

As of February 9, 1998, the entire online Java Reference Library reflects version 1.4 of the
Java Deluxe CD product, which will be available at the end of February. This version
includes the updated files for Exploring Java, Second Edition (published October 1997),
plus minor revisions to the other files.

Java in a Nutshell
Java Language Reference
Java AWT Reference
Java Fundamental Classes Reference
Exploring Java

Combined Index
Combined Search
Web Version
Credits

The Java Reference Library, version 1.3, is copyright © 1996, 1997, 1998 by O'Reilly & Associates. All Rights Reserved.
Questions, comments, and suggestions to bookquestions@ora.com.

file:///C|/download/ftp.selab.org/ebook/javaref/search/allsrch.htm
file:///C|/download/www.ora.com/books/javaref/default.htm
mailto:bookquestions@ora.com

Java in a Nutshell
By David Flanagan; 1-56592-262-X, 628 pages.
2nd Edition, May 1997

Table of Contents

Preface

Part I: Introducing Java
Part I is an introduction to Java and Java programming. If you know how to program in C or C++,
these chapters teach you everything you need to know to start programming with Java.

If you are already familiar with Java 1.0 you may want to just skip ahead to Part II, which
introduces the new features of Java 1.1.
Chapter 1: Getting Started with Java
Chapter 2: How Java Differs from C
Chapter 3: Classes and Objects in Java

Part II: Introducing Java 1.1
The two chapters in this part introduce the new features of Java 1.1. Chapter 4 is an overview of
the new APIs, and Chapter 5 explains the new language syntax. See Part III for some examples of
the new features.
Chapter 4: What's New in Java 1.1
Chapter 5: Inner Classes and Other New Language Features

Part III: Programming with the Java 1.1 API
Part III contains examples of programming with the new features of Java 1.1. You can study and
learn from the examples, and you should feel free to adapt them for use in your own programs.
The examples shown in these chapters may be downloaded from the Internet. See
http://www.ora.com/catalog/books/javanut2/. Some of the chapters in this part also contain tables
and other reference material for new features in Java 1.1.

Part III of this book is "deprecated." Most of the examples from the first edition of this book do

file:///C|/download/www.ora.com/catalog/javanut2/default.htm
file:///C|/download/www.ora.com/catalog/books/javanut2/default.htm

not appear here, and Part III may disappear altogether in the next edition of the book.
Unfortunately, as Java continues to grow, there is less and less room for programming examples
in this book. However, all of the examples from the first edition are still available on the Web
page listed above.
Chapter 6: Applets
Chapter 7: Events
Chapter 8: New AWT Features
Chapter 9: Object Serialization
Chapter 10: Java Beans
Chapter 11: Internationalization
Chapter 12: Reflection

Part IV: Java Language Reference
Part IV contains reference material on the Java language and related topics. Chapter 13 contains a
number of useful summary tables of Java syntax. Chapter 14 describes the standard Java system
properties and how to use them. Chapter 15 covers the syntax of the HTML tags that allow you to
include Java applets in Web pages. Chapter 16 documents the command-line syntax for the Java
compiler, interpreter, and other tools shipped with the JDK.
Chapter 13: Java Syntax
Chapter 14: System Properties
Chapter 15: Java-Related HTML Tags
Chapter 16: JDK Tools

Part V: API Quick Reference
Part V is the real heart of this book: quick-reference material for the Java API. Please read the
following section, How to Use This Quick Reference, to learn how to get the most out of this
material.
How to Use This Quick Reference
Chapter 17: The java.applet Package
Chapter 18: The java.awt Package
Chapter 19: The java.awt.datatransfer Package
Chapter 20: The java.awt.event Package
Chapter 21: The java.awt.image Package
Chapter 22: The java.awt.peer Package
Chapter 23: The java.beans Package
Chapter 24: The java.io Package
Chapter 25: The java.lang Package
Chapter 26: The java.lang.reflect Package
Chapter 27: The java.math Package
Chapter 28: The java.net Package

Chapter 29: The java.text Package
Chapter 30: The java.util Package
Chapter 31: The java.util.zip Package
Chapter 32: Class, Method, and Field Index

Index
Examples - Warning: this directory includes long filenames which may confuse some older
operating systems (notably Windows 3.1).

Search the text of Java in a Nutshell.

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/jsrch.htm

 Preface

Preface
Contents:
Contents of This Book
Changes Since the First Edition
Related Books
Java Resources
Java in a Nutshell Web Sites
Conventions Used in This Book
Request for Comments
Acknowledgments

This handbook is a desktop quick reference for Java programmers; it covers version 1.1 of the Java
language and API. It also includes introductory and tutorial material for C and C++ programmers who
want to learn Java. It was written to sit faithfully by your keyboard for easy reference while you program.
The wild success of the first edition has shown that this is exactly what Java programmers want, and I've
retained the "no fluff" explanations and the to-the-point reference material in this second edition. I hope
that new readers will find this book useful, and that old readers will find it even more useful than the last
one!

Contents of This Book

This book is divided into five parts:

Part I: Introducing Java

This first part of the book introduces Java and Java programming, with a particular emphasis on
helping C and C++ programmers make the transition to Java. If you are already familiar with Java
1.0 programming, you can skip the three chapters in this part.

Part II: Introducing Java 1.1

This second part of the book contains two chapters that introduce the new features of the Java 1.1
API and the new language features in Java 1.1.

Part III: Programming with the Java 1.1 API

This part contains example programs that demonstrate many of the new features of Java 1.1. You
may find that these examples are a good starting point for your own programs, and you should
feel free to adapt them for your own use. As explained below, this example section has changed a
lot since the first edition of this book.

Part IV: Java Language Reference

This part of the book contains reference material that describes the syntax of the Java language
and the tools provided with the Java Development Kit (JDK), among other things.

Part V: API Quick Reference

This part is a quick reference for the Java API; it forms the bulk of the book. Please be sure to
read the How To Use This Quick Reference material, which appears at the beginning of the part. It
explains how to get the most out of the reference material.

 Changes Since the First

Edition

Preface

Changes Since the First Edition

The many changes in Java 1.1 have resulted in changes to this book. The most significant change since
the first edition is a direct result of the large size of Java 1.1: Java has grown too large to fit in a single
book, even in quick-reference form. Thus, we need to split Java in a Nutshell into multiple volumes. This
volume, the "original" Java in a Nutshell documents the most commonly used features of Java, and it is
an indispensable volume for all Java programmers.

We are planning to publish a separate volume that covers the Java "Enterprise APIs," which include the
database connectivity, remote method invocation, and security features of Java 1.1, as well as other
forthcoming components, such as CORBA IDL support and the electronic commerce framework. And as
new Java APIs are developed and released, we may consider adding new volumes to the Java in a
Nutshell series.

While I was working on this second edition of Java in a Nutshell, it became clear that, even without the
enterprise material, the book was becoming too long. (Too long, that is, to remain a useful quick
reference, and too long to keep at an affordable price.) Something had to give. The most logical solution
was to remove the example programs, which are tutorial in nature, from the book, which is a quick-
reference at heart. However, we didn't want to surprise faithful readers by removing the examples
altogether, so we decided to pare down the example chapters to the bare minimum. You'll notice that Part
III contains examples of using the new Java 1.1 features, such as the JavaBeans API and object
serialization, but it does not contain the majority of the old examples from the first edition. For now, Part
III contains useful examples for experienced Java programmers who want to learn about the new features
of Java 1.1. When Java 1.2 is released, though, we expect that we will have to remove the example
section entirely.

Readers familiar with the first edition of Java in a Nutshell will notice some other changes as well. The
table of contents has been rearranged to accommodate all the new material. We've used a new easier-to-
read font for code listings. And we've included cross-reference material (that used to be available only in
separate index chapters) directly in the quick-reference section, which should make that section
substantially more useful. Be sure to read How To Use This Quick Reference at the beginning of the
reference section to learn about these and other changes to the quick-reference format.

Contents of This Book Related Books

Preface

Related Books

O'Reilly & Associates is developing an entire series of books on Java. This series consists of introductory
books, reference manuals, and advanced programming guides.

The following books on Java are currently available or due to be released soon from O'Reilly &
Associates:

Exploring Java, by Patrick Niemeyer and Joshua Peck

A comprehensive tutorial that provides a practical, hands-on approach to learning Java.

Java Language Reference, by Mark Grand

A complete reference for the Java programming language itself.

Java AWT Reference, by John Zukowski

A complete reference manual for the AWT-related packages in the core Java API.

Java Fundamental Classes Reference, by Mark Grand and Jonathan Knudsen

A complete reference manual for the java.lang, java.io, java.net, java.util
packages, among others, in the core Java API.

Java Virtual Machine, by Jon Meyer and Troy Downing

A programming guide and reference manual for the Java Virtual Machine.

Java Threads, by Scott Oaks and Henry Wong

An advanced programming guide to working with threads in Java.

Java Network Programming, by Elliote Rusty Harold

A complete guide to writing sophisticated network applications.

Database Programming with JDBC and Java, by George Reese

An advanced tutorial on JDBC that presents a robust model for developing Java database
programs.

Developing Java Beans, by Robert Englander

A complete guide to writing components that work with the JavaBeans API.

Look for additional advanced programming guides on such topics as distributed computing and
electronic commerce from O'Reilly in the near future.

Changes Since the First
Edition

Java Resources

Preface

Java Resources

Sun has online reference documentation for the Java API that you may find useful in conjunction with
this quick reference handbook. Visit http://www.javasoft.com/ to view or download this API
documentation and other useful documents.

There are many other sites on the Web that contain useful Java information. One of the most well-known
is http://www.gamelan.com/, also known as http://java.developer.com/. For discussion (in English) about
Java, try the various comp.lang.java.* newsgroups.

Related Books Java in a Nutshell Web Sites

file:///C|/download/www.javasoft.com/default.htm
file:///C|/download/www.gamelan.com/default.htm
file:///C|/download/java.developer.com/default.htm

Preface

Java in a Nutshell Web Sites

The Web site for this book is http://www.ora.com/catalog/books/javanut2/. There you will find the
examples from this book, available for download. As typos are reported, you may also find an errata list
at that Web site.

My personal Web site is http://www.DavidFlanagan.COM/. This is a new site, just getting off the ground
as this book goes to press, but it will eventually contain a number of Java programming resources,
including commercial and shareware tools and "beans" that I have written.

Java Resources Conventions Used in This
Book

file:///C|/download/www.ora.com/catalog/books/javanut2/default.htm
file:///C|/download/www.davidflanagan.com/default.htm

Preface

Conventions Used in This Book

Italic is used for:

● Pathnames, filenames, and program names.

● New terms where they are defined.

● Internet addresses, such as domain names and URLs.

Boldface is used for:

● Particular keys on a computer keyboard.

● Names of user interface buttons and menus.

Constant Width is used for:

● Anything that appears literally in a Java program, including keywords, data types, constants,
method names, variables, class names, and interface names.

● Command lines and options that should be typed verbatim on the screen.

● All Java code listings.

● HTML documents, tags, and attributes.

● Method parameters, and general placeholders that indicate that an item is replaced by some actual
value in your own program.

● Variable expressions in command-line options.

● Java class synopses in the quick-reference section. This very narrow font allows us to fit a lot of
information on the page without a lot of distracting line breaks.

● Highlighting class, method, field, and constructor names in the quick-reference section, which
makes it easier to scan the class synopses.

● Method parameter names and comments in the quick-reference section.

Java in a Nutshell Web Sites Request for Comments

Preface

Request for Comments

Please help us to improve future editions of this book by reporting any errors, inaccuracies, bugs,
misleading or confusing statements, and plain old typos that you find anywhere in this book. Email your
bug reports and comments to us at: bookquestions@ora.com. (Before sending a bug report, however, you
may want to check for an errata list at http://www.ora.com/catalog/books/javanut2/ to see if the bug has
already been submitted.)

Please also let us know what we can do to make this book more useful to you. We take your comments
seriously and will try to incorporate reasonable suggestions into future editions.

Conventions Used in This
Book

Acknowledgments

file:///C|/download/www.ora.com/catalog/books/javanut2/default.htm

Preface

Acknowledgments

Many people helped in the creation of this book and I am grateful to them all. I am indebted to literally
hundreds of readers of the first edition who wrote in with comments, suggestions, bug reports, and praise.
Their many small contributions are scattered throughout the book. Also, my apologies to those who made
the many good suggestions that could not be incorporated into this edition.

Paula Ferguson, a friend and colleague, edited both editions of the book. Her careful reading and always-
practical suggestions made the book stronger, clearer, and more useful. She is also the one who prodded
me when I started to slack off, and got me back on track when I started trying to turn Java in a Nutshell
into Java in a Packing Crate.

Mike Loukides provided high-level direction and guidance for the first edition of the book. Eric
Raymond and Troy Downing reviewed that first edition--they helped spot my errors and omissions, and
offered good advice on making the book more useful to Java programmers.

For the second edition, John Zukowski reviewed my Java 1.1 AWT quick-reference material, and George
Reese reviewed most of the remaining new material. This edition was also blessed with a "dream team"
of technical reviewers from Sun. John Rose, the author of the Java Inner Classes Specification, reviewed
the chapter on inner classes. Mark Reinhold, author of the character stream classes in java.io,
reviewed my documentation of these classes. Nakul Saraiya, the designer of the new Java Reflection
API, reviewed my documentation of the java.lang.reflect package. I am very grateful to these
engineers and architects; their efforts have made this a stronger, more accurate book. Any errors that
remain are of course my own.

Nicole Gipson Arigo was the production editor for this edition of the book, taking over the job from John
Files, who produced the first edition. Nicole coordinated the entire production process, entered changes
from edited copy, and handled the meticulous task of fixing line and page breaks in the manuscript.
Madeleine Newell provided production assistance. Clairemarie Fisher O'Leary, Jane Ellin, and Sheryl
Avruch performed quality control checks. Seth Maislin wrote the index. Chris Reilley created the figures,
including all the detailed class hierarchy diagrams in Part V. [1] Edie Freedman designed the cover.
Nancy Priest designed the interior format of the book and Lenny Muellner carefully implemented the

format in troff, with help from Ellen Siever.

[1] The hierarchy diagrams are loosely based on similar diagrams for Java 1.0 by Charles
L. Perkins.

The whole production team has my thanks for once again pulling together all the pieces to create the
finished product you now hold in your hands.

As always, my thanks and love to Christie.

 David Flanagan
 April 1997

Request for Comments Getting Started with Java

Chapter 1

1. Getting Started with Java
Contents:
Why Is Java Interesting?
A Simple Example

When it was introduced in late 1995, Java took the Internet by storm. Java 1.1, released in early 1997,
nearly doubles the speed of the Java interpreter and includes many important new features. With the
addition of APIs to support database access, remote objects, an object component model,
internationalization, printing, encryption, digital signatures, and many other technologies, Java is now
poised to take the rest of the programming world by storm.

Despite all the hype surrounding Java and the new features of Java 1.1, it's important to remember that at
its core, Java is just a programming language, like many others, and its APIs are just class libraries, like
those of other languages. What is interesting about Java, and thus the source of much of the hype, is that
it has a number of important features that make it ideally suited for programming in the heavily
networked, heterogenous world of the late 1990s. The rest of this chapter describes those interesting
features of Java and demonstrates some simple Java code. Chapter 4, What's New in Java 1.1 explores
the new features that have been added to version 1.1 of the Java API.

1.1 Why Is Java Interesting?

In one of their early papers about the language, Sun described Java as follows:

Java: A simple, object-oriented, distributed, interpreted, robust, secure, architecture
neutral, portable, high-performance, multithreaded, and dynamic language.

Sun acknowledges that this is quite a string of buzzwords, but the fact is that, for the most part, they aptly
describe the language. In order to understand why Java is so interesting, let's take a look at the language
features behind the buzzwords.

Object-Oriented

Java is an object-oriented programming language. As a programmer, this means that you focus on the
data in your application and methods that manipulate that data, rather than thinking strictly in terms of
procedures. If you're accustomed to procedure-based programming in C, you may find that you need to
change how you design your programs when you use Java. Once you see how powerful this new
paradigm is, however, you'll quickly adjust to it.

In an object-oriented system, a class is a collection of data and methods that operate on that data. Taken
together, the data and methods describe the state and behavior of an object. Classes are arranged in a
hierarchy, so that a subclass can inherit behavior from its superclass. A class hierarchy always has a root
class; this is a class with very general behavior.

Java comes with an extensive set of classes, arranged in packages, that you can use in your programs.
For example, Java provides classes that create graphical user interface components (the java.awt
package), classes that handle input and output (the java.io package), and classes that support
networking functionality (the java.net package). The Object class (in the java.lang package)
serves as the root of the Java class hierarchy.

Unlike C++, Java was designed to be object-oriented from the ground up. Most things in Java are
objects; the primitive numeric, character, and boolean types are the only exceptions. Strings are
represented by objects in Java, as are other important language constructs like threads. A class is the
basic unit of compilation and of execution in Java; all Java programs are classes.

While Java is designed to look like C++, you'll find that Java removes many of the complexities of that
language. If you are a C++ programmer, you'll want to study the object-oriented constructs in Java
carefully. Although the syntax is often similar to C++, the behavior is not nearly so analogous. For a
complete description of the object-oriented features of Java, see Chapter 3, Classes and Objects in Java.

Interpreted

Java is an an interpreted language: the Java compiler generates byte-codes for the Java Virtual Machine
(JVM), rather than native machine code. To actually run a Java program, you use the Java interpreter to
execute the compiled byte-codes. Because Java byte-codes are platform-independent, Java programs can
run on any platform that the JVM (the interpreter and run-time system) has been ported to.

In an interpreted environment, the standard "link" phase of program development pretty much vanishes.
If Java has a link phase at all, it is only the process of loading new classes into the environment, which is
an incremental, lightweight process that occurs at run-time. This is in contrast with the slower and more
cumbersome compile-link-run cycle of languages like C and C++.

Architecture Neutral and Portable

Because Java programs are compiled to an architecture neutral byte-code format, a Java application can
run on any system, as long as that system implements the Java Virtual Machine. This is a particularly
important for applications distributed over the Internet or other heterogenous networks. But the
architecture neutral approach is useful beyond the scope of network-based applications. As an application
developer in today's software market, you probably want to develop versions of your application that can
run on PCs, Macs, and UNIX workstations. With multiple flavors of UNIX, Windows 95, and Windows
NT on the PC, and the new PowerPC Macintosh, it is becoming increasingly difficult to produce
software for all of the possible platforms. If you write your application in Java, however, it can run on all
platforms.

The fact that Java is interpreted and defines a standard, architecture neutral, byte-code format is one big
part of being portable. But Java goes even further, by making sure that there are no "implementation-
dependent" aspects of the language specification. For example, Java explicitly specifies the size of each
of the primitive data types, as well as its arithmetic behavior. This differs from C, for example, in which
an int type can be 16, 32, or 64 bits long depending on the platform.

While it is technically possible to write non-portable programs in Java, it is relatively easy to avoid the
few platform-dependencies that are exposed by the Java API and write truly portable or "pure" Java
programs. Sun's new "100% Pure Java" program helps developers ensure (and certify) that their code is
portable. Programmers need only to make simple efforts to avoid non-portable pitfalls in order to live up
to Sun's trademarked motto "Write Once, Run Anywhere."

Dynamic and Distributed

Java is a dynamic language. Any Java class can be loaded into a running Java interpreter at any time.
These dynamically loaded classes can then be dynamically instantiated. Native code libraries can also be
dynamically loaded. Classes in Java are represented by the Class class; you can dynamically obtain
information about a class at run-time. This is especially true in Java 1.1, with the addition of the
Reflection API, which is introduced in Chapter 12, Reflection.

Java is also called a distributed language. This means, simply, that it provides a lot of high-level support
for networking. For example, the URL class and OArelated classes in the java.net package make it
almost as easy to read a remote file or resource as it is to read a local file. Similarly, in Java 1.1, the
Remote Method Invocation (RMI) API allows a Java program to invoke methods of remote Java objects,
as if they were local objects. (Java also provides traditional lower-level networking support, including
datagrams and stream-based connections through sockets.)

The distributed nature of Java really shines when combined with its dynamic class loading capabilities.
Together, these features make it possible for a Java interpreter to download and run code from across the

Internet. (As we'll see below, Java implements strong security measures to be sure that this can be done
safely.) This is what happens when a Web browser downloads and runs a Java applet, for example.
Scenarios can be more complicated than this, however. Imagine a multi-media word processor written in
Java. When this program is asked to display some type of data that it has never encountered before, it
might dynamically download a class from the network that can parse the data, and then dynamically
download another class (probably a Java "bean") that can display the data within a compound document.
A program like this uses distributed resources on the network to dynamically grow and adapt to the needs
of its user.

Simple

Java is a simple language. The Java designers were trying to create a language that a programmer could
learn quickly, so the number of language constructs has been kept relatively small. Another design goal
was to make the language look familiar to a majority of programmers, for ease of migration. If you are a
C or C++ programmer, you'll find that Java uses many of the same language constructs as C and C++.

In order to keep the language both small and familiar, the Java designers removed a number of features
available in C and C++. These features are mostly ones that led to poor programming practices or were
rarely used. For example, Java does not support the goto statement; instead, it provides labelled break
and continue statements and exception handling. Java does not use header files and it eliminates the C
preprocessor. Because Java is object-oriented, C constructs like struct and union have been
removed. Java also eliminates the operator overloading and multiple inheritance features of C++.

Perhaps the most important simplification, however, is that Java does not use pointers. Pointers are one
of the most bug-prone aspects of C and C++ programming. Since Java does not have structures, and
arrays and strings are objects, there's no need for pointers. Java automatically handles the referencing and
dereferencing of objects for you. Java also implements automatic garbage collection, so you don't have to
worry about memory management issues. All of this frees you from having to worry about dangling
pointers, invalid pointer references, and memory leaks, so you can spend your time developing the
functionality of your programs.

If it sounds like Java has gutted C and C++, leaving only a shell of a programming language, hold off on
that judgment for a bit. As we'll see in Chapter 2, How Java Differs from C, Java is actually a full-
featured and very elegant language.

Robust

Java has been designed for writing highly reliable or robust software. Java certainly doesn't eliminate the
need for software quality assurance; it's still quite possible to write buggy software in Java. However,
Java does eliminate certain types of programming errors, which makes it considerably easier to write
reliable software.

Java is a strongly typed language, which allows for extensive compile-time checking for potential type-
mismatch problems. Java is more strongly typed than C++, which inherits a number of compile-time
laxities from C, especially in the area of function declarations. Java requires explicit method declarations;
it does not support C-style implicit declarations. These stringent requirements ensure that the compiler
can catch method invocation errors, which leads to more reliable programs.

One of the things that makes Java simple is its lack of pointers and pointer arithmetic. This feature also
increases the robustness of Java programs by abolishing an entire class of pointer-related bugs. Similarly,
all accesses to arrays and strings are checked at run-time to ensure that they are in bounds, eliminating
the possibility of overwriting memory and corrupting data. Casts of objects from one type to another are
also checked at run-time to ensure that they are legal. Finally, and very importantly, Java's automatic
garbage collection prevents memory leaks and other pernicious bugs related to memory allocation and
deallocation.

Exception handling is another feature in Java that makes for more robust programs. An exception is a
signal that some sort of exceptional condition, such as a "file not found" error, has occurred. Using the
try/catch/finally statement, you can group all of your error handling code in one place, which
greatly simplifies the task of error handling and recovery.

Secure

One of the most highly touted aspects of Java is that it's a secure language. This is especially important
because of the distributed nature of Java. Without an assurance of security, you certainly wouldn't want
to download code from a random site on the Internet and let it run on your computer. Yet this is exactly
what people do with Java applets every day. Java was designed with security in mind, and provides
several layers of security controls that protect against malicious code, and allow users to comfortably run
untrusted programs such as applets.

At the lowest level, security goes hand-in-hand with robustness. As we've already seen, Java programs
cannot forge pointers to memory, or overflow arrays, or read memory outside of the bounds of an array
or string. These features are one of Java's main defenses against malicious code. By totally disallowing
any direct access to memory, an entire huge, messy class of security attacks is ruled out.

The second line of defense against malicious code is the byte-code verification process that the Java
interpreter performs on any untrusted code it loads. These verification steps ensure that the code is well-
formed--that it doesn't overflow or underflow the stack or contain illegal byte-codes, for example. If the
byte-code verification step was skipped, inadvertently corrupted or maliciously crafted byte-codes might
be able to take advantage of implementation weaknesses in a Java interpreter.

Another layer of security protection is commonly referred to as the "sandbox model": untrusted code is
placed in a "sandbox," where it can play safely, without doing any damage to the "real world," or full
Java environment. When an applet, or other untrusted code, is running in the sandbox, there are a number

of restrictions on what it can do. The most obvious of these restrictions is that it has no access
whatsoever to the local file system. There are a number of other restrictions in the sandbox as well. These
restrictions are enforced by a SecurityManager class. The model works because all of the core Java
classes that perform sensitive operations, such as filesystem access, first ask permission of the currently
installed SecurityManager. If the call is being made, directly or indirectly, by untrusted code, the
security manager throws an exception, and the operation is not permitted. See Chapter 6, Applets for a
complete list of the restrictions placed on applets running in the sandbox.

Finally, in Java 1.1, there is another possible solution to the problem of security. By attaching a digital
signature to Java code, the origin of that code can be established in a cryptographically secure and
unforgeable way. If you have specified that you trust a person or organization, then code that bears the
digital signature of that trusted entity is trusted, even when loaded over the network, and may be run
without the restrictions of the sandbox model.

Of course, security isn't a black-and-white thing. Just as a program can never be guaranteed to be 100%
bug-free, no language or environment can be guaranteed 100% secure. With that said, however, Java
does seem to offer a practical level of security for most applications. It anticipates and defends against
most of the techniques that have historically been used to trick software into misbehaving, and it has
been intensely scrutinized by security experts and hackers alike. Some security holes were found in early
versions of Java, but these flaws were fixed almost as soon as they were found, and it seems reasonable
to expect that any future holes will be fixed just as quickly.

High-Performance

Java is an interpreted language, so it is never going to be as fast as a compiled language like C. Java 1.0
was said to be about 20 times slower than C. Java 1.1 is nearly twice as fast as Java 1.0, however, so it
might be reasonable to say that compiled C code runs ten times as fast as interpreted Java byte-codes.
But before you throw up your arms in disgust, be aware that this speed is more than adequate to run
interactive, GUI and network-based applications, where the application is often idle, waiting for the user
to do something, or waiting for data from the network. Furthermore, the speed-critical sections of the
Java run-time environment, that do things like string concatenation and comparison, are implemented
with efficient native code.

As a further performance boost, many Java interpreters now include "just in time" compilers that can
translate Java byte-codes into machine code for a particular CPU at run-time. The Java byte-code format
was designed with these "just in time" compilers in mind, so the process of generating machine code is
fairly efficient and it produces reasonably good code. In fact, Sun claims that the performance of byte-
codes converted to machine code is nearly as good as native C or C++. If you are willing to sacrifice
code portability to gain speed, you can also write portions of your program in C or C++ and use Java
native methods to interface with this native code.

When you are considering performance, it's important to remember where Java falls in the spectrum of

available programming languages. At one end of the spectrum, there are high-level, fully-interpreted
scripting languages such as Tcl and the UNIX shells. These languages are great for prototyping and they
are highly portable, but they are also very slow. At the other end of the spectrum, you have low-level
compiled languages like C and C++. These languages offer high performance, but they suffer in terms of
reliability and portability. Java falls in the middle of the spectrum. The performance of Java's interpreted
byte-codes is much better than the high-level scripting languages (even Perl), but it still offers the
simplicity and portability of those languages.

Multithreaded

In a GUI-based network application such as a Web browser, it's easy to imagine multiple things going on
at the same time. A user could be listening to an audio clip while she is scrolling a page, and in the
background the browser is downloading an image. Java is a multithreaded language; it provides support
for multiple threads of execution (sometimes called lightweight processes) that can handle different
tasks. An important benefit of multithreading is that it improves the interactive performance of graphical
applications for the user.

If you have tried working with threads in C or C++, you know that it can be quite difficult. Java makes
programming with threads much easier, by providing built-in language support for threads. The
java.lang package provides a Thread class that supports methods to start and stop threads and set
thread priorities, among other things. The Java language syntax also supports threads directly with the
synchronized keyword. This keyword makes it extremely easy to mark sections of code or entire
methods that should only be run by a single thread at a time.

While threads are "wizard-level" stuff in C and C++, their use is commonplace in Java. Because Java
makes threads so easy to use, the Java class libraries require their use in a number of places. For
example, any applet that performs animation does so with a thread. Similarly, Java does not support
asynchronous, non-blocking I/O with notification through signals or interrupts--you must instead create a
thread that blocks on every I/O channel you are interested in.

Acknowledgments A Simple Example

Chapter 1
Getting Started with Java

1.2 A Simple Example

By now you should have a pretty good idea of why Java is such an interesting language. So we'll stop talking about
abstract concepts and look at some concrete Java code. Before we look at an interesting applet, however, we are
going to pay tribute to that ubiquitous favorite, "Hello World."

Hello World

Example 1.1 shows the simplest possible Java program: "Hello World."

Example 1.1: Hello World

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

This program, like every Java program, consists of a public class definition. The class contains a method named
main(), which is the main entry point for all Java applications--that is, the point at which the interpreter starts
executing the program. The body of main() consists of only a single line, which prints out the message:

Hello World!

This program must be saved in a file with the same name as the public class plus a .java extension. To compile it,
you would use javac: [1]

[1] Assuming you're using Sun's Java Development Kit (JDK). If you're using a Java development
environment from some other vendor, follow your vendor's instructions.

% javac HelloWorld.java

This command produces the HelloWorld.class file in the current directory. To run the program, you use the Java
interpreter, java:

% java HelloWorld

Note that when you invoke the interpreter, you do not supply the .class extension for the file you want to run.

A Scribble Applet

Example 1.2 shows a less trivial Java program. This program is an applet, rather than a standalone Java application
like the "Hello World" program above. Because this example is an applet, it has a different structure than a
standalone application; notably, it does not have a main() method. Like all applets, this one runs inside an applet
viewer or Web browser, and lets the user draw (or scribble) with the mouse, as illustrated in Figure 1.1.

Figure 1.1: A Java applet running in a Web browser

[Graphic: Figure 1-1]

One of the major changes between Java 1.0 and Java 1.1 is in the way that Java programs are notified of "events",
such as mouse motion. Example 1.2 uses the Java 1.0 event model rather than the preferred Java 1.1 event model.
This is because the current generation of Web browsers (as this is written) still use Java 1.0. In order for this applet
to be widely usable, it is coded with the old, "deprecated" event model. [2]

[2] If you are interested in updating this program to use Java 1.1, see Chapter 7, Events for

information on how to use the new 1.1 event model. In addition, you need to change the call to
bounds() in the action() method to a call to getBounds(), if you want to avoid a
compilation warning about using a deprecated method.

Example 1.2: A Java Applet

import java.applet.*;
import java.awt.*;
public class Scribble extends Applet {
 private int last_x, last_y; // Store the last mouse position.
 private Color current_color = Color.black; // Store the current color.
 private Button clear_button; // The clear button.
 private Choice color_choices; // The color dropdown list.
 // This method is called to initialize the applet.
 // Applets don't have a main() method.
 public void init() {
 // Set the background color.
 this.setBackground(Color.white);
 // Create a button and add it to the applet. Set the button's colors.
 clear_button = new Button("Clear");
 clear_button.setForeground(Color.black);
 clear_button.setBackground(Color.lightGray);
 this.add(clear_button);
 // Create a menu of colors and add it to the applet.
 // Also set the menu's colors and add a label.
 color_choices = new Choice();
 color_choices.addItem("black");
 color_choices.addItem("red");
 color_choices.addItem("yellow");
 color_choices.addItem("green");
 color_choices.setForeground(Color.black);
 color_choices.setBackground(Color.lightGray);
 this.add(new Label("Color: "));
 this.add(color_choices);
 }
 // This method is called when the user clicks the mouse to start a scribble.
 public boolean mouseDown(Event e, int x, int y)
 {
 last_x = x; last_y = y;
 return true;
 }
 // This method is called when the user drags the mouse.
 public boolean mouseDrag(Event e, int x, int y)
 {
 Graphics g = this.getGraphics();
 g.setColor(current_color);
 g.drawLine(last_x, last_y, x, y);
 last_x = x;

 last_y = y;
 return true;
 }
 // This method is called when the user clicks the button or chooses a color.
 public boolean action(Event event, Object arg) {
 // If the Clear button was clicked on, handle it.
 if (event.target == clear_button) {
 Graphics g = this.getGraphics();
 Rectangle r = this.bounds();
 g.setColor(this.getBackground());
 g.fillRect(r.x, r.y, r.width, r.height);
 return true;
 }
 // Otherwise if a color was chosen, handle that.
 else if (event.target == color_choices) {
 if (arg.equals("black")) current_color = Color.black;
 else if (arg.equals("red")) current_color = Color.red;
 else if (arg.equals("yellow")) current_color = Color.yellow;
 else if (arg.equals("green")) current_color = Color.green;
 return true;
 }
 // Otherwise, let the superclass handle it.
 else return super.action(event, arg);
 }
}

Don't expect to be able to understand the entire applet at this point. It is here to give you the flavor of the language.
In Chapter 2, How Java Differs from C and Chapter 3, Classes and Objects in Java we'll explain the language
constructs you need to understand the example. Then, in Chapter 6, Applets and Chapter 7, Events we'll explain the
applet and event-handling concepts used in this example.

The first thing you should notice when browsing through the code is that it looks reassuringly like C and C++. The
if and return statements are familiar. Assignment of values to variables uses the expected syntax. Procedures
(called "methods" in Java) are recognizable as such.

The second thing to notice is the object-oriented nature of the code. As you can see at the top of the example, the
program consists of the definition of a public class. The name of the class we are defining is Scribble; it is an
extension, or subclass, of the Applet class. (The full name of the Applet class is java.applet.Applet. One
of the import statements at the top of the example allows us to refer to Applet by this shorter name.)

Classes are said to "encapsulate" data and methods. As you can see, our Scribble class contains both variable and
method declarations. The methods are actually defined inside of the class. The methods of a class are often invoked
through an instance of the class. Thus you see lines like:

color_choices.addItem("black");

This line of code invokes the addItem() method of the object referred to by the color_choices variable. If

you're a C programmer, but not a C++ programmer, this syntax may take a little getting used to. We'll see lots more
of it in Chapters 2 and 3. Note that this is a keyword, not a variable name. It refers to the current object; in this
example, it refers to the Scribble object.

The init() method of an applet is called by the Web browser or applet viewer when it is starting the applet up. In
our example, this method creates a Clear button and a menu of color choices, and then adds these GUI components
to the applet.

The mouseDown() and mouseDrag() methods are called when the user clicks and drags the mouse. These are
the methods that are responsible for drawing lines as the user scribbles. The action() method is invoked when
the user clicks on the Clear button or selects a color from the menu of colors. The body of the method determines
which of these two "events" has occurred and handles the event appropriately. Recall that these methods are part of
the Java 1.0 event model. Chapter 7, Events explains this model and also explains the Java 1.1 event model that
replaces it.

To compile this example, you'd save it in a file named Scribble.java and use javac:

% javac Scribble.java

This example is an applet, not a standalone program like our "Hello World" example. It does not have a main()
method, and therefore cannot be run directly by the Java interpreter. Instead, we must reference it in an HTML file
and run the applet in an applet viewer or Web browser. It is the applet viewer or Web browser that loads the applet
class into its running Java interpreter and invokes the various methods of the applet at the appropriate times. To
include the applet in a Web page, we'd use an HTML fragment like the following:

<APPLET code="Scribble.class" width=500 height=300>
</APPLET>

Example 1.3 shows a complete HTML file that we might use to display the applet. Chapter 15, Java-Related HTML
Tags explains the HTML syntax for applets in full detail.

Example 1.3: An HTML File that Contains an Applet

<HTML>
<HEAD>
<TITLE>The Scribble Applet</TITLE>
</HEAD>
<BODY>
Please scribble away in the applet below.
<P>
<APPLET code="Scribble.class" width=500 height=300>
Your browser does not support Java, or Java is not enabled. Sorry!
</APPLET>
</BODY>
</HTML>

Suppose we save this example HTML file as Scribble.html. Then to run this applet, you could use Sun's
appletviewer command like this:

% appletviewer Scribble.html

You could also display the applet by viewing the Scribble.html file in your Web browser, if your browser supports
Java applets. Figure 1.1 showed the Scribble applet running in Netscape Navigator.

Why Is Java Interesting? How Java Differs from C

Chapter 2

2. How Java Differs from C
Contents:
The Name Space: Packages, Classes, and Members
Comments
No Preprocessor
Unicode and Character Escapes
Primitive Data Types
Reference Data Types
Objects
Arrays
Strings
Operators
Statements
Exceptions and Exception Handling
Miscellaneous Differences

Java is a lot like C, which makes it relatively easy for C programmers to learn. But there are a number of
important differences between C and Java, such as the lack of a preprocessor, the use of 16-bit Unicode
characters, and the exception handling mechanism. This chapter explains those differences, so that
programmers who already know C can start programming in Java right away!

This chapter also points out similarities and differences between Java and C++. C++ programmers should
beware, though: While Java borrows a lot of terminology and even syntax from C++, the analogies
between Java and C++ are not nearly as strong as those between Java and C. C++ programmers should
be careful not to be lulled into a false sense of familiarity with Java just because the languages share a
number of keywords.

One of the main areas in which Java differs from C, of course, is that Java is an object-oriented language
and has mechanisms to define classes and create objects that are instances of those classes. Java's object-

oriented features are a topic for a chapter of their own, and they'll be explained in detail in Chapter 3,
Classes and Objects in Java.

2.1 Program Structure and Environment

A program in Java consists of one or more class definitions, each of which has been compiled into its
own .class file of Java Virtual Machine object code. One of these classes must define a method main(),
which is where the program starts running. [1]

[1] Method is an object-oriented term for a procedure or function. You'll see it used
throughout this book.

To invoke a Java program, you run the Java interpreter, java, and specify the name of the class that
contains the main() method. You should omit the .class extension when doing this. Note that a Java
applet is not an application--it is a Java class that is loaded and run by an already running Java
application such as a Web browser or applet viewer.

The main() method that the Java interpreter invokes to start a Java program must have the following
prototype:

public static void main(String args[])

The Java interpreter runs until the main() method returns, or until the interpreter reaches the end of
main(). If no threads have been created by the program, the interpreter exits. Otherwise, the interpreter
continues running until the last thread terminates.

Command-Line Arguments

The single argument to main() is an array of strings, conventionally named args or argv. The length
of this array (which would be passed as the argc argument in C) is available as argv.length, as is
the case with any Java array. The elements of the array are the arguments, if any, that appeared on the
interpreter command line after the class name. Note that the first element of the array is not the name of
the class, as a C programmer might expect it to be. Example 2.1 shows how you could write a UNIX-
style echo command (a program that simply prints out its arguments) in Java.

Example 2.1: An Echo Program in Java

public class echo {
 public static void main(String argv[]) {
 for(int i=0; i < argv.length; i++)

 System.out.print(argv[i] + " ");
 System.out.print("\n");
 System.exit(0);
 }
}

Program Exit Value

Note that main() must be declared to return void. Thus you cannot return a value from your Java
program with a return statement in main(). If you need to return a value, call System.exit()
with the desired integer value, as we've done in Example 2.1. Note that the handling and interpretation of
this exit value are, of course, operating-system dependent. System.exit() causes the Java interpreter
to exit immediately, whether or not other threads are running.

Environment

The Java API does not allow a Java program to read operating system environment variables because
they are platform-dependent. However, Java defines a similar, platform-independent mechanism, known
as the system properties list, for associating textual values with names.

A Java program can look up the value of a named property with the System.getProperty()
method:

String homedir = System.getProperty("user.home");
String debug = System.getProperty("myapp.debug");

The Java interpreter automatically defines a number of standard system properties when it starts up. You
can insert additional property definitions into the list by specifying the -D option to the interpreter:

% java -Dmyapp.debug=true myapp

See Chapter 14, System Properties for more information on system properties.

A Simple Example The Name Space: Packages,
Classes, and Members

Chapter 2
How Java Differs from C

2.2 The Name Space: Packages, Classes, and
Members

As a language that is designed to support dynamic loading of modules over the entire Internet, Java takes
special care to avoid name space conflicts. Global variables are simply not part of the language. Neither
are "global" functions or procedures, for that matter.

No Global Variables

In Java, every field and method is declared within a class and forms part of that class. Also, every class is
part of a package (in Java 1.1, classes can also be declared within other classes). The fields and methods
(and classes in 1.1) of a class are known as the members of a class. Every Java field or method may be
referred to by its fully qualified name, which consists of the package name, the class name, and the
member name (i.e., the field or the method name), all separated by periods. Package names are
themselves usually composed of multiple period-separated components. Thus, the fully qualified name for
a method might be:

david.games.tetris.SoundEffects.play()

Java Filenames and Directory Structure

A file of Java source code has the extension .java. It consists of an optional package statement followed
by any number of import statements followed by one or more class or interface definitions. (The
package and import statements will be introduced shortly.) If more than one class or interface is
defined in a Java source file, only one of them may be declared public (i.e., made available outside of
the package), and the source file must have the same name as that public class or interface, plus the .java
extension.

Each class or interface definition in a .java file is compiled into a separate file. These files of compiled
Java byte-codes are known as "class files," and must have the same name as the class or interface they

define, with the extension .class appended. For example, the class SoundEffects would be stored in
the file SoundEffects.class.

Class files are stored in a directory that has the same components as the package name. If the fully
qualified name of a class is david.games.tetris.SoundEffects, for example, the full path of
the class file must be david/games/tetris/SoundEffects.class. This filename is interpreted relative to the
Java "class path," described below. [2]

[2] We'll use UNIX-style directory specifications in this book. If you are a Windows
programmer, simply change all the forward slashes in filenames to backward slashes.
Similarly, in path specifications, change colons to semicolons.

Packages of the Java API

The Java 1.1 API consists of the classes and interfaces defined in the twenty-three packages listed in
Table 2.1.

Table 2.1: The Packages of the Java API

Package name Contents

java.applet Applet classes

java.awt Graphics, window, and GUI classes

java.awt.datatransfer Data transfer (e.g., cut-and-paste) classes

java.awt.event Event processing classes and interfaces

java.awt.image Image processing classes

java.awt.peer GUI interfaces for platform independence

java.beans JavaBeans component model API

java.io Various types of input and output classes

java.lang Core language classes

java.lang.reflect Reflection API classes

java.math Arbitrary precision arithmetic

java.net Networking classes

java.rmi Remote Method Invocation classes

java.rmi.dgc RMI-related classes

java.rmi.registry RMI-related classes

java.rmi.server RMI-related classes

java.security Security classes

java.security.acl Security-related classes

java.security.interfaces Security-related classes

java.sql JDBC SQL API for database access

java.text Internationalization classes

java.util Various useful data types

java.util.zip Compression and decompression classes

The Java Class Path

The Java interpreter knows where its standard system classes are installed, and loads them from that
location as needed. By default, it looks up user-defined classes in or relative to the current directory. You
can set the CLASSPATH environment variable to tell the interpreter where to look for user-defined
classes. The interpreter always appends the location of its system classes to the end of the path specified
by this environment variable. The entries in a class path specification should be directories or ZIP files
that contain the classes. The directories in a class path specification should be colon-separated on a UNIX
system, and semicolon-separated on a Windows system. For example, on a UNIX system, you might use:

setenv CLASSPATH .:/home/david/classes:/usr/local/javatools/classes.zip

On a Windows system you could use:

setenv CLASSPATH .;C:\david\classes;D:\local\javatools\classes.zip

This tells Java to search in and beneath the specified directories for non-system classes. Note that the
current directory (.) is included in these paths.

You can also specify a class path to the Java interpreter with the -classpath command-line argument.
Setting this option overides any path specified in the CLASSPATH environment variable. Note that the
interpreter does not append the location of the system classes to the end of this path, so you must be sure
to specify those system classes yourself. Finally, note that the Java compiler also recognizes and honors
class paths specified with the CLASSPATH environment variable and the -classpath command-line
argument.

Globally Unique Package Names

The Java designers have proposed an Internet-wide unique package naming scheme that is based on the
Internet domain name of the organization at which the package is developed.

Figure 2.1 shows some fully qualified names, which include package, class, and field components.

Figure 2.1: Fully qualified names in Java

[Graphic: Figure 2-1]

Some organizations are following this naming scheme, and producing classes with names like
com.sybase.jdbc.SybDriver. Another trend that is developing, however, is for companies to
simply use their company name as the first component of their package names, and produce classes like
netscape.javascript.JSObject.

The top-level package names java and sun are reserved for use by Sun, of course. Developers should
not define new classes within these packages.

The package Statement

The package statement must appear as the first statement (i.e., the first text other than comments and
whitespace) in a file of Java source code, if it appears at all. It specifies which package the code in the file
is part of. Java code that is part of a particular package has access to all classes (public and non-
public) in the package, and to all non-private methods and fields in all those classes. When Java
code is part of a named package, the compiled class file must be placed at the appropriate position in the
CLASSPATH directory hierarchy before it can be accessed by the Java interpreter or other utilities.

If the package statement is omitted from a file, the code in that file is part of an unnamed default
package. This is convenient for small test programs, or during development, because it means that the
code can be interpreted from the current directory.

The import Statement

The import statement makes Java classes available to the current class under an abbreviated name.
Public Java classes are always available by their fully qualified names, assuming that the appropriate class
file can be found (and is readable) relative to the CLASSPATH environment variable. import doesn't
actually make the class available or "read it in"; it simply saves you typing and makes your code more
legible.

Any number of import statements may appear in a Java program. They must appear, however, after the
optional package statement at the top of the file, and before the first class or interface definition in the
file.

There are two forms of the import statement:

import package.class ;
import package.* ;

The first form allows the specified class in the specified package to be known by its class name alone.
Thus, this import statement allows you to type Hashtable instead of java.util.Hashtable:

import java.util.Hashtable;

The second form of the import statement makes all classes in a package available by their class name.
For example, the following import statement is implicit (you need not specify it yourself) in every Java
program:

import java.lang.*;

It makes the core classes of the language available by their unqualified class names. If two packages
imported with this form of the statement contain classes with the same name, it is an error to use either of
those ambiguous classes without using its fully qualified name.

Access to Packages, Classes, and Class Members

Java has the following rules about access to packages, classes, and class members. (Class members are the
variables, methods, and, in Java 1.1, nested classes defined within a class). Note that the public,
private, and protected keywords used in these rules will be explained in more detail in the next
chapter.

● A package is accessible if the appropriate files and directories are accessible (e.g., if local files
have appropriate read permissions, or if they can be downloaded via the network).

● All classes and interfaces in a package are accessible to all other classes and interfaces in the same
package. It is not possible to define classes in Java that are visible only within a single file of
source code.

● A class declared public in one package is accessible within another package, assuming that the
package itself is accessible. A non-public class is not accessible outside of its package.

● Members of a class are accessible from a different class within the same package, as long as they
are not declared private. private members are accessible only within their own class.

● Af member of a class A is accessible from a class B in a different package if A is public and the
member is public, or if A is public, the member is protected, and B is a subclass of A.

● All members of a class are always accessible from within that class.

Local Variables

The name space rules we've been describing apply to packages, classes, and the members within classes.
Java also supports local variables, declared within method definitions. These local variables behave just
like local variables in C--they do not have globally unique hierarchical names, nor do they have access
modifiers like public and private. Local variables are quite different from class fields.

Program Structure and
Environment

Comments

Chapter 2
How Java Differs from C

2.3 Comments

Java supports three types of comments:

● A standard C-style comment that begins with /* and continues until the next */. As in most
implementations of C, this style of comment cannot be nested.

● A C++-style comment that begins with // and continues until the end of the line.

● A special "doc comment" that begins with /** and continues until the next */. These comments
may not be nested. Doc comments are specially processed by the javadoc program to produce
simple online documentation from the Java source code. See Chapter 13, Java Syntax for more
information on the doc comment syntax, and Chapter 16, JDK Tools for more information on the
javadoc program.

Since C-style comments do not nest, it is a good idea to use C++-style // comments for most of your
short comments within method bodies. This allows you to use /* */ comments to comment out large
blocks of code when you need to do that during development. This is especially important because, as
you will see, Java does not support a preprocessor that allows you to use #if 0 to comment out a block.

The Name Space: Packages,
Classes, and Members

No Preprocessor

Chapter 2
How Java Differs from C

2.4 No Preprocessor

Java does not include any kind of preprocessor like the C cpp preprocessor. It may seem hard to imagine
programming without #define, #include, and #ifdef, but in fact, Java really does not require
these constructs.

Defining Constants

Any variable declared final in Java is a constant--its value must be specified with an initializer when it
is declared, and that value may never be changed. The Java equivalent of a C #define'ed constant is a
static final variable declared within a class definition. If the compiler can compute the value of
such a static final variable at compile-time, it uses the computed value to pre-compute other
compile-time constants that refer to the value. The variable java.lang.Math.PI is an example of
such a constant. It is declared like this:

public final class Math {
 ...
 public static final double PI = 3.14159.....;
 ...
}

Note two things about this example. First, the C convention of using CAPITAL letters for constants is
also a Java convention. Second, note the advantage Java constants have over C preprocessor constants:
Java constants have globally unique hierarchic names, while constants defined with the C preprocessor
always run the risk of a name collision. Also, Java constants are strongly typed and allow better type-
checking by the compiler than C preprocessor constants.

Defining Macros

The C preprocessor allows you to define macros--a construct that looks like a function invocation but
that is actually replaced directly with C code, saving the overhead of a function call. Java has no

equivalent to this sort of macro, but compiler technology has advanced to a point where macros are rarely
necessary any more. A good Java compiler should automatically be able to "inline" short Java methods
where appropriate.

Including Files

Java does not have a #include directive, but it does not need one. Java defines a mapping of fully
qualified class names (like java.lang.Math) to a directory and file structure (like
java/lang/Math.class). This means that when the Java compiler needs to read in a specified class file, it
knows exactly where to find it and does not need a special directive to tell it where to look.

Furthermore, Java does not make the distinction between declaring a variable or procedure and defining
it that C does. This means that there is no need for C-style header files or function prototypes--a single
Java object file serves as the interface definition and implementation for a class.

Java does have an import statement, which is superficially similar to the C preprocessor #include
directive. What this statement does, however, is tell the compiler that the current file is using the
specified classes, or classes from the specified package, and allows us to refer to those classes with
abbreviated names. For example, since the compiler implicitly imports all the classes of the
java.lang package, we can refer to the constant java.lang.Math.PI by the shorter name
Math.PI.

Conditional Compilation

Java does not have any form of the C #ifdef or #if directives to perform conditional compilation. In
theory, conditional compilation is not necessary in Java since it is a platform-independent language, and
thus there are no platform dependencies that require the technique. In practice, however, conditional
compilation is still often useful in Java--to provide slightly different user interfaces on different
platforms, for example, or to support optional inclusion of debugging code in programs.

While Java does not define explicit constructs for conditional compilation, a good Java compiler (such as
Sun's javac) performs conditional compilation implicitly--that is, it does not compile code if it can prove
that the code will never be executed. Generally, this means that code within an if statement testing an
expression that is always false is not included. Thus, placing code within an if (false) block is
equivalent to surrounding it with #if 0 and #endif in C.

Conditional compilation also works with constants, which, as we saw above, are static final
variables. A class might define the constant like this:

private static final boolean DEBUG = false;

With such a constant defined, any code within an if (DEBUG) block is not actually compiled into the
class file. To activate debugging for the class, it is only necessary to change the value of the constant to
true and recompile the class.

Comments Unicode and Character
Escapes

Chapter 2
How Java Differs from C

2.5 Unicode and Character Escapes

Java characters, strings, and identifiers (e.g., variable, method, and class names) are composed of 16-bit
Unicode characters. This makes Java programs relatively easy to internationalize for non-English-
speaking users. It also makes the language easier to work with for non-English-speaking programmers--a
Thai programmer could use the Thai alphabet for class and method names in her Java code.

If two-byte characters seem confusing or intimidating to you, fear not. The Unicode character set is
compatible with ASCII and the first 256 characters (0x0000 to 0x00FF) are identical to the ISO8859-1
(Latin-1) characters 0x00 to 0xFF. Furthermore, the Java language design and the Java String API
make the character representation entirely transparent to you. If you are using only Latin-1 characters,
there is no way that you can even distinguish a Java 16-bit character from the 8-bit characters you are
familiar with. For more information on Unicode, see Chapter 11, Internationalization.

Most platforms cannot display all 38,885 currently defined Unicode characters, so Java programs may be
written (and Java output may appear) with special Unicode escape sequences. Anywhere within a Java
program (not only within character and string literals), a Unicode character may be represented with the
Unicode escape sequence \uxxxx, where xxxx is a sequence of four hexadecimal digits.

Java also supports all of the standard C character escape sequences, such as \n, \t, and \xxx (where
\xxxis three octal digits). Note, however, that Java does not support line continuation with \ at the end
of a line. Long strings must either be specified on a single long line, or they must be created from shorter
strings using the string concatenation (+) operator. (Note that the concatenation of two constant strings is
done at compile-time rather than at run-time, so using the + operator in this way is not inefficient.)

There are two important differences between Unicode escapes and C-style escape characters. First, as
we've noted, Unicode escapes can appear anywhere within a Java program, while the other escape
characters can appear only in character and string constants.

The second, and more subtle, difference is that Unicode \u escape sequences are processed before the
other escape characters, and thus the two types of escape sequences can have very different semantics. A

Unicode escape is simply an alternative way to represent a character that may not be displayable on
certain (non-Unicode) systems. Some of the character escapes, however, represent special characters in a
way that prevents the usual interpretation of those characters by the compiler. The following examples
make this difference clear. Note that \u0022 and \u005c are the Unicode escapes for the double-quote
character and the backslash character.

// \" represents a " character, and prevents the normal
// interpretation of that character by the compiler.
// This is a string consisting of a double-quote character.
String quote = "\"";
// We can't represent the same string with a single Unicode escape.
// \u0022 has exactly the same meaning to the compiler as ".
// The string below turns into """: an empty string followed
// by an unterminated string, which yields a compilation error.
String quote = "\u0022";
// Here we represent both characters of an \" escape as
// Unicode escapes. This turns into "\"", and is the same
// string as in our first example.
String quote = "\u005c\u0022";

No Preprocessor Primitive Data Types

Chapter 2
How Java Differs from C

2.6 Primitive Data Types

Java adds byte and boolean primitive types to the standard set of C types. In addition, it strictly
defines the size and signedness of its types. In C, an int may be 16, 32, or 64 bits, and a char may act
signed or unsigned depending on the platform. Not so in Java. In C, an uninitialized local variable usually
has garbage as its value. In Java, all variables have guaranteed default values, though the compiler may
warn you in places where you rely, accidentally or not, on these default values. Table 2.2 lists Java's
primitive data types. The subsections below provide details about these types.

Table 2.2: Java Primitive Data Types

 Min Value

Type Contains Default Size Max Value

boolean true or false false 1 bit N.A.

 N.A.

char Unicode character \u0000 16 bits \u0000

 \uFFFF

byte signed integer 0 8 bits -128

 127

short signed integer 0 16 bits -32768

 32767

int signed integer 0 32 bits -2147483648

 2147483647

long signed integer 0 64 bits -9223372036854775808

 9223372036854775807

float IEEE 754 0.0 32 bits +/-3.40282347E+38

 floating-point +/-1.40239846E-45

double IEEE 754 0.0 64 bits +/-1.79769313486231570E+308

 floating-point +/-4.94065645841246544E-324

The boolean Type

boolean values are not integers, may not be treated as integers, and may never be cast to or from any
other type. To perform C-style conversions between a boolean value b and an int i, use the following
code:

b = (i != 0); // integer-to-boolean: non-0 -> true; 0 -> false;
i = (b)?1:0; // boolean-to-integer: true -> 1; false -> 0;

The char Type

char values represent characters. Character literals may appear in a Java program between single quotes.
For example:

char c = 'A';

All of the standard C character escapes, as well as Unicode escapes, are also supported in character
literals. For example:

char newline = '\n', apostrophe = '\", delete = '\377', aleph='\u05D0';

Values of type char do not have a sign. If a char is cast to a byte or a short, a negative value may
result.

The char type in Java holds a two-byte Unicode character. While this may seem intimidating to those
not familiar with Unicode and the techniques of program internationalization, it is in fact totally
transparent. Java does not provide a way to compute the size of a variable, nor does it allow any sort of
pointer arithmetic. What this means is that if you are only using ASCII or Latin-1 characters, there is no
way to distinguish a Java char from a C char.

Integral Types

The integral types in Java are byte, short, char, int, and long. Literals for these types are written
just as they are in C. All integral types, other than char, are signed. There is no unsigned keyword as
there is in C. It is not legal to write long int or short int as it is in C. A long constant may be
distinguished from other integral constants by appending the character l or L to it.

Integer division by zero or modulo zero causes an ArithmeticException to be thrown. [3]

[3] Exceptions signal errors in Java. Exception handling is described later in this chapter.

Floating-Point Types

The floating-point types in Java are float and double. Literals for these types are written just as they
are in C. Literals may be specified to be of type float by appending an f or F to the value; they may be
specified to be of type double by appending a d or D.

float and double types have special values that may be the result of certain floating-point operations:
positive infinity, negative infinity, negative zero and not-a-number. The java.lang.Float and
java.lang.Double classes define some of these values as constants: POSITIVE_INFINITY,
NEGATIVE_INFINITY, and NaN.

NaN is unordered--comparing it to any other number, including itself, yields false. Use
Float.isNaN() or Double.isNaN() to test for NaN. Negative zero compares equal to regular zero
(positive zero), but the two zeros may be distinguished by division: one divided by negative zero yields
negative infinity; one divided by positive zero yields positive infinity.

Floating-point arithmetic never causes exceptions, even in the case of division by zero.

String Literals

Strings in Java are not a primitive type, but are instances of the String class. However, because they are
so commonly used, string literals may appear between quotes in Java programs, just as they do in C.
When the compiler encounters such a string literal, it automatically creates the necessary String object.

Unicode and Character
Escapes

Reference Data Types

Chapter 2
How Java Differs from C

2.7 Reference Data Types

The non-primitive data types in Java are objects and arrays. These non-primitive types are often called
"reference types" because they are handled "by reference"--in other words, the address of the object or
array is stored in a variable, passed to methods, and so on. By comparison, primitive types are handled
"by value"--the actual primitive values are stored in variables and passed to methods.

In C, you can manipulate a value by reference by taking its address with the & operator, and you can
"dereference" an address with the * and -> operators. These operators do not exist in Java: primitive
types are always passed by value; arrays and objects are always passed by reference.

Because objects are passed by reference, two different variables may refer to the same object:

Button p, q;
p = new Button(); // p refers to a Button object.
q = p; // q refers to the same Button.
p.setLabel("Ok"); // A change to the object through p...
String s = q.getLabel(); // ...is also visible through q.
 // s now contains "Ok."

This is not true of primitive types, however:

int i = 3; // i contains the value 3.
int j = i; // j contains a copy of the value in i.
i = 2; // Changing i doesn't change j.
 // Now, i == 2 and j == 3.

Terminology: Pass by Reference

The statement that Java manipulates objects "by reference" causes confusion for some programmers,
because there are several different meanings of "by reference" in common use. Regardless of what we

call it, it is important to understand what Java does. Java works with references to objects. A Java
variable holds only a reference to an object, not the object itself. When an object is passed to a method,
only a reference to the object is actually passed, not the entire object. It is in this sense that Java
manipulates objects "by reference."

Some people use the term "pass by reference" to mean that a reference to a variable is passed to a
method. Java does not do this. For example, it is not possible to write a working swap() function like
the following in Java:

public void swap(Object a, Object b) {
 Object temp = a;
 a = b;
 b = temp;
}

The method parameters a and b contain references to objects, not addresses of variables. Thus, while this
swap() function does compile and run, it has no effect except on its own local variables and arguments.

To solve this terminology problem, perhaps we should say that Java manipulates objects "by reference,"
but it passes object references to methods "by value."

Copying Objects

Because reference types are not passed by value, assigning one object to another in Java does not copy
the value of the object. It merely assigns a reference to the object. Consider the following code:

Button a = new Button("Okay");
Button b = new Button("Cancel");
a = b;

After these lines are executed, the variable a contains a reference to the object that b refers to. The object
that a used to refer to is lost.

To copy the data of one object into another object, use the clone() method:

Vector b = new Vector;
c = b.clone();

After these lines run, the variable c refers to an object that is a duplicate of the object referred to by b.
Note that not all types support the clone() method. Only classes that implement the Cloneable
interface may be cloned. For more information on cloning objects, look up java.lang.Cloneable

and java.lang.Object.clone() in Chapter 25, The java.lang Package.

Arrays are also reference types, and assigning an array simply copies a reference to the array. To actually
copy the values stored in an array, you must assign each of the values individually or use the
System.arraycopy() method.

Checking Objects for Equality

Another implication of passing objects by reference is that the == operator tests whether two variables
refer to the same object, not whether two objects contain the same values. To actually test whether two
separate objects are the same, you must use a specially written method for that object type (just as you
might use strcmp() to compare C strings for equality). In Java, a number of classes define an
equals() method that you can use to perform this test.

Java Has No Pointers

The referencing and dereferencing of objects is handled for you automatically by Java. Java does not
allow you to manipulate pointers or memory addresses of any kind:

● It does not allow you to cast object or array references into integers or vice-versa.

● It does not allow you to do pointer arithmetic.

● It does not allow you to compute the size in bytes of any primitive type or object.

There are two reasons for these restrictions:

● Pointers are a notorious source of bugs. Eliminating them simplifies the language and eliminates
many potential bugs.

● Pointers and pointer arithmetic could be used to sidestep Java's run-time checks and security
mechanisms. Removing pointers allows Java to provide the security guarantees that it does.

To a C programmer, the lack of pointers and pointer arithmetic may seem an odious restriction in Java.
But once you get used to the Java object-oriented programming model, it no longer seems like a serious
restriction at all. The lack of pointers does mean that you probably can't do things like write UNIX
device drivers in Java (at least not without using native methods written in C). But big deal--most of us
never have to do this kind of low-level programming anyway.

null

The default value for variables of all reference types is null. null is a reserved value that indicates "an
absence of reference"--i.e., that a variable does not refer to any object or array.

In Java, null is a reserved keyword, unlike NULL in C, where it is just a constant defined to be 0. null
is an exception to the strong typing rules of Java--it may be assigned to any variable of reference type
(i.e., any variable which has a class, interface, or array as its type).

null can't be cast to any primitive type, including integral types and boolean. It shouldn't be
considered equal to zero (although it may be implemented this way).

Reference Type Summary

The distinction between primitive types passed by value, and objects and arrays passed by reference is a
crucial one in Java. Be sure you understand the following:

● All objects and arrays are handled by reference in Java. (Those object references are passed-by-
value to methods, however.)

● The = and == operators assign and test references to objects. Use clone() and equals() to
actually copy or test the objects themselves.

● The necessary referencing and dereferencing of objects and arrays is handled automatically by
Java.

● A reference type can never be cast to a primitive type.

● A primitive type can never be cast to a reference type.

● There is no pointer arithmetic in Java.

● There is no sizeof operator in Java.

● null is a special value that means "no object" or indicates an absence of reference.

Primitive Data Types Objects

Chapter 2
How Java Differs from C

2.8 Objects

Now that you know objects are passed by reference, we should discuss how they are created, used, and
destroyed. The following subsections provide a very brief overview of objects. Chapter 3, Classes and
Objects in Java explains classes and objects in much greater detail.

Creating Objects

Declaring a variable to hold an object does not create the object itself; the variable only holds the
reference to the object. To actually create an object, you must use the new keyword. This is followed by
the object's class (i.e., its type) and an optional argument list in parentheses. These arguments are passed
to the constructor method for the class, which serves to initialize internal fields in the new object. For
example:

java.awt.Button b = new java.awt.Button();
ComplexNumber c = new ComplexNumber(1.0, 1.414);

There are actually two other ways to create an object. First, you can create a String object simply by
enclosing characters in double quotes:

String s = "This is a test";

Because strings are used so frequently, the Java compiler provides this technique as a shortcut. Another
way to create objects is by calling the newInstance() method of a Class object. This technique is
generally used only when dynamically loading classes, so we won't discuss it here. In Java 1.1, objects
can also be created by "de-serializing" them--i.e., recreating an object that had its state saved through
"serialization."

The memory for newly created objects is dynamically allocated. Creating an object with new in Java is
like calling malloc() in C to allocate memory for an instance of a struct. It is also, of course, a lot
like using the new operator in C++. (Below, we'll see where this analogy to malloc() in C and new in

C++ breaks down.)

Accessing Objects

As you've probably noticed in various example code fragments by now, the way you access the fields of
an object is with a dot:

ComplexNumber c = new ComplexNumber();
c.x = 1.0;
c.y = -1.414;

This syntax is reminiscent of accessing the fields of a struct in C. Recall, though, that Java objects are
always accessed by reference, and that Java performs any necessary dereferencing for you. Thus, the dot
in Java is more like -> in C. Java hides the fact that there is a reference here in an attempt to make your
programming easier. The other difference between C and Java when accessing objects is that in Java you
refer to an object's methods with the same syntax used for fields:

ComplexNumber c = new ComplexNumber(1.0, -1.414);
double magnitude = c.magnitude();

Garbage Collection

Objects in Java are created with the new keyword, but there is no corresponding old or delete
keyword or free() method to get rid of them when they are no longer needed. If creating an object
with new is like calling malloc() in C or using new in C++, then it would seem that Java is full of
memory leaks, because we never call free() or use the delete operator.

In fact, this isn't the case. Java uses a technique called garbage collection to automatically detect objects
that are no longer being used (an object is no longer in use when there are no more references to it) and
to free them. This means that in our programs, we never need to worry about freeing memory or
destroying objects--the garbage collector takes care of that.

If you are a C or C++ programmer, it may take some getting used to to just let allocated objects go
without worrying about reclaiming their memory. Once you get used to it, however, you'll begin to
appreciate what a nice feature this is. We'll discuss garbage collection in more detail in the next chapter.

Reference Data Types Arrays

Chapter 2
How Java Differs from C

2.9 Arrays

Most of what we learned in the previous sections about reference types and objects applies equally well to arrays in
Java:

● Arrays are manipulated by reference.

● They are dynamically created with new.

● They are automatically garbage collected when no longer referred to.

The following subsections explain these and other details.

Creating and Destroying Arrays

There are two ways to create arrays in Java. The first uses new, and specifies how large the array should be:

byte octet_buffer[] = new byte[1024];
Button buttons[] = new Button[10];

Since creating an array does not create the objects that are stored in the array, there is no constructor to call, and
the argument list is omitted with this form of the new keyword. The elements of an array created in this way are
initialized to the default value for their type. The elements of an array of int are initialized to 0, for example, and
the elements of an array of objects are initialized to null. This last point is important to remember: creating an
array of objects only allocates storage for object references, not objects themselves. The objects that will be
referred to by the elements of the array must be created separately.

The second way to create an array is with an initializer, which looks just like it does in C:

int lookup_table[] = {1, 2, 4, 8, 16, 32, 64, 128};

This syntax dynamically creates an array and initializes its elements to the specified values. The elements specified
in an array initializer may be arbitrary expressions. This is different than in C, where they must be constant
expressions.

In Java 1.1, arrays may also be created and initialized "anonymously" by combining the new syntax with the
initializer syntax. It looks like this:

Menu m = createMenu("File", new String[] { "Open...", "Save", "Quit" });

Arrays are automatically garbage collected, just like objects are.

Multidimensional Arrays

Java also supports multidimensional arrays. These are implemented as arrays-of-arrays, as they are in C. You
specify a variable as a multidimensional array type simply by appending the appropriate number of [] pairs after
it. You allocate a multidimensional array with new by specifying the appropriate number of elements (between
square brackets) for each dimension. For example:

byte TwoDimArray[][] = new byte[256][16];

This statement does three things:

● Declares a variable named TwoDimArray. This variable has type byte[][] (array-of-array-of-byte).

● Dynamically allocates an array with 256 elements. The type of this newly allocated array is byte[][], so
it can be assigned to the variable we declared. Each element of this new array is of type byte[]--a single-
dimensional array of byte.

● Dynamically allocates 256 arrays of bytes, each of which holds 16 bytes, and stores a reference to these 256
byte[] arrays into the 256 elements of the byte[][] array allocated in the second step. The 16 bytes in
each of these 256 arrays are initialized to their default value of 0.

When allocating a multidimensional array, you do not have to specify the number of elements that are contained in
each dimension. For example:

int threeD[][][] = new int[10][][];

This expression allocates an array that contains ten elements, each of type int[][]. It is a single-dimensional
allocation, although when the array elements are properly initialized to meaningful values, the array will be
multidimensional. The rule for this sort of array allocation is that the first n dimensions (where n is at least one)
must have the number of elements specified, and these dimensions may be followed by m additional dimensions
with no dimension size specified. The following is legal:

String lots_of_strings[][][][] = new String[5][3][][];

This is not:

double temperature_data[][][] = new double[100][][10]; // illegal

Multidimensional arrays can also be allocated and initialized with nested initializers. For example, you might
declare the following multidimensional array of strings for use by the getParameterInfo() method of an
applet:

String param_info[][] = {
 {"foreground", "Color", "foreground color"},
 {"background", "Color", "background color"},
 {"message", "String", "the banner to display"}
};

Note that since Java implements multidimensional arrays as arrays-of-arrays, multidimensional arrays need not be
"rectangular." For example, this is how you could create and initialize a "triangular array":

short triangle[][] = new short[10][]; // A single-dimensional array.
for(int i = 0; i < triangle.length; i++) { // For each element of that array
 triangle[i] = new short[i+1]; // Allocate a new array.
 for(int j=0; j < i+1; j++) // For each element of new array
 triangle[i][j] = (short) i + j; // Initialize it to a value.
}

You can also declare and initialize non-rectangular arrays with nested initializers:

static int[][] twodim = {{1, 2}, {3, 4, 5}, {5, 6, 7, 8}};

To simulate multiple dimensions within a single-dimensional array, you'd use code just as you would in C:

final int rows = 600;
final int columns = 800;
byte pixels[] = new byte[rows*columns];
// access element [i,j] like this:
byte b = pixels[i + j*columns];

Accessing Array Elements

Array access in Java is just like array access in C--you access an element of an array by putting an integer-valued
expression between square brackets after the name of the array.

int a[] = new int[100];
a[0] = 0;
for(int i = 1; i < a.length; i++) a[i] = i + a[i-1];

Notice how we computed the number of elements of the array in this example--by accessing the length field of
the array. This is the only field that arrays support. Note that it is a constant (final) field--any attempt to store a
value into the length field of an array will fail.

In all Java array references, the index is checked to make sure it is not too small (less than zero) or too big (greater
than or equal to the array length). If the index is out of bounds, an ArrayIndexOutOfBoundsException is
thrown. [4] This is another way that Java works to prevent bugs (and security problems).

[4] The discussion of exceptions and exception handling is still to come.

Are Arrays Objects?

It is useful to consider arrays to be a separate kind of reference type from objects. In some ways, though, arrays
behave just like objects. As we saw, arrays use the object syntax .length to refer to their length. Arrays may
also be assigned to variables of type Object, and the methods of the Object class may be invoked for arrays.
(Object is the root class in Java, which means that all objects can be assigned to a variable of type Object and
all objects can invoke the methods of Object.)

The evidence suggests that arrays are, in fact, objects. Java defines enough special syntax for arrays, however, that
it is still most useful to consider them a different kind of reference type than objects.

Declaring Array Variables and Arguments

In C, you declare an array variable or array function argument by placing square brackets next to the variable
name:

void reverse(char strbuf[], int buffer_size) {
 char buffer[500];
 ...
}

In Java, you would have to declare buffer as an array variable, and then allocate the array itself with new, but
otherwise you could use the same syntax, with the array brackets after the variable or argument name.

However, Java also allows you to put the array brackets after the type name instead. So you could rewrite this code
fragment to look something like this:

void reverse(char[] strbuf, int buffer_size) {
 char[] buffer = new char[500];
 ...
}

In a lot of ways, this new array syntax is easier to read and easier to understand. (It doesn't work in C, by the way,
because pointers make C's type declaration syntax a real mess.) The only problem with this new syntax is that if
you get in the habit of using it, it will make it harder for you when you (hopefully only occasionally!) have to
switch back and program in C.

Java even allows you to mix the declaration styles, which is something you may find occasionally useful (or
frequently confusing!) for certain data structures or algorithms. For example:

// row and column are arrays of byte.
// matrix is an array of an array of bytes.
byte[] row, column, matrix[];
// This method takes an array of bytes and an
// array of arrays of bytes.
public void dot_product(byte[] column, byte[] matrix[]) { ... }

A final point to note about array declarations is that (as we've seen throughout this section) the size of an array is
not part of its type as it is in C. Thus, you can declare a variable to be of type String[], for example, and assign
any array of String objects to it, regardless of the length of the array:

String[] strings; // this variable can refer to any String array
strings = new String[10]; // one that contains 10 Strings
strings = new String[20]; // or one that contains 20.

Objects Strings

Chapter 2
How Java Differs from C

2.10 Strings

Strings in Java are not null-terminated arrays of characters as they are in C. Instead, they are instances of
the java.lang.String class. Java strings are unusual, in that the compiler treats them almost as if
they were primitive types--for example, it automatically creates a String object when it encounters a
double-quoted constant in the program. And, the language defines an operator that operates on String
objects--the + operator for string concatenation.

An important feature of String objects is that they are immutable--i.e., there are no methods defined
that allow you to change the contents of a String. If you need to modify the contents of a String,
you have to create a StringBuffer object from the String object, modify the contents of the
StringBuffer, and then create a new String from the contents of the StringBuffer.

Note that it is moot to ask whether Java strings are terminated with a NUL character (\u0000) or not.
Java performs run-time bounds checking on all array and string accesses, so there is no way to examine
the value of any internal terminator character that appears after the last character of the string.

Both the String and StringBuffer classes are documented in Chapter 25, The java.lang Package,
and you'll find a complete set of methods for string handling and manipulation there. Some of the more
important String methods are: length(), charAt(), equals(), compareTo(), indexOf(),
lastIndexOf(), and substring().

Arrays Operators

Chapter 2
How Java Differs from C

2.11 Operators

Java supports almost all of the standard C operators. These standard operators have the same precedence
and associativity in Java as they do in C. They are listed in Table 2.3 and also in quick reference form in
Chapter 13, Java Syntax.

Table 2.3: Java Operators

Prec. Operator Operand Type(s) Assoc. Operation Performed

1 ++ arithmetic R pre-or-post increment

 (unary)

 -- arithmetic R pre-or-post decrement (unary)

 +, - arithmetic R unary plus, unary minus

 ~ integral R bitwise complement (unary)

 ! boolean R logical complement (unary)

 (type) any R cast

2 *, /, % arithmetic L multiplication, division, remainder

3 +, - arithmetic L addition, subtraction

 + string L string concatenation

4 << integral L left shift

 >> integral L right shift with sign extension

 >>> integral L right shift with zero extension

5 <, <= arithmetic L less than, less than or equal

 >, >= arithmetic L greater than, greater than or equal

 instanceof object, type L type comparison

6 == primitive L equal (have identical

 values)

 != primitive L not equal (have different values)

 == object L equal (refer to same object)

 != object L not equal (refer to different objects)

7 & integral L bitwise AND

 & boolean L boolean AND

8 ^ integral L bitwise XOR

 ^ boolean L boolean XOR

9 | integral L bitwise OR

 | boolean L boolean OR

10 && boolean L conditional AND

11 || boolean L conditional OR

12 ?: boolean, any, any R conditional (ternary) operator

13 = variable, any R assignment

*=, /=, %=, +=, -=, <<=, >>=,
>>>=, &=, ^=, |=

variable, any R assignment with operation

Note the following Java operator differences from C. Java does not support the comma operator for
combining two expressions into one (although the for statement simulates this operator in a useful
way). Since Java does not allow you to manipulate pointers directly, it does not support the reference and
dereference operators *, ->, and &, nor the sizeof operator. Further, Java doesn't consider [] (array
access) and . (field access) to be operators, as C does.

Java also adds some new operators:

The + operator applied to String values concatenates them. [5] If only one operand of + is a String,
the other one is converted to a string. The conversion is done automatically for primitive types, and by
calling the toString() method of non-primitive types. This String + operator has the same
precedence as the arithmetic + operator. The += operator works as you would expect for String
values.

[5] To C++ programmers, this looks like operator overloading. In fact, Java does not
support operator overloading--the language designers decided (after much debate) that
overloaded operators were a neat idea, but that code that relied on them became hard to
read and understand.

The instanceof operator returns true if the object o on its left-hand side is an instance of the class

C or implements the interface I specified on its right-hand side. It also returns true if o is an instance
of a subclass of C or is an instance of a subclass of some class that implements I. instanceof returns
false if o is not an instance of C or does not implement I. It also returns false if the value on its left
is null. If instanceof returns true, it means that o is assignable to variables of type C or I. The
instanceof operator has the same precedence as the <, <=, >, and >= operators.

Because all integral types in Java are signed values, the Java >> operator is defined to do a right shift
with sign extension. The >>> operator treats the value to be shifted as an unsigned number and shifts the
bits right with zero extension. The >>>= operator works as you would expect.

& and |

When & and | are applied to integral types in Java, they perform the expected bitwise AND and
OR operations. Java makes a strong distinction between integral types and the boolean type,
however. Thus, if these operators are applied to boolean types, they perform logical AND and
logical OR operations. These logical AND and logical OR operators always evaluate both of their
operands, even when the result of the operation is determined after evaluating only the left
operand. This is useful when the operands are expressions with side effects (such as method calls)
and you always want the side effects to occur. However, when you do not want the right operand
evaluated if it is not necessary, you can use the && and || operators, which perform "short-
circuited" logical AND and logical OR operations just as in C. The &= and |= operators perform
a bitwise or logical operation depending on the type of the operands, as you would expect.

Strings Statements

Chapter 2
How Java Differs from C

2.12 Statements

Many of Java's control statements are similar or identical to C statements. This section lists and, where necessary,
explains Java's statements. Note that the topic of exceptions and the try/catch/finally statement is
substantial enough that it is covered later in a section of its own.

The if/else, while, and do/while Statements

The if, else, do, and while statements are exactly the same in Java as they are in C. The only substantial
difference arises because the Java boolean type cannot be cast to other types. In Java, the values 0 and null are
not the same as false, and non-zero and non-null values are not the same as true.

The conditional expression that is expected by the if, the while, and the do/while statements must be of
boolean type in Java. Specifying an integer type or a reference type won't do. Thus, the following C code is not
legal in Java:

int i = 10;
while(i--) {
 Object o = get_object();
 if (o) {
 do { ... } while(j);
 }
}

In Java, you must make the condition you are testing for clear by explictly testing your value against 0 or null.
Use code like the following:

int i = 10;
while(i-- > 0) {
 Object o = get_object();
 if (o != null) {
 do { ... } while(j != 0);
 }
}

The switch Statement

The switch statement is the same in Java as it is in C. You may use byte, char, short, int, or long types
as the values of the case labels, and you may also specify a default label just as you do in C.

The for Loop

The for statement is perhaps the most useful looping construct available in Java. There are only two differences
between the Java for loop and the C for loop. The first difference is that although Java does not support the C
comma operator (which allows multiple expressions to be joined into a single expression), the Java for loop
simulates it by allowing multiple comma-separated expressions to appear in the initialization and increment
sections, but not the test section, of the loop. For example:

int i;
String s;
for(i=0, s = "testing"; // Initialize variables.
 (i < 10) && (s.length() >= 1); // Test for continuation.
 i++, s = s.substring(1)) // Increment variables.
{
 System.out.println(s); // Loop body.
}

As you can see, this "difference" between the Java and C for loops is really a similarity.

The second difference is the addition of the C++ ability to declare local loop variables in the initialization section
of the loop:

for(int i = 0; i < my_array.length; i++)
 System.out.println("a[" + i + "] = " + my_array[i]);

Variables declared in this way have the for loop as their scope. In other words, they are only valid within the
body of the for loop and within the initialization, test, and increment expressions of the loop. Although variables
declared in for loops have their own scope, the Java compiler won't let you declare a loop variable that has the
same name as an already existing variable or parameter.

Note that because variable declaration syntax also uses the comma, the Java syntax allows you to either specify
multiple comma-separated initialization expressions or to declare and initialize multiple comma-separated
variables of the same type. You may not mix variable declarations with other, non-declaration expressions. For
example, the following for loop declares and initializes two variables that are valid only within the for loop.

for(int i=0, j=10; i < j; i++, j--) System.out.println("k = " + i*j);

Labelled break and continue Statements

The break and continue statements, used alone, behave the same in Java as they do in C. However, in Java,

they may optionally be followed by a label that specifies an enclosing loop (for continue) or any enclosing
statement (for break). The labelled forms of these statements allow you to "break" and "continue" any specified
statement or loop within a method definition, not only the nearest enclosing statements or loop.

The break statement, without a label, transfers control out of ("breaks out of" or terminates) the nearest enclosing
for, while, do or switch statement, exactly as in C. If the break keyword is followed by an identifier that is
the label of an arbitrary enclosing statement, execution transfers out of that enclosing statement. After the break
statement is executed, any required finally clauses are executed, and control resumes at the statement following
the terminated statement. (The finally clause and the try statement it is associated with are exception handling
constructs and are explained in the next section.) For example:

test: if (check(i)) {
 try {
 for(int j=0; j < 10; j++) {
 if (j > i) break; // Terminate just this loop.
 if (a[i][j] == null)
 break test; // Do the finally clause and
 } // terminate the if statement.
 }
 finally { cleanup(a, i, j); }
}

Without a label, the continue statement works exactly as in C: It stops the iteration in progress and causes
execution to resume after the last statement in the while, do, or for loop, just before the loop iteration is to
begin again. If the continue keyword is followed by an identifier that is the label of an enclosing loop,
execution skips to the end of that loop instead. If there are any finally clauses between the continue
statement and the end of the appropriate loop, these clauses are executed before control is transferred to the end of
the loop.

The following code fragment illustrates how the continue statement works in its labelled and unlabelled forms.

big_loop: while(!done) {
 if (test(a,b) == 0) continue; // Control goes to point 2.
 try {
 for(int i=0; i < 10; i++) {
 if (a[i] == null)
 continue; // Control goes to point 1.
 else if (b[i] == null)
 continue big_loop; // Control goes to point 2,
 // after executing the finally block.
 doit(a[i],b[i]);
 // Point 1. Increment and start loop again with the test.
 }
 }
 finally { cleanup(a,b); }
 // Point 2. Start loop again with the (!done) test.
}

Note the non-intuitive feature of the labelled continue statement: The loop label must appear at the top of the
loop, but continue causes execution to transfer to the very bottom of the loop.

No goto Statement

goto is a reserved word in Java, but the goto statement is not currently part of the language. Labelled break
and continue statements replace some important and legitimate uses of goto, and the try/catch/finally
statement replaces the others.

The synchronized Statement

Since Java is a multithreaded system, care must often be taken to prevent multiple threads from modifying objects
simultaneously in a way that might leave the object's state corrupted. Sections of code that must not be executed
simultaneously are known as "critical sections." Java provides the synchronized statement to protect these
critical sections. The syntax is:

synchronized (expression) statement

expression is an expression that must resolve to an object or an array. The statement is the code of the
critical section, which is usually a block of statements (within { and }). The synchronized statement attempts
to acquire an exclusive lock for the object or array specified by expression. It does not execute the critical
section of code until it can obtain this lock, and in this way, ensures that no other threads can be executing the
section at the same time.

Note that you do not have to use the synchronized statement unless your program creates multiple threads that
share data. If only one thread ever accesses a data structure, there is no need to protect it with synchronized.
When you do have to use it, it might be in code like the following:

public static void SortIntArray(int[] a) {
 // Sort the array a. This is synchronized so that some other
 // thread can't change elements of the array while we're sorting it.
 // At least not other threads that protect their changes to the
 // array with synchronized.
 synchronized (a) {
 // Do the array sort here.
 }
}

The synchronized keyword is more often used as a method modifier in Java. When applied to a method, it
indicates that the entire method is a critical section. For a synchronized class method (a static method), Java
obtains an exclusive lock on the class before executing the method. For a synchronized instance method, Java
obtains an exclusive lock on the class instance. (Class methods and instance methods are discussed in the next
chapter.)

The package and import Statements

The package statement, as we saw earlier in the chapter, specifies the package that the classes in a file of Java
source code are part of. If it appears, it must be the first statement of a Java file. The import statement, which we
also saw earlier, allows us to refer to classes by abbreviated names. import statements must appear after the
package statement, if any, and before any other statements in a Java file. For example:

package games.tetris;
import java.applet.*;
import java.awt.*;

Operators Exceptions and Exception
Handling

Chapter 2
How Java Differs from C

2.13 Exceptions and Exception Handling

Exception handing is a significant new feature of Java. [6] There are a number of new terms associated with
exception handling. First, an exception is a signal that indicates that some sort of exceptional condition (such as
an error) has occurred. To throw an exception is to signal an exceptional condition. To catch an exception is to
handle it--to take whatever actions are necessary to recover from it.

[6] It is similar to, but not quite the same as, exception handling in C++.

Exceptions propagate up through the lexical block structure of a Java method, and then up the method call
stack. If an exception is not caught by the block of code that throws it, it propagates to the next higher enclosing
block of code. If it is not caught there, it propagates up again. If it is not caught anywhere in the method, it
propagates to the invoking method, where it again propagates through the block structure. If an exception is
never caught, it propagates all the way to the main() method from which the program started, and causes the
Java interpreter to print an error message and a stack trace and exit.

As we'll see in the subsections below, exceptions make error handling (and "exceptional condition" handling)
more regular and logical by allowing you to group all your exception handling code into one place. Instead of
worrying about all of the things that can go wrong with each line of your code, you can concentrate on the
algorithm at hand and place all your error handling code (that is, your exception catching code) in a single
place.

Exception Objects

An exception in Java is an object that is an instance of some subclass of java.lang.Throwable.
Throwable has two standard subclasses: java.lang.Error and java.lang.Exception. [7]
Exceptions that are subclasses of Error generally indicate linkage problems related to dynamic loading, or
virtual machine problems such as running out of memory. They should almost always be considered
unrecoverable, and should not be caught. While the distinction is not always clear, exceptions that are
subclasses of Exception indicate conditions that may be caught and recovered from. They include such
exceptions as java.io.EOFException, which signals the end of a file, and
java.lang.ArrayAccessOutOfBounds, which indicates that a program has tried to read past the end of
an array.

[7] We'll use the term "exception" to refer to any subclass of Throwable, whether it is actually
an Exception or an Error.

Since exceptions are objects, they can contain data and define methods. The Throwable object, at the top of
the exception class hierarchy, includes a String message in its definition and this field is inherited by all
exception classes. This field is used to store a human-readable error message that describes the exceptional
condition. It is set when the exception object is created by passing an argument to the constructor method. The
message can be read from the exception with the Throwable.getMessage() method. Most exceptions
contain only this single message, but a few add other data. The java.io.InterruptedIOException,
for example, adds the following field:

public int bytesTransferred;

This field specifies how much of the I/O was complete before the exceptional condition occurred.

Exception Handling

The try/catch/finally statement is Java's exception handling mechanism. try establishes a block of code
that is to have its exceptions and abnormal exits (through break, continue, return, or exception
propagation) handled. The try block is followed by zero or more catch clauses that catch and handle
specified types of exceptions. The catch clauses are optionally followed by a finally block that contains
"clean-up" code. The statements of a finally block are guaranteed to be executed, regardless of how the code
in the try block exits. A detailed example of the try/catch/finally syntax is shown in Example 2.2.

Example 2.2: The try/catch/finally Statement

try {
 // Normally this code runs from the top of the block to the bottom
 // without problems. But it sometimes may raise exceptions or
 // exit the block via a break, continue, or return statement.
}
catch (SomeException e1) {
 // Handle an exception object e1 of type SomeException
 // or of a subclass of that type.
}
catch (AnotherException e2) {
 // Handle an exception object e2 of type AnotherException
 // or of a subclass of that type.
}
finally {
 // Always execute this code, after we leave the try clause,
 // regardless of whether we leave it:
 // 1) Normally, after reaching the bottom of the block.
 // 2) With an exception that is handled by a catch.
 // 3) With an exception that is not handled.

 // 4) Because of a break, continue, or return statement.
}

try

The try clause simply establishes a block of code that is to have its exceptions and abnormal exits (through
break, continue, return, or exception propagation) handled. The try clause by itself doesn't do
anything interesting; it is the catch and finally clauses that do the exception handling and clean-up
operations.

catch

A try block may be followed by zero or more catch clauses that specify code to handle various types of
exceptions. catch clauses have an unusual syntax: each is declared with an argument, much like a method
argument. This argument must be of type Throwable or a subclass. When an exception occurs, the first
catch clause that has an argument of the appropriate type is invoked. The type of the argument must match the
type of the exception object, or it must be a superclass of the exception. This catch argument is valid only
within the catch block, and refers to the actual exception object that was thrown.

The code within a catch block should take whatever action is necessary to cope with the exceptional
condition. If the exception was a java.io.FileNotFoundException exception, for example, you might
handle it by asking the user to check his or her spelling and try again. Note that it is not required to have a
catch clause for every possible exception--in some cases the correct response is to allow the exception to
propagate up and be caught by the invoking method. In other cases, such as a programming error signaled by
NullPointerException, the correct response is to not catch the exception at all, but to allow it to
propagate and to have the Java interpreter exit with a stack trace and an error message.

finally

The finally clause is generally used to clean up (close files, release resources, etc.) after the try clause.
What is useful about the finally clause is that the code in a finally block is guaranteed to be executed, if
any portion of the try block is executed, regardless of how the code in the try block completes. In the normal
case, control reaches the end of the try block and then proceeds to the finally block, which performs any
necessary cleanup.

If control leaves the try block because of a return, continue, or break statement, the contents of the
finally block are executed before control transfers to its new destination.

If an exception occurs in the try block and there is a local catch block to handle the exception, control
transfers first to the catch block, and then to the finally block. If there is not a local catch block to
handle the exception, control transfers first to the finally block, and then propagates up to the nearest
catch clause that can handle the exception.

Note that if a finally block itself transfers control with a return, continue, or break statement, or by

raising an exception, the pending control transfer is abandoned, and this new transfer is processed.

Also note that try and finally can be used together without exceptions or any catch clauses. In this case,
the finally block is simply cleanup code that is guaranteed to be executed regardless of any break,
continue, or return statements within the try clause.

Declaring Exceptions

Java requires that any method that can cause a "normal exception" to occur must either catch the exception or
specify the type of the exception with a throws clause in the method declaration. [8] Such a throws clause
might look like these:

[8] C++ programmers should note that Java uses throws where C++ uses throw.

public void open_file() throws IOException {
 // Statements here that might generate an uncaught java.io.IOException
}
public void myfunc(int arg) throws MyException1, MyException2 {
 ...
}

Note that the exception class specified in a throws clause may be a superclass of the exception type that is
actually thrown. Thus if a method throws exceptions a, b, and c, all of which are subclasses of d, the throws
clause may specify all of a, b, and c, or it may simply specify d.

We said above that the throws clause must be used to declare any "normal exceptions." This oxymoronic
phrase refers to any subclass of Throwable that is not a subclass of Error or a subclass of
RuntimeException. Java does not require these types of exceptions to be declared because practically any
method can conceivably generate them, and it would quickly become tedious to properly declare them all. For
example, every method running on a buggy Java interpreter can throw an InternalError exception (a
subclass of Error) and it doesn't make sense to have to declare this in a throws clause for every method.
Similarly, as far as the Java compiler is concerned, any method that accesses an array can generate an
ArrayIndexOutOfBoundsException exception (a subclass of RuntimeException).

The standard exceptions that you often have to declare are java.io.IOException and a number of its
more specific subclasses. java.lang.InterruptedException and several other less commonly used
exceptions must also be declared. How do you know when you have to declare a throws clause? One way is
to pay close attention to the documentation for the methods you call--if any "normal exceptions" can be thrown,
either catch them or declare them. Another way to know what exceptions you've got to declare is to declare
none and wait for the compilation errors--the compiler will tell you what to put in your throws clause!

Defining and Generating Exceptions

You can signal your own exceptions with the throw statement. The throw keyword must be followed by an

object that is Throwable or a subclass. Often, exception objects are allocated in the same statement that they
are thrown in:

throw new MyException("my exceptional condition occurred.");

When an exception is thrown, normal program execution stops and the interpreter looks for a catch clause that
can handle the exception. Execution propagates up through enclosing statements and through invoking
functions until such a handler is found. Any finally blocks that are passed during this propagation are
executed.

Using exceptions is a good way to signal and handle errors in your own code. By grouping all your error
handling and recover code together within the try/catch/finally structure, you will end up with cleaner
code that is easier to understand. Sometimes, when you are throwing an exception, you can use one of the
exception classes already defined by Java API. Often, though, you will want to define and throw your own
exception types.

Example 2.3 shows how you can define your own exception types, throw them, and handle them. It also helps
clarify how exceptions propagate. It is a long example, but worth studying in some detail. You'll know you
understand exception handling if you can answer the following: What happens when this program is invoked
with no argument; with a string argument; and with integer arguments 0, 1, 2, and 99?

Example 2.3: Defining, Throwing, and Handling Exceptions

// Here we define some exception types of our own.
// Exception classes generally have constructors but no data or
// other methods. All these do is call their superclass constructors.
class MyException extends Exception {
 public MyException() { super(); }
 public MyException(String s) { super(s); }
}
class MyOtherException extends Exception {
 public MyOtherException() { super(); }
 public MyOtherException(String s) { super(s); }
}
class MySubException extends MyException {
 public MySubException() { super(); }
 public MySubException(String s) { super(s); }
}
public class throwtest {
 // This is the main() method. Note that it uses two
 // catch clauses to handle two standard Java exceptions.
 public static void main(String argv[]) {
 int i;

 // First, convert our argument to an integer.

 // Make sure we have an argument and that it is convertible.
 try { i = Integer.parseInt(argv[0]); }
 catch (ArrayIndexOutOfBoundsException e) { // argv is empty
 System.out.println("Must specify an argument");
 return;
 }
 catch (NumberFormatException e) { // argv[0] isn't an integer
 System.out.println("Must specify an integer argument");
 return;
 }

 // Now, pass that integer to method a().
 a(i);
 }

 // This method invokes b(), which is declared to throw
 // one type of exception. We handle that one exception.
 public static void a(int i) {
 try {
 b(i);
 }
 catch (MyException e) { // Point 1
 // Here we handle MyException and its subclass MySubException.
 if (e instanceof MySubException)
 System.out.print("MySubException: ");
 else
 System.out.print("MyException: ");
 System.out.println(e.getMessage());
 System.out.println("Handled at point 1");
 }
 }

 // This method invokes c(), and handles one of the two exception
 // types that that method can throw. The other exception type is
 // not handled, and is propagated up and declared in this method's
 // throws clause. This method also has a finally clause to finish
 // up the work of its try clause. Note that the finally clause is
 // executed after a local catch clause, but before a containing
 // catch clause or one in an invoking procedure.
 public static void b(int i) throws MyException {
 int result;
 try {
 System.out.print("i = " + i);
 result = c(i);
 System.out.print(" c(i) = " + result);
 }
 catch (MyOtherException e) { // Point 2

 // Handle MyOtherException exceptions:
 System.out.println("MyOtherException: " + e.getMessage());
 System.out.println("Handled at point 2");
 }
 finally {
 // Terminate the output we printed above with a newline.
 System.out.print("\n");
 }
 }

 // This method computes a value or throws an exception.
 // The throws clause only lists two exceptions, because
 // one of the exceptions thrown is a subclass of another.
 public static int c(int i) throws MyException, MyOtherException {
 switch (i) {
 case 0: // processing resumes at point 1 above
 throw new MyException("input too low");
 case 1: // processing resumes at point 1 above
 throw new MySubException("input still too low");
 case 99: // processing resumes at point 2 above
 throw new MyOtherException("input too high");
 default:
 return i*i;
 }
 }
}

Statements Miscellaneous Differences

Chapter 2
How Java Differs from C

2.14 Miscellaneous Differences

A number of miscellaneous differences between Java and C are described in the sections that follow.
Miscellaneous differences that were mentioned elsewhere, such as the lack of the goto statement and
the sizeof operator, are not repeated here.

Local Variable Declarations

A feature that Java has borrowed from C++ is the ability to declare and initialize local variables
anywhere in a method body or other block of code. Declarations and their initializers no longer have to
be the first statements in any block--you can declare them where it is convenient and fits well with the
structure of your code.

Don't let this freedom make you sloppy, however! For someone reading your program, it is nice to have
variable declarations grouped together in one place. As a rule of thumb, put your declarations at the top
of the block, unless you have some good organizational reason for putting them elsewhere.

Forward References

For compiler efficiency, C requires that variables and functions must be defined, or at least declared,
before they can be used or called. That is, forward references are not allowed in C. Java does not make
this restriction, and by lifting it, it also does away with the whole concept of a variable or function
declaration that is separate from the definition.

Java allows very flexible forward references. A method may refer to a variable or another method of its
class, regardless of where in the current class the variable or method is defined. Similarly, it may refer to
any class, regardless of where in the current file (or outside of the file) that class is defined. The only
place that forward references are not allowed is in variable initialization. A variable initializer (for local
variables, class variables, or instance variables) may not refer to other variables that have not yet been
declared and initialized.

Method Overloading

A technique that Java borrows from C++ is called method overloading. Overloaded methods are methods
that have the same name, but have different signatures. In other words, they take different types of
arguments, a different number of arguments, or the same type of arguments in different positions in the
argument list. You cannot overload a method by changing only its return type. Two methods with the
same name may have different return types, but only if the method arguments also differ. Similarly, two
overloaded methods may throw different exceptions, but only if their arguments differ as well.

Method overloading is commonly used in Java to define a number of related functions with the same
name, but different arguments. Overloaded methods usually perform the same basic operation, but allow
the programmer to specify arguments in different ways depending on what is convenient in a given
situation. Method overloading is discussed in more detail in the next chapter.

The void Keyword

The void keyword is used in Java, as in C, to indicate that a function returns no value. (As we will see
in the next section, constructor methods are an exception to this rule.)

Java differs from C (and is similar to C++) in that methods that take no arguments are declared with
empty parentheses, not with the void keyword. Java does not have any void * type, nor does it use a
(void) cast in order to ignore the result returned by a call to a non-void method.

Modifiers

Java defines a number of modifier keywords that may be applied to variable and/or method declarations
to provide additional information or place restrictions on the variable or method:

final

The final keyword is a modifier that may be applied to classes, methods, and variables. It has a
similar, but not identical, meaning in each case. A final class may never be subclassed. A
final method may never be overridden. A final variable may never have its value set. In Java
1.1, this modifier may also be applied to local variables and method parameters. This modifier is
discussed in more detail in the next chapter.

native

native is a modifier that may be applied to method declarations. It indicates that the method is
implemented elsewhere in C, or in some other platform-dependent fashion. A native method
should have a semicolon in place of its body.

synchronized

We saw the synchronized keyword in a previous section where it was a statement that
marked a critical section of code. The same keyword can also be used as a modifier for class or
instance methods. It indicates that the method modifies the internal state of the class or the
internal state of an instance of the class in a way that is not thread-safe. Before running a
synchronized class method, Java obtains a lock on the class, to ensure that no other threads
can modif the class concurrently. Before running a synchronized instance method, Java
obtains a lock on the instance that invoked the method, ensuring that no other thread can modify
the object at the same time.

transient

The transient keyword is a modifier that may be applied to instance fields in a class. This
modifier is legal but unused in Java 1.0. In Java 1.1, it indicates a field that is not part of an
object's persistent state and thus does not need to be serialized with the object.

volatile

The volatile keyword is a modifier that may be applied to fields. It specifies that the field is
used by synchronized threads and that the compiler should not attempt to perform optimizations
with it. For example, it should read the variable's value from memory every time and not attempt
to save a copy of it on the stack.

