure 4-3. MIDlet suite
	Figure 4-4. Desktop application

	4.2.6 Simplifying the Development
	Figure 4-5. KToolbar screen
	Figure 4-6. New project
	Figure 4-7. Required attributes
	Figure 4-8. Optional attributes
	Figure 4-9. Select a testing device (upper right corner of KToolbar)
	Figure 4-10. PaymentMIDlet on the default phone
	Figure 4-11. PaymentMIDlet on the Motorola i85s
	Figure 4-12. PaymentMIDlet on Palm OS
	Figure 4-13. PaymentMIDlet running on RIM's BlackBerry

	4.2.7 Deploying MIDlets
	4.2.7.1 Deploying OTA
	4.2.7.2 Deploying to the Motorola i50x/i85s
	Figure 4-14. Motorola iDEN update software
	Example 4-5. Manifest.mf
	Example 4-6. HelloMidlet.jad

	Chapter 5. MIDP GUI Programming
	5.1 Why Not Reuse the AWT?
	5.2 The MIDP GUI APIs
	5.2.1 The MIDP GUI Model
	Figure 5-1. Relationship between display and screens

	5.2.2 The lcdui Package
	Table 5-1. lcdui interfaces
	Table 5-2. lcdui classes
	Figure 5-2. Class diagram of the major classes in the lcdui package

	5.3 The High-Level MIDP APIs
	5.3.1 Working with Screens
	5.3.1.1 Display
	5.3.1.2 Screen
	Figure 5-3. Titles and tickers on a screen
	5.3.1.3 Ticker
	Figure 5-4. An example of a ticker
	5.3.1.4 TextBox
	Figure 5-5. A TextBox example
	5.3.1.5 Alert
	Figure 5-6. An example of a timed alert
	Figure 5-7. An example of a modal alert
	5.3.1.6 List
	Figure 5-8. A list of an EXCLUSIVE choice
	Figure 5-9. A list of an IMPLICIT choice
	Figure 5-10. A list of a MULTIPLE choice

	5.3.2 Working with Forms
	5.3.2.1 Form
	Figure 5-11. An empty form
	5.3.2.2 Item
	5.3.2.3 ChoiceGroup
	Figure 5-12. An EXCLUSIVE choice group
	Figure 5-13. A MULTIPLE group choice
	5.3.2.4 DateField
	Figure 5-14. A date field representing the calendar date
	Figure 5-15. A date field representing clock time information
	Figure 5-16. A date field represented with the DATE_TIME constant
	5.3.2.5 Gauge
	Figure 5-17. An example of an interactive gauge
	Figure 5-18. A non-interactive gauge representing a progress bar
	5.3.2.6 Image and ImageItem
	Figure 5-19. Placing an Image object on a form
	5.3.2.7 StringItem
	Figure 5-20. The user cannot edit the contents of a StringItem object
	5.3.2.8 TextField
	Figure 5-21. Example of TextField

	5.4 Creating Low-Level GUI Components
	
	Example 5-1. Subclassing Canvas
	Example 5-2. Instantiating and displaying MyCanvas
	Figure 5-22. Drawing "Hello World!" on a Canvas

	5.4.1 Drawing Graphics
	5.4.2 Double Buffering
	5.4.3 Threading Issues
	5.4.4 Fonts
	Figure 5-23. Drawing system fonts on the device screen
	Example 5-3. Using fonts
	Example 5-4. Instantiating and displaying the FontCanvas class

	5.4.5 Guidelines for GUI Programming for MIDP Devices

	Chapter 6. MIDP Events
	6.1 Screen Navigation
	6.1.1 Commands
	Figure 6-1. Exit, Info, and Buy commands

	6.1.2 The CommandListener Interface
	6.1.2.1 Handling simple events
	Example 6-1. Handling high-level events
	Figure 6-2. Handling high-level events
	6.1.2.2 Creating GUI components and handling events
	Example 6-2. Constructing and testing GUI components
	Figure 6-3. Project Example 6-2 MIDlet
	Figure 6-4. EventEx2 MIDlet
	Figure 6-5. The TextBox, List, and Alert tests
	Figure 6-6. DateField, Calendar, and Form, with Gauge and TextField tests

	6.1.3 The ItemStateListener Interface
	6.1.3.1 Changing the date
	Example 6-3. Implementing the ItemStateListener interface
	Figure 6-7. Implementing the ItemStateListener interface

	6.2 Handling Low-Level Events
	6.2.1 Key Events
	6.2.2 Game Actions
	6.2.3 Event Delivery Methods
	6.2.3.1 Handling low-level events
	Example 6-4. Handling low-level events
	Figure 6-8. Handling low-level events

	Chapter 7. Networking
	7.1 Generic Connections
	
	Figure 7-1. Connection interface hierarchy

	7.2 MIDP Connectivity
	
	Figure 7-2. The benefit of HTTP support

	7.2.1 The HttpConnection Interface

	7.3 The HTTP Programming Model
	7.3.1 Request Methods
	Figure 7-3. Form with one field (GET method)

	7.3.2 Servlets

	7.4 Invoking Remote Applications from MIDlets
	7.4.1 Fetching a Page
	Example 7-1. Fetching a page referenced by a URL
	Figure 7-4. Fetching a page reference by a URL

	7.4.2 Invoking a CGI Script (GET)
	Example 7-2. Invoking a CGI script (GET method)
	Figure 7-5. Invoking a CGI script (GET method)

	7.4.3 Invoking a CGI Script (POST)
	Example 7-3. Invoking a CGI script (POST method)
	Figure 7-6. Invoking a CGI script (POST method)

	7.4.4 Invoking a Servlet
	7.4.4.1 FirstMidletServlet
	Example 7-4. Invoking a servlet with no input values
	Example 7-5. HelloServlet
	Figure 7-7. FirstServletMidlet output
	7.4.4.2 SecondMidletServlet
	Example 7-6. Invoking a servlet with an input value
	Example 7-7. RequestServlet
	Figure 7-8. SecondMidletServlet output

	7.5 Wireless Session Tracking
	7.6 MIDlet Networking Security

	Chapter 8. Database Programming
	8.1 The Record Management System
	8.1.1 Record Stores
	8.1.2 The javax.microedition.rms Package
	8.1.2.1 Interfaces
	Table 8-1. The interfaces in javax.microedition.rms
	8.1.2.2 Classes
	Table 8-2. The class in javax.microedition.rms
	8.1.2.3 Exceptions
	Table 8-3. The exceptions in javax.microedition.rms

	8.2 Programming with the RMS
	8.2.1 Opening, Closing, and Deleting a Record Store
	8.2.2 Creating and Modifying Records
	8.2.3 Filtering Records
	8.2.4 Comparing Records
	8.2.5 Enumerating Records
	8.2.6 Listening to Record Stores
	8.2.7 A Stock Database
	8.2.7.1 The Stock.java Class
	Example 8-1. Parses a string obtained from Yahoo! Finance or from a database
	8.2.7.2 The StockDB.java Class
	Example 8-2. Provide methods for record store operations
	8.2.7.3 The QuotesMIDlet.java Class
	Example 8-3. A MIDlet for the stock database

	8.2.8 Testing QuotesMIDlet
	Figure 8-1. QuotesMIDlet
	Figure 8-2. QuotesMIDlet stock database
	Figure 8-3. Adding new stocks
	Figure 8-4. Viewing the record store

	Chapter 9. The MIDP for Palm OS
	9.1 Installing the MIDP for Palm OSon the Windows Platform
	9.1.1 Installing the MIDP for Palm OS on the Device
	Figure 9-1. Using Palm Desktop to install MIDP.prc
	Figure 9-2. Java HQ special icon on Palm
	Figure 9-3. Java HQ About screen

	9.1.2 Running Sample Applications
	Figure 9-4. Installing sample MIDP-based Java applications
	Figure 9-5. Running Java applications on the Palm for the first time
	Figure 9-6. Selecting an application to run from a suite

	9.2 Developing New Applications
	9.2.1 Develop a MIDlet
	Example 9-1. GuiTests.java

	9.2.2 Convert a MIDlet into a PRC file
	Figure 9-7. PRC converter tool
	Figure 9-8. Converting JAD/JAR to PRC

	9.2.3 Install and Test
	Figure 9-9. Testing a MIDP application for the Palm OS

	9.3 PRC Command-Line Conversion
	
	Table 9-1. Command-line PRC converter tool options
	Figure 9-10. An application cannot be beamed (by default)

	9.4 Advanced Java Applications
	
	Figure 9-11. POSE property settings
	Figure 9-12. Java HQ networking preferences
	Figure 9-13. Preference settings for the Java HQ and its applications

	9.4.1 Fetching a Page Using HttpConnection
	Figure 9-14. Retrieving a file from a remote server

	9.4.2 Retrieving Stock Quotes and Working with Databases
	Figure 9-15. Stock quotes

	9.5 A Final Thought

	Part III: API Quick Reference
	Appendix A. The java.io Package
	Appendix B. The java.lang Package
	Appendix C. The java.util Package
	Appendix D. The javax.microedition.io Package
	Appendix E. The javax.microedition.lcdui Package
	
	
	Table E-1. Command types

	Appendix F. The javax.microedition.midlet Package
	Appendix G. The javax.microedition.rms Package
	Appendix H. Resources
	H.1 Additional Resources
	H.1.1 J2ME White Papers
	H.1.2 J2ME Technologies
	H.1.3 J2ME Development Kits
	H.1.4 J2ME Developer Resources
	H.1.5 XML Parsers for J2ME

	Colophon