No Structures or Unions

Java does not support C struct or union types. Note, however, that a class is essentially the same
thing as a struct, but with more features. And you can simulate the important features of a union by
subclassing.

No Enumerated Types

Java does not support the C enum keyword for defining types that consist of one of a specified number
of named values. This is somewhat surprising for a strongly-typed language like Java. Enumerated types
can be partially simulated with the use of static final constant values.

No Method Types

C allows you to store the address of a function in a variable and to pass function addresses to other
functions. You cannot do this in Java: methods are not data, and cannot be manipulated by Java

programs. Note, however, that objects are data, and that objects can define methods. [9] So, when you
need to pass a method to another method, you declare a class that defines the desired method and pass an
instance of that class. See, for example, the FilenameFilter interface in the java.io package.

[9] An interesting way to think about objects in Java is as a kind of method that defines
multiple entry points.

No Bitfields

Java does not support the C ability to define variables that occupy particular bits within struct and
union types. This feature of C is usually only used to interface directly to hardware devices, which is
never necessary with Java's platform-independent programming model.

No typedef

Java does not support the C typedef keyword to define aliases for type names. Java has a much
simpler type naming scheme than C does, however, and so there is no need for something like
typedef.

No Variable-Length Argument Lists

Java does not allow you to define methods that take a variable number of arguments, as C does. This is
because Java is a strongly typed language and there is no way to do appropriate type checking for a
method with variable arguments. Method overloading allows you to simulate C "varargs" functions for
simple cases, but there is no general replacement for this C feature.

Exceptions and Exception
Handling

Classes and Objects in Java

Chapter 3

3. Classes and Objects in Java
Contents:
Introduction to Classes and Objects
Object Creation
Class Variables
Class Methods
Object Destruction
Subclasses and Inheritance
Overriding Methods
Data Hiding and Encapsulation
Abstract Classes and Interfaces
C++ Features Not Found in Java
Summary

Java is an object-oriented language. "Object-oriented" is a term that has become so commonly used as to have
practically no concrete meaning. This chapter explains just what "object-oriented" means for Java. It covers:

● Classes and objects in Java

● Creating objects

● Garbage collection to free up unused objects

● The difference between class (or static) variables and instance variables, and the difference between
class (or static) methods and instance methods

● Extending a class to create a subclass

● Overriding class methods and dynamic method lookup

● Abstract classes

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_11.htm

● Interface types and their implementation by classes

If you are a C++ programmer, or have other object-oriented programming experience, many of the concepts in
this list should be familiar to you. If you do not have object-oriented experience, don't fear: This chapter
assumes no knowledge of object-oriented concepts.

We saw in the last chapter that close analogies can be drawn between Java and C. Unfortunately for C++
programmers, the same is not true for Java and C++. Java uses object-oriented programming concepts that are
familiar to C++ programmers, and it even borrows from C++ syntax in a number of places, but the analogies
between Java and C++ are not nearly as strong as those between Java and C. [1] C++ programmers may have
an easier time with this chapter than C programmers will, but they should still read it carefully and try not to
form preconceptions about Java based on their knowledge of C++.

[1] As we'll see, Java supports garbage collection and dynamic method lookup. This actually
makes it a closer relative, beneath its layer of C-like syntax, to languages like Smalltalk than to
C++.

3.1 Introduction to Classes and Objects

A class is a collection of data and methods that operate on that data. [2] The data and methods, taken together,
usually serve to define the contents and capabilities of some kind of object.

[2] A method is the object-oriented term for a procedure or a function. You'll see it used a lot in
this book. Treat it as a synonym for "procedure."

For example, a circle can be described by the x, y position of its center and by its radius. There are a number
of things we can do with circles: compute their circumference, compute their area, check whether points are
inside them, and so on. Each circle is different (i.e., has a different center or radius), but as a class, circles
have certain intrinsic properties that we can capture in a definition. Example 3.1 shows how we could partially
define the class of circles in Java. Notice that the class definition contains data and methods (procedures)
within the same pair of curly brackets. [3]

[3] C++ programmers should note that methods go inside the class definition in Java, not
outside with the :: operator as they usually do in C++.

Example 3.1: The Class of Circles, Partially Captured in Java Code

public class Circle {
 public double x, y; // The coordinates of the center
 public double r; // The radius
 // Methods that return the circumference and area of the circle
 public double circumference() { return 2 * 3.14159 * r; }
 public double area() { return 3.14159 * r*r; }

}

Objects Are Instances of a Class

Now that we've defined (at least partially) the class Circle, we want to do something with it. We can't do
anything with the class of circles itself--we need a particular circle to work with. We need an instance of the
class, a single circle object.

By defining the Circle class in Java, we have created a new data type. We can declare variables of that type:

Circle c;

But this variable c is simply a name that refers to a circle object; it is not an object itself. In Java, all objects
must be created dynamically. This is almost always done with the new keyword:

Circle c;
c = new Circle();

Now we have created an instance of our Circle class--a circle object--and have assigned it to the variable c,
which is of type Circle.

Accessing Object Data

Now that we've created an object, we can use its data fields. The syntax should be familiar to C programmers:

Circle c = new Circle();
c.x = 2.0; // Initialize our circle to have center (2, 2) and radius 1.0.
c.y = 2.0;
c.r = 1.0;

Using Object Methods

This is where things get interesting! To access the methods of an object, we use the same syntax as accessing
the data of an object:

Circle c = new Circle();
double a;
c.r = 2.5;
a = c.area();

Take a look at that last line. We did not say:

a = area(c);

We said:

a = c.area();

This is why it is called "object-oriented" programming; the object is the focus here, not the function call. This
is probably the single most important feature of the object-oriented paradigm.

Note that we don't have to pass an argument to c.area(). The object we are operating on, c, is implicit in
the syntax. Take a look at Example 3.1 again: you'll notice the same thing in the definition of the area()
method--it doesn't take an argument. It is implicit in the language that a method operates on an instance of the
class within which it is defined. Thus our area() method can use the r field of the class freely--it is
understood that it is referring to the radius of whatever Circle instance invokes the method.

How It Works

What's going on here? How can a method that takes no arguments know what data to operate on? In fact, the
area() method does have an argument! area() is implemented with an implicit argument that is not
shown in the method declaration. The implicit argument is named this, and refers to "this object"--the
Circle object through which the method is invoked. this is often called the "this pointer." [4]

[4] "this pointer" is C++ terminology. Since Java does not support pointers, I prefer the term
"this reference."

The implicit this argument is not shown in method signatures because it is usually not needed--whenever a
Java method accesses the fields in its class, it is implied that it is accessing fields in the object referred to by
the this argument. The same is true, as we'll see, when a method in a class invokes other methods in the
class--it is implicit that the methods are being invoked for the this object.

We can use the this keyword explicitly when we want to make explicit that a method is accessing its own
variables and/or methods. For example, we could rewrite the area() method like this:

public double area() { return 3.14159 * this.r * this.r; }

In a method this simple, it is not necessary to be explicit. In more complicated cases, however, you may find
that it increases the clarity of your code to use an explicit this where it is not strictly required.

An instance where the this keyword is required is when a method argument or a local variable in a method
has the same name as one of the fields of the class. In this case, you must use this to access the field. If you
used the field name alone, you would end up accessing the argument or local variable with the same name.
We'll see examples of this in the next section.

Miscellaneous Differences Object Creation

Chapter 3
Classes and Objects in Java

3.2 Object Creation

Take another look at how we've been creating our circle object:

Circle c = new Circle();

What are those parentheses doing there? They make it look like we're calling a function! In fact, that is
exactly what we're doing. Every class in Java has at least one constructor method, which has the same
name as the class. The purpose of a constructor is to perform any necessary initialization for the new
object. Since we didn't define one for our Circle class, Java gave us a default constructor that takes no
arguments and performs no special initialization.

The way it works is this: The new keyword creates a new dynamic instance of the class--i.e., it allocates
the new object. The constructor method is then called, passing the new object implicitly (a this
reference, as we saw above), and passing the arguments specified between parentheses explicitly.

Defining a Constructor

There is some obvious initialization we could do for our circle objects, so let's define a constructor.
Example 3.2 shows a constructor that lets us specify the initial values for the center and radius of our new
Circle object. The example also shows a use of the this keyword, as described in the previous
section.

Example 3.2: A Constructor for the Circle Class

public class Circle {
 public double x, y, r; // The center and the radius of the circle
 // The constructor method.
 public Circle(double x, double y, double r)
 {
 this.x = x;

 this.y = y;
 this.r = r;
 }
 public double circumference() { return 2 * 3.14159 * r; }
 public double area() { return 3.14159 * r*r; }
}

With the old, default constructor, we had to write code like this:

Circle c = new Circle();
c.x = 1.414;
c.y = -1.0;
c.r = .25;

With this new constructor the initialization becomes part of the object creation step:

Circle c = new Circle(1.414, -1.0, .25);

There are two important notes about naming and declaring constructors:

● The constructor name is always the same as the class name.

● The return type is implicitly an instance of the class. No return type is specified in constructor
declarations, nor is the void keyword used. The this object is implicitly returned; a constructor
should not use a return statement to return a value.

Multiple Constructors

Sometimes you'll want to be able to initialize an object in a number of different ways, depending on what
is most convenient in a particular circumstance. For example, we might want to be able to initialize the
radius of a circle without initializing the center, or we might want to initialize a circle to have the same
center and radius as another circle, or we might want to initialize all the fields to default values. Doing
this is no problem: A class can have any number of constructor methods. Example 3.3 shows how.

Example 3.3: Multiple Circle Constructors

public class Circle {
 public double x, y, r;
 public Circle(double x, double y, double r) {
 this.x = x; this.y = y; this.r = r;
 }

 public Circle(double r) { x = 0.0; y = 0.0; this.r = r; }
 public Circle(Circle c) { x = c.x; y = c.y; r = c.r; }
 public Circle() { x = 0.0; y = 0.0; r = 1.0; }
 public double circumference() { return 2 * 3.14159 * r; }
 public double area() { return 3.14159 * r*r; }
}

Method Overloading

The surprising thing in this example (not so surprising if you're a C++ programmer) is that all the
constructor methods have the same name! So how can the compiler tell them apart? The way that you
and I tell them apart is that the four methods take different arguments and are useful in different
circumstances. The compiler tells them apart in the same way. In Java, a method is distinguished by its
name, and by the number, type, and position of its arguments. This is not limited to constructor methods--
any two methods are not the same unless they have the same name, and the same number of arguments of
the same type passed at the same position in the argument list. When you call a method and there is more
than one method with the same name, the compiler automatically picks the one that matches the data
types of the arguments you are passing.

Defining methods with the same name and different argument types is called method overloading. It can
be a convenient technique, as long as you only give methods the same name when they perform similar
functions on slightly different forms of input data. Overloaded methods may have different return types,
but only if they have different arguments. Don't confuse method overloading with method overriding,
which we'll discuss later.

this Again

There is a specialized use of the this keyword that arises when a class has multiple constructors--it can
be used from a constructor to invoke one of the other constructors of the same class. So we could rewrite
the additional constructors from Example 3.3 in terms of the first one like this:

public Circle(double x, double y, double r) {
 this.x = x; this.y = y; this.r = r;
}
public Circle(double r) { this(0.0, 0.0, r); }
public Circle(Circle c) { this(c.x, c.y, c.r); }
public Circle() { this(0.0, 0.0, 1.0); }

Here, the this() call refers to whatever constructor of the class takes the specified type of arguments.
This would be a more impressive example, of course, if the first constructor that we were invoking did a
more significant amount of initialization, as it might, for example, if we were writing a more complicated
class.

There is a very important restriction on this this syntax: it may only appear as the first statement in a
constructor. It may, of course, be followed by any additional initialization that a particular version of the
constructor needs to do. The reason for this restriction involves the automatic invocation of superclass
constructor methods, which we'll explore later in this chapter.

Introduction to Classes and
Objects

Class Variables

Chapter 3
Classes and Objects in Java

3.3 Class Variables

In our Circle class definition, we declared three "instance" variables: x, y, and r. Each instance of the class--
each circle--has its own copy of these three variables. These variables are like the fields of a struct in C--
each instance of the struct has a copy of the fields. Sometimes, though, we want a variable of which there is
only one copy--something like a global variable in C.

The problem is that Java doesn't allow global variables. (Actually, those in the know consider this is feature!)
Every variable in Java must be declared inside a class. So Java uses the static keyword to indicate that a
particular variable is a class variable rather than an instance variable. That is, that there is only one copy of the
variable, associated with the class, rather than many copies of the variable associated with each instance of the
class. The one copy of the variable exists regardless of the number of instances of the class that are created--it
exists and can be used even if the class is never actually instantiated.

This kind of variable, declared with the static keyword, is often called a static variable. I prefer (and
recommend) the name "class variable" because it is easily distinguished from its opposite, "instance variable."
We'll use both terms in this book.

An Example

As an example (a somewhat contrived one), suppose that while developing the Circle class we wanted to do
some testing on it and determine how much it gets used. One way to do this would be to count the number of
Circle objects that are instantiated. To do this we obviously need a variable associated with the class, rather
than with any particular instance. Example 3.4 shows how we can do it--we declare a static variable and
increment it each time we create a Circle.

Example 3.4: Static Variable Example

public class Circle {
 static int num_circles = 0; // class variable: how many circles created
 public double x, y, r; // instance vars: the center and the radius
 public Circle(double x, double y, double r) {
 this.x = x; this.y = y; this.r = r;
 num_circles++;

 }
 public Circle(double r) { this(0.0, 0.0, r); }
 public Circle(Circle c) { this(c.x, c.y, c.r); }
 public Circle() { this(0.0, 0.0, 1.0); }
 public double circumference() { return 2 * 3.14159 * r; }
 public double area() { return 3.14159 * r*r; }
}

Accessing Class Variables

Now that we are keeping track of the number of Circle objects created, how can we access this information?
Because static variables are associated with the class rather than with an instance, we access them through
the class rather than through the instance. Thus, we might write: [5]

[5] Recall that System.out.println() prints a line of text, and that the string concatenation
operator, +, converts non-string types to strings as necessary.

System.out.println("Number of circles created: " + Circle.num_circles);

Notice that in our definition of the constructor method in Example 3.4, we just used num_circles instead of
Circle.num_circles. We're allowed to do this within the class definition of Circle itself. Anywhere
else, though, we must use the class name as well.

Global Variables?

Earlier we said that Java does not support global variables. In a sense, though, Circle.num_circles
behaves just like one. What is different from a global variable in C is that there is no possibility of name
conflicts. If we use some other class with a class variable named num_circles, there won't be a "collision"
between these two "global" variables, because they must both be referred to by their class names. Since each
class variable must be part of a class and must be referred to with its class name, each has a unique name.
Furthermore, each class has a unique name because, as we saw in Chapter 2, How Java Differs from C, it is part
of a package with a unique name.

Constants: Another Class Variable Example

Let's try a less forced example of why you might want to use a class variable with the Circle class. When
computing the area and circumference of circles, we use the value pi. Since we use the value frequently, we
don't want to keep typing out 3.14159, so we'll define it as a class variable that has a convenient name:

public class Circle {
 public static final double PI = 3.14159265358979323846;
 public double x, y, r;
 // ... etc....
}

Besides the static keyword that we've already seen, we use the final keyword, which means that this
variable can never have its value changed. This prevents you from doing something stupid like:

Circle.PI = 4;

which would tend to give you some pretty square-looking circles.

The Java compiler is smart about variables declared both static and final--it knows that they have
constant values. So when you write code like this:

double circumference = 2 * Circle.PI * radius;

the compiler precomputes the value 2 * Circle.PI , instead of leaving it for the interpreter.

Java does not have a preprocessor with a C-style #define directive. static final variables are Java's
substitute for C's #define'd constants. Note that the C convention of capitalizing constants has been carried
over into Java.

Object Creation Class Methods

Chapter 3
Classes and Objects in Java

3.4 Class Methods

Let's define a new method in our Circle class. This one tests whether a specified point falls within the defined
circle:

public class Circle {
 double x, y, r;
 // is point (a,b) inside this circle?
 public boolean isInside(double a, double b)
 {
 double dx = a - x;
 double dy = b - y;
 double distance = Math.sqrt(dx*dx + dy*dy);
 if (distance < r) return true;
 else return false;
 }
 .
 . // Constructor and other methods omitted.
 .
}

What's this Math.sqrt() thing? It looks like a method call and, given its name and its context, we can guess
that it is computing a square root. But the method calls we've discussed are done through an object. Math isn't
the name of an object that we've declared, and there aren't any global objects in Java, so this must be a kind of
method call that we haven't seen before.

static Methods

What's going on here is that Math is the name of a class. sqrt() is the name of a class method (or static
method) defined in Math. It differs from the instance methods, such as area() in Circle, that we've seen so
far.

Class methods are like class variables in a number of ways:

● Class methods are declared with the static keyword.

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm

● Class methods are often referred to as "static methods."

● Class methods are invoked through the class rather than through an instance. (Although within the class
they may be invoked by method name alone.)

● Class methods are the closest Java comes to "global" methods. Because they must be referred to by the
class name, there is no danger of name conflicts.

No this

Class methods differ from instance methods in one important way: they are not passed an implicit this
reference. Thus, these this-less methods are not associated with any instance of the class and may not refer to
any instance variables or invoke instance methods.

Since class methods are not passed a this reference, and are not invoked through an object, they are the closest
thing that Java offers to the "normal" C procedures that you may be accustomed to, and may therefore seem
familiar and comforting. If you're sick and tired of this object-oriented business, it is perfectly possible to write
complete Java programs using only class methods, although this does defeat an important purpose of using the
language!

But don't think that class methods are somehow cheating--there are perfectly good reasons to declare a method
static. And indeed, there are classes like Math that declare all their methods (and variables) static. Since
Math is a collection of functions that operate on floating-point numbers, which are a primitive type, there are no
objects involved, and no need for instance methods. System is another class that defines only class methods--it
provides a varied collection of system functions for which there is no appropriate object framework.

A Class Method for Circles

Example 3.5 shows two (overloaded) definitions of a method for our Circle class. One is an instance method
and one is a class method.

Example 3.5: A Class Method and an Instance Method

public class Circle {
 public double x, y, r;
 // An instance method. Returns the bigger of two circles.
 public Circle bigger(Circle c) {
 if (c.r > r) return c; else return this;
 }
 // A class method. Returns the bigger of two circles.
 public static Circle bigger(Circle a, Circle b) {
 if (a.r > b.r) return a; else return b;
 }

 .
 . // Other methods omitted here.
 .
}

You would invoke the instance method like this:

Circle a = new Circle(2.0);
Circle b = new Circle(3.0);
Circle c = a.bigger(b); // or, b.bigger(a);

And you would invoke the class method like this:

Circle a = new Circle(2.0);
Circle b = new Circle(3.0);
Circle c = Circle.bigger(a,b);

Neither of these is the "correct" way to implement this method. One or the other will seem more natural,
depending on circumstances.

A Mystery Explained

Now that we understand class variables, instance variables, class methods, and instance methods, we are in a
position to explore that mysterious method call we saw in our very first Java "Hello World" example:

System.out.println("Hello world!");

One hypothesis is that println() is a class method in a class named out, which is in a package named
System. Syntactically, this is perfectly reasonable (except perhaps that class names always seem to be
capitalized by convention, and out isn't capitalized). But if you look at the API documentation, you'll find that
System is not a package name; it is the name of a class (which is in the java.lang package, by the way). Can
you figure it out?

Here's the story: System is a class. It has a class variable named out. out refers to an object of type
PrintStream. The object System.out has an instance method named println(). Mystery solved!

Static Initializers

Both class and instance variables can have initializers attached to their declarations. For example:

static int num_circles = 0;
float r = 1.0;

Class variables are initialized when the class is first loaded. Instance variables are initialized when an object is

created.

Sometimes we need more complex initialization than is possible with these simple variable initializers. For
instance variables, there are constructor methods, which are run when a new instance of the class is created. Java
also allows you to write an initialization method for class variables. Such a method is called a static initializer.

The syntax of static initializers gets kind of bizarre. Consider that a static initializer is invoked automatically by
the system when the class is loaded. Thus there are no meaningful arguments that can be passed to it (unlike the
arguments we can pass to a constructor method when creating a new instance). There is also no value to return.
So a static initializer has no arguments and no return value. Furthermore, it is not really necessary to give it a
name, since the system calls the method automatically for us. What part of a method declaration is left? Just the
static keyword and the curly brackets!

Example 3.6 shows a class declaration with a static initializer. Notice that the class contains a regular static
variable initializer of the kind we've seen before, and also a static initializer--an arbitrary block of code between
{ and }.

Example 3.6: A Static Initializer

// We can draw the outline of a circle using trigonometric functions.
// Trigonometry is slow though, so we pre-compute a bunch of values.
public class Circle {
 // Here are our static lookup tables, and their own simple initializers.
 static private double sines[] = new double[1000];
 static private double cosines[] = new double[1000];
 // Here's a static initializer "method" that fills them in.
 // Notice the lack of any method declaration!
 static {
 double x, delta_x;
 int i;
 delta_x = (Circle.PI/2)/(1000-1);
 for(i = 0, x = 0.0; i < 1000; i++, x += delta_x) {
 sines[i] = Math.sin(x);
 cosines[i] = Math.cos(x);
 }
 }
 .
 . // The rest of the class omitted.
 .
}

The syntax gets even a little stranger than this. Java allows any number of static initializer blocks of code to
appear within a class definition. What the compiler actually does is to internally produce a single class
initialization routine that combines all the static variable initializers and all of the static initializer blocks of code,
in the order that they appear in the class declaration. This single initialization procedure is run automatically, one
time only, when the class is first loaded.

One common use of static initializers is for classes that implement native methods--i.e., methods written in C.
The static initializer for such a class should call System.load() or System.loadLibrary() to read in
the native library that implements these native methods.

Instance Initializers

In Java 1.1, a class definition may also include instance initializers. These look like static initializers, but without
the static keyword. An instance initializer is like a constructor: it runs when an instance of the class is created.
We'll see more about instance initializers in Chapter 5, Inner Classes and Other New Language Features, Inner
Classes and Other New Language Features.

Class Variables Object Destruction

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm

Chapter 5

5. Inner Classes and Other New
Language Features
Contents:
An Overview of Inner Classes
Nested Top-Level Classes and Interfaces
Member Classes
Local Classes
Anonymous Classes
Other New Features of Java 1.1

The largest enhancement to the Java language in Java 1.1 is something called "inner classes." With this
addition to the language, classes can be defined as members of other classes, just as fields and methods
can be defined within classes. Classes can also be defined within a block of Java code, just as local
variables can be defined within a block of code.

From one point of view, the addition of inner classes regularizes the syntax of Java. From another point
of view, though, inner classes create quite a few special cases, and a confusing array of new rules. In
practice, however, if you avoid the obscure and pathological cases, inner classes prove to be an elegant
and extremely useful addition to the language. Their use is particularly common in conjunction with the
new event model defined by the AWT in Java 1.1.

5.1 An Overview of Inner Classes

Java 1.0 allowed classes and interfaces to be defined in exactly one context: at the "top level," as
members of packages. Java 1.1 adds one new type of top-level classes and interfaces, and adds three new
types of "inner classes," as outlined below. Later sections of this chapter describe each of these new types
of classes and interfaces in more detail and present examples of their use.

Nested top-level classes and interfaces

A nested top-level class or interface is defined as a static member of an enclosing top-level class
or interface. The definition of a nested top-level class uses the static modifier, just as the
definition of a static method or static field does. Nested interfaces are implicitly static (though
they may be declared static to make this explicit) and so are always top-level. A nested top-
level class or interface behaves just like a "normal" class or interface that is a member of a
package. The difference is that the name of a nested top-level class or interface includes the name
of the class in which it is defined. Thus, a LinkedList class could define a nested top-level
interface Linkable. This interface would be referred to as LinkedList.Linkable. Nested
top-level classes and interfaces are typically used as a convenient way to group related classes.

Member classes

A member class is also defined as a member of an enclosing class, but unlike a nested top-level
class, it is not defined with the static modifier. This means that it is an inner class, rather than
a top-level class. Nested interfaces are always implicitly static, so they are always top-level;
there is no such thing as a "member interface," or any kind of "inner interface." In many ways, a
member class is analogous to the other members--the instance fields and methods--of a class.
Member classes are of interest because the code within a member class can implicitly refer to any
of the fields and methods, including private fields and methods, of its enclosing class. [1]
Every instance of a member class is associated with an enclosing instance of the class that defines
it. Because of the requirement for this enclosing instance, several new pieces of syntax have been
introduced into the Java language.

[1] Unfortunately, in Java 1.1 and 1.1.1 there are compiler bugs that prevent access
to the private fields and methods of enclosing classes from working correctly. It
is not yet clear when these bugs will be fixed. So while access to private
members of enclosing classes is part of the inner class specification, it is a feature
that is currently best avoided. If a field or method must be visible to nested classes,
you should give it package visibility rather than private visibility.

Local classes

A local class is an inner class defined within a block of Java code; it is visible only within that
block. Interfaces can not be defined locally. Because a local class is defined within a block of
code, it is analogous, in some ways, to a local variable. Local classes are not member classes, but
can still use the fields and methods of enclosing classes. More important, however, the code
within a local class definition can use any final local variables or parameters that are accessible
in the scope of the block that defines the class. Local classes are useful primarily as "adapter
classes" and are commonly used with the new event-handling model required by the Java 1.1
AWT and by JavaBeans. For example, a block of Java 1.1 code that creates a

java.awt.Button object could use a local class to define a simple implementation of the
java.awt.event.ActionListener interface. Then it could instantiate this simple
implementation and pass the resulting object to the button's addActionListener() method,
thereby connecting the button to the "callback" code that is executed when the button is pressed.

Anonymous classes

An anonymous class is an extension to the local class concept described above. Instead of
declaring a local class with one Java statement, and then instantiating and using it in another
statement, an anonymous class combines the two steps in a single Java expression. An anonymous
class, as you might guess, does not have a name. And because it is instantiated in the same
expression that defines it, it can only be instantiated once. Except for these differences,
anonymous classes are quite similar to local classes in behavior and use. Interfaces cannot be
defined anonymously, of course. When writing a simple adapter class, the choice between a
named local class and an unnamed anonymous class typically comes down to a matter of style and
code clarity, rather than any difference in functionality.

Table 5.1 summarizes the types of classes and interfaces that can be defined in Java 1.1; the remaining
sections of the chapter document each type in more detail.

Table 5.1: Inner Class Summary

Class Type Description

Top-level classes and
interfaces

Package member class or interface

An ordinary class or interface that is
a direct member of a package. The
basic Java class understood by the
VM. All nested and inner classes are
converted to this type.

Nested top-level class or interface

A conveniently nested top-level class
or interface. Must be declared
static within another top-level
class or interface. (Nested interfaces
are implicitly static.) May use the
static members of its containing
type.

Inner classes

Member class

A class defined as a member (non-
static) of another. Each instance
has an enclosing instance, and can
use its members. New syntax for
this, new, and super. Cannot
have static members. Cannot have
same name as a containing class.

Local class

A class defined in a block of code.
Can use members of enclosing
classes and final local variables
and parameters. New this syntax.
Same restrictions as member classes.

Anonymous class

Unnamed class defined within an
expression. Has features of a local
class. Allows a one-shot class to be
defined exactly where needed. Same
restrictions as local class, plus has no
name or constructor. Only one
instance of the class is created.

New JDK Utilities Nested Top-Level Classes and
Interfaces

Chapter 4
What's New in Java 1.1

4.12 New JDK Utilities

JDK 1.1 includes a number of new tools. In the discussion of applets above, we've already seen jar for
creating JAR archives and javakey for adding digital signatures to JAR archives. In fact, javakey can do
much more than that--it is a very flexible tool for managing a database of entities, generating keys and
certificates, and generating digital signatures.

serialver is a new tool used in conjunction with object serialization. When an object is deserialized, it is
important to verify that the version of the class file for that object matches the version that was used to
serialize it. This is done by computing a unique identifier for the class and encoding it in a private
variable of the class. When an incompatible change is made to the class, a new unique identifier is
computed, and the new value is stored in the private variable. It is the serialver tool that is used to
compute this unique identifier.

native2ascii is a tool for programmers who program in a locale that uses a non-ASCII file encoding. The
javac compiler can only compile files encoded in ASCII, with all Unicode characters converted to the
\uxxxx format. What native2ascii does is to convert its input file to Unicode, and then output that
Unicode version as an ASCII file that uses the \u escape for all non-ASCII Unicode characters. After
you process a locally-encoded file with native2ascii, javac can compile it.

In addition to the tools described here, JDK 1.1 also includes two new programs, rmic and rmiregistry,
that are used in conjunction with Remote Method Invocation. They will be documented in Java
Enterprise in a Nutshell.

Applet Changes Inner Classes and Other New
Language Features

Chapter 4
What's New in Java 1.1

4.11 Applet Changes

There are several new features in Java 1.1 that affect applets. The first is the introduction of JAR files. "JAR"
stands for Java ARchive, and a JAR file is just that: an archive of files used by a Java applet. An applet often
requires multiple class files, as well as images, sounds, and other resources, to be loaded over the network. Prior
to Java 1.1, each of these files was loaded through a separate HTTP request, which is fairly inefficient. With
Java 1.1, all (or many) of the files an applet needs can be combined into a single JAR file, which an applet
viewer or Web browser can download with a single HTTP request. Chapter 6, Applets, demonstrates the use of
JAR files.

JAR files are stored in the ZIP file format. A JAR archive can be created with the jar tool shipped with the JDK.
Once you have created a JAR file, you refer to it in a <APPLET> tag with the ARCHIVE attribute. This
ARCHIVE attribute may actually be set to a comma-separated list of archive files to be downloaded. Note that
specifying an ARCHIVE attribute simply tells the applet viewer or browser the name of a JAR file or files to
load; it does not tell the browser the name of the applet that is to be run. Thus, you still must specify the CODE
attribute (or the new OBJECT attribute, as we'll see below). For example, you might use an <APPLET> tag like
the following to tell the browser to download the animation.jar file and start the applet contained in the file
Animator.class:

<APPLET CODE="Animator.class" ARCHIVE="animation.jar" WIDTH=500 HEIGHT=200>
</APPLET>

There is another advantage to the use of JAR files. Every JAR file contains a "manifest" file, which you either
specify explicitly when you create the archive, or which is created for you by the jar tool. The manifest is stored
in a file named META-INF/MANIFEST.MF and contains meta-information about the files in the archive. By
default, the jar tool creates a manifest file that contains MD5 and SHA message digests for each file in the
archive. This information can be used by the applet viewer or Web browser to verify that the files in the archive
have not been corrupted since the JAR file was created.

The main reason to include message digests in the manifest file, however, is so that a JAR file can have digital
signatures added to it. An archive can be signed with the javakey tool. What a digital signature allows you to do
is verify that the files in a JAR file have not been modified since the digital signature was added to the archive.
If you trust the person or entity who signed the file, then you ought to trust the applet contained in the JAR file.
(The javakey tool allows you to specify whether or not you trust any given entity.) Chapter 6, Applets also

describes how you might use digital signatures and javakey.

In JDK 1.1, the appletviewer tool understands digitally signed JAR files. When it loads an applet that has been
signed by a trusted entity, it runs that applet without subjecting it to the usual security restrictions--the applet
can read and write files, and do anything that a standalone Java application can do. Common Web browsers are
likely to follow suit and give special privileges to trusted applets. One refinement we may see in the future is
the ability to specify varying levels of trust, and to assign different sets of privileges to applets at those varying
trust levels.

Besides the introduction of JAR files and trusted applets, Java 1.1 also supports "serialized applets." In an
<APPLET> tag, you can specify the OBJECT attribute instead of the CODE attribute. If you do this, the value of
the OBJECT attribute should be the name of a file that contains a serialized representation of the applet to be
run. Graphical application-builder tools may prefer to output applets as pre-initialized object trees, rather than
generating custom Java code to perform the initializations. See Chapter 9, Object Serialization for more
information on serialized applets.

Enterprise APIs: JDBC, RMI,
and Security

New JDK Utilities

Chapter 4
What's New in Java 1.1

4.10 Enterprise APIs: JDBC, RMI, and Security

Java 1.1 provides a number of important new features that are loosely grouped under the name
"Enterprise APIs." These include JDBC (Java DataBase Connectivity), RMI (Remote Method
Invocation), and Java Security. With release 1.1, Java has grown too big for all of it to be documented,
even in quick-reference format, in a single volume. Therefore, the JDBC, RMI, and Security packages
will be documented, along with other, forthcoming Enterprise APIs, in a separate volume, Java
Enterprise in a Nutshell. Note, however, that while this volume does not cover the Java Security API, it
does cover applet security, signed applets, and the javakey program that is used to create digital
signatures, generate key pairs, and manage a database of entities and their keys.

Java Beans Applet Changes

Chapter 4
What's New in Java 1.1

4.9 Java Beans

JavaBeans is a "software component model" for Java that has generated quite a lot of interest from many
quarters. The JavaBeans API specification defines "beans" as follows: "A Java Bean is a reusable
software component that can be manipulated visually in a builder tool." The java.beans package
defines classes and interfaces designed to work with beans at three distinct levels, described below.

Much of the JavaBeans API is intended for use only by those few people who are writing interface
builder tools that manipulate beans. The main thing that a builder tool needs to be able to do with beans
is "introspect" on them--i.e., to determine what properties are exposed by a bean, what methods it
exports, and what events it can generate. This is information that a builder tool must be able to display to
the programmer who is using the tool. The JavaBeans API defines a set of naming conventions for the
methods that a bean defines. If a bean follows these conventions, a builder tool can use the new
Reflection API to determine what properties, methods, and events the bean supports. The
Introspector class uses reflection to obtain information about a bean and presents it to the builder
tool in the form of a BeanInfo object, which itself contains various FeatureDescriptor objects
describing the properties, methods, and events of the bean.

At the second level, the JavaBeans API contains classes and interfaces intended for use by programmers
who are creating beans for others to use. Chapter 10, Java Beans describes how to use the classes in
java.beans in this manner. One of the surprising features of the JavaBeans API is that there is no
Bean class that all beans must extend. A bean can be of any class; however, as we've seen, beans should
follow certain naming conventions. The java.beans classes that a bean creator uses are generally
auxiliary classes, used not by the bean, but by the builder tool that manipulates the bean. These auxiliary
classes are shipped with a bean, and provide additional information or methods that a builder tool may
use with the bean. These classes are not included in finished software built with the bean.

For example, one of the auxiliary classes a bean may define is a custom BeanInfo class to provide
information to the builder tool that is not available through the Reflection API. This information might
include a human-readable description of the bean's properties, methods, and events, for example. Or, if a
bean does not follow the standard naming conventions, this custom BeanInfo class must also provide
more basic information about the bean's properties, methods, and events.

Besides a BeanInfo class, complex beans may also provide a Customizer class and one or more
PropertyEditor classes. A Customizer class is a kind of configuration tool or "wizard" for a
bean. It is instantiated by the builder tool in order to guide the user through bean customization. A
PropertyEditor class is used to allow the user to edit the value of bean properties of a particular
class. Builder tools have built-in property editors for common types such as strings, colors, and fonts, but
a bean that has properties of some unusual or custom type may want to provide a PropertyEditor
subclass to allow the user to easily specify values for those properties.

The third level at which the JavaBeans API can be used is by programmers who are assembling an
application using beans. Some programmers may do this through a builder tool, while others may do it
"by hand", the old-fashioned way. Programmers using beans do not typically have to use the
java.beans package. At this level, it is more a matter of reading the documentation for the particular
beans being used and following those instructions. Nevertheless, a programmer using beans does need to
be familiar with the event model used by beans, which is the same as the Java 1.1 event model for AWT.
Also, programmers using beans "by hand" should be familiar with the naming conventions for bean
properties, methods, and events, in order to more easily understand how a given bean can be used. In
Java 1.1, all AWT components are beans and follow these naming conventions.

Reflection Enterprise APIs: JDBC, RMI,
and Security

Chapter 4
What's New in Java 1.1

4.8 Reflection

Reflection in Java 1.1 refers to the ability of Java classes to reflect upon themselves, or to "look inside
themselves." The java.lang.Class class has been greatly enhanced in Java 1.1. It now includes
methods that return the fields, methods, and constructors defined by a class. These items are returned as
objects of type Field, Method, and Constructor, respectively. These new classes are part of the
new java.lang.reflect package, and they each provide methods to obtain complete information
about the field, method, or constructor they represent. For example, the Method object has methods to
query the name, the parameter types, and the return type of the method it represents. Chapter 12,
Reflection provides some examples of using the Reflection API.

Besides allowing a program to inspect the members of a class, the java.lang.reflect package also
allows a program to manipulate these fields and methods. The Field class defines methods that get and
set the value of the represented field for any given object of the appropriate type. Similarly, the Method
object defines an invoke() method that allows the represented method to be invoked, and the
Constructor class defines a newInstance() method that creates a new object and invokes the
represented constructor on it. java.lang.reflect also defines an Array class. It does not
represent a specific array, but defines static methods that read and write array elements and dynamically
create new arrays.

With the addition of reflection, the Class class has been expanded to represent not just Java classes, but
any Java type, including primitive types and array types. There is a special Class object that represents
each of the eight Java primitive types, and another special Class object that represents the void type.
These special Class objects are available as constants in the wrapper objects for the primitive types.
Integer.TYPE is a Class object that represents the int type, for example, and Void.TYPE is a
Class object that represents the void type.

Finally, new Java language syntax makes it easier to obtain a Class object that represents a Java class.
If you follow the name of a class, interface, or other type with .class, Java evaluates that expression
and returns the corresponding Class object. So, for example, the following two expressions are
equivalent:

String.class
Class.forName("java.lang.String")

Note that this syntax also works with primitive type names: you can write short.class, for example,
which returns the same value as Short.TYPE.

Object Serialization Java Beans

Chapter 4
What's New in Java 1.1

4.7 Object Serialization

Object serialization is one of the major new features of Java 1.1. It refers to the ability to write the
complete state of an object (including any objects it refers to) to an output stream, and then recreate that
object at some later time by reading its serialized state from an input stream. You can serialize an object
simply by passing it to the writeObject() method of an ObjectOutputStream. Similarly, you
can create an object from a serialized object stream by calling the readObject() method of an
ObjectInputStream. Both of these new object stream types are part of the java.io package.

Typically, object serialization is as simple as calling writeObject() and readObject(). There
are a few additional twists, however, that are worth mentioning here. First, only objects that subclass the
Serializable (or Externalizable) interface can be serialized. The Serializable interface
does not define any methods, but merely acts as a marker that indicates whether serialization is allowed
on a given object. Second, fields of a class declared transient are not serialized as part of an object's
state. The transient modifier was legal in Java 1.0, but had no defined behavior. Third, some objects
may need to implement custom serialization or de-serialization behavior. They can do this by
implementing special readObject() and writeObject() methods. Chapter 9, Object
Serialization describes all of these aspects of object serialization in more detail.

Despite the fact that only a few classes and interfaces are part of the Object Serialization API,
serialization is a very important technology and is used in several places in Java 1.1. It is used as the
basis for transferring objects via cut-and-paste. It is used to transfer objects between a client and a server
for remote method invocation. It is used by the JavaBeans API--beans are often provided as pre-
initialized, serialized objects, rather than merely as class files. Java 1.1 also adds the capability for
applets to be loaded into an applet viewer or browser as serialized objects. One common use we are
likely to see for object serialization is as a way to save user preferences and other application states--a
serialized object is an instant file format that works for any application. Another use that should be
popular with GUI builder tools is saving the complete Component hierarchy of an application's GUI as
a serialized object, and then later loading in that object in order to automatically recreate the GUI.

Internationalization Reflection

Chapter 4
What's New in Java 1.1

4.6 Internationalization

Internationalization [1] is the process of enabling a program to run internationally. That is, an
internationalized program has the flexibility to run correctly in any country. Once a program has been
internationalized, enabling it to run in a particular country and/or language is merely a matter of
"localizing" it for that country and language, or locale.

[1] This word is sometimes abbreviated I18N, because there are 18 letters between the first
I and the last N.

You might think that the main task of localization is the matter of translating a program's user-visible text
into a local language. While this is an important task, it is not by any means the only one. Other concerns
include displaying dates and times in the customary format for the locale, displaying number and
currency values in the customary format for the locale, and sorting strings in the customary order for the
locale.

Underlying all these localization issues is the even more fundamental issue of character encodings.
Almost every useful program must perform input and output of text, and before we can even think about
textual I/O, we must be able to work with the local character encoding standard. This hurdle to
internationalization lurks slightly below the surface, and is not very "programmer-visible." Nevertheless,
it is one of the most important and difficult issues in internationalization.

As described in Chapter 11, Internationalization, Java 1.1 provides facilities that address all of these
internationalization issues. If you write programs that correctly make use of these facilities, the task of
localizing your program for a new country really does boil down to the relatively simple matter of hiring
a translator to convert your program's messages. With the expansion of the global economy, and
particularly of the global Internet, writing internationalized programs is going to become more and more
important, and you should begin to take advantage of Java's internationalization capabilities right away.

There are several distinct pieces to the problem of internationalization, and Java's solution to this
problem also comes in distinct pieces. The first issue in internationalization is the matter of knowing

what locale a program is running in. A locale is typically defined as a political, geographical, or cultural
region that has a distinct language or distinct conventions for things such as date and time formats. The
notion of a locale is encapsulated in Java 1.1 by the Locale class, which is part of the java.util
package. Every Java program has a default locale, which is inherited from the operating system (where it
may be set by the user). A program can simply rely on this default, or it can change the default.
Additionally, all Java methods that rely on the default locale also have variants that allow you to
explicitly specify a locale. Typically, though, using the default locale is exactly what you want to do.

Once a program knows what locale it is running in, the most fundamental internationalization issue, as
noted above, is the ability to read and write localized text. Since Java uses the Unicode encoding for its
characters and strings, any character of any commonly-used modern written language is representable in
a Java program, which puts Java at a huge advantage over older languages such as C and C++. Thus,
working with localized text is merely a matter of converting from the local character encoding to
Unicode when reading text, such as a file or input from the user, and converting from Unicode to the
local encoding when writing text. Java's solution to this problem is in the java.io package, in the form
of a new suite of character-based input and output streams (known as "readers" and "writers") that
complement the existing byte-based input and output streams.

The FileReader class, for example, is a character-based input stream used to read characters (which
are not the same as bytes in all languages) from a file. The FileReader class assumes that the
specified file is encoded using the default character encoding for the default locale, so it converts
characters from the local encoding to Unicode characters as it reads them. In most cases, this assumption
is a good one, so all you need to do to internationalize the character set handling of your program is to
switch from a FileInputStream to a FileReader object, and make similar switches for text
output as well. On the other hand, if you need to read a file that is encoded using some character set other
than the default character set of the default locale, you can use a FileInputStream to read the bytes
of the file, and then use an InputStreamReader to convert the stream of bytes to a stream of
characters. When you create an InputStreamReader, you specify the name of the encoding in use,
and it performs the appropriate conversion automatically.

As you can see, internationalizing the character set of your programs is a simple matter of switching from
byte I/O streams to character I/O streams. Internationalizing other aspects of your program requires a
little more effort. The classes in the java.text package are designed to allow you to internationalize
your handling of numbers, dates, times, string comparisons, and so on. NumberFormat is used to
convert numbers, monetary amounts, and percentages to an appropriate textual format for a locale.
Similarly, the DateFormat class, along with the Calendar and TimeZone classes from the
java.util package, are used to display dates and times in a locale-specific way. The Collator
class is used to compare strings according to the alphabetization rules of a given locale, and the
BreakIterator class is used to locate word, line, and sentence boundaries.

The final major problem of internationalization is making your program flexible enough to display
messages (or any type of user-visible text, such as the labels on GUI buttons) to the user in an
appropriate language for the current locale. Typically, this means that the program cannot use hard-coded

messages and must instead read in a set of messages at run-time, based on the locale setting. Java
provides an easy way to do this. You define your messages as key/value pairs in a ResourceBundle
subclass. Then, you create a subclass of ResourceBundle for each language or locale your
application supports, naming each class following a convention that includes the locale name. At run-
time, you can use the ResourceBundle.getBundle() method to load the appropriate
ResourceBundle class for the current locale. The ResourceBundle contains the messages your
application uses, each associated with a key, that serves as the message name. Using this technique, your
application can look up a locale-dependent message translation based on a locale-independent message
name. Note that this technique is useful for things other than textual messages. It can be used to
internationalize icons, or any other locale-dependent object used by your application.

There is one final twist to this problem of internationalizing messages. Often, we want to output
messages such as, "Error at line 5 of file hello.java.", where parts of the message are static, and parts are
dynamically generated at run-time (such as the line number and filename above). This is further
complicated by the fact that when we translate such messages the values we substitute in at run-time may
appear in a different order. For example, in some different English speaking locale, we might want to
display the line above as: "hello.java: error at line 5". The MessageFormat class of the java.text
package allows you to substitute dynamic values into static messages in a very flexible way and helps
tremendously with this situation, particularly when used in conjunction with resource bundles.

Other AWT Improvements Object Serialization

Chapter 4
What's New in Java 1.1

4.5 Other AWT Improvements

In addition to the major change in the AWT event model, there have been quite a few other
improvements to the AWT. These improvements are summarized in the sections below.

Printing

Printing in Java 1.1 is implemented through the new PrintJob class and PrintGraphics interface.
The PrintJob class represents a print request. When a PrintJob object is created, the user is
prompted with a platform-dependent print dialog, which allows her to specify options such as which
printer to use.

The getGraphics() method of a PrintJob object returns a Graphics object that can be used for
printing. This object is an instance of a subclass of Graphics that knows how to print in a platform-
dependent way. The object also implements the PrintGraphics interface. To print a component, you
simply pass this Graphics object to the component's print() method. If the component does not
define this method, the default implementation simply invokes the paint() method, which usually
does the right thing. When you want to print a component and all of its subcomponents, you can simply
pass the Graphics object to the printAll() method of the component.

Printing multiple pages is more complex, of course. The application is responsible for pagination of the
output, and in order to draw the output on the page the application may also need to query the
PrintJob object to determine the page size (in pixels) and page resolution (in pixels per inch).

For security reasons, applets are not allowed to initiate print jobs; if they were, you could expect to see
applets on the Net that automatically printed hardcopy advertisements to your printer! Note, however,
that this does not mean that applets cannot print themselves when the browser or applet viewer initiates
the print request object and invokes the printAll() method of the applet.

Chapter 8, New AWT Features contains an example that uses the printing capabilities of Java 1.1.

Cut-and-Paste

Data transfer via the cut-and-paste metaphor is supported in Java 1.1 by the classes and interfaces in the
java.awt.datatransfer package. One half of this package provides generic data-transfer
functionality, and the other half provides the classes and interfaces needed for clipboard-based cut-and-
paste. In future versions of the JDK, we can expect to see support for the drag-and-drop data transfer
metaphor added to this package.

For the purposes of data transfer, the DataFlavor class represents the notion of a data type or data
format. A DataFlavor consists of a human-readable name for the flavor and one of two possible
machine-readable format definitions. The first of the machine-readable descriptions is a String that
specifies a MIME type for the transferred data. The second is a Class object that represents a Java
class. When a DataFlavor is specified with a Class object, it is an instance of this class that is
passed when data transfer actually occurs.

Any value that can be transferred through the Java 1.1 data transfer mechanism must be represented by a
class that implements the Transferable interface. This interface defines methods to query the data
flavors that the class supports, and it defines a method that the data transfer mechanism calls to convert
the transferable value into the appropriate form for a given DataFlavor.

While the DataFlavor class and the Transferable interface define the fundamental data transfer
mechanism, they, by themselves, are not enough to initiate or perform data transfer. For this purpose,
java.awt.datatransfer also defines the Clipboard class and the ClipboardOwner
interface. Together, they support a cut-and-paste metaphor for data transfer. Because strings are often
transferred between applications, java.awt.datatransfer provides the StringSelection
class. This class implements both the Transferable and the ClipboardOwner interfaces and
makes it very easy to transfer textual data through cut-and-paste.

Inter-application data transfer is performed through the system clipboard. It is also possible to perform
intra-application transfers through a private clipboard that an application creates for itself. Note that
untrusted applets are not allowed to access the system clipboard--there could be sensitive information
contained on it that untrusted code should not have access to. This means that applets cannot participate
in inter-application cut-and-paste. Chapter 8, New AWT Features provides an example that demonstrates
intra-application cut-and-paste data transfer.

Popup Menus and Menu Shortcuts

Java 1.1 adds support for popup menus to the AWT. The PopupMenu class is a subclass of Menu; menu
items are added to it just as they are added to regular pulldown menus. A popup menu can be attached to
an arbitrary AWT component, using the new add() method of the Component class. And, finally, a
popup menu can be "popped up" by calling its show() method. (The menu pops itself down

automatically.)

An application typically displays a popup menu when the user clicks a certain mouse button over the
component that the menu is attached to. However, different platforms traditionally use different mouse
buttons to display popup menus. You can use the new isPopupTrigger() method of MouseEvent
to determine whether a given mouse click has the appropriate modifiers set to trigger the popup menu for
the current platform.

Java 1.1 also adds support for menu shortcut keys. The new MenuShortcut class represents a menu
shortcut key. An instance of this class may optionally be specified whenever you create a MenuItem
object. Again, different platforms use different modifier keys to invoke menu shortcuts, so when you
create a MenuShortcut object, you specify only the key in question (plus, optionally, the Shift key).
The system translates this into a platform-dependent shortcut using Ctrl, Alt, or some other modifier
key.

The example in Chapter 8, New AWT Features demonstrates both a popup menu and menu shortcuts.

Keyboard Focus Traversal

The ability to operate a GUI without using the mouse is an important feature of any windowing toolkit.
The addition of menu shortcuts in Java 1.1 is an important step in this direction. Java 1.1 also adds
rudimentary facilities for keyboard focus traversal (i.e., moving keyboard focus among the individual
components in a window) using the Tab and Shift-Tab keys.

Under the new focus traversal scheme, components within a container are traversed in the order in which
they were added to the container. (Note, however, that it is possible to override this order by specifying
an explicit position within the container's component list for a new component as it is added to the
container with the add() method.) Beyond adding components to their container in the order desired for
traversal, nothing else is required of the programmer in order to make keyboard focus traversal work.

If you are creating a custom component that can accept keyboard focus, you should override the
isFocusTraversable() method to return true. The component should call the
requestFocus() method it inherits from Component when the user clicks on it or otherwise
activates it. Finally, when a component receives focus, (i.e., when its processFocusEvent()
method is invoked), it should provide some sort of visual indication, such as a highlighted border, that it
has the focus.

Miscellaneous Improvements

The SystemColor class represents a color used by the desktop system. On some platforms, these
colors may be dynamically updated while the system is running. The SystemColor class also

implements quite a few constants that represent system colors for various GUI components. Thus, if you
want your GUIs to match the desktop color scheme, you might create them using colors such as
SystemColor.menu (the background color for menus) and SystemColor.menuText (foreground
color for menus), for example.

The treatment of fonts has been changed and improved somewhat in Java 1.1. The use of the font names
"TimesRoman," "Helvetica," and "Courier" is now discouraged. Instead, you should use "serif,"
"sansserif," and "monospaced"--these names convey the essential style of the font face, without
specifying the exact font to be used. The font names "Dialog" and "DialogInput" are still supported in
Java 1.1. An important reason for switching to generic font names is that Java can now display any
Unicode character for which there is an appropriate font installed on the host system. The names "serif"
and "sansserif" have meaning even when applied to non-Latin character sets, such as Japanese Kanji
characters; the names "timesroman" and "helvetica" clearly do not. Another result of this fuller Unicode
support is that the use of the "ZapfDingbats" font is also discouraged. Instead, regardless of what font
you are using, you can simply encode these graphical symbols using Unicode characters between
\u2700 and \u27ff. (See Chapter 11, Internationalization for an example.) This improved support for
Unicode makes it much easier to write internationalized programs in Java.

In Java 1.0, mouse cursors could only be specified for a Frame. In Java 1.1, every component can have a
its own cursor, represented by the new Cursor object. There are new methods of Component for
setting and querying the cursor. This change does not add any new predefined cursor images, nor does it
add the ability to create custom cursors; it merely allows you to specify a cursor for any arbitrary
component, and to do so in a more logical fashion.

The ScrollPane class is new in Java 1.1. It is a Container that makes it very easy to scroll a large
component or GUI within a smaller visible area. Doing this in Java 1.0 required a custom container, and
suffered from some serious performance problems. Chapter 8, New AWT Features shows the use of a
ScrollPane object.

Another new feature is the ability to create "lightweight components." These are components and
containers that do not have a native window of their own. In Java 1.0, custom components and containers
had to be subclassed from Canvas or Panel. In Java 1.1, however, you can subclass Component and
Container directly. Doing so creates a simpler component or container, without the overhead of a
native window. It also allows you to create partially transparent components that appear non-rectangular.

Java 1.1 also includes several miscellaneous changes to clipping and image manipulation:

● The Graphics class defines a method to set an arbitrary clipping rectangle, even to one that is
larger than the current clipping region. There is also a new method to query the current clipping
region.

● Graphics also defines two new drawImage() methods that are more flexible than the

existing drawImage() methods. These new methods allow arbitrary image cropping, scaling,
and flipping.

● There are two new classes, ReplicateScaleFilter and
AreaAveragingScaleFilter, that can be used to scale an image as it is loaded, and a new
convenience method, Image.getScaledInstance(), to obtain a new Image object that
contains a scaled version of some other Image.

● New methods have been added to the MemoryImageSource class that allow images generated
from memory to be dynamically and efficiently updated, allowing a kind of image animation.

● New methods have been added to the PixelGrabber class to make it more efficient and
flexible to use.

Deprecated Features Internationalization

Chapter 4
What's New in Java 1.1

4.4 Deprecated Features

Although you can use the old AWT event model in Java 1.1, it has been officially "deprecated," and its
use in new software is discouraged. When you compile code that uses the 1.0 event model, you'll be
made aware of this by the "deprecation warning" that the javac compiler issues. This warning notifies
you that your code relies on methods or classes in the Java API that have been superseded by newer,
preferred alternatives. If you compile using the -deprecation flag, javac provides a detailed warning
about each use of a deprecated feature. You can simply ignore these warnings, but when time permits,
the better approach is to update your code so that it no longer relies on deprecated features of the Java
API. While it is not strictly true to say that deprecated features are "unsupported," they will almost
certainly receive far less support in practice than the features that replace them.

The reason that the compiler is able to issue deprecation warnings at all is the addition of a new
@deprecated tag to the documentation-comment syntax of Java 1.1. As you may be aware, comments
that begin with the /** character sequence are treated specially in Java, and are used by the javadoc tool
to automatically generate online documentation for packages, classes, methods, and fields. Prior to Java
1.1, the compiler ignored the contents of documentation comments. In Java 1.1, however, it scans these
comments for the @deprecated tag. If it is found, the compiler marks the class, interface, constructor,
method, or field following the comment as deprecated, and issues a warning when the deprecated feature
is used.

The old AWT event-handling model is not the only Java 1.0 feature that has been deprecated in Java 1.1;
merely the one you are most likely to encounter first. A number of common AWT component methods
have been renamed, to follow a more regular naming scheme that fits the JavaBeans naming conventions.
These methods can be invoked by the old name or the new, but if you use the old name, you'll be
rewarded with a deprecation warning. Fortunately, in simple cases like this, it is trivial to write a script or
program to mechanically convert from the old name to the new. Other areas of the Java API have been
deprecated as well. You'll notice that a few of the input and output stream classes in the java.io
package have been deprecated and superseded by "Reader" and "Writer" stream classes, for example.

The New AWT Event Model Other AWT Improvements

Chapter 4
What's New in Java 1.1

4.3 The New AWT Event Model

The Java 1.1 change that will probably affect Java programmers the most is the new event processing
model adopted for the AWT windowing and graphical user interface (GUI) toolkit. If you created applets
or GUIs with Java 1.0, you know that it was necessary to subclass GUI components in order to handle
events. This model worked okay for simple programs, but proved increasingly awkward as programs
became more complex. Furthermore, with the development of the JavaBeans API, the AWT package
needed an event model that would allow AWT GUI components to serve as beans. For these reasons,
Java 1.1 defines a new model for dispatching and handling events.

As explained in Chapter 7, Events, the new event handling model is essentially a "callback" model. When
you create a GUI component, you tell it what method or methods it should invoke when a particular
event occurs on it (e.g., when the user clicks on a button or selects an item from a list). This model is
very easy to use in C and C++ because those languages allow you to manipulate method pointers--to
specify a callback, all you need to do is pass a pointer to the appropriate function. In Java, however,
methods are not data and cannot be manipulated in this way. Only objects can be passed like this in Java,
so to define a Java callback, you must define a class that implements some particular interface. Then, you
can pass an instance of that class to a GUI component as a way of specifying the callback. When the
desired event occurs, the GUI component invokes the appropriate method of the object you have
specified.

As you might imagine, this new event handling model can lead to the creation of many small helper
classes. (Sometimes these helper classes are known as "adaptor classes" because they serve as the
interface between the body of an application and the GUI for that application. They are the "adaptors"
that allow the GUI to be "plugged in" to the application.) This proliferation of small classes could
become quite a burden, were it not for the introduction of inner classes, which, as noted above, allows
this kind of special-purpose class to be nested and defined exactly where it is needed within your
program.

Despite the major AWT event-handling changes, Java 1.1 does retain backwards compatibility with the
event-handling model of Java 1.0. It is an all-or-nothing type of backwards compatibility, however--the
two models are so different from each other that it is not really possible to mix them within the same

application.

Inner Classes Deprecated Features

Chapter 4
What's New in Java 1.1

4.2 Inner Classes

While the bulk of the changes in Java 1.1 are additions to the core Java API, there has also been a major
addition to the language itself. The language has been extended to allow class definitions to be nested
within other classes, and even to be defined locally, within blocks of code. Altogether, there are four new
types of classes that can be defined in Java 1.1; these four new types are sometimes loosely referred to as
"inner classes."

Chapter 5, Inner Classes and Other New Language Features explains in detail how to define and use
each of the four new types of classes. As we'll see, inner classes are useful primarily for defining simple
"helper" or "adaptor" classes that serve a very specific function at a particular place in a program, and are
not intended to be general-purpose "top-level" classes. By using inner classes nested within other classes,
you can place the definition of these special-purpose helper classes closer to where they are actually used
in your programs. This makes your code clearer, and also prevents you from cluttering up the package
namespace with small special purpose classes that are not of interest to programmers using your package.
We'll also see that inner classes are particularly useful in conjunction with the new AWT event model in
Java 1.1.

One important feature of inner classes is that no changes to the Java Virtual Machine are required to
support them. When a Java 1.1 compiler encounters an inner class, it transforms the Java 1.1 source code
in a way that converts the nested class to a regular top-level class. Once that transformation has been
performed, the code can be compiled just as it would have been in Java 1.0.

Java 1.1 Package-by-Package The New AWT Event Model

Chapter 4

4. What's New in Java 1.1
Contents:
Inner Classes
The New AWT Event Model
Deprecated Features
Other AWT Improvements
Internationalization
Object Serialization
Reflection
Java Beans
Enterprise APIs: JDBC, RMI, and Security
Applet Changes
New JDK Utilities

Java 1.1 is a huge new release. The number of packages in the API has increased from 8 in Java 1.0 to 23
in Java 1.1, and the number of classes has more than doubled from 211 to 503. On top of these changes to
the core Java class libraries, there have been some important changes to the language itself. Also, the
JDK--the Java Development Kit from Sun--includes a number of new tools in version 1.1.

The new features of Java 1.1 include:

Inner classes

Changes to the Java language itself to allow classes to be nested within each other, and within
blocks of code.

Java Beans

A framework for defining reusable modular software components.

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_11.htm

Internationalization

A variety of new features that make it possible to write programs that run around the globe.

New event model

A new model for handling events in graphical user interfaces that should make it easier to create
those interfaces.

Other new AWT features

The Java 1.1 AWT includes support for printing, cut-and-paste, popup menus, menu shortcuts, and
focus traversal. It has improved support for colors, fonts, cursors, scrolling, image manipulation,
and clipping.

Applets

JAR files allow all of an applet's files to be grouped into a single archive. Digital signatures allow
trusted applets to run with fewer security restrictions. The HTML <APPLET> tag has new
features.

Object serialization

Objects can now be easily "serialized" and sent over the network or written to disk for persistent
storage.

Reflection

Java programs can now "reflect" upon themselves or upon an arbitrary class to determine the
methods and fields defined by the class, the arguments passed to a method, and so on. The
Reflection API also allows the invocation of methods specified by name.

Security

Java 1.1 includes a new package that supports digital signatures, message digests, key
management, and access control lists.

Java Database Connectivity (JDBC)

A new package that allows Java programs to send SQL queries to database servers. It includes a
"bridge" that allows it to inter-operate with existing ODBC database servers.

Remote Method Invocation (RMI)

An interface that supports distributed Java applications in which a program running on one
computer can invoke methods of Java objects that exist on a different computer.

These and other new features are summarized in the sections below. Many of them are also described in
more detail elsewhere in this book.

4.1 Java 1.1 Package-by-Package

The packages and classes of the Java class library are interlinked and interdependent. Many of the major
new features of Java 1.1 rely on classes from multiple packages in the Java API. Before we examine
those new features in detail, therefore, we need to understand the big picture of Java 1.1. The paragraphs
below discuss each of the 23 packages that constitute the core API for Java 1.1; they introduce the new
packages and explain the changes to existing packages.

java.applet

Despite the introduction of JAR files, digitally signed applets, and new attributes of the
<APPLET> tag, the java.applet package has not changed in any significant way.

java.awt

The java.awt package contains new classes and interfaces to support printing, popup menus,
and menu shortcuts, and to improve support for layout management, cursors, scrolling, colors, and
clipping. Several classes provide support for the new AWT event model, but most event support is
contained in one of several new sub-packages of java.awt.

java.awt.datatransfer

The classes and interfaces in this package define a generic framework for inter-application (and
intra-application) data transfer. This package also includes classes to support a clipboard-based cut-
and-paste data transfer model. In the future, this package may be extended to include support for
data transfer through a drag-and-drop metaphor. One of the two underlying data transfer
mechanisms supported by this package relies on the Object Serialization API of the java.io
package.

java.awt.event

This package defines the classes and interfaces of the new AWT event handling model. The

classes and interfaces of this package fall into three categories:

❍ Event classes--the classes that actually represent events.

❍ Event "listeners"--interfaces that define methods that must be implemented by objects
interested in being notified when an event of a particular type occurs.

❍ Event "adaptors"--trivial no-op implementations of the event listener interfaces that are
suitable for easy subclassing.

All the events and event listeners defined in this package extend the EventObject class or the
EventListener interface defined in java.util.

java.awt.image

This package has two new image filter classes that implement improved image scaling. Changes
have also been made to the MemoryImageSource and PixelGrabber classes.

java.awt.peer

The changes to this package for the most part simply reflect changes to java.awt. There are
new interfaces that represent a platform-dependent popup menu and scrolling area, for example.

java.beans

This package constitutes the much-touted JavaBeans API for creating and using embeddable,
reusable software components. The classes and interfaces in this package can be used at three
different levels:

❍ To create application builder tools that programmers (or even non-programmers) can use to
compose applications out of individual Java beans.

❍ To develop Java beans for use in such application builders.

❍ To develop applications (without using a builder tool) that use Java beans.

Most of the classes and interfaces of the package are for use by application builders or by
developers of advanced beans. Programmers using beans or writing simple beans do not need to be
familiar with most of the package.

Application builders that manipulate beans rely on the Reflection API defined in

java.lang.reflect, and many beans take advantage of the Object Serialization API defined
in the java.io package. The JavaBeans API uses the same event model that the Java 1.1 AWT
does, and event-related classes and interfaces in this package are extensions of a class and an
interface defined in java.util.

java.io

The java.io package has become by far the largest of the core Java packages. This is because
Java 1.1 adds:

❍ A complete suite of new "character stream" classes to complement most of the existing
"byte stream" input and output classes. These new "reader" and "writer" streams offer
improved efficiency and support internationalization for textual input and output.

❍ New classes and interfaces to support object serialization.

❍ A number of new IOException types.

java.lang

This package has several new Exception and Error types, as well as new Byte, Short, and
Void classes. With the addition of these new classes, all primitive Java data types (including the
void type) have corresponding object types. This is important for the java.lang.reflect
package, which defines the new Reflection API. In addition, the Class class has been greatly
enhanced for use with the Reflection API. Class and ClassLoader have methods to locate
"resources" associated with a class, such as images, audio files, Properties files, and so on.
Resources are important for internationalization in Java 1.1.

java.lang.reflect

This new package enables a Java program to examine the structure of Java classes and to "reflect
upon" its own structure. java.lang.reflect contains classes that represent the fields,
methods, and constructors of a class, and enable a program to obtain complete information about
any object, array, method, constructor, or field. The java.beans package relies heavily upon
this package.

java.math

This new package contains only two classes, which support arithmetic on arbitrary-size integers
and arbitrary-precision floating-point numbers. The BigInteger class also defines methods for
modular arithmetic, primality testing, and other features required for cryptography.

java.net

The changes to the java.net package are quite low-level. They include the addition of multicast
sockets, Unix-style socket options, and new exception types that provide finer granularity when
handling networking exceptions.

java.rmi

This package defines the fundamental classes and interfaces used for Remote Method Invocation.
Most of the classes in this package are exception types. Subpackages of java.rmi provide
additional, more specialized functionality. When objects must be passed as arguments to remote
methods, RMI relies on the object serialization functionality provided in the java.io package.

java.rmi.dgc

This small package defines the classes and interfaces required for distributed garbage collection
(DGC).

java.rmi.registry

This is another small package that defines the classes and interfaces required for a Java client to
look up a remote object by name or for a Java server to advertise the service it provides.

java.rmi.server

This package is the largest of the RMI packages and is at the heart of Remote Method Invocation.
It defines the classes and interface that allow a Java program to create an object that can be used
remotely by other Java programs.

java.security

This package contains the classes and interfaces that represent the fundamental abstractions of
cryptographic security: public and private keys, certificates, message digests, and digital
signatures. This package does not provide implementations of these abstractions; by design, the
Java Security API is implementation independent. Java 1.1 does include a default implementation,
but vendor-specific implementations may also be used in conjunction with this package. The
default security implementation relies on the BigInteger class defined in the java.math
package.

java.security.acl

This package defines high-level interfaces, and some exceptions, for manipulating access control

lists.

java.security.interfaces

This package defines a few interfaces that are required for the Java Security API's implementation-
independent design.

java.sql

This package is the Java Database Connectivity (JDBC) API. The classes and interfaces it contains
allow Java programs to send SQL queries to databases and retrieve the results of those queries.

java.text

The classes and interfaces in this package are used for internationalization. The package includes
classes for formatting dates, times, numbers, and textual messages in a manner appropriate for the
default locale, or for any specified locale. It also includes classes for collating strings according to
the rules of a given locale and iterating through the characters, words, and sentences of a string in
a locale-specific manner.

java.util

As its name indicates, the java.util package contains miscellaneous utility classes. In Java
1.1, new classes have been added to this package to support the AWT and Java Beans event
model, to define "locales" and "resource bundles" used for internationalization, and to manipulate
dates, times, and time zones.

java.util.zip

This package implements classes for computing checksums on streams of data, and for
compressing and archiving (and uncompressing and unarchiving) streams of data, using ZLIB
compression library and ZIP and GZIP file formats.

Summary Inner Classes

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_11.htm

Chapter 5
Inner Classes and Other New

Language Features

5.2 Nested Top-Level Classes and Interfaces

As explained above, a nested top-level class or interface is just like a regular package-member class or
interface, except that, for convenience, it has been nested within another class or interface. Note that nested top-
level classes and interfaces must be declared static. They can only be nested within other top-level classes
and interfaces (i.e., they cannot be declared within inner classes), but they can be nested to any depth.

Example 5.1 shows how you might define a nested top-level "helper" interface. Note the use of the static
keyword in the declaration of the interface. The example also shows how this interface is used both within the
class that contains it and by external classes. Note the use of its hierarchical name in the external class.

Example 5.1: Defining and Using a Nested Top-Level Interface

public class LinkedList {
 // This nested top-level helper interface is defined as a static member.
 public interface Linkable {
 public Linkable getNext();
 public void setNext(Linkable node);
 }
 // The head of the list is a Linkable object.
 Linkable head;
 // Method bodies omitted.
 public void insert(Linkable node) { ... }
 public remove(Linkable node) { ... }
}
// This class defines a type of node that we'd like to use in
// a linked list. Note the nested interface name in the implements clause.
class LinkableInteger implements LinkedList.Linkable
{
 // Here's the node's data and constructor.
 int i;
 public LinkableInteger(int i) { this.i = i; }
 // Here are the data and methods required to implement the interface.
 LinkedList.Linkable next;

 public LinkedList.Linkable getNext() { return next; }
 public void setNext(LinkedList.Linkable node) { next = node; }
}

The import statement can be used to import nested top-level classes and interfaces from the class that defines
them, just as it can be used to import package member top-level classes and interfaces from the package that
defines them. Example 5.2 shows a new definition of the LinkableInteger class from Example 5.1 that
uses an import statement to allow it to refer to the Linkable interface by its simple, unqualified name (i.e.,
the name of the enclosing class is no longer needed).

Example 5.2: Importing a Static Member Class

import LinkedList.*; // Or use import LinkedList.Linkable;
// Since we use an import statement, we can just type
// "Linkable" instead of "LinkedList.Linkable".
class LinkableInteger2 implements Linkable
{
 int i;
 public LinkableInteger2(int i) { this.i = i; }
 Linkable next;
 public Linkable getNext() { return next; }
 public void setNext(Linkable node) { next = node; }
}

Nested Top-Level Classes and .class Files

When you compile the LinkedList.java file shown in Example 5.1, you'll find that two class files are generated.
The first is named LinkedList.class, as expected. The second, however, is named LinkedList$Linkable.class. The
$ in this name is automatically inserted by the Java 1.1 compiler.

The Java Virtual Machine knows nothing about nested top-level classes and interfaces or the various types of
inner classes. Therefore, the Java compiler must convert these new types into standard, non-nested class files
that the Java interpreter can understand. This is done through source-code transformations that insert $
characters into nested class names. These source-code transformations may also insert hidden fields, methods,
and constructor arguments into the affected classes. Unless you are writing a Java 1.1 compiler, however, you
do not need to know the details of these source-code transformations, and you will typically not even notice
them, except in the names of class files. [2]

[2] See the Java Language Specification if you want complete details on the source-code
transformations performed by the Java 1.1 compiler to support inner classes.

An Overview of Inner Classes Member Classes

Chapter 5
Inner Classes and Other New

Language Features

5.3 Member Classes

While nested top-level classes are nested within a containing class, we've seen that they are still top-level classes,
and that the nesting is purely a matter of organizational convenience. The same is not true of member classes,
however. These classes are also nested, but they are not declared static, and in this case, the nesting is
significant. The main features of member classes are:

● Every instance of a member class is internally associated with an instance of the class that defines or contains
the member class.

● The methods of a member class can implicitly refer to the fields defined within the member class, as well as
those defined by any enclosing class, including private fields of the enclosing class.

Like nested top-level classes, member classes are commonly used for helper classes required by the enclosing class.
You use a member class instead of a nested top-level class when the member class requires access to the instance
fields of the enclosing class, or when every instance of the helper class must refer to an instance of the enclosing
class. When you use a member class, this reference from member class to enclosing class is implemented
automatically for you.

Let's return to the LinkedList example that we saw above. Suppose we want to add the ability to loop through
the elements in the linked list using the java.util.Enumeration interface. To do this, we define a separate
class that implements this interface, and then add a method to the LinkedList class that returns an instance of the
separate Enumeration class. Example 5.3 shows a typical Java 1.0-style implementation. [3]

[3] For simplicity, this example implements a very simple Enumeration class that is not thread-
safe and that may return incorrect results if items are added to or removed from the list while an
Enumeration object is in use.

Example 5.3: A LinkedList Enumerator, as a Separate Top-Level Class

import java.util.*;
public class LinkedList {
 // Our nested top-level interface. Body omitted here...
 public interface Linkable { ... }
 // The head of the list.

 Linkable head;
 // Method bodies omitted here.
 public void addToHead(Linkable node) { ... }
 public Linkable removeHead() { ... }
 // This method returns an Enumeration object for this LinkedList.
 public Enumeration enumerate() {
 return new LinkedListEnumerator(this);
 }
}
// This class defines the Enumeration type we use to list the elements in
// a LinkedList. Note that each LinkedListEnumerator object is associated
// with a particular LinkedList object which is passed to the constructor.
class LinkedListEnumerator implements Enumeration {
 private LinkedList container;
 private LinkedList.Linkable current;
 public LinkedListEnumerator(LinkedList l) {
 container = l;
 current = container.head;
 }
 public boolean hasMoreElements() { return (current != null); }
 public Object nextElement() {
 if (current == null) throw new NoSuchElementException("LinkedList");
 Object value = current;
 current = current.getNext();
 return value;
 }
}

The point to notice about the LinkedListEnumerator class in Example 5.3 is that we must explicitly pass a
LinkedList object to its constructor.

The problem with Example 5.3 is that LinkedListEnumerator is defined as a separate top-level class, when it
really would be more elegant to define it as part of the LinkedList class itself. In Java 1.1, this is easily done
using a member class, as shown in Example 5.4.

Example 5.4: A LinkedList Enumerator, as a Member Class

import java.util.*;
public class LinkedList
{
 // Our nested top-level interface. Body omitted here...
 public interface Linkable { ... }
 // The head of the list.
 // This field could be private except for inner class-related compiler bugs.
 /* private */ Linkable head;
 // Method bodies omitted here.
 public void addToHead(Linkable node) { ... }

 public Linkable removeHead() { ... }
 // This method returns an Enumeration object for this LinkedList.
 // Note: no LinkedList object is explicitly passed to the constructor.
 public Enumeration enumerate() { return new Enumerator(); }
 // And here is the implementation of the Enumeration interface,
 // defined as a private member class.
 private class Enumerator implements Enumeration {
 Linkable current;
 // Note: the constructor implicitly refers to 'head' in containing class.
 public Enumerator() { current = head; }
 public boolean hasMoreElements() { return (current != null); }
 public Object nextElement() {
 if (current == null) throw new NoSuchElementException("LinkedList");
 Object value = current;
 current = current.getNext();
 return value;
 }
 }
}

In this version of the example, notice how the Enumerator class is nested within the LinkedList class. There
is a real elegance to defining the helper class so close to where it is used by the containing class. [4] Of course, if
you compiled this example you'd find that the Enumerator member class is compiled to a file named
LinkedList$Enumerator.class--while one class is nested within the other in source code form, the same is not true of
their compiled byte-code forms.

[4] John Rose, the author of Sun's inner class specification, points out that the advantages of inner
classes are not only their elegance, but also their "conciseness, expressiveness, and modularity." He
says, "Even prosy-minded programmers who don't care a fig for prissy elegance...will appreciate the
fact that they can define their adapter classes right next to the code that needs them, and that they
won't have to manually wire the adapter to the main object...and that they won't have to pollute the
name space of the package..."

Notice that no instance of the containing LinkedList class is passed to the Enumerator() constructor of the
member class. A member class can refer to the members of its enclosing class implicitly; no explicit reference is
necessary. Also note that the Enumerator class makes use of the head field of the enclosing class, even though
head is declared private. Because the member class is defined within the enclosing class, it is "inside" the class
as far as the definition of private fields and methods is concerned. In general, member classes, as well as local
and anonymous classes can use the private fields and methods (and classes!) of their containing class. Similarly,
a containing class can use the private fields, methods, and classes of the classes it contains. And any two classes
that are enclosed by the same third class can access each other's private members. [5]

[5] As noted earlier, however, bugs in javac in current versions of JDK 1.1 prevent this kind of access
to private members. Until these bugs are fixed, you should use use package visibility instead of
private visibility.

How Member Classes Work

The Enumerator member class of LinkedList can refer to the head field of LinkedList because every
instance of a member class implicitly refers to an instance of the class that contains it--this is one of the fundamental
features of member classes. It works because the compiler automatically inserts a private field in the member
class to hold the required reference to the containing object. The compiler also automatically inserts a hidden
argument to all constructors of a member class and passes the containing object as the value of this argument. [6]
Once the compiler automatically adds this private field and constructor argument to the code in Example 5.4,
you can see that we end up with code very much like what we saw in Example 5.3!

[6] If you're curious about this, use javap -p to disassemble the class file of a member class. It shows
you both the inserted private field and the extra constructor argument.

Because the Java Virtual Machine has no notion of inner classes, the Java 1.1 compiler also must take special action
to allow member classes (and local and anonymous classes) to use the private fields and methods in their
enclosing classes (and vice versa). When a private field or method is used in a way that is allowed in Java 1.1,
but is not allowed by the Java interpreter, the compiler automatically inserts a special accessor method to allow the
access.

New Syntax for Member Classes

The most important feature of a member class is that it can implicitly refer to fields in its containing object. We saw
this in the following constructor from Example 5.4:

public Enumerator() { current = head; }

In this example, head is a field of the LinkedList class, and we assign it to the current field of the
Enumerator class. What if we want to make these references explicit? We could try code like this:

public Enumerator() { this.current = this.head; }

This code does not compile, however. this.current is fine; it is an explicit reference to the current field in
the newly created Enumerator object. It is the this.head expression that causes the problem--it refers to a
field named head in the Enumerator object. There is no such field, so the compiler generates an error. To
prevent this problem, Java 1.1 defines new syntax for explicitly referring to the containing instance of the current
instance of a member class. If we wanted to be explicit in our constructor, we'd use the new syntax like this:

public Enumerator() { this.current = LinkedList.this.head; }

Similarly, we can use LinkedList.this to refer to the containing LinkedList object itself. In general, the
syntax is classname.this, where classname is the name of a containing class. Note that member classes can
themselves contain member classes, nested to any depth, and no member class can have the same name as any
containing class. Thus, the use of the class name prepended to this is a perfectly general way to refer to any
containing instance, as the following nested class example demonstrates:

public class A {
 public String name = "a";

 public class B {
 public String name = "b";
 public class C {
 public String name = "c";
 public void print_names() {
 System.out.println(name); // "c": name field of class C
 System.out.println(this.name); // "c": name field of class C
 System.out.println(C.this.name); // "c": name field of class C
 System.out.println(B.this.name); // "b": name field of class B
 System.out.println(A.this.name); // "a": name field of class A
 }
 }
 }
}

Another new piece of Java 1.1 syntax has to do with the way member classes are created. As we've seen, member
classes work the way they do because the compiler automatically adds an argument to each member class
constructor. This argument passes a reference to the containing instance to the newly created member instance. Now
look again at our definition of the enumerate() method in Example 5.4:

public Enumeration enumerate() { return new Enumerator(); }

Nowhere in this new expression do we specify what the containing instance of the new Enumerator instance
should be. In this case, the this object is used as the containing instance, which is what you would expect to
happen. It is also what you want to occur in most cases. Nevertheless, Java 1.1 supports a new syntax that lets you
explicitly specify the containing instance when creating an instance of a member class. We can make our method
more explicit by using the following code:

public Enumeration enumerate() { return this.new Enumerator(); }

The syntax is containing_instance .new, where containing_instance is an expression that evaluates
to an instance of the class that defines the desired member class.

Let's look at another example of this syntax. Recall that we declared the Enumerator member class to be
private in Example 5.4. We did this for reasons of modularity and encapsulation. Suppose, however, that we had
given Enumerator package visibility. In that case, it would be accessible outside of the LinkedList class, and
we could instantiate our own copy of it. In order to create an instance of the member class
LinkedList.Enumerator, however, we must specify the instance of LinkedList that contains it (and is
implicitly passed to its constructor). Our code might look like the following:

// First create a linked list, and add elements to it (omitted).
LinkedList list = new LinkedList();
// Create an enumerator for the linked list. Note the syntax of the
// 'new' expression.
Enumerator e = list.new Enumerator();

As a more complex example, consider the following lines of code used to create an instance of class C nested within

an instance of class B nested within an instance of class A:

A a = new A(); // Create an instance of A.
A.B b = a.new B(); // Create an instance of B within the instance of A.
A.B.C c = b.new C(); // Create an instance of C within the instance of B.
c.print_names(); // Invoke a method of the instance of c.

Note that in the new expressions we name the class to be created relative to the instance that will contain it. That is,
we say b.new C(), not b.new A.B.C() .

There is one final piece of new Java 1.1 syntax related to member class instantiation and initialization. Before we
consider it, however, let me point out that you should rarely, if ever, need to use this syntax. It represents one of the
pathological cases that snuck into the language along with all the elegant features of inner classes.

The new syntax for the new operator described above allows us to specify the containing instance that is passed to
the constructor of a member class. There is one circumstance in which a constructor is invoked without the use of
the new operator--when it is invoked with the super keyword from a subclass constructor. As strange as it may
seem, it is possible for a top-level class to extend a member class. This means that the subclass does not have a
containing instance, but that its superclass does. When the subclass constructor invokes the superclass constructor, it
must specify the containing instance. It does this by prepending the containing instance and a period to the super
keyword. If we had not declared our Enumerator class to be a private member of LinkedList, then we
could subclass it. Although it is not clear why we would want to do so, we could write code like the following:

// A top-level class that extends a member class
class SpecialEnumerator extends LinkedList.Enumerator {
 // The constructor must take the LinkedList argument explicitly,
 // and then must pass it implicitly to the superclass constructor
 // using the new 'super' syntax.
 public SpecialEnumerator(LinkedList l) { l.super(); }
 // Here we override one or the other of the LinkedList.Enumerator
 // methods to have some kind of special behavior.
 . . .
}

Scope Versus Inheritance

Having noted that a top-level class can extend a member class, it is important to point out that with the introduction
of member classes there are two entirely separate hierarchies that must be considered for any class. The first is the
class hierarchy, from superclass to subclass, that defines the fields that a member class inherits. The second is the
containment hierarchy, from containing class to contained class, that defines the fields that are in the scope of (and
are therefore accessible to) the member class.

The two hierarchies are entirely distinct from each other, and it is important that you do not confuse them. This
should not be a problem if you refrain from creating name conflicts where a field or method in a superclass has the
same name as a field or method in a containing class. If such a name conflict does arise, however, the inherited field
or method hides (i.e., takes precedence over) the field or method of the same name in the containing class or classes.
This behavior is logical because when a class inherits a field or method, that field or method effectively becomes

part of that class. Therefore, inherited fields and methods are in the scope of the class that inherits them, and take
precedence over fields and methods by the same name in enclosing scopes.

Because this can be quite confusing, Java does not leave it to chance that you get it right! Whenever there is a name
conflict between an inherited field or method and a field or method in a containing class, Java 1.1 requires that you
explicitly specify which one you mean. For example, if a member class B inherits a field named x and is contained
within a class A that also defines a field named x, you must use this.x to specify the inherited field, or
A.this.x to specify the field in the containing class. An attempt to use the field x without an explicit specification
of the desired instance causes a compilation error.

A good way to prevent confusion between the class hierarchy and the containment hierarchy is to avoid deep
containment hierarchies. If a class is nested more than two levels deep, it is probably going to cause more confusion
than it is worth. Furthermore, if a class has a deep class hierarchy (i.e., if it has many superclass ancestors), consider
defining it as a top-level class rather than as a member class.

Restrictions on Member Classes

There are two important restrictions on member classes. First, they cannot have the same name as any containing
class or package. This is an important rule, and one that is not shared by fields and methods.

Second, member classes, like all inner classes, cannot contain any static members (fields, methods, or classes). The
justification for this restriction is that static fields, methods, and classes are "top level" constructs, and it is
therefore reasonable that they only be defined at the "top level"--i.e., within top-level classes. Defining a static, top-
level member within a non-top-level member class would simply promote confusion and bad programming style. It
is clearer (and therefore required) to define all static members within a top-level class. (Which may be a nested top-
level class, of course.)

Member Classes and Visibility Modifiers

A member class, like any member of a class, may be assigned one of three visibility levels: public, [7]
protected, or private. If none of these visibility modifiers is specified, the default "package" visibility is used.
However, as mentioned earlier, there have been no changes to the Java Virtual Machine to support member classes,
and member classes are compiled to class files just like top-level classes are. As far as the Java interpreter is
concerned, therefore, member classes, like top-level classes, can only have public or package visibility. Thus, a
member class declared protected is actually treated as a public class, and a member class declared private
actually has package visibility. While this is unfortunate, and is something you should be aware of, it does not
constitute a major security flaw.

[7] Because member classes are nested, and because of their nature as "helper" classes, it is unusual to
ever declare a member class public.

Note that this does not mean that you should never declare a member class as protected or private. Although
the interpreter cannot enforce these visibility attributes, the desired attributes are noted in the class file. This means
that any conforming Java 1.1 compiler can enforce the visibility attributes and prevent the member classes from
being accessed in unintended ways.

Nested Top-Level Classes and
Interfaces

Local Classes

Chapter 5
Inner Classes and Other New

Language Features

5.4 Local Classes

A local class is a class declared locally within a block of Java code. Typically, a local class is defined within a
method, but local classes can also be defined within static initializers and instance initializers of a class. (Instance
initializers are a new feature of Java 1.1 that we'll see later in this chapter.)

Because Java code can only appear within class definitions, all local classes are nested within a containing class.
For this reason, local classes share many of the features of member classes. It is usually more appropriate,
however, to think of them as an entirely separate kind of inner class. A local class has approximately the same
relationship to a member class as a local variable has to an instance variable of a class. Local classes have the
following interesting features:

● They are only visible and usable within the block of code in which they are defined.

● They can use any final local variables or method parameters that are visible from the scope in which they
are defined. [8]

[8] As we'll see shortly, one of the other language changes in Java 1.1 is that local variables
and method parameters can be declared final.

The first defining characteristic of a local class is obviously that it is local. Like a local variable, the name of a
local class is only valid within the block of code in which it was defined (and within any blocks nested with that
block, of course). In many cases, this is not a problem. If a helper class is used only within a single method of a
containing class, there is no reason that that helper cannot be coded as a local class rather than a member class.
Example 5.5 shows how we can modify the enumerate() method of the LinkedList class we saw in
previous examples so that it defines the Enumerator class as a local class, rather than as a member class. By
doing this, we move the definition of the helper class even closer to the location where it is used and hopefully
improve the clarity of the code even further.

Example 5.5: Defining and Using a Local Class

import java.util.*;
public class LinkedList
{

 // Our nested top-level interface. Body omitted here...
 public interface Linkable { ... }
 // The head of the list
 /* private */ Linkable head;
 // Method bodies omitted here.
 public void addToHead(Linkable node) { ... }
 public Linkable removeHead() { ... }
 // This method creates and returns an Enumeration object for this
 // LinkedList.
 public Enumeration enumerate()
 {
 // Here's the definition of Enumerator as a local class.
 class Enumerator implements Enumeration {
 Linkable current;
 public Enumerator() { this.current = LinkedList.this.head; }
 public boolean hasMoreElements() { return (current != null); }
 public Object nextElement() {
 if (current == null) throw new NoSuchElementException("LinkedList");
 Object value = current;
 current = current.getNext();
 return value;
 }
 }
 // Create and return an instance of the Enumerator class defined here.
 return new Enumerator();
 }
}

How Local Classes Work

A local class is able to refer to fields and methods in its containing class for exactly the same reason that a member
class can--it is passed a hidden reference to the containing class in its constructor, and it saves that reference away
in a private field added by the compiler. Also like member classes, local classes can use private fields and
methods of their containing class, because the compiler inserts any required accessor methods. [9]

[9] As previously noted, bugs in the compiler prevent this from working correctly in the current
versions of the JDK.

What makes local classes different from member classes is that they have the ability to refer to local variables from
the scope that defines them. The crucial restriction on this ability, however, is that local classes can only reference
local variables and parameters that are declared final. The reason for this is apparent from the implementation.
A local class can use local variables because the compiler automatically gives the class a private instance field
to hold a copy of each local variable the class refers to. The compiler also adds hidden arguments to each of the
local class constructors to initialize these automatically created private fields to the appropriate values. So, in
fact, a local class does not actually access local variables, but merely its own private copies of them. The only way
this can work correctly is if the local variables are declared final, so that they are guaranteed not to change.
With this guarantee, the local class can be assured that its internal copies of the variables are "in sync" with the real

local variables.

New Syntax for Local Classes

In Java 1.0, only fields, methods, and classes may be declared final. The addition of local classes to Java 1.1 has
required a liberalization in the use of the final modifier. It can now be applied to local variables, arguments to
methods, and even to the exception parameter of a catch statement (Local classes can refer to catch
parameters, just as they can refer to method parameters, as long as they are in scope and are declared final.) The
meaning of the final modifier remains the same in these new uses: once the local variable or argument has been
assigned a value, that value may not be changed.

Instances of local classes, like instances of member classes, have an enclosing instance that is implicitly passed to
all constructors of the local class. Local classes can use the same new this syntax that member classes do to
explicitly refer to members of enclosing classes. Local classes cannot use the new new and super syntax used by
member classes, however.

Restrictions on Local Classes

Like member classes, and for the same reasons, local classes cannot contain fields, methods, or classes that are
declared static. static members must be declared at the top level. Since nested interfaces are implicitly
static, local classes may not contain nested interface definitions.

Another restriction on local classes is that they cannot be declared public, protected, private, or
static. These modifiers are all used for members of classes, and are not allowed with local variable
declarations; for the same reason they are not allowed with local class declarations.

And finally, a local class, like a member class, cannot have the same name as any of its enclosing classes.

Typical Uses of Local Classes

One common application of local classes is to implement "event listeners" for use with the new event model
implemented by AWT and JavaBeans in Java 1.1. An event listener is a class that implements a specific "listener"
interface. This listener is registered with an AWT component, such as a Button, or with some other "event
source." When the Button (or other source) is clicked (or activated in some way), it responds to this event by
invoking a method of the event listener. Since Java does not support method pointers, implementing a pre-defined
interface is Java's way of defining a "callback" that is notified when some event occurs. The classes used to
implement these interfaces are often called adapter classes. Working with adapter classes can become quite
cumbersome when they all must be defined as top-level classes. But the introduction of local classes makes them
much easier to use. Example 5.6 shows a local class used as an adapter class for handling GUI events. [10] This
example also shows how a local class can make use of a method parameter that is declared final.

[10] As we'll see in the next section, this adapter class could be written more succinctly as an
anonymous class.

Example 5.6: Using a Local Class as an Adapter

import java.awt.*;
import java.awt.event.*;
// This class implements the functionality of some application.
public class Application {
 // These are some constants used as the command argument to doCommand().
 static final int save = 1;
 static final int load = 2;
 static final int quit = 3;
 // This method dispatches all the commands to the application.
 // Body omitted.
 void doCommand(int command) { }
 // Other methods of the application omitted...
}
// This class defines a GUI for the application.
class GUI extends Frame {
 Application app; // holds a reference to the Application instance
 // Constructor and other methods omitted here...

 // This is a convenience method used to create menu items with
 // a specified label, keyboard shortcut, and command to be executed.
 // We declare the "command" argument final so the local
 // ActionListener class can refer to it.
 MenuItem createMenuItem(String label, char shortcut, final int command)
 {
 // First we create a MenuItem object.
 MenuItem item = new MenuItem(label, new MenuShortcut(shortcut));
 // Then we define a local class to serve as our ActionListener.
 class MenuItemListener implements ActionListener {
 // Note that this method uses the app field of the enclosing class
 // and the (final) command argument from its containing scope.
 public void actionPerformed(ActionEvent e) {
 app.doCommand(command);
 }
 }
 // Next, we create an instance of our local class that will be
 // the particular action listener for this MenuItem.
 ActionListener listener = new MenuItemListener();
 // Then we register the ActionListener for our new MenuItem.
 item.addActionListener(listener);
 // And return the item, ready to be inserted into a menu.
 return item;
 }
}

createMenuItem() is the method of interest in Example 5.6. It creates a MenuItem object with the specified
label and keyboard shortcut, and then uses a local class to create an ActionListener object for the menu item.

The ActionListener is responsible for translating the selection of the MenuItem into an invocation of the
application's doCommand() method. Note that the command method parameter is declared final so it can be
used by the local class. Also note that the local class uses the app field of the class that contains it. Because this is
an instance variable instead of a local variable, it does not need to be declared final.

A local class can use fields defined within the local class itself or inherited by the local class, final local
variables and final parameters in the scope of the local class definition, and fields defined by or inherited by the
containing class. Example 5.7 is a program that demonstrates these various fields and variables that are accessible
to a local class. If you can make sense of the code, you have a good understanding of local classes.

Example 5.7: Fields and Variables Accessible to a Local Class

class A { protected char a = 'a'; }
class B { protected char b = 'b'; }
public class C extends A
{
 private char c = 'c'; // Private fields visible to local class.
 public static char d = 'd';
 public void createLocalObject(final char e)
 {
 final char f = 'f';
 int i = 0; // i not final; not usable by local class.
 class Local extends B
 {
 char g = 'g';
 public void printVars()
 {
 // All of these fields and variables are accessible to this class.
 System.out.println(g); // (this.g) g is a field of this class.
 System.out.println(f); // f is a final local variable.
 System.out.println(e); // e is a final local argument.
 System.out.println(d); // (C.this.d) d -- field of containing class.
 System.out.println(c); // (C.this.c) c -- field of containing class.
 System.out.println(b); // b is inherited by this class.
 System.out.println(a); // a is inherited by the containing class.
 }
 }
 Local l = this.new Local(); // Create an instance of the local class
 l.printVars(); // and call its printVars() method.
 }

 public static void main(String[] args)
 {
 // Create an instance of the containing class, and invoke the
 // method that defines and creates the local class.
 C c = new C();
 c.createLocalObject('e'); // pass a value for final parameter e.

 }
}

Member Classes Anonymous Classes

Chapter 5
Inner Classes and Other New

Language Features

5.5 Anonymous Classes

An anonymous class is essentially a local class without a name. Instead of defining a local class and then
instantiating it, you can often use an anonymous class to combine these two steps. Anonymous classes are very
commonly used as adapter classes, like the one we saw in Example 5.6. As we'll see, anonymous classes (and
their corresponding anonymous objects) are created through another extension to the syntax of the new operator.
Thus, an anonymous class is defined by a Java expression, not a Java statement. This means that an anonymous
class definition can be included within a larger Java expression such as an assignment or method call.

Example 5.8 shows the use of an anonymous class to implement the java.io.FilenameFilter interface.
The implementation in this example is used to list only the files whose names end with .java from a specified
directory.

Example 5.8: Implementing an Interface with an Anonymous Class

import java.io.*;
// A simple program to list all Java source code files in a directory
// specified as a command-line argument.
public class Lister
{
 public static void main(String[] args)
 {
 File f = new File(args[0]); // f represents the specified directory.
 // List the files in the directory, using the specified filter object.
 // The anonymous class is defined as part of a method call expression.
 String[] list = f.list(new FilenameFilter() {
 public boolean accept(File f, String s) {
 return s.endsWith(".java");
 }
 });
 for(int i = 0; i < list.length; i++) // output the list
 System.out.println(list[i]);
 }
}

As you can see in Example 5.8, the syntax for defining an anonymous class and creating an instance of that class
is a regular new expression, followed by a class body definition in curly braces. If the name following the new
keyword is the name of a class, the anonymous class is a subclass of the named class. If the name following new
specifies an interface, as in our example, the anonymous class is an implementation of the interface. In this case,
the anonymous class is always a subclass of Object--there is no way to specify an extends clause (or an
implements clause). In addition, since this syntax creates an anonymous class, there is obviously no way to
specify a name for the newly defined class.

Because an anonymous class has no name, it is not possible to define constructors for it within the class body.
This is one of the basic restrictions on anonymous classes. Any arguments you specify between the parentheses
following the superclass name in an anonymous class definition are implicitly passed to the superclass
constructor. Anonymous classes are commonly used to subclass simple classes that do not take any constructor
arguments, so the parentheses in the anonymous class definition syntax are often empty, as we saw in Example
5.8. When you use an anonymous class to implement an interface, the constructor argument list is always empty,
of course, since the superclass constructor, Object(), expects no arguments.

One of the most elegant things about anonymous classes is that they allow you to define a one-shot class exactly
where it is needed. Other important features are the succinctness of the syntax and the fact that no clutter is
created by an unnecessary name.

Since anonymous classes have no names, you may wonder what the class files that represent them are named. If
you compile the example shown in Example 5.8 you'll find that it produces two class files, Lister.class and
Lister$1.class. Anonymous classes are given numbers to produce unique class file names based on the name of
the containing class.

Anonymous Class Indentation and Formatting

The common indentation and formatting conventions we are familiar with for languages like Java and C begin to
break down somewhat once we start placing class definitions within arbitrary expressions. Based on their
experience with inner classes, the engineers at JavaSoft recommend the following formatting rules, which are
followed in Example 5.8:

● The opening curly brace should not be on a line by itself; instead, it should follow the close parenthesis of
the new operator. Similarly, the new operator should, when possible, appear on the same line as the
assignment or other expression of which it is a part.

● The body of the anonymous class should be indented relative to the beginning of the line that contains the
new keyword.

● The closing curly brace of an anonymous class should not be on a line by itself either; it should be
followed by whatever tokens are required by the rest of the expression. Often this is a semicolon or a close
parenthesis followed by a semicolon. This extra punctuation serves as a flag to the reader that this is not
just an ordinary block of code, and makes it easier to make sense of anonymous classes in a code listing.

Anonymous Classes versus Local Classes

As we've discussed, an anonymous class behaves just like a local class, and is distinguished from a local class
merely in the syntax used to define and instantiate it. In your own code, when you have to choose between using
an anonymous class or using a local class, the decision often comes down to stylistic matters. You should use
whichever syntax makes your code clearer. In general, you should consider using an anonymous class instead of
a local class if:

● The class has a very short body.

● Only one instance of the class is needed.

● The class is used right after it is defined.

● The name of the class does not make your code any easier to understand.

When considering the use of an anonymous class, there are two important restrictions to bear in mind:

● An anonymous class has no name, and the syntax for defining one combines definition with instantiation.
Thus, using an anonymous class instead of a local class is not appropriate if you need to create more than
a single instance of the class each time the containing block is executed.

● It is not possible to define constructors for anonymous classes. If your class requires a constructor, you
must use a local class instead. However, as we'll see, the Java syntax has been extended to allow "instance
initializers" to be defined for a class; an instance initializer can often substitute for a constructor.

Consider Example 5.9, which shows the Enumeration class we've used throughout this chapter implemented
as an anonymous class within the enumerate() method of the LinkedList class. Compare it with Example
5.5, which shows the same class implemented as a local class. In this case, because of the size of the class in
question, using local class syntax probably results in code that is a little clearer. Still, if you are a fan of
anonymous classes, you might choose to code the example in this way.

Example 5.9: An Enumeration Implemented with an Anonymous Class

import java.util.*;
public class LinkedList
{
 // Our nested top-level interface. Body omitted here...
 public interface Linkable { ... }
 // The head of the list.
 /* private */ Linkable head;
 // Method bodies omitted here.
 public void addToHead(Linkable node) { ... }
 public Linkable removeHead() { ... }
 // This method creates and returns an Enumeration object for this

 // LinkedList.
 public Enumeration enumerate()
 {
 // Instantiate and return this implementation.
 return new Enumeration() {
 Linkable current = head; // This used to be in the constructor, but
 // anonymous classes don't have constructors.
 public boolean hasMoreElements() { return (current != null); }
 public Object nextElement() {
 if (current == null) throw new NoSuchElementException("LinkedList");
 Object value = current;
 current = current.getNext();
 return value;
 }
 }; // Note the required semicolon. It terminates the return statement.
 }
}

As another example, consider Example 5.10, which shows the createMenuItem() method of Example 5.6
rewritten to use an anonymous class instead of a local class. In this case, using an anonymous class is probably
the right thing to do.

Example 5.10: Using an Anonymous Class as an Adapter

MenuItem createMenuItem(String label, char shortcut, final int command)
{
 // First we create a MenuItem object.
 MenuItem item = new MenuItem(label, new MenuShortcut(shortcut));
 // Then we register an anonymous ActionListener for our new MenuItem.
 item.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) { app.doCommand(command); }
 });
 // And return the item, ready to be inserted into a menu.
 return item;
}

New Java Syntax for Anonymous Classes

We've already seen examples of the syntax for defining and instantiating an anonymous class. More formally, we
can write it as the following:

new class-name ([argument-list]) { class-body }

or

new interface-name () { class-body }

There is one additional new piece of syntax to support anonymous classes. As noted, anonymous classes cannot
define constructors, since they do not have names. Therefore Java 1.1 adds a feature known as an instance
initializer, which is similar to the static initializer of Java 1.0. Example 5.11 illustrates this new syntax.

Example 5.11: Java 1.1 Instance Initializers

public class InitializerDemo
{
 // This is an instance variable.
 public int[] array1;
 // This is an instance initializer. It is an arbitrary block of code.
 // It runs for every new instance, after the superclass constructor
 // and before the class constructor, if any. It can serve the same
 // function as a constructor with no arguments.
 {
 array1 = new int[10];
 for(int i = 0; i < 10; i++) array1[i] = i;
 }
 // The line below contains another instance initializer. The instance
 // initializers for an object are run in the order in which they appear
 // in the class definition.
 int[] array2 = new int[10]; { for(int i=0; i<10; i++) array2[i] = i*2; }
 static int[] static_array = new int[10];
 // By contrast, the block below is a static initializer. Note the static
 // keyword. It runs only once, when the class is first loaded.
 static {
 for(int i = 0; i < 10; i++) static_array[i] = i;
 }
}

An instance initializer is simply a block of code inside curly braces that is embedded in a class definition, where a
field or method definition normally appears. [11] A class (any class--not just anonymous classes) can have any
number of instance initializers. The instance initializers and any variable initializers that appear in field
definitions for the class are executed in the order they appear in the Java source code. These initializers are
automatically run after the superclass constructor has returned but before the constructor, if any, of the current
class runs.

[11] Notice that Java 1.1 now allows blocks of code to be inserted in class definitions, and local
class definitions to be inserted in blocks of code.

Because an instance initializer can serve the same function as a no-argument constructor method, these
initializers are particularly useful for anonymous classes. They can also be useful in non-anonymous classes.
Instance initializers allow you to initialize an object's fields near the definition of those fields, rather than
deferring that initialization to a constructor defined further away in the class. Used in this way, they can

sometimes improve code readability.

Restrictions on Anonymous Classes

Because anonymous classes are just a type of local class, they share the same restrictions: an anonymous class
cannot define any static fields, methods, or classes. Since nested interfaces are implicitly static, they
cannot be defined within anonymous classes. Similarly, interfaces cannot be defined anonymously.

Anonymous classes, like local classes, cannot be public, private, protected, or static. In fact, the
syntax for defining anonymous classes does not allow any modifiers to be specified.

Local Classes Other New Features of Java
1.1

Chapter 5
Inner Classes and Other New

Language Features

5.6 Other New Features of Java 1.1

While the addition of inner classes is by far the most important and far-reaching change to the Java
language in Java 1.1, there have been several other changes to the language as well. They are:

● final local variables, method parameters and catch statement parameters

● Instance initializers

● "Blank finals"--final variable and field declarations without initializer expressions

● Anonymous arrays

● Class literals

As you can see, the first two items in this list are language changes that are related to, though not
exclusively used by, the inner class changes. We covered final local variables and parameters in our
discussion of local classes above. And we covered instance initializers in the discussion of anonymous
classes. The following subsections discuss the remaining three changes.

Blank Finals

We've already seen that local variables, method parameters, and exception parameters of catch
statements may be declared final. A related change is that final fields do not require initializers. In
Java 1.0, any final field had to be initialized as part of the field declaration. In Java 1.1, this restriction
has been relaxed. A field or local variable can be declared final without specifying an intial value as
part of the declaration. These "blank finals," as they are called, must have a value assigned to them
before they are ever used, of course. And, once a value has been assigned to a blank final, that value can
never be changed. This allows you, for example, to use an instance initializer or a constructor to compute
a value for a final field.

Blank finals are particularly useful in defining immutable data types. They allow a class to have
immutable fields that are initialized based on run-time arguments to a constructor. Once assigned, these
fields cannot be accidentally or maliciously changed.

Anonymous Arrays

In Java 1.0, you can create and initialize an array with code like the following:

int[] a = {1, 2, 3, 4, 5};

Unfortunately, this syntax is only allowed in initializer expressions that follow the declaration of a field
or variable of array type. That is, you cannot write code like this:

int[] a;
a = {1, 2, 3, 4, 5}; // Error
int total = sum({1,2,3,4,5}); // Error

You cannot write code like that in Java 1.1 either, but you can write code using a similar array initializer
syntax. When you use the new operator to create an array, you may omit the dimension that specifies the
number of array elements to create and instead follow the empty square bracket pair ([]) with a list of
initial values in curly braces. Such an expression creates an array large enough to hold all of the elements
specified between the braces, and initializes the array to contain those elements. The elements in braces
must all be of the type specified after the new keyword, of course.

Code that uses anonymous arrays looks like this:

int[] a;
a = new int[] {1, 2, 3, 4, 5};
int total = sum(new int[] {1, 2, 3, 4, 5});
System.out.println(new char[] {'h', 'e', 'l', 'l', 'o'});

As you can see, this new syntax allows you to create and initialize arrays without using a variable
initializer, or without even assigning the array to a variable at all. That is why arrays created and
initialized this way are called anonymous arrays.

Class Literals

Another major change in Java 1.1 is the introduction of the Reflection API in the
java.lang.reflect package. As part of this new package, the java.lang.Class class has been
broadened to represent not just Java classes, but all Java data types. In other words, there are now special

Class objects that represent each of the Java primitive types.

You can access these special Class objects through the TYPE field of each of the primitive wrapper
classes. For example, the static variable Boolean.TYPE holds the Class object that represents the
boolean data type. And the Float.TYPE static variable holds the Class object that represents the
float data type. A new class Void has been added, and Void.TYPE represents the type void.

The changes described in the paragraph above are all changes to the Java class libraries, rather than
changes to the Java language itself. The language change is a related one, however. In Java 1.1, you can
obtain the Class object for any class or primitive type by following the class name or type name by a
period and the class keyword. For example, String.class evaluates to the Class object that
represents the java.lang.String class. Similarly, int.class evaluates to the special class object
Integer.TYPE that represents the int data type.

In Java 1.0, it is much more cumbersome (and less efficient) to obtain a Class object--you have to use
the static Class.forName() method, so you end up with expressions like:

Class c = Class.forName("java.util.Vector");

Where in Java 1.1 you can simply write:

Class c = java.util.Vector.class;

Remember that class is a keyword in Java, so this syntax does not simply constitute a reference to a
static variable pre-defined in each class.

This new syntax is meant to simplify use of the new reflection facilities in Java 1.1. It is also necessary
because using Class.forName() with inner classes requires knowledge of the way the compiler
transforms the names of inner classes (i.e., where it replaces "." with "$"). While compiler writers need
to know about these transformation rules, Java programmers should not. Thus the new .class syntax
provides a way to obtain a Class object that works with inner classes, as well as with top-level classes
and interfaces.

Anonymous Classes Applets

Chapter 6

6. Applets
Contents:
Introduction to Applets
A First Applet
Drawing Graphics
Handling Events
Reading Applet Parameters
Images and Sounds
JAR Files
Applet Security Restrictions
Signed Applets

This chapter demonstrates the techniques of applet writing. It proceeds from a trivial "Hello World"
applet to more sophisticated applets. Along the way, it explains how to:

● Draw graphics in your applet.

● Handle and respond to simple user input.

● Read and use values of applet parameters, allowing customization of an applet.

● Load and display images and load and play sounds.

● Package an applet and related files into a JAR file.

● Attach a digital signature to an applet.

Study the examples carefully. They are the important part of this chapter! You may find it useful to refer
to the quick reference in Chapter 17, The java.applet Package while reading these examples.

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch06_04.htm

Note that this chapter merely introduces the framework for writing applets. Applets, like other Java
programs, use features from throughout the Java API. See Chapter 7, Events, in particular, for details on
event processing in Java applets and applications.

6.1 Introduction to Applets

An applet, as the name implies, is a kind of mini-application, designed to be run by a Web browser, or in
the context of some other "applet viewer." Applets differ from regular applications in a number of ways.
One of the most important is that there are a number of security restrictions on what applets are allowed
to do. An applet often consists of untrusted code, so it cannot be allowed access to the local file system,
for example. The details of applet security and the restrictions placed on applets are discussed at the end
of this chapter.

From a programmer's standpoint, one of the biggest differences between applets and applications is that
applets do not have a main() method, or other single entry point from which the program starts
running. Instead, to write an applet, you subclass the Applet class and override a number of standard
methods. At appropriate times, under well-defined circumstances, the Web browser or applet viewer
invokes the methods you have defined. The applet is not in control of the thread of execution; it simply
responds when the browser or viewer tells it to. For this reason, the methods you write must take the
necessary action and return promptly--they are not allowed to enter time-consuming (or infinite) loops.
In order to perform a time-consuming or repetitive task, such as animation, an applet must create its own
thread, over which it does have complete control.

The task of writing an applet, then, comes down to defining the appropriate methods. A number of these
methods are defined by the Applet class:

init()

Called when the applet is first loaded into the browser or viewer. It is typically used to perform
applet initialization, in preference to a constructor method. (The Web browser doesn't pass any
arguments to an applet's constructor method, so defining one isn't too useful.)

destroy()

Called when the applet is about to be unloaded from the browser or viewer. It should free any
resources, other than memory, that the applet has allocated.

start()

Called when the applet becomes visible and should start doing whatever it is that it does. Often

used with animation and with threads.

stop()

Called when the applet becomes temporarily invisible, for example, when the user has scrolled it
off the screen. Tells the applet to stop performing an animation or other task.

getAppletInfo()

Called to get information about the applet. Should return a string suitable for display in a dialog
box.

getParameterInfo()

Called to obtain information about the parameters the applet responds to. Should return strings
describing those parameters.

In addition to these Applet methods, there are a number of other methods, inherited from superclasses
of Applet, that the browser invokes at appropriate times, and that an applet should override. The most
obvious of these methods is paint(), which the browser or viewer invokes to ask the applet to draw
itself on the screen. In Java 1.1, a related method is print(), which an applet should override if it
wants to display itself on paper differently than it does on the screen. There are quite a few other methods
that applets should override to respond to events. For example, if an applet wants to respond to mouse
clicks, it should override mouseDown(). (As we'll see in Chapter 7, Events, however, there are other,
preferred, ways to receive mouse events in Java 1.1.)

The Applet class also defines some methods that are commonly used by applets:

getImage()

Loads an image file from the network and returns an Image object.

getAudioClip()

Loads a sound clip from the network and returns an AudioClip object.

getParameter()

Looks up and returns the value of a named parameter, specified in the HTML file that refers to the
applet with the <PARAM> tag.

getCodeBase()

Returns the base URL from which the applet class file was loaded.

getDocumentBase()

Returns the base URL of the HTML file that refers to the applet.

showStatus()

Displays a message in the status line of the browser or applet viewer.

getAppletContext()

Returns the AppletContext object for the applet. AppletContext defines the useful
showDocument() method that asks the browser to load and display a new Web page.

Other New Features of Java
1.1

A First Applet

Chapter 6
Applets

6.2 A First Applet

Figure 6.1 shows what is probably the simplest possible applet you can write in Java. Example 6.1 lists
its code. This example introduces the paint() method, which is invoked by the applet viewer (or Web
browser) when the applet needs to be drawn. This method should perform graphical output--such as
drawing text or lines or displaying images--for your applet. The argument to paint() is a Graphics
object that you use to do the drawing.

Figure 6.1: A simple applet

Example 6.1: The Simplest Applet

import java.applet.*; // Don't forget this import statement!
import java.awt.*; // Or this one for the graphics!
public class FirstApplet extends Applet {
 // This method displays the applet.
 // The Graphics class is how you do all drawing in Java.
 public void paint(Graphics g) {

 g.drawString("Hello World", 25, 50);
 }
}

To display an applet, you need an HTML file that references it. Here is an HTML fragment that can be
used with our first applet:

<APPLET code="FirstApplet.class" width=150 height=100>
</APPLET>

With an HTML file that references the applet, you can now view the applet with an applet viewer or Web
browser. Note that the width and height attributes of this HTML tag are required. See Chapter 15,
Java-Related HTML Tags for more details on the HTML <APPLET> tag. For most applet examples in
this book, we show only the Java code and not the corresponding HTML file that goes with it. Typically,
that HTML file contains a tag as simple as the one shown here.

Introduction to Applets Drawing Graphics

Chapter 6
Applets

6.3 Drawing Graphics

Example 6.2 shows a fancier version of our simple applet. As you can see from Figure 6.2 , we've made
the graphical display more interesting. This applet also does all of its drawing in the paint() method.
It demonstrates the use of Font and Color objects.

This example also introduces the init() method, which is used, typically in place of a constructor, to
perform any one-time initialization that is necessary when the applet is first created. The paint()
method may be invoked many times in the life of an applet, so this example uses init() to create the
Font object that paint() uses.

Figure 6.2: A fancier applet

[Graphic: Figure 6-2]

Example 6.2: An Applet with Fancier Graphics

import java.applet.*;
import java.awt.*;
public class SecondApplet extends Applet {
 static final String message = "Hello World";
 private Font font;

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch06_04.htm

 // One-time initialization for the applet
 // Note: no constructor defined.
 public void init() {
 font = new Font("Helvetica", Font.BOLD, 48);
 }
 // Draw the applet whenever necessary. Do some fancy graphics.
 public void paint(Graphics g) {
 // The pink oval
 g.setColor(Color.pink);
 g.fillOval(10, 10, 330, 100);
 // The red outline. Java doesn't support wide lines, so we
 // try to simulate a 4-pixel wide line by drawing four ovals.
 g.setColor(Color.red);
 g.drawOval(10, 10, 330, 100);
 g.drawOval(9, 9, 332, 102);
 g.drawOval(8, 8, 334, 104);
 g.drawOval(7, 7, 336, 106);
 // The text
 g.setColor(Color.black);
 g.setFont(font);
 g.drawString(message, 40, 75);
 }
}

A First Applet Handling Events

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch06_04.htm

Index

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | Y | Z

Symbols and Numbers
+ symbol (URLEncoder) : (Reference page)
& reference operator
Reference Data Types
Operators
Operators
&& (logical AND) operator
Operators
Operators
&= (AND) operator : Operators
* dereference operator : Reference Data Types
\ (backslash) : Java Filenames and Directory Structure
[] brackets, arrays and
Creating and Destroying Arrays
Operators
, (comma) operator
Operators
The for Loop
Operators
. (dot)
accessing objects with : Accessing Objects
as field access operator : Operators
in fully qualified names : No Global Variables
= operator : Copying Objects
== operator : Checking Objects for Equality
- dereference operator : Reference Data Types
() parentheses in object creation : Object Creation
+ (concatenation) operator
Unicode and Character Escapes
Operators
Operators
>> (shift) operator : Operators

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_a.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_b.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_c.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_d.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_e.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_f.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_g.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_h.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_i.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_j.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_k.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_l.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_m.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_n.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_o.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_p.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_q.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_r.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_s.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_t.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_u.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_v.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_w.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_y.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_z.htm

>>> (shift) operator
Operators
Operators
>>>= (shift) operator : Operators
/ (slash) : Java Filenames and Directory Structure
/* */ comment markers : Comments
/** */ doc comment markers
Comments
Java Documentation Comment Syntax
// C-style comment marker : Comments
| (OR) operator
Operators
Operators
|= (OR) operator : Operators
|| (logical OR) operator
Operators
Operators

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_a.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_b.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_c.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_d.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_e.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_f.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_g.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_h.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_i.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_j.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_k.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_l.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_m.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_n.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_o.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_p.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_q.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_r.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_s.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_t.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_u.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_v.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_w.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_y.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/index/idx_z.htm

Exploring Java
Exploring Java
By Patrick Niemeyer & Joshua Peck; 1-56592-184-271-9, 500 pages (est.)
2nd Edition July 1997 (est.)

Table of Contents

Preface
Chapter 1: Yet Another Language?
Chapter 2: A First Applet
Chapter 3: Tools of the Trade
Chapter 4: The Java Language
Chapter 5: Objects in Java
Chapter 6: Threads
Chapter 7: Basic Utility Classes
Chapter 8: Input/Output Facilities
Chapter 9: Network Programming
Chapter 10: Understand the Abstract Windowing Toolkit
Chapter 11: Using and Creating GUI Components
Chapter 12: Layout Managers
Chapter 13: Drawing With the AWT
Chapter 14: Working With Images
Glossary
Index

Search the text of Exploring Java.

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

file:///C|/download/www.ora.com/catalog/expjava2/default.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch00_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/esrch.htm

Java Fundamental Classes
Reference
Java Fundamental Classes Reference
By Mark Grand and Jonathan Knudsen; 1-56592-241-7, 1152 pages
1st Edition May 1997

Table of Contents

Preface
Chapter 1: Introduction

Part I: Using the Fundamental Classes

This part of the book, Chapters 2 through 10, provides a brief guide to many of the features of the
fundamental classes in Java. These tutorial-style chapters are meant to help you learn about some of the
basic functionality of the Java API. They provide short examples where appropriate that illustrate the use
of various features.

Chapter 2: Strings and Related Classes
Chapter 3: Threads
Chapter 4: Exception Handling
Chapter 5: Collections
Chapter 6: I/O
Chapter 7: Object Serialization
Chapter 8: Networking
Chapter 9: Security
Chapter 10: Accessing the Environment

Part II: Reference

This part of the book is a complete reference to all of the fundamental classes in the core Java API. The
material is organized alphabetically by package, and within each package, alphabetically by class. The
reference page for a class tells you everything you need to know about using that class. It provides a
detailed description of the class as a whole, followed by a complete description of every variable,
constructor, and method defined by the class.

Chapter 11: The java.io Package
Chapter 12: The java.lang Package
Chapter 13: The java.lang.reflect Package
Chapter 14: The java.math Package
Chapter 15: The java.net Package

file:///C|/download/www.ora.com/catalog/javafund/default.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch00_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_01.htm

Chapter 16: The java.text Package
Chapter 17: The java.util Package
Chapter 18: The java.util.zip Package

Part III: Appendixes

This part provides information about the Unicode 2.0 standard and the UTF-8 encoding used by Java.

Appendix A: The Unicode 2.0 Character Set
Appendix B: The UTF-8 Encoding

Index

Search the text of Java Fundamental Classes Reference.

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/appb_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fsrch.htm

Java AWT Reference
Java AWT Reference
By John Zukowski; 1-56592-240-9, 1074 pages
1st Edition April 1997

Table of Contents

Preface
Chapter 1: Abstract Window Toolkit Overview
Chapter 2: Simple Graphics
Chapter 3: Fonts and Colors
Chapter 4: Events
Chapter 5: Components
Chapter 6: Containers
Chapter 7: Layouts
Chapter 8: Input Fields
Chapter 9: Pick Me
Chapter 10: Would You Like to Choose from the Menu?
Chapter 11: Scrolling
Chapter 12: Image Processing
Chapter 13: AWT Exceptions and Errors
Chapter 14: And Then There Were Applets
Chapter 15: Toolkit and Peers
Chapter 16: Data Transfer
Chapter 17: Printing
Chapter 18: java.applet Reference
Chapter 19: java.awt Reference
Chapter 20: java.awt.datatransfer Reference
Chapter 21: java.awt.event Reference
Chapter 22: java.awt.image Reference
Chapter 23: java.awt.peer Reference

Appendix A: Using Properties and Resources
Appendix B: HTML Markup For Applets
Appendix C: Platform-Specific Event Handling
Appendix D: Image Loading

file:///C|/download/www.ora.com/catalog/javafund/default.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/appa_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm

Index
Examples - Warning: this directory includes long filenames which may confuse some older
operating systems (notably Windows 3.1).

Search the text of Java AWT Reference.

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/awt/examples/index.htm
file:///C|/download/ftp.selab.org/ebook/javaref/asrch.htm

Java Language Reference
Java Language Reference
By Mark Grand; 1-56592-326-X, 450 pages (est.)
2nd Edition July 1997 (est.)

Table of Contents

Preface
Chapter 1: Introduction
Chapter 2: Lexical Analysis
Chapter 3: Data Types
Chapter 4: Expressions
Chapter 5: Declarations
Chapter 6: Statements and Control Structures
Chapter 7: Program Structure
Chapter 8: Threads
Chapter 9: Exception Handling
Chapter 10: The java.lang Package
Appendix A: The Unicode 2.0 Character Set
Index

Search the text of Java Language Reference.

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

file:///C|/download/www.ora.com/catalog/javalang2/default.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch00_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/lsrch.htm

Chapter 15

15. Java-Related HTML Tags
Contents:
The <APPLET> Tag
The <PARAM> Tag
An Example HTML File

This chapter explains what you need to know about HTML to work with Java applets.

15.1 The <APPLET> Tag

A Java applet is included in a Web page with the <APPLET> tag, which has the following syntax. Items
in brackets ([]) are optional.

<APPLET
 CODE = applet-filename
 WIDTH = pixel-width
 HEIGHT = pixel-height
 [OBJECT = serialized-applet-filename]
 [ARCHIVE = jar-file-list]
 [CODEBASE = applet-url]
 [ALT = alternate-text]
 [NAME = applet-name]
 [ALIGN = alignment]
 [VSPACE = vertical-pixel-space]
 [HSPACE = horizontal-pixel-space]
>
[<PARAM NAME = parameter VALUE = value>]
[<PARAM NAME = parameter VALUE = value>]
 ...
[alternate-text]

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch15_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch15_02.htm

</APPLET>

APPLET

The <APPLET> tag specifies an applet to be run within a Web document. A Web browser that
does not support Java and does not understand the <APPLET> tag ignores this tag and any related
<PARAM> tags, and simply displays any alternate-text that appears between <APPLET>
and </APPLET>. A browser that does support Java runs the specified applet, and does not
display the alternate-text.

CODE

This required attribute specifies the file that contains the compiled Java code for the applet. It
must be relative to the CODEBASE if that attribute is specified, or relative to the current
document's URL. It must not be an absolute URL. In Java 1.1, this attribute can be replaced with
an OBJECT attribute.

WIDTH

This attribute specifies the initial width, in pixels, that the applet needs in the browser's window. It
is required.

HEIGHT

This attribute specifies the initial height, in pixels, that the applet needs in the browser's window.
It is required.

OBJECT

As of Java 1.1, this attribute specifies the name of a file that contains a serialized applet that is to
be created by deserialization. An applet specified in this way does not have its init() method
invoked, but does have its start() method invoked. Thus, before an applet is saved through
serialization, it should be initialized, but should not be started, or, if started, it should be stopped.
An applet must have either the CODE or OBJECT attribute specified, but not both.

ARCHIVE

As of Java 1.1, this attribute specifies a comma-separate list of JAR (Java Archive) files that are
"preloaded" by the Web browser or applet viewer. These archive files may contain Java class
files, images, sounds, properties, or any other resources required by the applet. The Web browser
or applet viewer searches for required files in the archives before attempting to load them over the
network.

CODEBASE

This optional attribute specifies the base URL (absolute or relative) of the applet to be displayed.
This should be a directory, not the applet file itself. If this attribute is unspecified, then the URL
of the current document is used.

ALT

This optional attribute specifies text that should be displayed by browsers that understand the
<APPLET> tag but do not support Java.

NAME

This optional attribute gives a name to the applet instance. Applets that are running at the same
time can look each other up by name and communicate with each other.

ALIGN

This optional attribute specifies the applet's alignment on the page. It behaves just like the ALIGN
attribute of the tag. Its allowed values are: left, right, top, texttop, middle,
absmiddle, baseline, bottom, and absbottom.

VSPACE

This optional attribute specifies the margin, in pixels, that the browser should put above and
below the applet. It behaves just like the VSPACE attribute of the tag.

HSPACE

This optional attribute specifies the margin, in pixels, that the browser should put on either side of
the applet. It behaves just like the HSPACE attribute of the tag.

Working with System
Properties

The <PARAM> Tag

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch15_02.htm

Chapter 14
System Properties

14.2 Working with System Properties

The system property list is not a static. Other properties can be added to it (and read from it) to allow easy
customization of application behavior.

Specifying Individual Properties

You can specify individual properties to be inserted into the system properties list with the -D option to the
Java interpreter. For example, you might invoke a program like this:

% java -Dgames.tetris.level=9 -Dgames.tetris.sound=off games.tetris

Note the format of each property specification: the property name, which is often a hierarchical one,
followed by an equals sign, followed by the property value. A property value may include spaces, but any -
D option specifying a property value containing spaces would have to be quoted when passed to java, of
course.

If you write a platform-specific script file to invoke your Java application, you can use this -D option to
translate native environment variable settings into Java system properties. On a Unix system, for example,
such a script might look like this:

#!/bin/sh
exec java -Dgames.tetris.level=$TETRIS_LEVEL \
 -Dgames.tetris.sound=$TETRIS_SOUND \
 games.tetris

Using Property Files

Properties in Java are represented by the java.util.Properties object, which is essentially a hash
table that can be read from and written to a file. A program need not limit itself to the use of system
properties. It can also read in its own files of properties to support user preferences and user customization.

For example, when the appletviewer program starts up, it reads the properties from the
lib/appletviewer.properties file in the JDK distribution. This file contains the various messages that
appletviewer displays to the user and provides the flexibility to translate those messages into other
languages. The following lines are an excerpt from appletviewer.properties:

#
Applet status messages
#
appletloader.nocode=APPLET tag missing CODE parameter.
appletloader.notfound=load: class %0 not found.
appletloader.nocreate=load: %0 can't be instantiated.

Note that comments in a properties file start with #, and that the property specification format is the same
as with the -D option. Also note that these property values do contain spaces. Some of them also contain
the % substitution character and are intended for use with the java.text.MessageFormat class.

When reading in a file of properties, it can be convenient to merge those properties with the standard
system properties, so that the program need only look in one place to find both loaded properties and
standard properties (and properties specifed wiht the -D option). Every Properties object can have a
"parent" properties object; if a property is not found in the Properties object, it is searched for in the
parent. Thus, it is possible to merge in properties with code like this:

// Create a new Properties object with system props as its parent.
Properties props = new Properties(System.getProperties());
// Load a file of properties into it. We may get an exception here...
props.load(new BufferedInputStream(new FileInputStream(propsfilename)));
// Set these new combined properties as the system properties.
System.setProperties(props);

Specifying Font Properties

As noted above, a program can read the string value of a system property with the
System.getProperty() method. There are also some convenience methods that read a property value
and convert that value into some other type of object. One of these convenience methods is
Font.getFont(). This method reads the value of a named property and attempts to parse it into a font
specification. The font specification syntax it uses is:

name[-style][-size]

Thestyle should be italic, bold or bolditalic. If omitted, a plain font is used. The size should
be an integer that specifies the font size in points. If omitted, 12-point is used. If the style is specified,
the size must also be specified. For example, you might specify font properties like the following:

games.tetris.titlefont=sanserif-bolditalic-48
games.tetris.mainfont=serif-14
games.tetris.scorefont=monospaced

Specifying Color Properties

Color.getColor() is another convenience routine that reads a system property and converts it into a
Color object. To specify a color property, you specify the color as an integer value, typically as a
hexadecimal value in the format 0xRRGGBB. For example:

A green foreground
games.tetris.foreground=0x00FF00
A light gray background
games.tetris.background=0xD0D0D0

Standard System Properties Java-Related HTML Tags

Chapter 15
Java-Related HTML Tags

15.3 An Example HTML File

Example 15.1 shows an applet embedded in an HTML file. This file is a lightly edited version of one of the demos
that ships with the JDK. Notice the use of the <PARAM> tags to supply arguments to the applet.

Example 15.1: Example HTML Page Containing an Applet

<HTML>
<HEAD>
<TITLE>The Animator Applet (1.1) - example 1</TITLE>
</HEAD>
<BODY>
<H1>The Animator Applet (1.1) - example 1</H1>
<APPLET CODE=Animator.class WIDTH=460 HEIGHT=160>
<PARAM NAME=imagesource VALUE="images/Beans">
<PARAM NAME=backgroundcolor VALUE="0xc0c0c0">
<PARAM NAME=endimage VALUE=10>
<PARAM NAME=soundsource VALUE="audio">
<PARAM NAME=soundtrack VALUE=spacemusic.au>
<PARAM NAME=sounds VALUE="1.au|2.au|3.au|4.au|5.au|6.au|7.au|8.au|9.au|0.au">
<PARAM NAME=pause VALUE=200>
</APPLET>
</BODY>
</HTML>

The <PARAM> Tag appletviewer

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch15_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch15_02.htm

Chapter 28
The java.net Package

28.24 java.net.URLEncoder (JDK 1.0)

This class defines a single static method which is used to convert a string to its URL-encoded form. That
is, spaces are converted to "+", and non-alphanumeric characters other than underscore are output as two
hexadecimal digits following a percent sign. Note that this technique only works for 8-bit characters.
This method is used to "canonicalize" a URL specification so that it uses only characters from an
extremely portable subset of ASCII which can be correctly handled by computers around the world.

public class URLEncoder extends Object {
 // No Constructor
 // Class Methods
 public static String encode(String s);
}

java.net.URLConnection
(JDK 1.0)

java.net.URLStreamHandler
(JDK 1.0)

Chapter 13
Java Syntax

13.3 Operators

Operators lists the operators of the Java language, along with their precedence, operand types, and
associativity.

Table 13.3: Java Operators

Prec. Operator Operand Type(s) Assoc. Operation Performed

1 ++ arithmetic R pre-or-post increment (unary)

 -- arithmetic R pre-or-post decrement (unary)

 +, - arithmetic R unary plus, unary minus

 ~ integral R bitwise complement (unary)

 ! boolean R logical complement (unary)

 (type) any R cast

2 *, /, % arithmetic L multiplication, division, remainder

3 +, - arithmetic L addition, subtraction

 + string L string concatenation

4 << integral L left shift

 >> integral L right shift with sign extension

 >>> integral L right shift with zero extension

5 <, <= arithmetic L less than, less than or equal

 >, >= arithmetic L greater than, greater than or equal

 instanceof object, type L type comparison

6 == primitive L equal (have identical values)

 != primitive L not equal (have different values)

 == object L equal (refer to same object)

 != object L not equal (refer to different objects)

7 & integral L bitwise AND

 & boolean L boolean AND

8 ^ integral L bitwise XOR

 ^ boolean L boolean XOR

9 | integral L bitwise OR

 | boolean L boolean OR

10 && boolean L conditional AND

11 || boolean L conditional OR

12 ?: boolean, any, any R conditional (ternary) operator

13 = variable, any R assignment

*=, /=, %=, +=, -=, <<=, >>=,
>>>=, &=, ^=, |=

variable, any R assignment with operation

Operator precedence controls the order in which operations are performed. Consider the following
example:

w = x + y * z;

The multiplication operator * has a higher precedence than the addition operator +, so the multiplication
is performed before the addition. Furthermore, the assignment operator = has the lowest precedence of
any operator, so the assignment is done after all the operations on the right-hand side are performed.
Operators with the same precedence (like addition and subtraction) are performed in order according to
their associativity (usually left-to-right). Operator precedence can be overridden with the explicit use of
parentheses. For example:

w = (x + y) * z;

The associativity of an operator specifies the order that operations of the same precedence are performed
in. In Table 13.3 a value of L specifies left-to-right associativity, and a value of R specifies right-to-left
associativity. Left-to-right associativity means that operations are performed left-to-right. For example:

w = x + y + z;

is the same as:

w = ((x + y) + z);

because the addition operator has left-to-right associativity. On the other hand, the following expressions:

x = ~-~y;
q = a?b:c?d:e?f:g;

are equivalent to:

x = ~(-(~y));
q = a?b:(c?d:(e?f:g));

because the unary operators and the ternary conditional ?: operator have right-to-left associativity.

Java operators are basically identical to C operators, except for these differences:

● The + operator applied to String values concatenates them. If only one operand of + is a
String, the other one is converted to a string. The conversion is done automatically for
primitive types and by calling the toString method of non-primitive types.

● Java does not have the comma operator like C does. It does, however, simulate this operator in the
limited context of the for loop initialization and increment expressions.

● Since all Java integral types are signed, the >> operator always does a signed right shift, filling in
high bits with the sign bit of the operand. The new >>> operator performs an unsigned right shift,
filling in high bits of the shifted value with zero bits.

● The & and | operators perform bitwise AND and OR operations on integral operands, and
perform logical AND and OR operators on boolean operands. && and || also perform logical
AND and OR on boolean operands, but do not evaluate the right-hand operand, if the result of
the operation is fully determined by the left-hand operand.

● The instanceof operator returns true if the object on the left-hand side is an instance of the
class or implements the interface on the right-hand side. Otherwise it returns false. If the left-
hand side is null, it returns false.

Character Escape Sequences Modifiers

Chapter 13
Java Syntax

13.6 Java Documentation Comment Syntax

The Java language supports special "doc comments," which begin with /** and end with */. These
comments are not actually treated specially by the compiler, but can be extracted and automatically
turned into HTML documentation by the javadoc program.

Because the lines of a doc comment are embedded within a Java comment, any leading spaces and
asterisks (*) are stripped from each comment line before processing. A doc comment may contain
HTML markup tags, such as <PRE> and <TT> for code usage examples, but should not contain HTML
structural tags such as <H2> or <HR>. Doc comments should immediately precede the declaration of the
class, field, or method that they are associated with. The first sentence of a doc comment should be a
summary sentence, suitable for display on its own. The following sentences may document the feature in
more detail.

Following the initial summary sentence and any additional documentation, a doc comment may use
special tags, which all begin with the @ character and allow javadoc to provide additional formatting for
the documentation. The available tags are listed below. When you use a special javadoc tag, it must be
the first thing on its line within the doc comment. The text that follows a tag may span more than one
line, and continues until the next javadoc tag is encountered or until the comment ends. If you use more
than one tag of the same type, they should be on subsequent lines. For example, a class with multiple
authors, or a method with multiple arguments would use multiple @author or @param tags.

@see classname

This tag adds a "See Also:" entry to the documentation that contains a hyperlink to the specified
class. It may be used before classes, methods, or fields.

@see full-classname

This tag adds a "See Also:" entry to the documentation that contains a hyperlink to the specified
class. It may be used before classes, methods, or fields.

@see full-classname#method-name

This tag adds a "See Also:" entry to the documentation that contains a hyperlink to the specified
method of the specified class. It may be used before classes, methods, or fields.

@version text

This tag adds a "Version:" entry containing the specified text to the documentation. May only be
used before a class definition. javadoc ignores this tag unless the -version command-line
argument is specified.

@author text

This tag adds an "Author:" entry containing the specified text to the documentation. May only be
used before a class definition. javadoc ignores this tag unless the -author command-line
argument is specified.

@param parameter-name description

This tag adds the specified parameter and its specified description to the "Parameters:" section of
the current method. If the description is longer than one line, it may be continued on the next.
May only be used before a method definition.

@return description

Adds a "Returns:" section containing the specified description to the documentation. May only be
used before a method definition.

@exception full-classname description

Adds a "Throws:" entry to the documentation. The entry contains the specified class name of the
exception and the description specified, which should explain the significance of the exception.
May only be used before a method definition.

@deprecated explanation

As of Java 1.1, this tag specifies that the following class, method, or field has been deprecated.
javac notes this information in the class file it produces and issues a warning when a program uses
the deprecated feature. javadoc adds a "Deprecated" entry to the documentation that includes the
specified explanation.

@since version

As of Java 1.1, this undocumented tag is used to specify when the class, method, or field that
follows it was added to the API. It should be followed by a version number or other version
specification. The JDK 1.1 version of javadoc appears to ignore this tag.

Reserved Words System Properties

Chapter 1

1. Yet Another Language?
Contents:
Enter Java
A Virtual Machine
Java Compared
Safety of Design
Safety of Implementation
Application and User Level Security
Java and the World Wide Web
Java as a General Application Language
A Java Road Map
Availability

The greatest challenges and most exciting opportunities for software developers today lie in harnessing
the power of networks. Applications created today, whatever their intended scope or audience, will
almost certainly be run on machines linked by a global network of computing resources. The increasing
importance of networks is placing new demands on existing tools, and fueling the demand for a rapidly
growing list of completely new kinds of applications.

We want software that works--consistently, anywhere, on any platform--and that plays well with other
applications. We want dynamic applications that take advantage of a connected world, capable of
accessing disparate and distributed information sources. We want truly distributed software that can be
extended and upgraded seamlessly. We want intelligent applications--like autonomous agents that can
roam the Net for us, ferreting out information and serving as electronic emissaries. We know, at least to
some extent, what we want. So why don't we have it?

The problem has been that the tools for building these applications have fallen short. The requirements of
speed and portability have been, for the most part, mutually exclusive, and security has largely been
ignored or misunderstood. There are truly portable languages, but they are mostly bulky, interpreted, and
slow. These languages are popular as much for their high level functionality as for their portability. And

there are fast languages, but they usually provide speed by binding themselves to particular platforms, so
they can meet the portability issue only half way. There are even a few recent safe languages, but they
are primarily offshoots of the portable languages and suffer from the same problems.

1.1 Enter Java

The Java programming language, developed at Sun Microsystems under the guidance of Net luminaries
James Gosling and Bill Joy, is designed to be a machine-independent programming language that is both
safe enough to traverse networks and powerful enough to replace native executable code. Java addresses
the issues raised here and may help us start building the kinds of applications we want.

Right now, most of the enthusiasm for Java stems from its capabilities for building embedded
applications for the World Wide Web; these applications are called applets. This book will teach you
how to build applets. But there is more to Java than applets, and I'll also try to show you the "more." The
book will also show you how to use the tools of Java to accomplish real programming tasks, such as
building networked applications and creating functional user interfaces. By the end of the book, you will
be able to use these tools to build powerful Java applets and standalone applications.

Java's Origins

The seeds of Java were planted in 1990 by Sun Microsystems patriarch and chief researcher, Bill Joy.
Since Sun's inception in the early '80s, it has steadily pushed one idea: "The network is the computer." At
the time though, Sun was competing in a relatively small workstation market, while Microsoft was
beginning its domination of the more mainstream, Intel-based PC world. When Sun missed the boat on
the PC revolution, Joy retreated to Aspen, Colorado, to work on advanced research. He was committed to
accomplishing complex tasks with simple software, and founded the aptly named Sun Aspen
Smallworks.

Of the original members of the small team of programmers assembled in Aspen, James Gosling is the
one who will be remembered as the father of Java. Gosling first made a name for himself in the early '80s
as the author of Gosling Emacs, the first version of the popular Emacs editor that was written in C and
ran under UNIX. Gosling Emacs became popular, but was soon eclipsed by a free version, GNU Emacs,
written by Emacs's original designer. By that time, Gosling had moved on to design Sun's NeWS window
system, which briefly contended with the X Window System for control of the UNIX graphic user
interface (GUI) desktop in 1987. While some people would argue that NeWS was superior to X, NeWS
lost out because Sun kept it proprietary and didn't publish source code, while the primary developers of X
formed the X Consortium and took the opposite approach.

Designing NeWS taught Gosling the power of integrating an expressive language with a network-aware
windowing GUI. It also taught Sun that the Internet programming community will refuse to accept
proprietary standards, no matter how good they may be. The seeds of Java's remarkably permissive

licensing scheme were sown by NeWS's failure. Gosling brought what he had learned to Bill Joy's
nascent Aspen project, and in 1992, work on the project led to the founding of the Sun subsidiary,
FirstPerson, Inc. Its mission was to lead Sun into the world of consumer electronics.

The FirstPerson team worked on developing software for information appliances, such as cellular phones
and personal digital assistants (PDA). The goal was to enable the transfer of information and real-time
applications over cheap infrared and packet-based networks. Memory and bandwidth limitations dictated
small and efficient code. The nature of the applications also demanded they be safe and robust. Gosling
and his teammates began programming in C++, but they soon found themselves confounded by a
language that was too complex, unwieldy, and insecure for the task. They decided to start from scratch,
and Gosling began working on something he dubbed "C++ minus minus."

With the floundering of the Apple Newton, it became apparent that the PDA's ship had not yet come in,
so Sun shifted FirstPerson's efforts to interactive TV (ITV). The programming language of choice for
ITV set-top boxes was the near ancestor of Java, a language called Oak. Even with its elegance and
ability to provide safe interactivity, Oak could not salvage the lost cause of ITV. Customers didn't want
it, and Sun soon abandoned the concept.

At that time, Joy and Gosling got together to decide on a new strategy for their language. It was 1993,
and the explosion of interest in the Internet, and the World Wide Web in particular, presented a new
opportunity. Oak was small, robust, architecture independent, and object oriented. As it happens, these
are also the requirements for a universal, network-savvy programming language. Sun quickly changed
focus, and with a little retooling, Oak became Java.

Future Buzz?

I don't think it's overdoing it to say that Java has caught on like wildfire. Even before its first official
release, while Java was still a nonproduct, nearly every major industry player jumped on the Java
bandwagon. Java licensees include Microsoft, Intel, IBM, and virtually all major hardware and software
vendors.

As we begin looking at the Java architecture, you'll see that much of what is exciting about Java comes
from the self-contained, virtual machine environment in which Java applications run. Java has been
carefully designed so that this supporting architecture can be implemented either in software, for existing
computer platforms, or in customized hardware, for new kinds of devices. Sun and other industry giants
have announced their intentions to produce cheap, fast Java chips, the first of which should be available
by the time you read this. Hardware implementations of Java could power inexpensive network
terminals, PDAs, and other information appliances, to take advantage of transportable Java applications.

Many people see Java as part of a trend toward cheap, Net-based, "operating system-less" appliances that
will extend the Net into more and more consumer-related areas. Only time will tell what people will do
with Java, but it's probably worth at least a passing thought that the applet you write today might well be

running on someone's wristwatch tomorrow. If that seems too futuristic, remember that you can already
get a "smart card" (essentially a credit card) that has a Java interpreter embedded in it. Such a card could
do everything from financial transactions (paying a hotel bill) to unlocking a door (the door to your hotel
room) to rerouting phone calls (so your hotel room receives your business calls). The card is already
here; it won't be long before the rest of the software has been built. A Java wristwatch is certainly not far
away.

Acknowledgments A Virtual Machine

Chapter 2

2. A First Applet
Contents:
Hello Web!
Hello Web! II: The Sequel
Hello Web! III: The Button Strikes!
Hello Web! IV: Netscape's Revenge

Before we turn our attention to the details of the language, let's take a crash course and jump right into
some Java code. In this chapter, we'll build a contrived but friendly little applet that illustrates a number
of techniques we use throughout the book. I'll take this opportunity to introduce general features of the
Java language and of Java applets. However, many details won't be fleshed out here, but in subsequent
chapters.

This chapter also serves as a brief introduction to the object-oriented and multithreaded features of Java.
If these concepts are new to you, you can take comfort in the knowledge that encountering them for the
first time in Java should be a straightforward and pleasant experience. If you have worked with another
object-oriented or multithreaded programming environment, clear your mind; you will especially
appreciate Java's simplicity and elegance.

I can't stress enough the importance of experimentation as you learn new concepts. If you follow along
with the online examples, be sure to take some time and compile them locally. Play with them; change
their behavior, break them, fix them, and, as Java developer Arthur van Hoff would say: "Have fun!"

2.1 Hello Web!

In the tradition of all good introductory programming texts, we begin with Java's equivalent of the
archetypal "Hello World" application. In the spirit of our new world, we'll call it "Hello Web!"

I'll take four passes at this example, adding features and introducing new concepts along the way. Here's

a minimalist version:

public class HelloWeb extends java.applet.Applet {
 public void paint(java.awt.Graphics gc) {
 gc.drawString("Hello Web!", 125, 95);
 }
}

Place this text in a file called HelloWeb.java. Now compile this source:

% javac HelloWeb.java

This produces the Java byte-code binary class file HelloWeb.class.

We need an HTML document that contains the appropriate <applet> tag to display our example. Place
the following text in a file called HelloWeb.html in the same directory as the binary class file:

<html>
<head>
</head>
<body>
 <applet code=HelloWeb width=300 height=200></applet>
</body>
</html>

Finally, you can point your Java-enabled Web browser at this document with a URL such as:

http://yourServer/wherever/HelloWeb.html

or

file:/wherever/HelloWeb.html

You should see the proclamation shown in Figure 2.1. Now congratulate yourself: you have written your
first applet! Take a moment to bask in the glow of your monitor.

Figure 2.1: Hello Web! applet

[Graphic: Figure 2-1]

HelloWeb may be a small program, but there is actually quite a bit going on behind the scenes. Those
five lines represent the tip of an iceberg. What lies under the surface are layers of functionality provided
by the Java language and its foundation class libraries. In this chapter, I'll cover a lot of ground quickly in
an effort to show you the big picture. I'll try to offer enough detail for a complete understanding of what
is happening in each example without exhaustive explanations until the appropriate chapters. This holds
for both elements of the Java language and the object-oriented concepts that apply to them. Later
chapters will provide more detailed cataloging of Java's syntax, components, and object-oriented
features.

Classes

The previous example defines a class named HelloWeb. Classes are the fundamental building blocks of
most object-oriented languages. A class in Java is akin to the C++ concept of a class. Specifically, it's a
group of data items (à la a C struct), with associated functions that perform operations on this data. The
data items in a class are called fields or variables ; the functions are called methods. A class might
represent something concrete, like a button on a screen or the information in a spreadsheet, or it could be
something more abstract, such as a sorting algorithm or possibly the sense of ennui in your MUD
character. A hypothetical spreadsheet class might, for example, have variables that represent the values
of its individual cells and methods that perform operations on those cells, such as "clear a row" or
"compute values."

Our HelloWeb class is the container for our Java applet. It holds two general types of variables and
methods: those we need for our specific applet's tasks and some special predesignated ones we provide to
interact with the outside world. The Java run-time environment, in this case a Java-enabled Web browser,
periodically calls methods in HelloWeb to pass us information and prod us to perform actions, as
depicted in Figure 2.2. Our simple HelloWeb class defines a single method called paint(). The

paint() method is called by Java when it's time for our application to draw itself on the screen.

Figure 2.2: Method invocation in the Java environment

[Graphic: Figure 2-2]

You will see that the HelloWeb class derives some of its structure from another class called Applet.
This is why we refer to HelloWeb as an applet.

Class Instances and Objects

A class represents a particular thing; it contains methods and variables that assist in that representation.
Many individual working copies of a given class can exist while an application is active. These
individual incarnations are called instances of the class. Two instances of a given class may contain
different states, but they always have the same methods.

As an example, consider a Button class. There is only one Button class, but many actual working
instances of buttons can be in an application. Furthermore, two Button instances might contain
different data, perhaps giving each a different appearance or specifying a different message for each to
send when pushed. In this sense, a class can be considered a mold for making the object it represents:
something like a cookie cutter stamping out working instances of itself in the memory of the computer.
As you'll see later, there's a bit more to it than that--a class can in fact share information among its
instances--but this explanation suffices for now.

The term object is very general and in some other contexts is used almost interchangeably with class.
Objects are the abstract entities all object-oriented languages refer to in one form or another. I will use
object as a generic term for an instance of a class. I might, therefore, refer to an instance of the Button
class as a Button, a Button object, or, indiscriminately, as an object.

A Java-enabled Web browser creates an instance of our HelloWeb class when we first use our applet. If
we had included the HelloWeb applet tag in our HTML document twice (causing it to appear twice on
the screen), the browser would create and manage two separate HelloWeb objects (two separate instances
of the HelloWeb class).

Variables

In Java, every class defines a new type. A variable can be of this type and then hold instances of that
class. A variable could, for example, be of type Button and hold an instance of the Button class, or of
type SpreadSheetCell and hold a SpreadSheetCell object, just as it could be any of the more
familiar types such as integer or float. In this way, by having variables containing complex objects,
a class may use other classes as tools within itself. Using classes in this way is called composition. Our
examples in this chapter are somewhat unrealistic in that we are building only a single class of our own.
However, we will be using many classes as tools within our applet.

You have seen only one variable so far in our simple HelloWeb example. It's found in the declaration
of our lonely paint() method:

public void paint(java.awt.Graphics gc) {...}

Just like functions in C (and many other languages), a method in Java declares a list of variables that hold
its arguments, and it specifies the types of those arguments. Our paint() method takes one argument
named (somewhat tersely) gc, which is of type Graphics. When the paint() method is invoked, a
Graphics object is assigned to gc, which we use in the body of the method. I'll say more about
paint() and the Graphics class in a moment.

But first, a few words about variables. I have loosely referred to variables as holding objects. In reality,
variables that have complex types (class types) don't so much contain objects as point to them. Class-type
variables are references to objects. A reference is a pointer to, or another name for, an object.

Simply declaring a variable doesn't imply that any storage is allocated for that variable or that an instance
of its type even exists anywhere. When a reference-type variable is first declared, if it's not assigned to an
instance of a class, it doesn't point to anything. It's assigned the default value of null, meaning "no
value." If you try to use a variable with a null value as if it were pointing to a real object, a run-time
error (NullPointerException) occurs.

This discussion begs the question as to where to get an instance of a class to assign to a variable in the
first place. The answer, as you will see later, is through the use of the new operator. In our first two
passes at this example, we are dealing only with objects handed to us prefabricated from somewhere
outside of our class. We examine object creation later in the chapter.

Inheritance

Java classes are arranged in a parent-child hierarchy, in which the parent and child are known as the
superclass and subclass, respectively. In Java, every class has exactly one superclass (a single parent),

but possibly many subclasses. Of course, a class's superclass probably has its own superclass.

The declaration of our class in the previous example uses the keyword extends to specify that
HelloWeb is a subclass of the Applet class:

public class HelloWeb extends java.applet.Applet {...}

A subclass may be allowed to inherit some or all of the variables and methods of its superclass. Through
inheritance, the subclass can use those members as if it has declared them itself. A subclass can add
variables and methods of its own, and it can also override the meaning of inherited variables and
methods. When we use a subclass, overridden variables and methods are hidden (replaced) by the
subclass's own versions of them. In this way, inheritance provides a powerful mechanism whereby a
subclass can refine or extend its superclass.

For example, the hypothetical spreadsheet class might be subclassed to produce a new scientific
spreadsheet class with extra mathematical functions and special built-in constants. In this case, the source
code for the scientific spreadsheet might declare methods for the added mathematical functions and
variables for the special constants, but the new class automatically has all the variables and methods that
constitute the normal functionality of a spreadsheet; they are inherited from the parent spreadsheet class.
This means the scientific spreadsheet maintains its identity as a spreadsheet, and we can use it anywhere
the simpler spreadsheet is used.

Our HelloWeb class is a subclass of the Applet class and inherits many variables and methods not
explicitly declared in our source code. These members function in the same way as the ones we add or
override.

Applet

The Applet class provides the framework for building applets. It contains methods that support the
basic functionality for a Java application that is displayed and controlled by a Java-enabled Web browser
or other Java-enabled software.

We override methods in the Applet class in a subclass to implement the behavior of our particular
applet. This may sound restrictive, as if we are limited to some predefined set of routines, but that is not
the case at all. Keep in mind that the methods we are talking about are means of getting information from
the outside world. A realistic application might involve hundreds or even thousands of classes, with
legions of methods and variables and multiple threads of execution. The vast majority of these are related
to the particulars of our job. The inherited methods of the Applet class, and of other special
components, serve as a framework on which to hang code that handles certain types of events and
performs special tasks.

The paint() method is an important method of the Applet class; we override it to implement the

way in which our particular applet displays itself on the screen. We don't override any of the other
inherited members of Applet because they provide basic functionality and reasonable defaults for this
(trivial) example. As HelloWeb grows, we'll delve deeper into the inherited members and override
additional methods. Inherited members will allow us to get information from the user and give us more
control over what our applet does. We will also add some arbitrary, application-specific methods and
variables for the needs of HelloWeb.

If you want to verify for yourself what functionality the Applet class is providing our example, you can
try out the world's least interesting applet: the Applet base class itself. Just use the class name
java.applet.Applet in your HTML code, instead of HelloWeb:

<applet code=java.applet.Applet width=300 height=200></applet>

You should get a blank area of screen. I told you it's not very interesting.

Relationships and Finger Pointing

We can correctly refer to HelloWeb as an Applet because subclassing can be thought of as creating
an "is a" relationship, in which the subclass is a kind of its superclass. HelloWeb is therefore a kind of
Applet. When we refer to a kind of object, we mean any instance of that object's class or any of its
subclasses. Later, we will look more closely at the Java class hierarchy and see that Applet is itself a
subclass of the Panel class, which is further derived from a class called Container, and so on, as
shown in Figure 2.3.

Figure 2.3: Part of the Java class hierarchy

[Graphic: Figure 2-3]

In this sense, an Applet is a kind of Panel, which is, itself, a kind of Container and each of these
can ultimately be considered to be a kind of Component. You'll see later that it's from these classes that
Applet inherits its basic graphical user interface functionality and the ability to have other graphical
components embedded within it.

Component is a subclass of Object, so all of these classes are a kind of Object. As you'll see later,
the Object class is at the top of the Java class hierarchy; Object doesn't have a superclass. Every
other class in the Java API inherits behavior from Object, which defines a few basic methods, as you'll
see in Chapter 5, Objects in Java. The terminology here can become a bit muddled. I'll continue to use
the word "object" (lowercase o) in a generic way to refer to an instance of any class; I'll use Object to
refer specifically to that class.

Packages

In our previous example, the Applet class is referenced by its fully qualified name
java.applet.Applet:

public class HelloWeb extends java.applet.Applet {...}

The prefix on the class name identifies it as belonging to the java.applet package. Packages provide
a means for organizing Java classes. A package is a group of Java classes that are related by purpose or
by application. Classes in the same package have special access privileges with respect to one another
and may be designed to work together. Package names are hierarchical and are used somewhat like
Internet domain and host names, to distinguish groups of classes by organization and application. Classes
may be dynamically loaded over networks from arbitrary locations; within this context, packages provide
a crude namespace of Java classes.[1]

[1] There are many efforts under way to find a general solution to the problem of locating
resources in a globally distributed computing environment. The Uniform Resource
Identifier Working Group of the IETF has proposed Uniform Resource Names (URNs). A
URN would be a more abstract and persistent identifier that would be resolved to a URL
through the use of a name service. We can imagine a day when there will exist a global
namespace of trillions of persistent objects forming the infrastructure for all computing
resources. Java provides an important evolutionary step in this direction.

java.applet identifies a particular package that contains classes related to applets.
java.applet.Applet identifies a specific class, the Applet class, within that package. The
java. hierarchy is special. Any package that begins with java. is part of the core Java API and is
available on any platform that supports Java. Figure 2.4 illustrates the core Java packages, showing a
representative class or two from each package.

Figure 2.4: The core Java packages

[Graphic: Figure 2-4]

Some notable core packages include: java.lang, which contains fundamental classes needed by the
Java language itself; java.awt, which contains classes of the Java Abstract Windowing Toolkit; and
java.net, which contains the networking classes.

A few classes contain methods that are not written in Java, but are instead part of the native Java
implementation on a particular platform. Approximately 22 such classes are in the java package
hierarchy; these are the only classes that have to be ported to a new platform. They form the basis for all
interaction with the operating system. All other classes are built on or around these and are completely
platform independent.

The paint() Method

The source for our HelloWeb class defines just one method, paint(), which overrides the paint()
method from the Applet class:

public void paint(java.awt.Graphics gc) {
 gc.drawString("Hello Web!", 125, 95);
}

The paint() method is called by Java when it's time for our applet to draw itself on the screen. It takes
a single argument, a Graphics object, and doesn't return any type of value (void) to its caller.

Modifiers are keywords placed before classes, variables, and methods to alter their accessibility,
behavior, or semantics. paint() is declared as public, which means it can be invoked (called) by
methods in classes other than HelloWeb. In this case, it's the Java windowing environment that is
calling our paint() method. A method or variable declared as private is inaccessible from outside
of its class.

The Graphics object, an instance of the Graphics class, represents a particular graphical drawing
area and is also called a graphics context. It contains methods the applet calls to draw in this area, and
variables that represent characteristics such as clipping or drawing modes. The particular Graphics
object we are passed in the paint() method corresponds to our applet's area of the screen.

The Graphics class provides methods for rendering primitive shapes, images, and text. In HelloWeb,
we invoke the drawString() method of our Graphics object to scrawl our message at the specified
coordinates. (For a description of the methods available in the Graphics class, see Chapter 13,
Drawing With the AWT.)

As in C++, a method or variable of an object is accessed in a hierarchical way by appending its name
with a "." (dot) to the object that holds it. We invoked the drawString() method of the Graphics
object (referenced by our gc variable) in this way:

gc.drawString("Hello Web!", 125, 95);

You may need to get used to the idea that our application is drawn by a method that is called by an
outside agent at arbitrary times. How can we do anything useful with this? How do we control what gets
done and when? These answers will be forthcoming. For now, just think about how you would structure
applications that draw themselves on command.

Availability Hello Web! II: The Sequel

Chapter 3

3. Tools of the Trade
Contents:
The Java Interpreter
The Class Path
The Java Compiler
The Netscape Alternative
The Applet Tag

As I described at the end of Chapter 1, Yet Another Language?, by now you should have a number of
options for Java development environments. The examples in this book were developed using the Solaris
version of the Java Development Kit (JDK), so I'm going to describe those tools here. When I refer to the
compiler or interpreter, I'll be referring to the command-line versions of these tools, so the book is
decidedly biased toward those of you who are working in a UNIX or DOS-like environment with a shell
and filesystem. However, the basic features I'll be describing for Sun's Java interpreter and compiler
should be applicable to other Java environments as well.

In this chapter, I'll describe the tools you'll need to compile and run Java applications. I'll also cover the
HTML <applet> tag and other information you'll need to know to incorporate Java applets in your Web
pages.

3.1 The Java Interpreter

A Java interpreter is software that implements the Java virtual machine and runs Java applications. It can
be a separate piece of software like the one that comes with the JDK, or part of a larger application like
the Netscape Navigator Web browser. It's likely that the interpreter itself is written in a native, compiled
language for your particular platform. Other tools, like Java compilers and development environments,
can (and one could argue, should) be written in Java.

The Java interpreter performs all of the activities of the Java run-time system. It loads Java class files and
interprets the compiled byte-code. It verifies compiled classes that are loaded from untrusted sources by

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch03_04.htm

applying the rules discussed in Chapter 1, Yet Another Language?. In an implementation that supports
dynamic, or "just in time," compilation, the interpreter also serves as a specialized compiler that turns Java
byte-code into native machine instructions.

Throughout the rest of this book, we'll be building both standalone Java programs and applets. Both are
kinds of Java applications run by a Java interpreter. The difference is that a standalone Java application
has all of its parts; it's a complete program that runs independently. An applet, as I described in Chapter 1,
Yet Another Language?, is more like an embeddable program module; it relies on an applet viewer for
support. Although Java applets are, of course, compiled Java code, the Java interpreter can't directly run
them because they are used as part of a larger application. An applet-viewer application could be a Web
browser like Sun's HotJava or Netscape Navigator, or a separate applet viewer application like the one that
comes with Sun's Java Development Kit. All of Sun's tools, including HotJava, are written entirely in
Java. Both HotJava and the applet viewer are standalone Java applications run directly by the Java
interpreter; these programs implement the additional structure needed to run Java applets.

Sun's Java interpreter is called java. To start a standalone application with it, you specify an initial class to
be loaded. You can also specify options to the interpreter, as well as any command-line arguments that are
needed for the application:

% java [interpreter options] class name [program arguments]

The class should be specified as a fully qualified class name including the class package, if any. Note,
however, that you don't include the .class file extension. Here are a few examples:

% java animals.birds.BigBird
% java test

java searches for the class in the current class path, which is a list of locations where packages of classes
are stored. I'll discuss the class path in detail in the next section, but for now you should know that you can
set the class path with the -classpath option.

There are a few other interpreter options you may find useful. The -cs or -checksource option tells
java to check the modification times on the specified class file and its corresponding source file. If the
class file is out of date, it's automatically recompiled from the source. The -verify, -noverify, and -
verifyremote options control the byte-code verification process. By default, java runs the byte-code
verifier only on classes loaded from an untrusted source; this is the -verifyremote option. If you
specify -verify, the byte-code verifier is run on all classes; -noverify means that the verifier is
never run.

Once the class is loaded, java follows a very C-like convention and looks to see if the class contains a
method called main(). If it finds an appropriate main()method, the interpreter starts the application by
executing that method. From there, the application can start additional threads, reference other classes, and

create its user interface or other structures, as shown in Figure 3.1.

Figure 3.1: The Java interpreter starting a Java application

[Graphic: Figure 3-1]

In order to run, main() must have the right method signature. A method signature is a collection of
information about the method, as in a C prototype or a forward function declaration in other languages. It
includes the method's name, type, and visibility, as well as its arguments and return type. In this case,
main() must be a public, static method that takes an array of String objects as its argument and
does not return any value (void):

public static void main (String [] myArgs)

Because main() is a public method, it can be accessed directly from any other class using the name of
the class that contains it. We'll discuss the implications of visibility modifiers such as public in Chapter
5, Objects in Java.

The main() method's single argument, the array of String objects, holds the command-line arguments
passed to java. As in C, the name that we give the parameter doesn't matter, only the type is important.
Unlike C, the content of myArgs is a true array. There's no need for an argument count parameter,
because myArgs knows how many arguments it contains and can happily provide that information:

int argc = myArgs.length;

Java also differs from C in another respect here: myArgs[0]is the first command-line argument, not the
name of the application. If you're accustomed to parsing C command-line arguments, you'll need to be
careful not to trip over this difference.

The Java virtual machine continues to run until the main()method of its initial class file has returned,
and until any threads that it started are complete. Special threads designated as "daemon" threads are
silently killed when the rest of the application has completed.

Hello Web! IV: Netscape's
Revenge

The Class Path

Chapter 4

4. The Java Language
Contents:
Text Encoding
Comments
Types
Statements and Expressions
Exceptions
Arrays

In this chapter, we'll introduce the framework of the Java language and some of its fundamental tools. I'm
not going to try to provide a full language reference here. Instead, I'll lay out the basic structures of Java
with special attention to how it differs from other languages. For example, we'll take a close look at
arrays in Java, because they are significantly different from those in some other languages. We won't, on
the other hand, spend much time explaining basic language constructs like loops and control structures.
We won't talk much about Java's object-oriented features here, as that's covered in Chapter 5, Objects in
Java.

As always, we'll try to provide meaningful examples to illustrate how to use Java in everyday
programming tasks.

4.1 Text Encoding

Java is a language for the Internet. Since the people of the Net speak and write in many different human
languages, Java must be able to handle a number of languages as well. One of the ways in which Java
supports international access is through Unicode character encoding. Unicode uses a 16-bit character
encoding; it's a worldwide standard that supports the scripts (character sets) of most languages.[1]

[1] For more information about Unicode, see the following URL: http://www.unicode.org/.
Ironically, one listed "obsolete and archaic" scripts not currently supported by the Unicode

file:///C|/download/www.unicode.org/default.htm

standard is Javanese--a historical language of the people of the Island of Java.

Java source code can be written using the Unicode character encoding and stored either in its full form or
with ASCII-encoded Unicode character values. This makes Java a friendly language for non-English
speaking programmers, as these programmers can use their native alphabet for class, method, and
variable names in Java code.

The Java char type and String objects also support Unicode. But if you're concerned about having to
labor with two-byte characters, you can relax. The String API makes the character encoding
transparent to you. Unicode is also ASCII-friendly; the first 256 characters are identical to the first 256
characters in the ISO8859-1 (Latin-1) encoding and if you stick with these values, there's really no
distinction between the two.

Most platforms can't display all currently defined Unicode characters. As a result, Java programs can be
written with special Unicode escape sequences. A Unicode character can be represented with the escape
sequence:

\uxxxx

xxxx is a sequence of one to four hexadecimal digits. The escape sequence indicates an ASCII-encoded
Unicode character. This is also the form Java uses to output a Unicode character in an environment that
doesn't otherwise support them.

Java stores and manipulates characters and strings internally as Unicode values. Java also comes with
classes to read and write Unicode-formatted character streams, as you'll see in Chapter 8, Input/Output
Facilities.

The Applet Tag Comments

Chapter 5

5. Objects in Java
Contents:
Classes
Methods
Object Creation
Object Destruction
Subclassing and Inheritance
Packages and Compilation Units
Variable and Method Visibility
Interfaces
Inner Classes
The Object and Class Classes
Reflection

In this chapter, we'll get to the heart of Java and explore the object-oriented aspects of the language.
Object-oriented design is the art of decomposing an application into some number of objects--self-
contained application components that work together. The goal is to break the problem down into a
number of smaller problems that are simpler and easier to understand. Ideally, the components can be
implemented directly as objects in the Java language. And if things are truly ideal, the components
correspond to well-known objects that already exist, so they don't have to be created at all.

An object design methodology is a system or a set of rules created by someone to help you identify
objects in your application domain and pick the real ones from the noise. In other words, such a
methodology helps you factor your application into a good set of reusable objects. The problem is that
though it wants to be a science, good object-oriented design is still pretty much an art form. While you
can learn from the various off-the-shelf design methodologies, none of them will help you in all
situations. The truth is that experience pays.

I won't try to push you into a particular methodology here; there are shelves full of books to do that.[1]
Instead, I'll provide a few hints to get you started. Here are some general design guidelines, which should

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_09.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_11.htm

be taken with a liberal amount of salt and common sense:

[1] Once you have some experience with basic object-oriented concepts, you might want to
take a look at Design Patterns: Elements of Reusable Object Oriented Software by
Gamma/Helm/Johnson/Vlissides (Addison-Wesley). This book catalogs useful object-
oriented designs that have been refined over the years by experience. Many appear in the
design of the Java APIs.

● Think of an object in terms of its interface, not its implementation. It's perfectly fine for an
object's internals to be unfathomably complex, as long as its "public face" is easy to understand.

● Hide and abstract as much of your implementation as possible. Avoid public variables in your
objects, with the possible exception of constants. Instead define "accessor" methods to set and
return values (even if they are simple types). Later, when you need to, you'll be able to modify
and extend the behavior of your objects without breaking other classes that rely on them.

● Specialize objects only when you have to. When you use an object in its existing form, as a piece
of a new object, you are composing objects. When you change or refine the behavior of an object,
you are using inheritance. You should try to reuse objects by composition rather than inheritance
whenever possible because when you compose objects you are taking full advantage of existing
tools. Inheritance involves breaking down the barrier of an object and should be done only when
there's a real advantage. Ask yourself if you really need to inherit the whole public interface of an
object (do you want to be a "kind" of that object), or if you can just delegate certain jobs to the
object and use it by composition.

● Minimize relationships between objects and try to organize related objects in packages. To
enhance your code's reusability, write it as if there is a tomorrow. Find what one object needs to
know about another to get its job done and try to minimize the coupling between them.

5.1 Classes

Classes are the building blocks of a Java application. A class can contain methods, variables,
initialization code, and, as we'll discuss later on, even other classes. It serves as a blueprint for making
class instances, which are run-time objects that implement the class structure. You declare a class with
the class keyword. Methods and variables of the class appear inside the braces of the class declaration:

class Pendulum {
 float mass;
 float length = 1.0;
 int cycles;

 float position (float time) {

 ...
 }
 ...
}

The above class, Pendulum, contains three variables: mass, length, and cycles. It also defines a
method called position() that takes a float value as an argument and returns a float value.
Variables and method declarations can appear in any order, but variable initializers can't use forward
references to uninitialized variables.

Once we've defined the Pendulum class, we can create a Pendulum object (an instance of that class)
as follows:

Pendulum p;
p = new Pendulum();

Recall that our declaration of the variable p does not create a Pendulum object; it simply creates a
variable that refers to an object of type Pendulum. We still have to create the object dynamically, using
the new keyword. Now that we've created a Pendulum object, we can access its variables and methods,
as we've already seen many times:

p.mass = 5.0;
float pos = p.position(1.0);

Variables defined in a class are called instance variables. Every object has its own set of instance
variables; the values of these variables in one object can differ from the values in another object, as
shown in Figure 5.1. If you don't initialize an instance variable when you declare it, it's given a default
value appropriate for its type.

Figure 5.1: Instances of the Pendulum class

[Graphic: Figure 5-1]

In Figure 5.1, we have a hypothetical TextBook application that uses two instances of Pendulum
through the reference type variables bigPendulum and smallPendulum. Each of these Pendulum
objects has its own copy of mass, length, and cycles.

As with variables, methods defined in a class are instance methods. An instance method is associated
with an instance of the class, but each instance doesn't really have its own copy of the method. Instead,
there's just one copy of the method, but it operates on the values of the instance variables of a particular
object. As you'll see later when we talk about subclassing, there's more to learn about method selection.

Accessing Members

Inside of a class, we can access instance variables and call instance methods of the class directly by
name. Here's an example that expands upon our Pendulum:

class Pendulum {
 ...
 void resetEverything() {
 cycles = 0;
 mass = 1.0;
 ...
 float startingPosition = position(0.0);
 }
 ...
}

Other classes generally access members of an object through a reference, using the C-style dot notation:

class TextBook {
 ...
 void showPendulum() {
 Pendulum bob = new Pendulum();
 ...
 int i = bob.cycles;
 bob.resetEverything();
 bob.mass = 1.01;
 ...
 }
 ...
}

Here we have created a second class, TextBook, that uses a Pendulum object. It creates an instance in
showPendulum() and then invokes methods and accesses variables of the object through the
reference bob.

Several factors affect whether class members can be accessed from outside the class. You can use the
visibility modifiers, public, private, and protected to restrict access; classes can also be placed
into packages that affect their scope. The private modifier, for example, designates a variable or
method for use only by other members inside the class itself. In the previous example, we could change
the declaration of our variable cycles to private:

class Pendulum {
 ...
 private int cycles;
 ...

Now we can't access cycles from TextBook:

class TextBook {
 ...
 void showPendulum() {
 ...
 int i = bob.cycles; // Compile time error

If we need to access cycles, we might add a getCycles() method to the Pendulum class. We'll look
at access modifiers and how they affect the scope of variables and methods in detail later.

Static Members

Instance variables and methods are associated with and accessed through a particular object. In contrast,
members that are declared with the static modifier live in the class and are shared by all instances of
the class. Variables declared with the static modifier are called static variables or class variables ;
similarly, these kinds of methods are called static methods or class methods.

We can add a static variable to our Pendulum example:

class Pendulum {
 ...
 static float gravAccel = 9.80;
 ...

We have declared the new float variable gravAccel as static. That means if we change its value
in any instance of a Pendulum, the value changes for all Pendulum objects, as shown in Figure 5.2.

Figure 5.2: A static variable

[Graphic: Figure 5-2]

Static members can be accessed like instance members. Inside our Pendulum class, we can refer to
gravAccel by name, like an instance variable:

class Pendulum {
 ...
 float getWeight () {
 return mass * gravAccel;
 }
 ...
}

However, since static members exist in the class itself, independent of any instance, we can also access
them directly through the class. We don't need a Pendulum object to set the variable gravAccel;
instead we can use the class name as a reference:

Pendulum.gravAccel = 8.76;

This changes the value of gravAccel for any current or future instances. Why, you may be wondering,
would we want to change the value of gravAccel? Well, perhaps we want to explore how pendulums
would work on different planets. Static variables are also very useful for other kinds of data shared
among classes at run-time. For instance you can create methods to register your objects so that they can
communicate or you can count references to them.

We can use static variables to define constant values. In this case, we use the static modifier along
with the final modifier. So, if we cared only about pendulums under the influence of the Earth's
gravitational pull, we could change Pendulum as follows:

class Pendulum {
 ...
 static final float EARTH_G = 9.80;
 ...

We have followed a common convention and named our constant with capital letters; C programmers
should recognize the capitalization convention, which resembles C #define statements. Now the value
of EARTH_G is a constant; it can be accessed by any instance of Pendulum (or anywhere, for that
matter), but its value can't be changed at run-time.

It's important to use the combination of static and final only for things that are really constant. That's
because, unlike other kinds of variable references, the compiler is allowed to "inline" those values within
classes that reference them. This is probably OK for things like PI, which aren't likely to change for a
while, but may not be ideal for other kinds of identifiers, such as we'll discuss below.

Static members are useful as flags and identifiers, which can be accessed from anywhere. These are
especially useful for values needed in the construction of an instance itself. In our example, we might

declare a number of static values to represent various kinds of Pendulum objects:

class Pendulum {
 ...
 static int SIMPLE = 0, ONE_SPRING = 1, TWO_SPRING = 2;
 ...

We might then use these flags in a method that sets the type of a Pendulum or, more likely, in a special
constructor, as we'll discuss shortly:

Pendulum pendy = new Pendulum();
pendy.setType(Pendulum.ONE_SPRING);

Remember, inside the Pendulum class, we can use static members directly by name as well:

class Pendulum {
 ...
 void resetEverything() {
 setType (SIMPLE);
 ...
 }
 ...
}

Arrays Methods

Chapter 7

7. Basic Utility Classes
Contents:
Strings
Math Utilities
Dates
Vectors and Hashtables
Properties
The Security Manager
Internationalization

If you've been reading this book sequentially, you've read all about the core Java language constructs, including the
object-oriented aspects of the language and the use of threads. Now it's time to shift gears and talk about the Java
Application Programming Interface (API), the collection of classes that comes with every Java implementation. The
Java API encompasses all the public methods and variables in the classes that comprise the core Java packages, listed
in Table 7.1. This table also lists the chapters in this book that describe each of the packages.

Table 7.1: Packages of the Java API

Package Contents Chapter(s)

java.lang Basic language classes 4, 5, 6, 7

java.io Input and output 8

java.util Utilities and collections classes 7

java.text International text classes 7

java.net Sockets and URLs 9

java.applet The applet API 10

java.awt The Abstract Windowing Toolkit 10, 11, 12, 13, 14

java.awt.image AWT image classes 13, 14

java.beans Java Beans API

java.rmi RMI classes

java.security Encryption and signing

java.sql JDBC classes

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch07_03.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch07_07.htm

As you can see in Table 7.1, we've already examined some of the classes in java.lang in earlier chapters on the
core language constructs. Starting with this chapter, we'll throw open the Java toolbox and begin examining the rest of
the classes in the API.

We'll begin our exploration with some of the fundamental language classes in java.lang, including strings and
math utilities. Figure 7.1 shows the class hierarchy of the java.lang package.

Figure 7.1: The java.lang package

[Graphic: Figure 7-1]

We cover some of the classes in java.util, such as classes that support date and time values, random numbers,
vectors, and hashtables. Figure 7.2 shows the class hierarchy of the java.util package.

Figure 7.2: The java.util package

[Graphic: Figure 7-2]

7.1 Strings

In this section, we take a closer look at the Java String class (or more specifically, java.lang.String).
Because strings are used so extensively throughout Java (or any programming language, for that matter), the Java
String class has quite a bit of functionality. We'll test drive most of the important features, but before you go off
and write a complex parser or regular expression library, you should probably refer to a Java class reference manual
for additional details.

Strings are immutable; once you create a String object, you can't change its value. Operations that would otherwise
change the characters or the length of a string instead return a new String object that copies the needed parts of the
original. Because of this feature, strings can be safely shared. Java makes an effort to consolidate identical strings and
string literals in the same class into a shared string pool.

String Constructors

To create a string, assign a double-quoted constant to a String variable:

String quote = "To be or not to be";

Java automatically converts the string literal into a String object. If you're a C or C++ programmer, you may be
wondering if quote is null-terminated. This question doesn't make any sense with Java strings. The String class
actually uses a Java character array internally. It's private to the String class, so you can't get at the characters
and change them. As always, arrays in Java are real objects that know their own length, so String objects in Java
don't require special terminators (not even internally). If you need to know the length of a String, use the
length() method:

int length = quote.length();

Strings can take advantage of the only overloaded operator in Java, the + operator, for string concatenation. The
following code produces equivalent strings:

String name = "John " + "Smith";
String name = "John ".concat("Smith");

Literal strings can't span lines in Java source files, but we can concatenate lines to produce the same effect:

String poem =
 "'Twas brillig, and the slithy toves\n" +
 " Did gyre and gimble in the wabe:\n" +
 "All mimsy were the borogoves,\n" +
 " And the mome raths outgrabe.\n";

Of course, embedding lengthy text in source code should now be a thing of the past, given that we can retrieve a
String from anywhere on the planet via a URL. In Chapter 9, Network Programming, we'll see how to do things
like:

String poem =
 (String) new URL
 ("http://server/~dodgson/jabberwocky.txt").getContent();

In addition to making strings from literal expressions, we can construct a String from an array of characters:

char [] data = { 'L', 'e', 'm', 'm', 'i', 'n', 'g' };
String lemming = new String(data);

Or from an array of bytes:

byte [] data = { 97, 98, 99 };
String abc = new String(data, "8859_5");

The second argument to the String constructor for byte arrays is the name of an encoding scheme. It's used to
convert the given bytes to the string's Unicode characters. Unless you know something about Unicode, you can
probably use the form of the constructor that accepts only a byte array; the default encoding scheme will be used.

Strings from Things

We can get the string representation of most things with the static String.valueOf() method. Various
overloaded versions of this method give us string values for all of the primitive types:

String one = String.valueOf(1);
String two = String.valueOf(2.0f);
String notTrue = String.valueOf(false);

All objects in Java have a toString() method, inherited from the Object class (see Chapter 5, Objects in Java).

For class-type references, String.valueOf() invokes the object's toString() method to get its string
representation. If the reference is null, the result is the literal string "null":

String date = String.valueOf(new Date());
System.out.println(date);
// Sun Dec 19 05:45:34 CST 1999

date = null;
System.out.println(date);
// null

Things from Strings

Producing primitives like numbers from String objects is not a function of the String class. For that we need the
primitive wrapper classes; they are described in the next section on the Math class. The wrapper classes provide
valueOf() methods that produce an object from a String, as well as corresponding methods to retrieve the value
in various primitive forms. Two examples are:

int i = Integer.valueOf("123").intValue();
double d = Double.valueOf("123.0").doubleValue();

In the above code, the Integer.valueOf() call yields an Integer object that represents the value 123. An
Integer object can provide its primitive value in the form of an int with the intValue() method.

Although the techniques above may work for simple cases, they will not work internationally. Let's pretend for a
moment that we are programming Java in the rolling hills of Tuscany. We would follow the local customs for
representing numbers and write code like the following.

double d = Double.valueOf("1.234,56").doubleValue(); // oops!

Unfortunately, this code throws a NumberFormatException. The java.text package, which we'll discuss
later, contains the tools we need to generate and parse strings in different countries and languages.

The charAt() method of the String class lets us get at the characters of a String in an array-like fashion:

String s = "Newton";

for (int i = 0; i < s.length(); i++) System.out.println(s.charAt(i));

This code prints the characters of the string one at a time. Alternately, we can get the characters all at once with
toCharArray(). Here's a way to save typing a bunch of single quotes:

char [] abcs = "abcdefghijklmnopqrstuvwxyz".toCharArray();

Comparisons

Just as in C, you can't compare strings for equality with "==" because as in C, strings are actually references. If your

Java compiler doesn't happen to coalesce multiple instances of the same string literal to a single string pool item, even
the expression "foo" == "foo" will return false. Comparisons with <, >, <=, and >= don't work at all, because
Java can't convert references to integers.

Use the equals() method to compare strings:

String one = "Foo";

char [] c = { 'F', 'o', 'o' };
String two = new String (c);

if (one.equals(two)) // yes

An alternate version, equalsIgnoreCase(), can be used to check the equivalence of strings in a case-insensitive
way:

String one = "FOO";
String two = "foo";

if (one.equalsIgnoreCase(two)) // yes

The compareTo() method compares the lexical value of the String against another String. It returns an
integer that is less than, equal to, or greater than zero, just like the C routine string():

String abc = "abc";
String def = "def";
String num = "123";

if (abc.compareTo(def) < 0) // yes
if (abc.compareTo(abc) == 0) // yes
if (abc.compareTo(num) > 0) // yes

On some systems, the behavior of lexical comparison is complex, and obscure alternative character sets exist. Java
avoids this problem by comparing characters strictly by their position in the Unicode specification.

In Java 1.1, the java.text package provides a sophisticated set of classes for comparing strings, even in different
languages. German, for example, has vowels with umlauts (those funny dots) over them and a weird-looking beta
character that represents a double-s. How should we sort these? Although the rules for sorting these characters are
precisely defined, you can't assume that the lexical comparison we used above works correctly for languages other
than English. Fortunately, the Collator class takes care of these complex sorting problems. In the following
example, we use a Collator designed to compare German strings. (We'll talk about Locales in a later section.)
You can obtain a default Collator by calling the Collator.getInstance() method that has no arguments.
Once you have an appropriate Collator instance, you can use its compare() method, which returns values just
like String's compareTo() method. The code below creates two strings for the German translations of "fun" and
"later," using Unicode constants for these two special characters. It then compares them, using a Collator for the
German locale; the result is that "later" (spaeter) sorts before "fun" (spass).

String fun = "Spa\u00df";

String later = "sp\u00e4ter";
Collator german = Collator.getInstance(Locale.GERMAN);
if (german.compare(later, fun) < 0) // yes

Using collators is essential if you're working with languages other than English. In Spanish, for example, "ll" and "ch"
are treated as separate characters, and alphabetized separately. A collator handles cases like these automatically.

Searching

The String class provides several methods for finding substrings within a string. The startsWith() and
endsWith() methods compare an argument String with the beginning and end of the String, respectively:

String url = "http://foo.bar.com/";
if (url.startsWith("http:"))
 // do HTTP

Overloaded versions of indexOf() search for the first occurrence of a character or substring:

int i = abcs.indexOf('p'); // i = 15
int i = abcs.indexOf("def"); // i = 3

Correspondingly, overloaded versions of lastIndexOf() search for the last occurrence of a character or substring.

Editing

A number of methods operate on the String and return a new String as a result. While this is useful, you should
be aware that creating lots of strings in this manner can affect performance. If you need to modify a string often, you
should use the StringBuffer class, as I'll discuss shortly.

trim() is a useful method that removes leading and trailing white space (i.e., carriage return, newline, and tab) from
the String:

String abc = " abc ";
abc = abc.trim(); // "abc"

In the above example, we have thrown away the original String (with excess white space), so it will be garbage
collected.

The toUpperCase() and toLowerCase() methods return a new String of the appropriate case:

String foo = "FOO".toLowerCase();
String FOO = foo.toUpperCase();

substring() returns a specified range of characters. The starting index is inclusive; the ending is exclusive:

String abcs = "abcdefghijklmnopqrstuvwxyz";

String cde = abcs.substring(2, 5); // "cde"

String Method Summary

Many people complain when they discover the Java String class is final (i.e., it can't be subclassed). There is a
lot of functionality in String, and it would be nice to be able to modify its behavior directly. Unfortunately, there is
also a serious need to optimize and rely on the performance of String objects. As I discussed in Chapter 5, Objects
in Java, the Java compiler can optimize final classes by inlining methods when appropriate. The implementation of
final classes can also be trusted by classes that work closely together, allowing for special cooperative
optimizations. If you want to make a new string class that uses basic String functionality, use a String object in
your class and provide methods that delegate method calls to the appropriate String methods.

Table 7.2 summarizes the methods provided by the String class.

Table 7.2: String Methods

Method Functionality

charAt() Gets at a particular character in the string

compareTo() Compares the string with another string

concat() Concatenates the string with another string

copyValueOf() Returns a string equivalent to the specified character array

endsWith() Checks if the string ends with a suffix

equals() Compares the string with another string

equalsIgnoreCase() Compares the string with another string and ignores case

getBytes() Copies characters from the string into a byte array

getChars() Copies characters from the string into a character array

hashCode() Returns a hashcode for the string

indexOf() Searches for the first occurrence of a character or substring in the string

intern() Fetches a unique instance of the string from a global shared string pool

lastIndexOf() Searches for the last occurrence of a character or substring in a string

length() Returns the length of the string

regionMatches() Checks whether a region of the string matches the specified region of another string

replace() Replaces all occurrences of a character in the string with another character

startsWith() Checks if the string starts with a prefix

substring() Returns a substring from the string

toCharArray() Returns the array of characters from the string

toLowerCase() Converts the string to uppercase

toString() Converts the string to a string

toUpperCase() Converts the string to lowercase

trim() Removes the leading and trailing white space from the string

valueOf() Returns a string representation of a value

java.lang.StringBuffer

The java.lang.StringBuffer class is a growable buffer for characters. It's an efficient alternative to code like
the following:

String ball = "Hello";
ball = ball + " there.";
ball = ball + " How are you?";

The above example repeatedly produces new String objects. This means that the character array must be copied
over and over, which can adversely affect performance. A more economical alternative is to use a StringBuffer
object and its append() method:

StringBuffer ball = new StringBuffer("Hello");
ball.append(" there.");
ball.append(" How are you?");

The StringBuffer class actually provides a number of overloaded append() methods, for appending various
types of data to the buffer.

We can get a String from the StringBuffer with its toString() method:

String message = ball.toString();

StringBuffer also provides a number of overloaded insert() methods for inserting various types of data at a
particular location in the string buffer.

The String and StringBuffer classes cooperate, so that even in this last operation, no copy has to be made. The
string data is shared between the objects, unless and until we try to change it in the StringBuffer.

So, when should you use a StringBuffer instead of a String? If you need to keep adding characters to a string,
use a StringBuffer; it's designed to efficiently handle such modifications. You'll still have to convert the
StringBuffer to a String when you need to use any of the methods in the String class. You can print a
StringBuffer directly using System.out.println()because println() calls the toString() for you.

Another thing you should know about StringBuffer methods is that they are thread-safe, just like all public
methods in the Java API. This means that any time you modify a StringBuffer, you don't have to worry about
another thread coming along and messing up the string while you are modifying it. If you recall our discussion of
synchronization in Chapter 6, Threads, you know that being thread-safe means that only one thread at a time can
change the state of a StringBuffer instance.

On a final note, I mentioned earlier that strings take advantage of the single overloaded operator in Java, +, for
concatenation. You might be interested to know that the compiler uses a StringBuffer to implement

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm

concatenation. Consider the following expression:

String foo = "To " + "be " + "or";

This is equivalent to:

String foo = new
 StringBuffer().append("To ").append("be ").append("or").toString();

This kind of chaining of expressions is one of the things operator overloading hides in other languages.

java.util.StringTokenizer

A common programming task involves parsing a string of text into words or "tokens" that are separated by some set
of delimiter characters. The java.util.StringTokenizer class is a utility that does just this. The following
example reads words from the string text:

String text = "Now is the time for all good men (and women)...";
StringTokenizer st = new StringTokenizer(text);

while (st.hasMoreTokens()) {
 String word = st.nextToken();
 ...
}

First, we create a new StringTokenizer from the String. We invoke the hasMoreTokens() and
nextToken() methods to loop over the words of the text. By default, we use white space (i.e., carriage return,
newline, and tab) as delimiters.

The StringTokenizer implements the java.util.Enumeration interface, which means that
StringTokenizer also implements two more general methods for accessing elements: hasMoreElements()
and nextElement(). These methods are defined by the Enumeration interface; they provide a standard way of
returning a sequence of values, as we'll discuss a bit later. The advantage of nextToken() is that it returns a
String, while nextElement() returns an Object. The Enumeration interface is implemented by many
items that return sequences or collections of objects, as you'll see when we talk about hashtables and vectors later in
the chapter. Those of you who have used the C strtok()function should appreciate how useful this object-oriented
equivalent is.

You can also specify your own set of delimiter characters in the StringTokenizer constructor, using another
String argument to the constructor. Any combination of the specified characters is treated as the equivalent of
white space for tokenizing:

text = "http://foo.bar.com/";
tok = new StringTokenizer(text, "/:");

if (tok.countTokens() < 2) // bad URL

String protocol = tok.nextToken(); // protocol = "http" String host =
tok.nextToken(); // host = "foo.bar.com"

The example above parses a URL specification to get at the protocol and host components. The characters "/" and ":"
are used as separators. The countTokens() method provides a fast way to see how many tokens will be returned
by nextToken(), without actually creating the String objects.

An overloaded form of nextToken() accepts a string that defines a new delimiter set for that and subsequent reads.
And finally, the StringTokenizer constructor accepts a flag that specifies that separator characters are to be
returned individually as tokens themselves. By default, the token separators are not returned.

Scheduling and Priority Math Utilities

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm

Chapter 8

8. Input/Output Facilities
Contents:
Streams
Files
Serialization
Data compression

In this chapter, we'll continue our exploration of the Java API by looking at many of the classes in the java.io package.
These classes support a number of forms of input and output; I expect you'll use them often in your Java applications. Figure
8.1 shows the class hierarchy of the java.io package.

We'll start by looking at the stream classes in java.io; these classes are all subclasses of the basic InputStream,
OutputStream, Reader, and Writer classes. Then we'll examine the File class and discuss how you can interact with
the filesystem using classes in java.io. Finally, we'll take a quick look at the data compression classes provided in
java.util.zip.

8.1 Streams

All fundamental I/O in Java is based on streams. A stream represents a flow of data, or a channel of communication with (at
least conceptually) a writer at one end and a reader at the other. When you are working with terminal input and output, reading
or writing files, or communicating through sockets in Java, you are using a stream of one type or another. So you can see the
forest without being distracted by the trees, I'll start by summarizing the different types of streams.

Figure 8.1: The java.io package

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch07_07.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch08_03.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch08_04.htm

[Graphic: Figure 8-1]

InputStream/OutputStream

Abstract classes that define the basic functionality for reading or writing an unstructured sequence of bytes. All other
byte streams in Java are built on top of the basic InputStream and OutputStream.

Reader/Writer

Abstract classes that define the basic functionality for reading or writing an unstructured sequence of characters. All
other character streams in Java are built on top of Reader and Writer.

InputStreamReader/OutputStreamWriter

"Bridge" classes that convert bytes to characters and vice versa.

DataInputStream/DataOutputStream

Specialized stream filters that add the ability to read and write simple data types like numeric primitives and String
objects.

BufferedInputStream/BufferedOutputStream /BufferedReader/BufferedWriter

Specialized streams that incorporate buffering for additional efficiency.

PrintWriter

A specialized character stream that makes it simple to print text.

PipedInputStream/PipedOutputStream /PipedReader/PipedWriter

"Double-ended" streams that always occur in pairs. Data written into a PipedOutputStream or PipedWriter is
read from its corresponding PipedInputStream or PipedReader.

FileInputStream/FileOutputStream /FileReader/FileWriter

Implementations of InputStream, OutputStream, Reader, and Writer that read from and write to files on the
local filesystem.

Streams in Java are one-way streets. The java.io input and output classes represent the ends of a simple stream, as shown in
Figure 8.2. For bidirectional conversations, we use one of each type of stream.

Figure 8.2: Basic input and output stream functionality

[Graphic: Figure 8-2]

InputStream and OutputStream are abstract classes that define the lowest-level interface for all byte streams. They
contain methods for reading or writing an unstructured flow of byte-level data. Because these classes are abstract, you can
never create a "pure" input or output stream. Java implements subclasses of these for activities like reading and writing files,
and communicating with sockets. Because all byte streams inherit the structure of InputStream or OutputStream, the
various kinds of byte streams can be used interchangeably. For example, a method often takes an InputStream as an
argument. This means the method accepts any subclass of InputStream. Specialized types of streams can also be layered to
provide higher-level functionality, such as buffering or handling larger data types.

In Java 1.1, new classes based around Reader and Writer were added to the java.io package. Reader and Writer are
very much like InputStream and OutputStream, except that they deal with characters instead of bytes. As true character
streams, these classes correctly handle Unicode characters, which was not always the case with the byte streams. However,
some sort of bridge is needed between these character streams and the byte streams of physical devices like disks and
networks. InputStreamReader and OutputStreamWriter are special classes that use an encoding scheme to translate
between character and byte streams.

We'll discuss all of the interesting stream types in this section, with the exception of FileInputStream,
FileOutputStream, FileReader, and FileWriter. We'll postpone the discussion of file streams until the next
section, where we'll cover issues involved with accessing the filesystem in Java.

Terminal I/O

The prototypical example of an InputStream object is the standard input of a Java application. Like stdin in C or cin in
C++, this object reads data from the program's environment, which is usually a terminal window or a command pipe. The
java.lang.System class, a general repository for system-related resources, provides a reference to standard input in the
static variable in. System also provides objects for standard output and standard error in the out and err variables,
respectively. The following example shows the correspondence:

InputStream stdin = System.in;
OutputStream stdout = System.out;
OutputStream stderr = System.err;

This example hides the fact that System.out and System.err aren't really OutputStream objects, but more
specialized and useful PrintStream objects. I'll explain these later, but for now we can reference out and err as
OutputStream objects, since they are a kind of OutputStream by inheritance.

We can read a single byte at a time from standard input with the InputStream's read() method. If you look closely at the
API, you'll see that the read() method of the base InputStream class is actually an abstract method. What lies behind
System.in is an implementation of InputStream, so it's valid to call read() for this stream:

try {
 int val = System.in.read();
 ...
}
catch (IOException e) {
}

As is the convention in C, read() provides a byte of information, but its return type is int. A return value of -1 indicates a
normal end of stream has been reached; you'll need to test for this condition when using the simple read() method. If an
error occurs during the read, an IOException is thrown. All basic input and output stream commands can throw an
IOException, so you should arrange to catch and handle them as appropriate.

To retrieve the value as a byte, perform the cast:

byte b = (byte) val;

Of course, you'll need to check for the end-of-stream condition before you perform the cast. An overloaded form of read()
fills a byte array with as much data as possible up to the limit of the array size and returns the number of bytes read:

byte [] bity = new byte [1024];
int got = System.in.read(bity);

We can also check the number of bytes available for reading on an InputStream with the available() method. Once
we have that information, we can create an array of exactly the right size:

int waiting = System.in.available();
if (waiting > 0) {
 byte [] data = new byte [waiting];
 System.in.read(data);
 ...
}

InputStream provides the skip() method as a way of jumping over a number of bytes. Depending on the implementation
of the stream and if you aren't interested in the intermediate data, skipping bytes may be more efficient than reading them. The
close() method shuts down the stream and frees up any associated system resources. It's a good idea to close a stream when
you are done using it.

Character Streams

The InputStream and OutputStream subclasses of Java 1.0.2 included methods for reading and writing strings, but
most of them operated by assuming that a sixteen-bit Unicode character was equivalent to an eight-bit byte in the stream. This
only works for Latin-1 (ISO8859-1) characters, so the character stream classes Reader and Writer were introduced in Java
1.1. Two special classes, InputStreamReader and OutputStreamWriter, bridge the gap between the world of
character streams and the world of byte streams. These are character streams that are wrapped around an underlying byte
stream. An encoding scheme is used to convert between bytes and characters. An encoding scheme name can be specified in
the constructor of InputStreamReader or OutputStreamWriter. Another constructor simply accepts the underlying
stream and uses the system's default encoding scheme. For example, let's parse a human-readable string from the standard
input into an integer. We'll assume that the bytes coming from System.in use the system's default encoding scheme.

try {
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);

 String text = in.readLine();
 int i = NumberFormat.getInstance().parse(text).intValue();
}
catch (IOException e) { }
catch (ParseException pe) { }

First, we wrap an InputStreamReader around System.in. This object converts the incoming bytes of System.in to
characters using the default encoding scheme. Then, we wrap a BufferedReader around the InputStreamReader.
BufferedReader gives us the readLine() method, which we can use to retrieve a full line of text into a String. The
string is then parsed into an integer using the techniques described in Chapter 7.

We could have programmed the previous example using only byte streams, and it would have worked for users in the United
States, at least. So why go to the extra trouble of using character streams? Character streams were introduced in Java 1.1 to
correctly support Unicode strings. Unicode was designed to support almost all of the written languages of the world. If you
want to write a program that works in any part of the world, in any language, you definitely want to use streams that don't
mangle Unicode.

So how do you decide when you need a byte stream and when you need a character stream? If you want to read or write
character strings, use some variety of Reader or Writer. Otherwise a byte stream should suffice. Let's say, for example,
that you want to read strings from a file that was written out by a Java 1.0.2 application. In this case you could simply create a
FileReader, which will convert the bytes in the file to characters using the system's default encoding scheme. If you have a
file in a specific encoding scheme, you can create an InputStreamReader with that encoding scheme and read characters
from it. Another example comes from the Internet. Web servers serve files as byte streams. If you want to read Unicode strings
from a file with a particular encoding scheme, you'll need an appropriate InputStreamReader wrapped around the
socket's InputStream.

Stream Wrappers

What if we want to do more than read and write a mess of bytes or characters? Many of the InputStream,

OutputStream, Reader, and Writer classes wrap other streams and add new features. A filtered stream takes another
stream in its constructor; it delegates calls to the underlying stream while doing some additional processing of its own.

In Java 1.0.2, all wrapper streams were subclasses of FilterInputStream and FilterOutputStream. The character
stream classes introduced in Java 1.1 break this pattern, but they operate in the same way. For example,
BufferedInputStream extends FilterInputStream in the byte world, but BufferedReader extends Reader in
the character world. It doesn't really matter--both classes accept a stream in their constructor and perform buffering. Like the
byte stream classes, the character stream classes include the abstract FilterReader and FilterWriter classes, which
simply pass all method calls to an underlying stream.

The FilterInputStream, FilterOutputStream, FilterReader, and FilterWriter classes themselves aren't
useful; they must be subclassed and specialized to create a new type of filtering operation. For example, specialized wrapper
streams like DataInputStream and DataOutputStream provide additional methods for reading and writing primitive
data types.

As we said, when you create an instance of a filtered stream, you specify another stream in the constructor. The specialized
stream wraps an additional layer of functionality around the other stream, as shown in Figure 8.3. Because filtered streams
themselves are subclasses of the fundamental stream types, filtered streams can be layered on top of each other to provide
different combinations of features. For example, you could wrap a PushbackReader around a LineNumberReader that
was wrapped around a FileReader.

Figure 8.3: Layered streams

[Graphic: Figure 8-3]

Data streams

DataInputStream and DataOutputStream are filtered streams that let you read or write strings and primitive data
types that comprise more than a single byte. DataInputStream and DataOutputStream implement the DataInput
and DataOutput interfaces, respectively. These interfaces define the methods required for streams that read and write strings
and Java primitive types in a machine-independent manner.

You can construct a DataInputStream from an InputStream and then use a method like readDouble() to read a
primitive data type:

DataInputStream dis = new DataInputStream(System.in);
double d = dis.readDouble();

The above example wraps the standard input stream in a DataInputStream and uses it to read a double value.
readDouble() reads bytes from the stream and constructs a double from them. All DataInputStream methods that
read primitive types also read binary information.

The DataOutputStream class provides write methods that correspond to the read methods in DataInputStream. For
example, writeInt() writes an integer in binary format to the underlying output stream.

The readUTF() and writeUTF() methods of DataInputStream and DataOutputStream read and write a Java
String of Unicode characters using the UTF-8 "transformation format." UTF-8 is an ASCII-compatible encoding of Unicode
characters commonly used for the transmission and storage of Unicode text.[1]

[1] Check out the URL http://www.stonehand.com/unicode/standard/utf8.html for more information on UTF-8.

We can use a DataInputStream with any kind of input stream, whether it be from a file, a socket, or standard input. The
same applies to using a DataOutputStream, or, for that matter, any other specialized streams in java.io.

Buffered streams

The BufferedInputStream, BufferedOutputStream, BufferedReader, and BufferedWriter classes add a
data buffer of a specified size to the stream path. A buffer can increase efficiency by reducing the number of physical read or
write operations that correspond to read() or write() method calls. You create a buffered stream with an appropriate
input or output stream and a buffer size. Furthermore, you can wrap another stream around a buffered stream so that it benefits
from the buffering. Here's a simple buffered input stream:

BufferedInputStream bis = new BufferedInputStream(myInputStream, 4096);
...
bis.read();

In this example, we specify a buffer size of 4096 bytes. If we leave off the size of the buffer in the constructor, a reasonably
sized one is chosen for us. On our first call to read(), bis tries to fill the entire 4096-byte buffer with data. Thereafter, calls
to read() retrieve data from the buffer until it's empty.

A BufferedOutputStream works in a similar way. Calls to write() store the data in a buffer; data is actually written
only when the buffer fills up. You can also use the flush() method to wring out the contents of a
BufferedOutputStream before the buffer is full.

Some input streams like BufferedInputStream support the ability to mark a location in the data and later reset the stream
to that position. The mark() method sets the return point in the stream. It takes an integer value that specifies the number of
bytes that can be read before the stream gives up and forgets about the mark. The reset() method returns the stream to the
marked point; any data read after the call to mark() is read again.

This functionality is especially useful when you are reading the stream in a parser. You may occasionally fail to parse a
structure and so must try something else. In this situation, you can have your parser generate an error (a homemade
ParseException) and then reset the stream to the point before it began parsing the structure:

BufferedInputStream input;
...
try {
 input.mark(MAX_DATA_STRUCTURE_SIZE);
 return(parseDataStructure(input));

file:///C|/download/www.stonehand.com/unicode/standard/utf8.html

}
catch (ParseException e) {
 input.reset();
 ...
}

The BufferedReader and BufferedWriter classes work just like their byte-based counterparts, but operate on
characters instead of bytes.

Print streams

Another useful wrapper stream is java.io.PrintWriter. This class provides a suite of overloaded print() methods
that turn their arguments into strings and push them out the stream. A complementary set of println() methods adds a
newline to the end of the strings. PrintWriter is the more capable big brother of the PrintStream byte stream.
PrintWriter is an unusual character stream because it can wrap either an OutputStream or another Writer. The
System.out and System.err streams are PrintStream objects; you have already seen such streams strewn throughout
this book:

System.out.print("Hello world...\n");
System.out.println("Hello world...");
System.out.println("The answer is: " + 17);
System.out.println(3.14);

In Java 1.1, the PrintStream class has been enhanced to translate characters to bytes using the system's default encoding
scheme. Although PrintStream is not deprecated in Java 1.1, its constructors are. For all new development, use a
PrintWriter instead of a PrintStream. Because a PrintWriter can wrap an OutputStream, the two classes are
interchangeable.

When you create a PrintWriter object, you can pass an additional boolean value to the constructor. If this value is
true, the PrintWriter automatically performs a flush() on the underlying OutputStream or Writer each time it
sends a newline:

boolean autoFlush = true;
PrintWriter p = new PrintWriter(myOutputStream, autoFlush);

When this technique is used with a buffered output stream, it corresponds to the behavior of terminals that send data line by
line.

Unlike methods in other stream classes, the methods of PrintWriter and PrintStream do not throw IOExceptions.
Instead, if we are interested, we can check for errors with the checkError() method:

System.out.println(reallyLongString);
if (System.out.checkError()) // Uh oh

Pipes

Normally, our applications are directly involved with one side of a given stream at a time. PipedInputStream and
PipedOutputStream (or PipedReader and PipedWriter), however, let us create two sides of a stream and connect
them together, as shown in Figure 8.4. This provides a stream of communication between threads, for example.

To create a pipe, we use both a PipedInputStream and a PipedOutputStream. We can simply choose a side and then
construct the other side using the first as an argument:

Figure 8.4: Piped streams

[Graphic: Figure 8-4]

PipedInputStream pin = new PipedInputStream();
PipedOutputStream pout = new PipedOutputStream(pin);

Alternatively :

PipedOutputStream pout = new PipedOutputStream();
PipedInputStream pin = new PipedInputStream(pout);

In each of these examples, the effect is to produce an input stream, pin, and an output stream, pout, that are connected. Data
written to pout can then be read by pin. It is also possible to create the PipedInputStream and the
PipedOutputStream separately, and then connect them with the connect() method.

We can do exactly the same thing in the character-based world, using PipedReader and PipedWriter in place of
PipedInputStream and PipedOutputStream.

Once the two ends of the pipe are connected, use the two streams as you would other input and output streams. You can use
read() to read data from the PipedInputStream (or PipedReader) and write() to write data to the
PipedOutputStream (or PipedWriter). If the internal buffer of the pipe fills up, the writer blocks and waits until more
space is available. Conversely, if the pipe is empty, the reader blocks and waits until some data is available. Internally, the
blocking is implemented with wait() and notifyAll(), as described in Chapter 6, Threads.

One advantage to using piped streams is that they provide stream functionality in our code, without compelling us to build
new, specialized streams. For example, we can use pipes to create a simple logging facility for our application. We can send
messages to the logging facility through an ordinary PrintWriter, and then it can do whatever processing or buffering is
required before sending the messages off to their ultimate location. Because we are dealing with string messages, we use the
character-based PipedReader and PipedWriter classes. The following example shows the skeleton of our logging
facility:

import java.io.*;

class LoggerDaemon extends Thread {
 PipedReader in = new PipedReader();

 LoggerDaemon() {
 setDaemon(true);
 start();

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm

 }

 public void run() {
 BufferedReader din = new BufferedReader(in);
 String s;

 try {
 while ((s = din.readLine()) != null) {
 // process line of data
 // ...
 }
 }
 catch (IOException e) { }
 }

 PrintWriter getWriter() throws IOException {
 return new PrintWriter(new PipedWriter(in));
 }
}

class myApplication {
 public static void main (String [] args) throws IOException {
 PrintWriter out = new LoggerDaemon().getWriter();

 out.println("Application starting...");
 // ...
 out.println("Warning: does not compute!");
 // ...
 }
}

LoggerDaemon is a daemon thread, so it will die when our application exits. LoggerDaemon reads strings from its end of
the pipe, the PipedReader in. LoggerDaemon also provides a method, getWriter(), that returns a PipedWriter
that is connected to its input stream. Simply create a new LoggerDaemon and fetch the output stream to begin sending
messages.

In order to read strings with the readLine() method, LoggerDaemon wraps a BufferedReader around its
PipedReader. For convenience, it also presents its PipedWriter as a PrintWriter, rather than a simple Writer.

One advantage of implementing LoggerDaemon with pipes is that we can log messages as easily as we write text to a
terminal or any other stream. In other words, we can use all our normal tools and techniques. Another advantage is that the
processing happens in another thread, so we can go about our business while the processing takes place.

There is nothing stopping us from connecting more than two piped streams. For example, we could chain multiple pipes
together to perform a series of filtering operations.

Strings to Streams and Back

The StringReader class is another useful stream class. The stream is created from a String; StringReader
essentially wraps stream functionality around a String. Here's how to use a StringReader:

String data = "There once was a man from Nantucket...";

StringReader sr = new StringReader(data);

char T = (char)sr.read();
char h = (char)sr.read();
char e = (char)sr.read();

Note that you will still have to catch IOExceptions thrown by some of the StringReader's methods.

The StringReader class is useful when you want to read data in a String as if it were coming from a stream, such as a
file, pipe, or socket. For example, suppose you create a parser that expects to read tokens from a stream. But you want to
provide a method that also parses a big string. You can easily add one using StringReader.

Turning things around, the StringWriter class lets us write to a character string through an output stream. The internal
string grows as necessary to accommodate the data. In the following example, we create a StringWriter and wrap it in a
PrintWriter for convenience:

StringWriter buffer = new StringWriter();
PrintWriter out = new PrintWriter(buffer);

out.println("A moose once bit my sister.");
out.println("No, really!");

String results = buffer.toString();

First we print a few lines to the output stream, to give it some data, then retrieve the results as a string with the toString()
method. Alternately, we could get the results as a StringBuffer with the getBuffer() method.

The StringWriter class is useful if you want to capture the output of something that normally sends output to a stream,
such as a file or the console. A PrintWriter wrapped around a StringWriter competes with StringBuffer as the
easiest way to construct large strings piece by piece. While using a StringBuffer is more efficient, PrintWriter
provides more functionality than the normal append() method used by StringBuffer.

rot13InputStream

Before we leave streams, let's try our hand at making one of our own. I mentioned earlier that specialized stream wrappers are
built on top of the FilterInputStream and FilterOutputStream classes. It's quite easy to create our own subclass
of FilterInputStream that can be wrapped around other streams to add new functionality.

The following example, rot13InputStream, performs a rot13 operation on the bytes that it reads. rot13 is a trivial
algorithm that shifts alphanumeric letters to make them not quite human-readable; it's cute because it's symmetric. That is, to
"un-rot13" some text, simply rot13 it again. We'll use the rot13InputStream class again in the crypt protocol handler
example in Chapter 9, Network Programming, so we've put the class in the example.io package to facilitate reuse. Here's
our rot13InputStream class:

package example.io;
import java.io.*;

public class rot13InputStream extends FilterInputStream {

 public rot13InputStream (InputStream i) {
 super(i);
 }

 public int read() throws IOException {
 return rot13(in.read());
 }

 private int rot13 (int c) {
 if ((c >= 'A') && (c <= 'Z')) c=(((c-'A')+13)%26)+'A'; if
((c >= 'a') && (c <= 'z'))
 c=(((c-'a')+13)%26)+'a';
 return c;
 } }

The FilterInputStream needs to be initialized with an InputStream; this is the stream to be filtered. We provide an
appropriate constructor for the rot13InputStream class and invoke the parent constructor with a call to super().
FilterInputStream contains a protected instance variable, in, where it stores the stream reference and makes it available
to the rest of our class.

The primary feature of a FilterInputStream is that it overrides the normal InputStream methods to delegate calls to
the InputStream in the variable in. So, for instance, a call to read() simply turns around and calls read() on in to
fetch a byte. An instance of FilterInputStream itself could be instantiated from an InputStream; it would pass its
method calls on to that stream and serve as a pass-through filter. To make things interesting, we can override methods of the
FilterInputStream class and do extra work on the data as it passes through.

In our example, we have overridden the read() method to fetch bytes from the underlying InputStream, in, and then
perform the rot13 shift on the data before returning it. Note that the rot13() method shifts alphabetic characters, while
simply passing all other values, including the end of stream value (-1). Our subclass now acts like a rot13 filter. All other
normal functionality of an InputStream, like skip() and available() is unmodified, so calls to these methods are
answered by the underlying InputStream.

Strictly speaking, rot13InputStream only works on an ASCII byte stream, since the underlying algorithm is based on the
Roman alphabet. A more generalized character scrambling algorithm would have to be based on FilterReader to handle
Unicode correctly.

Internationalization Files

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch07_07.htm

Chapter 9

9. Network Programming
Contents:
Sockets
Datagram Sockets
Working with URLs
Web Browsers and Handlers
Writing a Content Handler
Writing a Protocol Handler

The network is the soul of Java. Most of what is new and exciting about Java centers around the potential
for new kinds of dynamic, networked applications. This chapter discusses the java.net package,
which contains classes for communications and working with networked resources. These classes fall
into two categories: the sockets API and classes for working with Uniform Resource Locators (URLs).
Figure 9.1 shows all of the classes in java.net.

Figure 9.1: The java.net package

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch08_04.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm

[Graphic: Figure 9-1]

Java's sockets interface provides access to the standard network protocols used for communications
between hosts on the Internet. Sockets are the mechanism underlying all other kinds of portable
networked communications. Your processes can use sockets to communicate with a server or peer
applications on the Net, but you have to implement your own application-level protocols for handling and
interpreting the data. Higher-level functionality, like remote procedure calls and distributed objects, are
implemented with sockets.

The Java URL classes provide an API for accessing well-defined networked resources, like documents
and applications on servers. The classes use an extensible set of prefabricated protocol and content
handlers to perform the necessary communication and data conversion for accessing URL resources.
With URLs, an application can fetch a complete file or database record from a server on the network with
just a few lines of code. Applications like Web browsers, which deal with networked content, use the
URL class to simplify the task of network programming. They also take advantage of the dynamic nature
of Java, which allows handlers for new types of URLs to be added on the fly. As new types of servers and
new formats for content evolve, additional URL handlers can be supplied to retrieve and interpret the data
without modifying the original application.

In this chapter, I'll try to provide some practical and realistic examples of Java network programming
using both APIs. Sadly, the current state of affairs is disappointing. The real release of HotJava isn't
available, and Netscape Navigator imposes many restrictions on what you can do. In addition, a few

standards that we need haven't been defined. Nevertheless, you can use all of Java's networking
capabilities to build your own free-standing applications. I'll point out the shortcomings with Netscape
Navigator and the standards scene as I go along.

9.1 Sockets

Sockets are a low-level programming interface for networked communications. They send streams of
data between applications that may or may not be on the same host. Sockets originated in BSD UNIX and
are, in other languages, hairy and complicated things with lots of small parts that can break off and choke
little children. The reason for this is that most socket APIs can be used with almost any kind of
underlying network protocol. Since the protocols that transport data across the network can have radically
different features, the socket interface can be quite complex. (For a discussion of sockets in general, see
UNIX Network Programming, by Richard Stevens [Prentice-Hall].)

Java supports a simplified object-oriented interface to sockets that makes network communications
considerably easier. If you have done network programming using sockets in C or another structured
language, you should be pleasantly surprised at how simple things can be when objects encapsulate the
gory details. If this is the first time you've come across sockets, you'll find that talking to another
application can be as simple as reading a file or getting user input. Most forms of I/O in Java, including
network I/O, use the stream classes described in Chapter 8, Input/Output Facilities. Streams provide a
unified I/O interface; reading or writing across the Internet is similar to reading or writing a file on the
local system.

Java provides different kinds of sockets to support two distinct classes of underlying protocols. In this
first section, we'll look at Java's Socket class, which uses a connection-oriented protocol. A connection-
oriented protocol gives you the equivalent of a telephone conversation; after establishing a connection,
two applications can send data back and forth; the connection stays in place even when no one is talking.
The protocol ensures that no data is lost and that it always arrives in order. In the next section we'll look
at the DatagramSocket class, which uses a connectionless protocol. A connectionless protocol is
more like the postal service. Applications can send short messages to each other, but no attempt is made
to keep the connection open between messages, to keep the messages in order, or even to guarantee that
they arrive.

In theory, just about any protocol family can be used underneath the socket layer: Novell's IPX, Apple's
AppleTalk, even the old ChaosNet protocols. But this isn't a theoretical world. In practice, there's only
one protocol family people care about on the Internet, and only one protocol family Java supports: the
Internet protocols, IP. The Socket class speaks TCP, and the DatagramSocket class speaks UDP,
both standard Internet protocols. These protocols are available on any system that is connected to the
Internet.

Clients and Servers

When writing network applications, it's common to talk about clients and servers. The distinction is
increasingly vague, but the side that initiates the conversation is usually the client. The side that accepts
the request to talk is usually the server. In the case where there are two peer applications using sockets to
talk, the distinction is less important, but for simplicity we'll use the above definition.

For our purposes, the most important difference between a client and a server is that a client can create a
socket to initiate a conversation with a server application at any time, while a server must prepare to
listen for incoming conversations in advance. The java.net.Socket class represents a single side of
a socket connection on either the client or server. In addition, the server uses the
java.net.ServerSocket class to wait for connections from clients. An application acting as a
server creates a ServerSocket object and waits, blocked in a call to its accept() method, until a
connection arrives. When it does, the accept() method creates a Socket object the server uses to
communicate with the client. A server carries on multiple conversations at once; there is only a single
ServerSocket, but one active Socket object for each client, as shown in Figure 9.2.

Figure 9.2: Clients and servers, Sockets and ServerSockets

[Graphic: Figure 9-2]

A client needs two pieces of information to locate and connect to another server on the Internet: a
hostname (used to find the host's network address) and a port number. The port number is an identifier
that differentiates between multiple clients or servers on the same host. A server application listens on a
prearranged port while waiting for connections. Clients select the port number assigned to the service
they want to access. If you think of the host computers as hotels and the applications as guests, then the
ports are like the guests' room numbers. For one guest to call another, he or she must know the other
party's hotel name and room number.

Clients

A client application opens a connection to a server by constructing a Socket that specifies the hostname

and port number of the desired server:

try {
 Socket sock = new Socket("wupost.wustl.edu", 25);
}
catch (UnknownHostException e) {
 System.out.println("Can't find host.");
}
catch (IOException e) {
 System.out.println("Error connecting to host.");
}

This code fragment attempts to connect a Socket to port 25 (the SMTP mail service) of the host
wupost.wustl.edu. The client handles the possibility that the hostname can't be resolved
(UnknownHostException) and that it might not be able to connect to it (IOException).

As an alternative to using a hostname, you can provide a string version of the host's IP address:

Socket sock = new Socket("128.252.120.1", 25); // wupost.wustl.edu

Once a connection is made, input and output streams can be retrieved with the Socket
getInputStream() and getOutputStream() methods. The following (rather arbitrary and
strange) conversation illustrates sending and receiving some data with the streams. Refer to Chapter 8,
Input/Output Facilities for a complete discussion of working with streams.

try {
 Socket server = new Socket("foo.bar.com", 1234);
 InputStream in = server.getInputStream();
 OutputStream out = server.getOutputStream();

 // Write a byte
 out.write(42);

 // Say "Hello" (send newline delimited string)
 PrintStream pout = new PrintStream(out);
 pout.println("Hello!");

 // Read a byte
 Byte back = in.read();

 // Read a newline delimited string
 DataInputStream din = new DataInputStream(in);
 String response = din.readLine();

 server.close();
}
catch (IOException e) { }

In the exchange above, the client first creates a Socket for communicating with the server. The
Socket constructor specifies the server's hostname (foo.bar.com) and a prearranged port number (1234).
Once the connection is established, the client writes a single byte to the server using the
OutputStream's write() method. It then wraps a PrintStream around the OutputStream in
order to send text more easily. Next, it performs the complementary operations, reading a byte from the
server using InputStream's read() and then creating a DataInputStream from which to get a
string of text. Finally, it terminates the connection with the close() method. All these operations have
the potential to generate IOExceptions; the catch clause is where our application would deal with
these.

Servers

After a connection is established, a server application uses the same kind of Socket object for its side of
the communications. However, to accept a connection from a client, it must first create a
ServerSocket, bound to the correct port. Let's recreate the previous conversation from the server's
point of view:

// Meanwhile, on foo.bar.com...
try {
 ServerSocket listener = new ServerSocket(1234);

 while (!finished) {
 Socket aClient = listener.accept(); // wait for connection

 InputStream in = aClient.getInputStream();
 OutputStream out = aClient.getOutputStream();

 // Read a byte
 Byte importantByte = in.read();

 // Read a string
 DataInputStream din = new DataInputStream(in);
 String request = din.readLine();

 // Write a byte
 out.write(43);

 // Say "Goodbye"
 PrintStream pout = new PrintStream(out);

 pout.println("Goodbye!");

 aClient.close();
 }

 listener.close();

}
catch (IOException e) { }

First, our server creates a ServerSocket attached to port 1234. On some systems there are rules about
what ports an application can use. Port numbers below 1024 are usually reserved for system processes
and standard, well-known services, so we pick a port number outside of this range. The ServerSocket
need be created only once. Thereafter we can accept as many connections as arrive.

Next we enter a loop, waiting for the accept() method of the ServerSocket to return an active
Socket connection from a client. When a connection has been established, we perform the server side
of our dialog, then close the connection and return to the top of the loop to wait for another connection.
Finally, when the server application wants to stop listening for connections altogether, it calls the
close() method of the ServerSocket.[1]

[1] A somewhat obscure security feature in TCP/IP specifies that if a server socket actively
closes a connection while a client is connected, it may not be able to bind (attach itself) to
the same port on the server host again for a period of time (the maximum time to live of a
packet on the network). It's possible to turn off this feature, and it's likely that your Java
implementation will have done so.

As you can see, this server is single-threaded; it handles one connection at a time; it doesn't call
accept() to listen for a new connection until it's finished with the current connection. A more realistic
server would have a loop that accepts connections concurrently and passes them off to their own threads
for processing. (Our tiny HTTP daemon in a later section will do just this.)

Sockets and security

The examples above presuppose the client has permission to connect to the server, and that the server is
allowed to listen on the specified socket. This is not always the case. Specifically, applets and other
applications run under the auspices of a SecurityManager that can impose arbitrary restrictions on
what hosts they may or may not talk to, and whether they can listen for connections. The security policy
imposed by the current version of Netscape Navigator allows applets to open socket connections only to
the host that served them. That is, they can talk back only to the server from which their class files were
retrieved. Applets are not allowed to open server sockets themselves.

Now, this doesn't meant an applet can't cooperate with its server to communicate with anyone, anywhere.

A server could run a proxy that lets the applet communicate indirectly with anyone it likes. What the
current security policy prevents is malicious applets roaming around inside corporate firewalls. It places
the burden of security on the originating server, and not the client machine. Restricting access to the
originating server limits the usefulness of "trojan" applications that do annoying things from the client
side. You won't let your proxy mail bomb people, because you'll be blamed.

The DateAtHost Client

Many networked workstations run a time service that dispenses their local clock time on a well-known
port. This was a precursor of NTP, the more general Network Time Protocol. In the next example,
DateAtHost, we'll make a specialized subclass of java.util.Date that fetches the time from a
remote host instead of initializing itself from the local clock. (See Chapter 7, Basic Utility Classes for a
complete discussion of the Date class.)

DateAtHost connects to the time service (port 37) and reads four bytes representing the time on the
remote host. These four bytes are interpreted as an integer representing the number of seconds since the
turn of the century. DateAtHost converts this to Java's variant of the absolute time (milliseconds since
January 1, 1970, a date that should be familiar to UNIX users) and then uses the remote host's time to
initialize itself:

import java.net.Socket;
import java.io.*;

public class DateAtHost extends java.util.Date {
 static int timePort = 37;
 static final long offset = 2208988800L; // Seconds from century to
 // Jan 1, 1970 00:00 GMT

 public DateAtHost(String host) throws IOException {
 this(host, timePort);
 }

 public DateAtHost(String host, int port) throws IOException {
 Socket sock = new Socket(host, port);
 DataInputStream din =
 new DataInputStream(sock.getInputStream());
 int time = din.readInt();
 sock.close();

 setTime((((1L << 32) + time) - offset) * 1000);
 } }

That's all there is to it. It's not very long, even with a few frills. We have supplied two possible

constructors for DateAtHost. Normally we'll use the first, which simply takes the name of the remote
host as an argument. The second, overloaded constructor specifies the hostname and the port number of
the remote time service. (If the time service were running on a nonstandard port, we would use the
second constructor to specify the alternate port number.) This second constructor does the work of
making the connection and setting the time. The first constructor simply invokes the second (using the
this() construct) with the default port as an argument. Supplying simplified constructors that invoke
their siblings with default arguments is a common and useful technique.

The second constructor opens a socket to the specified port on the remote host. It creates a
DataInputStream to wrap the input stream and then reads a 4-byte integer using the readInt()
method. It's no coincidence the bytes are in the right order. Java's DataInputStream and
DataOutputStream classes work with the bytes of integer types in network byte order (most
significant to least significant). The time protocol (and other standard network protocols that deal with
binary data) also uses the network byte order, so we don't need to call any conversion routines. (Explicit
data conversions would probably be necessary if we were using a nonstandard protocol, especially when
talking to a non-Java client or server.) After reading the data, we're finished with the socket, so we close
it, terminating the connection to the server. Finally, the constructor initializes the rest of the object by
calling Date's setTime() method with the calculated time value.[2]

[2] The conversion first creates a long value, which is the unsigned equivalent of the
integer time. It subtracts an offset to make the time relative to the epoch (January 1, 1970)
rather than the century, and multiples by 1000 to convert to milliseconds.

The DateAtHost class can work with a time retrieved from a remote host almost as easily as Date is
used with the time on the local host. The only additional overhead is that we have to deal with the
possible IOException that can be thrown by the DateAtHost constructor:

try {
 Date d = new DateAtHost("sura.net");
 System.out.println("The time over there is: " + d);
 int hours = d.getHours();
 int minutes = d.getMinutes();
 ...
}
catch (IOException e) { }

This example fetches the time at the host sura.net and prints its value. It then looks at some components
of the time using the getHours() and getMinutes() methods of the Date class.

The TinyHttpd Server

Have you ever wanted your very own Web server? Well, you're in luck. In this section, we're going to

build TinyHttpd, a minimal but functional HTTP daemon. TinyHttpd listens on a specified port and
services simple HTTP "get file" requests. They look something like this:

GET /path/filename [optional stuff]

Your Web browser sends one or more as lines for each document it retrieves. Upon reading the request,
the server tries to open the specified file and send its contents. If that document contains references to
images or other items to be displayed inline, the browser continues with additional GET requests. For best
performance (especially in a time-slicing environment), TinyHttpd services each request in its own
thread. Therefore, TinyHttpd can service several requests concurrently.

Over and above the limitations imposed by its simplicity, TinyHttpd suffers from the limitations
imposed by the fickleness of filesystem access, as discussed in Chapter 8, Input/Output Facilities. It's
important to remember that file pathnames are still architecture dependent--as is the concept of a
filesystem to begin with. This example should work, as is, on UNIX and DOS-like systems, but may
require some customizations to account for differences on other platforms. It's possible to write more
elaborate code that uses the environmental information provided by Java to tailor itself to the local
system. (Chapter 8, Input/Output Facilities gives some hints about how to do this).

WARNING:

This example will serve files from your host without protection. Don't try this at work.

Now, without further ado, here's TinyHttpd:

import java.net.*;
import java.io.*;
import java.util.*;

public class TinyHttpd {
 public static void main(String argv[]) throws IOException {
 ServerSocket ss = new ServerSocket(Integer.parseInt(argv[0]));
 while (true)
 new TinyHttpdConnection(ss.accept());
 }
}

class TinyHttpdConnection extends Thread {
 Socket sock;
 TinyHttpdConnection (Socket s) {
 sock = s;
 setPriority(NORM_PRIORITY - 1);

 start();
 }

 public void run() {
 try {
 OutputStream out = sock.getOutputStream();
 String req =
 new DataInputStream(sock.getInputStream()).readLine();
 System.out.println("Request: "+req);

 StringTokenizer st = new StringTokenizer(req);
 if ((st.countTokens() >= 2) &&
 st.nextToken().equals("GET")) {
 if ((req = st.nextToken()).startsWith("/"))
 req = req.substring(1);
 if (req.endsWith("/") || req.equals(""))
 req = req + "index.html";

 try {
 FileInputStream fis = new FileInputStream (req);
 byte [] data = new byte [fis.available()];
 fis.read(data);
 out.write(data);
 }
 catch (FileNotFoundException e)
 new PrintStream(out).println("404 Not Found");
 } else
 new PrintStream(out).println("400 Bad Request");

 sock.close();
 }
 catch (IOException e)
 System.out.println("I/O error " + e);
 }
}

Compile TinyHttpd and place it in your class path. Go to a directory with some interesting documents
and start the daemon, specifying an unused port number as an argument. For example:

% java TinyHttpd 1234

You should now be able to use your Web browser to retrieve files from your host. You'll have to specify
the nonstandard port number in the URL. For example, if your hostname is foo.bar.com, and you started
the server as above, you could reference a file as in:

http://foo.bar.com:1234/welcome.html

TinyHttpd looks for files relative to its current directory, so the pathnames you provide should be
relative to that location. Retrieved some files? Al'righty then, let's take a closer look.

TinyHttpd is comprised of two classes. The public TinyHttpd class contains the main() method
of our standalone application. It begins by creating a ServerSocket, attached to the specified port. It
then loops, waiting for client connections and creating instances of the second class, a
TinyHttpdConnection thread, to service each request. The while loop waits for the
ServerSocket accept() method to return a new Socket for each client connection. The Socket
is passed as an argument to construct the TinyHttpdConnection thread that handles it.

TinyHttpdConnection is a subclass of Thread. It lives long enough to process one client
connection and then dies. TinyHttpdConnection's constructor does three things. After saving the
Socket argument for its caller, it adjusts its own priority and then invokes start() to bring its
run() method to life. By lowering its priority to NORM_PRIORITY-1 (just below the default priority),
we ensure that the threads servicing established connections won't block TinyHttpd's main thread from
accepting new requests. (On a time-slicing system, this is less important.)

The body of TinyHttpdConnection's run() method is where all the magic happens. First, we fetch
an OutputStream for talking back to our client. The second line reads the GET request from the
InputStream into the variable req. This request is a single newline-terminated String that looks
like the GET request we described earlier. Since this is the only time we read from this socket, it's hard to
resist the urge to be terse. Alternatively, we could break that statement into three steps: getting the
InputStream, creating the DataInputStream wrapper, and reading the line. The three-line version
is certainly more readable and should not be noticeably slower.

We then parse the contents of req to extract a filename. The next few lines are a brief exercise in string
manipulation. We create a StringTokenizer and make sure there are at least two tokens. Using
nextToken(), we take the first token and make sure it's the word GET. (If both conditions aren't met,
we have an error.) Then we take the next token (which should be a filename), assign it to req , and check
whether it begins with "/". If so, we use substring() to strip the first character, giving us a filename
relative to the current directory. If it doesn't begin with "/", the filename is already relative to the current
directory. Finally, we check to see if the requested filename looks like a directory name (i.e., ends in
slash) or is empty. In these cases, we append the familiar default filename index.html.

Once we have the filename, we try to open the specified file and load its contents into a large byte array.
(We did something similar in the ListIt example in Chapter 8, Input/Output Facilities.) If all goes
well, we write the data out to client on the OutputStream. If we can't parse the request or the file
doesn't exist, we wrap our OutputStream with a PrintStream to make it easier to send a textual
message. Then we return an appropriate HTTP error message. Finally, we close the socket and return

from run(), removing our Thread.

Taming the daemon

The biggest problem with TinyHttpd is that there are no restrictions on the files it can access. With a
little trickery, the daemon will happily send any file in your filesystem to the client. It would be nice if
we could restrict TinyHttpd to files that are in the current directory, or a subdirectory. To make the
daemon safer, let's add a security manager. I discussed the general framework for security managers in
Chapter 7, Basic Utility Classes. Normally, a security manager is used to prevent Java code downloaded
over the Net from doing anything suspicious. However, a security manager will serve nicely to restrict
file access in a self-contained application.

Here's the code for the security manager class:

import java.io.*;

class TinyHttpdSecurityManager extends SecurityManager {

 public void checkAccess(Thread g) { };
 public void checkListen(int port) { };
 public void checkLink(String lib) { };
 public void checkPropertyAccess(String key) { };
 public void checkAccept(String host, int port) { };
 public void checkWrite(FileDescriptor fd) { };
 public void checkRead(FileDescriptor fd) { };

 public void checkRead(String s) {
 if (new File(s).isAbsolute() || (s.indexOf("..") != -1))
 throw new
 SecurityException("Access to file : "+s+" denied.");
 }
}

The heart of this security manager is the checkRead() method. It checks two things: it makes sure that
the pathname we've been given isn't an absolute path, which could name any file in the filesystem; and it
makes sure the pathname doesn't have a double dot (..) in it, which refers to the parent of the current
directory. With these two restrictions, we can be sure (at least on a UNIX or DOS-like filesystem) that we
have restricted access to only subdirectories of the current directory. If the pathname is absolute or
contains "..", checkRead() throws a SecurityException.

The other do-nothing method implementations--e.g., checkAccess()--allow the daemon to do its
work without interference from the security manager. If we don't install a security manager, the
application runs with no restrictions. However, as soon as we install any security manager, we inherit

implementations of many "check" routines. The default implementations won't let you do anything; they
just throw a security exception as soon as they are called. We have to open holes so the daemon can do its
own work; it still has to accept connections, listen on sockets, create threads, read property lists, etc.
Therefore, we override the default checks with routines that allow these things.

Now you're thinking, isn't that overly permissive? Not for this application; after all, TinyHttpd never
tries to load foreign classes from the Net. The only code we are executing is our own, and it's assumed we
won't do anything dangerous. If we were planning to execute untrusted code, the security manager would
have to be more careful about what to permit.

Now that we have a security manager, we must modify TinyHttpd to use it. Two changes are
necessary: we must install the security manager and catch the security exceptions it generates. To install
the security manager, add the following code at the beginning of TinyHttpd's main() method:

System.setSecurityManager(new TinyHttpdSecurityManager());

To catch the security exception, add the following catch clause after FileNotFoundException's
catch clause:

catch (SecurityException e)
 new PrintStream(out).println("403 Forbidden");

Now the daemon can't access anything that isn't within the current directory or a subdirectory. If it tries
to, the security manager throws an exception and prevents access to the file. The daemon then returns a
standard HTTP error message to the client.

TinyHttpd still has room for improvement. First, it consumes a lot of memory by allocating a huge
array to read the entire contents of the file all at once. A more realistic implementation would use a buffer
and send large amounts of data in several passes. TinyHttpd also fails to deal with simple things like
directories. It wouldn't be hard to add a few lines of code (again, refer to the ListIt example in Chapter
8, Input/Output Facilities) to read a directory and generate linked HTML listings like most Web servers
do.

Data compression Datagram Sockets

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch08_04.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm

Chapter 10

10. Understand the Abstract Windowing
Toolkit
Contents:
GUI Concepts in Java
Applets

The Abstract Windowing Toolkit (AWT), or "another windowing toolkit," as some people affectionately call it,
provides a large collection of classes for building graphical user interfaces in Java. With AWT, you can create
windows, draw, work with images, and use components like buttons, scrollbars, and pull-down menus in a platform
independant way. The java.awt package contains the AWT GUI classes. The java.awt.image package
provides some additional tools for working with images.

AWT is the largest and most complicated part of the standard Java distribution, so it shouldn't be any surprise that
we'll take several chapters (five, to be precise) to discuss it. Here's the lay of the land:

● Chapter 10, Understand the Abstract Windowing Toolkit covers the basic concepts you need to understand
how AWT builds user interfaces.

● In Chapter 11, Using and Creating GUI Components, we discuss the basic components from which user
interfaces are built: lists, text fields, checkboxes, and so on.

● Chapter 12, Layout Managers discusses layout managers, which are responsible for arranging components
within a display.

● Chapter 13, Drawing With the AWT discusses the fundamentals of drawing, including simple image displays.

● Chapter 14, Working With Images, the last chapter to discuss the AWT in detail, covers the image generation
and processing tools that are in the java.awt.image package. We'll throw in audio for good measure.

We can't cover the full functionality of AWT in this book; if you want complete coverage, see the Java AWT
Reference (O'Reilly). Instead, we'll cover the basics of the tools you are most likely to use and show some examples
of what can be done with some of the more advanced features. Figure 10.1 shows the user interface portion of the
java.awt package.

Figure 10.1: User-interface classes of the java.awt package

[Graphic: Figure 10-1]

As its name suggests, AWT is an abstraction. Its classes and functionality are the same for all Java implementations,
so Java applications built with AWT should work in the same way on all platforms. You could choose to write your
code on under Windows NT/95, and then run it on an X Window System, or a Macintosh. To achieve platform
independence, AWT uses interchangeable toolkits that interact with the host windowing system to display user-
interface components, thus shielding your application code from the details of the environment it's running in. Let's

say you ask AWT to create a button. When your application or applet runs, a toolkit appropriate to the host
environment renders the button appropriately: on Windows, you can get a button that looks like other Windows
buttons; on a Macintosh, you can get a Mac button; and so on.

Working with user-interface components in AWT is meant to be easy. While the low-level (possibly native) GUI
toolkits may be complex, you won't have to work with them directly unless you want to port AWT to a new platform
or provide an alternative "look and feel" for the built-in components. When building a user interface for your
application, you'll be working with prefabricated components. It's easy to assemble a collection of user-interface
components (buttons, text areas, etc.), and arrange them inside containers to build complex layouts. You can also use
simple components as building blocks for making entirely new kinds of interface gadgets that are completely portable
and reusable.

AWT uses layout managers to arrange components inside containers and control their sizing and positioning. Layout
managers define a strategy for arranging components instead of relying on absolute positioning. For example, you
can define a user interface with a collection of buttons and text areas and be reasonably confident it will always
display correctly. It doesn't matter that Windows, UNIX, and the Macintosh render your buttons and text areas
differently; the layout manager should still position them sensibly with respect to each other.

Unfortunately, the reality is that most of the complaints about Java center around AWT. AWT is very different from
what many people are used to and lacks some of the advanced features other GUI environments provide (at least for
now). It's also true that most of the bugs in current implementations of Java lie in the AWT toolkits. As bugs are fixed
and developers become accustomed to AWT, we would expect the number of complaints to diminish. Java 1.1 is a
big improvement over previous versions. But at the time of this writing, there are some rough edges.

10.1 GUI Concepts in Java

Chapter 11, Using and Creating GUI Components contains examples using most of the components in the
java.awt package. But before we dive into those examples, we need to spend a bit of time talking about the
concepts AWT uses for creating and handling user interfaces. This material should get you up to speed on GUI
concepts and on how they are used in Java.

Components

A component is the fundamental user-interface object in Java. Everything you see on the display in a Java application
is an AWT component. This includes things like windows, drawing canvases, buttons, checkboxes, scrollbars, lists,
menus, and text fields. To be used, a component must usually be placed in a Container. Container objects group
components, arrange them for display, and associate them with a particular display device. All components are
derived from the abstract java.awt.Component class, as you saw in Figure 10.1. For example, the Button
class is a subclass of the Component class, which is derived directly from Object.

For the sake of simplicity, we can split the functionality of the Component class into two categories: appearance
and behavior. The Component class contains methods and variables that control an object's general appearance.
This includes basic attributes such as whether or not it's visible, its current size and location, and certain common
graphical defaults like font and color. The Component class also contains methods implemented by specific
subclasses to produce the actual graphics the object displays. When a component is first displayed, it's associated with
a particular display device. The Component class encapsulates access to its display area on that device. This

includes methods for accessing graphics and for working with off-screen drawing buffers for the display.

By a Component's behavior, we usually mean the way it responds to user-driven events. When the user performs an
action (like pressing the mouse button) within a component's display area, an AWT thread delivers an event object
that describes "what happened." The event is delivered to objects that have registered themselves as "listeners" for
that type of event from that component. For example, when the user clicks on a button, the button delivers an
ActionEvent. To receive those events, an object registers with the button as an ActionListener.

Events are delivered by invoking designated event-handler methods within the receiving object (the "listener").
Objects prepare themselves to receive events by implementing methods for the types of events in which they are
interested and then registering as listeners with the sources of the events. There are specific types of events that cover
different categories of component and user interaction. For example, MouseEvents describe activities of the mouse
within a component's area, KeyEvents describe key presses, and functionally higher level events such as
ActionEvents indicate that a user interface component has done its job.

Although events are crucial to the workings of AWT, they aren't limited to building user interfaces. Events are an
important interobject communications mechanism that may be used by completely nongraphical parts of an
application as well. They are particularly important in the context of Java Beans, which use events as an extremely
general notification mechanism. We will describe events thoroughly in this chapter because they are so fundamental
to the way in which user interfaces function in Java, but it's good to keep the bigger picture in mind.

Containers often take on certain responsibilities for the components that they hold. Instead of having every
component handle events for its own bit of the user interface, a container may register itself or another object to
receive the events for its child components, and "glue" those events to the correct application logic.

A component informs its container when it does something that might affect other components in the container, such
as changing its size or visibility. The container can then tell the layout manager that it is time to rearrange the child
components.

Containers in Java are themselves a kind of component. Because all components share this structure, container
objects can manage and arrange Component objects without knowing what they are and what they are doing.
Components can be swapped and replaced with new versions easily and combined into composite user-interface
objects that can be treated as individual components. This lends itself well to building larger, reusable user-interface
items.

Peers

We have just described a nice system in which components govern their own appearance, and events are delivered to
objects that are "listening" to those components. Unfortunately, getting data out to a display medium and receiving
events from input devices involve crossing the line from Java to the real world. The real world is a nasty place full of
architecture dependence, local peculiarities, and strange physical devices like mice, trackballs, and '69 Buicks.

At some level, our components will have to talk to objects that contain native methods to interact with the host
operating environment. To keep this interaction as clean and well-defined as possible, Java uses a set of peer
interfaces. The peer interface makes it possible for a pure Java-language AWT component to use a corresponding real
component--the peer object--in the native environment. You won't generally deal directly with peer interfaces or the
objects behind them; peer handling is encapsulated within the Component class. It's important to understand the

architecture, though, because it imposes some limitations on what you can do with components.

For example, when a component such as a Button is first created and displayed on the screen, code in the
Component class asks an AWT Toolkit class to create a corresponding peer object, as shown in Figure 10.2. The
Toolkit is a factory that knows how to create objects in the native display system; Java uses this factory design
pattern to provide an abstraction that separates the implementation of component objects from their functionality. The
Toolkit object contains methods for making instances of each type of component peer. (As a developer, you will
probably never work with a native user-interface directly.) Toolkits can be swapped and replaced to provide new
implementations of the components without affecting the rest of Java.

Figure 10.2: A toolkit creating a peer object

[Graphic: Figure 10-2]

Figure 10.2 shows a Toolkit producing a peer object for a Button. When you add a button to a container, the
container calls the Button's addNotify() method. In turn, addNotify() calls the Toolkit's
createButton() method to make the Button's peer object in the real display system. Thereafter, the component
class keeps a reference to the peer object and delegates calls to its methods.

The java.awt.peer package, shown in Figure 10.3, parallels the java.awt package and contains an interface
for each type of component. For example, the Button component has a ButtonPeer interface, which defines the
capabilities of a button.

Figure 10.3: The java.awt.peer package

[Graphic: Figure 10-3]

The peer objects themselves can be built in whatever way is necessary, using a combination of Java and native code.
(We will discuss the implementation of peers a bit more in the AWT performance section of this chapter.) A Java-
land button doesn't know or care how the real-world button is implemented or what additional capabilities it may
have; it knows only about the existence of the methods defined in the ButtonPeer interface. Figure 10.4 shows a
call to the setLabel() method of a Button object, which results in a call to the corresponding setLabel()
method of the native button object.

Figure 10.4: Invoking a method in the peer interface

[Graphic: Figure 10-4]

In this case, the only action a button peer must be able to perform is to set its label text; setLabel() is the only

method in the ButtonPeer interface. How the native button acts, responds to user input, etc. is entirely up to it. It
might turn green when pressed or make a "ka-chunk" sound. The component in Java-land has no control over these
aspects of the native button's behavior--and this has important implications. This abstraction allows AWT to use
native components from whatever platform it resides on. However, it also means that a lot of a component's
functionality is locked away where we can't get to it. We'll see that we can usually intercept events before the peer
object has a chance to act on them, but we usually can't change much of the object's basic behavior.

A component gets its peer when it's added to a container. Containers are associated with display devices through
Toolkit objects, and thus control the process of peer creation. We'll talk more the ramifications of this when we
discuss addNotify() later. (See "Component peers and addNotify()".)

The Model/View/Controller Framework

Before we continue our discussion of GUI concepts, I want to make a brief aside and talk about the
Model/View/Controller (MVC) framework. MVC is a method of building reusable components that logically
separates the structure, representation, and behavior of a component into separate pieces. MVC is primarily
concerned with building user-interface components, but the basic ideas can be applied to many design issues; its
principles can be seen throughout Java. Java doesn't implement all of MVC, whose origins are in Smalltalk, but
MVC's influence is apparent throughout the language.

The fundamental idea behind MVC is the separation of the data model for an item from its presentation. For example,
we can draw different representations (e.g., bar graphs, pie charts) of the data in a spreadsheet. The data is the
"model"; the particular representation is the "view." A single model can have many views that show different
representations of the data. The behavior of a user-interface component usually changes its model and affects how the
component is rendered as a view. If we were to create a button component for example, its data model could be as
simple as a boolean value for whether it's up or down. The behavior for handling mouse-press events would alter
the model, and the display would examine that data when it draws the on-screen representation.

The way in which AWT objects communicate, by passing events from sources to listeners, is part of this MVC
concept of separation. Event listeners are "observers" and event sources are "observables." When an observable
changes or performs a function, it notifies all of its observers of the activity.[1]

[1] Although they are not used by AWT, Java provides generic Observer class and Observable
interface in the java.util package. (In practice, these are more a design hint than of day to day
usefulness.)

This model of operation is also central to the way in which Java works with graphics, as you'll see in Chapter 11,
Using and Creating GUI Components. Image information from a producer, such as a graphics engine or video
stream, is distributed to consumers that can represent different views of the data. Consumers register with a producer
and receive updates as the image is created or when the image has changed.

The factory concept used by the Toolkit objects is related to MVC; factories use Java interfaces to separate the
implementation of an object from its behavior. An object that implements an interface doesn't have to fit into a
particular class structure; it needs only to provide the methods defined by the interface. Thus, an AWT Toolkit is a
factory that produces native user-interface components that correspond to Java components. The native components
don't need to match AWT's class structure, provided they implement the appropriate interface.

Painting and Updating

Components can be asked to draw themselves at any time. In a more procedural programming environment, you
might expect a component would be involved in drawing only when first created or when it changes its appearance.
In Java, components act in a way that is more closely tied to the underlying behavior of the display environment. For
example, when you obscure a component with a window and then reexpose it, an AWT thread asks the component to
redraw itself.

AWT asks a component to draw itself by calling its paint() method. paint() may be called at any time, but in
practice, it's called when the object is first made visible, whenever it changes its appearance, and whenever some
tragedy in the display system messes up its area. Because paint() can't make any assumptions about why it was
called, it must redraw the component's entire display.

However, redrawing the whole component is unnecessary if only a small part changes, especially in an anticipated
way. In this case, you'd like to specify what part of the component has changed, and redraw that part alone. Painting a
large portion of the screen is time consuming, and can cause flickering that is especially annoying if you're redrawing
the object frequently, as with animation. When a component realizes it needs to redraw itself, it should ask AWT to
schedule a call to its update() method. update() can do drawing of its own, but often, it simply defines a
clipping region--by calling clipRect()--on its graphics context; to limit the extent of the painted area and then
calling paint() explicitly. A simple component doesn't have to implement its own update() method, but that
doesn't mean the method doesn't exist. In this case, the component gets a default version of update() that simply
clears the component's area and calls paint().

A component never calls its update() method directly. Instead, when a component requires redrawing, it schedules
a call to update() by invoking repaint(). The repaint() method asks AWT to schedule the component for
repainting. At some point in the future, a call to update() occurs. AWT is allowed to manage these requests in
whatever way is most efficient. If there are too many requests to handle, or if there are multiple requests for the same
component, AWT can reschedule a number of repaint requests into a single call to update(). This means that you
can't predict exactly when update() will be called in response to a repaint(); all you can expect is that it
happens at least once, after you request it.

Normally, calling repaint() is an implicit request to be updated as soon as possible. There is another form of
repaint() that allows you to specify a time period within which you would like an update, giving the system more
flexibility in scheduling the request. An application can use this method to govern its refresh rate. For example, the
rate at which you render frames for an animation might vary, depending on other factors (like the complexity of the
image). You could impose an effective maximum frame rate by calling repaint() with a time (the inverse of the frame
rate) as an argument. If you then happen to make more than one repaint request within that time period, AWT is not
obliged to physically repaint for each one. It can simply condense them to carry out a single update within the time
you have specified.

Both paint() and update() take a single argument: a Graphics object. The Graphics object represents the
component's graphics context. It corresponds to the area of the screen on which the component can draw and provides
the methods for performing primitive drawing and image manipulation. We'll look at the Graphics class in detail in
Chapter 11, Using and Creating GUI Components.

All components paint and update themselves using this mechanism. However, you really care about it only when
doing your own drawing, and in practice, you should be drawing only on a Canvas, Panel, Applet, or your own

subclasses of Component. Other kinds of objects, like buttons and scrollbars, have lots of behavior built into their
peers. You may be able to draw on one of these objects, but unless you specifically catch the appropriate events and
redraw (which could get complicated), your handiwork is likely to disappear.

Canvases, Panels, and lightweight components (which we will discuss fully later in this chapter) are "blank slates"
for you to implement your own behavior and appearance. For example, by itself, the AWT Canvas has no outward
appearance; it takes up space and has a background color, but otherwise, it's empty. By subclassing Canvas and
adding your own code, you can create a more complicated object like a graph or a flying toaster. A lightweight
component is even "emptier" than that. It doesn't have a real Toolkit peer for its implementation; you get to
specify all of the behavior and appearance yourself. We'll talk more about using Canvas and lightweight
components to create new kinds of GUI objects later in this chapter.

A Panel is like a Canvas, but it's also a Container, so that it can hold other user-interface components. In the
same way, a lightweight container is a simple extension of the AWT Container class. (More about that when we
talk about containers below.)

Enabling and Disabling Components

Standard AWT components can be turned on and off by calling the enable() and disable() methods. When a
component like a Button or TextField is disabled, it becomes "ghosted" or "greyed-out" and doesn't respond to
user input.

For example, let's see how to create a component that can only be used once. This requires getting ahead of the story;
I won't explain some aspects of this example until later. Earlier, I said that a Button generates an ActionEvent
when it is pressed. This event is delivered to the listeners' actionPerformed() method. The code below disables
whatever component generated the event:

public boolean void actionPerformed(ActionEvent e) {
 ...
 ((Component)e.getSource()).disable();
}

This code calls getSource() to find out which component generated the event. We cast the result to Component
because we don't necessarily know what kind of component we're dealing with; it might not be a button, because
other kinds of components can generate action events. Once we have our component, we disable it.

You can also disable an entire container. Disabling a Panel, for instance, disables all the components it contains.
Unfortunately, disabling components and containers is handled by the AWT Toolkit at a low level. It is currently not
possible to have custom (pure Java) components notified when their native containers are disabled. This flaw should
be corrected in a future release.

Focus, please

In order to receive keyboard events, a component has to have keyboard focus. The component with the focus is
simply the currently selected input component. It receives all keyboard event information until the focus changes. A
component can ask for focus with the Component's requestFocus() method. Text components like
TextField and TextArea do this automatically whenever you click the mouse in their area. A component can

find out when it gains or loses focus through the FocusListener interface (see the table of events below). If you
want to create your own text-oriented component, you could implement this behavior yourself. For instance, you
might request focus when the mouse is clicked in your component's area. After receiving focus, you could change the
cursor or do something else to highlight the component.

Many user interfaces are designed so that the focus automatically jumps to the "next available" component when the
user presses the TAB key. This behavior is particularly common in forms; users often expect to be able to tab to the
next text entry field. AWT handles automatic focus traversal for you when it is applicable. You can get control over
the behavior through the transferFocus() and isFocusTraversable() methods of Component.
transferFocus() passes the focus to the next appropriate component. You can use transferFocus() to
control the order of tabbing between components by overriding it in the container and implementing your own policy.
isFocusTraversable() returns a boolean value specifying whether or not the component should be considered
eligible for receiving a transfer focus. Your components can override this method to determine whether or not they
can be "tabbed to."

Other Component Methods

The Component class is very large; it has to provide the base level functionality for all of the various kinds of Java
GUI objects. We don't have room to document every method of the component class here, but we'll flesh out our
discussion by covering some more of the important ones.

Container getParent()

Return the container that holds this component.

String getName() / void setName(String name)

Get or assign the String name of this component. Giving a component a name is useful for debugging. The
name shows up when you do a toString().

setVisible(boolean visible)

Make the component visible or invisible, within its container. If you change the components, visibility,
remember to call validate() on the container; this causes the layout manager to lay out the container
again.

Color getForeground() / void setForeground(Color c)
Color getBackground() / void setBackground(Color c)

Get and set the foreground and background colors for this component. The foreground color of any component
is the default color used for drawing. For example, it is the color used for text in a text field; it is also the
default drawing color for the Graphics object passed to the component's paint() method. The
background color is used to fill the component's area when it is cleared by the default implementation of
update().

Font getFont() / void setFont(Font f)

Get or set the Font for this component. (Fonts are discussed in Chapter 13, Drawing With the AWT.) You can
set the Font on text components like TextField and TextArea. For Canvases, Panels, and
lightweight components, this will also be the default font used for drawing text on the Graphics context passed
to paint().

FontMetrics getFontMetrics(Font font)

Find out the characteristics of a font when rendered on this component. FontMetrics allow you to find out
the dimensions of text when rendered in that font.

Dimension getSize() / void setSize(int width, int height)

Get and set the current size of the component. Remember to call validate() on the component's container
if you change its size (see Containers below). There are other methods in Component to set its location, but
normally this is the job of a layout manager.

Cursor getCursor() / void setCursor(Cursor cursor)

Get or set the type of cursor (mouse pointer) used when the mouse is over this component's area. For example:

Component myComponent = ...;
Cursor crossHairs = Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR);
myComponent.setCursor(crossHairs);

Containers

Now that you understand components a little better, our discussion of containers should be easy. A container is a kind
of component that holds and manages other AWT components. If you look back to Figure 10.1, you can see the part
of the java.awt class hierarchy that descends from Container.

The most useful Container types are Frame, Panel, and Applet. A Frame is a top-level window on your
display. Frame is derived from Window, which is pretty much the same, but lacks a border. A Panel is a generic
container element used to group components inside of Frames and other Panels. The Applet class is a kind of
Panel that provides the foundation for applets that run inside Web browsers. As a Panel, an Applet has the
ability to contain other user-interface components. All these classes are subclasses of the Container class; you can
also use the Container class directly, like a Panel, to hold components inside of another container. This is called
a "lightweight container," and is closely related to lightweight components. We'll discuss lightweight components and
containers later in this chapter.

Because a Container is a kind of Component, it has all of the methods of the Component class, including the
graphical and event-related methods we're discussing in this chapter. But a container also maintains a list of "child"
components, which are the components it manages, and therefore has methods for dealing with those components. By
themselves, most components aren't very useful until they are added to a container and displayed. The add()
method of the Container class adds a component to the container. Thereafter, this component can be displayed in
the container's area and positioned by its layout manager. You can also remove a component from a container with
the remove() method.

Layout managers

A layout manager is an object that controls the placement and sizing of components within the display area of a
container. A layout manager is like a window manager in a display system; it controls where the components go and
how big they are. Every container has a default layout manager, but you can easily install a new one by calling the
container's setLayout() method.

AWT comes with a few layout managers that implement common layout schemes. The default layout manager for a
Panel is a FlowLayout, which tries to place objects at their preferred size from left to right and top to bottom in
the container. The default for a Frame is a BorderLayout, which places a limited number of objects at named
locations like "North," "South," and "Center." Another layout manager, the GridLayout, arranges components in a
rectangular grid. The most general (and difficult to use) layout manager is GridBagLayout, which lets you do the
kinds of things you can do with HTML tables. We'll get into the details of all of these layout managers in Chapter 12,
Layout Managers.

As I mentioned above, you normally call add() to add a component to a container. There is an overloaded version
of add() that you may need, depending on what layout manager you're using. Often you'll use the version of add()
that takes a single Component as an argument. However, if you're using a layout manager that uses "constraints,"
like BorderLayout or GridBagLayout, you need to specify additional information about where to put the new
component. For that you can use the version that takes a constraint object:

add(Component component, Object constraint);

For example, to add a component to the top of a BorderLayout, you might say:

add(newComponent, "North");

In this case, the constraint object is the string "North." The GridBagLayout uses a much more complex constraint
object to specify positioning.

Insets

Insets specify a container's margins; the space specified by the container's insets won't be used by a layout manager.
Insets are described by an Insets object, which has four int fields: top, bottom, left, and right. You
normally don't need to worry about the insets, the container will set them automatically, taking into account extras
like the menu bar that may appear at the top of a frame. However, you should modify the insets if you're doing
something like adding a decorative border (for example, a set of "index tabs" at the top of a container) that reduces
the space available for components. To change the insets, you override the component's getInsets() method,
which returns an Insets object. For example:

//reserve 50 pixels at the top, 5 at the sides and 10 at the bottom
public Insets getInsets() {
 return new Insets (50,5,10,5);
}

Z-ordering (stacking components)

In most layout schemes, components are not allowed to overlap, but they can. If they do, the order in which
components were added to a container matters. When components overlap they are "stacked" in the order in which
they were added: the first component added to the container is on top, the last is on the bottom. To give you more
control over stacking, two additional forms of the add() method take an additional integer argument that lets you
specify the component's exact position in the container's stacking order.

validate() and layout()

A layout manager arranges the components in a container only when asked to. Several things can mess up a container
after it's initially laid out:

● Changing its size

● Resizing or moving one of its child components

● Adding, showing, removing, or hiding a child component

Any of these actions causes the container to be marked invalid. Saying that a container is invalid simply means it
needs to have its child components readjusted by its layout manager. This is accomplished by calling the
Container's validate() method. validate() then turns around and calls the Container's doLayout()
method, which asks the layout manager to do its job. In addition, validate() also notes that the Container has
been fixed (i.e., it's valid again) and looks at each child component of the container, recursively validating any
containers that are also messed up.

So if you have an applet that contains a small Panel--say a keypad holding some buttons--and you change the size
of the Panel by calling its resize() method, you should also call validate() on the applet. The applet's
layout manager may then reposition or resize the keypad within the applet. It also automatically calls validate()
for the keypad, so that it can rearrange its buttons to fit inside its new area.

There are two things you should note. First, all components, not just containers, maintain a notion of when they are
valid or invalid. But most components (e.g., buttons) don't do anything special when they're validated. If you have a
custom component that wants to be notified when it is resized, it might be best to make it a container (perhaps a
lightweight container) and do your work in the doLayout() method.

Next, child containers are validated only if they are invalid. That means that if you have an invalid component nested
inside a valid component and you validate a container above them both, the invalid component may never be reached.
However, the invalidate() method that marks a container as dirty automatically marks parent containers as well,
all the way up the container hierarchy. So that situation should never happen.

Component peers and addNotify()

A component gets its peer when it's added to a container. Containers are associated with display devices through
Toolkit objects, and thus control the process of peer creation. This means that you can't ask certain questions about
a component before it's placed in a container. For example, you can't find out about a component's size or its default
font until the component knows where it's being displayed (until it has its peer).

You probably also shouldn't be able to ask a component with no peer about other resources controlled by the peer,
such as off screen graphics areas and font metrics. Java's developers apparently thought this restriction too onerous so
container-less components are associated with the "default" toolkit that can answer some of these kinds of inquiries.
In practice, the default toolkit is usually able to provide the right answer, because with current implementations of
Java the default toolkit is probably the only toolkit available. This approach may cause problems in the future, if
Java's developers add the ability for different containers to have different toolkits.

The same issue (the existence of a component's peer) also comes up when you are making your own kinds of
components and need access to some of these peer resources before you can complete the setup. For example,
suppose that you want to set the size or some other feature of your component based on the default font used. You
can't complete this setup in your constructor, because the peer doesn't exist yet. The solution to all of these problems
is proper use of the addNotify() method. As its name implies, addNotify() can be used to get notification
when the peer is created. You can override it to do your own work, as long as you remember to call
super.addNotify() to complete the peer creation. For example:

class FancyLabel {
 FancyLabel() {
 // No peer yet...
 }
 public void addNotify() {
 super.addNotify(); // complete the peer creation
 // Complete setup based on Fonts
 // and other peer resources.
 }
}

Managing Components

There are a few additional tools of the Container class that we should mention.

Component[] getComponents()

Returns the container's components in an array.

void list(PrintWriter out, int indent)

Generates a list of the components in this container and writes them to the specified PrintWriter.

Component getComponentAt(int x, int y)

Tells you what component is at the specified coordinates in the container's coordinate system.

Listening for Components

Finally, an important tool to be aware of is the ContainerListener interface. It lets you receive an event
whenever a component is added to or removed from a container. (It lets you hear the tiny cries of the component as it
is imprisoned in its container or torn away.) You can use the ContainerListener interface to automate the

process of setting up components when they are added to your container. For instance, your container might need to
register other kinds of event listeners with its components to track the mouse or handle certain kinds of actions.

Windows and Frames

Windows and frames are the "top level" containers for Java components. A Window is simply a plain, graphical
screen that displays in your windowing system. Windows have no frills; they are mainly suitable for making "splash"
screens and dialogs--things that limit the user's control. Frame, on the other hand, is a subclass of Window that have
a border and can hold a menu-bar. Frames are under the control of your window manager, so you can normally drag a
Frame around on the screen and resize it, using the normal controls for your environment. Figure 10.5 shows a
Frame on the left and a Window on the right.

Figure 10.5: A typical frame and window

[Graphic: Figure 10-5]

All other components and containers in Java must be held, at some level, inside of a Window or Frame. Applets, as
we've mentioned a few times, are a kind of Panel. Even applets must be housed in a Java frame or window, though
normally you don't see an applet's parent frame because it is part of (or simply is) the browser or appletviewer
displaying the applet.

A Frame is the only Component that can be displayed without being added to or attached to another Container.
After creating a Frame, you can call the show() method to display it. Let's create a standalone equivalent of our
HelloWeb applet from Chapter 2, A First Applet:

Figure 10.6: Standalone equivalent of the HelloWeb applet

[Graphic: Figure 10-6]

class HelloWebApp {
 public static void main(String [] args) {
 Frame myFrame = new Frame("The Title");
 myFrame.add("Center", new Label("Hello Web!", Label.CENTER));
 myFrame.pack();
 myFrame.show();
 }
}

Here we've got our minimal, graphical, standalone Java application. The Frame constructor can take a String
argument that supplies a title, displayed in the Frame's title bar. (Another approach would be to create the Frame
with no title, and call setTitle() to supply the title later.) After creating the Frame, we add our Label to it and
then call pack(), which prepares the Frame for display. pack() does a couple of things, but its most important
effect in this case is that it sets the size of the Frame to the smallest needed to hold all of its components.
Specifically, pack() calls:

setSize(preferredSize());

Next, we call show() to get the Frame onto the screen. The show() method returns immediately, without
blocking. Fortunately, our application does not exit while the Frame is showing. To get rid of a Frame, call the
dispose() method. If you want to hide the Frame temporarily, call setVisible(false). You can check to
see if a Frame is showing with the isShowing() method.

In this example, we let pack() set the size of the Frame for us before we show() it. If we hadn't, the Frame
would have come up at an undefined size. If we instead want the Frame to be a specific size (not just hugging its
child components) we could simply call setSize() instead of pack().

...
myFrame.setSize(300, 300);
myFrame.show();

Other Methods for Controlling Frames

The setLocation() method of the Component class can be used on a Frame or Window to set its position on
the screen. The x and y coordinates are considered relative to the screen's origin (the top left corner).

You can use the toFront() and toBack() methods, respectively, to pull a Frame or Window to the front of
other windows, or push it to the background. By default, a user is allowed to resize a Frame, but you can prevent
resizing by calling setResizable(false) before showing the Frame.

On most systems, frames can be "iconfied"; that is, they can be represented by a little icon image. You can get and set
a frame's icon image by calling getIconImage() and setIconImage(). Remember that as with all
components, you can set the cursor by calling the setCursor() method.

Using Windows

Windows and frames have a slightly convoluted relationship. We said above that Frame is a subclass of Window.
However, if you look, you'll see that to create a Window you have to have a Frame available to serve as its parent.
The Window constructor takes a Frame as an argument.

Window myWindow = new Window(myFrame);

The rationale for this is long and boring. Suffice it to say that this limitation will probably go away in the future.

Prepacking Windows and Frames

Earlier we said that calling pack() on a Frame sets the frame's size to the preferred size of its layout. However, the
pack() method is not simply equivalent to a call to setSize(). pack() is often called before any of the frame's
components have their peers. Therefore, calling pack() forces the container to choose its Toolkit and to create
the peers of any components that have been added to it. After that is done, the layout manager can reliably determine
its preferred size.

For a large frame with lots of components, packing the frame is a convenient way to do this setup work in advance,
before the frame is displayed. Whether or not this is useful depends on whether you'd rather have your application
start up faster, or pop up its frames faster, once it is running.

AWT Performance and Lightweight Components

Java's developers initially decided to implement the standard AWT components with a "mostly native" Toolkit. As
we described above, that means that most of the important functionality of these classes is delegated to peer objects,
which live in the native operating system. Using native peers allows Java to take on the look and feel of the local
operating environment. Macintosh users see Mac applications, PC users see Windows' windows, and Unix users can
have their Motif motif; warm fuzzy feelings abound. Java's chameleon-like ability to blend into the native
environment is considered by many to be an integral part of platform independance. However, there are a few
important downsides to this arrangement.

First, as we mentioned earlier, using native peer implementations makes it much more difficult (if not impossible) to

subclass these components to specialize or modify their behavior. Most of their behavior comes from the native peer,
and therefore can't be overidden or extended easily. As it turns out, this is not a terrible problem because of the ease
with which we can make our own components in Java; we will give you an idea of how to start in Chapter 11, Using
and Creating GUI Components. It is also true that a sophisticated new component, like an HTML viewer, would
benefit little in deriving from a more primitive text viewing component like TextArea.

Next, porting the native code makes it much more difficult to bring Java to a new platform. For the user, this can only
mean one thing: bugs. Quite simply, while the Java language itself has been quite stable, the cross platform behavior
of the AWT has been an Achilles' heel. Although the situation is steadily improving, the lack of large, commercial
quality Java applications until relatively recently testifies to the difficulties involved. At this time, new development
has been saturated with Java for well over a year (a decade in Net time) and very few real applications are with us.

Finally, we come to a somewhat counterintuitive problem with the use of native peers. In most current
implementations of Java, the native peers are quite "heavy" and consume a lot of resources. You might expect that
relying on native code would be much more efficient than creating the components in Java. However, it can take a
long time to instantiate a large number of GUI elements when each requires the creation of a native peer from the
toolkit. And in some cases you may find that once they are created, they don't perform as well as the pure Java
equivalents that you can create yourself.

An extreme example would be a spreadsheet that uses an AWT TextField for each cell. Creating hundreds of
TextFieldPeer objects would be something between slow and impossible. While simply saying "don't do that"
might be a valid answer, this begs the question: how do you create large applications with complex GUIs? Java
would not be a very interesting environment if it was only limited to simple tasks. One solution, taken by
development environments like Sun's JavaWorkshop, is to use "wrapper" classes for the standard AWT components;
the wrapper controls when peer objects are created. Another attack on the problem has been to create "lightweight"
components that are written entirely in Java, and therefore don't require native code.

Using Lightweight Components and Containers

A "lightweight" component is simply a component that is implemented entirely in Java. You implement all of its
appearance by drawing in the paint() and update() methods; you implement its behavior by catching user
events (usually at a low level) and possibly generating new events. Lightweight components can be used to create
new kinds of gadgets, in the same way you might use a Canvas or a Panel. But they avoid some of the
performance penalties inherent in the use of peers, and, perhaps more importantly, they provide more flexibility in
their appearance. A lightweight component can have a transparent background, allowing its container to "show
through" its own area. It is also more reasonable to have another component or container overlap or draw into a
lightweight component's area.

You create a lightweight component by subclassing the Component and Container classes directly. That is,
instead of writing:

class myCanvas extends Canvas { ... }

you write:

class myCanvas extends Container { ... } // lightweight

That's often all you need to do to create a lightweight component. When the lightweight component is put into a
container, it doesn't get a native peer. Instead, it gets a LightweightPeer that serves as a place holder and
identifies the component as lightweight and in need of special help. The container then takes over the responsibilities
that would otherwise be handled by a native peer: namely, low-level delivery of events and paint requests. The
container receives mouse movement events, key strokes, paint requests, etc., for the lightweight component. It then
sorts out the events that fall within the component's bounds and dispatches them to it. Similarly, it translates paint
requests that overlap the lightweight component's area and forwards them to it.

Figure 10.7: Sending a paint() request to a component

[Graphic: Figure 10-7]

Figure 10.7 shows a component receiving a paint() request via its container. This makes it easy to see how a
lightweight component can have a transparent background. The component is actually drawing directly onto its
container's graphics context. Conversely, anything that the container drew on its background is visible in the
lightweight component. For an ordinary container, this will simply be the container's background color. But you can
do much cooler things too. (See the PictureButton example at the end of the next chapter.) All of the normal rules still
apply; your lightweight component's paint() method should render the component's entire image (assume that the
container has obliterated it), but your update() method can assume that whatever drawing it has done previously is
still intact.

Just as you can create a lightweight component by subclassing Component, you can create a lightweight container
by subclassing Container. A lightweight container can hold any components, including other lightweight
components and containers. In this case, event handling and paint requests are managed by the first "regular"
container in the container hierarchy. (There has to be one somewhere, if you think about it.) This brings us to the
cardinal rule of subclassing containers, which is:

"Always call super.paint() if you override a container's paint() method."

If you don't, the container won't be able to manage lightweight components properly.

To summarize, lightweight components are very flexible, pure Java components that are managed by their container
and have a transparent background by default. Lightweight components do not rely on native peers from the AWT
toolkit to provide their implementations and so they can not readily take on the look and feel of the local platform. In
a sense, a lightweight component is just a convenient way to package an extension to a container's painting and event
handling methods. But, again, all of this happens automatically, behind the scenes; you can create and use lightweight
components as you would any other kind of component.

We'll see examples of lightweight components and containers in the next chapter.

Writing a Protocol Handler Applets

Chapter 11

11. Using and Creating GUI Components
Contents:
Buttons and Labels
Text Components
Lists
Menus and Choices
PopupMenus
Checkboxes and CheckboxGroups
ScrollPane and Scrollbars
Dialogs
Creating custom components

The last chapter discussed a lot of concepts: how Java's user interface facility is put together, and how the
larger pieces work. You should understand what components and containers are, how you use them to
create a display, what events are, how components use them to communicate with the rest of your
application, and what layout managers are. In other words, we've covered a lot of material that's "good
for you."

Now that we're through with the general concepts and background, we'll get to the fun stuff: how to do
things with AWT. We will cover all the components that the AWT package supplies, how to use these
components in applets and applications, and how to build your own components. We will have lots of
code and lots of pretty examples to look at. Here's a list of the components we cover:

● Button and Label

● Text components: TextArea and TextField

● List

● Menu and Choice

● PopupMenu

● Checkbox and checkbox grouping

● Scrollbar and ScrollPane

● Dialog and FileDialog

When we discuss how to create your own components, we'll cover these issues:

● Extending canvas

● Lightweight components

● Making components that fire events

11.1 Buttons and Labels

We'll start with the simplest components, buttons, and labels. Frankly, there isn't much to say about them.
If you've seen one button, you've seen them all; and you've already seen buttons in the applets of Chapter
2 (HelloWeb3 and HelloWeb4). A button generates an ActionEvent when the user presses it. To
receive these events, your program registers an ActionListener, which must implement the
actionPerformed() method. The argument passed to actionPerformed() is the event itself.
Rather than rehash this material, I'll refer you to Chapter 2.

So much for review. There's one more thing worth saying about buttons, which applies to any component
that generates an action event. Java lets us specify an "action command" for buttons (and other
components, like menu items, that can generate action events). The action command is less interesting
than it sounds. It is just a String that serves to identify the component that sent the event. By default, the
action command of a Button is the same as the text of its label; it is included in action events, so you can
use it to figure out which button an event came from. To get the action command from an action event,
call the event's getActionCommand() method. The following code checks whether the user pressed
the "Yes" button:

public void actionPerformed(ActionEvent e){
 if (e.getActionCommand().equals("Yes") {
 //the user pressed "Yes"; do something
 ...
 }
}

You can change the action command by calling the button's setActionCommand() method. The
code below changes the button b's action command to "confirm":

myButton.setActionCommand("confirm");

It's a good idea to get used to setting action commands explicitly, because they prevent your code from
breaking when you or some other developer "internationalizes" it. If you rely on the button's label, your
code will stop working as soon as that label changes; a French user might see the label "Oui" rather than
"Yes." By setting the action command, you eliminate one source of bugs; for example, the button
myButton above will always generate the action command "confirm," regardless of what its label says.

There's even less to be said about Label components. They're just text strings, housed in a component.
There aren't any special events associated with labels; about all you can do is specify the text's alignment,
which controls the position of the text within the area that the label occupies when displayed. The
following code creates some labels with different alignments:

Label l1 = new Label("Lions"); //label with default alignment (CENTER)
Label l2 = new Label("Tigers", LEFT); //left aligned label
Label l3 = new Label (); //label with no text, default alignment
l3.setText("and Bears"); //assigning text to l3
l3.setAlignment(RIGHT); //setting l3's alignment

Now we've built three labels, using all three constructors and several of the class's methods. To display
the labels, you only have to add them to a container by calling the container's add() method.

The other characteristics you might like to set on labels, like changing their font or color, are
accomplished using the methods of the Component class Chapter 10, Understand the Abstract
Windowing Toolkit For example, you can call setFont() and setColor() on a label, as with any
other component.

Given that labels are so simple, why do we need them at all? Why not just call drawString()
whenever we need text? Remember that a Label is a Component. That's important; it means that
labels have the normal complement of methods for setting fonts and colors that we mentioned above, as
well as the ability to be managed sensibly by a layout manager. Therefore, they're much more flexible.

Speaking of layouts--if you use the setText() method to change the text of your label, its size will
probably change. So you should remember to call validate() on its container, to lay things out again.[1]

[1] At least as of Java 1.1, labels aren't very smart. Simply validating the container isn't
enough. I had to explicitly invalidate the label first.

label.setText(...);
label.invalidate();
validate(); // on the container holding the label

This ought to be considered a bug.

Applets Text Components

Chapter 12

12. Layout Managers
Contents:
FlowLayout
GridLayout
BorderLayout
CardLayout
GridBagLayout
Nonstandard Layout Managers
Absolute Positioning?

A layout manager arranges the child components of a container, as shown in Figure 12.1. It positions and
sets the size of components within the container's display area according to a particular layout scheme.
The layout manager's job is to fit the components into the available area, while maintaining the proper
spatial relationships between the components. AWT comes with a few standard layout managers that will
collectively handle most situations; you can make your own layout managers if you have special
requirements.

Figure 12.1: LayoutManager at work

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch12_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch12_06.htm

[Graphic: Figure 12-1]

Every container has a default layout manager; therefore, when you make a new container, it comes with a
LayoutManager object of the appropriate type. You can install a new layout manager at any time with
the setLayout() method. Below, we set the layout manager of a container to a BorderLayout:

setLayout (new BorderLayout());

Notice that we call the BorderLayout constructor, but we don't even save a reference to the layout
manager. This is typical; once you have installed a layout manager, it does its work behind the scenes,
interacting with the container. You rarely call the layout manager's methods directly, so you don't usually
need a reference (a notable exception for CardLayout). However, you do need to know what the
layout manager is going to do with your components as you work with them.

As I explained earlier, the LayoutManager is consulted whenever a container's doLayout() method
is called (usually when it is validated), to reorganize the contents. It does its job by calling the
setLocation() and setBounds() methods of the individual child components to arrange them in
the container's display area. A container is layed out the first time it is displayed, and thereafter whenever
the container's validate() method is called. Containers that are a subclass of the Window class
(which include Frame) are automatically validated whenever they are packed or resized. Calling
pack() sets the window's size so it is as small as possible while holding all its components at their
preferred sizes.

Every component determines three important pieces of information used by the layout manager in
placing and sizing it: a minimum size, a maximum size, and a preferred size. These are reported by the
getMinimumSize(), getMaximumSize(), and getPreferredSize(), methods of
Component, respectively. For example, a plain Button object can normally be sized to any
proportions. However, the button's designer can provide a preferred size for a good-looking button. The
layout manager might use this size when there are no other constraints, or it might ignore it, depending
on its scheme. Now, if we give the button a label, the button may need a minimum size in order to
display itself properly. The layout manager might show more respect for the button's minimum size and

guarantee that it has at least that much space. Similarly, a particular component might not be able to
display itself properly if it is too large (perhaps it has to scale up an image); it can use
getMaximumSize() to report the largest size it considers acceptable.[1]

[1] Unfortunately, the current set of layout managers doesn't do anything with the
maximum size. This may change in a future release.

The preferred size of a Container object has the same meaning as for any other type of component.
However, since a Container may hold its own components and want to arrange them in its own
layout, its preferred size is a function of its layout manager. The layout manager is therefore involved in
both sides of the issue. It asks the components in its container for their preferred (or minimum) sizes in
order to arrange them. Based on those values it also calculates the preferred size that is reported by its
own container to that container's parent.

When a layout manager is called to arrange its components, it is working within a fixed area. It usually
begins by looking at its container's dimensions, and the preferred or minimum sizes of the child
components. It then doles out screen area and sets the sizes of components according to its scheme. You
can override the getMinimumSize(), getMaximumSize(), and getPreferredSize()
methods of a component, but you should do this only if you are actually specializing the component, and
it has new needs. If you find yourself fighting with a layout manager because it's changing the size of one
of your components, you are probably using the wrong kind of layout manager or not composing your
user interface properly. Remember that it's possible to use a number of Panel objects in a given display,
where each one has its own LayoutManager. Try breaking down the problem: place related
components in their own Panel and then arrange the panels in the container. When that becomes too
complicated, you can choose to use a constraint based layout manager like GridBagLayout, which
we'll discuss later in this chapter.

12.1 FlowLayout

FlowLayout is a simple layout manager that tries to arrange components with their preferred sizes,
from left to right and top to bottom in the display. A FlowLayout can have a specified justification of
LEFT, CENTER, or RIGHT, and a fixed horizontal and vertical padding. By default, a flow layout uses
CENTER justification, meaning that all components are centered within the area allotted to them.
FlowLayout is the default for Panel components like Applet.

The following applet adds five buttons to the default FlowLayout; the result is shown in Figure 12.2.

Figure 12.2: A flow layout

[Graphic: Figure 12-2]

import java.awt.*;

public class Flow extends java.applet.Applet {
 public void init() {
 // Default for Applet is FlowLayout
 add(new Button("One"));
 add(new Button("Two"));
 add(new Button("Three"));
 add(new Button("Four"));
 add(new Button("Five"));
 }
}

If the applet is small enough, some of the buttons spill over to a second or third row.

Creating custom components GridLayout

Chapter 13

13. Drawing With the AWT
Contents:
Basic Drawing
Colors
Fonts
Images
Drawing Techniques

If you've read the last few chapters and seen the examples in the tutorial in Chapter 2, A First Applet,
then you've probably picked up the basics of how graphical operations are performed in Java. Up to this
point, we have done some simple drawing and even displayed an image or two. In this chapter, we will
finally give graphics programming its due and go into depth about drawing techniques and the tools for
working with images in Java. In the next chapter, we'll explore image processing tools in more detail and
we'll look at the classes that let you generate images pixel by pixel on the fly.

13.1 Basic Drawing

The classes you'll use for drawing come from the java.awt package, as shown in Figure 13.1.[1].

[1] The current set of drawing tools has many limitations. In the near future, JavaSoft will
be releasing packages for advanced 2D graphics, which will have much greater
capabilities. A 3D package is also planned. See Chapter 1, Yet Another Language? for
information about likely future Java enhancements.

Figure 13.1: Graphics classes of the java.awt package

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm

[Graphic: Figure 13-1]

An instance of the java.awt.Graphics class is called a graphics context. It represents a drawable
surface such as a component's display area or an off-screen image buffer. A graphics context provides
methods for performing all basic drawing operations on its area, including the painting of image data. We
call the Graphics object a graphics context because it also holds contextual information about the
drawing area. This information includes parameters like the drawing area's clipping region, painting
color, transfer mode, and text font. If you consider the drawing area to be a painter's canvas, you might
think of a graphics context as an easel that holds a set of tools and marks off the work area.

There are four ways you normally acquire a Graphics object. Roughly, from most common to least,
they are:

● From AWT, as the result of a painting request. In this case, AWT acquires a new graphics context
for the appropriate area and passes it to your component's paint() or update() method.

● Directly from an off-screen image buffer. In this case, we ask the image buffer for a graphics
context directly. We'll use this when we discuss techniques like double buffering.

● By copying an existing Graphics object. Duplicating a graphics object can be useful for more
elaborate drawing operations; different copies of a Graphics object draw into the same area on
the screen, but can have different attributes and clipping regions.

● Directly from an on-screen component. It's possible to ask a component to give you a Graphics
object for its display area. However, this is almost always a mistake; if you feel tempted to do
this, think about why you're trying to circumvent the normal paint()/repaint() mechanism.

Each time a component's update() or paint() method is called, AWT provides the component with
a new Graphics object for drawing in the display area. This means that attributes we set during one
painting session, such as drawing color or clipping region, are reset the next time paint() or
update() is called. (Each call to paint() starts with a tidy new easel.) For the most common
attributes, like foreground color, background color, and font, we can set defaults in the component itself.
Thereafter, the graphics contexts for painting in that component come with those properties initialized
appropriately.

If we are working in a component's update() method, we can assume our on-screen artwork is still
intact, and we need only to make whatever changes are needed to bring the display up to date. One way
to optimize drawing operations in this case is by setting a clipping region, as we'll see shortly. If our
paint() method is called, however, we have to assume the worst and redraw the entire display.

Drawing Methods

Methods of the Graphics class operate in a standard coordinate system. The origin of a newly created
graphics context is the top left pixel of the component's drawing area, as shown in Figure 13.2.

Figure 13.2: Graphics coordinate system

[Graphic: Figure 13-2]

The diagram above illustrates the default coordinate system. The point (0,0) is at the top left corner of the

drawing area; the point (width, height) is just outside the drawing area at the bottom right corner. The
point at the bottom right corner within the drawing area has coordinates (width-1, height-1). This gives
you a drawing area that is width pixels wide and height pixels high.

The coordinate system can be translated (shifted) with the translate() method to specify a new
point as the origin. The drawable area of the graphics context can be limited to a region with the
setClip() method.

The basic drawing and painting methods should seem familiar to you if you've done any graphics
programming. The following applet, TestPattern, exercises most of the simple shape drawing
commands; it's shown in Figure 13.3.

Figure 13.3: The TestPattern applet

[Graphic: Figure 13-3]

import java.awt.*;
import java.awt.event.*;
public class TestPattern extends java.applet.Applet {
 int theta = 45;
 public void paint(Graphics g) {
 int Width = size().width;
 int Height = size().height;
 int width = Width/2;
 int height = Height/2;
 int x = (Width - width)/2;
 int y = (Height- height)/2;
 int [] polyx = { 0, Width/2, Width, Width/2 };

 int [] polyy = { Height/2, 0, Height/2, Height };
 Polygon poly = new Polygon(polyx, polyy, 4);

 g.setColor(Color.black);
 g.fillRect(0, 0, size().width, size().height);
 g.setColor(Color.yellow);
 g.fillPolygon(poly);
 g.setColor(Color.red);
 g.fillRect(x, y, width, height);
 g.setColor(Color.green);
 g.fillOval(x, y, width, height);
 g.setColor(Color.blue);
 int delta = 90;
 g.fillArc(x, y, width, height, theta, delta);
 g.setColor(Color.white);
 g.drawLine(x, y, x+width, x+height);
 }
 public void init() {
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 theta = (theta + 10) % 360;
 repaint();
 }
 });
 }
}

TestPattern draws a number of simple shapes and responds to mouse clicks by rotating the filled arc
and repainting. Compile it and give it a try. If you click repeatedly on the applet, you may notice that
everything flashes when it repaints. TestPattern is not very intelligent about redrawing; we'll
examine some better techniques in the upcoming section on drawing techniques.

With the exception of fillArc() and fillPolygon(), each method takes a simple x, y coordinate
for the top left corner of the shape and a width and height for its size. We have picked values that
draw the shapes centered, at half the width and height of the applet.

The most interesting shape we've have drawn is the Polygon, a yellow diamond. A Polygon object is
specified by two arrays that contain the x and y coordinates of each vertex. In our example, the
coordinates of the points in the polygon are (polyx[0], polyy[0]), (polyx[1], polyy[1]), and
so on. There are simple drawing methods in the Graphics class that take two arrays and draw or fill
the polygon, but we chose to create a Polygon object and draw it instead. The reason is that the
Polygon object has some useful utility methods that we might want to use later. A Polygon can, for
instance, give you its bounding box and tell you if a given point lies within its area.

AWT also provides a Shape interface, which is implemented by different kinds of two dimensional
objects. Currently, it is only implemented by the Rectangle and Polygon classes, but it may be a
sign of things to come, particularly when JavaSoft releases the extended 2D drawing package. The
setClip() method of the Graphics class takes a Shape as an argument, but for the time being, it
only works if that Shape is a Rectangle.

The fillArc() method requires six integer arguments. The first four specify the bounding box for an
oval--just like the fillOval() method. The final two arguments specify what portion of the oval we
want to draw, as a starting angle and an offset. Both the starting angle and the offset are specified in
degrees. Zero degrees is at three o'clock; a positive angle is clockwise. For example, to draw the right
half of a circle, you might call:

g.fillArc(0, 0, radius * 2, radius * 2, -90, 180);

See the Dial example in Chapter 11, Using and Creating GUI Components (widgets?) for an example of
some trigonometric gymnastics with arcs().

Table 13.1 shows the shape-drawing methods of the Graphics class. As you can see, for each of the
fill() methods in the example, there is a corresponding draw() method that renders the shape as an
unfilled line drawing.

Table 13.1: Shape Drawing Methods in the Graphics Class

Method Description

draw3DRect() Draws a highlighted, 3D rectangle

drawArc() Draws an arc

drawLine() Draws a line

drawOval() Draws an oval

drawPolygon() Draws a polygon, connecting endpoints

drawPolyline() Draws a line connecting a polygon's points

drawRect() Draws a rectangle

drawRoundRect() Draws a rounded-corner rectangle

fill3DRect() Draws a filled, highlighted, 3D rectangle

fillArc() Draws a filled arc

fillOval() Draws a filled oval

fillPolygon() Draws a filled polygon

fillRect() Draws a filled rectangle

fillRoundRect() Draws a filled, rounded-corner rectangle

draw3Drect() automatically chooses colors by "darkening" the current color. So you should set the
color to something other than black, which is the default (maybe gray or white); if you don't, you'll just
get black on both sides. For an example, see the PictureButton in Chapter 11, Using and Creating
GUI Components.

There are a few important drawing methods missing from Table 13.1. For example, the
drawString() method, which draws text, and the drawImage() method, which draws an image.
We'll discuss these methods in detail in later sections.

Absolute Positioning? Colors

Chapter 14

14. Working With Images
Contents:
Image Processing
Working with Audio

14.1 Image Processing

Up to this point, we've confined ourselves to working with the high-level drawing commands of the Graphics class and
using images in a hands-off mode. In this section, we'll clear up some of the mystery surrounding images and see how they are
produced and used. The classes in the java.awt.image package handle image processing; Figure 14.1 shows the classes in
this package.

Figure 14.1: The java.awt.image package

[Graphic: Figure 14-1]

First, we'll return to our discussion about image observers and see how we can get more control over image data as it's
processed asynchronously by AWT components. Then we'll open the hood and have a look at image production. If you're

interested in creating sophisticated graphics, such as rendered images or video streams, this will teach you about the
foundations of image construction in Java.[1]

[1] You will also want to pay attention to the forthcoming Java Media API. Java Media will support plug-n-play
streaming media.

Objects that work with image data fall into one of three categories: image-data producers, image-data consumers, and image-
status observers. Image producers implement the ImageProducer interface. They create pixel data and distribute it to one
or more consumers. Image consumers implement a corresponding ImageConsumer interface. They eat the pixel data and do
something useful with it, such as display it on screen or analyze its contents. Image observers, as I mentioned earlier,
implement the ImageObserver interface. They are effectively nosy neighbors of image consumers that watch as the image
data arrives.

Image producers generate the information that defines each pixel of an image. A pixel has both a color and a transparency; the
transparency specifies how pixels underneath the image show through. Image producers maintain a list of registered consumers
for the image and send them this pixel data in one or more passes, as the pixels are generated. Image producers give the
consumers other kinds of information as well, such as the image's dimensions. The producer also notifies the consumer when it
has reached a boundary of the image. For a static image, such as GIF or JPEG data, the producer signals when the entire image
is complete, and production is finished. For a video source or animation, the image producer could generate a continuous
stream of pixel data and mark the end of each frame.

An image producer delivers pixel data and other image-attribute information by invoking methods in its consumers, as shown
in Figure 14.2. This diagram illustrates an image producer sending pixel data to three consumers by invoking their
setPixels() methods.

Figure 14.2: Image observers, producers, and consumers

[Graphic: Figure 14-2]

Each consumer represents a view of the image. A given consumer might prepare the image for display on a particular medium,
or it might simply serve as a filter and pass the image data to another consumer down the line.

Figure 14.2 also shows an image observer, watching the status of one of the consumers. The observer is notified as new
portions of the image and new attributes are ready. Its job is to track this information and let another part of the application
know its status. As I discussed earlier, the image observer is essentially a callback that is notified asynchronously as the image
is built. The default Component class image observer that we used in our previous examples called repaint() for us each
time a new section of the image was available, so that the screen was updated more or less continuously as the data arrived. A
different kind of image observer might wait for the entire image before telling the application to display it; yet another
observer might update a loading meter showing how far the image loading had progressed.

Implementing an ImageObserver

To be an image observer, you have to implement the single method, imageUpdate(), defined by the
java.awt.image.ImageObserver interface:

public boolean imageUpdate(Image image, int flags, int x, int y,
 int width, int height)

imageUpdate() is called by the consumer, as needed, to pass the observer information about the construction of its view of
the image. Essentially, any time the image changes, the consumer tells the observer so that the observer can perform any
necessary actions, like repainting. image holds a reference to the Image object the consumer is processing. flags is an
integer whose bits specify what information about the image is now available. The values of the flags are defined as static
identifiers in the ImageObserver interface, as shown in Table 14.1.

Table 14.1: ImageObserver Information Flags

Flag Description

HEIGHT The height of the image is ready

WIDTH The width of the image is ready

FRAMEBITS A frame is complete

SOMEBITS An arbitrary number of pixels have arrived

ALLBITS The image is complete

ABORT The image loading has been aborted

ERROR An error occurred during image processing; attempts to display the image will fail

The flags determine which of the other parameters, x, y, width, and height, hold valid data and what they mean. To test
whether a particular flag in the flags integer is set, we have to resort to some binary shenanigans. The following class,
MyObserver, implements the ImageObserver interface and prints its information as it's called:

import java.awt.*;
import java.awt.image.*;

class MyObserver implements ImageObserver {

 public boolean imageUpdate(Image image, int flags, int x, int y,
 int width, int height) {

 if ((flags & HEIGHT) !=0)
 System.out.println("Image height = " + height);

 if ((flags & WIDTH) !=0)
 System.out.println("Image width = " + width);

 if ((flags & FRAMEBITS) != 0)
 System.out.println("Another frame finished.");

 if ((flags & SOMEBITS) != 0)
 System.out.println("Image section :"
 + new Rectangle(x, y, width, height));

 if ((flags & ALLBITS) != 0) {
 System.out.println("Image finished!");
 return false;
 }

 if ((flags & ABORT) != 0) {
 System.out.println("Image load aborted...");
 return false;
 }

 return true;
 }
}

The imageUpdate() method of MyObserver is called by the consumer periodically, and prints simple status messages
about the construction of the image. Notice that width and height play a dual role. If SOMEBITS is set, they represent the
size of the chunk of the image that has just been delivered. If HEIGHT or WIDTH is set, however, they represent the overall
image dimensions. Just for amusement, we have used the java.awt.Rectangle class to help us print the bounds of
rectangular region.

imageUpdate() returns a boolean value indicating whether or not it's interested in future updates. If the image is finished
or aborted, imageUpdate() returns false to indicate it isn't interested in further updates. Otherwise, it returns true.

The following example uses MyObserver to print information about an image as AWT loads it:

import java.awt.*;

public class ObserveImage extends java.applet.Applet {
 Image img;
 public void init() {
 img = getImage(getClass().getResource(getParameter("img")));
 MyObserver mo = new MyObserver();
 img.getWidth(mo);
 img.getHeight(mo);
 prepareImage(img, mo);
 }
}

After requesting the Image object with getImage(), we perform three operations on it to kick-start the loading process.
getWidth() and getHeight() ask for the image's width and height. If the image hasn't been loaded yet, or its size can't
be determined until loading is finished, our observer will be called when the data is ready. prepareImage() asks that the
image be readied for display on the component. It's a general mechanism for getting AWT started loading, converting, and
possibly scaling the image. If the image hasn't been otherwise prepared or displayed, this happens asynchronously, and our
image observer will be notified as the data is constructed.

You may be wondering where the image consumer is, since we never see a call to imageUpdate(). That's a good question,
but for now I'd like you to take it on faith that the consumer exists. As you'll see later, image consumers are rather mysterious
objects that tend to hide beneath the surface of image-processing applications. In this case, the consumer is hiding deep inside
the implementation of Applet.

You should be able to see how we could implement all sorts of sophisticated image loading and tracking schemes. The two
most obvious strategies, however, are to draw an image progressively, as it's constructed, or to wait until it's complete and

draw it in its entirety. We have already seen that the Component class implements the first scheme. Another class,
java.awt.MediaTracker, is a general utility that tracks the loading of a number of images or other media types for us.
We'll look at it next.

Using a MediaTracker

java.awt.MediaTracker is a utility class that simplifies life if we have to wait for one or more images to be loaded
before they're displayed. A MediaTracker monitors the preparation of an image or a group of images and lets us check on
them periodically, or wait until they are completed. MediaTracker uses the ImageObserver interface internally to
receive image updates.

The following applet, LoadMe, uses a MediaTracker to wait while an image is prepared. It shows a "Loading..." message
while it's waiting. (If you are retrieving the image from a local disk or very fast network, this might go by quickly, so pay
attention.)

import java.awt.*;
public class TrackImage extends java.applet.Applet implements Runnable {
 Image img;
 final int MAIN_IMAGE = 0;
 MediaTracker tracker;
 boolean show = false;
 Thread runme;
 String message = "Loading...";
 public void init() {
 img = getImage(getClass().getResource(getParameter("img")));
 tracker = new MediaTracker(this);
 tracker.addImage(img, MAIN_IMAGE);
 }
 public void start() {
 if (!tracker.checkID(MAIN_IMAGE)) {
 runme = new Thread(this);
 runme.start();
 }
 }
 public void stop() {
 runme.stop();
 runme = null;
 }
 public void run() {
 repaint();
 try {
 tracker.waitForID(MAIN_IMAGE);
 } catch(InterruptedException e) { }
 if (tracker.isErrorID(MAIN_IMAGE))
 message= "Error";
 else
 show = true;
 repaint();
 }
 public void paint(Graphics g) {
 if (show)
 g.drawImage(img, 0, 0, this);

 else {
 g.drawRect(0, 0, getSize().width-1, getSize().height-1);
 g.drawString(message, 20, 20);
 }
 }
}

From its init() method, LoadMe requests its image and creates a MediaTracker to manage it. Later, after the applet is
started, LoadMe fires up a thread to wait while the image is loaded. Note that we don't do this in init() because it would be
rude to do anything time-consuming there; it would take up time in an AWT thread that we don't own. In this case, waiting in
init() would be especially bad because paint() would never get called and our "loading" message wouldn't be displayed;
the applet would just hang until the image loaded. It's often better to create a new thread for initialization and display a startup
message in the interim.

When we construct a MediaTracker, we give it a reference to our component (this). After creating a MediaTracker,
we assign it images to manage. Each image is associated with an integer identifier we'll use later for checking on its status.
Multiple images can be associated with the same identifier, letting us manage them as a group. The value of the identifier is
also used to prioritize loading when waiting on multiple sets of images; lower IDs have higher priority. In this case, we want to
manage only a single image, so we created one identifier called MAIN_IMAGE and passed it as the ID for our image in the call
to addImage().

In our applet's start() method, we call the MediaTracker's checkID() routine with the ID of the image to see if it's
already been loaded. If it hasn't, the applet fires up a new thread to fetch it. The thread executes the run() method, which
simply calls the MediaTracker waitforID() routine and blocks on the image, waiting for it to finish loading. The show
flag tells paint() whether to display our status message or the actual image. We do a repaint() immediately upon
entering run() to display the "Loading..." status, and again upon exiting to change the display. We test for errors during
image preparation with isErrorID() and change the status message if we find one.

This may seem like a lot of work to go through, just to put up a status message while loading a single image. MediaTracker
is more valuable when we are working with many images that have to be available before we can begin parts of our
application. It saves us from implementing a custom ImageObserver for every application. In the future, MediaTracker
should also be able to track the status of audio clips and other kinds of media (as its name suggests).

Producing Image Data

What if we want to make our own image data? To be an image producer, we have to implement the five methods defined in the
ImageProducer interface:

● addConsumer()

● startProduction()

● isConsumer()

● removeConsumer()

● requestTopDownLeftRightResend()

Four methods of ImageProducer simply deal with the process of registering consumers. addConsumer() takes an
ImageConsumer as an argument and adds it to the list of consumers. Our producer can then start sending image data to the
consumer whenever it's ready. startProduction() is identical to addConsumer(), except that it asks the producer to

start sending data as soon as possible. The difference might be that a given producer would send the current frame of data or
initiate construction of a frame immediately, rather than waiting until its next cycle. isConsumer() tests whether a
particular consumer is already registered, and removeConsumer() removes a consumer from the list. We'll see shortly that
we can perform these kinds of operations easily with a Vector; see Chapter 7, Basic Utility Classes for a complete discussion
of Vector objects.

An ImageProducer also needs to know how to use the ImageConsumer interface of its clients. The final method of the
ImageProducer interface, requestTopDownLeftRightResend(), asks that the image data be resent to the
consumer, in order, from beginning to end. In general, a producer can generate pixel data and send it to the consumer in any
order that it likes. The setPixels() method of the ImageConsumer interface takes parameters telling the consumer what
part of the image is being delivered on each call. A call to requestTopDownLeftRightResend() asks the producer to
send the pixel data again, in order. A consumer might do this so that it can use a higher quality conversion algorithm that relies
on receiving the pixel data in sequence. It's important to note that the producer is allowed to ignore this request; it doesn't have
to be able to send the data in sequence.

Color models

Everybody wants to work with color in their application, but using color raises problems. The most important problem is
simply how to represent a color. There are many different ways to encode color information: red, green, blue (RGB) values;
hue, saturation, value (HSV); hue, lightness, saturation (HLS); and more. In addition, you can provide full color information
for each pixel, or you can just specify an index into a color table (palette) for each pixel. The way you represent a color is
called a color model. AWT provides tools for two broad groups of color models: direct and indexed.

As you might expect, you need to specify a color model in order to generate pixel data; the abstract class
java.awt.image.ColorModel represents a color model. A ColorModel is one of the arguments to the
setPixels() method an image producer calls to deliver pixels to a consumer. What you probably wouldn't expect is that
you can use a different color model every time you call setPixels(). Exactly why you'd do this is another matter. Most of
the time, you'll want to work with a single color model; that model will probably be the default direct color model. But the
additional flexibility is there if you need it.

By default, the core AWT components use a direct color model called ARGB. The A stands for "alpha,", which is the
historical name for transparency. RGB refers to the red, green, and blue color components that are combined to produce a
single, composite color. In the default ARGB model, each pixel is represented by a 32-bit integer that is interpreted as four 8-
bit fields; in order, the fields represent the transparency (A), red, green, and blue components of the color, as shown in Figure
14.3.

Figure 14.3: ARGB color encoding

[Graphic: Figure 14-3]

To create an instance of the default ARGB model, call the static getRGBdefault() method in ColorModel. This
method returns a DirectColorModel object; DirectColorModel is a subclass of ColorModel. You can also create
other direct color models by calling a DirectColorModel constructor, but you shouldn't need to unless you have a fairly
exotic application.

In an indexed color model, each pixel is represented by a smaller amount of information: an index into a table of real color
values. For some applications, generating data with an indexed model may be more convenient. If you have an 8-bit display or
smaller, using an indexed model may be more efficient, since your hardware is internally using an indexed color model of
some form.

While AWT provides IndexedColorModel objects, we won't cover them in this book. It's sufficient to work with the
DirectColorModel. Even if you have an 8-bit display, the Java implementation on your platform should accommodate the
hardware you have and, if necessary, dither colors to fit your display. Java also produces transparency on systems that don't
natively support it by dithering colors.

Creating an image

Let's take a look at producing some image data. A picture may be worth a thousand words, but fortunately, we can generate a
picture in significantly fewer than a thousand words of Java. If we're interested in producing a static image with just one frame,
we can use a utility class that acts as an ImageProducer for us.

java.awt.image.MemoryImageSource is a simple utility class that implements the ImageProducer interface; we
give it pixel data in an array and it sends that data to an image consumer. A MemoryImageSource can be constructed for a
given color model, with various options to specify the type and positioning of its data. We'll use the simplest form, which
assumes an ARGB color model.

The following applet, ColorPan, creates an image from an array of integers holding ARGB pixel values:

import java.awt.*;
import java.awt.image.*;
public class ColorPan extends java.applet.Applet {
 Image img;
 int width, height;
 int [] pixData;
 public void init() {
 width = getSize().width;
 height = getSize().height;
 pixData = new int [width * height];
 int i=0;
 for (int y = 0; y < height; y++) {
 int red = (y * 255) / (height - 1);
 for (int x = 0; x < width; x++) {
 int green = (x * 255) / (width - 1);
 int blue = 128;
 int alpha = 255;
 pixData[i++] = (alpha << 24) | (red << 16) |
 (green << 8) | blue;
 }
 }
 }
 public void paint(Graphics g) {
 if (img == null)
 img = createImage(new MemoryImageSource(width, height,
 pixData, 0, width));
 g.drawImage(img, 0, 0, this);
 }

}

Give it a try. The size of the image is determined by the size of the applet when it starts up. What you should get is a very
colorful box that pans from deep blue at the upper left-hand corner to bright yellow at the bottom right with green and red at
the other extremes. (You'll have to imagine something more colorful than the black and white image above.)

We create the pixel data for our image in the init()method, and then use MemoryImageSource to create and display the
image in paint(). The variable pixData is a one-dimensional array of integers that holds 32-bit ARGB pixel values. In
init() we loop over every pixel in the image and assign it an ARGB value. The alpha (transparency) component is always
255, which means the image is opaque. The blue component is always 128, half its maximum intensity. The red component
varies from 0 to 255 along the y axis; likewise, the green component varies from 0 to 255 along the x axis. The line below
combines these components into an ARGB value:

pixData[i++] = (alpha << 24) | (red << 16) | (green << 8) | blue;

The bitwise left-shift operator (<<) should be familiar to C programmers. It simply shoves the bits over by the specified
number of positions. The alpha value takes the top byte of the integer, followed by the red, green, and blue values.

When we construct the MemoryImageSource as a producer for this data, we give it five parameters: the width and height of
the image to construct (in pixels), the pixData array, an offset into that array, and the width of each scan line (in pixels).
We'll start with the first element (offset 0) of pixData; the width of each scan line and the width of the image are the same.
The array pixData has width * height elements, which means it has one element for each pixel.

We create the actual image once, in paint(), using the createImage() method that our applet inherits from
Component. In the double-buffering and off-screen drawing examples, we used createImage() to give us an empty off-
screen image buffer. Here we use createImage() to generate an image from a specified ImageProducer.
createImage() creates the Image object and receives pixel data from the producer to construct the image. Note that
there's nothing particularly special about MemoryImageSource; we could use any object that implements the image-
producer interface inside of createImage(), including one we wrote ourselves. Once we have the image, we can draw it on
the display with the familiar drawImage() method.

You can use MemoryImageSource to produce complex, pixel-by-pixel graphics or render images from arbitrary sources. It
produces static images, though; when it reaches the end of its pixel data, its job is done. To generate a stream of image data or
update pixel values, we need a more persistent image producer.

Updating a MemoryImageSource

MemoryImageSource can also be used to generate a sequence of images, or to update an image dynamically. In Java 1.1,
this is probably the easiest way to build your own low-level animation software. This example simulates the static on a
television screen. It generates successive frames of random black and white pixels and displays each frame when it is
complete. The figure below shows one frame of random static, followed by the code:

[Graphic: Figure from the text]

import java.awt.*;
import java.awt.image.*;
public class StaticGenerator
 extends java.applet.Applet
 implements Runnable {
 int arrayLength, pixels[];
 MemoryImageSource source;
 Image image;
 int width, height;
 public void init() {
 width = getSize().width; height = getSize().height;
 arrayLength = width * height;
 pixels = new int [arrayLength];
 source = new MemoryImageSource(width, height, pixels, 0, width);
 source.setAnimated(true);
 image = createImage(source);
 new Thread(this).start();
 }
 public void run() {
 while (true) {
 try {
 Thread.sleep(1000/24);
 } catch(InterruptedException e) { /* die */ }
 for (int x = 0; x < width; x++)
 for (int y = 0; y < height; y++) {
 boolean rand = Math.random() > 0.5;
 pixels[y*width+x] =
 rand ? Color.black.getRGB() : Color.white.getRGB();
 }
 // Push out the new data
 source.newPixels(0, 0, width, height);
 }
 }
 public void paint(Graphics g) {
 g.drawImage(image, 0, 0, this);

 }
}

The init() method sets up the MemoryImageSource that produces the sequence of images. It first computes the size of
the array needed to hold the image data. It then creates a MemoryImageSource object that produces images the width and
height of the display, using the default color model (the constructor we use assumes that we want the default). We start taking
pixels from the beginning of the pixel array, and scan lines in the array have the same width as the image. Once we have
created the MemoryImageSource, we call its setAnimated() method to tell it that we will be generating an image
sequence. Then we use the source to create an Image that will display our sequence.

We next start a thread that generates the pixel data. For every element in the array, we get a random number, and set the pixel
to black if the random number is greater than 0.5. Because pixels is an int array, we can't assign Color objects to it
directly; we use getRGB() to extract the color components from the black and white Color constants. When we have filled
the entire array with data, we call the newPixels() method, which delivers the new data to the image.

That's about all there is. We provide a very uninteresting paint() method, that just calls drawImage() to put the current
state of the image on the screen. Whenever paint() is called, we see the latest collection of static. The image observer,
which is the Applet itself, schedules a call to paint() whenever anything interesting has happened to the image. It's worth
noting how simple it is to create this animation. Once we have the MemoryImageSource, we use it to create an image that
we treat like any other image. The code that generates the image sequence can be arbitrarily complex--certainly in any
reasonable example, it would be more complex than our (admittedly cheesy) static. But that complexity never infects the
simple task of getting the image on the screen and updating it.

Image Producers and Consumers

In this section we'll create an image producer that generates a stream of image frames rather than just a static image.
Unfortunately, it would take too many lines of code to generate anything really interesting, so we'll stick with a simple
modification of our ColorPan example. After all, figuring out what to display is your job; I'm primarily concerned with
giving you the necessary tools. After this, you should have the needed tools to implement more interesting applications.

A word of advice: if you find yourself writing image producers, you're probably making your life excessively difficult. Most
situations can be handled by the dynamic MemoryImageSource technique that we just demonstrated. Before going to the
trouble of writing an image producer, convince yourself that there isn't a simpler solution. Even if you never write an image
producer yourself, it's good (like Motherhood and Apple Pie) to understand how Java's image rendering tools work.

Image consumers

First, we have to know a little more about the image consumers we'll be feeding. An image consumer implements the seven
methods that are defined in the ImageConsumer interface. Two of these methods are overloaded versions of the
setPixels() method that accept the actual pixel data for a region of the image. They are identical except that one takes the
pixel data as an array of integers, and the other uses an array of bytes. (An array of bytes is natural when you're using an
indexed color model because each pixel is specified by an index into a color array.) A call to setPixels() looks something
like the following:

setPixels(x, y, width, height, colorModel, pixels, offset, scanLength);

pixels is the one-dimensional array of bytes or integers that holds the pixel data. Often, you deliver only part of the image
with each call to setPixels(). The x, y, width, and height values define the rectangle of the image for which pixels
are being delivered. x and y specify the upper left-hand corner of the chunk you're delivering, relative to the upper left-hand
corner of the image as a whole. width specifies the width in pixels of the chunk; height specifies the number of scan lines
in the chunk. offset specifies the point in pixels at which the data being delivered in this call to setPixels() starts.

Finally, scanLength indicates the width of the entire image, which is not necessarily the same as width. The pixels
array must be large enough to accommodate width*length+offset elements; if it's larger, any leftover data is ignored.

We haven't said anything yet about the colorModel argument to setPixels(). In our previous example, we drew our
image using the default ARGB color model for pixel values; the version of the MemoryImageSource constructor that we
used supplied the default color model for us. In this example, we also stick with the default model, but this time we have to
specify it explicitly. The remaining five methods of the ImageConsumer interface accept general attributes and framing
information about the image:

● setHints()

● setDimensions()

● setProperties()

● setColorModel()

● imageComplete()

Before delivering any data to a consumer, the producer should call the consumer's setHints() method to pass it
information about how pixels will be delivered. Hints are specified in the form of flags defined in the ImageConsumer
interface. The flags are described in Table 14.2. The consumer uses these hints to optimize the way it builds the image; it's also
free to ignore them.

Table 14.2: ImageConsumer setHints() Flags

Flag Description

RANDOMPIXELORDER The pixels are delivered in random order

TOPDOWNLEFTRIGHT The pixels are delivered from top to bottom, left to right

COMPLETESCANLINES Each call to setPixels() delivers one or more complete scan lines

SINGLEPASS Each pixel is delivered only once

SINGLEFRAME The pixels define a single, static image

setDimensions() is called to pass the width and height of the image when they are known.

setProperties() is used to pass a hashtable of image properties, stored by name. This method isn't particularly useful
without some prior agreement between the producer and consumer about what properties are meaningful. For example, image
formats such as GIF and TIFF can include additional information about the image. These image attributes could be delivered to
the consumer in the hashtable.

setColorModel() is called to tell the consumer which color model will be used to process most of the pixel data.
However, remember that each call to setPixels() also specifies a ColorModel for its group of pixels. The color model
specified in setColorModel() is really only a hint that the consumer can use for optimization. You're not required to use
this color model to deliver all (or for that matter, any) of the pixels in the image.

The producer calls the consumer's imageComplete() method when it has completely delivered the image or a frame of an
image sequence. If the consumer doesn't wish to receive further frames of the image, it should unregister itself from the
producer at this point. The producer passes a status flag formed from the flags shown in Table 14.3.

Table 14.3: ImageConsumer imageComplete() Flags

Flag Description

STATICIMAGEDONE A single static image is complete

SINGLEFRAMEDONE One frame of an image sequence is complete

IMAGEERROR An error occurred while generating the image

As you can see, the ImageProducer and ImageConsumer interfaces provide a very flexible mechanism for distributing
image data. Now let's look at a simple producer.

A sequence of images

The following class, ImageSequence, shows how to implement an ImageProducer that generates a sequence of images.
The images are a lot like the ColorPan image we generated a few pages back, except that the blue component of each pixel
changes with every frame. This image producer doesn't do anything you couldn't do with a MemoryImageSource. It reads
ARGB data from an array, and consults the object that creates the array to give it an opportunity to update the data between
each frame.

This is a complex example, so before diving into the code, let's take a broad look at the pieces. The ImageSequence class is
an image producer; it generates data and sends it to image consumers to be displayed. To make our design more modular, we
define an interface called FrameARGBData that describes how our rendering code provides each frame of ARGB pixel data
to our producer. To do the computation and provide the raw bits, we create a class called ColorPanCycle that implements
FrameARGBData. This means that ImageSequence doesn't care specifically where the data comes from; if we wanted to
draw different images, we could just drop in another class, provided that the new class implements FrameARGBData.
Finally, we create an applet called UpdatingImage that includes two image consumers to display the data.

Here's the ImageSequence class:

import java.awt.image.*;
import java.util.*;
public class ImageSequence extends Thread implements ImageProducer {
 int width, height, delay;
 ColorModel model = ColorModel.getRGBdefault();
 FrameARGBData frameData;
 private Vector consumers = new Vector();
 public void run() {
 while (frameData != null) {
 frameData.nextFrame();
 sendFrame();
 try {
 sleep(delay);
 } catch (InterruptedException e) {}
 }
 }
 public ImageSequence(FrameARGBData src, int maxFPS) {
 frameData = src;
 width = frameData.size().width;
 height = frameData.size().height;
 delay = 1000/maxFPS;
 setPriority(MIN_PRIORITY + 1);

 }
 public synchronized void addConsumer(ImageConsumer c) {
 if (isConsumer(c))
 return;
 consumers.addElement(c);
 c.setHints(ImageConsumer.TOPDOWNLEFTRIGHT |
 ImageConsumer.SINGLEPASS);
 c.setDimensions(width, height);
 c.setProperties(new Hashtable());
 c.setColorModel(model);
 }
 public synchronized boolean isConsumer(ImageConsumer c) {
 return (consumers.contains(c));
 }
 public synchronized void removeConsumer(ImageConsumer c) {
 consumers.removeElement(c);
 }
 public void startProduction(ImageConsumer ic) {
 addConsumer(ic);
 }
 public void requestTopDownLeftRightResend(ImageConsumer ic) { }
 private void sendFrame() {
 for (Enumeration e = consumers.elements(); e.hasMoreElements();) {
 ImageConsumer c = (ImageConsumer)e.nextElement();
 c.setPixels(0, 0, width, height, model, frameData.getPixels(), 0, width);
 c.imageComplete(ImageConsumer.SINGLEFRAMEDONE);
 }
 }
}

The bulk of the code in ImageSequence creates the skeleton we need for implementing the ImageProducer interface.
ImageSequence is actually a simple subclass of Thread whose run() method loops, generating and sending a frame of
data on each iteration. The ImageSequence constructor takes two items: a FrameARGBData object that updates the array
of pixel data for each frame, and an integer that specifies the maximum number of frames per second to generate. We give the
thread a low priority (MIN_PRIORITY+1) so that it can't run away with all of our CPU time.

Our FrameARGBData object implements the following interface:

interface FrameARGBData {
 java.awt.Dimension size();
 int [] getPixels();
 void nextFrame();
}

In ImageSequence's run() method, we call nextFrame() to compute the array of pixels for each frame. After
computing the pixels, we call our own sendFrame() method to deliver the data to the consumers. sendFrame() calls
getPixels() to retrieve the updated array of pixel data from the FrameARGBData object. sendFrame() then sends the
new data to all of the consumers by invoking each of their setPixels() methods and signaling the end of the frame with
imageComplete(). Note that sendFrame() can handle multiple consumers; it iterates through a Vector of image
consumers. In a more realistic implementation, we would also check for errors and notify the consumers if any occurred.

The business of managing the Vector of consumers is handled by addConsumer() and the other methods in the

ImageProducer interface. addConsumer() adds an item to consumers. A Vector is a perfect tool for this task, since
it's an automatically extendable array, with methods for finding out how many elements it has, whether or not a given element
is already a member, and so on.

addConsumer() also gives the consumer hints about how the data will be delivered by calling setHints(). This image
provider always works from top to bottom and left to right, and makes only one pass through the data. addConsumer() next
gives the consumer an empty hashtable of image properties. Finally, it reports that most of the pixels will use the default
ARGB color model (we initialized the variable model to ColorModel.getRGBDefault()). In this example, we always
start sending image data on the next frame, so startProduction() simply calls addConsumer().

We've discussed the mechanism for communications between the consumer and producer, but I haven't yet told you where the
data comes from. We have a FrameARGBData interface that defines how to retrieve the data, but we don't yet have an object
that implements the interface. The following class, ColorPanCycle, implements FrameARGBData; we'll use it to
generate our pixels:

import java.awt.*;
class ColorPanCycle implements FrameARGBData {
 int frame = 0, width, height;
 private int [] pixels;
 ColorPanCycle (int w, int h) {
 width = w;
 height = h;
 pixels = new int [width * height];
 nextFrame();
 }
 public synchronized int [] getPixels() {
 return pixels;
 }
 public synchronized void nextFrame() {
 int index = 0;
 for (int y = 0; y < height; y++) {
 for (int x = 0; x < width; x++) {
 int red = (y * 255) / (height - 1);
 int green = (x * 255) / (width - 1);
 int blue = (frame * 10) & 0xff;
 pixels[index++] =
 (255 << 24) | (red << 16) | (green << 8) | blue;
 }
 }
 frame++;
 }
 public Dimension size() {
 return new Dimension (width, height);
 }
}

ColorPanCycle is like our previous ColorPan example, except that it adjusts each pixel's blue component each time
nextFrame() is called. This should produce a color cycling effect; as time goes on, the image becomes more blue.

Now let's put the pieces together by writing an applet that displays a sequence of changing images: UpdatingImage. In fact,
we'll do better than displaying one sequence. To prove that ImageSequence really can deal with multiple consumers,
UpdatingImage creates two components that display different views of the image. Once the mechanism has been set up, it's

surprising how little code you need to add additional displays.

import java.awt.*;
import java.awt.image.*;
public class UpdatingImage extends java.applet.Applet {
 ImageSequence seq;
 public void init() {
 seq = new ImageSequence(new ColorPanCycle(100, 100), 10);
 setLayout(null);
 add(new ImageCanvas(seq, 50, 50));
 add(new ImageCanvas(seq, 100, 100));
 seq.start();
 }
 public void stop() {
 if (seq != null) {
 seq.stop();
 seq = null;
 }
 }
}
class ImageCanvas extends Canvas {
 Image img;
 ImageProducer source;
 ImageCanvas (ImageProducer p, int w, int h) {
 source = p;
 setSize(w, h);
 }
 public void update(Graphics g) {
 paint(g);
 }
 public void paint(Graphics g) {
 if (img == null)
 img = createImage(source);
 g.drawImage(img, 0, 0, getSize().width, getSize().height, this);
 }
}

UpdatingImage constructs a new ImageSequence producer with an instance of our ColorPanCycle object as its
frame source. It then creates two ImageCanvas components that create and display the two views of our animation.
ImageCanvas is a subclass of Canvas; it takes an ImageProducer and a width and height in its constructor and creates
and displays an appropriately scaled version of the image in its paint() method. UpdatingImage places the smaller view
on top of the larger one for a sort of "picture in picture" effect.

If you've followed the example to this point, you're probably wondering where in the heck is the image consumer. After all, we
spent a lot of time writing methods in ImageSequence for the consumer to call. If you look back at the code, you'll see that
an ImageSequence object gets passed to the ImageCanvas constructor, and that this object is used as an argument to
createImage(). But nobody appears to call addConsumer(). And the image producer calls setPixels() and other
consumer methods; but it always digs a consumer out of its Vector of registered consumers, so we never see where these
consumers come from.

In UpdatingImage, the image consumer is behind the scenes, hidden deep inside the Canvas--in fact, inside the Canvas'
peer. The call to createImage() tells its component (i.e., our canvas) to become an image consumer. Something deep

inside the component is calling addConsumer() behind our backs and registering a mysterious consumer, and that
consumer is the one the producer uses in calls to setPixels() and other methods. We haven't implemented any
ImageConsumer objects in this book because, as you might imagine, most image consumers are implemented in native
code, since they need to display things on the screen. There are others though; the java.awt.image.PixelGrabber
class is a consumer that returns the pixel data as a byte array. You might use it to save an image. You can make your own
consumer do anything you like with pixel data from a producer. But in reality, you rarely need to write an image consumer
yourself. Let them stay hidden; take it on faith that they exist.

Now for the next question: How does the screen get updated? Even though we are updating the consumer with new data, the
new image will not appear on the display unless the applet repaints it periodically. By now, this part of the machinery should
be familiar: what we need is an image observer. Remember that all components are image observers (i.e., the class
Component implements ImageObserver). The call to drawImage() specifies our ImageCanvas as its image
observer. The default Component class-image-observer functionality then repaints our image whenever new pixel data
arrives.

In this example, we haven't bothered to stop and start our applet properly; it continues running and wasting CPU time even
when it's invisible. There are two strategies for stopping and restarting our thread. We can destroy the thread and create a new
one, which would require recreating our ImageCanvas objects, or we could suspend and resume the active thread. As
discussed in Chapter 6, Threads, neither option is particularly difficult.

Filtering Image Data

As I said above, you rarely need to write an image consumer. However, there is one kind of image consumer that's worth
knowing about. In this final section on images, we'll build a simple image filter. An image filter is simply a class that performs
some work on image data before passing the data to another consumer.

The ColorSep applet acquires an image; uses an image filter to separate the image into red, green, and blue components; and
displays the three resulting images. With this applet and a few million dollars, you could build your own color separation plant.

import java.awt.*;
import java.awt.image.*;
public class ColorSep extends java.applet.Applet {
 Image img, redImg, greenImg, blueImg;
 public void init() {
 img = getImage(getClass().getResource(getParameter("img")));
 redImg = createImage(new FilteredImageSource(img.getSource(),
 new ColorMaskFilter(Color.red)));
 greenImg = createImage(new FilteredImageSource(img.getSource(),
 new ColorMaskFilter(Color.green)));
 blueImg = createImage(new FilteredImageSource(img.getSource(),
 new ColorMaskFilter(Color.blue)));
 }
 public void paint(Graphics g) {
 int width = getSize().width, height = getSize().height;
 g.drawImage(redImg, 0, 0, width/3, height, this);
 g.drawImage(greenImg, width/3, 0, width/3, height, this);
 g.drawImage(blueImg, 2*width/3, 0, width/3, height, this);
 }
}
class ColorMaskFilter extends RGBImageFilter {
 Color color;

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm

 ColorMaskFilter(Color mask) {
 color = mask;
 canFilterIndexColorModel = true;
 }
 public int filterRGB(int x, int y, int pixel) {
 return
 255 << 24 |
 (((pixel & 0xff0000) >> 16) * color.getRed()/255) << 16 |
 (((pixel & 0xff00) >> 8) * color.getGreen()/255) << 8 |
 (pixel & 0xff) * color.getBlue()/255 ;
 }
}

The FilteredImageSource and RGBImageFilter classes form the basis for building and using image filters. A
FilteredImageSource is an image producer (like MemoryImageSource) that is constructed from an image and an
ImageFilter object. It fetches pixel data from the image and feeds it through the image filter before passing the data along.
Because FilteredImageSource is an image producer, we can use it in our calls to createImage().

But where's the consumer? FilteredImageSource obviously consumes image data as well as producing it. The image
consumer is still mostly hidden, but is peeking out from under its rock. Our class ColorMaskFilter extends
RGBImageFilter, which in turn extends ImageFilter. And ImageFilter is (finally!) an image consumer. Of course,
we still don't see the calls to addConsumer(), and we don't see an implementation of setPixels(); they're hidden in the
ImageFilter sources and inherited by ColorMaskFilter.

So what does ColorMaskFilter actually do? Not much. ColorMaskFilter is a simple subclass of
RGBImageFilter that implements one method, filterRGB(), through which all of the pixel data are fed. Its constructor
saves a mask value we use for filtering. The filterRGB() method accepts a pixel value, along with its x and y
coordinates, and returns the filtered version of the pixel. In ColorMaskFilter, we simply multiply the color components
by the mask color to get the proper effect. A more complex filter, however, might use the coordinates to change its behavior
based on the pixel's position.

One final detail: the constructor for ColorMaskFilter sets the flag canFilterIndexColorModel. This flag is
inherited from RGBImageFilter. It means our filter doesn't depend on the pixel's position. In turn, this means it can filter
the colors in a color table. If we were using an indexed color model, filtering the color table would be much faster than
filtering the individual pixels.

Drawing Techniques Working with Audio

Glossary

Glossary
abstract

The abstract keyword is used to declare abstract methods and classes. An abstract method has
no implementation defined; it is declared with arguments and a return type as usual, but the body
enclosed in curly braces is replaced with a semicolon. The implementation of an abstract method
is provided by a subclass of the class in which it is defined. If an abstract method appears in a
class, the class is also abstract.

API (Application Programming Interface)

An API consists of the functions and variables programmers are use in their applications. The
Java API consists of all public and protected methods of all public classes in the
java.applet, java.awt, java.awt.image, java.awt.peer, java.io,
java.lang, java.net, and java.util packages.

applet

An embedded Java application that runs in the context of an applet viewer, such as a Web
browser.

<applet> tag

HTML tag that specifies an applet run within a Web document.

applet viewer

An application that implements the additional structure needed to run and display Java applets. An
applet viewer can be a Web browser like HotJava or Netscape Navigator, or a separate program
like Sun's appletviewer.

application

A Java program that runs standalone; i.e., it doesn't require an applet viewer.

AWT (Abstract Windowing Toolkit)

Java's platform-independent windowing, graphics, and user-interface toolkit.

boolean

A primitive Java data type that contains a truth value. The two possible values of a boolean
variable are true and false.

byte

A primitive Java data type that's an 8-bit two's-complement signed number (in all
implementations).

callback

A behavior that is defined by one object and then later invoked by another object when a
particular event occurs.

cast

A technique that explicitly converts one data type to another.

catch

The catch statement introduces an exception-handling block of code following a try statement.
The catch keyword is followed by an exception type and argument name in parentheses, and a
block of code within curly braces.

char

A primitive Java data type; a variable of type char holds a single 16-bit Unicode character.

class

a) An encapsulated collection of data and methods to operate on the data. A class may be

instantiated to produce an object that's an instance of the class.

b) The class keyword is used to declare a class, thereby defining a new object type. Its syntax is
similar to the struct keyword in C.

class loader

An object in the Java security model that is responsible for loading Java binary classes from the
network into the local interpreter. A class loader keeps its classes in a separate namespace, so that
loaded classes cannot interact with system classes and breach system security.

class method

A method declared static. Methods of this type are not passed implicit this references and
may refer only to class variables and invoke other class methods of the current class. A class
method may be invoked through the class name, rather than through an instance of the class.

class path

The directory path specifying the location of compiled Java class files on the local system.

class variable

A variable declared static. Variables of this type are associated with the class, rather than with
a particular instance of the class. There is only one copy of a static variable, regardless of the
number of instances of the class that are created.

client

The application that initiates a conversation as part of a networked client/server application. See
server.

compilation unit

The source code for a Java class. A compilation unit normally contains a single class definition,
and in most current development environments is just a file with a .java extension.

compiler

A program that translates source code into executable code.

component

Any of the GUI primitives implemented in the java.awt package as subclasses of
Component. The classes Button, Choice, and TextField (among many others) are
components.

composition

Using objects as part of another, more complex object. When you compose a new object, you
create complex behavior by delegating tasks to the internal objects. Composition is different from
inheritance, which defines a new object by changing or refining the behavior of an old object. See
inheritance.

constructor

A method that is invoked automatically when a new instance of a class is created. Constructors
are used to initialize the variables of the newly created object. The constructor method has the
same name as the class.

container

One of the java.awt classes that "contain" GUI components. Components in a container appear
within the boundaries of the container. The classes Dialog, Frame, Panel, and Window are
containers.

content handler

A class that recognizes the content type of particular data, parses it, and converts it to an
appropriate object.

datagram

A packet of data sent to a receiving computer without warning, error checking, or other control
information.

data hiding

See encapsulation.

double

A Java primitive data type;a double value is a 64-bit (double-precision) floating-point number.

encapsulation

An object-oriented programming technique that makes an object's data private or
protected (i.e., hidden) and allows programmers to access and manipulate that data only
through method calls. Done well, encapsulation reduces bugs and promotes reusability and
modularity of classes. This technique is also known as data hiding.

event

A user's action, such as a mouse click or key press.

exception

A signal that some unexpected condition has occurred in the program. In Java, exceptions are
objects that are subclasses of Exception or Error (which themselves are subclasses of
Throwable). Exceptions in Java are "raised" with the throw keyword and received with the
catch keyword. See throw, throws, and catch.

extends

The extends keyword is used in a class declaration to specify the superclass of the class
being defined. The class being defined has access to all the public and protected variables
and methods of the superclass (or, if the class being defined is in the same package, it has access
to all non-private variables and methods). If a class definition omits the extends clause, its
superclass is taken to be java.lang.Object.

final

The final keyword is a modifier that may be applied to classes, methods, and variables. It has a
similar, but not identical meaning in each case. When final is applied to a class, it means that
the class may never be subclassed. java.lang.System is an example of a final class.
When final is applied to a variable, the variable is a constant; i.e., it can't be modified.

finalize

finalize is not actually a Java keyword, but a reserved method name. The finalizer is called
when an object is no longer being used (i.e., when there are no further references to it), but before
the object's memory is actually reclaimed by the system. A finalizer should perform cleanup tasks
and free system resources not handled by Java's garbage-collection system.

finally

This keyword introduces the finally block of a try/catch/finally construct. catch and
finally blocks provide exception handling and routine cleanup for code in a try block. The
finally block is optional, and appears after the try block, and after zero or more catch
blocks. The code in a finally block is executed once, regardless of how the code in the try
block executes. In normal execution, control reaches the end of the try block and proceeds to the
finally block, which generally performs any necessary cleanup.

float

A Java primitive data type; a float value is a 32-bit (single-precision) floating-point number
represented in IEEE 754 format.

garbage collection

The process of reclaiming the memory of objects no longer in use. An object is no longer in use
when there are no references to it from other objects in the system and no references in any local
variables on the method call stack.

GC

An abbreviation for garbage collection or garbage collector (or occasionally "graphics context").

graphics context

A drawable surface represented by the java.awt.Graphics class. A graphics context
contains contextual information about the drawing area and provides methods for performing
drawing operations in it.

GUI (graphical user interface)

A GUI is a user interface constructed from graphical push buttons, text fields, pull-down menus,
dialog boxes, and other standard interface components. In Java, GUIs are implemented with the
classes in the java.awt package.

hashcode

An arbitrary-looking identifying number used as a kind of signature for an object. A hashcode
stores an object in a hashtable. See hashtable.

hashtable

An object that is like a dictionary or an associative array. A hashtable stores and retrieves
elements using key values called hashcodes. See hashcode.

hostname

The name given to an individual computer attached to the Internet.

HotJava

A WWW browser written in Java that is capable of downloading and running Java applets.

ImageConsumer

An interface for receiving image data from an image source. Image consumers are usually
implemented by the awt.peer interface, so they are largely invisible to programmers.

ImageObserver

An interface in the java.awt.image package that receives information about the status of an
image being constructed by a particular ImageConsumer.

ImageProducer

An interface in the java.awt.image package that represents an image source (i.e., a source of
pixel data).

implements

The implements keyword is used in class declarations to indicate that the class implements the
named interface or interfaces. The implements clause is optional in class declarations; if it
appears, it must follow the extends clause (if any). If an implements clause appears in the
declaration of a non-abstract class, every method from each specified interface must be
implemented by the class or by one of its superclasses.

import

The import statement makes Java classes available to the current class under an abbreviated
name. (Java classes are always available by their fully qualified name, assuming the appropriate
class file can be found relative to the CLASSPATH environment variable and that the class file is

readable. import doesn't make the class available; it just saves typing and makes your code
more legible). Any number of import statements may appear in a Java program. They must
appear, however, after the optional package statement at the top of the file, and before the first
class or interface definition in the file.

inheritance

An important feature of object-oriented programming that involves defining a new object by
changing or refining the behavior of an existing object. That is, an object implicitly contains all
the non-private variables of its superclass and can invoke all the non-private methods of its
superclass. Java supports single inheritance of classes and multiple inheritance of interfaces.

instance

An object. When a class is instantiated to produce an object, we say the object is an instance of
the class.

instance method

A non-static method of a class. Such a method is passed an implicit this reference to the
object that invoked it. See also class method and static.

instanceof

instanceof is a Java operator that returns true if the object on its left-hand side is an
instance of the class (or implements the interface) specified on its right-hand side. instanceof
returns false if the object is not an instance of the specified class or does not implement the
specified interface. It also returns false if the specified object is null.

instance variable

A non-static variable of a class. Copies of such variables occur in every instance of the created
class. See also class variable and static.

int

A primitive Java data type that's a 32-bit two's-complement signed number (in all
implementations).

interface

The interface keyword is used to declare an interface. More generally, an interface defines a
list of methods that enables a class to implement the interface itself.

interpreter

The module that decodes and executes Java bytecode.

ISO8859-1

An 8-bit character encoding standardized by the ISO. This encoding is also known as Latin-1 and
contains characters from the Latin alphabet suitable for English and most languages of western
Europe.

ISO10646

A 4-byte character encoding that includes all of the world's national standard character encodings.
Also known as UCS. The 2-byte Unicode character set maps to the range 0x00000000 to
0x0000FFFF of ISO 10646.

Java WorkShop

Sun's Web browser-based tool written in Java for the development of Java applications.

JDK (Java Development Kit)

A package of software distributed by Sun Microsystems for Java developers. It includes the Java
interpreter, Java classes, and Java development tools: compiler, debugger, disassembler,
appletviewer, stub file generator, and documentation generator.

JavaScript

A language for creating dynamic Web pages developed by Netscape. From a programmer's point
of view, it's unrelated to Java, although some of its capabilities are similar. Internally, there may
be a relationship, but even that is unclear.

layout manager

An object that controls the arrangement of components within the display area of a container. The
java.awt package contains a number of layout managers that provide different layout styles.

Latin-1

A nickname for ISO8859-1.

local variable

A variable that is declared inside a single method. A local variable can be seen only by code
within that method.

long

A primitive Java data type that's a 64-bit two's-complement signed number (in all
implementations).

method

The object-oriented programming term for a function or procedure.

method overloading

Providing definitions of more than one method with the same name but with different argument
lists or return values. When an overloaded method is called, the compiler determines which one is
intended by examining the supplied argument types.

method overriding

Defining a method that exactly matches (i.e., same name, same argument types, and same return
type) a method defined in a superclass. When an overridden method is invoked, the interpreter
uses "dynamic method lookup" to determine which method definition is applicable to the current
object.

modifier

A keyword placed before a class, variable, or method that alters the item's accessibility, behavior,
or semantics. See abstract, final, native, private, private protected,
protected, public, static, and synchronized.

Model/View/Controller (MVC) framework

A user-interface design that originated in Smalltalk. In MVC, the data for a display item is called
the "model." A "view" displays a particular representation of the model, and a "controller"
provides user interaction with both. Java incorporates many MVC concepts.

NaN (not-a-number)

This is a special value of the double and float data types that represents an undefined result
of a mathematical operation, such as zero divided by zero.

native

native is a modifier that may be applied to method declarations. It indicates that the method is
implemented (elsewhere) in C, or in some other platform-dependent fashion. A native method
should have a semicolon instead of a body. A native method cannot be abstract, but all
other method modifiers may be used with native methods.

native method

A method that is implemented in a native language on a host platform, rather than being
implemented in Java. Native methods provide access to such resources as the network, the
windowing system, and the host filesystem.

new

new is a unary operator that creates a new object or array (or raises an
OutOfMemoryException if there is not enough memory available).

null

null is a special value that indicates a variable doesn't refer to any object. The value null may
be assigned to any class or interface variable. It cannot be cast to any integral type, and should not
be considered equal to zero, as in C.

object

An instance of a class. A class models a group of things; an object models a particular member of
that group.

package

The package statement specifies which package the code in the file is part of. Java code that is
part of a particular package has access to all classes (public and non-public) in the package,
and all non-private methods and fields in all those classes. When Java code is part of a named
package, the compiled class file must be placed at the appropriate position in the CLASSPATH
directory hierarchy before it can be accessed by the Java interpreter or other utilities. If the

package statement is omitted from a file, the code in that file is part of an unnamed default
package. This is convenient for small test programs, or during development because it means the
code can be interpreted from the current directory.

<param> tag

HTML tag used within <applet> ... </applet> to specify a named parameter and string
value to an applet within a Web page.

peer

The actual implementation of a GUI component on a specific platform. Peer components reside
within a Toolkit object. See Toolkit.

primitive type

One of the Java data types: boolean, char, byte, short, int, long, float, double.
Primitive types are manipulated, assigned, and passed to methods "by value" (i.e., the actual bytes
of the data are copied). See also reference type.

private

The private keyword is a visibility modifier that can be applied to method and field variables
of classes. A private field is not visible outside its class definition.

private protected

When the private and protected visibility modifiers are both applied to a variable or
method in a class, they indicate the field is visible only within the class itself and within
subclasses of the class. Note that subclasses can access only private protected fields
within themselves or within other objects that are subclasses; they cannot access those fields
within instances of the superclass.

protected

The protected keyword is a visibility modifier that can be applied to method and field
variables of classes. A protected field is visible only within its class, within subclasses, or
within the package of which its class is a part. Note that subclasses in different packages can
access only protected fields within themselves or within other objects that are subclasses; they
cannot access protected fields within instances of the superclass.

protocol handler

Software that describes and enables the use of a new protocol. A protocol handler consists of two
classes: a StreamHandler and a URLConnection.

public

The public keyword is a visibility modifier that can be applied to classes and interfaces and to
the method and field variables of classes and interfaces. A public class or interface is visible
everywhere. A non-public class or interface is visible only within its package. A public
method or variable is visible everywhere its class is visible. When none of the private,
protected or public modifiers is specified, a field is visible only within the package of
which its class is a part.

reference type

Any object or array. Reference types are manipulated, assigned, and passed to methods "by
reference." In other words, the underlying value is not copied; only a reference to it is. See also
primitive type.

root

The base of a hierarchy, such as a root class, whose descendants are subclasses. The
java.lang.Object class serves as the root of the Java class hierarchy.

SecurityManager

The Java class that defines the methods the system calls to check whether a certain operation is
permitted in the current environment.

server

The application that accepts a request for a conversation as part of a networked client/server
application. See client.

shadow

To declare a variable with the same name as a variable defined in a superclass. We say the
variable "shadows" the superclass's variable. Use the super keyword to refer to the shadowed
variable, or refer to it by casting the object to the type of the superclass.

short

A primitive Java data type that's a 16-bit two's-complement signed number (in all
implementations).

socket

An interface that listens for connections from clients on a data port and connects the client data
stream with the receiving application.

static

The static keyword is a modifier applied to method and variable declarations within a class. A
static variable is also known as a class variable as opposed to non-static instance variables.
While each instance of a class has a full set of its own instance variables, there is only one copy of
each static class variable, regardless of the number of instances of the class (perhaps zero) that
are created. static variables may be accessed by class name or through an instance. Non-
static variables can be accessed only through an instance.

stream

A flow of data, or a channel of communication. All fundamental I/O in Java is based on streams.

String

A class used to represent textual information. The String class includes many methods for
operating on string objects. Java overloads the + operator for string concatenation.

subclass

A class that extends another. The subclass inherits the public and protected methods and
variables of its superclass. See extends.

super

The keyword super refers to the same value as this: the instance of the class for which the
current method (these keywords are valid only within non-static methods) was invoked. While
the type of this is the type of the class in which the method appears, the type of super is the
type of the superclass of the class in which the method appears. super is usually used to refer to
superclass variables shadowed by variables in the current class. Using super in this way is
equivalent to casting this to the type of the superclass.

superclass

A class extended by some other class. The superclass's public and protected methods and
variables are available to the subclass. See extends.

synchronized

The synchronized keyword is used in two related ways in Java: as a modifier and as a
statement. First, it is a modifier applied to class or instance methods. It indicates that the method
modifies the internal state of the class or the internal state of an instance of the class in a way that
is not thread-safe. Before running a synchronized class method, Java obtains a lock on the
class, to ensure that no other threads can modify the class concurrently. Before running a
synchronized instance method, Java obtains a lock on the instance that invoked the method,
ensuring that no other threads can modify the object at the same time.

Java also supports a synchronized statement that serves to specify a "critical section" of code.
The synchronized keyword is followed by an expression in parentheses, and a statement or
block of statements. The expression must evaluate to an object or array. Java obtains a lock on the
specified object or array before executing the statements.

TCP

Transmission Control Protocol. A connection-oriented, reliable protocol. One of the protocols on
which the Internet is based.

this

Within an instance method or constructor of a class, this refers to "this object"--the instance
currently being operated on. It is useful to refer to an instance variable of the class that has been
shadowed by a local variable or method argument. It is also useful to pass the current object as an
argument to static methods or methods of other classes.

There is one additional use of this: when it appears as the first statement in a constructor
method, it refers to one of the other constructors of the class.

thread

A single, independent stream of execution within a program. Since Java is a "multithreaded"
programming language, more than one thread may be running within the Java interpreter at a
time. Threads in Java are represented and controlled through the Thread object.

throw

The throw statement signals that an exceptional condition has occurred by throwing a specified
exception object. This statement stops program execution and resumes it at the nearest containing
catch statement that can handle the specified exception object. Note that the throw keyword
must be followed by an exception object, not an exception class.

throws

The throws keyword is used in a method declaration to list the exceptions the method can
throw. Any exceptions a method can raise that are not subclasses of Error or
RuntimeException must either be caught within the method or declared in the method's
throws clause.

Toolkit

The property of the Java API that defines the look and feel of the user interface on a specific
platform.

try

The try keyword indicates a block of code to which subsequent catch and finally clauses
apply. The try statement itself performs no special action. See the entries for catch and
finally for more information on the try/catch/finally construct.

UCS (universal character set)

A synonym for ISO10646.

UDP

User Datagram Protocol. A connectionless unreliable protocol. UDP describes a network data
connection based on datagrams with little packet control.

Unicode

A 16-bit character encoding that includes all of the world's commonly used alphabets and
ideographic character sets in a "unified" form (i.e., a form from which duplications among
national standards have been removed). ASCII and Latin-1 characters may be trivially mapped to
Unicode characters. Java uses Unicode for its char and String types.

UTF-8 (UCS transformation format 8-bit form)

An encoding for Unicode characters (and more generally, UCS characters) commonly used for
transmission and storage. It is a multibyte format in which different characters require different
numbers of bytes to be represented.

vector

A dynamic array of elements.

verifier

A theorem prover that steps through the Java byte-code before it is run and makes sure that it is
well-behaved. The byte-code verifier is the first line of defense in Java's security model.

Working with Audio

Index

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | R | S | T | U | V | W | X | Y | Z

Symbols and Numbers
@ (at sign) in doc comments : Comments
! (logical complement) operator : Operators
& (bitwise AND) operator : Operators
& (boolean AND) operator : Operators
& (dereference) operator in C : Operators
&& (conditional AND) operator : Operators
&= (assignment) operator : Operators
* for importing classes : Importing Classes
\ (backslash) in paths : Path localization
! (not) operator : run()
!= (inequality) operator : Operators
| (bitwise OR) operator : Operators
| (boolean OR) operator : Operators
|| (conditional OR) operator : Operators
|= (assignment) operator : Operators
[] (index) operator : Arrays
^ (bitwise XOR) operator : Operators
^ (boolean XOR) operator : Operators
^= (assignment) operator : Operators
, (comma) operator in C
Statements
Operators
{ } curly braces : Arrays
for code blocks : Statements
for creating arrays : Array Creation and Initialization
- (subtraction) operator : Operators
- (unary minus) operator : Operators
- - (decrement) operator : Operators
- = (assignment) operator : Operators
- (hyphen) in class names : Locating Content Handlers
. (dot) notation

file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_a.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_b.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_c.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_d.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_e.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_f.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_g.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_h.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_i.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_j.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_k.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_l.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_m.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_n.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_o.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_p.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_r.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_s.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_t.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_u.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_v.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_w.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_x.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_y.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_z.htm

Variable access
Accessing Members
= (assignment) operator : Operators
= (equality) operator : Operators
== (identity) operator
More Events and Interfaces
Comparisons
> (greater than) operator : Operators
>= (greater than or equal) operator : Operators
>> (rightwise shift) operator : Operators
>>= (assignment) operator : Operators
>>> (rightwise shift) operator : Operators
>>>= (assignment) operator : Operators
< (less than) operator : Operators
<= (less than or equal) operator : Operators
<< (leftwise shift) operator
Operators
Creating an image
<<= (assignment) operator : Operators
() parentheses : Operators
% (remainder) operator : Operators
%= (assignment) operator : Operators
+ (addition) operator : Operators
+ (string concatenation) operator
Syntactic Sweet 'n Low
A Word About Strings
Operators
String Constructors
java.lang.StringBuffer
+ (unary plus) operator : Operators
+= (assignment) operator : Operators
++ (increment) operator : Operators
?: (conditional ternary) operator : Operators
/ (slash) in paths : Path localization
/ (division) operator : Operators
/= (assignment) operator : Operators
// // comments : Comments
/* */ comments : Comments
/** */ comments : Comments

* (multiplication) operator : Operators
* (reference) operator in C : Operators
*= (assignment) operator : Operators
~ (bitwise complement) operator : Operators

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_a.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_b.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_c.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_d.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_e.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_f.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_g.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_h.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_i.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_j.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_k.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_l.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_m.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_n.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_o.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_p.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_r.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_s.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_t.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_u.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_v.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_w.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_x.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_y.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/index/idx_z.htm

O'Reilly Copyright Statement
The electronic versions of Java in a Nutshell, Java Language Reference, Java AWT Reference, Java
Fundamental Classes Reference, and Exploring Java are copyright © 1996, 1997, 1998 by O'Reilly &
Associates, Inc.; all rights reserved.

This CD-ROM is intended for use by one individual. As such, you may make copies for your own
personal use. However, you may not provide copies to others, or make this reference library availible
over a LAN or other network. You may not reprint, offer for sale, or otherwise re-use material from this
book without the explicit written permission of O'Reilly & Associates, Inc. If you would like to discuss
licensing for multiple users, contact service@oreilly.com.

You can purchase print editions of these books directly from O'Reilly & Associates, Inc. (see
http://www.oreilly.com/order/) or from bookstores that carry O'Reilly & Associates books.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc., was aware of
the trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

This product is printed with 100% recycled electrons.

mailto:service@oreilly.com
file:///C|/download/www.oreilly.com/default.htm
file:///C|/download/www.oreilly.com/order/default.htm
file:///C|/download/www.oreilly.com/order/bookstores.html

Chapter 1

1. Introduction
Contents:
The java.lang Package
The java.lang.reflect Package
The java.io Package
The java.net Package
The java.util Package
The java.text Package
The java.math Package
The java.util.zip Package

The phenomenon that is Java continues to capture new supporters every day. What began as a
programming environment for writing fancy animation applets that could be embedded in web browsers
is growing up to be a sophisticated platform for delivering all kinds of portable, distributed applications.
If you are already an experienced Java programmer, you know just how powerful the portability of Java
is. If you are just now discovering Java, you'll be happy to know that the days of porting applications are
over. Once you write a Java application, it can run on UNIX workstations, PCs, and Macintosh
computers, as well as on many other supported platforms.

This book is a complete programmer's reference to the "fundamental classes" in the Java programming
environment. The fundamental classes in the Java Development Kit (JDK) provide a powerful set of
tools for creating portable applications; they are an important component of the toolbox used by every
Java programmer. This reference covers the classes in the java.lang, java.io, java.net,
java.util, java.lang.reflect, java.math, java.text, and java.util.zip packages.
This chapter offers an overview of the fundamental classes in each of these packages.

This reference assumes you are already familiar with the Java language and class libraries. If you aren't,
Exploring Java, by Pat Niemeyer and Josh Peck, provides a general introduction, and other books in the
O'Reilly Java series provide detailed references and tutorials on specific topics. Note that the material
herein does not cover the classes that comprise the Abstract Window Toolkit (AWT): the AWT is

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch00_07.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_04.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_07.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_08.htm

covered by a companion volume, the Java AWT Reference, by John Zukowski. In addition, this book
does not cover any of the new "enterprise" APIs in the core 1.1 JDK, such as the classes in the
java.rmi, java.sql, and java.security packages. These packages will be covered by
forthcoming books on distributed computing and database programming. See the Preface for a complete
list of titles in the O'Reilly Java series.

You should be aware that this book covers two versions of Java: 1.0.2 and 1.1. Version 1.1 of the Java
Development Kit (JDK) was released in February 1997. This release includes many improvements and
additions to the fundamental Java classes; it represents a major step forward in the evolution of Java.
Although Java 1.1 has a number of great new features, you may not want to switch to the new version
right away, especially if you are writing mostly Java applets. You'll need to keep an eye on the state of
Java support in browsers to help you decide when to switch to Java 1.1. Of course, if you are writing
Java applications, you can take the plunge today.

This chapter points out new features of Java 1.1 as they come up. However, there is one "feature" that
deserves mention that doesn't fit naturally into an overview. As of Java 1.1, classes, methods, and
constructors available in Java 1.0.2 can be deprecated in favor of new classes, methods, and constructors
in Java 1.1. The Java 1.1 compiler issues a warning whenever you use a deprecated entity.

1.1 The java.lang Package

The java.lang package contains classes and interfaces essential to the Java language. For example,
the Object class is the ultimate superclass of all other classes in Java. Object defines some basic
methods for thread synchronization that are inherited by all Java classes. In addition, Object defines
basic methods for equality testing, hashcode generation, and string conversion that can be overridden by
subclasses when appropriate.

The java.lang package also contains the Thread class, which controls the operation of each thread
in a multithreaded application. A Thread object can be used to start, stop, and suspend a thread. A
Thread must be associated with an object that implements the Runnable interface; the run()
method of this interface specifies what the thread actually does. See Chapter 3, Threads, for a more
detailed explanation of how threads work in Java.

The Throwable class is the superclass of all error and exception classes in Java, so it defines the basic
functionality of all such classes. The java.lang package also defines the standard error and exception
classes in Java. The error and exception hierarchies are rooted at the Error and Exception subclasses
of Throwable. See Chapter 4, Exception Handling, for more information about the exception-handling
mechanism.

The Boolean, Character, Byte, Double, Float, Integer, Long, and Short classes
encapsulate the Java primitive data types. Byte and Short are new in Java 1.1, as is the Void class.

All of these classes are necessary to support the new Reflection API and class literals in Java 1.1 The
Class class also has a number of new methods in Java 1.1 to support reflection.

All strings in Java are represented by String objects. These objects are immutable. The
StringBuffer class in java.lang can be used to work with mutable text strings. Chapter 2, Strings
and Related Classes, offers a more detailed description of working with strings in Java.

See Chapter 12, The java.lang Package, for complete reference material on all of the classes in the
java.lang package.

Acknowledgments The java.lang.reflect Package

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch00_07.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_02.htm

Chapter 2

2. Strings and Related Classes
Contents:
String
StringBuffer
String Concatenation
StringTokenizer

As with most programming languages, strings are used extensively throughout Java, so the Java API has
quite a bit of functionality to help you manipulate strings. This chapter describes the following classes:

● The java.lang.String class represents all textual strings in Java. A String object is
immutable; once you create a String object, there is no way to change the sequence of
characters it represents or the length of the string.

● The java.lang.StringBuffer class represents a variable-length, mutable sequence of
characters. With a StringBuffer object, you can insert characters anywhere in the sequence
and add characters to the end of the sequence.

● The java.util.StringTokenizer class provides support for parsing a string into a
sequence of words, or tokens.

2.1 String

You can create a String object in Java simply by assigning a string literal to a String variable:

String quote = "To be or not to be";

All string literals are compiled into String objects. Although the Java compiler does not generally treat
expressions involving object references as compile-time constants, references to String objects created

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_08.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_04.htm

from string literals are treated as compile-time constants.

Of course, there are many other ways to create a String object. The String class has a number of
constructors that let you create a String from an array of bytes, an array of characters, another
String object, or a StringBuffer object.

If you are a C or C++ programmer, you may be wondering if String objects are null-terminated. The
answer is no, and, in fact, the question is irrelevant. The String class actually uses a character array
internally. Since arrays in Java are actual objects that know their own length, a String object also
knows its length and does not require a special terminator. Use the length() method to get the length
of a String object.

Although String objects are immutable, the String class does provide a number of useful methods
for working with strings. Any operation that would otherwise change the characters or the length of the
string returns a new String object that copies the necessary portions of the original String.

The following methods access the contents of a String object:

● substring() creates a new String object that contains a sub-sequence of the sequence of
characters represented by a String object.

● charAt() returns the character at a given position in a String object.

● getChars() and getBytes() return a range of characters in a char array or a byte array.

● toCharArray() returns the entire contents of a String object as a char array.

You can compare the contents of String objects with the following methods:

● equals() returns true if two String objects have the exact same contents, while
equalsIgnoreCase() returns true if two objects have the same contents ignoring
differences between upper- and lowercase versions of the same character.

● regionMatches() determines if two sub-strings contain the same sequence of characters.

● startsWith() and endsWith() determine if a String object begins or ends with a
particular sequence of characters.

● compareTo() determines if the contents of one String object are less than, equal to, or
greater than the contents of another String object.

Use the following methods to search for characters in a string:

● indexOf() searches forward through a string for a given character or string.

● lastIndexOf() searches backwards through a string for a given character or string.

The following methods manipulate the contents of a string and return a new, related string:

● concat() returns a new String object that is the concatenation of two String objects.

● replace() returns a new String object that contains the same sequence of characters as the
original string, but with a given character replaced by another given character.

● toLowerCase() and toUpperCase() return new String objects that contain the same
sequence of characters as the original string, but converted to lower- or uppercase.

● trim() returns a new String object that contains the same character sequence as the original
string, but with leading and trailing white space and control characters removed.

The String class also defines a number of static methods named valueOf() that return string
representations of primitive Java data types and objects. The Object class defines a toString()
method, and, since Object is the ultimate superclass of every other class, every class inherits a basic
toString() method. Any class that has a string representation should override the toString()
method to produce the appropriate string.

The java.util.zip Package StringBuffer

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_08.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_02.htm

Chapter 3

3. Threads
Contents:
Using Thread Objects
Synchronizing Multiple Threads

Threads provide a way for a Java program to do multiple tasks concurrently. A thread is essentially a
flow of control in a program and is similar to the more familiar concept of a process. An operating
system that can run more than one program at the same time uses processes to keep track of the various
programs that it is running. However, processes generally do not share any state, while multiple threads
within the same application share much of the same state. In particular, all of the threads in an
application run in the same address space, sharing all resources except the stack. In concrete terms, this
means that threads share field variables, but not local variables.

When multiple processes share a single processor, there are times when the operating system must stop
the processor from running one process and start it running another process. The operating system must
execute a sequence of events called a context switch to transfer control from one process to another.
When a context switch occurs, the operating system has to save a lot of information for the process that is
being paused and load the comparable information for the process being resumed. A context switch
between two processes can require the execution of thousands of machine instructions. The Java virtual
machine is responsible for handling context switches between threads in a Java program. Because threads
share much of the same state, a context switch between two threads typically requires the execution of
less than 100 machine instructions.

There are a number of situations where it makes sense to use threads in a Java program. Some programs
must be able to engage in multiple activities and still be able to respond to additional input from the user.
For example, a web browser should be able to respond to user input while fetching an image or playing a
sound. Because threads can be suspended and resumed, they can make it easier to control multiple
activities, even if the activities do not need to be concurrent. If a program models real world objects that
display independent, autonomous behavior, it makes sense to use a separate thread for each object.
Threads can also implement asynchronous methods, so that a calling method does not have to wait for
the method it calls to complete before continuing with its own activity.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_04.htm

Java applets make considerable use of threads. For example, an animation is generally implemented with
a separate thread. If an applet has to download extensive information, such as an image or a sound, to
initialize itself, the initialization can take a long time. This initialization can be done in a separate thread
to prevent the initialization from interfering with the display of the applet. If an applet needs to process
messages from the network, that work generally is done in a separate thread so that the applet can
continue painting itself on the screen and responding to mouse and keyboard events. In addition, if each
message is processed separately, the applet uses a separate thread for each message.

For all of the reasons there are to use threads, there are also some compelling reasons not to use them. If
a program uses inherently sequential logic, where one operation starts another operation and then must
wait for the other operation to complete before continuing, one thread can implement the entire sequence.
Using multiple threads in such a case results in a more complex program with no accompanying benefits.
There is considerable overhead in creating and starting a thread, so if an operation involves only a few
primitive statements, it is faster to handle it with a single thread. This can even be true when the
operation is conceptually asynchronous. When multiple threads share objects, the objects must use
synchronization mechanisms to coordinate thread access and maintain consistent state. Synchronization
mechanisms add complexity to a program, can be difficult to tune for optimal performance, and can be a
source of bugs.

3.1 Using Thread Objects

The Thread class in the java.lang package creates and controls threads in Java programs. The
execution of Java code is always under the control of a Thread object. The Thread class provides a
static method called currentThread() that provides a reference to the Thread object that
controls the current thread of execution.

Associating a Method with a Thread

The first thing you need to do to make a Thread object useful is to associate it with a method you want
it to run. Java provides two ways of associating a method with a Thread:

● Declare a subclass of Thread that defines a run() method.

● Pass a reference to an object that implements the Runnable interface to a Thread constructor.

For example, if you need to load the contents of a URL as part of an applet's initialization, but the applet
can provide other functionality before the content is loaded, you might want to load the content in a
separate thread. Here is a class that does just that:

import java.net.URL;

class UrlData extends Thread {
 private Object data;
 private URL url
 public UrlData(String urlName) throws MalformedURLException {
 url = new URL(urlName);
 start();
 }
 public void run(){
 try {
 data = url.getContent();
 } catch (java.io.IOException e) {
 }
 }
 public Object getUrlData(){
 return data;
 }
}

The UrlData class is declared as a subclass of Thread so that it can get the contents of the URL in a
separate thread. The constructor creates a java.net.URL object to fetch the contents of the URL, and
then calls the start() method to start the thread. Once the thread is started, the constructor returns; it
does not wait for the contents of the URL to be fetched. The run() method is executed after the thread
is started; it does the real work of fetching the data. The getUrlData() method is an access method
that returns the value of the data variable. The value of this variable is null until the contents of the
URL have been fetched, at which time it contains a reference to the actual data.

Subclassing the Thread class is convenient when the method you want to run in a separate thread does
not need to belong to a particular class. Sometimes, however, you need the method to be part of a
particular class that is a subclass of a class other than Thread. Say, for example, you want a graphical
object that is displayed in a window to alternate its background color between red and blue once a
second. The object that implements this behavior needs to be a subclass of the java.awt.Canvas
class. However, at the same time, you need a separate thread to alternate the color of the object once a
second.

In this situation, you want to tell a Thread object to run code in another object that is not a subclass of
the Thread class. You can accomplish this by passing a reference to an object that implements the
Runnable interface to the constructor of the Thread class. The Runnable interface requires that an
object has a public method called run() that takes no arguments. When a Runnable object is
passed to the constructor of the Thread class, it creates a Thread object that calls the Runnable
object's run() method when the thread is started. The following example shows part of the code that
implements an object that alternates its background color between red and blue once a second:

class AutoColorChange extends java.awt.Canvas implements Runnable {

 private Thread myThread;
 AutoColorChange () {
 myThread = new Thread(this);
 myThread.start();
 ...
 }
 public void run() {
 while (true) {
 setBackground(java.awt.Color.red);
 repaint();
 try {
 myThread.sleep(1000);
 } catch (InterruptedException e) {}
 setBackground(java.awt.Color.blue);
 repaint();
 try {
 myThread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 }
}

The AutoChangeColor class extends java.awt.Canvas, alternating the background color
between red and blue once a second. The constructor creates a new Thread by passing the current
object to the Thread constructor, which tells the Thread to call the run() method in the
AutoChangeColor class. The constructor then starts the new thread by calling its start() method,
so that the color change happens asynchronously of whatever else is going on. The class has an instance
variable called myThread that contains a reference to the Thread object, so that can control the thread.
The run() method takes care of changing the background color, using the sleep() method of the
Thread class to temporarily suspend the thread and calling repaint() to redisplay the object after
each color change.

Controlling a Thread

As shown in the previous section, you start a Thread by calling its start() method. Before the
start() method is called, the isAlive() method of the Thread object always returns false.
When the start() method is called, the Thread object becomes associated with a scheduled thread in
the underlying environment. After the start() method has returned, the isAlive() method always
returns true. The Thread is now scheduled to run until it dies, unless it is suspended or in another
unrunnable state.

It is actually possible for isAlive() to return true before start() returns, but not before

start() is called. This can happen because the start() method can return either before the started
Thread begins to run or after it begins to run. In other words, the method that called start() and the
new thread are now running concurrently. On a multiprocessor system, the start() method can even
return at the same time the started Thread begins to run.

Thread objects have a parent-child relationship. The first thread created in a Java environment does not
have a parent Thread. However, after the first Thread object is created, the Thread object that
controls the thread used to create another Thread object is considered to be the parent of the newly
created Thread. This parent-child relationship is used to supply some default values when a Thread
object is created, but it has no further significance after a Thread has been created.

Stopping a thread

A thread dies when one of the following things happens:

● The run() method called by the Thread returns.

● An exception is thrown that causes the run() method to be exited.

● The stop() method of the Thread is called.

The stop() method of the Thread class works by throwing a ThreadDeath object in the run()
method of the thread. Normally, you should not catch ThreadDeath objects in a try statement. If you
need to catch ThreadDeath objects to detect that a Thread is about to die, the try statement that
catches ThreadDeath objects should rethrow them.

When an object (ThreadDeath or otherwise) is thrown out of the run() method for the Thread, the
uncaughtException() method of the ThreadGroup for that Thread is called. If the thrown
object is an instance of the ThreadDeath class, the thread dies, and the thrown object is ignored.
Otherwise, if the thrown object is of any other class, uncaughtException() calls the thrown
object's printStackTrace() method, the thread dies, and the thrown object is ignored. In either
case, if there are other nondaemon threads running in the system, the current program continues to run.

Interrupting a thread

There are a number of methods in the Java API, such as wait() and join(), that are declared as
throwing an InterruptedException. What these methods have in common is that they temporarily
suspend the execution of a thread. In Java 1.1, if a thread is waiting for one of these methods to return
and another thread calls interrupt() on the waiting thread, the method that is waiting throws an
InterruptedException.

The interrupt() method sets an internal flag in a Thread object. Before the interrupt()

method is called, the isInterrupted() method of the Thread object always returns false. After
the interrupt() method is called, isInterrupted() returns true.

Prior to version 1.1, the methods in the Java API that are declared as throwing an
InterruptedException do not actually do so. However, the isInterrupted() method does
function as described above. Thus, if the code in the run() method for a thread periodically calls
isInterrupted(), the thread can respond to a call to interrupt() by shutting down in an
orderly fashion.

Thread priority

One of the attributes that controls the behavior of a thread is its priority. Although Java does not
guarantee much about how threads are scheduled, it does guarantee that a thread with a priority that is
higher than that of another thread will be scheduled to run at least as often, and possibly more often, than
the thread with the lower priority. The priority of a thread is set when the Thread object is created, by
passing an argument to the constructor that creates the Thread object. If an explicit priority is not
specified, the Thread inherits the priority of its parent Thread object.

You can query the priority of a Thread object by calling its getPriority() method. Similarly, you
can set the priority of a Thread using its setPriority() method. The priority you specify must be
greater than or equal to Thread.MIN_PRIORITY and less than or equal to
Thread.MAX_PRIORITY.

Before actually setting the priority of a Thread object, the setPriority() method checks the
maximum allowable priority for the ThreadGroup that contains the Thread by calling
getMaxPriority() on the ThreadGroup. If the call to setPriority() tries to set the priority
to a value that is higher than the maximum allowable priority for the ThreadGroup, the priority is
instead set to the maximum priority. It is possible for the current priority of a Thread to be greater than
the maximum allowable priority for the ThreadGroup. In this case, an attempt to raise the priority of
the Thread results in its priority being lowered to the maximum priority.

Daemon threads

A daemon thread is a thread that runs continuously to perform a service, without having any connection
with the overall state of the program. For example, the thread that runs the garbage collector in Java is a
daemon thread. The thread that processes mouse events for a Java program is also a daemon thread. In
general, threads that run application code are not daemon threads, and threads that run system code are
daemon threads. If a thread dies and there are no other threads except daemon threads alive, the Java
virtual machine stops.

A Thread object has a boolean attribute that specifies whether or not a thread is a daemon thread.
The daemon attribute of a thread is set when the Thread object is created, by passing an argument to

the constructor that creates the Thread object. If the daemon attribute is not explicitly specified, the
Thread inherits the daemon attribute of its parent Thread object.

The daemon attribute is queried using the isDaemon() method; it is set using the setDaemon()
method.

Yielding

When a thread has nothing to do, it can call the yield() method of its Thread object. This method
tells the scheduler to run a different thread. The value of calling yield() depends largely on whether
the scheduling mechanism for the platform on which the program is running is preemptive or
nonpreemptive.

By choosing a maximum length of time a thread can continuously, a preemptive scheduling mechanism
guarantees that no single thread uses more than its fair share of the processor. If a thread runs for that
amount of time without yielding control to another thread, the scheduler preempts the thread and causes
it to stop running so that another thread can run.

A nonpreemptive scheduling mechanism cannot preempt threads. A nonpreemptive scheduler relies on
the individual threads to yield control of the processor frequently, so that it can provide reasonable
performance. A thread explicitly yields control by calling the Thread object's yield() method. More
often, however, a thread implicitly yields control when it is forced to wait for something to happen
elsewhere.

Calling a Thread object's yield() method during a lengthy computation can be quite valuable on a
platform that uses a nonpreemptive scheduling mechanism, as it allows other threads to run. Otherwise,
the lengthy computation can prevent other threads from running. On a platform that uses a preemptive
scheduling mechanism, calling yield() does not usually make any noticeable difference in the
responsiveness of threads.

Regardless of the scheduling algorithm that is being used, you should not make any assumptions about
when a thread will be scheduled to run again after it has called yield(). If you want to prevent a thread
from being scheduled to run until a specified amount of time has elapsed, you should call the sleep()
method of the Thread object. The sleep() method takes an argument that specifies a minimum
number of milliseconds that must elapse before the thread can be scheduled to run again.

Controlling groups of threads

Sometimes is it necessary to control multiple threads at the same time. Java provides the ThreadGroup
class for this purpose. Every Thread object belongs to a ThreadGroup object. By passing an
argument to the constructor that creates the Thread object, the ThreadGroup of a thread can be set
when the Thread object is created. If an explicit ThreadGroup is not specified, the Thread belongs

to the same ThreadGroup as its parent Thread object.

StringTokenizer Synchronizing Multiple
Threads

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_04.htm

Chapter 4

4. Exception Handling
Contents:
Handling Exceptions
Declaring Exceptions
Generating Exceptions

Exception handling is a mechanism that allows Java programs to handle various exceptional conditions,
such as semantic violations of the language and program-defined errors, in a robust way. When an
exceptional condition occurs, an exception is thrown. If the Java virtual machine or run-time environment
detects a semantic violation, the virtual machine or run-time environment implicitly throws an exception.
Alternately, a program can throw an exception explicitly using the throw statement. After an exception
is thrown, control is transferred from the current point of execution to an appropriate catch clause of an
enclosing try statement. The catch clause is called an exception handler because it handles the
exception by taking whatever actions are necessary to recover from it.

4.1 Handling Exceptions

The try statement provides Java's exception-handling mechanism. A try statement contains a block of
code to be executed. Putting a block in a try statement indicates that any exceptions or other abnormal
exits in the block are going to be handled appropriately. A try statement can have any number of
optional catch clauses that act as exception handlers for the try block. A try statement can also have
a finally clause. The finally block is always executed before control leaves the try statement; it
cleans up after the try block. Note that a try statement must have either a catch clause or a
finally clause.

Here is an example of a try statement that includes a catch clause and a finally clause:

try {
 out.write(b);
} catch (IOException e) {

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_03.htm

 System.out.println("Output Error");
} finally {
 out.close();
}

If out.write() throws an IOException, the exception is caught by the catch clause. Regardless
of whether out.write() returns normally or throws an exception, the finally block is executed,
which ensures that out.close() is always called.

A try statement executes the block that follows the keyword try. If an exception is thrown from within
the try block and the try statement has any catch clauses, those clauses are searched, in order, for
one that can handle the exception. If a catch clause handles an exception, that catch block is
executed.

However, if the try statement does not have any catch clauses that can handle the exception (or does
not have any catch clauses at all), the exception propagates up through enclosing statements in the
current method. If the current method does not contain a try statement that can handle the exception,
the exception propagates up to the invoking method. If this method does not contain an appropriate try
statement, the exception propagates up again, and so on. Finally, if no try statement is found to handle
the exception, the currently running thread terminates.

A catch clause is declared with a parameter that specifies the type of exception it can handle. The
parameter in a catch clause must be of type Throwable or one of its subclasses. When an exception
occurs, the catch clauses are searched for the first one with a parameter that matches the type of the
exception thrown or is a superclass of the thrown exception. When the appropriate catch block is
executed, the actual exception object is passed as an argument to the catch block. The code within a
catch block should do whatever is necessary to handle the exceptional condition.

The finally clause of a try statement is always executed, no matter how control leaves the try
statement. Thus it is a good place to handle clean-up operations, such as closing files, freeing resources,
and closing network connections.

Synchronizing Multiple
Threads

Declaring Exceptions

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_02.htm

Chapter 6

6. I/O
Contents:
Input Streams and Readers
Output Streams and Writers
File Manipulation

The java.io package contains the fundamental classes for performing input and output operations in Java. These
I/O classes can be divided into four basic groups:

● Classes for reading input from a stream.

● Classes for writing output to a stream.

● Classes for manipulating files.

● Classes for serializing objects.

All fundamental I/O in Java is based on streams. A stream represents a flow of data, or a channel of communication.
Conceptually, there is a reading process at one end of the stream and a writing process at the other end. Java 1.0
supported only byte streams, which meant that Unicode characters were not always handled correctly. As of Java
1.1, there are classes in java.io for both byte streams and character streams. The character stream classes, which
are called readers and writers, handle Unicode characters appropriately.

The rest of this chapter describes the classes in java.io that read from and write to streams, as well as the classes
that manipulate files. The classes for serializing objects are described in Chapter 7, Object Serialization.

6.1 Input Streams and Readers

The InputStream class is an abstract class that defines methods to read sequentially from a stream of bytes.
Java provides subclasses of the InputStream class for reading from files, StringBuffer objects, and byte
arrays, among other things. Other subclasses of InputStream can be chained together to provide additional logic,
such as keeping track of the current line number or combining multiple input sources into one logical input stream.
It is also easy to define a subclass of InputStream that reads from any other kind of data source.

In Java 1.1, the Reader class is an abstract class that defines methods to read sequentially from a stream of
characters. Many of the byte-oriented InputStream subclasses have character-based Reader counterparts. Thus,
there are subclasses of Reader for reading from files, character arrays, and String objects.

InputStream

The InputStream class is the abstract superclass of all other byte input stream classes. It defines three
read() methods for reading from a raw stream of bytes:

read()
read(byte[] b)
read(byte[] b, int off, int len)

If there is no data available to read, these methods block until input is available. The class also defines an
available() method that returns the number of bytes that can be read without blocking and a skip() method
that skips ahead a specified number of bytes. The InputStream class defines a mechanism for marking a position
in the stream and returning to it later, via the mark() and reset() methods. The markSupported() method
returns true in subclasses that support these methods.

Because the InputStream class is abstract, you cannot create a "pure" InputStream. However, the
various subclasses of InputStream can be used interchangeably. For example, methods often take an
InputStream as a parameter. Such a method accepts any subclass of InputStream as an argument.

InputStream is designed so that read(byte[]) and read(byte[], int, int) both call read(). Thus,
when you subclass InputStream, you only need to define the read() method. However, for efficiency's sake,
you should also override read(byte[], int, int) with a method that can read a block of data more efficiently
than reading each byte separately.

Reader

The Reader class is the abstract superclass of all other character input stream classes. It defines nearly the
same methods as InputStream, except that the read() methods deal with characters instead of bytes:

read()
read(char[] cbuf)
read(char[] cbuf, int off, int len)

The available() method of InputStream has been replaced by the ready() method of Reader, which
simply returns a flag that indicates whether or not the stream must block to read the next character.

Reader is designed so that read() and read(char[]) both call read(char[], int, int). Thus, when
you subclass Reader, you only need to define the read(char[], int, int) method. Note that this design is
different from, and more efficient than, that of InputStream.

InputStreamReader

The InputStreamReader class serves as a bridge between InputStream objects and Reader objects.
Although an InputStreamReader acts like a character stream, it gets its input from an underlying byte stream
and uses a character encoding scheme to translate bytes into characters. When you create an
InputStreamReader, specify the underlying InputStream and, optionally, the name of an encoding scheme.
For example, the following code fragment creates an InputStreamReader that reads characters from a file that
is encoded using the ISO 8859-5 encoding:

String fileName = "encodedfile.txt"; String encodingName = "8859_5";
InputStreamReader in;
try {
 x FileInputStream fileIn = new FileInputStream(fileName);
 in = new InputStreamReader(fileIn, encodingName);
} catch (UnsupportedEncodingException e1) {
 System.out.println(encodingName + " is not a supported encoding scheme.");
} catch (IOException e2) {
 System.out.println("The file " + fileName + " could not be opened.");
}

FileInputStream and FileReader

The FileInputStream class is a subclass of InputStream that allows a stream of bytes to be read from a file.
The FileInputStream class has no explicit open method. Instead, the file is implicitly opened, if appropriate,
when the FileInputStream is created. There are three ways to create a FileInputStream:

● You can create a FileInputStream by passing the name of a file to be read:

FileInputStream f1 = new FileInputStream("foo.txt");

● You can create a FileInputStream with a File object:

File f = new File("foo.txt");
FileInputStream f2 = new FileInputStream(f);

● You can create a FileInputStream with a FileDescriptor object. A FileDescriptor object
encapsulates the native operating system's representation of an open file. You can get a FileDescriptor
from a RandomAccessFile by calling its getFD() method. You create a FileInputStream that
reads from the open file associated with a RandomAccessFile as follows:

RandomAccessFile raf;
raf = new RandomAccessFile("z.txt","r");
FileInputStream f3 = new FileInputStream(raf.getFD());

The FileReader class is a subclass of Reader that reads a stream of characters from a file. The bytes in
the file are converted to characters using the default character encoding scheme. If you do not want to use the
default encoding scheme, you need to wrap an InputStreamReader around a FileInputStream, as
shown above. You can create a FileReader from a filename, a File object, or a FileDescriptor

object, as described above for FileInputStream.

StringReader and StringBufferInputStream

The StringReader class is a subclass of Reader that gets its input from a String object. The
StringReader class supports mark-and-reset functionality via the mark() and reset() methods. The
following example shows the use of StringReader:

StringReader sr = new StringReader("abcdefg");
try {
 char[] buffer = new char[3];
 sr.read(buffer);
 System.out.println(buffer);
} catch (IOException e) {
 System.out.println("There was an error while reading.");
}

This code fragment produces the following output:

abc

The StringBufferInputStream class is the byte-based relative of StringReader. The entire class is
deprecated as of Java 1.1 because it does not properly convert the characters of the string to a byte stream; it simply
chops off the high eight bits of each character. Although the markSupported() method of
StringBufferInputStream returns false, the reset() method causes the next read operation to read
from the beginning of the String.

CharArrayReader and ByteArrayInputStream

The CharArrayReader class is a subclass of Reader that reads a stream of characters from an array of
characters. The CharArrayReader class supports mark-and-reset functionality via the mark() and reset()
methods. You can create a CharArrayReader by passing a reference to a char array to a constructor like this:

char[] c;
...
CharArrayReader r;
r = new CharArrayReader(c);

You can also create a CharArrayReader that only reads from part of an array of characters by passing an offset
and a length to the constructor. For example, to create a CharArrayReader that reads elements 5 through 24 of a
char array you would write:

r = new CharArrayReader(c, 5, 20);

The ByteArrayInputStream class is just like CharArrayReader, except that it deals with bytes instead of
characters. In Java 1.0, ByteArrayInputStream did not fully support mark() and reset(); in Java 1.1

these methods are completely supported.

PipedInputStream and PipedReader

The PipedInputStream class is a subclass of InputStream that facilitates communication between threads.
Because it reads bytes written by a connected PipedOutputStream, a PipedInputStream must be
connected to a PipedOutputStream to be useful. There are a few ways to connect a PipedInputStream to
a PipedOutputStream. You can first create the PipedOutputStream and pass it to the
PipedInputStream constructor like this:

PipedOutputStream po = new PipedOutputStream();
PipedInputStream pi = new PipedInputStream(po);

You can also create the PipedInputStream first and pass it to the PipedOutputStream constructor like
this:

PipedInputStream pi = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream(pi);

The PipedInputStream and PipedOutputStream classes each have a connect() method you can use to
explicitly connect a PipedInputStream and a PipedOutputStream as follows:

PipedInputStream pi = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream();
pi.connect(po);

Or you can use connect() as follows:

PipedInputStream pi = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream();
po.connect(pi);

Multiple PipedOutputStream objects can be connected to a single PipedInputStream at one time, but the
results are unpredictable. If you connect a PipedOutputStream to an already connected
PipedInputStream, any unread bytes from the previously connected PipedOutputStream are lost. Once
the two PipedOutputStream objects are connected, the PipedInputStream reads bytes written by either
PipedOutputStream in the order that it receives them. The scheduling of different threads may vary from one
execution of the program to the next, so the order in which the PipedInputStream receives bytes from multiple
PipedOutputStream objects can be inconsistent.

The PipedReader class is the character-based equivalent of PipedInputStream. It works in the same way,
except that a PipedReader is connected to a PipedWriter to complete the pipe, using either the appropriate
constructor or the connect() method.

FilterInputStream and FilterReader

The FilterInputStream class is a wrapper class for InputStream objects. Conceptually, an object that
belongs to a subclass of FilterInputStream is wrapped around another InputStream object. The
constructor for this class requires an InputStream. The constructor sets the object's in instance variable to
reference the specified InputStream, so from that point on, the FilterInputStream is associated with the
given InputStream. All of the methods in FilterInputStream work by calling the corresponding methods
in the underlying InputStream. Because the close() method of a FilterInputStream calls the
close() method of the InputStream that it wraps, you do not need to explicitly close the underlying
InputStream.

A FilterInputStream does not add any functionality to the object that it wraps, so by itself it is not very
useful. However, subclasses of the FilterInputStream class do add functionality to the objects that they wrap
in two ways:

● Some subclasses add logic to the InputStream methods. For example, the InflaterInputStream
class in the java.util.zip package decompresses data automatically in the read() methods.

● Some subclasses add new methods. An example is DataInputStream, which provides methods for
reading primitive Java data types from the stream.

The FilterReader class is the character-based equivalent of FilterInputStream. A FilterReader is
wrapped around an underlying Reader object; the methods of FilterReader call the corresponding methods of
the underlying Reader. However, unlike FilterInputStream, FilterReader is an abstract class, so
you cannot instantiate it directly.

DataInputStream

The DataInputStream class is a subclass of FilterInputStream that provides methods for reading a
variety of data types. The DataInputStream class implements the DataInput interface, so it defines methods
for reading all of the primitive Java data types.

You create a DataInputStream by passing a reference to an underlying InputStream to the constructor.
Here is an example that creates a DataInputStream and uses it to read an int that represents the length of an
array and then to read the array of long values:

long[] readLongArray(InputStream in) throws IOException {
 DataInputStream din = new DataInputStream(in);
 int count = din.readInt();
 long[] a = new long[count];
 for (int i = 0; i < count; i++) {
 a[i] = din.readLong();
 }
 return a;
}

BufferedReader and BufferedInputStream

The BufferedReader class is a subclass of Reader that buffers input from an underlying Reader. A
BufferedReader object reads enough characters from its underlying Reader to fill a relatively large buffer,
and then it satisfies read operations by supplying characters that are already in the buffer. If most read operations
read just a few characters, using a BufferedReader can improve performance because it reduces the number of
read operations that the program asks the operating system to perform. There is generally a measurable overhead
associated with each call to the operating system, so reducing the number of calls into the operating system
improves performance. The BufferedReader class supports mark-and-reset functionality via the mark() and
reset() methods.

Here is an example that shows how to create a BufferedReader to improve the efficiency of reading from a file:

try {
 FileReader fileIn = new FileReader("data.dat");
 BufferedReader in = new BufferedReader(fileIn);
 // read from the file
} catch (IOException e) {
 System.out.println(e);
}

The BufferedInputStream class is the byte-based counterpart of BufferedReader. It works in the same
way as BufferedReader, except that it buffers input from an underlying InputStream.

LineNumberReader and LineNumberInputStream

The LineNumberReader class is a subclass of BufferedReader. Its read() methods contain additional
logic to count end-of-line characters and thereby maintain a line number. Since different platforms use different
characters to represent the end of a line, LineNumberReader takes a flexible approach and recognizes "\n",
"\r", or "\r\n" as the end of a line. Regardless of the end-of-line character it reads, LineNumberReader
returns only "\n" from its read() methods.

You can create a LineNumberReader by passing its constructor a Reader. The following example prints out
the first five lines of a file, with each line prefixed by its number. If you try this example, you'll see that the line
numbers begin at 0 by default:

try {
 FileReader fileIn = new FileReader("text.txt");
 LineNumberReader in = new LineNumberReader(fileIn);
 for (int i = 0; i < 5; i++)
 System.out.println(in.getLineNumber() + " " + in.readLine());
}catch (IOException e) {
 System.out.println(e);
}

The LineNumberReader class has two methods pertaining to line numbers. The getLineNumber() method
returns the current line number. If you want to change the current line number of a LineNumberReader, use
setLineNumber(). This method does not affect the stream position; it merely sets the value of the line number.

The LineNumberInputStream is the byte-based equivalent of LineNumberReader. The entire class is
deprecated in Java 1.1 because it does not convert bytes to characters properly. Apart from the conversion problem,
LineNumberInputStream works the same as LineNumberReader, except that it takes its input from an
InputStream instead of a Reader.

SequenceInputStream

The SequenceInputStream class is used to sequence together multiple InputStream objects. Consider this
example:

FileInputStream f1 = new FileInputStream("data1.dat");
FileInputStream f2 = new FileInputStream("data2.dat");
SequenceInputStream s = new SequenceInputStream(f1, f2);

This example creates a SequenceInputStream that reads all of the bytes from f1 and then reads all of the
bytes from f2 before reporting that it has encountered the end of the stream. You can also cascade
SequenceInputStream object themselves, to allow more than two input streams to be read as if they were one.
You would write it like this:

FileInputStream f3 = new FileInputStream("data3.dat");
SequenceInputStream s2 = new SequenceInputStream(s, f3);

The SequenceInputStream class has one other constructor that may be more appropriate for wrapping more
than two InputStream objects together. It takes an Enumeration of InputStream objects as its argument.
The following example shows how to create a SequenceInputStream in this manner:

Vector v = new Vector();
v.add(new FileInputStream("data1.dat"));
v.add(new FileInputStream("data2.dat"));
v.add(new FileInputStream("data3.dat"));
Enumeration e = v.elements();
SequenceInputStream s = new SequenceInputStream(e);

PushbackInputStream and PushbackReader

The PushbackInputStream class is a FilterInputStream that allows data to be pushed back into the
input stream and reread by the next read operation. This functionality is useful for implementing things like parsers
that need to read data and then return it to the input stream. The Java 1.0 version of PushbackInputStream
supported only a one-byte pushback buffer; in Java 1.1 this class has been enhanced to support a larger pushback
buffer.

To create a PushbackInputStream, pass an InputStream to its constructor like this:

FileInputStream ef = new FileInputStream("expr.txt");
PushbackInputStream pb = new PushbackInputStream(ef);

This constructor creates a PushbackInputStream that uses a default one-byte pushback buffer. When you have
data that you want to push back into the input stream to be read by the next read operation, you pass the data to one
of the unread() methods.

The PushbackReader class is the character-based equivalent of PushbackInputStream. In the following
example, we create a PushbackReader with a pushback buffer of 48 characters:

FileReader fileIn = new FileReader("expr.txt");
PushbackReader in = new PushbackReader(fileIn, 48);

Here is an example that shows the use of a PushbackReader:

public String readDigits(PushbackReader pb) {
 char c;
 StringBuffer buffer = new StringBuffer();
 try {
 while (true) {
 c = (char)pb.read();
 if (!Character.isDigit(c))
 break;
 buffer.append(c);
 }
 if (c != -1)
 pb.unread(c);
 }catch (IOException e) {}
 return buffer.toString();
}

The above example shows a method that reads characters corresponding to digits from a PushbackReader.
When it reads a character that is not a digit, it calls the unread() method so that the nondigit can be read by the
next read operation. It then returns a string that contains the digits that were read.

Hashtables Output Streams and Writers

Chapter 7

7. Object Serialization
Contents:
Object Serialization Basics
Writing Classes to Work with Serialization
Versioning of Classes

The object serialization mechanism in Java 1.1 provides a way for objects to be written as a stream of
bytes and then later recreated from that stream of bytes. This facility supports a variety of interesting
applications. For example, object serialization provides persistent storage for objects, whereby objects
are stored in a file for later use. Also, a copy of an object can be sent through a socket to another Java
program. Object serialization forms the basis for the remote method invocation mechanism in Java that
facilitates distributed programs. Object serialization is supported by a number of new classes in the
java.io package in Java 1.1.

7.1 Object Serialization Basics

If a class is designed to work with object serialization, reading and writing instances of that class is quite
simple. The process of writing an object to a byte stream is called serialization. For example, here is how
you can write a Color object to a file:

FileOutputStream out = new FileOutputStream("tmp");
ObjectOutput objOut = new ObjectOutputStream(out);
objOut.writeObject(Color.red);

All you need to do is create an ObjectOutputStream around another output stream and then pass
the object to be written to the writeObject() method. If you are writing objects to a socket or any
other destination that is time-sensitive, you should call the flush() method after you are finished
passing objects to the ObjectOutputStream.

The process of reading an object from byte stream is called deserialization. Here is how you can read

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm

that Color object from its file:

FileInputStream in = new FileInputStream("tmp");
ObjectInputStream objIn = new ObjectInputStream(in);
Color c = (Color)objIn.readObject();

Here all you need to do is create an ObjectInputStream object around another input stream and call
its readObject() method.

File Manipulation Writing Classes to Work with
Serialization

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm

Chapter 8

8. Networking
Contents:
Sockets
URL Objects

The java.net package provides two basic mechanisms for accessing data and other resources over a
network. The fundamental mechanism is called a socket. A socket allows programs to exchange groups of bytes
called packets. There are a number of classes in java.net that support sockets, including Socket,
ServerSocket, DatagramSocket, DatagramPacket, and MulticastSocket. The java.net
package also includes a URL class that provides a higher-level mechanism for accessing and processing data
over a network.

8.1 Sockets

A socket is a mechanism that allows programs to send packets of bytes to each other. The programs do not need
to be running on the same machine, but if they are running on different machines, they do need to be connected
to a network that allows the machines to exchange data. Java's socket implementation is based on the socket
library that was originally part of BSD UNIX. Programmers who are familiar with UNIX sockets or the
Microsoft WinSock library should be able to see the similarities in the Java implementation.

When a program creates a socket, an identifying number called a port number is associated with the socket.
Depending on how the socket is used, the port number is either specified by the program or assigned by the
operating system. When a socket sends a packet, the packet is accompanied by two pieces of information that
specify the destination of the packet:

● A network address that specifies the system that should receive the packet.

● A port number that tells the receiving system to which socket to deliver the data.

Sockets typically work in pairs, where one socket acts as a client and the other functions as a server. A server
socket specifies the port number for the network communication and then listens for data that is sent to it by
client sockets. The port numbers for server sockets are well-known numbers that are known to client programs.

For example, an FTP server uses a socket that listens at port 21. If a client program wants to communicate with
an FTP server, it knows to contact a socket that listens at port 21.

The operating system normally specifies port numbers for client sockets because the choice of a port number is
not usually important. When a client socket sends a packet to a server socket, the packet is accompanied by the
port number of the client socket and the client's network address. The server is then able to use that information
to respond to the client.

When using sockets, you have to decide which type of protocol that you want it to use to transport packets over
the network: a connection-oriented protocol or a connectionless protocol. With a connection-oriented protocol,
a client socket establishes a connection to a server socket when it is created. Once the connection has been
established, a connection-oriented protocol ensures that data is delivered reliably, which means:

● For every packet that is sent, the packet is delivered. Every time a socket sends a packet, it expects to
receive an acknowledgement that the packet has been received successfully. If the socket does not
receive that acknowledgement within the time it expects to receive it, the socket sends the packet again.
The socket keeps trying until transmission is successful, or it decides that delivery has become
impossible.

● Packets are read from the receiving socket in the same order that they were sent. Because of the way that
networks work, packets may arrive at the receiving socket in a different order than they were sent. A
reliable, connection-oriented protocol allows the receiving socket to reorder the packets it receives, so
that they can be read by the receiving program in the same order that they were sent.

A connectionless protocol allows a best-effort delivery of packets. It does not guarantee that packets are
delivered or that packets are read by the receiving program in the same order they were sent. A connectionless
protocol trades these deficiencies for performance advantages over connection-oriented protocols. Here are two
types of situations in which connectionless protocols are frequently preferred over connection-oriented
protocols:

● When only a single packet needs to be sent and guaranteed delivery is not crucial, a connectionless
protocol eliminates the overhead involved in creating and destroying a connection. For comparison
purposes, the connection-oriented TCP/IP protocol uses seven packets to send a single packet, while the
connectionless UDP/IP protocol uses only one. A protocol for getting the current time typically uses a
connectionless protocol to request the current time from the server and to return the time to the requester.

● For extremely time-sensitive applications, such as sending audio in real time, the guarantee of reliable
transmission is not an advantage and may be a disadvantage. Pausing until a missing piece of data is
received can cause noticeable clicks or pauses in the audio. Techniques for sending audio over a network
that use a connectionless protocol have been developed and they work noticeably better. For example,
RealAudio uses a protocol that runs on top of a connectionless protocol to transmit sound over a
network.

Table 8.1 shows the roles of the various socket classes in the java.net package.

Table 8.1: Socket Classes in java.net

Client Server

Connection-oriented Protocol Socket ServerSocket

Connectionless Protocol DatagramSocket DatagramSocket

As of Java 1.1, the java.net package also contains a MulticastSocket class that supports
connectionless, multicast data communication.

Sockets for Connection-Oriented Protocols

When you are writing code that implements the server side of a connection-oriented protocol, your code
typically follows this pattern:

● Create a ServerSocket object to accept connections.

● When the ServerSocket accepts a connection, it creates a Socket object that encapsulates the
connection.

● The Socket is asked to create InputStream and OutputStream objects that read and write bytes
to and from the connection.

● The ServerSocket can optionally create a new thread for each connection, so that the server can
listen for new connections while it is communicating with clients.

The code that implements the client side of a connection-oriented protocol is quite simple. It creates a Socket
object that opens a connection with a server, and then it uses that Socket object to communicate with the
server.

Now let's look at an example. The example consists of a pair of programs that allows a client to get the contents
of a file from a server. The client requests the contents of a file by opening a connection to the server and
sending it the name of a file followed by a newline character. If the server is able to read the named file, it
responds by sending the string "Good:\n" followed by the contents of the file. If the server is not able to read
the named file, it responds by sending the string "Bad:" followed by the name of the file and a newline
character. After the server has sent its response, it closes the connection.

Here's the program that implements the server side of this file transfer:

public class FileServer extends Thread {
 public static void main(String[] argv) {
 ServerSocket s;
 try {

 s = new ServerSocket(1234, 10);
 }catch (IOException e) {
 System.err.println("Unable to create socket");
 e.printStackTrace();
 return;
 }
 try {
 while (true) {
 new FileServer(s.accept());
 }
 }catch (IOException e) {
 }
 }
 private Socket socket;
 FileServer(Socket s) {
 socket = s;
 start();
 }
 public void run() {
 InputStream in;
 String fileName = "";
 PrintStream out = null;
 FileInputStream f;
 try {
 in = socket.getInputStream();
 out = new PrintStream(socket.getOutputStream());
 fileName = new DataInputStream(in).readLine();
 f = new FileInputStream(fileName);
 }catch (IOException e) {
 if (out != null)
 out.print("Bad:"+fileName+"\n");
 out.close();
 try {
 socket.close();
 }catch (IOException ie) {
 }
 return;
 }
 out.print("Good:\n");
 // send contents of file to client.
 byte[] buffer = new byte[4096];
 try {
 int len;
 while ((len = f.read(buffer)) > 0) {
 out.write(buffer, 0, len);
 }// while

 }catch (IOException e) {
 }finally {
 try {
 in.close();
 out.close();
 socket.close();
 }catch (IOException e) {
 }
 }
 }
}

The FileServer class implements the server side of the file transfer; it is a subclass of Thread to make it
easier to write code that can handle multiple connections at the same time. The main() method provides the
top-level logic for the program. The first thing that main() does is to create a ServerSocket object to
listen for connections. The constructor for ServerSocket takes two parameters: the port number for the
socket and a value that specifies the maximum length of the pending connections queue. The operating system
can accept connections on behalf of the socket when the server program is busy doing something other than
accepting connections. If the second parameter is greater than zero, the operating system can accept up to that
many connections on behalf of the socket and store them in a queue. If the second parameter is zero, however,
the operating system does not accept any connections on behalf of the server program. The remainder of the
main() method accepts a connection, creates a new instance of the FileServer class to process the
connection, and then waits for the next connection.

Each FileServer object is responsible for handling a connection accepted by its main() method. A
FileServer object uses a private variable, socket, to refer to the Socket object that allows it to
communicate with the client program on the other end of the connection. The constructor for FileServer
sets its socket variable to refer to the Socket object that is passed to it by the main() method and then
calls its start() method. The FileServer class inherits the start() method from the Thread class;
the start() method starts a new thread that calls the run() method. Because the rest of the connection
processing is done asynchronously in a separate thread, the constructor can return immediately. This allows the
main() method to accept another connection right away, instead of having to wait for this connection to be
fully processed before accepting another.

The run() method uses the in and out variables to refer to InputStream and PrintStream objects that
read from and write to the connection associated with the Socket object, respectively. These streams are
created by calling the getInputStream() and getOutputStream() methods of the Socket object.
The run() method then reads the name of the file that the client program wants to receive and creates a
FileInputStream to read that file. If any of the methods called up to this point have detected a problem,
they throw some kind of IOException. In this case, the server sends a response to the client that consists of
the string "Bad:" followed by the filename and then closes the socket and returns, which kills the thread.

If everything up to this point has been fine, the server sends the string "Good:" and then copies the contents of
the file to the socket. The copying is done by repeatedly filling a buffer with bytes from the file and writing the
buffer to the socket. When the contents of the file are exhausted, the streams and the socket are closed, the

run() method returns, and the thread dies.

Now let's take a look at the client part of this program:

public class FileClient {
 private static boolean usageOk(String[] argv) {
 if (argv.length != 2) {
 String msg = "usage is: " + "FileClient server-name file-name";
 System.out.println(msg);
 return false;
 }
 return true;
 }
 public static void main(String[] argv) {
 int exitCode = 0;
 if (!usageOk(argv))
 return;
 Socket s = null;
 try {
 s = new Socket(argv[0], 1234);
 }catch (IOException e) {
 String msg = "Unable to connect to server";
 System.err.println(msg);
 e.printStackTrace();
 System.exit(1);
 }
 InputStream in = null;
 try {
 OutputStream out = s.getOutputStream();
 new PrintStream(out).print(argv[1]+"\n");
 in = s.getInputStream();
 DataInputStream din = new DataInputStream(in);
 String serverStatus = din.readLine();
 if (serverStatus.startsWith("Bad")) {
 exitCode = 1;
 int ch;
 while((ch = in.read()) >= 0) {
 System.out.write((char)ch);
 }// while
 }catch (IOException e) {
 }finally {
 try {
 s.close();
 }catch (IOException e) {
 }
 }

 }
}

The usageOk() method is simply a utility method that verifies that the correct number of arguments have
been passed to the client application. It outputs a help message if the number of arguments is not what is
expected. It is generally a good idea to include a method like this in a Java application that uses command-line
parameters.

The main() method does the real work of FileClient. After it verifies that it has the correct number of
parameters, it attempts to create a socket connected to the server program running on the specified host and
listening for connections on port number 1234. The socket that it creates is encapsulated by a Socket object.
The constructor for the Socket object takes two arguments: the name of the machine the server program is
running on and the port number. After the socket is successfully opened, the client sends the specified filename,
followed by a new line character, to the server. The client then gets an InputStream from the socket to read
what the server is sending and reads the success/failure code that the server sends back. If the request is a
success, the client reads the contents of the requested file.

Note that the finally clause at the end closes the socket. If the program did not explicitly close the socket, it
would be closed automatically when the program terminates. However, it is a good programming practice to
explicitly close a socket when you are done with it.

Sockets for Connectionless Protocols

Communicating with a connectionless protocol is simpler than using a connection-oriented protocol, as both the
client and the server use DatagramSocket objects. The code for the server-side program has the following
pattern:

● Create a DatagramSocket object associated with a specified port number.

● Create a DatagramPacket object and ask the DatagramSocket to put the next piece of data it
receives in the DatagramPacket.

On the client-side, the order is simply reversed:

● Create a DatagramPacket object associated with a piece of data, a destination network address, and a
port number.

● Ask a DatagramSocket object to send the data associated with the DatagramPacket to the
destination associated with the DatagramSocket.

Let's look at an example that shows how this pattern can be coded into a server that provides the current time
and a client that requests the current time. Here's the code for the server class:

public class TimeServer {

 static DatagramSocket socket;
 public static void main(String[] argv) {
 try {
 socket = new DatagramSocket(7654);
 }catch (SocketException e) {
 System.err.println("Unable to create socket");
 e.printStackTrace();
 System.exit(1);
 }
 DatagramPacket datagram;
 datagram = new DatagramPacket(new byte[1], 1);
 while (true) {
 try {
 socket.receive(datagram);
 respond(datagram);
 }catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 static void respond(DatagramPacket request) {
 ByteArrayOutputStream bs;
 bs = new ByteArrayOutputStream();
 DataOutputStream ds = new DataOutputStream(bs);
 try {
 ds.writeLong(System.currentTimeMillis());
 }catch (IOException e) {
 }
 DatagramPacket response;
 byte[] data = bs.toByteArray();
 response = new DatagramPacket(data, data.length,
 request.getAddress(), request.getPort());
 try {
 socket.send(response);
 }catch (IOException e) {
 // Give up, we've done our best.
 }
 }
}

The main() method of the TimeServer class begins by creating a DatagramSocket object that uses port
number 7654. The socket variable refers to this DatagramSocket, which is used to communicate with
clients. Then the main() method creates a DatagramPacket object to contain data received by the
DatagramSocket. The two-argument constructor for DatagramPacket creates objects that receive data.
The first argument is an array of bytes to contain the data, while the second argument specifies the number of
bytes to read. When a DatagramSocket is asked to receive a packet into a DatagramPacket, only the

specified number of bytes are read. Even though the client is not really sending any information to the server,
we still create a DatagramPacket with a 1-byte buffer. In theory, all that the server needs is an empty packet
that specifies the client's network address and port number, but attempting to receive a zero-byte packet does
not work. When the receive() method of a DatagramSocket is called to receive a zero-byte packet, it
returns immediately, rather than waiting for a packet to arrive. Finally, the server enters an infinite loop that
receives requests from clients using the receive() method of the DatagramSocket, and sends responses.

The respond() method handles sending responses. It starts by writing the current time as a long value to an
array of bytes. Next, the respond() method prepares to send the array of bytes by creating a
DatagramPacket object that encapsulates the array and the address and port number of the client that
requested the time. Notice that the constructor used to create a DatagramPacket object for sending a packet
takes four arguments: an array of bytes, the number of bytes to send, the client's network address, and the
client's port number. The address and port are retrieved from the request DatagramPacket with the
getAddress() and getPort() methods. The respond() method finishes its work by actually sending
the DatagramPacket using the send() method of the DatagramSocket.

Now here's the code for the corresponding client program:

public class TimeClient {
 private static boolean usageOk(String[] argv) {
 if (argv.length != 1) {
 String msg = "usage is: " + "TimeClient server-name";
 System.out.println(msg);
 return false;
 }
 return true;
 }
 public static void main(String[] argv) {
 if (!usageOk(argv))
 System.exit(1);
 DatagramSocket socket;
 try {
 socket = new DatagramSocket();
 }catch (SocketException e) {
 System.err.println("Unable to create socket");
 e.printStackTrace();
 System.exit(1);
 return;
 }
 long time;
 try {
 byte[] buf = new byte[1];
 socket.send(new DatagramPacket(buf, 1,
 InetAddress.getByName(argv[0]), 7654));
 DatagramPacket response = new DatagramPacket(new byte[8],8);
 socket.receive(response);

 ByteArrayInputStream bs;
 bs = new ByteArrayInputStream(response.getData());
 DataInputStream ds = new DataInputStream(bs);
 time = ds.readLong();
 }catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
 return;
 }
 System.out.println(new Date(time));
 socket.close();
 }
}

The main() method does the real work of TimeClient. After it verifies that it has the correct number of
parameters with usageOk(), it creates a DatagramSocket object for communicating with the server. Note
that the constructor for this DatagramSocket does not specify any parameters; a client DatagramSocket
is not explicitly connected to a specific port. Then the main() method creates a DatagramPacket object to
contain the request to be sent to the server. Since this DatagramPacket is being used to send a packet, the
code uses the four-argument constructor that specifies an array of bytes, the number of bytes to send, the
specified network address for a time server, and the server's port number. The DatagramPacket is then sent
to the server with the send() method of the DatagramSocket.

Now the main() method creates another DatagramPacket to receive the response from the server. The two-
argument constructor is used this time because the object is being created to receive data. After calling the
receive() method of the DatagramSocket to get the response from the server, the main() method gets
the data from the response DatagramPacket by calling getData(). The data is wrapped in a
DataInputStream so that the data can be read as a long value. If everything has gone smoothly, the client
finishes by printing the current time and closing the socket.

Versioning of Classes URL Objects

Chapter 9

9. Security
Contents:
SecurityManager
ClassLoader

Java uses a "sandbox" security model to ensure that applets cannot cause security problems. The idea is
that an applet can do whatever it wants within the constraints of its sandbox, but that nothing done inside
the sandbox has any consequences outside of the sandbox.

9.1 SecurityManager

Java implements the sandbox model using the java.lang.SecurityManager class. An instance of
SecurityManager is passed to the method System.setSecurityManager() to establish the
security policy for an application. Before setSecurityManager() is called, a Java program can
access any resources available on the system. After setSecurityManager() is called, however, the
SecurityManager object is responsible for providing a security policy. Once a security policy has
been set by calling setSecurityManager, the method cannot be called again. Subsequent calls
simply throw a SecurityException.

All methods in the Java API that can access resources outside of the Java environment call a
SecurityManager method to ask permission before doing anything. If the SecurityManager
method throws a SecurityException, the exception is thrown out of the calling method, and access
to the resource is denied. The SecurityManager class defines a number of methods for asking for
permission to access specific resources. Each of these methods has a name that begins with the word
"check." Table 9.1 shows the names of the check methods provided by the SecurityManager class.

Table 9.1: The Check Methods of SecurityManager

Method Name Permission

checkAccept() To accept a network connection

checkAccess() To modify a Thread or ThreadGroup

checkAwtEventQueueAccess() To access the AWT event queue

checkConnect() To establish a network connection or send a datagram

checkCreateClassLoader() To create a ClassLoader object

checkDelete() To delete a file

checkExec() To call an external program

checkExit()
To stop the Java virtual machine and exit the Java
environment

checkLink()
To dynamically link an external library into the Java
environment

checkListen() To listen for a network connection

checkMemberAccess() To access the members of a class

checkMulticast() To use a multicast connection

checkPackageAccess() To access the classes in a package

checkPackageDefinition() To define classes in a package

checkPrintJobAccess() To initiate a print job request

checkPropertiesAccess()
To get or set the Properties object that defines all of the
system properties

checkPropertyAccess() To get or set a system property

checkRead() To read from a file or input stream

checkSecurityAccess() To perform a security action

checkSetFactory()
To set a factory class that determines classes to be used for
managing network connections and their content

checkSystemClipboardAccess() To access the system clipboard

checkTopLevelWindow() To create a top-level window on the screen

checkWrite() To write to a file or output stream

The SecurityManager class provides implementations of these methods that always refuse the
requested permission. To implement a more permissive security policy, you need to create a subclass of
SecurityManager that implements that policy.

In Java 1.0, most browsers consider an applet to be trusted or untrusted. An untrusted applet is one that
does not come from the local filesystem. An untrusted applet is treated as follows by most popular

browsers:

● It can establish network connections to the network address from which it came.

● It can create new windows on the screen. However, a notice is displayed on the bottom of the
window that the window was created by an untrusted applet.

● It cannot access any other external resources. In particular, untrusted applets cannot access local
files.

As of Java 1.1, an applet can have a digital signature attached to it. When an applet has been signed by a
trusted entity, a browser may consider the applet to be trusted and relax its security policy.

URL Objects ClassLoader

Chapter 11

11. The java.io Package
Contents:
BufferedOutputStream
BufferedReader
BufferedWriter
ByteArrayInputStream
ByteArrayOutputStream
CharArrayReader
CharArrayWriter
CharConversionException
DataInput
DataInputStream
DataOutput
DataOutputStream
EOFException
Externalizable
File
FileDescriptor
FileInputStream
FilenameFilter
FileNotFoundException
FileOutputStream
FileReader
FileWriter
FilterInputStream
FilterOutputStream
FilterReader
FilterWriter
InputStream
InputStreamReader
InterruptedIOException

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_06.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_14.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_15.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_17.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_22.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_23.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_30.htm

InvalidClassException
InvalidObjectException
IOException
LineNumberInputStream
LineNumberReader
NotActiveException
NotSerializableException
ObjectInput
ObjectInputStream
ObjectInputValidation
ObjectOutput
ObjectOutputStream
ObjectStreamClass
ObjectStreamException
OptionalDataException
OutputStream
OutputStreamWriter
PipedInputStream
PipedOutputStream
PipedReader
PipedWriter
PrintStream
PrintWriter
PushbackInputStream
PushbackReader
RandomAccessFile
Reader
SequenceInputStream
Serializable
StreamCorruptedException
StreamTokenizer
StringBufferInputStream
StringReader
StringWriter
SyncFailedException
UnsupportedEncodingException
UTFDataFormatException
WriteAbortedException
Writer

The package java.io contains the classes that handle fundamental input and output operations in Java. The I/O
classes can be grouped as follows:

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_37.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_5F40.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_44.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_45.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_59.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_60.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_65.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_66.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_67.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_68.htm

● Classes for reading input from a stream of data.

● Classes for writing output to a stream of data.

● Classes that manipulate files on the local filesystem.

● Classes that handle object serialization.

I/O in Java is based on streams. A stream represents a flow of data or a channel of communication. Java 1.0
supports only byte streams. The InputStream class is the superclass of all of the Java 1.0 byte input streams,
while OutputStream is the superclass of all the byte output streams. The drawback to these byte streams is
that they do not always handle Unicode characters correctly.

As of Java 1.1, java.io contains classes that represent character streams. These character stream classes handle
Unicode characters appropriately by using a character encoding to convert bytes to characters and vice versa. The
Reader class is the superclass of all the Java 1.1 character input streams, while Writer is the superclass of all
character output streams.

The InputStreamReader and OutputStreamWriter classes provide a bridge between byte streams and
character streams. If you wrap an InputStreamReader around an InputStream object, the bytes in the
byte stream are read and converted to characters using the character encoding scheme specified by the
InputStreamReader. Likewise, you can wrap an OutputStreamWriter around any OutputStream
object so that you can write characters and have them converted to bytes.

As of Java 1.1, java.io also contains classes to support object serialization. Object serialization is the ability to
write the complete state of an object to an output stream, and then later recreate that object by reading in the
serialized state from an input stream. The ObjectOutputStream and ObjectInputStream classes
handle serializing and deserializing objects, respectively.

The RandomAccessFile class is the only class that does not use a stream for reading or writing data. As its
name implies, RandomAccessFile provides nonsequential access to a file for both reading and writing
purposes.

The File class represents a file on the local file system. The class provides methods to identify and retrieve
information about a file.

Figure 11.1 shows the class hierarchy for the java.io package. The java.io package defines a number of
standard I/O exception classes. These exception classes are all subclasses of IOException, as shown in Figure
11.2.

Figure 11.1: The java.io package

[Graphic: Figure 11-1]

Figure 11.2: The exception classes in the java.io package

[Graphic: Figure 11-2]

BufferedInputStream

Name

BufferedInputStream

Synopsis

Class Name:

java.io.BufferedInputStream

Superclass:

java.io.FilterInputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A BufferedInputStream object provides a more efficient way to read just a few bytes at a time from an
InputStream. BufferedInputStream object use a buffer to store input from an associated
InputStream. In other words, a large number of bytes are read from the underlying stream and stored in an
internal buffer. A BufferedInputStream is more efficient than a regular InputStream because reading
data from memory is faster than reading it from a disk or a network. All reading is done directly from the internal
buffer; the disk or network needs to be accessed only occasionally to fill up the buffer.

You should wrap a BufferedInputStream around any InputStream whose read() operations may be
time consuming or costly, such as a FileInputStream.

BufferedInputStream provides a way to mark a position in the stream and subsequently reset the stream to
that position, using mark() and reset().

Class Summary

public class java.io.BufferedInputStream extends java.io.FilterInputStream {
 // Variables
 protected byte[] buf;
 protected int count;
 protected int marklimit;
 protected int markpos;
 protected int pos;
 // Constructors
 public BufferedInputStream(InputStream in);
 public BufferedInputStream(InputStream in, int size);
 // Instance Methods
 public synchronized int available();
 public synchronized void mark(int readlimit);
 public boolean markSupported();
 public synchronized int read();
 public synchronized int read(byte[] b, int off, int len);
 public synchronized void reset();
 public synchronized long skip(long n);
}

Variables

buf

protected byte[] buf

Description

The buffer that stores the data from the input stream.

count

protected int count

Description

A placeholder that marks the end of valid data in the buffer.

marklimit

protected int marklimit

Description

The maximum number of bytes that can be read after a call to mark() before a call to reset() fails.

markpos

protected int markpos

Description

The position of the stream when mark() was called. If mark() has not been called, this variable is -1.

pos

protected int pos

Description

The current position in the buffer, or in other words, the index of the next character to be read.

Constructors

BufferedInputStream

public BufferedInputStream(InputStream in)

Parameters

in

The input stream to buffer.

Description

This constructor creates a BufferedInputStream that buffers input from the given InputStream,
using a buffer with the default size of 2048 bytes.

public BufferedInputStream(InputStream in, int size)

Parameters

in

The input stream to buffer.

size

The size of buffer to use.

Description

This constructor creates a BufferedInputStream that buffers input from the given InputStream,
using a buffer of the given size.

Instance Methods

available

public synchronized int available() throws IOException

Returns

The number of bytes that can be read without blocking.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.available()

Description

This method returns the number of bytes that can be read without having to wait for more data to become
available. The returned value is the sum of the number of bytes remaining in the object's buffer and the
number returned as the result of calling the available() method of the underlying InputStream
object.

mark

public synchronized void mark(int readlimit)

Parameters

readlimit

The maximum number of bytes that can be read before the saved position becomes invalid.

Overrides

FilterInputStream.mark()

Description

This method causes the BufferedInputStream to remember its current position. A subsequent call to
reset() causes the object to return to that saved position, and thus reread a portion of the buffer.

markSupported

public synchronized boolean markSupported()

Returns

The boolean value true.

Overrides

FilterInputStream.markSupported()

Description

This method returns true to indicate that this class supports mark() and reset().

read

public synchronized int read() throws IOException

Returns

The next byte of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.read()

Description

This method returns the next byte from the buffer. If all the bytes in the buffer have been read, the buffer
is filled from the underlying InputStream and the next byte is returned. If the buffer does not need to
be filled, this method returns immediately. If the buffer needs to be filled, this method blocks until data is
available from the underlying InputStream, the end of the stream is reached, or an exception is
thrown.

 public synchronized int read(byte b[], int off, int len) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.read(byte[], int, int)

Description

This method copies bytes from the internal buffer into the given array b, starting at index off and
continuing for up to len bytes. If there are any bytes in the buffer, this method returns immediately.
Otherwise the buffer needs to be filled; this method blocks until the data is available from the underlying
InputStream, the end of the stream is reached, or an exception is thrown.

reset

public synchronized void reset() throws IOException

Throws

IOException

If there was no previous call to this BufferedInputStream's mark method, or the saved
position has been invalidated.

Overrides

FilterInputStream.reset()

Description

This method sets the position of the BufferedInputStream to a position that was saved by a
previous call to mark(). Subsequent bytes read from this BufferedInputStream will begin from
the saved position and continue normally.

skip

public synchronized long skip(long n) throws IOException

Parameters

n

The number of bytes to skip.

Returns

The actual number of bytes skipped.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.skip()

Description

This method skips n bytes of input. If the new position of the stream is still within the data contained in
the buffer, the method returns immediately. Otherwise the skip() method of the underlying stream is
called. A subsequent call to read() forces the buffer to be filled.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object close() FilterInputStream

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

notify() Object notifyAll() Object

read(byte[]) FilterInputStream toString() Object

void wait() Object void wait(long) Object

void wait(long, int) Object

See Also

FilterInputStream, InputStream, IOException

Writer BufferedOutputStream

Chapter 12

12. The java.lang Package
Contents:
ArithmeticException
ArrayIndexOutOfBoundsException
ArrayStoreException
Boolean
Byte
Character
Class
ClassCastException
ClassCircularityError
ClassFormatError
ClassLoader
ClassNotFoundException
Cloneable
CloneNotSupportedException
Compiler
Double
Error
Exception
ExceptionInInitializerError
Float
IllegalAccessError
IllegalAccessException
IllegalArgumentException
IllegalMonitorStateException
IllegalStateException
IllegalThreadStateException
IncompatibleClassChangeError
IndexOutOfBoundsException
Integer

InstantiationError
InstantiationException
InternalError
InterruptedException
LinkageError
Long
Math
NegativeArraySizeException
NoClassDefFoundError
NoSuchFieldError
NoSuchFieldException
NoSuchMethodError
NoSuchMethodException
NullPointerException
Number
NumberFormatException
Object
OutOfMemoryError
Process
Runnable
Runtime
RuntimeException
SecurityException
SecurityManager
Short
StackOverflowError
String
StringBuffer
StringIndexOutOfBoundsException
System
Thread
ThreadDeath
ThreadGroup
Throwable
UnknownError
UnsatisfiedLinkError
VerifyError
VirtualMachineError
Void

The package java.lang contains classes and interfaces that are essential to the Java language. These include:

● Object, the ultimate superclass of all classes in Java.

● Thread, the class that controls each thread in a multithreaded program.

● Throwable, the superclass of all error and exception classes in Java.

● Classes that encapsulate the primitive data types in Java.

● Classes for accessing system resources and other low-level entities.

● Math, a class that provides standard mathematical methods.

● String, the class that represents strings.

Because the classes in the java.lang package are so essential, the java.lang package is implicitly imported
by every Java source file. In other words, you can refer to all of the classes and interfaces in java.lang using
their simple names.

Figure 12.1 shows the class hierarchy for the java.lang package.

The possible exceptions in a Java program are organized in a hierarchy of exception classes. The Throwable
class is at the root of the exception hierarchy. Throwable has two immediate subclasses: Exception and
Error. Figure 12.2 shows the standard exception classes defined in the java.lang package, while Figure 12.3
shows the standard error classes defined in java.lang.

Figure 12.1: The java.lang package

Figure 12.2: The exception classes in the java.lang package

Figure 12.3: The error classes in the java.lang package

AbstractMethodError

Name

AbstractMethodError

Synopsis

Class Name:

java.lang.AbstractMethodError

Superclass:

java.lang.IncompatibleClassChangeError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An AbstractMethodError is thrown when there is an attempt to invoke an abstract method.

Class Summary

public class java.lang.AbstractMethodError
 extends java.lang.IncompatibleClassChangeError {
 // Constructors
 public AbstractMethodError();
 public AbstractMethodError(String s);

}

Constructors

AbstractMethodError

public AbstractMethodError()

Description

This constructor creates an AbstractMethodError with no associated detail message.

public AbstractMethodError(String s)

Parameters

s

The detail message.

Description

This constructor creates an AbstractMethodError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, IncompatibleClassChangeError, Throwable

Writer ArithmeticException

Chapter 13

13. The java.lang.reflect Package
Contents:
Array
Constructor
Field
InvocationTargetException
Member
Method
Modifier

The package java.lang.reflect is new as of Java 1.1. It contains classes and interfaces that support the Reflection
API. Reflection refers to the ability of a class to reflect upon itself, or look inside of itself, to see what it can do. The
Reflection API makes it possible to:

● Discover the variables, methods, and constructors of any class.

● Create an instance of any class using any available constructor of that class, even if the class initiating the
creation was not compiled with any information about the class to be instantiated.

● Access the variables of any object, even if the accessing class was not compiled with any information about the
class to be accessed.

● Call the methods of any object, even if the calling class was not compiled with any information about the class
that contains the methods.

● Create an array of objects that are instances of any class, even if the creating class was not compiled with any
information about the class.

These capabilities are implemented by the java.lang.Class class and the classes in the java.lang.reflect
package. Figure 13.1 shows the class hierarchy for the java.lang.reflect package.

Figure 13.1: The java.lang.reflect package

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_04.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm

[Graphic: Figure 13-1]

Java 1.1 currently uses the Reflection API for two purposes:

● The JavaBeans API supports a mechanism for customizing objects that is based on being able to discover their
public variables, methods, and constructors. See the forthcoming Developing Java Beans from O'Reilly &
Associates for more information about the JavaBeans API.

● The object serialization functionality in java.io is built on top of the Reflection API. Object serialization
allows arbitrary objects to be written to a stream of bytes and then read back later as objects.

Array

Name

Array

Synopsis

Class Name:

java.lang.reflect.Array

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

New as of JDK 1.1

Description

The Array class provides static methods to manipulate arbitrary arrays in Java. There are methods to set and retrieve
elements in an array, determine the size of an array, and create a new instance of an array.

The Array class is used to create array objects and manipulate their elements. The Array class is not used to represent
array types. Because arrays in Java are objects, array types are represented by Class objects.

Class Summary

public final class java.lang.reflect.Array extends java.lang.Object {
 // Class Methods
 public static native Object get(Object array, int index);
 public static native boolean getBoolean(Object array, int index);
 public static native byte getByte(Object array, int index);
 public static native char getChar(Object array, int index);
 public static native double getDouble(Object array, int index);
 public static native float getFloat(Object array, int index);
 public static native int getInt(Object array, int index);
 public static native int getLength(Object array);
 public static native long getLong(Object array, int index);
 public static native short getShort(Object array, int index);
 public static Object newInstance(Class componentType, int length);
 public static Object newInstance(Class componentType, int[] dimensions);
 public static native void set(Object array, int index, Object value);
 public static native void setBoolean(Object array, int index, boolean z);
 public static native void setByte(Object array, int index, byte b);
 public static native void setChar(Object array, int index, char c);
 public static native void setDouble(Object array, int index, double d);
 public static native void setFloat(Object array, int index, float f);
 public static native void setInt(Object array, int index, int i);
 public static native void setLong(Object array, int index, long l);
 public static native void setShort(Object array, int index, short s);
}

Class Methods

get

 public static native Object get(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The object at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array. If the array contains values of a primitive type, the
value at the given index is wrapped in an appropriate object, and the object is returned.

getBoolean

 public static native boolean getBoolean(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The boolean value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a boolean.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a boolean value.

getByte

 public static native byte getByte(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The byte value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a byte.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a byte value.

getChar

 public static native char getChar(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The char value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a char.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a char value.

getDouble

 public static native double getDouble(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The double value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a double.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a double value.

getFloat

 public static native float getFloat(Object array, int index) throws

IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The float value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a float.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a float value.

getInt

 public static native int getInt(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The int value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a int.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a int value.

getLength

 public static native int getLength(Object array) throws IllegalArgumentException

Parameters

array

An array object.

Returns

The length of the specified array.

Throws

IllegalArgumentException

If the given object is not an array.

Description

This method returns the length of the array.

getLong

 public static native long getLong(Object array, long index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The long value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a long.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a long value.

getShort

 public static native short getShort(Object array, short index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The short value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a short.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a short value.

newInstance

 public static Object newInstance(Class componentType, int length) throws
NegativeArraySizeException

Parameters

componentType

The type of each element in the array.

length

The length of the array.

Returns

An array object that contains elements of the given component type and has the specified length.

Throws

NegativeArraySizeException

If length is negative.

NullPointerException

If componentType is null.

Description

This method creates a single-dimension array with the given length and component type.

 public static Object newInstance(Class componentType, int[] dimensions) throws
IllegalArgumentException, NegativeArraySizeException

Parameters

componentType

The type of each element in the array.

dimensions

An array that specifies the dimensions of the array to be created.

Returns

An array object that contains elements of the given component type and has the specified number of dimensions.

Throws

IllegalArgumentException

If dimensions has zero dimensions itself, or if it has too many dimensions (typically 255 array
dimensions are supported).

NegativeArraySizeException

If length is negative.

NullPointerException

If componentType is null.

Description

This method creates a multidimensional array with the given dimensions and component type.

set

 public static native void set(Object array, int index, Object value) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

value

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if it represents an array of primitive values, and the given value
cannot be unwrapped and converted to that primitive type.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the object at the given index in the array to the specified value. If the array contains values of a
primitive type, the given value is automatically unwrapped before it is put in the array.

setBoolean

 public static native void setBoolean(Object array, int index, boolean z) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

z

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given boolean value.

setByte

 public static native void setByte(Object array, int index, byte b) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

b

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given byte value.

setChar

 public static native void setChar(Object array, int index, char c) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

c

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given char value.

setDouble

 public static native void setDouble(Object array, int index, double d) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

d

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given double value.

setFloat

 public static native void setFloat(Object array, int index, float f) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

f

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given float value.

setInt

 public static native void setInt(Object array, int index, int i) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

i

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given int value.

setLong

 public static native void setLong(Object array, int index, long l) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

l

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given long value.

setShort

 public static native void setShort(Object array, int index, short s) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

s

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given short value.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ArrayIndexOutOfBoundsException, Class, IllegalArgumentException,
NegativeArraySizeException, NullPointerException, Object

Void Constructor

Chapter 14

14. The java.math Package
Contents:
BigDecimal
BigInteger

The package java.math is new as of Java 1.1. It contains two classes that support arithmetic on arbitrarily large integers
and floating-point numbers. Figure 14.1 shows the class hierarchy for the java.math package.

Figure 14.1: The java.math package

[Graphic: Figure 14-1]

BigDecimal

Name

BigDecimal

Synopsis

Class Name:

java.math.BigDecimal

Superclass:

java.lang.Number

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The BigDecimal class represents arbitrary-precision rational numbers. A BigDecimal object provides a good way to
represent a real number that exceeds the range or precision that can be represented by a double value or the rounding that is
done on a double value is unacceptable.

The representation for a BigDecimal consists of an unlimited precision integer value and an integer scale factor. The scale
factor indicates a power of 10 that the integer value is implicitly divided by. For example, a BigDecimal would represent
the value 123.456 with an integer value of 123456 and the scale factor of 3. Note that the scale factor cannot be negative and
a BigDecimal cannot overflow.

Most of the methods in BigDecimal perform mathematical operations or make comparisons with other BigDecimal
objects. Operations that result in some loss of precision, such as division, require a rounding method to be specified. The
BigDecimal class defines constants to represent the different rounding methods. The rounding method determines if the
digit before a discarded fraction is rounded up or left unchanged.

Class Summary

public class java.math.BigDecimal extends java.lang.Number {
 // Constants
 public static final int ROUND_CEILING;
 public static final int ROUND_DOWN;
 public static final int ROUND_FLOOR;
 public static final int ROUND_HALF_DOWN;
 public static final int ROUND_HALF_EVEN;
 public static final int ROUND_HALF_UP;
 public static final int ROUND_UNNECESSARY;
 public static final int ROUND_UP;
 // Constructors
 public BigDecimal(double val);
 public BigDecimal(String val);
 public BigDecimal(BigInteger val);
 public BigDecimal(BigInteger val, int scale);
 // Class Methods
 public static BigDecimal valueOf(long val);
 public static BigDecimal valueOf(long val, int scale);

 // Instance Methods
 public BigDecimal abs();
 public BigDecimal add(BigDecimal val);
 public int compareTo(BigDecimal val);
 public BigDecimal divide(BigDecimal val, int roundingMode);
 public BigDecimal divide(BigDecimal val, int scale, int roundingMode);
 public double doubleValue();
 public boolean equals(Object x);
 public float floatValue();
 public int hashCode();
 public int intValue();
 public long longValue();
 public BigDecimal max(BigDecimal val);
 public BigDecimal min(BigDecimal val);
 public BigDecimal movePointLeft(int n);
 public BigDecimal movePointRight(int n);
 public BigDecimal multiply(BigDecimal val);
 public BigDecimal negate();
 public int scale();
 public BigDecimal setScale(int scale);
 public BigDecimal setScale(int scale, int roundingMode);
 public int signum();
 public BigDecimal subtract(BigDecimal val);
 public BigInteger toBigInteger();
 public String toString();
}

Constants

ROUND_CEILING

public static final int ROUND_CEILING

Description

A rounding method that rounds towards positive infinity. Under this method, the value is rounded to the least integer
greater than or equal to its value. For example, 2.5 rounds to 3 and -2.5 rounds to -2.

ROUND_DOWN

public static final int ROUND_DOWN

Description

A rounding method that rounds towards zero by truncating. For example, 2.5 rounds to 2 and -2.5 rounds to -2.

ROUND_FLOOR

public static final int ROUND_FLOOR

Description

A rounding method that rounds towards negative infinity. Under this method, the value is rounded to the greatest
integer less than or equal to its value. For example, 2.5 rounds to 2 and -2.5 rounds to -3.

ROUND_HALF_DOWN

public static final int ROUND_HALF_DOWN

Description

A rounding method that increments the digit prior to a discarded fraction if the fraction is greater than 0.5; otherwise,
the digit is left unchanged. For example, 2.5 rounds to 2, 2.51 rounds to 3, -2.5 rounds to -2, and -2.51 rounds to -3.

ROUND_HALF_EVEN

public static final int ROUND_HALF_EVEN

Description

A rounding method that behaves like ROUND_HALF_UP if the digit prior to the discarded fraction is odd; otherwise it
behaves like ROUND_HALF_DOWN. For example, 2.5 rounds to 2, 3.5 rounds to 4, -2.5 rounds to -2, and -3.5 rounds
to -4.

ROUND_HALF_UP

public static final int ROUND_HALF_UP

Description

A rounding method that increments the digit prior to a discarded fraction if the fraction is greater than or equal to 0.5;
otherwise, the digit is left unchanged. For example, 2.5 rounds to 3, 2.49 rounds to 2, -2.5 rounds to -3, and -2.49
rounds to -2.

ROUND_UNNECESSARY

public static final int ROUND_UNNECESSARY

Description

A constant that specifies that rounding is not necessary. If the result really does require rounding, an
ArithmeticException is thrown.

ROUND_UP

public static final int ROUND_UP

Description

A rounding method that rounds away from zero by truncating. For example, 2.5 rounds to 3 and -2.5 rounds to -3.

Constructors

BigDecimal

public BigDecimal(double val) throws NumberFormatException

Parameters

val

The initial value.

Throws

NumberFormatException

If the double has any of the special values: Double.NEGATIVE_INFINITY,
Double.POSITIVE_INFINITY, or Double.NaN.

Description

This constructor creates a BigDecimal with the given initial value. The scale of the BigDecimal that is created is
the smallest value such that (10^scale x val) is an integer.

public BigDecimal(String val) throws NumberFormatException

Parameters

val

The initial value.

Throws

NumberFormatException

If the string cannot be parsed into a valid BigDecimal.

Description

This constructor creates a BigDecimal with the initial value specified by the String. The string can contain an
optional minus sign, followed by zero or more decimal digits, followed by an optional fraction. The fraction must
contain a decimal point and zero or more decimal digits. The string must contain as least one digit in the integer or
fractional part. The scale of the BigDecimal that is created is equal to the number of digits to the right of the

decimal point or 0 if there is no decimal point. The mapping from characters to digits is provided by the
Character.digit() method.

public BigDecimal(BigInteger val)

Parameters

val

The initial value.

Description

This constructor creates a BigDecimal whose initial value comes from the given BigInteger. The scale of the
BigDecimal that is created is 0.

 public BigDecimal(BigInteger val, int scale) throws NumberFormatException

Parameters

val

The initial value.

scale

The initial scale.

Throws

NumberFormatException

If scale is negative.

Description

This constructor creates a BigDecimal from the given parameters. The scale parameter specifies how many digits
of the supplied BigInteger fall to the right of the decimal point.

Class Methods

valueOf

public static BigDecimal valueOf(long val)

Parameters

val

The initial value.

Returns

A BigDecimal that represents the given value.

Description

This method creates a BigDecimal from the given long value. The scale of the BigDecimal that is created is 0.

 public static BigDecimal valueOf(long val, int scale) throws NumberFormatException

Parameters

val

The initial value.

scale

The initial scale.

Returns

A BigDecimal that represents the given value and scale.

Throws

NumberFormatException

If scale is negative.

Description

This method creates a BigDecimal from the given parameters. The scale parameter specifies how many digits of
the supplied long fall to the right of the decimal point.

Instance Methods

abs

public BigDecimal abs()

Returns

A BigDecimal that contains the absolute value of this number.

Description

This method returns the absolute value of this BigDecimal. If this BigDecimal is nonnegative, it is returned.
Otherwise, a new BigDecimal that contains the absolute value of this BigDecimal is returned. The scale of the
new BigDecimal is the same as that of this BigDecimal.

add

public BigDecimal add(BigDecimal val)

Parameters

val

The number to be added.

Returns

A new BigDecimal that contains the sum of this number and the given value.

Description

This method returns the sum of this BigDecimal and the given BigDecimal as a new BigDecimal. The value
of the new BigDecimal is the sum of the values of the two BigDecimal objects being added; the scale is the
maximum of their two scales.

compareTo

public int compareTo(BigDecimal val)

Parameters

val

The number to be compared.

Returns

-1 if this number is less than val, 0 if this number is equal to val, or 1 if this number is greater than val.

Description

This method compares this BigDecimal to the given BigDecimal and returns a value that indicates the result of
the comparison. The method considers two BigDecimal objects that have the same values but different scales to be
equal. This method can be used to implement all six of the standard boolean comparison operators: ==, !=, <=, <, >=,
and >.

divide

 public BigDecimal divide(BigDecimal val, int roundingMode) throws
ArithmeticException, IllegalArgumentException

Parameters

val

The divisor.

roundingMode

The rounding mode.

Returns

A new BigDecimal that contains the result (quotient) of dividing this number by the supplied value.

Throws

ArithmeticException

If val is 0, or if ROUND_UNNECESSARY is specified for the rounding mode but rounding is necessary.

IllegalArgumentException

If roundingMode is not a valid value.

Description

This method returns the quotient that results from dividing this BigDecimal by the given BigDecimal and
applying the specified rounding mode. The quotient is returned as a new BigDecimal that has the same scale as the
scale of this BigDecimal scale. One of the rounding constants must be specified for the rounding mode.

 public BigDecimal divide(BigDecimal val, int scale, int roundingMode) throws
ArithmeticException, IllegalArgumentException

Parameters

val

The divisor.

scale

The scale for the result.

roundingMode

The rounding mode.

Returns

A new BigDecimal that contains the result (quotient) of dividing this number by the supplied value.

Throws

ArithmeticException

If val is 0, if scale is less than zero, or if ROUND_UNNECESSARY is specified for the rounding mode but
rounding is necessary.

IllegalArgumentException

If roundingMode is not a valid value.

Description

This method returns the quotient that results from dividing dividing this BigDecimal by the given BigDecimal
and applying the specified rounding mode. The quotient is returned as a new BigDecimal that has the given scale.
One of the rounding constants must be specified for the rounding mode.

doubleValue

public double doubleValue()

Returns

The value of this BigDecimal as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this BigDecimal as a double. If the value exceeds the limits of a double,
Double.POSITIVE_INFINITY or Double.NEGATIVE_INFINITY is returned.

equals

public boolean equals(Object x)

Parameters

x

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if x is an instance of BigDecimal, and it represents the same value as this
BigDecimal. In order to be considered equal using this method, two BigDecimal objects must have the same
values and scales.

floatValue

public float floatValue()

Returns

The value of this BigDecimal as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this BigDecimal as a float. If the value exceeds the limits of a float,
Float.POSITIVE_INFINITY or Float.NEGATIVE_INFINITY is returned.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this BigDecimal.

intValue

public int intValue()

Returns

The value of this BigDecimal as an int.

Overrides

Number.intValue()

Description

This method returns the value of this BigDecimal as an int. If the value exceeds the limits of an int, the
excessive high-order bits are discarded. Any fractional part of this BigDecimal is truncated.

longValue

public long longValue()

Returns

The value of this BigDecimal as a long.

Overrides

Number.longValue()

Description

This method returns the value of this BigDecimal as a long. If the value exceeds the limits of a long, the
excessive high-order bits are discarded. Any fractional part of this BigDecimal is also truncated.

max

public BigDecimal max(BigDecimal val)

Parameters

val

The number to be compared.

Returns

The BigDecimal that represents the greater of this number and the given value.

Description

This method returns the greater of this BigDecimal and the given BigDecimal.

min

public BigDecimal min(BigDecimal val)

Parameters

val

The number to be compared.

Returns

The BigDecimal that represents the lesser of this number and the given value.

Description

This method returns the lesser of this BigDecimal and the given BigDecimal.

movePointLeft

public BigDecimal movePointLeft(int n)

Parameters

n

The number of digits to move the decimal point to the left.

Returns

A new BigDecimal that contains the adjusted number.

Description

This method returns a BigDecimal that is computed by shifting the decimal point of this BigDecimal left by the
given number of digits. If n is nonnegative, the value of the new BigDecimal is the same as the current value, and
the scale is increased by n. If n is negative, the method call is equivalent to movePointRight(-n).

movePointRight

public BigDecimal movePointRight(int n)

Parameters

n

The number of digits to move the decimal point to the right.

Returns

A new BigDecimal that contains the adjusted number.

Description

This method returns a BigDecimal that is computed by shifting the decimal point of this BigDecimal right by the
given number of digits. If n is nonnegative, the value of the new BigDecimal is the same as the current value, and
the scale is decreased by n. If n is negative, the method call is equivalent to movePointLeft(-n).

multiply

public BigDecimal multiply(BigDecimal val)

Parameters

val

The number to be multiplied.

Returns

A new BigDecimal that contains the product of this number and the given value.

Description

This method multiplies this BigDecimal and the given BigDecimal, and returns the result as a new
BigDecimal. The value of the new BigDecimal is the product of the values of the two BigDecimal objects
being added; the scale is the sum of their two scales.

negate

public BigDecimal negate()

Returns

A new BigDecimal that contains the negative of this number.

Description

This method returns a new BigDecimal that is identical to this BigDecimal except that its sign is reversed. The
scale of the new BigDecimal is the same as the scale of this BigDecimal.

scale

public int scale()

Returns

The scale of this number.

Description

This method returns the scale of this BigDecimal.

setScale

 public BigDecimal setScale(int scale) throws ArithmeticException,
IllegalArgumentException

Parameters

scale

a The new scale.

Returns

A new BigDecimal that is identical to this number, except that is has the given scale.

Throws

ArithmeticException

If the new number cannot be calculated without rounding.

IllegalArgumentException

This exception is never thrown.

Description

This method creates a new BigDecimal that has the given scale and a value that is calculated by multiplying or
dividing the value of this BigDecimal by the appropriate power of 10 to maintain the overall value. The method is
typically used to increase the scale of a number, not decrease it. It can decrease the scale, however, if there are enough
zeros in the fractional part of the value to allow for rescaling without loss of precision.

Calling this method is equivalent to calling setScale(scale, BigDecimal.ROUND_UNNECESSARY).

 public BigDecimal setScale(int scale, int roundingMode) throws ArithmeticException,
IllegalArgumentException

Parameters

scale

The new scale.

roundingMode

The rounding mode.

Returns

A new BigDecimal that contains this number adjusted to the given scale.

Throws

ArithmeticException

If scale is less than zero, or if ROUND_UNNECESSARY is specified for the rounding mode but rounding is
necessary.

IllegalArgumentException

If roundingMode is not a valid value.

Description

This method creates a new BigDecimal that has the given scale and a value that is calculated by multiplying or
dividing the value of this BigDecimal by the appropriate power of 10 to maintain the overall value. When the scale
is reduced, the value must be divided, so precision may be lost. In this case, the specified rounding mode is used.

signum

public int signum()

Returns

-1 if this number is negative, 0 if this number is zero, or 1 if this number is positive.

Description

This method returns a value that indicates the sign of this BigDecimal.

subtract

public BigDecimal subtract(BigDecimal val)

Parameters

val

The number to be subtracted.

Returns

A new BigDecimal that contains the result of subtracting the given number from this number.

Description

This method subtracts the given BigDecimal from this BigDecimal and returns the result as a new
BigDecimal. The value of the new BigDecimal is the result of subtracting the value of the given BigDecimal
from this BigDecimal; the scale is the maximum of their two scales.

toBigInteger

public BigInteger toBigInteger()

Returns

The value of this BigDecimal as a BigInteger.

Description

This method returns the value of this BigDecimal as a BigInteger. The fractional part of this number is
truncated.

toString

public String toString()

Returns

A string representation of this object.

Overrides

Object.toString()

Description

This method returns a string representation of this BigDecimal. A minus sign represents the sign, and a decimal
point is used to represent the scale. The mapping from digits to characters is provided by the
Character.forDigit() method.

Inherited Methods

Method Inherited From Method Inherited From

byteValue() Number clone() Object

getClass() Object finalize() Object

notify() Object notifyAll() Object

shortValue() Number wait() Object

wait(long) Object wait(long, int) Object

See Also

ArithmeticException, BigInteger, Character, Double, Float, IllegalArgumentException,
Integer, Long, Number, NumberFormatException

Modifier BigInteger

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm

Chapter 15

15. The java.net Package
Contents:
ConnectException
ContentHandler
ContentHandlerFactory
DatagramPacket
DatagramSocket
DatagramSocketImpl
FileNameMap
HttpURLConnection
InetAddress
MalformedURLException
MulticastSocket
NoRouteToHostException
ProtocolException
ServerSocket
Socket
SocketException
SocketImpl
SocketImplFactory
URL
URLConnection
URLEncoder
URLStreamHandler
URLStreamHandlerFactory
UnknownHostException
UnknownServiceException

The package java.net contains classes and interfaces that provide a powerful infrastructure for networking in
Java. These include:

● The URL class for basic access to Uniform Resource Locators (URLs).

● The URLConnection class, which supports more complex operations on URLs.

● The Socket class for connecting to particular ports on specific Internet hosts and reading and writing
data using streams.

● The ServerSocket class for implementing servers that accept connections from clients.

● The DatagramSocket, MulticastSocket, and DatagramPacket classes for implementing low-
level networking.

● The InetAddress class, which represents Internet addresses.

Figure 15.1 shows the class hierarchy for the java.net package.

Figure 15.1: The java.net package

BindException

Name

BindException

Synopsis

Class Name:

java.net.BindException

Superclass:

java.net.SocketException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A BindException is thrown when a socket cannot be bound to a local address and port, which can occur if the
port is already in use or the address is unavailable.

Class Summary

public class java.net.BindException extends java.net.SocketException {
 // Constructors
 public BindException();
 public BindException(String msg);
}

Constructors

BindException

public BindException()

Description

This constructor creates a BindException with no associated detail message.

public BindException(String msg)

Parameters

msg

The detail message.

Description

This constructor creates a BindException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Throwable

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IOException, RuntimeException, SocketException

UnknownServiceException ConnectException

Chapter 16

16. The java.text Package
Contents:
CharacterIterator
ChoiceFormat
CollationElementIterator
CollationKey
Collator
DateFormat
DateFormatSymbols
DecimalFormat
DecimalFormatSymbols
FieldPosition
Format
MessageFormat
NumberFormat
ParseException
ParsePosition
RuleBasedCollator
SimpleDateFormat
StringCharacterIterator

The package java.text is new as of Java 1.1. It contains classes that support the internationalization
of Java programs. The internationalization classes can be grouped as follows:

● Classes for formatting string representations of dates, times, numbers, and messages based on the
conventions of a locale.

● Classes that collate strings according to the rules of a locale.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_11.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_15.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_16.htm

● Classes for finding boundaries in text according to the rules of a locale.

Many of the classes in java.text rely upon a java.util.Locale object to provide information
about the locale that is in use.

The Format class is the superclass of all of the classes that generate and parse string representations of
various types of data. The DateFormat class formats and parses dates and times according to the
customs and language of a particular locale. Similarly, the NumberFormat class formats and parses
numbers, including currency values, in a locale-dependent manner.

The MessageFormat class can create a textual message from a pattern string, while ChoiceFormat
maps numerical ranges to strings. By themselves, these classes do not provide different results for
different locales. However, they can be used in conjunction with java.util.ResourceBundle
objects that generate locale-specific pattern strings.

The Collator class handles collating strings according to the rules of a particular locale. Different
languages have different characters and different rules for sorting those characters; Collator and its
subclass, RuleBasedCollator, are designed to take those differences into account when collating
strings. In addition, the CollationKey class can be used to optimize the sorting of a large collection
of strings.

The BreakIterator class finds various boundaries, such as word boundaries and line boundaries, in
textual data. Again, BreakIterator locates these boundaries according to the rules of a particular
locale.

Figure 16.1 shows the class hierarchy for the java.text package.

Figure 16.1: The java.text package

[Graphic: Figure 16-1]

BreakIterator

Name

BreakIterator

Synopsis

Class Name:

java.text.BreakIterator

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

New as of JDK 1.1

Description

The BreakIterator class is an abstract class that defines methods that find the locations of
boundaries in text, such as word boundaries and sentence boundaries. A BreakIterator operates on
the object passed to its setText() method; that object must implement the CharacterIterator
interface or be a String object. When a String is passed to setText(), the BreakIterator
creates an internal StringCharacterIterator to iterate over the String.

When you use a BreakIterator, you call first() to get the location of the first boundary and then
repeatedly call next() to iterate through the subsequent boundaries.

The BreakIterator class defines four static factory methods that return instances of
BreakIterator that locate various kinds of boundaries. Each of these factory methods selects a
concrete subclass of BreakIterator based either on the default locale or a specified locale. You must
create a separate instance of BreakIterator to handle each kind of boundary you are trying to locate:

● getWordInstance() returns an iterator that locates word boundaries, which is useful for
search-and-replace operations. A word iterator correctly handles punctuation marks.

● getSentenceInstance() returns an iterator that locates sentence boundaries, which is
useful for textual selection. A sentence iterator correctly handle punctuation marks.

● getLineInstance() returns an iterator that locates line boundaries, which is useful in line
wrapping. A line iterator correctly handles hyphenation and punctuation.

● getCharacterInstance() returns an iterator that locates boundaries between characters,
which is useful for allowing the cursor to interact with characters appropriately, since some
characters are stored as a base character and a diacritical mark, but only represent one display
character.

Class Summary

public abstract class java.util.BreakIterator extends java.lang.Object
 implements java.lang.Cloneable,
 java.io.Serializable {
 // Constants
 public final static int DONE;
 // Constructors
 protected BreakIterator();
 // Class Methods
 public static synchronized Locale[] getAvailableLocales();
 public static BreakIterator getCharacterInstance();
 public static BreakIterator getCharacterInstance(Locale where);
 public static BreakIterator getLineInstance();
 public static BreakIterator getLineInstance(Locale where);
 public static BreakIterator getSentenceInstance();
 public static BreakIterator getSentenceInstance(Locale where);
 public static BreakIterator getWordInstance();
 public static BreakIterator getWordInstance(Locale where);
 // Instance Methods
 public Object clone();
 public abstract int current();
 public abstract int first();
 public abstract int following(int offset);
 public abstract CharacterIterator getText();
 public abstract int last();
 public abstract int next();
 public abstract int next(int n)
 public abstract int previous();
 public abstract void setText(CharacterIterator newText);
 public void setText(String newText);
}

Constants

DONE

public final static int DONE

Description

A constant that is returned by next() or previous() if there are no more breaks to be
returned.

Constructors

BreakIterator

protected BreakIterator()

Description

This constructor should be called only from constructors of subclasses.

Class Methods

getAvailableLocales

public static synchronized Locale[] getAvailableLocales()

Returns

An array of Locale objects.

Description

This method returns an array of the Locale objects that can be passed to
getCharacterInstance(), getLineInstance(), getSentenceInstance(), or
getWordInstance().

getCharacterInstance

public static BreakIterator getCharacterInstance()

Returns

A BreakIterator appropriate for the default Locale.

Description

This method creates a BreakIterator that can locate character boundaries in the default
Locale.

public static BreakIterator getCharacterInstance(Locale where)

Parameters

where

The Locale to use.

Returns

A BreakIterator appropriate for the given Locale.

Description

This method creates a BreakIterator that can locate character boundaries in the given
Locale.

getLineInstance

public static BreakIterator getLineInstance()

Returns

A BreakIterator appropriate for the default Locale.

Description

This method creates a BreakIterator that can locate line boundaries in the default Locale.

public static BreakIterator getLineInstance(Locale where)

Parameters

where

The Locale to use.

Returns

A BreakIterator appropriate for the given Locale.

Description

This method creates a BreakIterator that can locate line boundaries in the given Locale.

getSentenceInstance

public static BreakIterator getSentenceInstance()

Returns

A BreakIterator appropriate for the default Locale.

Description

This method creates a BreakIterator that can locate sentence boundaries in the default
Locale.

public static BreakIterator getSentenceInstance(Locale where)

Parameters

where

The Locale to use.

Returns

A BreakIterator appropriate for the given Locale.

Description

This method creates a BreakIterator that can locate sentence boundaries in the given
Locale.

getWordInstance

public static BreakIterator getWordInstance()

Returns

A BreakIterator appropriate for the default Locale.

Description

This method creates a BreakIterator that can locate word boundaries in the default Locale.

public static BreakIterator getWordInstance(Locale where)

Parameters

where

The Locale to use.

Returns

A BreakIterator appropriate for the given Locale.

Description

This method creates a BreakIterator that can locate word boundaries in the given Locale.

Instance Methods

clone

public Object clone()

Returns

A copy of this BreakIterator.

Overrides

Object.clone()

Description

This method creates a copy of this BreakIterator and then returns it.

current

public abstract int current()

Returns

The current position of this BreakIterator.

Description

This method returns the current position of this BreakIterator. The current position is the
character index of the most recently returned boundary.

first

public abstract int first()

Returns

The position of the first boundary of this BreakIterator.

Description

This method finds the first boundary in this BreakIterator and returns its character index.
The current position of the iterator is set to this boundary.

following

public abstract int following(int offset)

Parameters

offset

An offset into this BreakIterator.

Returns

The position of the first boundary after the given offset of this BreakIterator or DONE if
there are no more boundaries.

Throws

IllegalArgumentException

If offset is not a valid value for the CharacterIterator of this
BreakIterator.

Description

This method finds the first boundary after the given offset in this BreakIterator and returns
its character index.

getText

public abstract CharacterIterator getText()

Returns

The CharacterIterator that this BreakIterator uses.

Description

This method returns a CharacterIterator that represents the text this BreakIterator
examines.

last

public abstract int last()

Returns

The position of the last boundary of this BreakIterator.

Description

This method finds the last boundary in this BreakIterator and returns its character index.
The current position of the iterator is set to this boundary.

next

public abstract int next()

Returns

The position of the next boundary of this BreakIterator or DONE if there are no more
boundaries.

Description

This method finds the next boundary in this BreakIterator after the current position and
returns its character index. The current position of the iterator is set to this boundary.

public abstract int next(int n)

Parameters

n

The boundary to return. A positive value moves to a later boundary a negative value moves
to a previous boundary; the value 0 does nothing.

Returns

The position of the requested boundary of this BreakIterator.

Description

This method finds the nth boundary in this BreakIterator, starting from the current position,
and returns its character index. The current position of the iterator is set to this boundary.

For example, next(-2) finds the third previous boundary. Thus next(1) is equivalent to
next(), next(-1) is equivalent to previous(), and next(0) does nothing.

previous

public abstract int previous()

Returns

The position of the previous boundary of this BreakIterator.

Description

This method finds the previous boundary in this BreakIterator, starting from the current
position, and returns its character index. The current position of the iterator is set to this boundary.

setText

public abstract void setText(CharacterIterator newText)

Parameters

newText

The CharacterIterator that contains the text to be examined.

Description

This method tells this BreakIterator to examine the piece of text specified by the
CharacterIterator. This current position of this BreakIterator is set to first().

public void setText(String newText)

Parameters

newText

The String that contains the text to be examined.

Description

This method tells this BreakIterator to examine the piece of text specified by the String,
using a StringCharacterIterator created from the given string. This current position of
this BreakIterator is set to first().

Inherited Methods

Method Inherited From Method Inherited From

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

CharacterIterator, Locale, String, StringCharacterIterator

UnknownServiceException CharacterIterator

Chapter 17

17. The java.util Package
Contents:
Calendar
Date
Dictionary
EmptyStackException
Enumeration
EventListener
EventObject
GregorianCalendar
Hashtable
ListResourceBundle
Locale
MissingResourceException
NoSuchElementException
Observable
Observer
Properties
PropertyResourceBundle
Random
ResourceBundle
SimpleTimeZone
Stack
StringTokenizer
TimeZone
TooManyListenersException
Vector

The package java.util contains a number of useful classes and interfaces. Although the name of the
package might imply that these are utility classes, they are really more important than that. In fact, Java

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_06.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_07.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_08.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_11.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_13.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_14.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_16.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_17.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_18.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_19.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_20.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_22.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_5F25.htm

depends directly on several of the classes in this package, and many programs will find these classes
indispensable. The classes and interfaces in java.util include:

● The Hashtable class for implementing hashtables, or associative arrays.

● The Vector class, which supports variable-length arrays.

● The Enumeration interface for iterating through a collection of elements.

● The StringTokenizer class for parsing strings into distinct tokens separated by delimiter
characters.

● The EventObject class and the EventListener interface, which form the basis of the new
AWT event model in Java 1.1.

● The Locale class in Java 1.1, which represents a particular locale for internationalization purposes.

● The Calendar and TimeZone classes in Java. These classes interpret the value of a Date object
in the context of a particular calendar system.

● The ResourceBundle class and its subclasses, ListResourceBundle and
PropertyResourceBundle, which represent sets of localized data in Java 1.1.

Figure 17.1 shows the class hierarchy for the java.util package.

Figure 17.1: The java.util package

[Graphic: Figure 17-1]

BitSet

Name

BitSet

Synopsis

Class Name:

java.util.BitSet

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

JDK 1.0 or later

Description

The BitSet class implements a set of bits. The set grows in size as needed. Each element of a BitSet has
a boolean value. When a BitSet object is created, all of the bits are set to false by default. The bits in a
BitSet are indexed by nonnegative integers, starting at 0. The size of a BitSet is the number of bits that
it currently contains. The BitSet class provides methods to set, clear, and retrieve the values of the
individual bits in a BitSet. There are also methods to perform logical AND, OR, and XOR operations.

Class Summary

public final class java.util.BitSet extends java.lang.Object
 implements java.lang.Cloneable, java.io.Serializable {
 // Constructors
 public BitSet();
 public BitSet(int nbits);
 // Instance Methods
 public void and(BitSet set);

 public void clear(int bit);
 public Object clone();
 public boolean equals(Object obj);
 public boolean get(int bit);
 public int hashCode();
 public void or(BitSet set);
 public void set(int bit);
 public int size();
 public String toString();
 public void xor(BitSet set);
}

Constructors

BitSet

public BitSet()

Description

This constructor creates a BitSet with a default size of 64 bits. All of the bits in the BitSet are
initially set to false.

public BitSet(int nbits)

Parameters

nbits

The initial number of bits.

Description

This constructor creates a BitSet with a size of nbits. All of the bits in the BitSet are initially
set to false.

Instance Methods

and

public void and(BitSet set)

Parameters

set

The BitSet to AND with this BitSet.

Description

This method computes the logical AND of this BitSet and the specified BitSet and stores the
result in this BitSet. In other words, for each bit in this BitSet, the value is set to only true if
the bit is already true in this BitSet and the corresponding bit in set is true.

If the size of set is greater than the size of this BitSet, the extra bits in set are ignored. If the size
of set is less than the size of this BitSet, the extra bits in this BitSet are set to false.

clear

public void clear(int bit)

Parameters

bit

The index of the bit to clear.

Description

This method sets the bit at the given index to false. If bit is greater than or equal to the number of
bits in the BitSet, the size of the BitSet is increased so that it contains bit values. All of the
additional bits are set to false.

clone

public Object clone()

Returns

A copy of this BitSet.

Overrides

Object.clone()

Description

This method creates a copy of this BitSet and returns it. In other words, the returned BitSet has
the same size as this BitSet, and it has the same bits set to true.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of BitSet and it contains the same bit values as the
object this method is associated with. In other words, this method compares each bit of this BitSet
with the corresponding bit of obj. If any bits do not match, the method returns false. If the size of
this BitSet is different than obj, the extra bits in either this BitSet or in obj must be false for
this method to return true.

get

public boolean get(int bit)

Parameters

bit

The index of the bit to retrieve.

Returns

The boolean value of the bit at the given index.

Description

This method returns the value of the given bit. If bit is greater than or equal to the number of bits in
the BitSet, the method returns false.

hashCode

public int hashCode()

Returns

The hashcode for this BitSet.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this object.

or

public void or(BitSet set)

Parameters

set

The BitSet to OR with this BitSet.

Description

This method computes the logical OR of this BitSet and the specified BitSet, and stores the
result in this BitSet. In other words, for each bit in this BitSet, the value is set to true if the bit
is already true in this BitSet or the corresponding bit in set is true.

If the size of set is greater than the size of this BitSet, this BitSet is first increased in size to
accommodate the additional bits. All of the additional bits are initially set to false.

set

public void set(int bit)

Parameters

bit

The index of the bit to set.

Description

This method sets the bit at the given index to true. If bit is greater than or equal to the number of
bits in the BitSet, the size of the BitSet is increased so that it contains bit values. All of the
additional bits except the last one are set to false.

size

public int size()

Returns

The size of this BitSet.

Description

This method returns the size of this BitSet, which is the number of bits currently in the set.

toString

public String toString()

Returns

A string representation of this BitSet.

Overrides

Object.toString()

Description

This method returns a string representation of this BitSet. The string lists the indexes of all the bits
in the BitSet that are true.

xor

public void xor(BitSet set)

Parameters

set

The BitSet to XOR with this BitSet.

Description

This method computes the logical XOR (exclusive OR) of this BitSet and the specified BitSet
and stores the result in this BitSet. In other words, for each bit in this BitSet, the value is set to
true only if the bit is already true in this BitSet, and the corresponding bit in set is false, or
if the bit is false in this BitSet and the corresponding bit in set is true.

If the size of set is greater than the size of this BitSet, this BitSet is first increased in size to
accommodate the additional bits. All of the additional bits are initially set to false.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object getClass() Object

notify() Object notifyAll() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Cloneable, Serializable

Vector Calendar

Chapter 18

18. The java.util.zip Package
Contents:
CheckedInputStream
CheckedOutputStream
Checksum
CRC32
DataFormatException
Deflater
DeflaterOutputStream
GZIPInputStream
GZIPOutputStream
Inflater
InflaterInputStream
ZipEntry
ZipException
ZipFile
ZipInputStream
ZipOutputStream

The package java.util.zip is new as of Java 1.1. It contains classes that provide support for
general-purpose data compression and decompression using the ZLIB compression algorithms. The
important classes in java.util.zip are those that provide the means to read and write data that is
compatible with the popular GZIP and ZIP formats: GZIPInputStream, GZIPOutputStream,
ZipInputStream, and ZipOutputStream. Figure 18.1 shows the class hierarchy for the
java.util.zip package.

Figure 18.1: The java.text package

It is easy to use the GZIP and ZIP classes because they subclass java.io.FilterInputStream
and java.io.FilterOutputStream. For example, to decompress GZIP data, you simply create a
GZIPInputStream around the input stream that represents the compressed data. As with any
InputStream, you could be reading from a file, a socket, or some other data source. You can then
read decompressed data by calling the read() methods of the GZIPInputStream. The following
code fragment creates a GZIPInputStream that reads data from the file sample.gz :

FileInputStream inFile;
try {
 inFile = new FileInputStream("sample.gz");
} catch (IOException e) {
 System.out.println("Couldn't open file.");

 return;
}
GZIPInputStream in = new GZIPInputStream(inFile);
// Now use in.read() to get decompressed data.

Similarly, you can compress data using the GZIP format by creating a GZIPOutputStream around an
output stream and using the write() methods of GZIPOutputStream. The following code fragment
creates a GZIPOutputStream that writes data to the file sample.gz :

FileOutputStream outFile;
try {
 outFile = new FileOutputStream("sample.gz");
} catch (IOException e) {
 System.out.println("Couldn't open file.");
 return;
}
GZIPOutputStream out = new GZIPOutputStream(outFile);
// Now use out.write() to write compressed data.

A ZIP file, or archive, is not quite as easy to use because it may contain more than one compressed file.
A ZipEntry object represents each compressed file in the archive. When you are reading from a
ZipInputStream, you must first call getNextEntry() to access an entry, and then you can read
decompressed data from the stream, just like with a GZIPInputStream. When you are writing data to
a ZipOutputStream, use putNextEntry() before you start writing each entry in the archive. The
ZipFile class is provided as a convenience for reading an archive; it allows nonsequential access to the
entries in a ZIP file.

The remainder of the classes in java.util.zip exist to support the GZIP and ZIP classes. The
generic Deflater and Inflater classes implement the ZLIB algorithms; they are used by
DeflaterOutputStream and InflaterInputStream to decompress and compress data. The
Checksum interface and the classes that implement it, Adler32 and CRC32, define algorithms that
generate checksums from stream data. These checksums are used by the CheckedInputStream and
CheckedOutputStream classes.

Adler32

Name

Adler32

Synopsis

Class Name:

java.util.zip.Adler32

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.util.zip.Checksum

Availability:

New as of JDK 1.1

Description

The Adler32 class implements the Checksum interface using the Adler-32 algorithm. This algorithm
is significantly faster than CRC-32 and almost as reliable.

Class Summary

public class java.util.zip.Adler32 extends java.lang.Object
 implements java.util.zip.Checksum {
 // Constructors
 public Adler32();

 // Instance Methods
 public long getValue();
 public void reset();
 public void update(int b);
 public void update(byte[] b);

 public native void update(byte[] b, int off, int len);
}

Constructors

Adler32

public Adler32()

Description

This constructor creates an Adler32 object.

Instance Methods

getValue

public long getValue()

Returns

The current checksum value.

Implements

Checksum.getValue()

Description

This method returns the current value of this checksum.

reset

public void reset()

Implements

Checksum.reset()

Description

This method resets the checksum to its initial value, making it appear as though it has not been
updated by any data.

update

public void update(int b)

Parameters

b

The value to be added to the data stream for the checksum calculation.

Implements

Checksum.update(int)

Description

This method adds the specified value to the data stream and updates the checksum value. The
method uses only the lowest eight bits of the given int.

public void update(byte[] b)

Parameters

b

An array of bytes to be added to the data stream for the checksum calculation.

Description

This method adds the bytes from the specified array to the data stream and updates the checksum
value.

public native void update(byte[] b, int off, int len)

Parameters

b

An array of bytes to be added to the data stream for the checksum calculation.

off

An offset into the byte array.

len

The number of bytes to use.

Implements

Checksum.update(byte[], int, int)

Description

This method adds len bytes from the specified array, starting at off, to the data stream and
updates the checksum value.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Checksum, CRC32

Vector CheckedInputStream

Appendix A

A. The Unicode 2.0 Character Set
Characters Description

\u0000 - \u1FFF Alphabets

\u0020 - \u007F Basic Latin

\u0080 - \u00FF Latin-1 supplement

\u0100 - \u017F Latin extended-A

\u0180 - \u024F Latin extended-B

\u0250 - \u02AF IPA extensions

\u02B0 - \u02FF Spacing modifier letters

\u0300 - \u036F Combining diacritical marks

\u0370 - \u03FF Greek

\u0400 - \u04FF Cyrillic

\u0530 - \u058F Armenian

\u0590 - \u05FF Hebrew

\u0600 - \u06FF Arabic

\u0900 - \u097F Devanagari

\u0980 - \u09FF Bengali

\u0A00 - \u0A7F Gurmukhi

\u0A80 - \u0AFF Gujarati

\u0B00 - \u0B7F Oriya

\u0B80 - \u0BFF Tamil

\u0C00 - \u0C7F Telugu

\u0C80 - \u0CFF Kannada

\u0D00 - \u0D7F Malayalam

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/appb_01.htm

\u0E00 - \u0E7F Thai

\u0E80 - \u0EFF Lao

\u0F00 - \u0FBF Tibetan

\u10A0 - \u10FF Georgian

\u1100 - \u11FF Hangul Jamo

\u1E00 - \u1EFF Latin extended additional

\u1F00 - \u1FFF Greek extended

\u2000 - \u2FFF Symbols and punctuation

\u2000 - \u206F General punctuation

\u2070 - \u209F Superscripts and subscripts

\u20A0 - \u20CF Currency symbols

\u20D0 - \u20FF Combining diacritical marks for symbols

\u2100 - \u214F Letterlike symbols

\u2150 - \u218F Number forms

\u2190 - \u21FF Arrows

\u2200 - \u22FF Mathematical operators

\u2300 - \u23FF Miscellaneous technical

\u2400 - \u243F Control pictures

\u2440 - \u245F Optical character recognition

\u2460 - \u24FF Enclosed alphanumerics

\u2500 - \u257F Box drawing

\u2580 - \u259F Block elements

\u25A0 - \u25FF Geometric shapes

\u2600 - \u26FF Miscellaneous symbols

\u2700 - \u27BF Dingbats

\u3000 - \u33FF CJK auxiliary

\u3000 - \u303F CJK symbols and punctuation

\u3040 - \u309F Hiragana

\u30A0 - \u30FF Katakana

\u3100 - \u312F Bopomofo

\u3130 - \u318F Hangul compatibility Jamo

\u3190 - \u319F Kanbun

\u3200 - \u32FF Enclosed CJK letters and months

\u3300 - \u33FF CJK compatibility

\u4E00 - \u9FFF
CJK unified ideographs: Han characters used in China, Japan, Korea, Taiwan,
and Vietnam

\uAC00 - \uD7A3 Hangul syllables

\uD800 - \uDFFF Surrogates

\uD800 - \uDB7F High surrogates

\uDB80 - \uDBFF High private use surrogates

\uDC00 - \uDFFF Low surrogates

\uE000 - \uF8FF Private use

\uF900 - \uFFFF Miscellaneous

\uF900 - \uFAFF CJK compatibility ideographs

\uFB00 - \uFB4F Alphabetic presentation forms

\uFB50 - \uFDFF Arabic presentation forms-A

\uFE20 - \uFE2F Combing half marks

\uFE30 - \uFE4F CJK compatibility forms

\uFE50 - \uFE6F Small form variants

\uFE70 - \uFEFE Arabic presentation forms-B

\uFEFF Specials

\uFF00 - \uFFEF Halfwidth and fullwidth forms

\uFFF0 - \uFFFF Specials

ZipOutputStream The UTF-8 Encoding

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/appb_01.htm

Index

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Symbols and Numbers
+ (concatenation) operator : String Concatenation

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_a.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_b.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_c.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_d.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_e.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_f.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_g.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_h.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_i.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_j.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_k.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_l.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_m.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_n.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_o.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_p.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_q.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_r.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_s.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_t.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_u.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_v.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_w.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_x.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_y.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_z.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_a.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_b.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_c.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_d.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_e.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_f.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_g.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_h.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_i.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_j.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_k.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_l.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_m.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_n.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_o.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_p.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_q.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_r.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_s.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_t.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_u.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_v.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_w.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_x.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_y.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/index/idx_z.htm

 Preface

Preface
Contents:
New Features of AWT in Java 1.1
What This Book Covers
About the Source Code
Other Java Books and Resources
About Java
Conventions Used in This Book
Request for Comments
Acknowledgments

The Abstract Window Tookit (AWT) provides the user interface for Java programs. Unless you want to
construct your own GUI or use a crude text-only interface, the AWT provides the tools you will use to
communicate with the user. Although we are beginning to see some other APIs for building user
interfaces, like Netscape's IFC (Internet Foundation Classes), those alternative APIs will not be in
widespread use for some time, and some will be platform specific. Likewise, we are beginning to see
automated tools for building GUIs in Java; Sun's JavaBeans effort promises to make such tools much
more widespread. (In fact, the biggest changes in Java 1.1 prepare the way for using the various AWT
components as JavaBeans.) However, even with automated tools and JavaBeans in the future, an in-depth
knowledge of AWT is essential for the practicing Java programmer.

The major problem facing Java developers these days is that AWT is a moving target. Java 1.0.2 is being
replaced by Java 1.1, with many significant new features. Java 1.1 was released on February 18, 1997,
but it isn't clear how long it will take for 1.1 to be accepted in the market. The problem facing developers
is not just learning about the new features and changes in Java 1.1, but also knowing when they can
afford to use these new features in their code. In practice, this boils down to one question: when will
Netscape Navigator support Java 1.1? Rumor has it that the answer is "as soon as possible"--and we all
hope this rumor is correct. But given the realities of maintaining a very complex piece of software, and
the fact that Netscape is currently in the beta process for Navigator 4.0, there's a possibility that "as soon
as possible" and "soon" aren't the same thing. In other words, you should expect Java 1.0.2 to stick

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch00_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch00_06.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch00_07.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch00_08.htm

around for a while, especially since Web users won't all replace their browsers as soon as Navigator has
1.1 support.

This state of affairs raises obvious problems for my book. Nothing would have made me happier than to
write a book that covered AWT 1.1 only. It would be significantly shorter, for one thing, and I wouldn't
have to spend so much effort pointing out which features are present in which release. But that's not the
current reality. For the time being, programmers still need to know about 1.0.2. Therefore, this book
covers both releases thoroughly. There are many examples using 1.0.2; many more examples that require
1.1; and more examples showing you how to update 1.0.2 code to use 1.1's features.

Sun has done a good job of maintaining compatibility between versions: 1.0 code runs under Java 1.1,
with very few exceptions. All of the 1.0 examples in this book have been tested under Java 1.1. However,
Java 1.1--and particularly, AWT 1.1--offer many advantages over older releases. If nothing else, I hope
this book convinces you that you should be looking forward to the day when you can forget about writing
code for Java 1.0.2.

New Features of AWT in Java 1.1

Having spent all this time talking about 1.0.2 and 1.1 and the transitional state we're currently in and
having alluded briefly to the advantages of Java 1.1, you deserve a brief summary of what has changed.
Of course, you'll find the details in the book.

Improved event handling

Java 1.1 provides a completely new event model. Instead of propagating events to all objects that
might possibly have an interest, objects in Java 1.1 register their interest in particular kinds of
events and get only the events they're interested in hearing. The old event model is still supported,
but the new model is much more efficient.

The new event model is also important in the context of JavaBeans. The old events were pretty
much specific to AWT. The new model has been designed as a general purpose feature for
communication between software components. Unfortunately, how to use events in this more
general sense is beyond the scope of this book, but you should be aware that it's possible.

New components and containers

Java 1.1 provides one new component, the PopupMenu, and one new container, the
ScrollPane. Pop-up menus are a staple of modern user interfaces; providing them fixes a
serious omission. ScrollPane makes it trivial to implement scrolling; in Java 1.0, you had to
do scrolling "by hand." In Java 1.1, you also get menu shortcuts (i.e., the ability to select menu
items using the keyboard), another standard feature of modern user interfaces.

Java 1.1 also introduces a LightweightPeer, which means that it is possible to create
"lightweight components." To do so, you subclass Component or Container directly; this
wasn't possible in earlier releases. For simple operations, lightweight components are much more
efficient than full-fledged components.

Clipboards

Java 1.1 lets you read from and write to the system clipboard and create private clipboards for use
by your programs. The clipboard facility is a down payment on a larger data transfer facility,
which will support drag and drop. (No promises about when drag and drop will appear.)

Printing

Java 1.1 gives components the ability to print.

The rest

There are many other new features, including more flexible use of cursors; the ability to use
system color schemes, and thus make your program look like other software in the run-time
environment; more image filters to play with; and the ability to prescale an image.

Deprecated Methods and JavaBeans

One of the biggest changes in Java 1.1 doesn't concern the feature set at all. This was the addition of
many new methods that differ from a method of Java 1.0 in name only. There are hundreds of these,
particularly in AWT. The new method names show an important future direction for the AWT package
(in fact, all of Java). The new names obey the naming conventions used by JavaBeans, which means that
all AWT classes are potentially Beans. These conventions make it possible for an application builder to
analyze what a component does based on its public methods. For example, the method setFont()
changes the value of the component's Font property. In turn, this means that you will eventually be able
to build user interfaces and, in some cases, entire applications, inside some other tool, without writing
any Java code at all. An application builder will be able to find out what it needs to know about any
component by looking at the component itself, and letting you customize the component and its
interactions with others.

Comments in the JDK source code indicate that the older method names have been "deprecated," which
means that you should consider the old names obsolete and avoid using them; they could disappear in a
future release.

Reworking AWT to comply with JavaBeans is both necessary and inevitable. Furthermore, it's a good
idea to get into the habit of following the same conventions for your own code; the advantages of

JavaBeans are much greater than the inconvenience of changing your coding style.

Other Changes in Java

Other new features are scattered throughout the rest of the Java classes, most notably, improvements in
the networking and I/O packages and support for internationalization. Some new features were added to
the language itself, of which the most important is "inner classes." For the most part, I don't discuss these
changes; in fact, I stay away from them and base non-AWT code on the 1.0.2. release. Though these
changes are important, covering the new material in AWT is enough for one book. If I used a new feature
at this point, I would feel that I owed you an explanation, and this book is already long enough. A future
edition will update the code so that it doesn't rely on any older features.

 What This Book Covers

Chapter 1

1. Abstract Window Toolkit Overview
Contents:
Components
Peers
Layouts
Containers
And the Rest
Summary

For years, programmers have had to go through the hassles of porting software from BSD-based UNIX
to System V Release 4-based UNIX, from OpenWindows to Motif, from PC to UNIX to Macintosh (or
some combination thereof), and between various other alternatives, too numerous to mention. Getting an
application to work was only part of the problem; you also had to port it to all the platforms you
supported, which often took more time than the development effort itself. In the UNIX world, standards
like POSIX and X made it easier to move applications between different UNIX platforms. But they only
solved part of the problem and didn't provide any help with the PC world. Portability became even more
important as the Internet grew. The goal was clear: wouldn't it be great if you could just move
applications between different operating environments without worrying about the software breaking
because of a different operating system, windowing environment, or internal data representation?

In the spring of 1995, Sun Microsystems announced Java, which claimed to solve this dilemma. What
started out as a dancing penguin (or Star Trek communicator) named Duke on remote controls for
interactive television has become a new paradigm for programming on the Internet. With Java, you can
create a program on one platform and deliver the compilation output (byte-codes/class files) to every
other supported environment without recompiling or worrying about the local windowing environment,
word size, or byte order. The first generation of Java programs consisted mostly of fancy animation
applets that ran in a web browser like Netscape Navigator, Internet Explorer, or HotJava. We're
beginning to see the next generation now: powerful distributed applications in areas ranging from
commerce to medical imaging to network management. All of these applications require extreme
portability: Joe's Online Bait Shop doesn't have the time or energy to port its "Online Bait Buyer"

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch00_08.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_06.htm

program to every platform on the Internet but doesn't want to limit its market to a specific platform. Java
neatly solves their problem.

Windowing systems present the biggest challenges for portability. When you move an application from
Windows to the Macintosh, you may be able to salvage most of the computational guts, but you'll have to
rewrite the window interface code completely. In Java, this part of the portability challenge is addressed
by a package called AWT, which stands for Abstract Window Toolkit (although people have come up
with many other expansions). AWT provides the magic of maintaining the local look and feel of the
user's environment. Because of AWT, the same application program can look appropriate in any
environment. For example, if your program uses a pull-down list, that list will look like a Windows list
when you run the program under Windows; a Macintosh list when you run the program on a Mac; and a
Motif list when you run the program on a UNIX system under Motif. The same code works on all
platforms. In addition to providing a common set of user interface components, AWT provides facilities
for manipulating images and generating graphics.

This book is a complete programmer's guide and reference to the java.awt package (including
java.awt.image, java.awt.event, java.awt.datatransfer, and java.awt.peer). It
assumes that you're already familiar with the Java language and class libraries. If you aren't, Exploring
Java, by Pat Niemeyer and Josh Peck, provides a general introduction, and other books in the O'Reilly
Java series provide detailed references and tutorials on specific topics. This chapter provides a quick
overview of AWT: it introduces you to the various GUI elements contained within the java.awt
package and gives you pointers to the chapters that provide more specific information about each
component. If you're interested in some of the more advanced image manipulation capabilities, head right
to Chapter 12, Image Processing. The book ends with a reference section that summarizes what you need
to know about every class in AWT.

In using this book, you should be aware that it covers two versions of AWT: 1.0.2 and 1.1. The Java 1.1
JDK (Java Developer's Kit) occurred in December 1996. This release includes many improvements and
additions to AWT and is a major step forward in Java's overall functionality. It would be nice if I could
say, "Forget about 1.0.2, it's obsolete--use this book to learn 1.1." However, I can't; at this point, since
browsers (Netscape Navigator in particular) still incorporate 1.0.2, and we have no idea when they will
incorporate the new release. As of publication, Navigator 4.0 is in beta test and incorporates 1.0.2.
Therefore, Java release 1.0.2 will continue to be important, at least for the foreseeable future.

In this summary, we'll point out new features of Java 1.1 as they come up. However, one feature deserves
mention and doesn't fit naturally into an overview. Many of the methods of Java 1.0.2 have been renamed
in Java 1.1. The old names still work but are "deprecated." The new names adhere strictly to the design
patterns discussed in the JavaBeans documentation:[1] all methods that retrieve the value of an object's
property begin with "get," all methods that set the value of a property begin with "set," and all methods
that test the value of some property begin with "is." For example, the size() method is now called
getSize(). The Java 1.1 compiler issues warnings whenever you used a deprecated method name.

[1] http://splash.javasoft.com/beans/spec.html

1.1 Components

Modern user interfaces are built around the idea of "components": reusable gadgets that implement a
specific part of the interface. They don't need much introduction: if you have used a computer since 1985
or so, you're already familiar with buttons, menus, windows, checkboxes, scrollbars, and many other
similar items. AWT comes with a repertoire of basic user interface components, along with the
machinery for creating your own components (often combinations of the basic components) and for
communicating between components and the rest of the program.

The next few sections summarize the components that are part of AWT. If you're new to AWT, you may
find it helpful to familiarize yourself with what's available before jumping into the more detailed
discussions later in this book.

Static Text

The Label class provides a means to display a single line of text on the screen. That's about it. They
provide visual aids to the user: for example, you might use a label to describe an input field. You have
control over the size, font, and color of the text. Labels are discussed in Labels. Figure 1.1 displays
several labels with different attributes.

Figure 1.1: Multiple Label instances

[Graphic: Figure 1-1]

User Input

Java provides several different ways for a user to provide input to an application. The user can type the
information or select it from a preset list of available choices. The choice depends primarily on the
desired functionality of the program, the user-base, and the amount of back-end processing that you want

file:///C|/download/splash.javasoft.com/beans/spec.html

to do.

The TextField and TextArea classes

Two components are available for entering keyboard input: TextField for single line input and
TextArea for multi-line input. They provide the means to do things from character-level data
validation to complex text editing. These are discussed in much more detail in Chapter 8, Input Fields.
Figure 1.2 shows a screen that contains various TextField and TextArea components.

Figure 1.2: TextField and TextArea elements

[Graphic: Figure 1-2]

The Checkbox and CheckboxGroup classes

The remaining input-oriented components provide mechanisms for letting the user select from a list of
choices. The first such mechanism is Checkbox, which lets you select or deselect an option. The left
side of the applet in Figure 1.3 shows a checkbox for a Dialog option. Clicking on the box selects the
option and makes the box change appearance. A second click deselects the option.

The CheckboxGroup class is not a component; it provides a means for grouping checkboxes into a
mutual exclusion set, often called a set of radio buttons. Selecting any button in the group automatically
deselects the other buttons. This behavior is useful for a set of mutually exclusive choices. For example,
the right side of the applet in Figure 1.3 shows a set of checkboxes for selecting a font. It makes sense to
select only one font at a time, so these checkboxes have been put in a CheckboxGroup.

Figure 1.3: Examples of Checkbox and CheckboxGroup

[Graphic: Figure 1-3]

The appearance of a checkbox varies from platform to platform. On the left, Figure 1.3 shows Windows;
the right shows Motif. On most platforms, the appearance also changes when a checkbox is put into a
CheckboxGroup.

The Choice class

Checkbox and CheckboxGroup present a problem when the list of choices becomes long. Every
element of a CheckboxGroup uses precious screen real estate, which limits the amount of space
available for other components. The Choice class was designed to use screen space more efficiently.
When a Choice element is displayed on the screen, it takes up the space of a single item in the list,
along with some extra space for decorations. This leaves more space for other components. When the
user selects a Choice component, it displays the available options next to or below the Choice. Once
the user makes a selection, the choices are removed from the screen, and the Choice displays the
selection. At any time, only one item in a Choice may be selected, so selecting an item implicitly
deselects everything else. Choice explores the details of the Choice class. Figure 1.4 shows examples
of open (on the right of the screens) and closed (on the left) Choice items in Windows 95 and Motif.

Figure 1.4: Open and closed Choice items

[Graphic: Figure 1-4]

The List class

Somewhere between Choice and CheckboxGroup in the screen real estate business is a component
called List. With a List, the user is still able to select any item. However, the programmer
recommends how many items to display on the screen at once. All additional choices are still available,
but the user moves an attached scrollbar to access them. Unlike a Choice, a List allows the user to
select multiple items. Section 9.2 covers the List component. Figure 1.5 shows List components in
different states.

Figure 1.5: List components in different states

[Graphic: Figure 1-5]

Menus

Most modern user interfaces use menus heavily; therefore, it's no surprise that Java supports menus. As
you'd expect, Java menus look like the menus in the windowing environment under which the program

runs. Currently, menus can only appear within a Frame, although this will probably change in the future.
A Menu is a fairly complex object, with lots of moving parts: menu bars, menu items, etc. Java 1.1 adds
hot keys to menus, allowing users to navigate a menu interface using keyboard shortcuts. The details of
Menu are explored in Chapter 10, Would You Like to Choose from the Menu? Figure 1.6 shows frames
with open menus for both Windows and Motif. Since tear-off menus are available on Motif systems, its
menus look and act a little differently. Figure 1.6 also includes a tear-off menu. The shortcuts (Ctrl+F8)
are newly supported in Java 1.1.

Figure 1.6: Examples of menus

[Graphic: Figure 1-6]

The PopupMenu class

The PopupMenu class is new to Java 1.1. Pop-up menus can be used for context-sensitive, component-
level menus. Associated with each Component can be its own pop-up menu. The details of creating and
working with the PopupMenu class and the fun time you have catching their events are covered in
Chapter 10, Would You Like to Choose from the Menu?, Would You Like to Choose from the Menu?
Figure 1.7 shows an example of a pop-up menu.

Figure 1.7: A Pop-up menu

[Graphic: Figure 1-7]

Event Triggers

Java provides two components whose sole purpose is to trigger actions on the screen: Button and
Scrollbar. They provide the means for users to signal that they are ready to perform an operation.
(Note that all components except labels generate events; I'm singling out buttons and scrollbars because
their only purpose is to generate events.)

The Scrollbar class

Most people are familiar with scrollbars. In a word processor or a web browser, when an image or
document is too large to fit on the screen, the scrollbar allows the user to move to another area. With
Java, the Scrollbar performs similarly. Selecting or moving the scrollbar triggers an event that allows
the program to process the scrollbar movement and respond accordingly. The details of the Scrollbar
are covered in Scrollbar. Figure 1.8 shows horizontal and vertical scrollbars.

Figure 1.8: Horizontal and vertical scrollbars

[Graphic: Figure 1-8]

Note that a scrollbar is just that. It generates events when the user adjusts it, but the program using the
scrollbar is responsible for figuring out what to do with the events, such as displaying a different part of
an image or the text, etc. Several of the components we've discussed, like TextArea and List, have
built-in scrollbars, saving you the trouble of writing your own code to do the actual scrolling. Java 1.1
has a new container called a ScrollPane that has scrolling built in. By using a scroll pane, you should
be able to avoid using scroll bars as a positioning mechanism. An example of ScrollPane appears
later in this chapter.

The Button class

A button is little more than a label that you can click on. Selecting a button triggers an event telling the
program to go to work. Buttons explores the Button component. Figure 1.9 shows Button examples.

Figure 1.9: Various buttons

[Graphic: Figure 1-9]

The Java Management API includes a fancier button (ImageButton) with pictures rather than labels.
For the time being, this is a standard extension of Java and not in the Core API. If you don't want to use

these extensions, you'll have to implement an image button yourself.

Expansion

The Canvas class

The Canvas class is just a blank area; it doesn't have any predefined appearance. You can use Canvas
for drawing images, building new kinds of components, or creating super-components that are aggregates
of other components. For example, you can build a picture button by drawing a picture on a Canvas and
detecting mouse click events within the area of the Canvas. Canvas is discussed in Canvas.

Acknowledgments Peers

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch00_08.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_02.htm

Chapter 2

2. Simple Graphics
Contents:
Graphics
Point
Dimension
Shape
Rectangle
Polygon
Image
MediaTracker

This chapter digs into the meat of the AWT classes. After completing this chapter, you will be able to draw
strings, images, and shapes via the Graphics class in your Java programs. We discuss geometry-related classes-
-Polygon, Rectangle, Point, and Dimension, and the Shape interface--you will see these throughout
the remaining AWT objects. You will also learn several ways to do smooth animation by using double buffering
and the MediaTracker.

After reading this chapter, you should be able to do simple animation and image manipulation with AWT. For
most applications, this should be sufficient. If you want to look at AWT's more advanced graphics capabilities, be
sure to take a look at Chapter 12, Image Processing.

2.1 Graphics

The Graphics class is an abstract class that provides the means to access different graphics devices. It is the
class that lets you draw on the screen, display images, and so forth. Graphics is an abstract class because
working with graphics requires detailed knowledge of the platform on which the program runs. The actual work
is done by concrete classes that are closely tied to a particular platform. Your Java Virtual Machine vendor
provides the necessary concrete classes for your environment. You never need to worry about the platform-
specific classes; once you have a Graphics object, you can call all the methods of the Graphics class,
confident that the platform-specific classes will work correctly wherever your program runs.

You rarely need to create a Graphics object yourself; its constructor is protected and is only called by the

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_06.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch02_04.htm

subclasses that extend Graphics. How then do you get a Graphics object to work with? The sole parameter
of the Component.paint() and Component.update() methods is the current graphics context.
Therefore, a Graphics object is always available when you override a component's paint() and update()
methods. You can ask for the graphics context of a Component by calling Component.getGraphics().
However, many components do not have a drawable graphics context. Canvas and Container objects return
a valid Graphics object; whether or not any other component has a drawable graphics context depends on the
run-time environment. (The latest versions of Netscape Navigator provide a drawable graphics context for any
component, but you shouldn't get used to writing platform-specific code.) This restriction isn't as harsh as it
sounds. For most components, a drawable graphics context doesn't make much sense; for example, why would
you want to draw on a List? If you want to draw on a component, you probably can't. The notable exception is
Button, and that may be fixed in future versions of AWT.

Graphics Methods

Constructors

protected Graphics ()

Because Graphics is an abstract class, it doesn't have a visible constructor. The way to get a
Graphics object is to ask for one by calling getGraphics() or to use the one given to you by the
Component.paint() or Component.update() method.

The abstract methods of the Graphics class are implemented by some windowing system-specific class. You
rarely need to know which subclass of Graphics you are using, but the classes you actually get (if you are
using the JDK) are sun.awt.win32.Win32Graphics (JDK1.0), sun.awt.window.WGraphics
(JDK1.1), sun.awt.motif.X11Graphics, or sun.awt.macos.MacGraphics. Pseudo-constructors

In addition to using the graphics contexts given to you by getGraphics() or in Component.paint(),
you can get a Graphics object by creating a copy of another Graphics object. Creating new graphics
contexts has resource implications. Certain platforms have a limited number of graphics contexts that can be
active. For instance, on Windows 95 you cannot have more than four in use at one time. Therefore, it's a good
idea to call dispose() as soon as you are done with a Graphics object. Do not rely on the garbage collector
to clean up for you.

public abstract Graphics create ()

This method creates a second reference to the graphics context. It is useful for clipping (reducing the
drawable area).

public Graphics create (int x, int y, int width, int height)

This method creates a second reference to a subset of the drawing area of the graphics context. The new
Graphics object covers the rectangle from (x, y) through (x+width-1, y+height-1) in the original
object. The coordinate space of the new Graphics context is translated so that the upper left corner is (0,
0) and the lower right corner is (width, height). Shifting the coordinate system of the new object

makes it easier to work within a portion of the drawing area without using offsets.

Drawing strings

These methods let you draw text strings on the screen. The coordinates refer to the left end of the text's baseline.

public abstract void drawString (String text, int x, int y)

The drawString() method draws text on the screen in the current font and color, starting at position
(x, y). The starting coordinates specify the left end of the String's baseline.

public void drawChars (char text[], int offset, int length, int x, int y)

The drawChars() method creates a String from the char array text starting at text[offset]
and continuing for length characters. The newly created String is then drawn on the screen in the
current font and color, starting at position (x, y). The starting coordinates specify the left end of the
String's baseline.

public void drawBytes (byte text[], int offset, int length, int x, int y)

The drawBytes() method creates a String from the byte array text starting at text[offset]
and continuing for length characters. This String is then drawn on the screen in the current font and
color, starting at position (x, y). The starting coordinates specify the left end of the String's baseline.

public abstract Font getFont ()

The getFont() method returns the current Font of the graphics context. See Chapter 3, Fonts and
Colors, for more on what you can do with fonts. You cannot get meaningful results with getFont()
until the applet or application is displayed on the screen (generally, not in init() of an applet or
main() of an application).

public abstract void setFont (Font font)

The setFont() method changes the current Font to font. If font is not available on the current
platform, the system chooses a default. To change the current font to 12 point bold TimesRoman:

setFont (new Font ("TimesRoman", Font.BOLD, 12));

public FontMetrics getFontMetrics ()

The getFontMetrics() method returns the current FontMetrics object of the graphics context.
You use FontMetrics to reveal sizing properties of the current Font--for example, how wide the
"Hello World" string will be in pixels when displayed on the screen.

public abstract FontMetrics getFontMetrics (Font font)

This version of getFontMetrics() returns the FontMetrics for the Font font instead of the
current font. You might use this method to see how much space a new font requires to draw text.

For more information about Font and FontMetrics, see Chapter 3, Fonts and Colors. Painting

public abstract Color getColor ()

The getColor() method returns the current foreground Color of the Graphics object. All future
drawing operations will use this color. Chapter 3, Fonts and Colors describes the Color class.

public abstract void setColor (Color color)

The setColor() method changes the current drawing color to color. As you will see in the next
chapter, the Color class defines some common colors for you. If you can't use one of the predefined
colors, you can create a color from its RGB values. To change the current color to red, use any of the
following:

setColor (Color.red);
setColor (new Color (255, 0, 0));
setColor (new Color (0xff0000));

public abstract void clearRect (int x, int y, int width, int height)

The clearRect() method sets the rectangular drawing area from (x, y) to (x+width-1, y+height-
1) to the current background color. Keep in mind that the second pair of parameters is not the opposite
corner of the rectangle, but the width and height of the area to clear.

public abstract void clipRect (int x, int y, int width, int height)

The clipRect() method reduces the drawing area to the intersection of the current drawing area and
the rectangular area from (x, y) to (x+width-1, y+height-1). Any future drawing operations outside
this clipped area will have no effect. Once you clip a drawing area, you cannot increase its size with
clipRect(); the drawing area can only get smaller. (However, if the clipRect() call is in
paint(), the size of the drawing area will be reset to its original size on subsequent calls to paint().)
If you want the ability to draw to the entire area, you must create a second Graphics object that contains
a copy of the drawing area before calling clipRect() or use setClip(). The following code is a
simple applet that demonstrates clipping; Figure 2.1 shows the result.

import java.awt.*;
public class clipping extends java.applet.Applet {
 public void paint (Graphics g) {
 g.setColor (Color.red);
 Graphics clippedGraphics = g.create();

 clippedGraphics.drawRect (0,0,100,100);
 clippedGraphics.clipRect (25, 25, 50, 50);
 clippedGraphics.drawLine (0,0,100,100);
 clippedGraphics.dispose();
 clippedGraphics=null;
 g.drawLine (0,100,100,0);
 }
}

Figure 2.1: Clipping restricts the drawing area

[Graphic: Figure 2-1]

The paint() method for this applet starts by setting the foreground color to red. It then creates a copy of the
Graphics context for clipping, saving the original object so it can draw on the entire screen later. The applet
then draws a rectangle, sets the clipping area to a smaller region, and draws a diagonal line across the rectangle
from upper left to lower right. Because clipping is in effect, only part of the line is displayed. The applet then
discards the clipped Graphics object and draws an unclipped line from lower left to upper right using the
original object g.

public abstract void setClip(int x, int y, int width, int height)

This setClip() method allows you to change the current clipping area based on the parameters
provided. setClip() is similar to clipRect(), except that it is not limited to shrinking the clipping
area. The current drawing area becomes the rectangular area from (x, y) to (x+width-1, y+height-
1); this area may be larger than the previous drawing area.

public abstract void setClip(Shape clip)

This setClip() method allows you to change the current clipping area based on the clip parameter,
which may be any object that implements the Shape interface. Unfortunately, practice is not as good as
theory, and in practice, clip must be a Rectangle; if you pass setClip() a Polygon, it throws an
IllegalArgumentException.[1] (The Shape interface is discussed later in this chapter.)

[1] It should be simple for Sun to fix this bug; one would expect clipping to a Polygon to
be the same as clipping to the Polygon's bounding rectangle.

public abstract Rectangle getClipBounds ()

public abstract Rectangle getClipRect ()

The getClipBounds() methods returns a Rectangle that describes the clipping area of a
Graphics object. The Rectangle gives you the (x, y) coordinates of the top left corner of the
clipping area along with its width and height. (Rectangle objects are discussed later in this chapter.)

getClipRect() is the Java 1.0 name for this method.

public abstract Shape getClip ()

The getClip() method returns a Shape that describes the clipping area of a Graphics object. That
is, it returns the same thing as getClipBounds() but as a Shape, instead of as a Rectangle. By
calling Shape.getBounds(), you can get the (x, y) coordinates of the top left corner of the clipping
area along with its width and height. In the near future, it is hard to imagine the actual object that
getClip() returns being anything other than a Rectangle.

public abstract void copyArea (int x, int y, int width, int height, int delta_x, int delta_y)

The copyArea() method copies the rectangular area from (x, y) to (x+width, y+height) to the area
with an upper left corner of (x+delta_x, y+delta_y). The delta_x and delta_y parameters are
not the coordinates of the second point but an offset from the first coordinate pair (x, y). The area copied
may fall outside of the clipping region. This method is often used to tile an area of the graphics context.
copyArea() does not save the contents of the area copied.

Painting mode

There are two painting or drawing modes for the Graphics class: paint (the default) and XOR mode. In paint
mode, anything you draw replaces whatever is already on the screen. If you draw a red square, you get a red
square, no matter what was underneath; this is what most programmers have learned to expect.

The behavior of XOR mode is rather strange, at least to people accustomed to modern programming
environments. XOR mode is short for eXclusive-OR mode. The idea behind XOR mode is that drawing the same
object twice returns the screen to its original state. This technique was commonly used for simple animations
prior to the development of more sophisticated methods and cheaper hardware.

The side effect of XOR mode is that painting operations don't necessarily get the color you request. Instead of
replacing the original pixel with the new value, XOR mode merges the original color, the painting color, and an
XOR color (usually the background color) to form a new color. The new color is chosen so that if you repaint the
pixel with the same color, you get the original pixel back. For example, if you paint a red square in XOR mode,
you get a square of some other color on the screen. Painting the same red square again returns the screen to its

original state.

public abstract void setXORMode (Color xorColor)

The setXORMode() method changes the drawing mode to XOR mode. In XOR mode, the system uses
the xorColor color to determine an alternate color for anything drawn such that drawing the same item
twice restores the screen to its original condition. The xorColor is usually the current background color
but can be any color. For each pixel, the new color is determined by an exclusive-or of the old pixel color,
the painting color, and the xorColor.

For example, if the old pixel is red, the XOR color is blue, and the drawing color is green, the end result
would be white. To see why, it is necessary to look at the RGB values of the three colors. Red is (255, 0,
0). Blue is (0, 0, 255). Green is (0, 255, 0). The exclusive-or of these three values is (255, 255, 255),
which is white. Drawing another green pixel with a blue XOR color yields red, the pixel's original color,
since (255, 255, 255) ^ (0, 0, 255) ^ (0, 255, 0) yields (255, 0, 0).[2] The following code generates the
display shown in Figure 2.2.

[2] ^ is the Java XOR operator.

import java.awt.*;
public class xor extends java.applet.Applet {
 public void init () {
 setBackground (Color.red);
 }
 public void paint (Graphics g) {
 g.setColor (Color.green);
 g.setXORMode (Color.blue);
 g.fillRect (10, 10, 100, 100);
 g.fillRect (10, 60, 100, 100);
 }
}

Figure 2.2: Drawing in XOR mode

[Graphic: Figure 2-2]

Although it's hard to visualize what color XOR mode will pick, there is one important special case. Let's say that
there are only two colors: a background color (the XOR color) and a foreground color (the painting color). Each
pixel must be in one color or the other. Painting "flips" each pixel to the other color. Foreground pixels become
background, and vice versa.

public abstract void setPaintMode ()

The setPaintMode() method puts the system into paint mode. When in paint mode, any drawing
operation replaces whatever is underneath it. Call setPaintMode() to return to normal painting when
finished with XOR mode.

Drawing shapes

Most of the drawing methods require you to specify a bounding rectangle for the object you want to draw: the
location of the object's upper left corner, plus its width and height. The two exceptions are lines and polygons.
For lines, you supply two endpoints; for polygons, you provide a set of points.

Versions 1.0.2 and 1.1 of AWT always draw solid lines that are one pixel wide; there is no support for line width
or fill patterns. A future version should support lines with variable widths and patterns.

public abstract void drawLine (int x1, int y1, int x2, int y2)

The drawLine() method draws a line on the graphics context in the current color from (x1, y1) to (x2,
y2). If (x1, y1) and (x2, y2) are the same point, you will draw a point. There is no method specific to
drawing a point. The following code generates the display shown in Figure 2.3.

g.drawLine (5, 5, 50, 75); // line
g.drawLine (5, 75, 5, 75); // point
g.drawLine (50, 5, 50, 5); // point

Figure 2.3: Drawing lines and points with drawLine()

[Graphic: Figure 2-3]

public void drawRect (int x, int y, int width, int height)

The drawRect() method draws a rectangle on the drawing area in the current color from (x, y) to
(x+width, y+height). If width or height is negative, nothing is drawn.

public abstract void fillRect (int x, int y, int width, int height)

The fillRect() method draws a filled rectangle on the drawing area in the current color from (x, y) to
(x+width-1, y+height-1). Notice that the filled rectangle is one pixel smaller to the right and bottom
than requested. If width or height is negative, nothing is drawn.

public abstract void drawRoundRect (int x, int y, int width, int height, int arcWidth, int arcHeight)

The drawRoundRect() method draws a rectangle on the drawing area in the current color from (x, y)
to (x+width, y+height). However, instead of perpendicular corners, the corners are rounded with a
horizontal diameter of arcWidth and a vertical diameter of arcHeight. If width or height is a
negative number, nothing is drawn. If width, height, arcWidth, and arcHeight are all equal, you
get a circle.

To help you visualize the arcWidth and arcHeight of a rounded rectangle, Figure 2.4 shows one
corner of a rectangle drawn with an arcWidth of 20 and a arcHeight of 40.

Figure 2.4: Drawing rounded corners

[Graphic: Figure 2-4]

public abstract void fillRoundRect (int x, int y, int width, int height, int arcWidth, int arcHeight)

The fillRoundRect() method draws a filled rectangle on the drawing area in the current color from
(x, y) to (x+width-1, y+height-1). However, instead of having perpendicular corners, the corners
are rounded with a horizontal diameter of arcWidth and a vertical diameter of arcHeight for the four
corners. Notice that the filled rectangle is one pixel smaller to the right and bottom than requested. If
width or height is a negative number, nothing is filled. If width, height, arcWidth, and
arcHeight are all equal, you get a filled circle.

Figure 2.4 shows how AWT generates rounded corners. Figure 2.5 shows the collection of rectangles
created by the following code. The rectangles in Figure 2.5 are filled and unfilled, with rounded and
square corners.

g.drawRect (25, 10, 50, 75);
g.fillRect (25, 110, 50, 75);
g.drawRoundRect (100, 10, 50, 75, 60, 50);
g.fillRoundRect (100, 110, 50, 75, 60, 50);

Figure 2.5: Varieties of rectangles

[Graphic: Figure 2-5]

public void draw3DRect (int x, int y, int width, int height, boolean raised)

The draw3DRect() method draws a rectangle in the current color from (x, y) to (x+width,
y+height); a shadow effect makes the rectangle appear to float slightly above or below the screen. The
raised parameter has an effect only if the current color is not black. If raised is true, the rectangle
looks like a button waiting to be pushed. If raised is false, the rectangle looks like a depressed
button. If width or height is negative, the shadow appears from another direction.

public void fill3DRect (int x, int y, int width, int height, boolean raised)

The fill3DRect() method draws a filled rectangle in the current color from (x, y) to (x+width,
y+height); a shadow effect makes the rectangle appear to float slightly above or below the screen. The
raised parameter has an effect only if the current color is not black. If raised is true, the rectangle
looks like a button waiting to be pushed. If raised is false, the rectangle looks like a depressed
button. To enhance the shadow effect, the depressed area is given a slightly deeper shade of the drawing
color. If width or height is negative, the shadow appears from another direction, and the rectangle
isn't filled. (Different platforms could deal with this differently. Try to ensure the parameters have positive
values.)

Figure 2.6 shows the collection of three-dimensional rectangles created by the following code. The
rectangles in the figure are raised and depressed, filled and unfilled.

g.setColor (Color.gray);
g.draw3DRect (25, 10, 50, 75, true);
g.draw3DRect (25, 110, 50, 75, false);
g.fill3DRect (100, 10, 50, 75, true);
g.fill3DRect (100, 110, 50, 75, false);

Figure 2.6: Filled and unfilled 3D rectangles

[Graphic: Figure 2-6]

public abstract void drawOval (int x, int y, int width, int height)

The drawOval() method draws an oval in the current color within an invisible bounding rectangle from
(x, y) to (x+width, y+height). You cannot specify the oval's center point and radii. If width and
height are equal, you get a circle. If width or height is negative, nothing is drawn.

public abstract void fillOval (int x, int y, int width, int height)

The fillOval() method draws a filled oval in the current color within an invisible bounding rectangle
from (x, y) to (x+width-1, y+height-1). You cannot specify the oval's center point and radii. Notice
that the filled oval is one pixel smaller to the right and bottom than requested. If width or height is
negative, nothing is drawn.

Figure 2.7 shows the collection of ovals, filled and unfilled, that were generated by the following code:

g.drawOval (25, 10, 50, 75);
g.fillOval (25, 110, 50, 75);
g.drawOval (100, 10, 50, 50);
g.fillOval (100, 110, 50, 50);

Figure 2.7: Filled and unfilled ovals

[Graphic: Figure 2-7]

public abstract void drawArc (int x, int y, int width, int height, int startAngle, int arcAngle)

The drawArc() method draws an arc in the current color within an invisible bounding rectangle from
(x, y) to (x+width, y+height). The arc starts at startAngle degrees and goes to startAngle +
arcAngle degrees. An angle of 0 degrees is at the 3 o'clock position; angles increase counter-clockwise.
If arcAngle is negative, drawing is in a clockwise direction. If width and height are equal and
arcAngle is 360 degrees, drawArc() draws a circle. If width or height is negative, nothing is
drawn.

public abstract void fillArc (int x, int y, int width, int height, int startAngle, int arcAngle)

The fillArc() method draws a filled arc in the current color within an invisible bounding rectangle
from (x, y) to (x+width-1, y+height-1). The arc starts at startAngle degrees and goes to
startAngle + arcAngle degrees. An angle of 0 degrees is at the 3 o'clock position; angles increase
counter-clockwise. If arcAngle is negative, drawing is in a clockwise direction. The arc fills like a pie
(to the origin), not from arc endpoint to arc endpoint. This makes creating pie charts easier. If width and
height are equal and arcAngle is 360 degrees, fillArc() draws a filled circle. If width or
height is negative, nothing is drawn.

Figure 2.8 shows a collection of filled and unfilled arcs that were generated by the following code:

g.drawArc (25, 10, 50, 75, 0, 360);
g.fillArc (25, 110, 50, 75, 0, 360);
g.drawArc (100, 10, 50, 75, 45, 215);
g.fillArc (100, 110, 50, 75, 45, 215);

Figure 2.8: Filled and unfilled arcs

[Graphic: Figure 2-8]

public void drawPolygon (Polygon p)

The drawPolygon() method draws a path for the points in polygon p in the current color. Polygon
discusses the Polygon class in detail.

The behavior of drawPolygon() changes slightly between Java 1.0.2 and 1.1. With version 1.0.2, if the
first and last points of a Polygon are not the same, a call to drawPolygon() results in an open
polygon, since the endpoints are not connected for you. Starting with version 1.1, if the first and last
points are not the same, the endpoints are connected for you.

public abstract void drawPolygon (int xPoints[], int yPoints[], int numPoints)

The drawPolygon() method draws a path of numPoints nodes by plucking one element at a time
out of xPoints and yPoints to make each point. The path is drawn in the current color. If either
xPoints or yPoints does not have numPoints elements, drawPolygon() throws a run-time
exception. In 1.0.2, this exception is an IllegalArgumentException; in 1.1, it is an
ArrayIndexOutOfBoundsException. This change shouldn't break older programs, since you are
not required to catch run-time exceptions.

public abstract void drawPolyline (int xPoints[], int yPoints[], int numPoints)

The drawPolyline() method functions like the 1.0 version of drawPolygon(). It plays connect
the dots with the points in the xPoints and yPoints arrays and does not connect the endpoints. If
either xPoints or yPoints does not have numPoints elements, drawPolygon() throws the run-
time exception, ArrayIndexOutOfBoundsException.

Filling polygons is a complex topic. It is not as easy as filling rectangles or ovals because a polygon may not be
closed and its edges may cross. AWT uses an even-odd rule to fill polygons. This algorithm works by counting
the number of times each scan line crosses an edge of the polygon. If the total number of crossings to the left of
the current point is odd, the point is colored. If it is even, the point is left alone. Figure 2.9 demonstrates this
algorithm for a single scan line that intersects the polygon at x values of 25, 75, 125, 175, 225, and 275.

Figure 2.9: Polygon fill algorithm

[Graphic: Figure 2-9]

The scan line starts at the left edge of the screen; at this point there haven't been any crossings, so the pixels are
left untouched. The scan line reaches the first crossing when x equals 25. Here, the total number of crossings to
the left is one, so the scan line is inside the polygon, and the pixels are colored. At 75, the scan line crosses again;
the total number of crossings is two, so coloring stops.

public void fillPolygon (Polygon p)

The fillPolygon() method draws a filled polygon for the points in Polygon p in the current color.
If the polygon is not closed, fillPolygon() adds a segment connecting the endpoints. Polygon
discusses the Polygon class in detail.

public abstract void fillPolygon (int xPoints[], int yPoints[], int nPoints)

The fillPolygon() method draws a polygon of numPoints nodes by plucking one element at a
time out of xPoints and yPoints to make each point. The polygon is drawn in the current color. If
either xPoints or yPoints does not have numPoints elements, fillPolygon() throws the run-
time exception IllegalArgumentException. If the polygon is not closed, fillPolygon() adds
a segment connecting the endpoints.[3]

[3] In Java 1.1, this method throws ArrayIndexOutOfBoundsException, not
IllegalArgumentException.

Figure 2.10 shows several polygons created by the following code, containing different versions of
drawPolygon() and fillPolygon():

int[] xPoints[] = {{50, 25, 25, 75, 75},
 {50, 25, 25, 75, 75},
 {100, 100, 150, 100, 150, 150, 125, 100, 150},
 {100, 100, 150, 100, 150, 150, 125, 100, 150}};
int[] yPoints[] = {{10, 35, 85, 85, 35, 10},

 {110, 135, 185, 185, 135},
 {85, 35, 35, 85, 85, 35, 10, 35, 85},
 {185, 135, 135, 185, 185, 135, 110, 135, 185}};
int nPoints[] = {5, 5, 9, 9};
g.drawPolygon (xPoints[0], yPoints[0], nPoints[0]);
g.fillPolygon (xPoints[1], yPoints[1], nPoints[1]);
g.drawPolygon (new Polygon(xPoints[2], yPoints[2], nPoints[2]));
g.fillPolygon (new Polygon(xPoints[3], yPoints[3], nPoints[3]));

Figure 2.10: Filled and unfilled polygons

[Graphic: Figure 2-10]

Drawing images

An Image is a displayable object maintained in memory. To get an image on the screen, you must draw it onto a
graphics context, using the drawImage() method of the Graphics class. For example, within a paint()
method, you would call g.drawImage(image, ... , this) to display some image on the screen. In
other situations, you might use the createImage() method to generate an offscreen Graphics object, then
use drawImage() to draw an image onto this object, for display later.

This begs the question: where do images come from? We will have more to say about the Image class later in
this chapter. For now, it's enough to say that you can call getImage() to load an image from disk or across the
Net. There are versions of getImage() in the Applet and Toolkit classes; the latter is for use in
applications. You can also call createImage(), a method of the Component class, to generate an image in
memory.

What about the last argument to drawImage()? What is this for? The last argument of drawImage() is
always an image observer--that is, an object that implements the ImageObserver interface. This interface is
discussed in detail in Chapter 12, Image Processing. For the time being, it's enough to say that the call to
drawImage() starts a new thread that loads the requested image. An image observer monitors the process of
loading an image; the thread that is loading the image notifies the image observer whenever new data has arrived.

The Component class implements the ImageObserver interface; when you're writing a paint() method,
you're almost certainly overriding some component's paint() method; therefore, it's safe to use this as the
image observer in a call to drawImage(). More simply, we could say that any component can serve as an
image observer for images that are drawn on it.

public abstract boolean drawImage (Image image, int x, int y, ImageObserver observer)

The drawImage() method draws image onto the screen with its upper left corner at (x, y), using
observer as its ImageObserver. Returns true if the object is fully drawn, false otherwise.

public abstract boolean drawImage (Image image, int x, int y, int width, int height, ImageObserver observer)

The drawImage() method draws image onto the screen with its upper left corner at (x, y), using
observer as its ImageObserver. The system scales image to fit into a width x height area. The
scaling may take time. This method returns true if the object is fully drawn, false otherwise.

With Java 1.1, you don't need to use drawImage() for scaling; you can prescale the image with the
Image.getScaledInstance() method, then use the previous version of drawImage().

public abstract boolean drawImage (Image image, int x, int y, Color backgroundColor, ImageObserver observer)

The drawImage() method draws image onto the screen with its upper left corner at (x, y), using
observer as its ImageObserver. backgroundColor is the color of the background seen through
the transparent parts of the image. If no part of the image is transparent, you will not see
backgroundColor. Returns true if the object is fully drawn, false otherwise.

public abstract boolean drawImage (Image image, int x, int y, int width, int height, Color backgroundColor,
ImageObserver observer)

The drawImage() method draws image onto the screen with its upper left corner at (x, y), using
observer as its ImageObserver. backgroundColor is the color of the background seen through
the transparent parts of the image. The system scales image to fit into a width x height area. The
scaling may take time. This method returns true if the image is fully drawn, false otherwise.

With Java 1.1, you can prescale the image with the AreaAveragingScaleFilter or
ReplicateScaleFilter described in Chapter 12, Image Processing, then use the previous version of
drawImage() to display it.

The following code generated the images in Figure 2.11. The images on the left come from a standard JPEG file.
The images on the right come from a file in GIF89a format, in which the white pixel is "transparent." Therefore,
the gray background shows through this pair of images.

import java.awt.*;
import java.applet.*;
public class drawingImages extends Applet {

 Image i, j;
 public void init () {
 i = getImage (getDocumentBase(), "rosey.jpg");
 j = getImage (getDocumentBase(), "rosey.gif");
 }
 public void paint (Graphics g) {
 g.drawImage (i, 10, 10, this);
 g.drawImage (i, 10, 85, 150, 200, this);
 g.drawImage (j, 270, 10, Color.lightGray, this);
 g.drawImage (j, 270, 85, 150, 200, Color.lightGray, this);
 }
}

Figure 2.11: Scaled and unscaled images

[Graphic: Figure 2-11]

public abstract boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2, int sx1, int sy1, int sx2, int sy2,

ImageObserver observer)

The drawImage() method draws a portion of image onto the screen. It takes the part of the image with
corners at (sx1, sy1) and (sx2, sy2); it places this rectangular snippet on the screen with one corner at
(dx1, dy1) and another at (dx2, dy2), using observer as its ImageObserver. (Think of d for
destination location and s for source image.) This method returns true if the object is fully drawn,
false otherwise.

drawImage() flips the image if source and destination endpoints are not the same corners, crops the
image if the destination is smaller than the original size, and scales the image if the destination is larger
than the original size. It does not do rotations, only flips (i.e., it can produce a mirror image or an image
rotated 180 degrees but not an image rotated 90 or 270 degrees).

public abstract boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2, int sx1, int sy1, int sx2, int sy2,

Color backgroundColor, ImageObserver observer)

The drawImage() method draws a portion of image onto the screen. It takes the part of the image with
corners at (sx1, sy1) and (sx2, sy2); it places this rectangular snippet on the screen with one corner at
(dx1, dy1) and another at (dx2, dy2), using observer as its ImageObserver. (Think of d for
destination location and s for source image.) backgroundColor is the color of the background seen
through the transparent parts of the image. If no part of the image is transparent, you will not see
backgroundColor. This method returns true if the object is fully drawn, false otherwise.

Like the previous version of drawImage(), this method flips the image if source and destination
endpoints are not the same corners, crops the image if the destination is smaller than the original size, and
scales the image if the destination is larger than the original size. It does not do rotations, only flips (i.e., it
can produce a mirror image or an image rotated 180 degrees but not an image rotated 90 or 270 degrees).

The following code demonstrates the new drawImage() methods in Java 1.1. They allow you to scale, flip,
and crop images without the use of image filters. The results are shown in Figure 2.12.

// Java 1.1 only
import java.awt.*;
import java.applet.*;
public class drawingImages11 extends Applet {
 Image i, j;
 public void init () {
 i = getImage (getDocumentBase(), "rosey.gif");
 }
 public void paint (Graphics g) {
 g.drawImage (i, 10, 10, this);
 g.drawImage (i, 10, 85,
 i.getWidth(this)+10, i.getHeight(this)+85,
 i.getWidth(this), i.getHeight(this), 0, 0, this);
 g.drawImage (i, 270, 10,
 i.getWidth(this)+270, i.getHeight(this)*2+10, 0, 0,
 i.getWidth(this), i.getHeight(this), Color.gray, this);
 g.drawImage (i, 10, 170,
 i.getWidth(this)*2+10, i.getHeight(this)+170, 0,
 i.getHeight(this)/2, i.getWidth(this)/2, 0, this);
 }
}

Figure 2.12: Flipped, mirrored, and cropped images

[Graphic: Figure 2-12]

Miscellaneous methods

public abstract void translate (int x, int y)

The translate() method sets how the system translates the coordinate space for you. The point at the
(x, y) coordinates becomes the origin of this graphics context. Any future drawing will be relative to this
location. Multiple translations are cumulative. The following code leaves the coordinate system translated
by (100, 50).

translate (100, 0);
translate (0, 50);

Note that each call to paint() provides an entirely new Graphics context with its origin in the upper
left corner. Therefore, don't expect translations to persist from one call to paint() to the next.

public abstract void dispose ()

The dispose() method frees any system resources used by the Graphics context. It's a good idea to
call dispose() whenever you are finished with a Graphics object, rather than waiting for the
garbage collector to call it automatically (through finalize()). Disposing of the Graphics object
yourself will help your programs on systems with limited resources. However, you should not dispose the
Graphics parameter to Component.paint() or Component.update().

public void finalize ()

The garbage collector calls finalize() when it determines that the Graphics object is no longer
needed. finalize() calls dispose(), which frees any resources that the Graphics object has

used.

public String toString ()

The toString() method of Graphics returns a string showing the current font and color. However,
Graphics is an abstract class, and classes that extend Graphics usually override toString(). For
example, on a Windows 95 machine, sun.awt.win32.Win32Graphics is the concrete class that
extends Graphics. The class's toString() method displays the current origin of the Graphics
object, relative to the original coordinate system:

sun.awt.win32.Win32Graphics[0,0]

Summary Point

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_06.htm

Chapter 3

3. Fonts and Colors
Contents:
Fonts
FontMetrics
Color
SystemColor
Displaying Colors
Using Desktop Colors

This chapter introduces the java.awt classes that are used to work with different fonts and colors. First,
we discuss the Font class, which determines the font used to display text strings, whether they are drawn
directly on the screen (with drawString()) or displayed within a component like a text field. The
FontMetrics class gives you detailed information about a font, which you can use to position text strings
intelligently. Next, the Color class is used to represent colors and can be used to specify the background
color of any object, as well as the foreground color used to display a text string or a shape. Finally, the
SystemColor class (which is new to Java 1.1) provides access to the desktop color scheme.

3.1 Fonts

An instance of the Font class represents a specific font to the system. Within AWT, a font is specified by its
name, style, and point size. Each platform that supports Java provides a basic set of fonts; to find the fonts
supported on any platform, call Toolkit.getDefaultToolkit().getFontList(). This method
returns a String array of the fonts available. Under Java 1.0, on any platform, the available fonts were:
TimesRoman, Helvetica, Courier, Dialog, DialogInput, and ZapfDingbats. For copyright reasons, the list is

substantially different in Java 1.1: the available font names are TimesRoman , Serif, Helvetica ,

SansSerif, Courier , Monospaced, Dialog, and DialogInput. The actual fonts available aren't changing; the
deprecated font names are being replaced by non-copyrighted equivalents. Thus, TimesRoman is now Serif,
Helvetica is now SansSerif, and Courier is Monospaced. The ZapfDingbats font name has been dropped
completely because the characters in this font have official Unicode mappings in the range \u2700 to \u27ff.

NOTE:

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch03_05.htm

If you desire non-Latin font support with Java 1.1, use the Unicode mappings for the characters. The actual
font used is specified in a set of font.properties files in the lib subdirectory under java.home. These localized
font files allow you to remap the "Serif", "SansSerif", and "Monospaced" names to different fonts.

The font's style is passed with the help of the class variables Font.PLAIN, Font.BOLD, and
Font.ITALIC. The combination Font.BOLD | Font.ITALIC specifies bold italics.

A font's size is represented as an integer. This integer is commonly thought of as a point size; although
that's not strictly correct, this book follows common usage and talks about font sizes in points.

It is possible to add additional font names to the system by setting properties. For example, putting the line
below in the properties file or a resource file (resource files are new to Java 1.1) defines the name
"AvantGarde" as an alias for the font SansSerif:

awt.font.avantgarde=SansSerif

With this line in the properties file, a Java program can use "AvantGarde" as a font name; when this font is
selected, AWT uses the font SansSerif for display. The property name must be all lowercase. Note that we
haven't actually added a new font to the system; we've only created a new name for an old font. See the
discussion of getFont() and decode() for more on font properties.

The Font Class

Constants

There are four styles for displaying fonts in Java: plain, bold, italic, and bold italic. Three class constants are
used to represent font styles:

public static final int BOLD

The BOLD constant represents a boldface font.

public static final int ITALIC

The ITALIC constant represents an italic font.

public static final int PLAIN

The PLAIN constant represents a plain or normal font.

The combination BOLD | ITALIC represents a bold italic font. PLAIN combined with either BOLD or

ITALIC represents bold or italic, respectively.

There is no style for underlined text. If you want underlining, you have to do it manually, with the help of
FontMetrics.

NOTE:

If you are using Microsoft's SDK, the com.ms.awt.FontX class includes direct support for underlined,
strike through (line through middle), and outline fonts.

Variables

Three protected variables access the font setting. They are initially set through the Font constructor. To read
these variables, use the Font class's "get" methods.

protected String name

The name of the font.

protected int size

The size of the font.

protected int style

The style of the font. The style is some logical combination of the constants listed previously.

Constructors

public Font (String name, int style, int size)

There is a single constructor for Font. It requires a name, style, and size. name represents the
name of the font to create, case insensitive.

setFont (new Font ("TimesRoman", Font.BOLD | Font.ITALIC, 20));

Characteristics

public String getName ()

The getName() method returns the font's logical name. This is the name passed to the constructor
for the specific instance of the Font. Remember that system properties can be used to alias font

names, so the name used in the constructor isn't necessarily the actual name of a font on the system.

public String getFamily ()

The getFamily() method returns the actual name of the font that is being used to display
characters. If the font has been aliased to another font, the getFamily() method returns the name
of the platform-specific font, not the alias. For example, if the constructor was new Font
("AvantGarde", Font.PLAIN, 10) and the awt.font.avantgarde=Helvetica
property is set, then getName() returns AvantGarde, and getFamily() returns Helvetica. If
nobody set the property, both methods return AvantGarde, and the system uses the default font (since
AvantGarde is a nonstandard font).

public int getStyle ()

The getStyle() method returns the current style of the font as an integer. Compare this value with
the constants Font.BOLD, Font.PLAIN, and Font.ITALIC to see which style is meant. It is
easier to use the isPlain(), isBold(), and isItalic() methods to find out the current style.
getStyle() is more useful if you want to copy the style of some font when creating another.

public int getSize ()

The getSize() method retrieves the point size of the font, as set by the size parameter in the
constructor. The actual displayed size may be different.

public FontPeer getPeer ()

The getPeer() method retrieves the platform-specific peer object. The object FontPeer is a
platform-specific subclass of sun.awt.PlatformFont. For example, on a Windows 95 platform,
this would be an instance of sun.awt.windows.WFontPeer.

Styles

public boolean isPlain ()

The isPlain() method returns true if the current font is neither bold nor italic. Otherwise, it
returns false.

public boolean isBold ()

The isBold() method returns true if the current font is either bold or bold and italic. Otherwise,
it returns false.

public boolean isItalic ()

The isItalic() method returns true if the current font is either italic or bold and italic.
Otherwise, it returns false.

Font properties

Earlier, you saw how to use system properties to add aliases for fonts. In addition to adding aliases, you can
use system properties to specify which fonts your program will use when it runs. This allows your users to
customize their environments to their liking; your program reads the font settings at run-time, rather than
using hard-coded settings. The format of the settings in a properties file is:

propname=fontname--style--size

where propname is the name of the property being set, fontname is any valid font name (including
aliases), style is plain, bold, italic, or bolditalic, and size represents the desired size for the
font. style and size default to plain and 12 points. Order is important; the font's style must always
precede its size.

For example, let's say you have three areas on your screen: one for menus, one for labels, and one for input.
In the system properties, you allow users to set three properties: myPackage.myClass.menuFont,
myPackage.myClass.labelFont, and myPackage.myClass.inputFont. One user sets two:

myPackage.myClass.menuFont=TimesRoman-italic-24
myPackage.myClass.inputFont=Helvetica

The user has specified a Times font for menus and Helvetica for other input. The property names are up to
the developer. The program uses getFont() to read the properties and set the fonts accordingly.

NOTE:

The location of the system properties file depends on the run-time environment and version you are using.
Normally, the file goes into a subdirectory of the installation directory, or for environments where users have
home directories, in a subdirectory for the user. Sun's HotJava, JDK, and appletviewer tools use the
properties file in the .hotjava directory.

Most browsers do not permit modifying properties, so there is no file.

Java 1.1 adds the idea of "resource files," which are syntactically similar to properties files. Resource files
are then placed on the server or within a directory found in the CLASSPATH. Updating the properties file is
no longer recommended.

public static Font getFont (String name)

The getFont() method gets the font specified by the system property name. If name is not a valid
system property, null is returned. This method is implemented by a call to the next version of
getFont(), with the defaultFont parameter set to null.

Assuming the properties defined in the previous example, if you call the getFont() method with
name set to myPackage.myClass.menuFont, the return value is a 24-point, italic,
TimesRoman Font object. If called with name set to myPackage.myClass.inputFont,
getFont() returns a 12-point, plain Helvetica Font object. If called with
myPackage.myClass.labelFont as name, getFont() returns null because this user did
not set the property myPackage.myClass.labelFont.

public static Font getFont (String name, Font defaultFont)

The getFont() method gets the font specified by the system property name. If name is not a valid
system property, this version of getFont() returns the Font specified by defaultFont. This
version allows you to provide defaults in the event the user does not wish to provide his own font
settings.

public static Font decode (String name)

The decode() method provides an explicit means to decipher font property settings, regardless of
where the setting comes from. (The getFont() method can decipher settings, but only if they're in
the system properties file.) In particular, you can use decode() to look up font settings in a resource
file. The format of name is the same as that used by getFont(). If the contents of name are
invalid, a 12-point plain font is returned. To perform the equivalent of
getFont(`myPackage.myClass.menuFont`) without using system properties, see the
following example. For a more extensive example using resource files, see Appendix A.

// Java 1.1 only
InputStream is = instance.getClass().getResourceAsStream("propfile");
Properties p = new Properties();
try {
 p.load (is);
 Font f = Font.decode(p.getProperty("myPackage.myClass.menuFont"));
} catch (IOException e) {
 System.out.println ("error loading props...");
}

Miscellaneous methods

public int hashCode ()

The hashCode() method returns a hash code for the font. This hash code is used whenever a Font

object is used as the key in a Hashtable.

public boolean equals (Object o)

The equals() method overrides the equals() method of Object to define equality for Font
objects. Two Font objects are equal if their size, style, and name are equal. The following example
demonstrates why this is necessary.

Font a = new Font ("TimesRoman", Font.PLAIN, 10);
Font b = new Font ("TimesRoman", Font.PLAIN, 10);
// displays false since the objects are different objects
System.out.println (a == b);
// displays true since the objects have equivalent settings
System.out.println (a.equals (b));

public String toString ()

The toString() method of Font returns a string showing the current family, name, style, and size
settings. For example:

java.awt.Font[family=TimesRoman,name=TimesRoman,style=bolditalic,size=20]

MediaTracker FontMetrics

Chapter 4

4. Events
Contents:
Java 1.0 Event Model
The Event Class
The Java 1.1 Event Model

This chapter covers Java's event-driven programming model. Unlike procedural programs, windows-based
programs require an event-driven model in which the underlying environment tells your program when
something happens. For example, when the user clicks on the mouse, the environment generates an event that it
sends to the program. The program must then figure out what the mouse click means and act accordingly.

This chapter covers two different event models, or ways of handling events. In Java 1.0.2 and earlier, events were
passed to all components that could possibly have an interest in them. Events themselves were encapsulated in a
single Event class. Java 1.1 implements a "delegation" model, in which events are distributed only to objects
that have been registered to receive the event. While this is somewhat more complex, it is much more efficient
and also more flexible, because it allows any object to receive the events generated by a component. In turn, this
means that you can separate the user interface itself from the event-handling code.

In the Java 1.1 event model, all event functionality is contained in a new package, java.awt.event. Within
this package, subclasses of the abstract class AWTEvent represent different kinds of events. The package also
includes a number of EventListener interfaces that are implemented by classes that want to receive different
kinds of events; they define the methods that are called when events of the appropriate type occur. A number of
adapter classes are also included; they correspond to the EventListener interfaces and provide null
implementations of the methods in the corresponding listener. The adapter classes aren't essential but provide a
convenient shortcut for developers; rather than declaring that your class implements a particular
EventListener interface, you can declare that your class extends the appropriate adapter.

The old and new event models are incompatible. Although Java 1.1 supports both, you should not use both
models in the same program.

4.1 Java 1.0 Event Model

The event model used in versions 1.0 through 1.0.2 of Java is fairly simple. Upon receiving a user-initiated event,

like a mouse click, the system generates an instance of the Event class and passes it along to the program. The
program identifies the event's target (i.e., the component in which the event occurred) and asks that component to
handle the event. If the target can't handle this event, an attempt is made to find a component that can, and the
process repeats. That is all there is to it. Most of the work takes place behind the scenes; you don't have to worry
about identifying potential targets or delivering events, except in a few special circumstances. Most Java
programs only need to provide methods that deal with the specific events they care about.

Identifying the Target

All events occur within a Java Component. The program decides which component gets the event by starting at
the outermost level and working in. In Figure 4.1, assume that the user clicks at the location (156, 70) within the
enclosing Frame's coordinate space. This action results in a call to the Frame's deliverEvent() method,
which determines which component within the frame should receive the event and calls that component's
deliverEvent() method. In this case, the process continues until it reaches the Button labeled Blood,
which occupies the rectangular space from (135, 60) to (181, 80). Blood doesn't contain any internal components,
so it must be the component for which the event is intended. Therefore, an action event is delivered to Blood,
with its coordinates translated to fit within the button's coordinate space--that is, the button receives an action
event with the coordinates (21, 10). If the user clicked at the location (47, 96) within the Frame's coordinate
space, the Frame itself would be the target of the event because there is no other component at this location.

Figure 4.1: deliverEvent

To reach Blood, the event follows the component/container hierarchy shown in Figure 4.2.

Figure 4.2: deliverEvent screen model

Dealing With Events

Once deliverEvent() identifies a target, it calls that target's handleEvent() method (in this case, the
handleEvent() method of Blood) to deliver the event for processing. If Blood has not overridden
handleEvent(), its default implementation would call Blood's action() method. If Blood has not
overridden action(), its default implementation (which is inherited from Component) is executed and does
nothing. For your program to respond to the event, you would have to provide your own implementation of
action() or handleEvent().

handleEvent() plays a particularly important role in the overall scheme. It is really a dispatcher, which
looks at the type of event and calls an appropriate method to do the actual work: action() for action events,
mouseUp() for mouse up events, and so on. Table 4.1 shows the event-handler methods you would have to
override when using the default handleEvent() implementation. If you create your own handleEvent(),
either to handle an event without a default handler or to process events differently, it is best to leave these naming
conventions in place. Whenever you override an event-handler method, it is a good idea to call the overridden
method to ensure that you don't lose any functionality. All of the event handler methods return a boolean, which
determines whether there is any further event processing; this is described in the next section, "Passing the
Buck."

Table 4.1: Event Types and Event Handlers

Event Type Event Handler

MOUSE_ENTER mouseEnter()

MOUSE_EXIT mouseExit()

MOUSE_MOVE mouseMove()

MOUSE_DRAG mouseDrag()

MOUSE_DOWN mouseDown()

MOUSE_UP mouseUp()

KEY_PRESS keyDown()

KEY_ACTION keyDown()

KEY_RELEASE keyUp()

KEY_ACTION_RELEASE keyUp()

GOT_FOCUS gotFocus()

LOST_FOCUS lostFocus()

ACTION_EVENT action()

Passing the Buck

In actuality, deliverEvent() does not call handleEvent() directly. It calls the postEvent() method
of the target component. In turn, postEvent() manages the calls to handleEvent(). postEvent()
provides this additional level of indirection to monitor the return value of handleEvent(). If the event
handler returns true, the handler has dealt with the event completely. All processing has been completed, and
the system can move on to the next event. If the event handler returns false, the handler has not completely
processed the event, and postEvent() will contact the component's Container to finish processing the
event. Using the screen in Figure 4.1 as the basis, Example 4.1 traces the calls through deliverEvent(),
postEvent(), and handleEvent(). The action starts when the user clicks on the Blood button at
coordinates (156, 70). In short, Java dives into the depths of the screen's component hierarchy to find the target of
the event (by way of the method deliverEvent()). Once it locates the target, it tries to find something to
deal with the event by working its way back out (by way of postEvent(), handleEvent(), and the
convenience methods). As you can see, there's a lot of overhead, even in this relatively simple example. When we
discuss the Java 1.1 event model, you will see that it has much less overhead, primarily because it doesn't need to
go looking for a component to process each event.

Example 4.1: The deliverEvent, postEvent, and handleEvent Methods

DeliverEvent.deliverEvent (Event e) called
 DeliverEvent.locate (e.x, e.y)
 Finds Panel1
 Translate Event Coordinates for Panel1
 Panel1.deliverEvent (Event e)
 Panel1.locate (e.x, e.y)
 Finds Panel3
 Translate Event Coordinates for Panel3
 Panel3.deliverEvent (Event e)
 Panel3.locate (e.x, e.y)
 Finds Blood
 Translate Event Coordinates for Blood
 Blood.deliverEvent (Event e)
 Blood.postEvent (Event e)
 Blood.handleEvent (Event e)

 Blood.mouseDown (Event e, e.x, e.y)
 returns false
 return false
 Get parent Container Panel3
 Translate Event Coordinates for Panel3
 Panel3.postEvent (Event e)
 Panel3.handleEvent (Event e)
 Component.mouseDown (Event e, e.x, e.y)
 returns false
 return false
 Get parent Container Panel1
 Translate Event Coordinates for Panel1
 Panel1.postEvent (Event e)
 Panel1.handleEvent (Event e)
 Component.action (Event e, e.x, e.y)
 return false
 return false
 Get parent Container DeliverEvent
 Translate Event Coordinates for DeliverEvent
 DeliverEvent.postEvent (Event e)
 DeliverEvent.handleEvent
 DeliverEvent.action (Event e, e.x, e.y)
 return true
 return true
 return true
 return true
 return true
 return true
 return true
 return true
 return true
 return true

Overriding handleEvent()

In many programs, you only need to override convenience methods like action() and mouseUp(); you
usually don't need to override handleEvent(), which is the high level event handler that calls the
convenience methods. However, convenience methods don't exist for all event types. To act upon an event that
doesn't have a convenience method (for example, LIST_SELECT), you need to override handleEvent()
itself. Unfortunately, this presents a problem. Unlike the convenience methods, for which the default versions
don't take any action, handleEvent() does quite a lot: as we've seen, it's the dispatcher that calls the
convenience methods. Therefore, when you override handleEvent(), either you should reimplement all the
features of the method you are overriding (a very bad idea), or you must make sure that the original
handleEvent()is still executed to ensure that the remaining events get handled properly. The simplest way
for you to do this is for your new handleEvent() method to act on any events that it is interested in and
return true if it has handled those events completely. If the incoming event is not an event that your

handleEvent() is interested in, you should call super.handleEvent() and return its return value. The
following code shows how you might override handleEvent() to deal with a LIST_SELECT event:

public boolean handleEvent (Event e) {
 if (e.id == Event.LIST_SELECT) { // take care of LIST_SELECT
 System.out.println ("Selected item: " + e.arg);
 return true; // LIST_SELECT handled completely; no further action
 } else { // make sure we call the overridden method to ensure
 // that other events are handled correctly
 return super.handleEvent (e);
 }
}

Basic Event Handlers

The convenience event handlers like mouseDown(), keyUp(), and lostFocus() are all implemented by
the Component class. The default versions of these methods do nothing and return false. Because these
methods do nothing by default, when overriding them you do not have to ensure that the overridden method gets
called. This simplifies the programming task, since your method only needs to return false if it has not
completely processed the event. However, if you start to subclass nonstandard components (for example, if
someone has created a fancy AudioButton, and you're subclassing that, rather than the standard Button),
you probably should explicitly call the overridden method. For example, if you are overriding mouseDown(),
you should include a call to super.mouseDown(), just as we called super.handleEvent() in the
previous example. This call is "good housekeeping"; most of the time, your program will work without it.
However, your program will break as soon as someone changes the behavior of the AudioButton and adds
some feature to its mouseDown() method. Calling the super class's event handler helps you write "bulletproof "
code.

The code below overrides the mouseDown() method. I'm assuming that we're extending a standard component,
rather than extending some custom component, and can therefore dispense with the call to
super.mouseDown().

public boolean mouseDown (Event e, int x, int y) {
 System.out.println ("Coordinates: " + x + "-" + y);
 if ((x > 100) || (y < 100))
 return false; // we're not interested in this event; pass it on
 else // we're interested;
 ... // this is where event-specific processing goes
 return true; // no further event processing
}

Here's a debugging hint: when overriding an event handler, make sure that the parameter types are correct--
remember that each convenience method has different parameters. If your overriding method has parameters that
don't match the original method, the program will still compile correctly. However, it won't work. Because the
parameters don't match, your new method simply overloads the original, rather than overriding it. As a result,
your method will never be called.

Using Desktop Colors The Event Class

Chapter 5

5. Components
Contents:
Component
Labels
Buttons
A Simple Calculator
Canvas
Creating Your Own Component
Cursor

This chapter introduces the generic graphical widget used within the AWT package, Component, along with
a trio of specific components: Label, Button, and Canvas. It also covers the Cursor class, new to Java
1.1. (Cursor support was previously part of the Frame class.) Although many objects within AWT don't
subclass Component, and though you will never create an instance of Component, anything that provides
screen-based user interaction and relies on the system for its layout will be a child of Component. As a
subclass of Component, each child inherits a common set of methods and an API for dealing with the
different events (i.e., mouse click, keyboard input) that occur within your Java programs.

After discussing the methods in Component classes, this chapter goes into detail about two specific
components, Label and Button. A Label is a widget that contains descriptive text, usually next to an
input field. A Button is a basic mechanism that lets the user signal the desire to perform an action. You will
learn about the Canvas object and how to use a Canvas to create your own component. Finally, we cover
the Cursor class, which lets you change the cursor over a Component.

Before going into the mechanics of the Component class, it's necessary to say a little about the relationship
between components and containers. A Container is also a component with the ability to contain other
components. There are several different kinds of containers; they are discussed in Chapter 6, Containers. To
display a component, you have to put it in a container by calling the container's add() method. We often call
the container that holds a component the component's parent ; likewise, we call the components a container
holds its children. Certain operations are legal only if a component has a parent--that is, the component is in a
container. Of course, since containers are components, containers can contain other containers, ad infinitum.

NOTE:

If you think some component is missing a method that should obviously be there, check the methods it
inherits. For example, the Label class appears to lack a setFont() method. Obviously, labels ought to be
able to change their fonts. The setFont() method really is there; it is inherited from the Component
class, and therefore, not documented as part of the Label class. Even if you're familiar with object-oriented
techniques, the need to work up a class hierarchy to find all of the class's methods can lead to confusion and
frustration. While all Java objects inherit methods from other classes, the potential for confusion is worst with
components, which inherit over a hundred methods from Component and may only have a few methods of
their own.

5.1 Component

Every GUI-based program consists of a screen with a set of objects. With Java, these objects are called
components. Some of the more frequently used components are buttons, text fields, and containers.

A container is a special component that allows you to group different components together within it. You will
learn more about containers in the next chapter, but they are in fact just another kind of component. Also,
some of the parameters and return types for the methods of Component have not been explained yet and
have their own sections in future chapters.

Component Methods

Constants

Prior to Java 1.1, you could not subclass Component or Container. With the introduction of the
LightweightPeer, you can now subclass either Component or Container. However, since you no
longer have a native peer, you must rely on your container to provide a display area and other services that are
normally provided by a full-fledged peer. Because you cannot rely on your peer to determine your alignment,
the Component class now has five constants to indicate six possible alignment settings (one constant is used
twice). The alignment constants designate where to position a lightweight component; their values range from
0.0 to 1.0. The lower the number, the closer the component will be placed to the origin (top left corner) of the
space allotted to it.[1]

[1] As of Beta 3, these constants appear to be seldom used. The getAlignmentX() and
getAlignmentY() methods return these values, but there are no setAlignment methods.

public static final float BOTTOM_ALIGNMENT

The BOTTOM_ALIGNMENT constant indicates that the component should align itself to the bottom of
its available space. It is a return value from the method getAlignmentY().

public static final float CENTER_ALIGNMENT

The CENTER_ALIGNMENT constant indicates that the component should align itself to the middle of
its available space. It is a return value from either the getAlignmentX() or getAlignmentY()
method. This constant represents both the horizontal and vertical center.

public static final float LEFT_ALIGNMENT

The LEFT_ALIGNMENT constant indicates that the component should align itself to the left side of its
available space. It is a return value from getAlignmentX().

public static final float RIGHT_ALIGNMENT

The RIGHT_ALIGNMENT constant indicates that the component should align itself to the right side of
its available space. It is a return value from the method getAlignmentX().

public static final float TOP_ALIGNMENT

The TOP_ALIGNMENT constant indicates that the component should align itself to the top of its
available space. It is a return value from getAlignmentY().

Variables

protected Locale locale

The protected locale variable can be accessed by calling the getLocale() method.

Constructor

Prior to Java 1.1, there was no public or protected constructor for Component. Only package members were
able to subclass Component directly. With the introduction of lightweight peers, components can exist
without a native peer, so the constructor was made protected, allowing you to create your own
Component subclasses.

protected Component()

The constructor for Component creates a new component without a native peer. Since you no longer
have a native peer, you must rely on your container to provide a display area. This allows you to create
components that require fewer system resources than components that subclass Canvas. The example
in the "Using an event multicaster" section of the previous chapter is of a lightweight component. Use
the SystemColor class to help you colorize the new component appropriately or make it transparent.

Appearance

public Toolkit getToolkit ()

The getToolkit() method returns the current Toolkit of the Component. This returns the
parent's Toolkit (from a getParent() call) when the Component has not been added to the
screen yet or is lightweight. If there is no parent, getToolkit() returns the default Toolkit.
Through the Toolkit, you have access to the details of the current platform (like screen resolution,
screen size, and available fonts), which you can use to adjust screen real estate requirements or check
on the availability of a font.

public Color getForeground ()

The getForeground() method returns the foreground color of the component. If no foreground
color is set for the component, you get its parent's foreground color. If none of the component's parents
have a foreground color set, null is returned.

public void setForeground (Color c)

The setForeground() method changes the current foreground color of the area of the screen
occupied by the component to c. After changing the color, it is necessary for the screen to refresh
before the change has any effect. To refresh the screen, call repaint().

public Color getBackground ()

The getBackground() method returns the background color of the component. If no background
color is set for the component, its parent's background color is retrieved. If none of the component's
parents have a background color set, null is returned.

public void setBackground (Color c)

The setBackground() method changes the current background color of the area of the screen
occupied by the component to c. After changing the color, it is necessary for the screen to refresh
before the change has any affect. To refresh the screen, call repaint().

public Font getFont ()

The getFont() method returns the font of the component. If no font is set for the component, its
parent's font is retrieved. If none of the component's parents have a font set, null is returned.

public synchronized void setFont (Font f)

The setFont() method changes the component's font to f. If the font family (such as TimesRoman)

provided within f is not available on the current platform, the system uses a default font family, along
with the supplied size and style (plain, bold, italic). Depending upon the platform, it may be necessary
to refresh the component/screen before seeing any changes.

Changing the font of a component could have an affect on the layout of the component.

public synchronized ColorModel getColorModel ()

The getColorModel() method returns the ColorModel used to display the current component.
If the component is not displayed, the ColorModel from the component's Toolkit is used. The
normal ColorModel for a Java program is 8 bits each for red, green, and blue.

public Graphics getGraphics ()

The getGraphics() method gets the component's graphics context. Most noncontainer components
do not manage them correctly and therefore throw an InternalError exception when you call this
method. The Canvas component is one that does since you can draw on that directly. If the
component is not visible, null is returned.

public FontMetrics getFontMetrics (Font f)

The getFontMetrics() method retrieves the component's view of the FontMetrics for the
requested font f. Through the FontMetrics, you have access to the platform-specific sizing for the
appearance of a character or string.

public Locale getLocale ()

The getLocale() method retrieves the current Locale of the component, if it has one. Using a
Locale allows you to write programs that can adapt themselves to different languages and different
regional variants. If no Locale has been set, getLocale() returns the parent's Locale.[2] If the
component has no locale of its own and no parent (i.e., it isn't in a container), getLocale() throws
the run-time exception IllegalComponentStateException.

[2] For more on the Locale class, see the Java Fundamental Classes Reference from
O'Reilly & Associates.

public void setLocale (Locale l)

The setLocale() method changes the current Locale of the component to l. In order for this
change to have any effect, you must localize your components so that they have different labels or list
values for different environments. Localization is part of the broad topic of internationalization and is
beyond the scope of this book.

public Cursor getCursor ()

The getCursor() method retrieves the component's current Cursor. If one hasn't been set, the
default is Cursor.DEFAULT_CURSOR. The Cursor class is described fully in Cursor. Prior to Java
1.1, the ability to associate cursors with components was restricted to frames.

public synchronized void setCursor (Cursor c)

The setCursor() method changes the current Cursor of the component to c. The change takes
effect as soon as the cursor is moved. Lightweight components cannot change their cursors.

Positioning/Sizing

Component provides a handful of methods for positioning and sizing objects. Most of these are used behind
the scenes by the system. You will also need them if you create your own LayoutManager or need to move
or size an object. All of these depend on support for the functionality from the true component's peer.

public Point getLocation ()

public Point location ()

The getLocation() method returns the current position of the Component in its parent's
coordinate space. The Point is the top left corner of the bounding box around the Component.

location()is the Java 1.0 name for this method.

public Point getLocationOnScreen ()

The getLocationOnScreen() method returns the current position of the Component in the
screen's coordinate space. The Point is the top left corner of the bounding box around the
Component. If the component is not showing, the getLocationOnScreen() method throws the
IllegalComponentStateException run-time exception.

public void setLocation (int x, int y)

public void move (int x, int y)

The setLocation() method moves the Component to the new position (x, y). The coordinates
provided are in the parent container's coordinate space. This method calls setBounds() to move
the component. The LayoutManager of the container may make it impossible to change a
component's location.

Calling this method with a new position for the component generates a ComponentEvent with the
ID COMPONENT_MOVED.

move()is the Java 1.0 name for this method.

public void setLocation (Point p)

This setLocation() method moves the component to the position specified by the given Point.
It is the same as calling setLocation(p.x, p.y).

Calling this method with a new position for the component generates a ComponentEvent with the
ID COMPONENT_MOVED.

public Dimension getSize ()

public Dimension size ()

The getSize() method returns the width and height of the component as a Dimension object.

size()is the Java 1.0 name for this method.

public void setSize (int width, int height)

public void resize (int width, int height)

The setSize() method changes the component's width and height to the width and height
provided. width and height are specified in pixels. The component is resized by a call to
setBounds(). The LayoutManager of the Container that contains the component may make
it impossible to change a component's size.

Calling this method with a new size for the component generates a ComponentEvent with the ID
COMPONENT_RESIZED.

resize()is the Java 1.0 name for this method.

public void setSize (Dimension d)

public void resize (Dimension d)

This setSize() method changes the component's width and height to the Dimension d provided.
The Dimension object includes the width and height attributes in one object. The component is
resized by a call to the setBounds() method. The LayoutManager of the Container that
contains the component may make it impossible to change a component's size.

Calling this method with a new size for the component generates a ComponentEvent with the ID
COMPONENT_RESIZED.

resize()is the Java 1.0 name for this method.

public Rectangle getBounds ()

public Rectangle bounds ()

The getBounds() method returns the bounding rectangle of the object. The fields of the
Rectangle that you get back contain the component's position and dimensions.

bounds()is the Java 1.0 name for this method.

public void setBounds (int x, int y, int width, int height)

public void reshape (int x, int y, int width, int height)

The setBounds() method moves and resizes the component to the bounding rectangle with
coordinates of (x, y) (top left corner) and width x height. If the size and shape have not changed,
no reshaping is done. If the component is resized, it is invalidated, along with its parent container. The
LayoutManager of the Container that contains the component may make it impossible to change
the component's size or position. Calling setBounds() invalidates the container, which results in a
call to the LayoutManager to rearrange the container's contents. In turn, the LayoutManager
calls setBounds() to give the component its new size and position, which will probably be the
same size and position it had originally. In short, if a layout manager is in effect, it will probably undo
your attempts to change the component's size and position.

Calling this method with a new size for the component generates a ComponentEvent with the ID
COMPONENT_RESIZED. Calling this method with a new position generates a ComponentEvent
with the ID COMPONENT_MOVED.

reshape()is the Java 1.0 name for this method.

public void setBounds (Rectangle r)

This setBounds() method calls the previous method with parameters of r.x, r.y, r.width, and
r.height.

Calling this method with a new size for the component generates a ComponentEvent with the ID
COMPONENT_RESIZED. Calling this method with a new position generates a ComponentEvent
with the ID COMPONENT_MOVED.

public Dimension getPreferredSize ()

public Dimension preferredSize ()

The getPreferredSize() method returns the Dimension (width and height) for the preferred

size of the component. Each component's peer knows its preferred size. Lightweight objects return
getSize().

preferredSize()is the Java 1.0 name for this method.

public Dimension getMinimumSize ()

public Dimension minimumSize ()

The getMinimumSize() method returns the Dimension (width and height) for the minimum size
of the component. Each component's peer knows its minimum size. Lightweight objects return
getSize(). It is possible that the methods getMinimumSize() and getPreferredSize()
will return the same dimensions.

minimumSize()is the Java 1.0 name for this method.

public Dimension getMaximumSize ()

The getMaximumSize() method returns the Dimension (width and height) for the maximum
size of the component. This may be used by a layout manager to prevent a component from growing
beyond a predetermined size. None of the java.awt layout managers call this method. By default,
the value returned is Short.MAX_VALUE for both dimensions.

public float getAlignmentX ()

The getAlignmentX() method returns the alignment of the component along the x axis. The
alignment could be used by a layout manager to position this component relative to others. The return
value is between 0.0 and 1.0. Values nearer 0 indicate that the component should be placed closer to
the left edge of the area available. Values nearer 1 indicate that the component should be placed closer
to the right. The value 0.5 means the component should be centered. The default setting is
Component.CENTER_ALIGNMENT.

public float getAlignmentY ()

The getAlignmentY() method returns the alignment of the component along the y axis. The
alignment could be used by a layout manager to position this component relative to others. The return
value is between 0.0 and 1.0. Values nearer 0 indicate that the component should be placed closer to
the top of the area available. Values nearer 1 indicate that the component should be placed closer to the
bottom. The value 0.5 means the component should be centered. The default setting is
Component.CENTER_ALIGNMENT.

public void doLayout ()

public void layout ()

The doLayout() method of Component does absolutely nothing. It is called when the
Component is validated (through the validate() method). The Container class overrides this
method.

layout()is the Java 1.0 name for this method.

public boolean contains (int x, int y)

public boolean inside (int x, int y)

The contains() method checks if the x and y coordinates are within the bounding box of the
component. If the Component is not rectangular, the method acts as if there is a rectangle around the
Component. contains() returns true if the x and y coordinates are within the component,
false otherwise.

inside()is the Java 1.0 name for this method.

public boolean contains (Point p)

This contains() method calls the previous method with parameters of p.x and p.y.

public Component getComponentAt (int x, int y)

public Component locate (int x, int y)

The getComponentAt() method uses contains() to see if the x and y coordinates are within
the component. If they are, this method returns the Component. If they aren't, it returns null.
getComponentAt() is overridden by Container to provide enhanced functionality.

locate()is the Java 1.0 name for this method.

public Component getComponentAt (Point p)

This getComponentAt() method calls the previous method with parameters of p.x and p.y.

Painting

The only methods in this section that you call directly are the versions of repaint(). The paint() and
update() methods are called by the system when the display area requires refreshing, such as when a user
resizes a window. When your program changes the display you should call repaint() to trigger a call to
update() and paint(). Otherwise, the system is responsible for updating the display.

public void paint (Graphics g)

The paint() method is offered so the system can display whatever you want in a Component. In
the base Component class, this method does absolutely nothing. Ordinarily, it would be overridden in
an applet to do something other than the default, which is display a box in the current background
color. g is the graphics context of the component being drawn on.

public void update (Graphics g)

The update() method is automatically called when you ask to repaint the Component. If the
component is not lightweight, the default implementation of update() clears graphics context g by
drawing a filled rectangle in the background color, resetting the color to the current foreground color,
and calling paint(). If you do not override update() when you do animation, you will see some
flickering because Component clears the screen. Animation is discussed in Chapter 2, Simple
Graphics.

public void paintAll (Graphics g)

The paintAll() method validates the component and paints its peer if it is visible. g represents the
graphics context of the component. This method is called when the paintComponents() method
of Container is called.

public void repaint ()

The repaint() method requests the scheduler to redraw the component as soon as possible. This
will result in update() getting called soon thereafter. There is not a one-to-one correlation between
repaint() and update() calls. It is possible that multiple repaint() calls can result in a single
update().

public void repaint (long tm)

This version of repaint() allows for a delay of tm milliseconds. It says, please update this
component within tm milliseconds, which may happen immediately.

public void repaint (int x, int y, int width, int height)

This version of repaint() allows you to select the region of the Component you desire to be
updated. (x, y) are the coordinates of the upper left corner of the bounding box of the component with
dimensions of widthxheight. This is similar to creating a clipping area and results in a quicker
repaint.

public void repaint (long tm, int x, int y, int width, int height)

This final version of repaint() is what the other three repaint() methods call. tm is the
maximum delay in milliseconds before update should be called. (x, y) are the coordinates of the upper

left corner of the clipping area of the component with dimensions of width x height.

public void print (Graphics g)

The default implementation of the print() method calls paint().

In Java 1.0, there was no way to print; in Java 1.1, if the graphics parameter implements
PrintGraphics, anything drawn on g will be printed. Printing is covered in Chapter 17, Printing.

public void printAll (Graphics g)

The printAll() method validates the component and paints its peer if it is visible. g represents the
graphics context of the component. This method is called when the printComponents() method
of Container is called or when you call it with a PrintGraphics parameter.

The default implementation of printAll() is identical to paintAll(). As with paintAll(), g
represents the graphics context of the component; if g implements PrintGraphics, it can be
printed.

Imaging

Background information about using images is discussed in Chapter 2, Simple Graphics and Chapter 12,
Image Processing. The imageUpdate() method of Component is the sole method of the
ImageObserver interface. Since images are loaded in a separate thread, this method is called whenever
additional information about the image becomes available.

public boolean imageUpdate (Image image, int infoflags, int x, int y, int width, int height)

imageUpdate() is the java.awt.image.ImageObserver method implemented by
Component. It is an asynchronous update interface for receiving notifications about Image
information as image is loaded and is automatically called when additional information becomes
available. This method is necessary because image loading is done in a separate thread from the
getImage() call. Ordinarily, x and y would be the coordinates of the upper left corner of the image
loaded so far, usually (0, 0). However, the method imageUpdate() of the component ignores these
parameters. width and height are the image's dimensions, so far, in the loading process.

The infoflags parameter is a bit-mask of information available to you about image. Please see the
text about ImageObserver in Chapter 12, Image Processing for a complete description of the
different flags that can be set. When overriding this method, you can wait for some condition to be true
by checking a flag in your program and then taking the desired action. To check for a particular flag,
perform an AND (&) of infoflags and the constant. For example, to check if the FRAMEBITS flag
is set:

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_01.htm

if ((infoflags & ImageObserver.FRAMEBITS) == ImageObserver.FRAMEBITS)
 System.out.println ("The Flag is set");

The return value from a call to imageUpdate() is true if image has changed and false
otherwise.

Two system properties let the user control the behavior of updates:

❍ awt.image.incrementaldraw allows the user to control whether or not partial images
are displayed. Initially, the value of incrementaldraw is unset and defaults to true, which
means that partial images are drawn. If incrementaldraw is set to false, the image will
be drawn only when it is complete or when the screen is resized or refreshed.

❍ awt.image.redrawrate allows the user to change the delay between successive repaints.
If not set, the default redraw rate is 100 milliseconds.

public Image createImage (int width, int height)

The createImage() method creates an empty Image of size width x height. The returned
Image is an in-memory image that can be drawn on for double buffering to manipulate an image in
the background. If an image of size width x height cannot be created, the call returns null. In
order for createImage() to succeed, the peer of the Component must exist; if the component is
lightweight, the peer of the component's container must exist.

public Image createImage (ImageProducer producer)

This createImage() method allows you to take an existing image and modify it in some way to
produce a new Image. This can be done through ImageFilter and FilteredImageSource or
a MemoryImageSource, which accepts an array of pixel information. You can learn more about
these classes and this method in Chapter 12, Image Processing.

public boolean prepareImage (Image image, ImageObserver observer)

The prepareImage() method forces image to start loading, asynchronously, in another thread.
observer is the Component that image will be rendered on and is notified (via
imageUpdate()) as image is being loaded. In the case of an Applet, this would be passed as
the ImageObserver. If image has already been fully loaded, prepareImage() returns true.
Otherwise, false is returned. Since image is loaded asynchronously, prepareImage() returns
immediately. Ordinarily, prepareImage() would be called by the system when image is first
needed to be displayed (in drawImage() within paint()). As more information about the image
gets loaded, imageUpdate() is called periodically.

If you do not want to go through the trouble of creating a MediaTracker instance to start the
loading of the image objects, you can call prepareImage() to trigger the start of image loading

prior to a call to drawImage().

If image has already started loading when this is called or if this is an in-memory image, there is no
effect.

public boolean prepareImage (Image image, int width, int height, ImageObserver observer)

This version of prepareImage() is identical to the previous one, with the addition of a scaling
factor of widthxheight. As with other width and height parameters, the units for these
parameters are pixels. Also, if width and height are -1, no scaling factor is assumed. This method
is called by one of the internal MediaTracker methods.

public int checkImage (Image image, ImageObserver observer)

The checkImage() method returns the status of the construction of a screen representation of
image, being watched by observer. If image has not started loading yet, this will not start it. The
return value is the ImageObserver flags ORed together for the data that is now available. The
available ImageObserver flags are: WIDTH, HEIGHT, PROPERTIES, SOMEBITS, FRAMEBITS,
ALLBITS, ERROR, and ABORT. See Chapter 12, Image Processing for a complete description of
ImageObserver.

public int checkImage (Image image, int width, int height, ImageObserver observer)

This version of checkImage() is identical to the previous one, with the addition of a scaling factor
of widthxheight. If you are using the drawImage() version with width and height
parameters, you should use this version of checkImage() with the same width and height.

Peers

public ComponentPeer getPeer ()

The getPeer() method returns a reference to the component's peer as a ComponentPeer object.
For example, if you issue this method from a Button object, getPeer() returns an instance of the
ComponentPeer subclass ButtonPeer.

This method is flagged as deprecated in comments but not with @deprecated. There is no
replacement method for Java 1.1.

public void addNotify ()

The addNotify() method is overridden by each individual component type. When addNotify()
is called, the peer of the component gets created, and the Component is invalidated. The
addNotify() method is called by the system when it needs to create the peer. The peer needs to be

created when a Component is first shown, or when a new Component is added to a Container
and the Container is already being shown (in which case it already has a peer, but a new one must
be created to take account of the new Component). If you override this method for a specific
Component, call super.addNotify() first, then do what you need for the Component. You
will then have information available about the newly created peer.

Certain tasks cannot succeed unless the peer has been created. An incomplete list includes finding the
size of a component, laying out a container (because it needs the component's size), and creating an
Image object. Peers are discussed in more depth in Chapter 15, Toolkit and Peers.

public synchronized void removeNotify ()

The removeNotify() method destroys the peer of the component and removes it from the screen.
The state information about the Component is retained by the specific subtype. The
removeNotify() method is called by the system when it determines the peer is no longer needed.
Such times would be when the Component is removed from a Container, when its container
changes, or when the Component is disposed. If you override this method for a specific
Component, issue the particular commands for you need for this Component, then call
super.removeNotify() last.

State Procedures

These methods determine whether the component is ready to be displayed and can be seen by the user. The
first requirement is that it be valid--that is, whether the system knows its size, and (in the case of a container)
whether the layout manager is aware of all its parts and has placed them as requested. A component becomes
invalid if the size has changed since it was last displayed. If the component is a container, it becomes invalid
when one of the components contained within it becomes invalid.

Next, the component must be visible--a possibly confusing term, because components can be considered
"visible" without being seen by the user. Frames (because they have their own top-level windows) are not
visible until you request that they be shown, but other components are visible as soon as you create them.

Finally, to be seen, a component must be showing. You show a component by adding it to its container. For
something to be showing, it must be visible and be in a container that is visible and showing.

A subsidiary aspect of state is the enabled quality, which determines whether a component can accept input.

public boolean isValid ()

The isValid() method tells you whether or not the component needs to be laid out.

public void validate ()

The validate() method sets the component's valid state to true. Ordinarily, this is done for you
when the Component is laid out by its Container. Since objects are invalid when they are first
drawn on the screen, you should call validate() to tell the system you are finished adding objects
so that it can validate the screen and components. One reason you can override validate() is to
find out when the container that the component exists in has been resized. The only requirement when
overriding is that the original validate() be called. With Java 1.1, instead of overriding, you can
listen for resize events.

public void invalidate ()

The invalidate() method sets the component's valid state to false and propagates the
invalidation to its parent. Ordinarily, this is done for you, or should be, whenever anything that affects
the layout is changed.

public boolean isVisible ()

The isVisible() methods tells you if the component is currently visible. Most components are
initially visible, except for top-level objects like frames. Any component that is visible will be shown
on the screen when the screen is painted.

public boolean isShowing ()

The isShowing() method tells you if the component is currently shown on the screen. It is possible
for isVisible() to return true and isShowing() to return false if the screen has not been
painted yet.

Table 5.1 compares possible return values from isVisible() and isShowing(). The first two entries
are for objects that have their own Window. These will always return the same values for isVisible()
and isShowing(). The next three are for Component objects that exist within a Window, Panel, or
Applet. The visible setting is always initially true. However, the showing setting is not true until the
object is actually drawn. The last case shows another possibility. If the component exists within an invisible
Container, the component will be visible but will not be shown.

Table 5.1: isVisible vs. isShowing

Happenings isVisible isShowing

Frame created false false

Frame f = new Frame ()

Frame showing true true

f.show ()

Component created true false

Button b= new Button ("Help")

Button added to screen in init() true false

add (b)

Container laid out with Button in it true true

Button within Panel that is not visible true false

public void show ()

The show() method displays a component by making it visible and showing its peer. The parent
Container becomes invalid because the set of children to display has changed. You would call
show() directly to display a Frame or Dialog.

In Java 1.1, you should use setVisible() instead.

public void hide ()

The hide() method hides a component by making it invisible and hiding its peer. The parent
Container becomes invalid because the set of children to display has changed. If you call hide()
for a Component that does not subclass Window, the component's Container reserves space for
the hidden object.

In Java 1.1, you should use setVisible() instead.

public void setVisible(boolean condition)

public void show (boolean condition)

The setVisible() method calls either show() or hide() based on the value of condition. If
condition is true, show() is called. When condition is false, hide() is called.

show() is the Java 1.0 name for this method.

public boolean isEnabled ()

The isEnabled() method checks to see if the component is currently enabled. An enabled
Component can be selected and trigger events. A disabled Component usually has a slightly lighter
font and doesn't permit the user to select or interact with it. Initially, every Component is enabled.

public synchronized void enable ()

The enable() method allows the user to interact with the component. Components are enabled by
default but can be disabled by a call to disabled() or setEnabled(false).

In Java 1.1, you should use setEnabled() instead.

public synchronized void disable ()

The disable() method disables the component so that it is unresponsive to user interactions.

In Java 1.1, you should use setEnabled() instead.

public void setEnabled (boolean condition)

public void enable (boolean condition)

The setEnabled() method calls either enable() or disable() based on the value of
condition. If condition is true, enable() is called. When condition is false,
disable() is called. Enabling and disabling lets you create components that can be operated only
under certain conditions--for example, a Button that can be pressed only after the user has typed into
a TextArea.

enable() is the Java 1.0 name for this method.

Focus

Although there was some support for managing input focus in version 1.0, 1.1 improved on this greatly by
including support for Tab and Shift+Tab to move input focus to the next or previous component, and by being
more consistent across different platforms. This support is provided by the package-private class
FocusManager.

public boolean isFocusTraversable()

The isFocusTraversable() method is the support method that tells you whether or not a
component is capable of receiving the input focus. Every component asks its peer whether or not it is
traversable. If there is no peer, this method returns false.

If you are creating a component by subclassing Component or Canvas and you want it to be
traversable, you should override this method; a Canvas is not traversable by default.

public void requestFocus ()

The requestFocus() method allows you to request that a component get the input focus. If it can't
(isFocusTraversable() returns false), it won't.

public void transferFocus ()

public void nextFocus ()

The transferFocus() method moves the focus from the current component to the next one.

nextFocus() is the Java 1.0 name for this method.

Miscellaneous methods

public final Object getTreeLock ()

The getTreeLock() method retrieves the synchronization lock for all AWT components. Instead of
using synchronized methods in Java 1.1, previously synchronized methods lock the tree within a
synchronized (component.getTreeLock()) {} code block. This results in a more
efficient locking mechanism to improve performance.

public String getName ()

The getName() method retrieves the current name of the component. The component's name is
useful for object serialization. Components are given a name by default; you can change the name by
calling setName().

public void setName (String name)

The setName() method changes the name of the component to name.

public Container getParent ()

The getParent() method returns the component's Container. The container for anything added
to an applet is the applet itself, since it subclasses Panel. The container for the applet is the browser.
In the case of Netscape Navigator versions 2.0 and 3.0, the return value would be a specific instance of
the netscape.applet.EmbeddedAppletFrame class. If the applet is running within the
appletviewer, the return value would be an instance of sun.applet.AppletViewerPanel.

public synchronized void add(PopupMenu popup)

The add() method introduced in Java 1.1 provides the ability to associate a PopupMenu with a
Component. The pop-up menu can be used to provide context-sensitive menus for specific
components. (On some platforms for some components, pop-up menus exist already and cannot be
overridden.) Interaction with the menu is discussed in Chapter 10, Would You Like to Choose from the
Menu?

Multiple pop-up menus can be associated with a component. To display the appropriate pop-up menu,
call the pop-up menu's show()method.

public synchronized void remove(MenuComponent popup)

The remove() method is the MenuContainer interface method to disassociate the popup from
the component. (PopupMenu is a subclass of MenuComponent.) If popup is not associated with
the Component, nothing happens.

protected String paramString ()

The paramString() method is a protected method that helps build a String listing the different
parameters of the Component. When the toString() method is called for a specific Component,
paramString() is called for the lowest level and works its way up the inheritance hierarchy to
build a complete parameter string to display. At the Component level, potentially seven (Java1.0) or
eight (1.1) items are added. The first five items added are the component's name (if non-null and using
Java 1.1), x and y coordinates (as returned by getLocation()), along with its width and height (as
returned by getSize()). If the component is not valid, "invalid" is added next. If the component is
not visible, "hidden" is added next. Finally, if the component is not enabled, "disabled" is added.

public String toString ()

The toString() method returns a String representation of the object's values. At the
Component level, the class's name is placed before the results of paramString(). This method is
called automatically by the system if you try to print an object using System.out.println().

public void list ()

The list() method prints the contents of the Component (as returned by toString()) to
System.out. If c is a type of Component, the two statements System.out.println(c) and
c.list() are equivalent. This method is more useful at the Container level, because it prints all
the components within the container.

public void list (PrintWriter out)
public void list (PrintStream out)

This version of list() prints the contents of the Component (as returned by toString()) to a
different PrintStream, out.

public void list (PrintWriter out, int indentation)
public void list (PrintStream out, int indentation)

These versions of list() are called by the other two. They print the component's contents (as
returned by toString()) with the given indentation. This allows you to prepare nicely formatted
lists of a container's contents for debugging; you could use the indentation to reflect how deeply the
component is nested within the container.

Component Events

Chapter 4, Events covers event handling in detail. This section summarizes what Component does for the
different event-related methods.

With the Java 1.0 event model, many methods return true to indicate that the program has handled the event
and false to indicate that the event was not handled (or only partially handled); when false is returned,
the system passes the event up to the parent container. Thus, it is good form to return true only when you
have fully handled the event, and no further processing is necessary.

With the Java 1.1 event model, you register a listener for a specific event type. When that type of event
happens, the listener is notified. Unlike the 1.0 model, you do not need to override any methods of
Component to handle the event. Controllers

The Java 1.0 event model controllers are deliverEvent(), postEvent(), and handleEvent().
With 1.1, the controller is a method named dispatchEvent().

public void deliverEvent (Event e)

The deliverEvent() method delivers the 1.0 Event e to the Component in which an event
occurred. Internally, this method calls postEvent(). The deliverEvent() method is an
important enhancement to postEvent() for Container objects since they have to determine
which component in the Container gets the event.

public boolean postEvent (Event e)

The postEvent() method tells the Component to deal with 1.0 Event e. It calls
handleEvent(), which returns true if some other object handled e and false if no one handles
it. If handleEvent() returns false, postEvent() posts the Event to the component's parent.
You can use postEvent() to hand any events you generate yourself to some other component for
processing. (Creating your own events is a useful technique that few developers take advantage of.)
You can also use postEvent() to reflect an event from one component into another.

public boolean handleEvent (Event e)

The handleEvent() method determines the type of event e and passes it along to an appropriate
method to deal with it. For example, when a mouse motion event is delivered to postEvent(), it is
passed off to handleEvent(), which calls mouseMove(). As shown in the following listing,
handleEvent() can be implemented as one big switch statement. Since not all event types have
default event handlers, you may need to override this method. If you do, remember to call the
overridden method to ensure that the default behavior still takes place. To do so, call
super.handleEvent(event) for any event your method does not deal with.

public boolean handleEvent(Event event) {
 switch (event.id) {
 case Event.MOUSE_ENTER:
 return mouseEnter (event, event.x, event.y);
 case Event.MOUSE_EXIT:
 return mouseExit (event, event.x, event.y);
 case Event.MOUSE_MOVE:
 return mouseMove (event, event.x, event.y);
 case Event.MOUSE_DOWN:
 return mouseDown (event, event.x, event.y);
 case Event.MOUSE_DRAG:
 return mouseDrag (event, event.x, event.y);
 case Event.MOUSE_UP:
 return mouseUp (event, event.x, event.y);
 case Event.KEY_PRESS:
 case Event.KEY_ACTION:
 return keyDown (event, event.key);
 case Event.KEY_RELEASE:
 case Event.KEY_ACTION_RELEASE:
 return keyUp (event, event.key);
 case Event.ACTION_EVENT:
 return action (event, event.arg);
 case Event.GOT_FOCUS:
 return gotFocus (event, event.arg);
 case Event.LOST_FOCUS:
 return lostFocus (event, event.arg);
 }
 return false;
}

public final void dispatchEvent(AWTEvent e)

The dispatchEvent() method allows you to post new AWT events to this component's listeners.
dispatchEvent() tells the Component to deal with the AWTEvent e by calling its
processEvent() method. This method is similar to Java 1.0's postEvent() method. Events
delivered in this way bypass the system's event queue. It's not clear why you would want to bypass the
event queue, except possibly to deliver some kind of high priority event.

Action

public boolean action (Event e, Object o)

The action() method is called when the user performs some action in the Component. e is the 1.0

Event instance for the specific event, while the content of o varies depending upon the specific
Component. The particular action that triggers a call to action() depends on the Component.
For example, with a TextField, action() is called when the user presses the carriage return. This
method should not be called directly; to deliver any event you generate, call postEvent(), and let it
decide how the event should propagate.

The default implementation of the action() method does nothing and returns false. When you
override this method, return true only if you fully handle the event. Your method should always have
a default case that returns false or calls super.action(e, o) to ensure that the event
propagates to the component's container or component's superclass, respectively.

Keyboard

public boolean keyDown (Event e, int key)

The keyDown() method is called whenever the user presses a key. e is the 1.0 Event instance for
the specific event, while key is the integer representation of the character pressed. The identifier for
the event (e.id) could be either Event.KEY_PRESS for a regular key or Event.KEY_ACTION
for an action-oriented key (e.g., arrow or function key). The default keyDown() method does nothing
and returns false. If you are doing input validation, return true if the character is invalid; this
keeps the event from propagating to a higher component. If you wish to alter the input (i.e., convert to
uppercase), return false, but change e.key to the new character.

public boolean keyUp (Event e, int key)

The keyUp() method is called whenever the user releases a key. e is the Event instance for the
specific event, while key is the integer representation of the character pressed. The identifier for the
event (e.id) could be either Event.KEY_RELEASE for a regular key or
Event.KEY_ACTION_RELEASE for an action-oriented key (e.g., arrow or function key). keyUp()
may be used to determine how long key has been pressed. The default keyUp() method does
nothing and returns false.

Mouse

NOTE:

Early releases of Java (1.0.2 and earlier) propagated only mouse events from Canvas and Container
objects. However, Netscape Navigator seems to have jumped the gun and corrected the situation with their 3.0
release, which is based on Java release 1.0.2.1. Until other Java releases catch up, use these events with care.
For more information on platform dependencies, see Appendix C, Platform-Specific Event Handling.

public boolean mouseDown (Event e, int x, int y)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm

The mouseDown() method is called when the user presses a mouse button over the Component. e
is the Event instance for the specific event, while x and y are the coordinates where the cursor was
located when the event was initiated. It is necessary to examine the modifiers field of e to determine
which mouse button the user pressed. The default mouseDown() method does nothing and returns
false. When you override this method, return true only if you fully handle the event. Your method
should always have a default case that returns false or calls super.mouseDown(e, x, y) to
ensure that the event propagates to the component's container or component's superclass, respectively.

public boolean mouseDrag (Event e, int x, int y)

The mouseDrag() method is called when the user is pressing a mouse button and moves the mouse.
e is the Event instance for the specific event, while x and y are the coordinates where the cursor was
located when the event was initiated. mouseDrag() could be called multiple times as the mouse is
moved. The default mouseDrag() method does nothing and returns false. When you override this
method, return true only if you fully handle the event. Your method should always have a default
case that returns false or calls super.mouseDrag(e, x, y) to ensure that the event
propagates to the component's container or component's superclass, respectively.

public boolean mouseEnter (Event e, int x, int y)

The mouseEnter() method is called when the mouse enters the Component. e is the Event
instance for the specific event, while x and y are the coordinates where the cursor was located when
the event was initiated. The default mouseEnter() method does nothing and returns false.
mouseEnter() can be used for implementing balloon help. When you override this method, return
true only if you fully handle the event. Your method should always have a default case that returns
false or calls super.mouseEnter(e, x, y) to ensure that the event propagates to the
component's container or component's superclass, respectively.

public boolean mouseExit (Event e, int x, int y)

The mouseExit() method is called when the mouse exits the Component. e is the Event
instance for the specific event, while x and y are the coordinates where the cursor was located when
the event was initiated. The default method mouseExit() does nothing and returns false. When
you override this method, return true only if you fully handle the event. Your method should always
have a default case that returns false or calls super.mouseExit(e, x, y) to ensure that the
event propagates to the component's container or component's superclass, respectively.

public boolean mouseMove (Event e, int x, int y)

The mouseMove() method is called when the user moves the mouse without pressing a mouse
button. e is the Event instance for the specific event, while x and y are the coordinates where the
cursor was located when the event was initiated. mouseMove() will be called numerous times as the
mouse is moved. The default mouseMove() method does nothing and returns false. When you

override this method, return true only if you fully handle the event. Your method should always have
a default case that returns false or calls super.mouseMove(e, x, y) to ensure that the event
propagates to the component's container or component's superclass, respectively.

public boolean mouseUp (Event e, int x, int y)

The mouseUp() method is called when the user releases a mouse button over the Component. e is
the Event instance for the specific event, while x and y are the coordinates where the cursor was
located when the event was initiated. The default mouseUp() method does nothing and returns
false. When you override this method, return true only if you fully handle the event. Your method
should always have a default case that returns false or calls super.mouseUp(e, x, y) to
ensure that the event propagates to the component's container or component's superclass, respectively.

Focus

Focus events indicate whether a component can get keyboard input. Not all components can get focus (e.g.,
Label cannot). Precisely which components can get the focus is platform specific.

Ordinarily, the item with the focus has a light gray rectangle around it, though the actual display depends on
the platform and the component. Figure 5.1 displays the effect of focus for buttons in Windows 95.

Figure 5.1: Focused and UnFocused buttons

[Graphic: Figure 5-1]

NOTE:

Early releases of Java (1.0.2 and earlier) do not propagate all focus events on all platforms. Java 1.1 seems to
propagate them properly. For more information on platform dependencies, see Appendix C, Platform-Specific
Event Handling.

public boolean gotFocus (Event e, Object o)

The gotFocus() method is triggered when the Component gets the input focus. e is the 1.0
Event instance for the specific event, while the content of o varies depending upon the specific

file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm

Component. The default gotFocus() method does nothing and returns false. For a
TextField, when the cursor becomes active, it has the focus. When you override this method, return
true to indicate that you have handled the event completely or false if you want the event to
propagate to the component's container.

public boolean lostFocus (Event e, Object o)

The lostFocus() method is triggered when the input focus leaves the Component. e is the
Event instance for the specific event, while the content of o varies depending upon the specific
Component. The default lostFocus() method does nothing and returns false. When you
override this method, return true to indicate that you have handled the event completely or false if
you want the event to propagate to the component's container.

Listeners and 1.1 Event Handling

With the 1.1 event model, you receive events by registering event listeners, which are told when the event
happens. Components don't have to receive and handle their own events; you can cleanly separate the event-
handling code from the user interface itself. This section covers the methods used to add and remove event
listeners, which are part of the Component class. There is a pair of methods to add and remove listeners for
each event type that is appropriate for a Component: ComponentEvent, FocusEvent, KeyEvent,
MouseEvent, and MouseMotionEvent. Subclasses of Component may have additional event types and
therefore will have additional methods for adding and removing listeners. For example, Button, List,
MenuItem, and TextField each generate action events and therefore have methods to add and remove
action listeners. These additional listeners are covered with their respective components.

public void addComponentListener(ComponentListener listener)

The addComponentListener() method registers listener as an object interested in being
notified when a ComponentEvent passes through the EventQueue with this Component as its
target. When such an event occurs, a method in the ComponentListener interface is called.
Multiple listeners can be registered.

public void removeComponentListener(ComponentListener listener)

The removeComponentListener() method removes listener as a interested listener. If
listener is not registered, nothing happens.

public void addFocusListener(FocusListener listener)

The addFocusListener() method registers listener as an object interested in being notified
when a FocusEvent passes through the EventQueue with this Component as its target. When
such an event occurs, a method in the FocusListener interface is called. Multiple listeners can be
registered.

public void removeFocusListener(FocusListener listener)

The removeFocusListener() method removes listener as a interested listener. If
listener is not registered, nothing happens.

public void addKeyListener(KeyListener listener)

The addKeyListener() method registers listener as an object interested in being notified
when a KeyEvent passes through the EventQueue with this Component as its target. When such
an event occurs, a method in the KeyListener interface is called. Multiple listeners can be
registered.

public void removeKeyListener(KeyListener listener)

The removeKeyListener() method removes listener as a interested listener. If listener is not
registered, nothing happens.

public void addMouseListener(MouseListener listener)

The addMouseListener() method registers listener as an object interested in being notified
when a nonmotion-oriented MouseEvent passes through the EventQueue with this Component
as its target. When such an event occurs, a method in the MouseListener interface is called.
Multiple listeners can be registered.

public void removeMouseListener(MouseListener listener)

The removeMouseListener() method removes listener as a interested listener. If listener is
not registered, nothing happens.

public void addMouseMotionListener(MouseMotionListener listener)

The addMouseMotionListener() method registers listener as an object interested in being
notified when a motion-oriented MouseEvent passes through the EventQueue with this
Component as its target. When such an event occurs, a method in the MouseMotionListener
interface is called. Multiple listeners can be registered.

The mouse motion-oriented events are separate from the other mouse events because of their frequency
of generation. If they do not have to propagate around, resources can be saved.

public void removeMouseMotionListener(MouseMotionListener listener)

The removeMouseMotionListener() method removes listener as a interested listener. If
listener is not registered, nothing happens.

Handling your own events

Under the 1.1 event model, it is still possible for components to receive their own events, simulating the old
event mechanism. If you want to write components that process their own events but are also compatible with
the new model, you can override processEvent() or one of its related methods. processEvent() is
logically similar to handleEvent() in the old model; it receives all the component's events and sees that
they are forwarded to the appropriate listeners. Therefore, by overriding processEvent(), you get access
to every event the component generates. If you want only a specific type of event, you can override
processComponentEvent(), processKeyEvent(), or one of the other event-specific methods.

However, there is one problem. In Java 1.1, events aren't normally generated if there are no listeners.
Therefore, if you want to receive your own events without registering a listener, you should first enable event
processing (by a call to enableEvent()) to make sure that the events you are interested in are generated.

protected final void enableEvents(long eventsToEnable)

The enableEvents() method allows you to configure a component to listen for events without
having any active listeners. Under normal circumstances (i.e., if you are not subclassing a component),
it is not necessary to call this method.

The eventsToEnable parameter contains a mask specifying which event types you want to enable.
The AWTEvent class (covered in Chapter 4, Events) contains constants for the following types of
events:

COMPONENT_EVENT_MASK
CONTAINER_EVENT_MASK
FOCUS_EVENT_MASK
KEY_EVENT_MASK
MOUSE_EVENT_MASK
MOUSE_MOTION_EVENT_MASK
WINDOW_EVENT_MASK
ACTION_EVENT_MASK
ADJUSTMENT_EVENT_MASK
ITEM_EVENT_MASK
TEXT_EVENT_MASK

OR the masks for the events you want; for example, call enableEvents(MOUSE_EVENT_MASK |
MOUSE_MOTION_EVENT_MASK) to enable all mouse events. Any previous event mask settings are
retained.

protected final void disableEvents(long eventsToDisable)

The disableEvents() method allows you to stop the delivery of events when they are no longer
needed. eventsToDisable is similar to the eventsToEnable parameter but instead contains a
mask specifying which event types to stop. A disabled event would still be delivered if someone were
listening.

protected void processEvent(AWTEvent e)

The processEvent() method receives all AWTEvent with this Component as its target.
processEvent() then passes them along to one of the event-specific processing methods (e.g.,
processKeyEvent()). When you subclass Component, overriding processEvent() allows
you to process all events without providing listeners. Remember to call super.processEvent(e)
last to ensure that normal event processing still occurs; if you don't, events won't get distributed to any
registered listeners. Overriding processEvent() is like overriding the handleEvent() method
using the 1.0 event model.

protected void processComponentEvent(ComponentEvent e)

The processComponentEvent() method receives ComponentEvent with this Component
as its target. If any listeners are registered, they are then notified. When you subclass Component,
overriding processComponentEvent() allows you to process component events without
providing listeners. Remember to call super.processComponentEvent(e) last to ensure that
normal event processing still occurs; if you don't, events won't get distributed to any registered
listeners. Overriding processComponentEvent() is roughly similar to overriding resize(),
move(), show(), and hide() to add additional functionality when those methods are called.

protected void processFocusEvent(FocusEvent e)

The processFocusEvent() method receives FocusEvent with this Component as its target.
If any listeners are registered, they are then notified. When you subclass Component, overriding
processFocusEvent() allows you to process the focus event without providing listeners.
Remember to call super.processFocusEvent(e) last to ensure that normal event processing
still occurs; if you don't, events won't get distributed to any registered listeners. Overriding
processFocusEvent() is like overriding the methods gotFocus() and lostFocus() using
the 1.0 event model.

protected void processKeyEvent(KeyEvent e)

The processKeyEvent() method receives KeyEvent with this Component as its target. If any
listeners are registered, they are then notified. When you subclass Component, overriding
processKeyEvent() allows you to process key events without providing listeners. Be sure to
remember to call super.processKeyEvent(e) last to ensure that normal event processing still

occurs; if you don't, events won't get distributed to any registered listeners. Overriding
processKeyEvent() is roughly similar to overriding keyDown() and keyUp() with one
method using the 1.0 event model.

protected void processMouseEvent(MouseEvent e)

This processMouseEvent() method receives all nonmotion-oriented MouseEvents with this
Component as its target. If any listeners are registered, they are then notified. When you subclass
Component, overriding the method processMouseEvent() allows you to process mouse events
without providing listeners. Remember to call super.processMouseEvent(e) last to ensure
that normal event processing still occurs; if you don't, events won't get distributed to any registered
listeners. Overriding the method processMouseEvent() is roughly similar to overriding
mouseDown(), mouseUp(), mouseEnter(), and mouseExit() with one method using the 1.0
event model.

protected void processMouseMotionEvent(MouseEvent e)

The processMouseMotionEvent() method receives all motion-oriented MouseEvents with
this Component as its target. If there are any listeners registered, they are then notified. When you
subclass Component, overriding processMouseMotionEvent() allows you to process mouse
motion events without providing listeners. Remember to call
super.processMouseMotionEvent(e) last to ensure that normal event processing still occurs;
if you don't, events won't get distributed to any registered listeners. Overriding the method
processMouseMotionEvent() is roughly similar to overriding mouseMove() and
mouseDrag() with one method using the 1.0 event model.

The Java 1.1 Event Model Labels

Chapter 6

6. Containers
Contents:
Container
Panel
Insets
Window
Frames
Dialogs
FileDialog

This chapter covers a special type of Component called Container. A Container is a subclass of
Component that can contain other components, including other containers. Container allows you to
create groupings of objects on the screen. This chapter covers the methods in the Container class and
its subclasses: Panel, Window, Frame, Dialog, and FileDialog. It also covers the Insets class,
which provides an internal border area for the Container classes.

Every container has a layout associated with it that controls how the container organizes the components
in it. The layouts are described in Chapter 7, Layouts.

Java 1.1 introduces a special Container called ScrollPane. Because of the similarities between
scrolling and ScrollPane, the new ScrollPane container is covered with the Scrollbar class in
Chapter 11, Scrolling.

6.1 Container

Container is an abstract class that serves as a general purpose holder of other Component objects.
The Container class holds the methods for grouping the components together, laying out the
components inside it, and dealing with events occurring within it. Because Container is an abstract
class, you never see a pure Container object; you only see subclasses that add specific behaviors to a

generic container.

Container Methods

Constructors

The abstract Container class contains a single constructor to be called by its children. Prior to Java 1.1,
the constructor was package private.

protected Container()

The constructor for Container creates a new component without a native peer. Since you no
longer have a native peer, you must rely on your container to provide a display area. This allows
you to create containers that require fewer system resources. For example, if you are creating
panels purely for layout management, you might consider creating a LightweightPanel class
to let you assign a layout manager to a component group. Using LightweightPanel will speed
things up since events do not have to propagate through the panel and you do not have to get a peer
from the native environment. The following code creates the LightweightPanel class:

import java.awt.*;
public class LightweightPanel extends Container {
 LightweightPanel () {}
 LightweightPanel (LayoutManager lm) {
 setLayout(lm);
 }
}

Grouping

A Container holds a set of objects within itself. This set of methods describes how to examine and add
components to the set.

public int getComponentCount ()

public int countComponents ()

The getComponentCount() method returns the number of components within the container at
this level. getComponentCount() does not count components in any child Container (i.e.,
containers within the current container).

countComponents() is the Java 1.0 name for this method.

public Component getComponent (int position)

The getComponent() method returns the component at the specific position within it. If
position is invalid, this method throws the run-time exception
ArrayIndexOutOfBoundsException.

public Component[] getComponents ()

getComponents() returns an array of all the components held within the container. Since these
are references to the actual objects on the screen, any changes made to the components returned
will be reflected on the display.

public Component add (Component component, int position)

The add() method adds component to the container at position. If position is -1,
add() inserts component as the last object within the container. What the container does with
position depends upon the LayoutManager of the container. If position is invalid, the
add() method throws the run-time exception IllegalArgumentException. If you try to
add component's container to itself (anywhere in the containment tree), this method throws an
IllegalArgumentException. In Java 1.1, if you try to add a Window to a container,
add() throws the run-time exception IllegalArgumentException. If you try to add
component to a container that already contains it, the container is removed and re-added,
probably at a different position.

Assuming that nothing goes wrong, the parent of component is set to the container, and the
container is invalidated. add() returns the component just added.

Calling this method generates a ContainerEvent with the id COMPONENT_ADDED.

public Component add (Component component)

The add() method adds component to the container as the last object within the container. This
is done by calling the earlier version of add() with a position of -1. If you try to add
component's container to itself (anywhere in the containment tree), this method throws the run-
time exception IllegalArgumentException. In Java 1.1, if you try to add a Window to a
container, add() throws the run-time exception IllegalArgumentException.

Calling this method generates a ContainerEvent with the id COMPONENT_ADDED.

public void add (Component component, Object constraints)
public Component add (String name, Component component)

This next version of add() is necessary for layouts that require additional information in order to
place components. The additional information is provided by the constraints parameter. This
version of the add() method calls the addLayoutComponent() method of the
LayoutManager. What the container does with constraints depends upon the actual
LayoutManager. It can be used for naming containers within a CardLayout, specifying a
screen area for BorderLayout, or providing a set of GridBagConstraints for a
GridBagLayout. In the event that this add() is called and the current LayoutManager does
not take advantage of constraints, component is added at the end with a position of -1. If
you try to add component's container to itself (anywhere in the containment tree), this method
throws the run-time exception IllegalArgumentException. In Java 1.1, if you try to add a
Window to a container, add() throws the run-time exception
IllegalArgumentException.

The add(String, Component) method was changed to add(component, object) in
Java 1.1 to accommodate the LayoutManager2 interface (discussed in Chapter 7, Layouts) and
to provide greater flexibility. In all cases, you can just flip the parameters to bring the code up to
1.1 specs. The string used as an identifier in Java 1.0 is just treated as a particular kind of
constraint.

Calling this method generates a ContainerEvent with the id COMPONENT_ADDED.

public void add (Component component, Object constraints, int index)

This final version of add() is necessary for layouts that require an index and need additional
information to place components. The additional information is provided by the constraints
parameter. This version of add() also calls the addLayoutComponent() method of the
LayoutManager. component is added with a position of index. If you try to add
component's container to itself (anywhere in the containment tree), this method throws the run-
time exception IllegalArgumentException. In Java 1.1, if you try to add a Window to a
Container, add() throws the run-time exception IllegalArgumentException.

Some layout managers ignore any index. For example, if you call add(aButton,
BorderLayout.NORTH, 3) to add a Button to a BorderLayout panel, the Button
appears in the north region of the layout, no matter what the index.

Calling this method generates a ContainerEvent with the id COMPONENT_ADDED.

protected void addImpl(Component comp, Object constraints, int index)

The protected addImpl() method is the helper method that all the others call. It deals with
synchronization and enforces all the restrictions on adding components to containers.

The addImpl() method tracks the container's components in an internal list. The index with
which each component is added determines its position in the list. The lower the component's
index, the higher it appears in the stacking order. In turn, the stacking order determines how
components are displayed when sufficient space isn't available to display all of them. Components
that are added without indices are placed at the end of the list (i.e., at the end of the stacking order)
and therefore displayed behind other components. If all components are added without indices, the
first component added to the container is first in the stacking order and therefore displayed in
front.

You could override addImpl() to track when components are added to a container. However,
the proper way to find out when components are added is to register a ContainerListener
and watch for the COMPONENT_ADDED and the COMPONENT_REMOVED events.

public void remove (int index)

The remove() method deletes the component at position index from the container. If
index is invalid, the remove() method throws the run-time exception
IllegalArgumentException. This method calls the removeLayoutComponent()
method of the container's LayoutManager.

removeAll() generates a ContainerEvent with the id COMPONENT_REMOVED.

public void remove (Component component)

The remove() method deletes component from the container, if the container directly contains
component. remove() does not look through nested containers trying to find component.
This method calls the removeLayoutComponent() method of the container's
LayoutManager.

When you call this method, it generates a ContainerEvent with the id
COMPONENT_REMOVED.

public void removeAll ()

The removeAll() method removes all components from the container. This is done by looping
through all the components, setting each component's parent to null, setting the container's
reference to the component to null, and invalidating the container.

When you call this method, it generates a ContainerEvent with the id
COMPONENT_REMOVED for each component removed.

public boolean isAncestorOf(Component component)

The isAncestorOf() method checks to see if component is a parent (or grandparent or great
grandparent) of this container. It could be used as a helper method for addImpl() but is not. If
component is an ancestor of the container, isAncestorOf() returns true; otherwise, it
returns false.

Layout and sizing

Every container has a LayoutManager. The LayoutManager is responsible for positioning the
components inside the container. The Container methods listed here are used in sizing the objects
within the container and specifying a layout.

public LayoutManager getLayout ()

The getLayout() method returns the container's current LayoutManager.

public void setLayout (LayoutManager manager)

The setLayout() method changes the container's LayoutManager to manager and
invalidates the container. This causes the components contained inside to be repositioned based
upon manager's rules. If manager is null, there is no layout manager, and you are responsible
for controlling the size and position of all the components within the container yourself.

public Dimension getPreferredSize ()

public Dimension preferredSize ()

The getPreferredSize() method returns the Dimension (width and height) for the
preferred size of the components within the container. The container determines its preferred size
by calling the preferredLayoutSize() method of the current LayoutManager, which
says how much space the layout manager needs to arrange the components. If you override this
method, you are overriding the default preferred size.

preferredSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize ()

public Dimension minimumSize ()

The getMinimumSize() method returns the minimum Dimension (width and height)
for the size of the components within the container. This container determines its minimum size by
calling the minimumLayoutSize() method of the current LayoutManager, which

computes the minimum amount of space the layout manager needs to arrange the components. It is
possible for getMinimumSize() and getPreferredSize() to return the same
dimensions. There is no guarantee that you will get this amount of space for the layout.

minimumSize() is the Java 1.0 name for this method.

public Dimension getMaximumSize ()

The getMaximumSize() method returns the maximum Dimension (width and height)
for the size of the components within the container. This container determines its maximum size
by calling the maximumLayoutSize() method of the current LayoutManager2, which
computes the maximum amount of space the layout manager needs to arrange the components. If
the layout manager is not an instance of LayoutManager2, this method calls the
getMaximumSize() method of the Component, which returns Integer.MAX_VALUE for
both dimensions. None of the java.awt layout managers use the concept of maximum size yet.

public float getAlignmentX ()

The getAlignmentX() method returns the alignment of the components within the container
along the x axis. This container determines its alignment by calling the current
LayoutManager2's getLayoutAlignmentX() method, which computes it based upon its
children. The return value is between 0.0 and 1.0. Values nearer 0 indicate that the component
should be placed closer to the left edge of the area available. Values nearer 1 indicate that the
component should be placed closer to the right. The value 0.5 means the component should be
centered. If the layout manager is not an instance of LayoutManager2, this method calls
Component's getAlignmentX() method, which returns the constant
Component.CENTER_ALIGNMENT. None of the java.awt layout managers use the concept
of alignment yet.

public float getAlignmentY ()

The getAlignmentY() method returns the alignment of the components within the container
along the y axis. This container determines its alignment by calling the current
LayoutManager2's getLayoutAlignmentY() method, which computes it based upon its
children. The return value is between 0.0 and 1.0. Values nearer 0 indicate that the component
should be placed closer to the top of the area available. Values nearer 1 indicate that the
component should be placed closer to the bottom. The value 0.5 means the component should be
centered. If the layout manager is not an instance of LayoutManager2, this method calls
Component's getAlignmentY() method, which returns the constant
Component.CENTER_ALIGNMENT. None of the java.awt layout managers use the concept
of alignment yet.

public void doLayout ()

public void layout ()

The doLayout() method of Container instructs the LayoutManager to lay out the
container. This is done by calling the layoutContainer() method of the current
LayoutManager.

layout()is the Java 1.0 name for this method.

public void validate ()

The validate() method sets the container's valid state to true and recursively validates all of
its children. If a child is a Container, its children are in turn validated. Some components are
not completely initialized until they are validated. For example, you cannot ask a Button for its
display dimensions or position until it is validated.

protected void validateTree ()

The validateTree() method is a helper for validate() that does all the work.

public void invalidate ()

The invalidate() method invalidates the container and recursively invalidates the children. If
the layout manager is an instance of LayoutManager2, its invalidateLayout() method is
called to invalidate any cached values.

Event delivery

The event model for Java is described in Chapter 4, Events. These methods help in the handling of the
various system events at the container level.

public void deliverEvent (Event e)

The deliverEvent() method is called by the system when the Java 1.0 Event e happens.
deliverEvent() tries to locate a component contained in the container that should receive it.
If one is found, the x and y coordinates of e are translated for the new target, and Event e is
delivered to this by calling its deliverEvent(). If getComponentAt() fails to find an
appropriate target, the event is just posted to the container with postEvent().

public Component getComponentAt (int x, int y)

public Component locate (int x, int y)

The container's getComponentAt() method calls each component's contains() method to
see if the x and y coordinates are within it. If they are, that component is returned. If the
coordinates are not in any child component of this container, the container is returned. It is
possible for getComponentAt() to return null if the x and y coordinates are not within the
container. The method getComponentAt() can return another Container or a lightweight
component.

locate()is the Java 1.0 name for this method.

public Component getComponentAt (Point p)

This getComponentAt() method is identical to the previous method, with the exception that
the location is passed as a single point, rather than as separate x and y coordinates.

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners, which are told when events occur. Container events
occur when a component is added or removed.

public synchronized void addContainerListener(ContainerListener listener)

The addContainerListener() method registers listener as an object interested in
receiving notifications when an ContainerEvent passes through the EventQueue with this
Container as its target. The listener.componentAdded() or
listener.componentRemoved() method is called when these events occur. Multiple
listeners can be registered. The following code demonstrates how to use a
ContainerListener to register action listeners for all buttons added to an applet. It is similar
to the ButtonTest11 example in Button Events. The trick that makes this code work is the call
to enableEvents() in init(). This method makes sure that container events are delivered in
the absence of listeners. In this applet, we know there won't be any container listeners, so we must
enable container events explicitly before adding any components.

// Java 1.1 only
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
public class NewButtonTest11 extends Applet implements ActionListener {
 Button b;
 public void init () {

 enableEvents (AWTEvent.CONTAINER_EVENT_MASK);
 add (b = new Button ("One"));
 add (b = new Button ("Two"));
 add (b = new Button ("Three"));
 add (b = new Button ("Four"));
 }
 protected void processContainerEvent (ContainerEvent e) {
 if (e.getID() == ContainerEvent.COMPONENT_ADDED) {
 if (e.getChild() instanceof Button) {
 Button b = (Button)e.getChild();
 b.addActionListener (this);
 }
 }
 }
 public void actionPerformed (ActionEvent e) {
 System.out.println ("Selected: " + e.getActionCommand());
 }
}

public void removeContainerListener(ContainerListener listener)

The removeContainerListener() method removes listener as an interested listener. If
listener is not registered, nothing happens.

protected void processEvent(AWTEvent e)

The processEvent() method receives all AWTEvents with this Container as its target.
processEvent() then passes them along to any listeners for processing. When you subclass
Container, overriding processEvent() allows you to process all events yourself, before
sending them to any listeners. There is no equivalent under the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last to
ensure that regular event processing can occur. If you want to process your own events, it's a good
idea to call enableEvents() (inherited from Component) to ensure that events are delivered
even in the absence of registered listeners.

protected void processContainerEvent(ContainerEvent e)

The processContainerEvent() method receives all ContainerEvents with this
Container as its target. processContainerEvent() then passes them along to any
listeners for processing. When you subclass Container, overriding the
processContainerEvent() method allows you to process all container events yourself,

before sending them to any listeners. There is no equivalent under the 1.0 event model.

If you override the processContainerEvent() method, remember to call
super.processContainerEvent(e) last to ensure that regular event processing can occur.
If you want to process your own events, it's a good idea to call enableEvents() (inherited
from Component) to ensure that events are delivered even in the absence of registered listeners.

Painting

The following methods are early vestiges of an approach to painting and printing. They are not
responsible for anything that couldn't be done with a call to paintAll() or printAll(). However,
they are available if you wish to call them.

public void paintComponents (Graphics g)

The paintComponents() method of Container paints the different components it contains.
It calls each component's paintAll() method with a clipped graphics context g, which is
eventually passed to paint().

public void printComponents (Graphics g)

The printComponents() method of Container prints the different components it contains.
It calls each component's printAll() method with a clipped graphics context g, which is
passed to print(), and eventually works its way to paint().

Since it is the container's responsibility to deal with painting lightweight peers, the paint() and
print() methods are overridden in Java 1.1.

public void paint(Graphics g)

The paint() method of Container paints the different lightweight components it contains.

public void print(Graphics g)

The print() method of Container prints the different lightweight components it contains.

NOTE:

If you override paint() or print() in your containers (especially applets), call super.paint(g)
or super.print(g), respectively, to make sure that lightweight components are rendered. This is a
good practice even if you don't currently use any lightweight components; you don't want your code to

break mysteriously if you add a lightweight component later.

Peers

The container is responsible for creating and destroying all the peers of the components within it.

public void addNotify ()

The addNotify() method of Container creates the peer of all the components within it.
After addNotify() is called, the Container is invalid. It is useful for top-level containers to
call this method explicitly before calling the method setVisible(true) to guarantee that the
container is laid out before it is displayed.

public void removeNotify ()

The removeNotify() method destroys the peer of all the top-level objects contained within it.
This in effect destroys the peers of all the components within the container.

Miscellaneous methods

protected String paramString ()

When you call the toString() method of a container, the default toString() method of
Component is called. This in turn calls paramString() which builds up the string to display.
At the Container level, paramString() appends the layout manager name, like
layout=java.awt.BorderLayout, to the output.

public Insets getInsets ()

public Insets insets ()

The getInsets() method gets the container's current insets. An inset is the amount of space
reserved for the container to use between its edge and the area actually available to hold
components. For example, in a Frame, the inset for the top would be the space required for the
title bar and menu bar. Insets exist for top, bottom, right, and left. When you override this method,
you are providing an area within the container that is reserved for free space. If the container has
insets, they would be the default. If not, the default values are all zeroes.

The following code shows how to override insets() to provide values other than the default.
The top and bottom have 20 pixels of inset. The left and right have 50. Insets describes the
Insets class in more detail.

public Insets insets () { // getInsets() for Java 1.1
 return new Insets (20, 50, 20, 50);
}

To find out the current value, just call the method and look at the results. For instance, for a
Frame the results could be the following in the format used by toString():

java.awt.Insets[top=42,left=4,right=4,bottom=4]

The 42 is the space required for the title and menu bar, while the 4 around the edges are for the
window decorations. These results are platform specific and allow you to position items based
upon the user's run-time environment.

When drawing directly onto the graphics context of a container with a large inset such as Frame,
remember to work around the insets. If you do something like g.drawString("Hello
World", 5, 5) onto a Frame, the user won't see the text. It will be under the title bar and
menu bar.

insets() is the Java 1.0 name for this method.

public void list (PrintWriter output, int indentation)
public void list (PrintStream output, int indentation)

The list() method is very helpful if you need to find out what is inside a container. It
recursively calls itself for each container level of objects inside it, increasing the indentation
at each level. The results are written to the PrintStream or PrintWriter output.

Cursor Panel

Chapter 7

7. Layouts
Contents:
FlowLayout
BorderLayout
GridLayout
CardLayout
GridBagLayout
GridBagConstraints
Combining Layouts
Disabling the LayoutManager
Designing Your Own LayoutManager
The sun.awt Layout Collection
Other Layouts Available on the Net

This chapter expands upon the idea of a layout manager, which was mentioned briefly in the previous
chapter. Every container has a LayoutManager that is responsible for positioning the component
objects within it, regardless of the platform or the screen size. Layout managers eliminate the need to
compute component placement on your own, which would be a losing proposition since the size required
for any component depends on the platform on which it is displayed. Even for a simple layout, the code
required to discover component sizes and compute absolute positions could be hundreds of lines,
particularly if you concern yourself with what happens when the user resizes a window. A layout
manager takes care of this for you. It asks each component in the layout how much space it requires, then
arranges the components on the screen as best it can, based on the component sizes on the platform in use
and the space available, resizing the components as needed.

To find out how much space a component needs, a layout manager calls the component's
getMinimumSize() and getPreferredSize() methods. (Java 1.1 also has a
getMaximumSize() method; the existing layout managers don't take advantage of it.) These methods
report the minimum space that a component requires to be displayed correctly and the optimal size at
which it looks best. Thus, each component must know its space requirements; the layout manager uses

these to arrange the screen; and your Java program never has to worry about platform-dependent
positioning.

The java.awt package provides five layout managers: FlowLayout, BorderLayout,
GridLayout, CardLayout, and GridBagLayout. Four additional layouts are provided in the
sun.awt package: HorizBagLayout, VerticalBagLayout, OrientableFlowLayout, and
VariableGridLayout. OrientableFlowLayout is new to Java 1.1. Of the 1.0 layouts, all are
available in the JDK and Internet Explorer. The VariableGridLayout is also available with
Netscape Navigator. This chapter discusses all of them, along with the LayoutManager and
LayoutManager2 interfaces; we'll pay particular attention to how each layout manager computes
positions for its components. We will also discuss how to combine layouts to generate more complex
screens and how to create your own LayoutManager for special situations.

7.1 The LayoutManager Interface

The LayoutManager interface defines the responsibilities of something that wants to lay out
Components within a Container. It is the LayoutManager's duty to determine the position and
size of each component within the Container. You will never directly call the methods of the
LayoutManager interface; for the most part, layout managers do their work behind the scenes. Once
you have created a LayoutManager object and told the container to use it (by calling
setLayout()), you're finished with it. The system calls the appropriate methods in the layout manager
when necessary.

Therefore, the LayoutManager interface is most important when you are writing a new layout
manager; we'll discuss it here because it's the scaffolding on which all layout managers are based. Like
any interface, LayoutManager specifies the methods a layout manager must implement but says
nothing about how the LayoutManager does its job. Therefore, we'll make a few observations before
proceeding. First, a layout manager is free to ignore some of its components; there is no requirement that
a layout manager display everything. For example, a Container using a BorderLayout might
include thirty or forty components. However, the BorderLayout will display at most five of them (the
last component placed in each of its five named areas). Likewise, a CardLayout may manage many
components but displays only one at a time.

Second, a layout manager can do anything it wants with the components' minimum and preferred sizes. It
is free to ignore either. It makes sense that a layout manager can ignore a preferred size; after all,
"preferred" means "give me this if it's available." However, a layout manager can also ignore a minimum
size. At times, there is no reasonable alternative: the container may not have enough room to display a
component at its minimum size. How to handle this situation is left to the layout manager's discretion.
All layout managers currently ignore a component's maximum size, though this may change in the future.

Methods of the LayoutManager Interface

Five methods make up the LayoutManager interface. If you create your own class that implements
LayoutManager, you must define all five. As you will see, many of the methods do not have to do
anything, but there must still be a stub with the appropriate method signature.

public abstract void addLayoutComponent (String name, Component component)

The addLayoutComponent() method is called only when the program assigns a name to the
component when adding it to the layout (i.e., the program calls add(String,
Component) rather than simply calling add(Component) or the Java 1.1
add(Component, Object)). It is up to the layout manager to decide what, if anything, to do
with the name. For example, BorderLayout uses name to specify an area on the screen in
which to display the component. Most layout managers don't require a name and will only
implement a stub.

public abstract void removeLayoutComponent (Component component)

The removeLayoutComponent() method's responsibility is to remove component from
any internal storage used by the layout manager. This method will probably be stubbed out for
your own layouts and do nothing. However, it may need to do something if your layout manager
associates components with names.

public abstract Dimension preferredLayoutSize (Container parent)

The preferredLayoutSize() method is called to determine the preferred size of the
components within the Container. It returns a Dimension object that contains the required
height and width. parent is the object whose components need to be laid out. Usually, the
LayoutManager determines how to size parent by calculating the sizes of the components
within it and calculating the dimensions required to display them. On other occasions, it may just
return parent.setSize().

public abstract Dimension minimumLayoutSize (Container parent)

The minimumLayoutSize() method is called to determine the minimum size of the
components within the Container. It returns a Dimension object that contains the required
height and width. parent is the object whose components need to be laid out.

public abstract void layoutContainer (Container parent)

The layoutContainer() method is where a LayoutManager does most of its work. The
layoutContainer() method is responsible for the positioning of all the Components of
parent. Each specific layout positions the enclosed components based upon its own rules.

The LayoutManager2 Interface

Numerous changes were introduced in Java 1.1 to make it conform to various design patterns. These
patterns provide consistency in usage and make Java programming easier. The LayoutManager2
interface was introduced for this reason. This new interface solves a problem that occurs when working
with the GridBagLayout. While the addLayoutComponent(String, Component) method
of LayoutManager works great for BorderLayout and CardLayout, you can't use it for a
GridBagLayout. The position of a component in a GridBagLayout is controlled by a number of
constraints, which are encapsulated in a GridBagConstraints object. To associate constraints with
a component, you needed to call a setConstraints() method. Although this works, it is not
consistent with the way you add components to other layouts. Furthermore, as more and more people
create their own layout managers, the number of ways to associate positioning information with a
component could grow endlessly. LayoutManager2 defines a version of
addLayoutComponent() that can be used by all constraint-based layout managers, including older
managers like BorderLayout and CardLayout. This method lets you pass an arbitrary object to the
layout manager to provide positioning information. Layout managers that need additional information
(like the GridBagConstraints object) now implement LayoutManager2 instead of
LayoutManager.

In addition to swapping the parameters to the addLayoutComponent(Component, Object), the
new LayoutManager2 interface also defines several methods that aren't really needed now but will
facilitate the introduction of "peerless components" in a later release. Methods of the LayoutManager2
interface

public abstract void addLayoutComponent(Component comp, Object constraints)

The addLayoutComponent() method is called when a program assigns constraints to
the component comp when adding it to the layout. In practice, this means that the program added
the component by calling the new method add(Component component, Object
constraints) rather than the older methods add(Component component) or
add(String name, Component component)). It is up to the layout manager to decide
what, if anything, to do with the constraints. For example, GridBagLayout uses
constraints to associate a GridBagConstraints object to the component comp.
BorderLayout uses constraints to associate a location string (like "Center") with the
component.

public abstract Dimension maximumLayoutSize(Container target)

The maximumLayoutSize() method must return the maximum size of the target container
under this layout manager. Previously, only minimum and preferred sizes were available. Now a
container can have a maximum size. Once layout managers support the concept of maximum

sizes, containers will not grow without bounds when additional space is available. If there is no
actual maximum, the Dimension should have a width and height of the constant
Integer.MAX_VALUE.

public abstract float getLayoutAlignmentX(Container target)

The getLayoutAlignmentX() method must return the alignment of target along the x
axis. The return value should be between 0.0 and 1.0. Values nearer 0 mean that the container will
be positioned closer to the left edge of the area available. Values nearer 1 mean that the container
will be positioned closer to the right. The value 0.5 means the container should be centered.

public abstract float getLayoutAlignmentY(Container target)

The getLayoutAlignmentY() method must return the alignment of target along the y
axis. The return value should be between 0.0 and 1.0. Values nearer 0 mean that the container will
be positioned closer to the top of the area available. Values nearer 1 mean that the container will
be positioned closer to the bottom. The value 0.5 means the container should be centered.

public abstract void invalidateLayout(Container target)

The invalidateLayout() method tells the layout manager that any layout information it has
for target is invalid. This method will usually be implemented as a stub (i.e., {}). However, if
the layout manager caches any information about target when this method is called, the
manager should consider that information invalid and discard it.

FileDialog FlowLayout

Chapter 8

8. Input Fields
Contents:
Text Component
TextField
TextArea
Extending TextField

There are two fundamental ways for users to provide input to a program: they can type on a keyboard, or they can
select something (a button, a menu item, etc.) using a mouse. When you want a user to provide input to your program,
you can display a list of choices to choose from or allow the user to interact with your program by typing with the
keyboard. Presenting choices to the user is covered in Chapter 9, Pick Me. As far as keyboard input goes, the
java.awt package provides two options. The TextField class is a single line input field, while the TextArea
class is a multiline one. Both TextField and TextArea are subclasses of the class TextComponent, which
contains all the common functionality of the two. TextComponent is a subclass of Component, which is a
subclass of Object. So you inherit all of these methods when you work with either TextField or TextArea.

8.1 Text Component

By themselves, the TextField and TextArea classes are fairly robust. However, in order to reduce duplication
between the classes, they both inherit a number of methods from the TextComponent class. The constructor for
TextComponent is package private, so you cannot create an instance of it yourself. Some of the activities shared
by TextField and TextArea through the TextComponent methods include setting the text, getting the text,
selecting the text, and making it read-only.

TextComponent Methods

Contents

Both TextField and TextArea contain a set of characters whose content determines the current value of the
TextComponent. The following methods are usually called in response to an external event.

public String getText ()

The getText() method returns the current contents of the TextComponent as a String object.

public void setText (String text)

The setText() method sets the content of the TextComponent to text. If the TextComponent is a
TextArea, you can embed newline characters (\n) in the text so that it will appear on multiple lines.

Text selection

Users can select text in TextComponents by pressing a mouse button at a starting point and dragging the cursor
across the text. The selected text is displayed in reverse video. Only one block of text can be selected at any given
time within a single TextComponent. Once selected, this block could be used to provide the user with some text-
related operation such as cut and paste (on a PopupMenu).

Depending on the platform, you might or might not be able to get selected text when a TextComponent does not
have the input focus. In general, the component with selected text must have input focus in order for you to retrieve
any information about the selection. However, in some environments, the text remains selected when the component
no longer has the input focus.

public int getSelectionStart ()

The getSelectionStart() method returns the initial position of any selected text. The position can be
considered the number of characters preceding the first selected character. If there is no selected text,
getSelectionStart() returns the current cursor position. If the start of the selection is at beginning of
the text, the return value is 0.

public int getSelectionEnd ()

The getSelectionEnd() method returns the ending cursor position of any selected text--that is, the
number of characters preceding the end of the selection. If there is no selected text, getSelectionEnd()
returns the current cursor position.

public String getSelectedText ()

The getSelectedText() method returns the currently selected text of the TextComponent as a
String. If nothing is selected, getSelectedText() returns an empty String, not null.

public void setSelectionStart (int position)

The setSelectionStart() method changes the beginning of the current selection to position. If
position is after getSelectionEnd(), the cursor position moves to getSelectionEnd(), and
nothing is selected.

public void setSelectionEnd (int position)

The setSelectionEnd() method changes the end of the current selection to position. If position
is before getSelectionStart(), the cursor position moves to position, and nothing is selected.

public void select (int selectionStart, int selectionEnd)

The select() method selects the text in the TextComponent from selectionStart to
selectionEnd. If selectionStart is after selectionEnd, the cursor position moves to
selectionEnd. Some platforms allow you to use select() to ensure that a particular position is visible
on the screen.

public void selectAll ()

The selectAll() method selects all the text in the TextComponent. It basically does a select() call
with a selectionStart position of 0 and a selectionEnd position of the length of the contents.

Carets

Introduced in Java 1.1 is the ability to set and get the current insertion position within the text object.

public int getCaretPosition ()

The getCaretPosition() method returns the current text insertion position (often called the "cursor") of
the TextComponent. You can use this position to paste text from the clipboard with the
java.awt.datatransfer package described in Chapter 16, Data Transfer.

public void setCaretPosition (int position)

The setCaretPosition() method moves the current text insertion location of the TextComponent to
position. If the TextComponent does not have a peer yet, setCaretPosition() throws the
IllegalComponentStateException run-time exception. If position < 0, this method throws the
run-time exception IllegalArgumentException. If position is too big, the text insertion point is
positioned at the end.

Prior to Java version 1.1, the insertion location was usually set by calling select(position,
position).

Read-only text

By default, a TextComponent is editable. If a user types while the component has input focus, its contents will
change. A TextComponent can also be used in an output-only (read-only) mode.

public void setEditable (boolean state)

The setEditable() method allows you to change the current editable state of the TextComponent to
state. true means the component is editable; false means read-only.

public boolean isEditable ()

The isEditable() method tells you if the TextComponent is editable (true) or read-only (false).

The following listing is an applet that toggles the editable status for a TextArea and sets a label to show the current
status. As you can see in Figure 8.1, platforms can change the display characteristics of the TextComponent to
reflect whether the component is editable. (Windows 95 darkens the background. Motif and Windows NT do
nothing.)

import java.awt.*;
import java.applet.*;
public class readonly extends Applet {
 TextArea area;
 Label label;
 public void init () {
 setLayout (new BorderLayout (10, 10));
 add ("South", new Button ("toggleState"));
 add ("Center", area = new TextArea ("Help Me", 5, 10));
 add ("North", label = new Label ("Editable", Label.CENTER));
 }
 public boolean action (Event e, Object o) {
 if (e.target instanceof Button) {
 if ("toggleState".equals(o)) {
 area.setEditable (!area.isEditable ());
 label.setText ((area.isEditable () ? "Editable" : "Read-only"));
 return true;
 }
 }
 return false;
 }
}

Figure 8.1: Editable and read-only TextAreas

[Graphic: Figure 8-1]

Miscellaneous methods

public synchronized void removeNotifiy ()

The removeNotify() method destroys the peer of the TextComponent and removes it from the screen.
Prior to the TextComponent peer's destruction, the current state is saved so that a subsequent call to
addNotify() will put it back. (TextArea and TextField each have their own addNotify()
methods.) These methods deal with the peer object, which hides the native platform's implementation of the
component. If you override this method for a specific TextComponent, put in the customizations for your
new class first, and call super.removeNotify() last.

protected String paramString ()

When you call the toString() method of a TextField or TextArea, the default toString()
method of Component is called. This in turn calls paramString(), which builds up the string to display.
The TextComponent level potentially adds four items. The first is the current contents of the
TextComponent (getText()). If the text is editable, paramString() adds the word editable to the
string. The last two items included are the current selection range (getSelectionStart() and
getSelectionEnd()).

TextComponent Events

With the 1.1 event model, you can register listeners for text events. A text event occurs when the component's content
changes, either because the user typed something or because the program called a method like setText().
Listeners are registered with the addTextListener() method. When the content changes, the
TextListener.textValueChanges() method is called through the protected method
processTextEvent(). There is no equivalent to TextEvent in Java 1.0; you would have to direct keyboard
changes and all programmatic changes to a common method yourself.

In addition to TextEvent listeners, Key, mouse, and focus listeners are registered through the Component
methods addKeyListener(), addMouseListener(), addMouseMotionListener(), and
addFocusListener(), respectively. Listeners and 1.1 event handling

public synchronized void addTextListener(TextListener listener)

The addTextListener() method registers listener as an object interested in receiving notifications
when a TextEvent passes through the EventQueue with this TextComponent as its target. The
listener.textValueChanged() method is called when these events occur. Multiple listeners can be
registered.

The following applet, text13, demonstrates how to use a TextListener to handle the events that occur
when a TextField is changed. Whenever the user types into the TextField, a TextEvent is delivered
to the textValueChanged() method, which prints a message on the Java console. The applet includes a
button that, when pressed, modifies the text field tf by calling setText(). These changes also generate a
TextEvent.

// Java 1.1 only
import java.applet.*;
import java.awt.*;

import java.awt.event.*;
class TextFieldSetter implements ActionListener {
 TextField tf;
 TextFieldSetter (TextField tf) {
 this.tf = tf;
 }
 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand().equals ("Set")) {
 tf.setText ("Hello");
 }
 }
}
public class text13 extends Applet implements TextListener {
 TextField tf;
 int i=0;
 public void init () {
 Button b;
 tf = new TextField ("Help Text", 20);
 add (tf);
 tf.addTextListener (this);
 add (b = new Button ("Set"));
 b.addActionListener (new TextFieldSetter (tf));
 }
 public void textValueChanged(TextEvent e) {
 System.out.println (++i + ": " + e);
 }
}

public void removeTextListener(TextListener listener)

The removeTextListener() method removes listener as an interested listener. If listener is not
registered, nothing happens.

protected void processEvent(AWTEvent e)

The processEvent() method receives all AWTEvents with this TextComponent as its target.
processEvent() then passes the events along to any listeners for processing. When you subclass
TextComponent, overriding processEvent() allows you to process all events yourself, before sending
them to any listeners. In a way, overriding processEvent() is like overriding handleEvent() using
the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last to ensure that
regular event processing can occur. If you want to process your own events, it's a good idea to call
enableEvents() (inherited from Component) to ensure that events are delivered even in the absence of
registered listeners.

protected void processTextEvent(TextEvent e)

The processTextEvent() method receives all TextEvents with this TextComponent as its target.
processTextEvent() then passes them along to any listeners for processing. When you subclass
TextField or TextArea, overriding the processTextEvent() method allows you to process all text
events yourself, before sending them to any listeners. There is no equivalent to processTextEvent()
within the 1.0 event model.

If you override processTextEvent(), remember to call the method super.processTextEvent(e)
last to ensure that regular event processing can occur. If you want to process your own events, it's a good idea
to call enableEvents() (inherited from Component) to ensure that events are delivered even in the
absence of registered listeners.

Other Layouts Available on
the Net

TextField

Chapter 9

9. Pick Me
Contents:
Choice
Lists
Checkbox
CheckboxGroup
ItemSelectable

Three AWT components let you present a list of choices to users: Choice, List, and Checkbox. All three
components implement the ItemSelectable interface (Java1.1). These components are comparable to
selection mechanisms in modern GUIs so most readers will be able to learn them easily, but I'll point out some
special enhancements that they provide.

Choice and List are similar; both offer a list of choices for the user to select. Choice provides a pull-down
list that offers one selection at a time, whereas List is a scrollable list that allows a user to make one or multiple
selections. From a design standpoint, which you choose depends at least partially on screen real estate; if you
want the user to select from a large group of alternatives, Choice requires the least space, List requires
somewhat more, while Checkbox requires the most. Choice is the only component in this group that does not
allow multiple selections. A List allows multiple or single selection; because each Checkbox is a separate
component, checkboxes inherently allow multiple selection. In order to create a list of mutually exclusive
checkboxes, in which only one box can be selected at a time (commonly known as radio buttons), you can put
several checkboxes together into a CheckboxGroup, which is discussed at the end of this chapter.

9.1 Choice

The Choice component provides pop-up/pull-down lists. It is the equivalent of Motif's OptionMenu or
Windows MFC's ComboBox. (Java 1.1 departs from the MFC world.) With the Choice component, you can
provide a short list of choices to the user, while taking up the space of a single item on the screen. When the
component is selected, the complete list of available choices appears on the screen. After the user has selected an
option, the list is removed from the screen and the selected item is displayed. Selecting any item automatically
deselects the previous selection.

Component Methods

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch09_05.htm

Constructors

public Choice ()

There is only one constructor for Choice. When you call it, a new instance of Choice is created. The
component is initially empty, with no items to select. Once you add some items using addItem()
(version 1.0) or add() (version 1.1) and display the Choice on the screen, it will look something like
the leftmost component in Figure 9.1. The center component shows what a Choice looks like when it is
selected, while the one on the right shows what a Choice looks like before any items have been added to
it.

Figure 9.1: How Choices are displayed

[Graphic: Figure 9-1]

Items

public int getItemCount ()

public int countItems ()

The getItemCount() method returns the number of selectable items in the Choice object. In Figure
9.1, getItemCount() would return 6.

countItems() is the Java 1.0 name for this method.

public String getItem (int index)

The getItem() method returns the text for the item at position index in the Choice. If index is
invalid--either index < 0 or index >= getItemCount()--the getItem() method throws the
ArrayIndexOutOfBoundsException run-time exception.

public synchronized void add (String item)

public synchronized void addItem (String item)

add() adds item to the list of available choices. If item is already an option in the Choice, this
method adds it again. If item is null, add() throws the run-time exception
NullPointerException. The first item added to a Choice becomes the initial (default) selection.

addItem() is the Java 1.0 name for this method.

public synchronized void insert (String item, int index)

insert() adds item to the list of available choices at position index. An index of 0 adds the item at
the beginning. An index larger than the number of choices adds the item at the end. If item is null,
insert() throws the run-time exception NullPointerException. If index is negative,
insert() throws the run-time exception IllegalArgumentException.

public synchronized void remove (String item)

remove() removes item from the list of available choices. If item is present in Choice multiple
times, a call to remove() removes the first instance. If item is null, remove() throws the run-time
exception NullPointerException. If item is not found in the Choice, remove() throws the
IllegalArgumentException run-time exception.

public synchronized void remove (int position)

remove() removes the item at position from the list of available choices. If position is invalid--
either position < 0 or position >= getItemCount()--remove() throws the run-time
exception ArrayIndexOutOfBoundsException.

public synchronized void removeAll ()

The removeAll() method removes every option from the Choice. This allows you to refresh the list
from scratch, rather than creating a new Choice and repopulating it.

Selection

The Choice has one item selected at a time. Initially, it is the first item that was added to the Choice.

public String getSelectedItem ()

The getSelectedItem() method returns the currently selected item as a String. The text returned
is the parameter used in the addItem() or add() call that put the option in the Choice. If Choice is
empty, getSelectedItem() returns null.

public Object[] getSelectedObjects ()

The getSelectedObjects() method returns the currently selected item as an Object array, instead
of a String. The array will either be a one-element array, or null if there are no items. This method is
required by the ItemSelectable interface and allows you to use the same method to look at the items
selected by a Choice, List, or Checkbox.

public int getSelectedIndex ()

The getSelectedIndex() method returns the position of the currently selected item. The Choice
list uses zero-based indexing, so the position of the first item is zero. The position of the last item is the
value of countItems()-1. If the list is empty, this method returns -1.

public synchronized void select (int position)

This version of the select() method makes the item at position the selected item in the Choice. If
position is too big, select() throws the run-time exception IllegalArgumentException. If
position is negative, nothing happens.

public void select (String string)

This version of select() makes the item with the label string the selected item. If string is in the
Choice multiple times, this method selects the first. If string is not in the Choice, nothing happens.

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method creates the Choice's peer. If you override this method, call
super.addNotify() first, then add your customizations for the new class. You will then be able to do
everything you need with the information about the newly created peer.

protected String paramString ()

When you call the toString() method of a Choice, the default toString() method of
Component gets called. This in turn calls paramString() which builds up the string to display. At
the Choice level, paramString() appends the currently selected item (the result of
getSelectedItem()) to the output. Using the first Choice instance in Figure 9.1, the results would
be:

java.awt.Choice[139,5,92x27,current=Dialog]

Choice Events

The primary event for a Choice occurs when the user selects an item in the list. With the 1.0 event model,
selecting an item generates an ACTION_EVENT, which triggers a call to the action() method. Once the

Choice has the input focus, the user can change the selection by using the arrow or keyboard keys. The arrow
keys scroll through the list of choices, triggering the KEY_ACTION, ACTION_EVENT, and
KEY_ACTION_RELEASE event sequence, which in turn invokes the keyDown(), action(), and keyUp()
methods, respectively. If the mouse is used to choose an item, no mouse events are triggered as you scroll over
each item, and an ACTION_EVENT occurs only when a specific choice is selected.

With the 1.1 event model, you register ItemListener with addItemListener(). Then when the user
selects the Choice, the ItemListener.itemStateChanged() method is called through the protected
Choice.processItemEvent() method. Key, mouse, and focus listeners are registered through the
Component methods of addKeyListener(), addMouseListener(), and addFocusListener(),
respectively. Action

public boolean action (Event e, Object o)

The action() method for a choice signifies that the user selected an item. e is the Event instance for
the specific event, while o is the String from the call to addItem() or add() that represents the
current selection. Here's a trivial implementation of the method:

public boolean action (Event e, Object o) {
 if (e.target instanceof Choice) {
 System.out.println ("Choice is now set to " + o);
 }
 return false;
}

Keyboard

The keyboard events for a Choice can be generated once the Choice has the input focus. In addition to the
KEY_ACTION and KEY_ACTION_RELEASE events you get with the arrow keys, an ACTION_EVENT is
generated over each entry.

public boolean keyDown (Event e, int key)

The keyDown() method is called whenever the user presses a key and the Choice has the input focus.
e is the Event instance for the specific event, while key is the integer representation of the character
pressed. The identifier for the event (e.id) for keyDown() could be either Event.KEY_PRESS for a
regular key or Event.KEY_ACTION for an action-oriented key (i.e., arrow or function key). If you
check the current selection in this method through the method getSelectedItem() or
getSelectedIndex(), you will be given the previously selected item because the Choice's
selection has not changed yet. keyDown() is not called when the Choice is changed by using the
mouse.

public boolean keyUp (Event e, int key)

The keyUp() method is called whenever the user releases a key. e is the Event instance for the specific

event, while key is the integer representation of the character pressed. The identifier for the event (e.id)
for keyUp() could be either KEY_RELEASE for a regular key or KEY_ACTION_RELEASE for an
action oriented key (i.e., arrow or function key).

Mouse

Ordinarily, the Choice component does not trigger any mouse events. Focus

Ordinarily, the Choice component does not trigger any focus events. Listeners and 1.1 event handling

With the 1.1 event model, you register listeners for different event types; the listeners are told when the event
happens. These methods register listeners, and let the Choice component inspect its own events.

public void addItemListener(ItemListener listener)

The addItemListener() method registers listener as an object interested in being notified when
an ItemEvent passes through the EventQueue with this Choice as its target. The
listener.itemStateChanged() method is called when an event occurs. Multiple listeners can be
registered.

public void removeItemListener(ItemListener listener)

The removeItemListener() method removes listener as a interested listener. If listener is
not registered, nothing happens.

protected void processEvent(AWTEvent e)

The processEvent() method receives all AWTEvents with this Choice as its target.
processEvent() then passes them along to any listeners for processing. When you subclass Choice,
overriding processEvent() allows you to process all events yourself, before sending them to any
listeners. In a way, overriding processEvent() is like overriding handleEvent() using the 1.0
event model.

If you override processEvent(), remember to call super.processEvent(e) last to ensure that
regular event processing can occur. If you want to process your own events, it's a good idea to call
enableEvents() (inherited from Component) to ensure that events are delivered even in the absence
of registered listeners.

protected void processItemEvent(ItemEvent e)

The processItemEvent() method receives all ItemEvents with this Choice as its target.
processItemEvent() then passes them along to any listeners for processing. When you subclass
Choice, overriding processItemEvent() allows you to process all events yourself, before sending
them to any listeners. In a way, overriding processItemEvent() is like overriding

handleEvent() using the 1.0 event model.

If you override processItemEvent(), remember to call the method
super.processItemEvent(e) last to ensure that regular event processing can occur. If you want to
process your own events, it's a good idea to call enableEvents() (inherited from Component) to
ensure that events are delivered even in the absence of registered listeners.

The following simple applet below demonstrates how a component can receive its own events by overriding
processItemEvent(), while still allowing other objects to register as listeners. MyChoice11 is a subclass
of Choice that processes its own item events. choice11 is an applet that uses the MyChoice11 component
and registers itself as a listener for item events.

// Java 1.1 only
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
class MyChoice11 extends Choice {
 MyChoice11 () {
 super ();
 enableEvents (AWTEvent.ITEM_EVENT_MASK);
 }
 protected void processItemEvent(ItemEvent e) {
 ItemSelectable ie = e.getItemSelectable();
 System.out.println ("Item Selected: " + ie.getSelectedObjects()[0]);
 // If you do not call super.processItemEvent()
 // no listener will be notified
 super.processItemEvent (e);
 }
}
public class choice11 extends Applet implements ItemListener {
 Choice c;
 public void init () {
 String []fonts;
 fonts = Toolkit.getDefaultToolkit().getFontList();
 c = new MyChoice11();
 for (int i = 0; i < fonts.length; i++) {
 c.add (fonts[i]);
 }
 add (c);
 c.addItemListener (this);
 }
 public void itemStateChanged(ItemEvent e) {
 ItemSelectable ie = e.getItemSelectable();
 System.out.println ("State Change: " + ie.getSelectedObjects()[0]);
 }
}

A few things are worth noticing. MyChoice11 calls enableEvents() in its constructor to make sure that
item events are delivered, even if nobody registers as a listener: MyChoice11 needs to make sure that it
receives events, even in the absence of listeners. Its processItemEvent() method ends by calling the
superclass's processItemEvent() method, with the original item event. This call ensures that normal item
event processing occurs; super.processItemEvent() is responsible for distributing the event to any
registered listeners. The alternative would be to implement the whole registration and event distribution
mechanism inside myChoice11, which is precisely what object-oriented programming is supposed to avoid, or
being absolutely sure that you will only use MyChoice11 in situations in which there won't be any listeners,
drastically limiting the usefulness of this class.

choice11 doesn't contain many surprises. It implements ItemListener, the listener interface for item
events; provides the required itemStateChanged() method, which is called whenever an item event occurs;
and calls MyChoice11's method addItemListener() to register as a listener for item events.
(MyChoice11 inherits this method from the Choice class.)

Extending TextField Lists

Chapter 10

10. Would You Like to Choose from the
Menu?
Contents:
MenuComponent
MenuContainer
MenuShortcut
MenuItem
Menu
CheckboxMenuItem
MenuBar
Putting It All Together
PopupMenu

In Chapter 6, Containers, I mentioned that a Frame can have a menu. Indeed, to offer a menu in the
AWT, you have to attach it to a Frame. With versions 1.0.2 and 1.1, Java does not support menu bars
within an applet or any other container. We hope that future versions of Java will allow menus to be used
with other containers. Java 1.1 goes partway toward solving this problem by introducing a PopupMenu
that lets you attach context menus to any Component. Java 1.1 also adds MenuShortcut events,
which represent keyboard accelerator events for menus.

Implementing a menu in a Frame involves connections among a number of different objects: MenuBar,
Menu, MenuItem, and the optional CheckboxMenuItem. Several of these classes implement the
MenuContainer interface. Once you've created a few menus, you'll probably find the process quite
natural, but it's hard to describe until you see what all the objects are. So this chapter describes most of
the menu classes first and then shows an example demonstrating their use.

All the components covered in previous chapters were subclasses of Component. Most of the objects in
this chapter subclass MenuComponent, which encapsulates the common functionality of menu objects.
The MenuComponent class hierarchy is shown in Figure 10.1.

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch09_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch10_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch10_02.htm

Figure 10.1: MenuComponent class hierarchy

[Graphic: Figure 10-1]

To display a Menu, you must first put it in a MenuBar, which you add to a Frame. (Pop-up menus are
different in that they don't need a Frame.) A Menu can contain MenuItem as well as other menus that
form submenus. CheckboxMenuItem is a specialized MenuItem that (as you might guess) the user
can toggle like a Checkbox. One way to visualize how all these things work together is to imagine a set
of curtains. The different MenuItem components are the fabrics and panels that make up the curtains.
The Menus are the curtains. They get hung from the MenuBar, which is like a curtain rod. Then you
place the MenuBar curtain rod into the Frame (the window, in our metaphor), curtains and all.

It might puzzle you that a Menu is a subclass of MenuItem, not the other way around. This is because a
Menu can appear on a Menu just like another MenuItem, which would not be possible if the hierarchy
was the other way around. Figure 10.2 points out the different pieces involved in the creation of a menu:
the MenuBar and various kinds of menu items, including a submenu.

Figure 10.2: The pieces that make up a Menu

[Graphic: Figure 10-2]

10.1 MenuComponent

MenuComponent is an abstract class that is the parent of all menu-related objects. You will never
create an instance of the object. Nor are you likely to subclass it yourself--to make the subclass work,
you'd have to provide your own peer on every platform where you want the application to run.

MenuComponent Methods

Constructor

public MenuComponent ()--cannot be called directly

Since MenuComponent is an abstract class, you cannot create an instance of the object. This
method is called when you create an instance of one of its children.

Fonts

public Font getFont ()

The getFont() method retrieves the font associated with the MenuComponent from
setFont(). If the current object's font has not been set, the parent menu's font is retrieved. If
there is no parent and the current object's font has not been set, getFont() returns null.

public void setFont (Font f)

The setFont() method allows you to change the font of the particular menu-related component
to f. When a MenuComponent is first created, the initial font is null, so the parent menu's font
is used.

NOTE:

Some platforms do not support changing the fonts of menu items. Where supported, it can make some
pretty ugly menus.

Names

The name serves as an alternative, nonlocalized reference identifier for menu components. If your event
handlers compare menu label strings to an expected value and labels are localized for a new
environment, the approach fails.

public String getName ()

The getName() method retrieves the name of the menu component. Every instance of a
subclass of MenuComponent is named when it is created.

public void setName (String name)

The setName() method changes the current name of the component to name.

Peers

public MenuComponentPeer getPeer ()

The getPeer() method returns a reference to the MenuComponent peer as a
MenuComponentPeer.

public synchronized void removeNotify ()

The removeNotify() method destroys the peer of the MenuComponent and removes it from
the screen. addNotify() will be specific to the subclass.

Events

Event handling is slightly different between versions. If using the 1.0 event model, use postEvent().
Otherwise, use dispatchEvent() to post an event to this MenuComponent or processEvent()
to receive and handle an event. Remember not to mix versions within your programs.

public boolean postEvent (Event e)

The postEvent() method posts Event e to the MenuComponent. The event is delivered to
the Frame at the top of the object hierarchy that contains the selected MenuComponent. The
only way to capture this event before it gets handed to the Frame is to override this method.
There are no helper functions as there are for Components. Find out which MenuComponent
triggered the event by checking e.arg, which contains its label, or
((MenuItem)e.target).getName() for the nonlocalized name of the target.

public boolean postEvent (Event e) {
 // Use getName() vs. e.arg for localization possibility
 if ("About".equals (((MenuItem)e.target).getName()))
 playLaughingSound(); // Help request
 return super.postEvent (e);
}

If you override this method, in order for this Event to propagate to the Frame that contains the
MenuComponent, you must call the original postEvent() method
(super.postEvent(e)).

The actual value returned by postEvent() is irrelevant.

public final void dispatchEvent(AWTEvent e)

The dispatchEvent() method allows you to post new AWT events to this menu component's
listeners. dispatchEvent() tells the MenuComponent to deal with the AWTEvent e by
calling its processEvent() method. This method is similar to Java 1.0's postEvent()
method. Events delivered in this way bypass the system's event queue. It's not clear why you
would want to bypass the event queue, except possibly to deliver some kind of high priority event.

protected void processEvent(AWTEvent e)

The processEvent() method receives all AWTEvents with a subclass of MenuComponent
as its target. processEvent() then passes them along for processing. When you subclass a
child class, overriding processEvent() allows you to process all events without having to
provide listeners. However, remember to call super.processEvent(e) last to ensure
regular functionality is still executed. This is like overriding postEvent() using the 1.0 event
model.

Miscellaneous methods

public MenuContainer getParent ()

The getParent() method returns the parent MenuContainer for the MenuComponent.
MenuContainer is an interface that is implemented by Component (in 1.1 only), Frame,
Menu, and MenuBar. This means that getParent() could return any one of the four.

protected String paramString ()

The paramString() method of MenuComponent helps build up the string to display when
toString() is called for a subclass. At the MenuComponent level, the current name of the
object is appended to the output.

public String toString ()--can be called by user for subclass

The toString() method at the MenuComponent level cannot be called directly. This
toString() method is called when you call a subclass's toString() and the specifics of the
subclass is added between the brackets ([and]). At this level, the results would be:

java.awt.MenuComponent[aname1]

ItemSelectable MenuContainer

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch09_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch10_02.htm

Chapter 11

11. Scrolling
Contents:
Scrollbar
Scrolling An Image
The Adjustable Interface
ScrollPane

This chapter describes how Java deals with scrolling. AWT provides two means for scrolling. The first is
the fairly primitive Scrollbar object. It really provides only the means to read a value from a slider
setting. Anything else is your responsibility: if you want to display the value of the setting (for example,
if you're using the scrollbar as a volume control) or want to change the display (if you're using scrollbars
to control an area that's too large to display), you have to do it yourself. The Scrollbar reports
scrolling actions through the standard event mechanisms; it is up to the programmer to handle those
events and perform the scrolling.

Unlike other components, which generate an ACTION_EVENT when something exciting happens, the
Scrollbar generates five events: SCROLL_LINE_UP, SCROLL_LINE_DOWN, SCROLL_PAGE_UP,
SCROLL_PAGE_DOWN, and SCROLL_ABSOLUTE. In Java 1.0, none of these events trigger a default
event handler like the action() method. To work with them, you must override the
handleEvent() method. With Java 1.1, you handle scrolling events by registering an
AdjustmentListener with the Scrollbar.addAdjustmentListener() method; when
adjustment events occur, the listener's adjustmentValueChanged() method is called.

Release 1.1 of AWT also includes a ScrollPane container object; it is a response to one of the
limitations of AWT 1.0. A ScrollPane is like a Panel, but it has scrollbars and scrolling built in. In
this sense, it's like TextArea, which contains its own scrollbars. You could use a ScrollPane to
implement a drawing pad that could cover an arbitrarily large area. This saves you the burden of
implementing scrolling yourself: generating scrollbars, handling their events, and figuring out how to
redisplay the screen accordingly.

Both Scrollbar and ScrollPane take advantage of the Adjustable interface. Adjustable
defines the common scrolling activities of the two classes. The Scrollbar class implements
Adjustable; a ScrollPane has two methods that return an Adjustable object, one for each
scrollbar. Currently, you can use the ScrollPane's "adjustables" to find out the scrollbar settings in
each direction. You can't change the settings or register AdjustmentListeners; the appropriate
methods exist, but they don't do anything. It's not clear whether this is appropriate behavior or a bug
(remember, an interface only lists methods that must be present but doesn't require them to do anything);
it may change in a later release.

11.1 Scrollbar

Scrollbars come in two flavors: horizontal and vertical. Although there are several methods for setting
the page size, scrollbar range (minimum and maximum values), and so on, basically all you can do is get
and set the scrollbar's value. Scrollbars don't contain any area to display their value, though if you want
one, you could easily attach a label.

To work with a Scrollbar, you need to understand the pieces from which it is built. Figure 11.1
identifies each of the pieces. At both ends are arrows, which are used to change the Scrollbar value
the default amount (one unit) in the direction selected. The paging areas are used to change the
Scrollbar value one page (ten units by default) at a time in the direction selected. The slider can be
moved to set the scrollbar to an arbitrary value within the available range.

Figure 11.1: Scrollbar elements

[Graphic: Figure 11-1]

Scrollbar Methods

Constants

There are two direction specifiers for Scrollbar. The direction tells the Scrollbar which way to
orient itself. They are used in the constructors, as a parameter to setOrientation(), and as the
return value for the getOrientation() method.

public final static int HORIZONTAL

HORIZONTAL is the constant for horizontal orientation.

public final static int VERTICAL

VERTICAL is the constant for vertical orientation.

Constructors

public Scrollbar (int orientation, int value, int visible, int minimum, int maximum)

The Scrollbar constructor creates a Scrollbar with a direction of orientation and
initial value of value. visible is the size of the slider. minimum and maximum are the range
of values that the Scrollbar can be. If orientation is not HORIZONTAL or VERTICAL,
the constructor throws the run-time exception IllegalArgumentException. If maximum
is below the value of minimum, the scrollbar's minimum and maximum values are both set to
minimum. If value is outside the range of the scrollbar, it is set to the limit it exceeded. The
default line scrolling amount is one. The default paging amount is ten.

If you are using the scrollbar to control a visual object, visible should be set to the amount of a
displayed object that is on the screen at one time, relative to the entire size of the object (i.e.,
relative to the scrollbar's range: maximum - minimum). Some platforms ignore this parameter
and set the scrollbar to a fixed size.

public Scrollbar (int orientation)

This constructor for Scrollbar creates a Scrollbar with the direction of orientation.
In Java 1.0, the initial settings for value, visible, minimum, and maximum are 0. In Java
1.1, the default value for visible is 10, and the default for maximum is 100; the other values
default to 0. If orientation is not HORIZONTAL or VERTICAL, the constructor throws the
run-time exception IllegalArgumentException. This constructor is helpful if you want to
reserve space for the Scrollbar on the screen, to be configured later. You would then use the
setValues() method to configure the scrollbar.

public Scrollbar ()

This constructor creates a VERTICAL Scrollbar. In Java 1.0, the initial settings for value,
visible, minimum, and maximum are 0. In Java 1.1, the default value for visible is 10,
and the default for maximum is 100; the other values default to 0. You would then use the

setValues() method to configure the scrollbar.

Figure 11.2 shows both vertical and horizontal scrollbars. It also demonstrates a problem you'll run into
if you're not careful. If not constrained by the LayoutManager, scrollbars can get very fat. The result
is rarely pleasing. The solution is to place scrollbars in layout managers that restrict width for vertical
scrollbars or height for horizontal ones. The side regions (i.e., everything except the center) of a border
layout are ideal. In the long term, the solution will be scrollbars that give you their maximum size and
layout managers that observe the maximum size.

Figure 11.2: Vertical and horizontal scrollbars

[Graphic: Figure 11-2]

Adjustable Methods

public int getOrientation ()

The getOrientation() method returns the current orientation of the scrollbar: either
Scrollbar.HORIZONTAL or Scrollbar.VERTICAL.

public synchronized void setOrientation (int orientation)

The setOrientation() method changes the orientation of the scrollbar to orientation,
which must be either Scrollbar.HORIZONTAL or Scrollbar.VERTICAL. If
orientation is not HORIZONTAL or VERTICAL, this method throws the run-time exception
IllegalArgumentException. It was not possible to change the orientation of a scrollbar
prior to Java 1.1.

public int getVisibleAmount ()

public int getVisible ()

The getVisibleAmount() method gets the visible setting of the Scrollbar. If the
scrollbar's Container is resized, the visible setting is not automatically changed.

getVisible() is the Java 1.0 name for this method.

public synchronized void setVisibleAmount (int amount)

The setVisibleAmount() method changes the current visible setting of the
Scrollbar to amount.

public int getValue ()

The getValue() method is probably the most frequently called method of Scrollbar. It
returns the current value of the scrollbar queried.

public synchronized void setValue (int value)

The setValue() method changes the value of the scrollbar to value. If value exceeds a
scrollbar limit, the scrollbar's new value is set to that limit. In Java 1.1, this method is
synchronized; it was not in earlier versions.

public int getMinimum ()

The getMinimum() method returns the current minimum setting for the scrollbar.

public synchronized void setMinimum (int minimum)

The setMinimum() method changes the Scrollbar's minimum value to minimum. The
current setting for the Scrollbar may change to minimum if minimum increases above
getValue().

public int getMaximum ()

The getMaximum() method returns the current maximum setting for the scrollbar.

public synchronized void setMaximum (int maximum)

The setMaximum() method changes the maximum value of the Scrollbar to maximum.
The current setting for the Scrollbar may change to maximum if maximum decreases below
getValue().

public synchronized void setValues (int value, int visible, int minimum, int maximum)

The setValues() method changes the value, visible, minimum, and maximum settings
all at once. In Java 1.0.2, separate methods do not exist for changing visible, minimum, or
maximum. The scrollbar's value is set to value, visible to visible, minimum to minimum,
and maximum to maximum. If maximum is below the value of minimum, it is set to minimum.
If value is outside the range of the scrollbar, it is set to the limit it exceeded. In Java 1.1, this
method is synchronized; it was not in earlier versions.

public int getUnitIncrement ()

public int getLineIncrement ()

The getUnitIncrement() method returns the current line increment. This is the amount the
scrollbar will scroll if the user clicks on one of the scrollbar's arrows.

getLineIncrement() is the Java 1.0 name for this method.

public void setUnitIncrement (int amount)

public void setLineIncrement (int amount)

The setUnitIncrement() method changes the line increment amount to amount.

setLineIncrement() is the Java 1.0 name for this method.

Changing the line increment amount was not possible in Java 1.0.2. This method acted like it
returned successfully, and getLineIncrement() returned the new value, but the
Scrollbar changed its value by only one (the default) when you clicked on one of the arrows.
However, you could work around this defect by explicitly handling the SCROLL_LINE_UP and
SCROLL_LINE_DOWN events: get the correct line increment, adjust the display appropriately,
and then set call setValue() to correct the scrollbar's value. This workaround is not needed in
Java 1.1.

public int getBlockIncrement ()

public int getPageIncrement ()

The getBlockIncrement() method returns the current paging increment. This is the amount
the scrollbar will scroll if the user clicks between the slider and one of the scrollbar's arrows.

getPageIncrement() is the Java 1.0 name for this method.

public void setBlockIncrement (int amount)

public void setPageIncrement (int amount)

The setBlockIncrement() method changes the paging increment amount to amount.

setPageIncrement() is the Java 1.0 name for this method.

Changing the paging increment amount was not possible in Java 1.0.2. This method acts like it
returns successfully, and getPageIncrement() returns the new value, but the Scrollbar
changes its value only by 10 (the default) when you click on one of the paging areas. However,
you can work around this defect by explicitly handling the SCROLL_PAGE_UP and
SCROLL_PAGE_DOWN events: get the correct page increment, adjust the display appropriately,
and then set call setValue() to correct the scrollbar's value. This workaround is not necessary
in Java 1.1.

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method creates the Scrollbar's peer. If you override this method, call
super.addNotify() first. You will then be able to do everything you need with the
information about the newly created peer.

protected String paramString ()

Scrollbar doesn't have its own toString() method; when you call the toString()
method of a Scrollbar, you are actually calling the method Component.toString().
This in turn calls paramString(), which builds the string to display. For a Scrollbar,
paramString() puts the scrollbar's value, visibility, minimum, maximum, and direction into
the string. In Java 1.0, there is a minor bug in the output. Instead of displaying the scrollbar's
visible setting (an integer), paramString() displays the component's visible setting (a
boolean). (This is corrected in Java 1.1.) The following String is the result of calling
toString() for a horizontal Scrollbar that hasn't been configured yet:

java.awt.Scrollbar[0,0,0x0,invalid,val=0,vis=true,min=0,max=0,horz]

Scrollbar Events

With the 1.0 event model, scrollbars generate five kinds of events in response to user interaction:
SCROLL_LINE_UP, SCROLL_LINE_DOWN, SCROLL_PAGE_UP, SCROLL_PAGE_DOWN, and
SCROLL_ABSOLUTE. The event that occurs depends on what the user did, as shown in Table 11.1; the
event type is specified in the id field of the Event object passed to handleEvent(). However, as a
programmer, you often do not care which of these five events happened. You care only about the

scrollbar's new value, which is always passed as the arg field of the Event object.

Table 11.1: Scrollbar Events

Event Type (Event.id) Event Meaning

SCROLL_ABSOLUTE User drags slider.

SCROLL_LINE_DOWN User presses down arrow.

SCROLL_LINE_UP User presses up arrow.

SCROLL_PAGE_DOWN User selects down paging area.

SCROLL_PAGE_UP User selects up paging area.

Because scrollbar events do not trigger any default event handlers (like action()), it is necessary to
override the handleEvent() method to deal with them. Unless your version of handleEvent()
deals with all conceivable events, you must ensure that the original handleEvent() method is called.
The simplest way is to have the return statement call super.handleEvent().

Most handleEvent() methods first identify the type of event that occurred. The following two code
blocks demonstrate different ways of checking for the Scrollbar events.

if ((e.id == Event.SCROLL_LINE_UP) ||
 (e.id == Event.SCROLL_LINE_DOWN) ||
 (e.id == Event.SCROLL_PAGE_UP) ||
 (e.id == Event.SCROLL_PAGE_DOWN) ||
 (e.id == Event.SCROLL_ABSOLUTE)) {
 // Then determine which Scrollbar was selected and act upon it
}

Or more simply:

if (e.target instanceof Scrollbar) {
 // Then determine which Scrollbar was selected and act upon it.
}

Although the second code block is simpler, the first is the better choice because it is more precise. For
example, what would happen if mouse events are passed to scrollbars? Different Java platforms differ
most in the types of events passed to different objects; Netscape Navigator 3.0 for Windows 95 sends
MOUSE_ENTER, MOUSE_EXIT, and MOUSE_MOVE events to the Scrollbar.[1] The second code
block executes for all the mouse events--in fact, any event coming from a Scrollbar. Therefore, it
executes much more frequently (there can be many MOUSE_MOVE events), leading to poor interactive
performance.

[1] MOUSE_UP, MOUSE_DOWN, and MOUSE_DRAG are not generated since these
operations generate SCROLL events.

Another platform-specific issue is the way the system generates SCROLL_ABSOLUTE events. Some
platforms generate many events while the user drags the scrollbar. Others don't generate the event until
the user stops dragging the scrollbar. Some implementations wait until the user stops dragging the
scrollbar and then generate a flood of SCROLL_ABSOLUTE events for you to handle. In theory, it does
not matter which is happening, as long as your event-processing code is tight. If your event-processing
code is time consuming, you may wish to start another thread to perform the work. If the thread is still
alive when the next event comes along, flag it down, and restart the operation. Listeners and 1.1 event
handling

With the 1.1 event model, you register an AdjustmentListener by calling the
addAdjustmentListener() method. Then when the user moves the Scrollbar slider, the
AdjustmentListener.adjustmentValueChanged() method is called through the protected
Scrollbar.processAdjustmentEvent() method. Key, mouse, and focus listeners are
registered through the three Component methods of addKeyListener(),
addMouseListener(), and addFocusListener(), respectively. Because you need to register a
separate listener for mouse events, you no longer have the problem of distinguishing between mouse
events and slider events. An adjustment listener will never receive mouse events.

public void addAdjustmentListener(AdjustmentListener listener)

The addAdjustmentListener() method registers listener as an object interested in
being notified when an AdjustmentEvent passes through the EventQueue with this
Scrollbar as its target. The method listener.adjustmentValueChanged() is called
when an event occurs. Multiple listeners can be registered.

public void removeAdjustmentListener(ItemListener listener)

The removeAdjustmentListener() method removes listener as a interested listener.
If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e)

The processEvent() method receives every AWTEvent with this Scrollbar as its target.
processEvent() then passes it along to any listeners for processing. When you subclass
Scrollbar, overriding processEvent() allows you to process all events yourself, before
sending them to any listeners. In a way, overriding processEvent() is like overriding
handleEvent() using the 1.0 event model.

If you override the processEvent() method, remember to call the
super.processEvent(e) method last to ensure that regular event processing can occur. If
you want to process your own events, it's a good idea to call enableEvents() (inherited from
Component) to ensure that events are delivered even in the absence of registered listeners.

protected void processAdjustmentEvent(ItemEvent e)

The processAdjustmentEvent() method receives all AdjustmentEvents with this
Scrollbar as its target. processAdjustmentEvent() then passes them along to any
listeners for processing. When you subclass Scrollbar, overriding
processAdjustmentEvent() allows you to process all events yourself, before sending
them to any listeners.

If you override processAdjustmentEvent(), you must remember to call
super.processAdjustmentEvent(e) last to ensure that regular event processing can
occur. If you want to process your own events, it's a good idea to call enableEvents()
(inherited from Component) to ensure that events are delivered even in the absence of registered
listeners.

PopupMenu Scrolling An Image

Chapter 12

12. Image Processing
Contents:
ImageObserver
ColorModel
ImageProducer
ImageConsumer
ImageFilter

The image processing parts of Java are buried within the java.awt.image package. The package
consists of three interfaces and eleven classes, two of which are abstract. They are as follows:

● The ImageObserver interface provides the single method necessary to support the asynchronous
loading of images. The interface implementers watch the production of an image and can react when
certain conditions arise. We briefly touched on ImageObserver when we discussed the
Component class (in Chapter 5, Components), because Component implements the interface.

● The ImageConsumer and ImageProducer interfaces provide the means for low level image
creation. The ImageProducer provides the source of the pixel data that is used by the
ImageConsumer to create an Image.

● The PixelGrabber and ImageFilter classes, along with the
AreaAveragingScaleFilter, CropImageFilter, RGBImageFilter, and
ReplicateScaleFilter subclasses, provide the tools for working with images.
PixelGrabber consumes pixels from an Image into an array. The ImageFilter classes
modify an existing image to produce another Image instance. CropImageFilter makes smaller
images; RGBImageFilter alters pixel colors, while AreaAveragingScaleFilter and
ReplicateScaleFilter scale images up and down using different algorithms. All of these
classes implement ImageConsumer because they take pixel data as input.

● MemoryImageSource and FilteredImageSource produce new images.
MemoryImageSource takes an array and creates an image from it. FilteredImageSource

uses an ImageFilter to read and modify data from another image and produces the new image
based on the original. Both MemoryImageSource and FilteredImageSource implement
ImageProducer because they produce new pixel data.

● ColorModel and its subclasses, DirectColorModel and IndexColorModel, provide the
palette of colors available when creating an image or tell you the palette used when using
PixelGrabber.

The classes in the java.awt.image package let you create Image objects at run-time. These classes
can be used to rotate images, make images transparent, create image viewers for unsupported graphics
formats, and more.

12.1 ImageObserver

As you may recall from Chapter 2, Simple Graphics, the last parameter to the drawImage() method is
the image's ImageObserver. However, in Chapter 2, Simple Graphics I also said that you can use this
as the image observer and forget about it. Now it's time to ask the obvious questions: what is an image
observer, and what is it for?

Because getImage() acquires an image asynchronously, the entire Image object might not be fully
loaded when drawImage() is called. The ImageObserver interface provides the means for a
component to be told asynchronously when additional information about the image is available. The
Component class implements the imageUpdate() method (the sole method of the ImageObserver
interface), so that method is inherited by any component that renders an image. Therefore, when you call
drawImage(), you can pass this as the final argument; the component on which you are drawing
serves as the ImageObserver for the drawing process. The communication between the image observer
and the image consumer happens behind the scenes; you never have to worry about it, unless you want to
write your own imageUpdate() method that does something special as the image is being loaded.

If you call drawImage() to display an image created in local memory (either for double buffering or
from a MemoryImageSource), you can set the ImageObserver parameter of drawImage() to
null because no asynchrony is involved; the entire image is available immediately, so an
ImageObserver isn't needed.

ImageObserver Interface

Constants

The various flags associated with the ImageObserver are used for the infoflags argument to
imageUpdate(). The flags indicate what kind of information is available and how to interpret the other
arguments to imageUpdate(). Two or more flags are often combined (by an OR operation) to show that
several kinds of information are available.

public static final int WIDTH

When the WIDTH flag is set, the width argument to imageUpdate() correctly indicates the
image's width. Subsequent calls to getWidth() for the Image return the valid image width. If
you call getWidth() before this flag is set, expect it to return -1.

public static final int HEIGHT

When the HEIGHT flag is set, the height argument to imageUpdate() correctly indicates the
image's height. Subsequent calls to getHeight() for the Image return the valid image height. If
you call getHeight() before this flag is set, expect it to return -1.

public static final int PROPERTIES

When the PROPERTIES flag is set, the image's properties are available. Subsequent calls to
getProperty() return valid image properties.

public static final int SOMEBITS

When the SOMEBITS flag of infoflags (from imageUpdate()) is set, the image has started
loading and at least some of its content are available for display. When this flag is set, the x, y,
width, and height arguments to imageUpdate() indicate the bounding rectangle for the
portion of the image that has been delivered so far.

public static final int FRAMEBITS

When the FRAMEBITS flag of infoflags is set, a complete frame of a multiframe image has
been loaded and can be drawn. The remaining parameters to imageUpdate() should be ignored
(x, y, width, height).

public static final int ALLBITS

When the ALLBITS flag of infoflags is set, the image has been completely loaded and can be
drawn. The remaining parameters to imageUpdate() should be ignored (x, y, width,
height).

public static final int ERROR

When the ERROR flag is set, the production of the image has stopped prior to completion because of
a severe problem. ABORT may or may not be set when ERROR is set. Attempts to reload the image
will fail. You might get an ERROR because the URL of the Image is invalid (file not found) or the

image file itself is invalid (invalid size/content).

public static final int ABORT

When the ABORT flag is set, the production of the image has aborted prior to completion. If ERROR
is not set, a subsequent attempt to draw the image may succeed. For example, an image would abort
without an error if a network error occurred (e.g., a timeout on the HTTP connection).

Method

public boolean imageUpdate (Image image, int infoflags, int x, int y, int width, int height)

The imageUpdate() method is the sole method in the ImageObserver interface. It is called
whenever information about an image becomes available. To register an image observer for an
image, pass an object that implements the ImageObserver interface to getWidth(),
getHeight(), getProperty(), prepareImage(), or drawImage().

The image parameter to imageUpdate() is the image being rendered on the observer. The
infoflags parameter is a set of ImageObserver flags ORed together to signify the current
information available about image. The meaning of the x, y, width, and height parameters
depends on the current infoflags settings.

Implementations of imageUpdate() should return true if additional information about the
image is desired; returning false means that you don't want any additional information, and
consequently, imageUpdate() should not be called in the future for this image. The default
imageUpdate() method returns true if neither ABORT nor ALLBITS are set in the
infoflags--that is, the method imageUpdate() is interested in further information if no errors
have occurred and the image is not complete. If either flag is set, imageUpdate() returns
false.

You should not call imageUpdate() directly--unless you are developing an ImageConsumer,
in which case you may find it worthwhile to override the default imageUpdate() method, which
all components inherit from the Component class.

Overriding imageUpdate

Instead of bothering with the MediaTracker class, you can override the imageUpdate() method and
use it to notify you when an image is completely loaded. Example 12.1 demonstrates the use of
imageUpdate(), along with a way to force your images to load immediately. Here's how it works: the
init() method calls getImage() to request image loading at some time in the future. Instead of
waiting for drawImage() to trigger the loading process, init() forces loading to start by calling
prepareImage(), which also registers an image observer. prepareImage() is a method of the

Component class discussed in Chapter 5, Components.

The paint() method doesn't attempt to draw the image until the variable loaded is set to true. The
imageUpdate() method checks the infoflags argument to see whether ALLBITS is set; when it is
set, imageUpdate() sets loaded to true, and schedules a call to paint(). Thus, paint() doesn't
call drawImage() until the method imageUpdate() has discovered that the image is fully loaded.

Example 12.1: imageUpdate Override.

import java.applet.*;
import java.awt.*;
import java.awt.image.ImageObserver;
public class imageUpdateOver extends Applet {
 Image image;
 boolean loaded = false;
 public void init () {
 image = getImage (getDocumentBase(), "rosey.jpg");
 prepareImage (image, -1, -1, this);
 }
 public void paint (Graphics g) {
 if (loaded)
 g.drawImage (image, 0, 0, this);
 }
 public void update (Graphics g) {
 paint (g);
 }
 public synchronized boolean imageUpdate (Image image, int infoFlags,
 int x, int y, int width, int height) {
 if ((infoFlags & ImageObserver.ALLBITS) != 0) {
 loaded = true;
 repaint();
 return false;
 } else {
 return true;
 }
 }
}

Note that the call to prepareImage() is absolutely crucial. It is needed both to start image loading and
to register the image observer. If prepareImage() were omitted, imageUpdate() would never be
called, loaded would not be set, and paint() would never attempt to draw the image. As an alternative,
you could use the MediaTracker class to force loading to start and monitor the loading process; that
approach might give you some additional flexibility.

ScrollPane ColorModel

Chapter 13

13. AWT Exceptions and Errors
Contents:
AWTException
IllegalComponentStateException
AWTError

This chapter describes AWTException, IllegalComponentStateException, and AWTError.
AWTException is a subclass of Exception. It is not used by any of the public classes in
java.awt; you may, however, find it convenient to throw AWTException within your own code.
IllegalComponentStateException is another Exception subclass, which is new to Java 1.1.
This exception is used when you try to do something with a Component that is not yet appropriate.
AWTError is a subclass of Error that is thrown when a serious problem occurs in AWT--for example,
the environment is unable to get the platform's Toolkit.

13.1 AWTException

AWTException is a generic exception that can be thrown when an exceptional condition has occurred
within AWT. None of the AWT classes throw this. If you subclass any of the AWT classes, you can
throw an AWTException to indicate a problem. Using AWTException is slightly preferable to
creating your own Exception subclass because you do not have to generate another class file. Since it
is a part of Java, AWTException is guaranteed to exist on the run-time platform.

If you throw an instance of AWTException, like any other Exception, it must be caught in a catch
clause or declared in the throws clause of the method.

AWTException Method

Constructor

public AWTException (String message)

The sole constructor creates an AWTException with a detailed message of message. This
message can be retrieved using getMessage(), which it inherits from Exception (and
which is required by the Throwable interface). If you do not want a detailed message,
message may be null.

Throwing an AWTException

An AWTException is used the same way as any other Throwable object. Here's an example:

if (someProblem) {
 throw new AWTException ("Problem Encountered While Initializing");
}

ImageFilter IllegalComponentStateException

Chapter 14

14. And Then There Were Applets
Contents:
What's a Java Applet?
AudioClip Interface
AppletContext Interface
AppletStub Interface
Audio in Applications

Although it is not part of the java.awt package, the java.applet package is closely related. The
java.applet package provides support for running an applet in the context of a World Wide Web
browser. It consists of one class (Applet) and three interfaces (AppletContext, AudioClip, and
AppletStub). The Applet class supports the "applet life cycle" methods (init(), start(),
stop(), destroy()) that you override to write an applet. AudioClip provides support for audio
within applets. (Applications use the sun.audio package for audio support; sun.audio is also
covered in this chapter.) The AppletStub and AppletContext interfaces provide a way for the
applet to interact with its run-time environment. Many of the methods of AppletStub and
AppletContext are duplicated in the Applet class.

14.1 What's a Java Applet?

Much of the initial excitement about Java centered around applets. Applets are small Java programs that
can be embedded within HTML pages and downloaded and executed by a web browser. Because executing
code from random Internet sites presents a security risk, Java goes to great lengths to ensure the integrity of
the program executing and to prevent it from performing any unauthorized tasks.

An applet is a specific type of Java Container. The class hierarchy of an applet is shown in Figure 14.1.

Figure 14.1: Applet class hierarchy

When you are writing an applet, remember that you can use the features of its ancestors. In particular,
remember to check the methods of the Component, Container, and Panel classes, which are
inherited by the Applet class.

Applet Methods

All the methods of Applet, except setStub(), either need to be overridden or are methods based on
one of the java.applet interfaces. The system calls setStub() to set up the context of the interfaces.
The browser implements the AppletContext and AppletStub interfaces. Constructor

public Applet ()

The system calls the Applet constructor when the applet is loaded and before it calls
setStub(), which sets up the applet's stub and context. When you subclass Applet, you usually
do not provide a constructor. If you do provide a constructor, you do not have access to the
AppletStub or AppletContext and, therefore, may not call any of their methods.

AppletStub setup

public final void setStub (AppletStub stub)

The setStub() method of Applet is called by the browser when the applet is loaded into the
system. It sets the AppletStub of the applet to stub. In turn, the AppletStub contains the
applet's AppletContext.

Applet information methods

Several methods of Applet provide information that can be used while the applet is running.

public AppletContext getAppletContext ()

The getAppletContext() method returns the current AppletContext. This is part of the
applet's stub, which is set by the system when setStub() is called.

public URL getCodeBase ()

The getCodeBase() method returns the complete URL of the .class file that contains the applet.
This method can be used with the getImage() or the getAudioClip() methods, described
later in this chapter, to load an image or audio file relative to the .class file location.

public URL getDocumentBase ()

The getDocumentBase() method returns the complete URL of the .html file that loaded the
applet. This can be used with the getImage() or getAudioClip() methods, described later in
this chapter, to load an image or audio file relative to the .html file.

public String getParameter (String name)

The getParameter() method allows you to get run-time parameters from within the
<APPLET> tag of the .html file that loaded the applet. Parameters are defined by HTML <PARAM>
tags, which have the form:

<PARAM name="parameter" value="value>

If the name parameter of getParameter() matches the name string of a <PARAM> tag,
getParameter() returns the tag's value as a string. If name is not found within the <PARAM>
tags of the <APPLET>, getParameter() returns null. The argument name is not case
sensitive; that is, it matches parameter names regardless of case. Remember that
getParameter() always returns a string, even though the parameter values might appear as
integers or floating point numbers in the HTML file. In some situations, it makes sense to pass
multiple values in a single parameter; if you do this, you have to parse the parameter string
manually. Using a StringTokenizer will make the job easier.

Enabling your applets to accept parameters allows them to be customized at run-time by the HTML
author, without providing the source code. This provides greater flexibility on the Web without
requiring any recoding. Example 14.1 shows how an applet reads parameters from an HTML file. It
contains three parts: the HTML file that loads the applet, the applet source code, and the output
from the applet.

Example 14.1: Getting Parameters from an HTML File

<APPLET CODE=ParamApplet WIDTH=100 HEIGHT=100>
<PARAM NAME=one VALUE=1.0>
<PARAM name=TWO value=TOO>
</APPLET>
public class ParamApplet extends java.applet.Applet {
 public void init () {
 String param;
 float one;
 String two;
 if ((param = getParameter ("ONE")) == null) {
 one = -1.0f; // Not present
 } else {
 one = Float.valueOf (param).longValue();
 }
 if ((param = getParameter ("two")) == null) {
 two = "two";
 } else {
 two = param.toUpperCase();
 }
 System.out.println ("One: " + one);
 System.out.println ("Two: " + two);
 }
}
One: 1
Two: TOO

public String getAppletInfo ()

The getAppletInfo() method lets an applet provide a short descriptive string to the browser.
This method is frequently overridden to return a string showing the applet's author and copyright
information. How (or whether) to display this information is up to the browser. With appletviewer,
this information is displayed when the user selects the Info choice under the Applet menu. Neither
Netscape Navigator nor Internet Explorer currently display this information.

public String[][] getParameterInfo ()

The getParameterInfo() method lets an applet provide a two-dimensional array of strings
describing the parameters it reads from <PARAM> tags. It returns an array of three strings for each
parameter. In each array, the first String represents the parameter name, the second describes the
data type, and the third is a brief description or range of values. Like getAppletInfo(), how
(or whether) to display this information is up to the browser. With appletviewer, this information is

displayed when the user selects the Info choice under the Applet menu. Neither Netscape Navigator
nor Internet Explorer currently display this information. The following code shows how an applet
might use getParameterInfo() and getAppletInfo():

public String getAppletInfo() {
 String whoami = "By John Zukowski (c) 1997";
 return whoami;
}
public String[][] getParameterInfo() {
 String[][] strings = {
 {"parameter1", "String", "Background Color name"},
 {"parameter2", "URL", "Image File"},
 {"parameter3", "1-10", "Number in Series"}
 };
 return strings;
}

public void showStatus (String message)

The showStatus() method displays message on the browser's status line, if it has one. Again,
how to display this string is up to the browser, and the browser can overwrite it whenever it wants.
You should only use showStatus() for messages that the user can afford to miss.

public boolean isActive ()

The isActive() method returns the current state of the applet. While an applet is initializing, it
is not active, and calls to isActive() return false. The system marks the applet active just
prior to calling start(); after this point, calls to isActive() return true.

public Locale getLocale ()

The getLocale() method retrieves the current Locale of the applet, if it has one. Using a
Locale allows you to write programs that can adapt themselves to different languages and
different regional variants. If no Locale has been set, getLocale() returns the default
Locale. The default Locale has a user language of English and no region. To change the default
Locale, set the system properties user.language and user.region, or call
Locale.setDefault() (setDefault() verifies access rights with the security manager).[1]

[1] For more on the Locale class, see Java Fundamental Classes Reference, by
Mark Grand, from O'Reilly & Associates.

Applet life cycle

The browser calls four methods of the Applet class to execute the applet. These methods constitute the
applet's life cycle. The default versions don't do anything; you must override at least one of them to create
a useful applet.

public void init ()

The init() method is called once when the applet is first loaded. It should be used for tasks that
need to be done only once. init() is often used to load images or sound files, set up the screen,
get parameters out of the HTML file, and create objects the applet will need later. You should not
do anything that might "hang" or wait indefinitely. In a sense, init() does things that might
otherwise be done in an applet's constructor.

public void start ()

The start() method is called every time the browser displays the web page containing the applet.
start() usually does the "work" of the applet. It often starts threads, plays sound files, or does
computation. start() may also be called when the browser is de-iconified.

public void stop ()

The stop() method is called whenever the browser leaves the web page containing the applet. It
should stop or suspend anything that the applet is doing. For example, it should suspend any threads
that have been created and stop playing any sound files. stop() may also be called when the
browser is iconified.

public void destroy ()

The destroy() method is called when the browser determines that it no longer needs to keep the
applet around--in practice, when the browser decides to remove the applet from its cache or the
browser exits. After this point, if the browser needs to display the applet again, it will reload the
applet and call the applet's init() method. destroy() gives the applet a final opportunity to
release any resources it is using (for example, close any open sockets). Most applets don't need to
implement destroy(). It is always a good idea to release resources as soon as they aren't needed,
rather than waiting for destroy(). There are no guarantees about when destroy() will be
called; if your browser has a sufficiently large cache, the applet may stay around for a very long
time.

Applet-sizing methods

public void resize(int width, int height)

The resize() method changes the size of the applet space to width x height. The browser

must support changing the applet space or else the sizing does not change. Netscape Navigator does
not allow an applet to change its size; the applet is sized to the region allocated by the <APPLET>
tag, period.

Because Applet is a subclass of Component, it inherits the Java 1.1 method setSize(),
which has the same function.

public void resize (Dimension dim)

This resize() method calls the previous version of resize() with a width of dim.width
and a height of dim.height.

Images

We have discussed Image objects extensively in Chapter 2, Simple Graphics, and Chapter 12, Image
Processing, and used them in many of our examples. When writing an applet, you can use the
getImage() method directly. In applications, you must go through Toolkit (which the following
methods call) to get images.

public Image getImage (URL url)

The getImage() method loads the image file located at url. url must be a complete and valid
URL. The method returns a system-specific object that subclasses Image and returns immediately.
The Image is not loaded until needed, either by prepareImage(), MediaTracker, or
drawImage().

public Image getImage (URL url, String filename)

The getImage() method loads the image file located at url in filename. The applet locates
the file relative to the specified URL; that is, if the URL ends with a filename, the applet removes
the filename and appends the filename argument to produce a new URL. getImage() returns
a system-specific object that subclasses Image and returns immediately. The Image is not loaded
until needed, either by prepareImage(), MediaTracker, or drawImage().

In most cases, the url argument is a call to getDocumentBase() or getCodeBase(); most
often, image files are located in the same directory as the HTML file, the applet's Java class file, or
their own subdirectory.

Audio

Every Java platform is guaranteed to understand Sun's AU file format, which contains a single channel of
8000 Hz µLaw encoded audio data.[2] Java applets do not require any helper applications to play audio;

they use the browser's audio capabilities. You can use an independent application, like Sun's audiotool, to
control the volume. Of course, the user's workstation or PC needs audio hardware, but these days, it's hard
to buy a computer that isn't equipped for audio.

[2] The AU format is explained in the Audio File Format FAQ (version 3.10) located at
ftp://ftp.cwi.nl/pub/audio/index.html in files AudioFormats.part1 and AudioFormats.part2.

The Java Media Framework API is rumored to provide support for additional audio formats, like
Microsoft's .wav files or Macintosh/SGI .aiff audio files. At present, if you want your Java program to play
audio files in other formats, you must first convert the audio file to the .au format, using a utility like SOX
(Sound Exchange).[3] Once converted, your Java program can play the resulting .au file normally. (If you
are interested in more information about audio, look in the alt.binaries.sounds.d newsgroup.)

[3] SOX is available at http://www.spies.com/Sox. The current version of SOX is 10; version
11 is in gamma release. The UNIX source is located in sox10.tar.gz , while the DOS
executable is sox10dos.zip.

The Applet class provides two ways to play audio clips. The first mechanism provides a method to load
and play an audio file once:

public void play (URL url)

The play() method downloads and plays the audio file located at url. url must be a complete
and valid URL. If url is invalid, no sound is played. Some environments throw an exception if the
URL is invalid, but not all. Calling play() within an applet's destroy() method usually has no
effect; the applet and its resources will probably be deallocated before play() has time to
download the audio file.

public void play (URL url, String filename)

This version of play() downloads and plays the audio file located at url in the file filename.
The applet locates the file relative to the specified URL; that is, if the URL ends with a filename,
the applet removes the filename and appends the filename argument to produce a new URL. If
the resulting URL is invalid, no sound is played. Some environments throw an exception if the URL
is invalid, but not all.

In most cases, the url argument is a call to getDocumentBase() or getCodeBase(); most
often, sound files are located in the same directory as the HTML file or the applet's Java class file.
For some reason, you cannot have a double dot (..) in the URL of an audio file; you can in the
URL of an image file. Putting a double dot in the URL of an audio file raises a security exception in
an applet causing play() to fail.

file:///C|/download/www.spies.com/Sox

The following applet plays an audio file located relative to the HTML file from which the applet
was loaded:

import java.net.*;
import java.applet.*;
public class audioTest extends Applet {
 public void init () {
 System.out.println ("Before");
 play (getDocumentBase(), "audio/flintstones.au");
 System.out.println ("After");
 }
}

The second way to play audio files splits the process into two steps: you get an AudioClip object and
then play it as necessary. This procedure eliminates a significant drawback to play(): if you call
play() repeatedly, it reloads the audio file each time, making the applet much slower.

public AudioClip getAudioClip (URL url)

The getAudioClip() method loads the audio file located at url. url must be a complete and
valid URL. Upon success, getAudioClip() returns an instance of a class that implements the
AudioClip interface. You can then call methods in the AudioClip interface (see AudioClip
Interface) to play the clip. If an error occurs during loading (e.g., because the file was not found or
the URL was invalid), getAudioClip() returns null.

getAudioClip() sounds similar to getImage(), and it is. However, Java currently loads
audio clips synchronously; it does not start a separate thread as it does for images. You may want to
create a helper class that loads audio clips in a separate thread.

The actual class of the AudioClip object depends on the platform you are using; you shouldn't
need to know it. If you are curious, the appletviewer uses the class
sun.applet.AppletAudioClip; Netscape Navigator uses the class
netscape.applet.AppletAudioClip.

public AudioClip getAudioClip (URL url , String filename)

This version of the getAudioClip() method loads the audio file located at url in the file
filename. The applet locates the file relative to the specified URL; that is, if the URL ends with a
filename, the applet removes the filename and appends the filename argument to produce a new
URL. If the resulting URL is invalid, the file is not loaded. Upon success, getAudioClip()
returns an instance of a class that implements the AudioClip interface. You can then call methods
in the AudioClip interface (see AudioClip Interface) to play the clip. If an error occurs during

loading (e.g., because the file was not found or the URL was invalid), getAudioClip() returns
null.

In most cases, the url argument is a call to getDocumentBase() or getCodeBase(); most
often, sound files are located in the same directory as the HTML file or the applet's Java class file.

AWTError AudioClip Interface

Chapter 15

15. Toolkit and Peers
Contents:
Toolkit
The Peer Interfaces

This chapter describes the Toolkit class and the purposes it serves. It also describes the java.awt.peer package of
interfaces, along with how they fit in with the general scheme of things. The most important advice I can give you about the
peer interfaces is not to worry about them. Unless you are porting Java to another platform, creating your own Toolkit, or
adding any native component, you can ignore the peer interfaces.

15.1 Toolkit

The Toolkit object is an abstract class that provides an interface to platform-specific details like window size, available
fonts, and printing. Every platform that supports Java must provide a concrete class that extends the Toolkit class. The Sun
JDK provides a Toolkit for Windows NT/95 (sun.awt.win32.MToolkit [Java1.0] or
sun.awt.windows.MToolkit [Java1.1]), Solaris/Motif (sun.awt.motif.MToolkit), and Macintosh
(sun.awt.macos.MToolkit). Although the Toolkit is used frequently, both directly and behind the scenes, you would
never create any of these objects directly. When you need a Toolkit, you ask for it with the static method
getDefaultToolkit() or the Component.getToolkit() method.

You might use the Toolkit object if you need to fetch an image in an application (getImage()), get the font information
provided with the Toolkit (getFontList() or getFontMetrics()), get the color model (getColorModel()),
get the screen metrics (getScreenResolution() or getScreenSize()), get the system clipboard
(getSystemClipboard()), get a print job (getPrintJob()), or ring the bell (beep()). The other methods of
Toolkit are called for you by the system.

Toolkit Methods

Constructors

public Toolkit()--cannot be called by user

Because Toolkit is an abstract class, it has no usable constructor. To get a Toolkit object, ask for your
environment's default toolkit by calling the static method getDefaultToolkit() or call
Component.getToolkit() to get the toolkit of a component. When the actual Toolkit is created for the native
environment, the awt package is loaded, the AWT-Win32 and AWT--Callback-Win32 or AWT-Motif and AWT-
Input threads (or the appropriate threads for your environment) are created, and the threads go into infinite loops for
screen maintenance and event handling.

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch15_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch15_02.htm

Pseudo-Constructors

public static synchronized Toolkit getDefaultToolkit ()

The getDefaultToolkit() method returns the system's default Toolkit object. The default Toolkit is
identified by the System property awt.toolkit, which defaults to an instance of the
sun.awt.motif.MToolkit class. On the Windows NT/95 platforms, this is overridden by the Java environment
to be sun.awt.win32.MToolkit (Java1.0) or sun.awt.windows.MToolkit (Java1.1). On the Macintosh
platform, this is overridden by the environment to be sun.awt.macos.MToolkit. Most browsers don't let you
change the system property awt.toolkit. Since this is a static method, you don't need to have a Toolkit object to
call it; just call Toolkit.getDefaultToolkit().

Currently, only one Toolkit can be associated with an environment. You are more than welcome to try to replace the
one provided with the JDK. This permits you to create a whole new widget set, outside of Java, while maintaining the
standard AWT API.

System information

public abstract ColorModel getColorModel ()

The getColorModel() method returns the current ColorModel used by the system. The default ColorModel is
the standard RGB model, with 8 bits for each of red, green, and blue. There are an additional 8 bits for the alpha
component, for pixel-level transparency.

public abstract String[] getFontList ()

The getFontList() method returns a String array of the set Java fonts available with this Toolkit. Normally,
these fonts will be understood on all the Java platforms. The set provided with Sun's JDK 1.0 (with Netscape Navigator
and Internet Explorer, on platforms other than the Macintosh) contains TimesRoman, Dialog, Helvetica, Courier (the
only fixed-width font), DialogInput, and ZapfDingbat.

In Java 1.1, getFont() reports all the 1.0 font names. It also reports Serif, which is equivalent to TimesRoman; San
Serif, which is equivalent to Helvetica; and Monospaced, which is equivalent to Courier. The names TimesRoman,
Helvetica, and Courier are still supported but should be avoided. They have been deprecated and may disappear in a
future release. Although the JDK 1.1 reports the existence of the ZapfDingbat font, you can't use it. The characters in
this font have been remapped to Unicode characters in the range \u2700 to \u27ff.

public abstract FontMetrics getFontMetrics (Font font)

The getFontMetrics() method returns the FontMetrics for the given Font object. You can use this value to
compute how much space would be required to display some text using this font. You can use this version of
getFontMetrics() (unlike the similar method in the Graphics class) prior to drawing anything on the screen.

public int getMenuShortcutKeyMask()

The getMenuShortcutKeyMask() method identifies the accelerator key for menu shortcuts for the user's
platform. The return value is one of the modifier masks in the Event class, like Event.CTRL_MASK. This method is
used internally by the MenuBar class to help in handling menu selection events. See Chapter 10, Would You Like to
Choose from the Menu? for more information about dealing with menu accelerators.

public abstract PrintJob getPrintJob (Frame frame, String jobtitle, Properties props)

The getPrintJob() method initiates a print operation, PrintJob, on the user's platform. After getting a
PrintJob object, you can use it to print the current graphics context as follows:

// Java 1.1 only
PrintJob p = getToolkit().getPrintJob (aFrame, "hi", aProps);
Graphics pg = p.getGraphics();
printAll (pg);
pg.dispose();
p.end();

With somewhat more work, you can print arbitrary content. See Chapter 17, Printing, for more information about
printing. The frame parameter serves as the parent to any print dialog window, jobtitle serves as the
identification string in the print queue, and props serves as a means to provide platform-specific properties (default
printer, page order, orientation, etc.). If props is (Properties)null, no properties will be used. props is
particularly interesting in that it is used both for input and for output. When the environment creates a print dialog, it
can read default values for printing options from the properties sheet and use that to initialize the dialog. After
getPrintJob() returns, the properties sheet is filled in with the actual printing options that the user requested. You
can then use these option settings as the defaults for subsequent print jobs.

The actual property names are Toolkit specific and may be defined by the environment outside of Java.
Furthermore, the environment is free to ignore the props parameter altogether; this appears to be the case with
Windows NT/95 platforms. (It is difficult to see how Windows NT/95 would use the properties sheet, since these
platforms don't even raise the print dialog until you call the method getGraphics().) Table 15.1 shows some of the
properties recognized on UNIX platforms; valid property values are shown in a fixed-width font.

Table 15.1: UNIX Printing Properties

Property Name Meaning and Possible Values

awt.print.printer The name of the printer on your system to send the job to.

awt.print.fileName The name of the file to save the print job to.

awt.print.numCopies The number of copies to be printed.

awt.print.options Other options to be used for the run-time system's print command.

awt.print.destination Whether the print job should be sent to a printer or saved in a file.

awt.print.paperSize The size of the paper on which you want to print--usually, letter.

awt.print.orientation Whether the job should be printed in portrait or landscape orientation.

public static String getProperty (String key, String defaultValue)

The getProperty() method retrieves the key property from the system's awt.properties file (located in the lib
directory under the java.home directory). If key is not a valid property, defaultValue is returned. This file is used
to provide localized names for various system resources.

public abstract int getScreenResolution ()

The getScreenResolution() method retrieves the resolution of the screen in dots per inch. The sharper the
resolution of the screen, the greater number of dots per inch. Values vary depending on the system and graphics mode.

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_01.htm

The PrintJob.getPageResolution() method returns similar information for a printed page.

public abstract Dimension getScreenSize ()

The getScreenSize() method retrieves the dimensions of the user's screen in pixels for the current mode. For
instance, a VGA system in standard mode will return 640 for the width and 480 for the height. This information is
extremely helpful if you wish to manually size or position objects based upon the physical size of the user's screen. The
PrintJob.getPageDimension() method returns similar information for a printed page.

public abstract Clipboard getSystemClipboard()

The getSystemClipboard() method returns a reference to the system's clipboard. The clipboard allows your Java
programs to use cut and paste operations, either internally or as an interface between your program and objects outside
of Java. For instance, the following code copies a String from a Java program to the system's clipboard:

// Java 1.1 only
Clipboard clipboard = getToolkit().getSystemClipboard();
StringSelection ss = new StringSelection("Hello");
clipboard.setContents(ss, this);

Once you have placed the string "Hello" on the clipboard, you can paste it anywhere. The details of Clipboard,
StringSelection, and the rest of the java.awt.datatransfer package are described in Chapter 16, Data
Transfer.

public final EventQueue getSystemEventQueue()

After checking whether the security manager allows access, this method returns a reference to the system's event queue.

protected abstract EventQueue getSystemEventQueueImpl()

getSystemEventQueueImpl() does the actual work of fetching the event queue. The toolkit provider
implements this method; only subclasses of Toolkit can call it.

Images

The Toolkit provides a set of basic methods for working with images. These methods are similar to methods in the
Applet class; Toolkit provides its own implementation for use by programs that don't have access to an
AppletContext (i.e., applications or applets that are run as applications). Remember that you need an instance of
Toolkit before you can call these methods; for example, to get an image, you might call
Toolkit.getDefaultToolkit().getImage(`myImage.gif`).

public abstract Image getImage (String filename)

The getImage() method with a String parameter allows applications to get an image from the local filesystem. Its
argument is either a relative or absolute filename for an image in a recognized image file format. The method
returns immediately; the Image object that it returns is initially empty. When the image is needed, the system attempts
to get filename and convert it to an image. To force the file to load immediately or to check for errors while loading,
use the MediaTracker class.

NOTE:

This version of getImage() is not usable within browsers since it will throw a security exception because the applet is
trying to access the local filesystem.

public abstract Image getImage (URL url)

The getImage() method with the URL parameter can be used in either applets or applications. It allows you to
provide a URL for an image in a recognized image file format. Like the other getImage() methods, this method
returns immediately; the Image object that it returns is initially empty. When the image is needed, the system attempts
to load the file specified by url and convert it to an image. You can use the MediaTracker class to monitor loading
and check whether any errors occurred.

public abstract boolean prepareImage (Image image, int width, int height, ImageObserver observer)

The prepareImage() method is called by the system or a program to force image to start loading. This method
can be used to force an image to begin loading before it is actually needed. The Image image will be scaled to be
width x height. A width and height of -1 means image will be rendered unscaled (i.e., at the size specified by
the image itself). The observer is the Component on which image will be rendered. As the image is loaded
across the network, the observer's imageUpdate() method is called to inform the observer of the image's status.

public abstract int checkImage (Image image, int width, int height, ImageObserver observer)

The checkImage() method returns the status of the image that is being rendered on observer. Calling
checkImage() only provides information about the image; it does not force the image to start loading. The image
is being scaled to be width x height. Passing a width and height of -1 means the image will be displayed
without scaling. The return value of checkImage() is some combination of ImageObserver flags describing the
data that is now available. The ImageObserver flags are: WIDTH, HEIGHT, PROPERTIES, SOMEBITS,
FRAMEBITS, ALLBITS, ERROR, and ABORT. Once ALLBITS is set, the image is completely loaded, and the return
value of checkImage() will not change. For more information about these flags, see Chapter 12, Image Processing.

The following program loads an image; whenever paint() is called, it displays what information about that image is
available. When the ALLBITS flag is set, checkingImages knows that the image is fully loaded, and that a call to
drawImage() will display the entire image.

import java.awt.*;
import java.awt.image.*;
import java.applet.*;
public class checkingImages extends Applet {
 Image i;
 public void init () {
 i = getImage (getDocumentBase(), "ora-icon.gif");
 }
 public void displayChecks (int i) {
 if ((i & ImageObserver.WIDTH) != 0)
 System.out.print ("Width ");
 if ((i & ImageObserver.HEIGHT) != 0)
 System.out.print ("Height ");
 if ((i & ImageObserver.PROPERTIES) != 0)
 System.out.print ("Properties ");
 if ((i & ImageObserver.SOMEBITS) != 0)

 System.out.print ("Some-bits ");
 if ((i & ImageObserver.FRAMEBITS) != 0)
 System.out.print ("Frame-bits ");
 if ((i & ImageObserver.ALLBITS) != 0)
 System.out.print ("All-bits ");
 if ((i & ImageObserver.ERROR) != 0)
 System.out.print ("Error-loading ");
 if ((i & ImageObserver.ABORT) != 0)
 System.out.print ("Loading-Aborted ");
 System.out.println ();
 }
 public void paint (Graphics g) {
 displayChecks (Toolkit.getDefaultToolkit().checkImage(i, -1, -1, this));
 g.drawImage (i, 0, 0, this);
 }
}

Here's the output from running checkingImages under Java 1.0; it shows that the width and height of the image are
loaded first, followed by the image properties and the image itself. Java 1.1 also displays Frame-bits once the
image is loaded.

Width Height
Width Height Properties Some-bits
Width Height Properties Some-bits All-bits
Width Height Properties Some-bits All-bits
Width Height Properties Some-bits All-bits
... (Repeated Forever More)

public abstract Image createImage (ImageProducer producer)

This createImage() method creates an Image object from an ImageProducer. The producer parameter
must be some class that implements the ImageProducer interface. Image producers in the java.awt.graphics
package are FilteredImageSource (which, together with an ImageFilter, lets you modify an existing image)
and MemoryImageSource (which lets you turn an array of pixel information into an image). The image filters
provided with java.awt.image are CropImageFilter, RGBImageFilter,
AreaAveragingScaleFilter, and ReplicateScaleFilter. You can also implement your own image
producers and image filters. These classes are all covered in detail in Chapter 12, Image Processing.

The following code uses this version of createImage() to create a modified version of an original image:

Image i = Toolkit.getDefaultToolkit().getImage (u);
 TransparentImageFilter tf = new TransparentImageFilter (.5f);
Image j = Toolkit.getDefaultToolkit().createImage (
 new FilteredImageSource (i.getSource(), tf));

public Image createImage (byte[] imageData)

This createImage() method converts the entire byte array in imageData into an Image. This data must be in
one of the formats understood by this AWT Toolkit (GIF, JPEG, or XBM) and relies on the "magic number" of the
data to determine the image type.

public Image createImage (byte[] imageData, int offset, int length)

This createImage() method converts a subset of the byte data in imageData into an Image. Instead of starting
at the beginning, this method starts at offset and goes to offset+length-1, for a total of length bytes. If
offset is 0 and length is imageData.length, this method is equivalent to the previous method and converts
the entire array.

The data in imageData must be in one of the formats understood by this AWT Toolkit (GIF, JPEG, or XBM) and
relies on the "magic number" of the data to determine the image type.

NOTE:

For those unfamiliar with magic numbers, most data files are uniquely identified by the first handful or so of bytes. For
instance, the first three bytes of a GIF file are "GIF". This is what createImage() relies upon to do its magic.

Miscellaneous methods

public abstract void beep ()

The beep() method attempts to play an audio beep. You have no control over pitch, duration, or volume; it is like
putting echo ^G in a UNIX shell script.

public abstract void sync ()

The sync() method flushes the display of the underlying graphics context. Normally, this is done automatically, but
there are times (particularly when doing animation) when you need to sync() the display yourself.

Audio in Applications The Peer Interfaces

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch15_02.htm

Chapter 16

16. Data Transfer
Contents:
DataFlavor
Transferable Interface
ClipboardOwner Interface
Clipboard
StringSelection
UnsupportedFlavorException
Reading and Writing the Clipboard

One feature that was missing from Java 1.0 was the ability to access the system clipboard. It was
impossible to cut and paste data from one program into another. Java 1.1 includes a package called
java.awt.datatransfer that supports clipboard operations. Using this package, you can cut an
arbitrary object from one program and paste it into another. In theory, you can cut and paste almost
anything; in practice, you usually want to cut and paste text strings, so the package provides special
support for string operations. The current version allows only one object to be on the clipboard at a time.

java.awt.datatransfer consists of three classes, two interfaces, and one exception. Objects that
can be transferred implement the Transferable interface. The Transferable interface defines
methods for working with different flavors of an object. The concept of flavors is basic to Java's
clipboard model. Essentially, a flavor is a MIME content type. Any object can be represented in several
different ways, each corresponding to a different MIME type. For example, a text string could be
represented by a Java String object, an array of Unicode character data, or some kind of rich text that
contains font information. The object putting the string on the clipboard provides whatever flavors it is
capable of; an object pasting the string from the clipboard takes whatever flavor it can handle. Flavors
are represented by the DataFlavor class, and the UnsupportedFlavorException is used when
an object asks for a DataFlavor that is not available.

The Clipboard class represents the clipboard itself. There is a single system clipboard, but you can
create as many private clipboards as you want. The system clipboard lets you cut and paste between

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch15_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_06.htm

arbitrary applications (for example, Microsoft Word and some Java programs). Private clipboards are
useful within a single application, though you could probably figure out some way to export a clipboard
to another application using RMI.

To put data on the clipboard, you must implement the ClipboardOwner interface, which provides a
means for you to be notified when the data you write is removed from the clipboard. (There isn't any
ClipboardReader interface; any object can read from the clipboard.) The final component of the
datatransfer package is a special class called StringSelection that facilitates cutting and
pasting text strings.

Cutting and pasting isn't the whole story; JavaSoft has also promised drag-and-drop capabilities, but this
won't be in the initial release of Java 1.1.

16.1 DataFlavor

A DataFlavor represents a format in which data can be transferred. The DataFlavor class includes
two common data flavors; you can create other flavors by extending this class. Flavors are essentially
MIME content types and are represented by the standard MIME type strings. An additional content
subtype has been added to represent Java classes; the content type of a Java object is:[1]

[1] The type name changed to x-java-serialized-object in the 1.1.1 release.

application/x-java-serialized-object
<classname>

For example, the content type of a Vector object would be:

application/x-java-serialized-object java.util.Vector

In addition to the content type, a DataFlavor also contains a presentable name. The presentable name
is intended to be more comprehensible to humans than the MIME type. For example, the presentable
name of a VectorFlavor object might just be "Vector", rather than the complex and lengthy MIME
type given previously. Presentable names are useful when a program needs to ask the user which data
flavor to use.

DataFlavor Methods

Variables

The DataFlavor class includes two public variables that hold "prebuilt" flavors representing different
kinds of text objects. These flavors are used in conjunction with the StringSelection class.

Although these flavors are variables for all practical purposes, they are used as constants.

public static DataFlavor stringFlavor

The stringFlavor variable is the data flavor for textual data represented as a Java String
object. Its MIME type is application/x-javaserializedobject String.

public static DataFlavor plainTextFlavor

The plainTextFlavor variable is the data flavor for standard, Unicode-encoded text. Its
MIME type is text/plain; charset=unicode.

Constructors

The DataFlavor class has two constructors. One creates a DataFlavor given a MIME content type;
the other creates a DataFlavor given a Java class and builds the MIME type from the class name.

public DataFlavor(String mimeType, String humanPresentableName)

The first constructor creates an instance of DataFlavor for the mimeType flavor of data. The
humanPresentableName parameter should be a more user-friendly name. It might be used in
a menu to let the user select a flavor from several possibilities. It might also be used to generate
an error message when the UnsupportedFlavorException occurs. The
plainTextFlavor uses "Plain Text" as its presentable name.

To read data from the clipboard, a program calls the Transferable.getTransferData()
method. If the data is represented by a DataFlavor that doesn't correspond to a Java class (for
example, plainTextFlavor), getTransferData() returns an InputStream for you to
read the data from.

public DataFlavor(Class representationClass, String humanPresentableName)

The other constructor creates an instance of DataFlavor for the specific Java class
representationClass. Again, the humanPresentableName provides a more user-
friendly name for use in menus, error messages, or other interactions with users. The
stringFlavor uses "Unicode String" as its presentable name.

A program calls Transferable.getTransferData() to read data from the clipboard. If
the data is represented by a Java class, getTransferData() returns an instance of the
representation class itself. It does not return a Class object. For example, if the data flavor is

stringFlavor, getTransferData() returns a String.

Presentations

public String getHumanPresentableName()

The getHumanPresentableName() method returns the data flavor's presentable name; for
example, stringFlavor.getHumanPresentableName() returns the string "Unicode
String".

public void setHumanPresentableName(String humanPresentableName)

The setHumanPresentableName() method changes the data flavor's presentable name to a
new humanPresentableName. It is hard to imagine why you would want to change a flavor's
name.

public String getMimeType()

The getMimeType() method gets the MIME content type for the DataFlavor as a String.

public Class getRepresentationClass()

The getRepresentationClass() method returns the Java type that is used to represent
data of this flavor (i.e., the type that would be returned by the getTransferData()method).
It returns the type as a Class object, not an instance of the class itself. Note that all data flavors
have a representation class, not just those for which the class is specified explicitly in the
constructor. For example, the plainTextFlavor.getRepresentationClass() method
returns the class java.io.StringReader.

public boolean isMimeTypeEqual(String mimeType)

The isMimeTypeEqual() method checks for string equality between mimeType and the data
flavor's MIME type string. For some MIME types, this comparison may be too simplistic because
character sets may not be present on types like text/plain. Therefore, this method would tell
you that the MIME type text/plain; charset=unicode is different from text/plain.

public final boolean isMimeTypeEqual(DataFlavor dataFlavor)

The isMimeTypeEqual() method checks whether the MIME type of the dataFlavor
parameter equals the current data flavor's MIME type. It calls the previous method, and therefore

has the same weaknesses.

Protected methods

protected String normalizeMimeType(String mimeType)

The normalizeMimeType() method is used to convert a MIME type string into a standard
form. Its argument is a MIME type, as a String; it returns the new normalized MIME type. You
would never call normalizeMimeType() directly, but you might want to override this
method if you are creating a subclass of DataFlavor and want to change the default
normalization process. For example, one thing you might do with this is add the string
charset=US-ASCII to the text/plain MIME type if it appears without a character set.

protected String normalizeMimeTypeParameter(String parameterName, String parameterValue)

The normalizeMimeTypeParameter() method is used to convert any parameters
associated with MIME types into a standard form. Its arguments are a parameter name (for
example, charset) and the parameter's value (for example, unicode). It returns
parameterValue normalized. You would never call normalizeMimeTypeParameter()
directly, but you might want to override this method if you are creating a subclass of
DataFlavor and want to change the default normalization process. For example, parameter
values may be case sensitive. You could write a method that would convert the value Unicode
to the more appropriate form unicode.

While it may be more trouble than it's worth, carefully overriding these normalization methods
might help you to get more predictable results from methods like isMimeTypeEqual().

Miscellaneous methods

public boolean equals(DataFlavor dataFlavor)

The equals() method defines equality for flavors. Two DataFlavor objects are equal if their
MIME type and representation class are equal.

The Peer Interfaces Transferable Interface

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch15_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_02.htm

Chapter 18

18. java.applet Reference
Contents:
Introduction to the Reference Chapters
Package diagrams
Applet
AppletContext
AppletStub
AudioClip

18.1 Introduction to the Reference Chapters

The preceding seventeen chapters cover just about all there is to know about AWT. We have tried to
organize them logically, and provide all the information that you would expect in a reference manual--
plus much more in the way of examples and practical information about how to do things effectively.
However, there are many times when you just need a reference book, pure and simple: one that's
organized alphabetically, and where you can find any method if you know the class and package that it
belongs to, without having to second guess the author's organizational approach. That's what the rest of
this book provides. It's designed to help you if you need to look something up quickly, and find a brief
but accurate summary of what it does. In these sections, the emphasis is on brief; if you want a longer
description, look in the body of the book.

The reference sections describe the following packages:

● java.applet (Chapter 18, java.applet Reference)

● java.awt (Chapter 19, java.awt Reference)

● java.awt.datatransfer (Chapter 20, java.awt.datatransfer Reference)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_05.htm

● java.awt.event (Chapter 21, java.awt.event Reference)

● java.awt.image (Chapter 22, java.awt.image Reference)

● java.awt.peer (Chapter 23, java.awt.peer Reference)

Within each package, classes and interfaces are listed alphabetically. There is a description and a pseudo-
code definition for each class or interface. Each variable and method is listed and described. New Java

1.1 classes are marked with a black star (), as are new methods and new variables. Of course, if a class
is new, all its methods are new. We didn't mark individual methods in new classes. Methods that are

deprecated in Java 1.1 are marked with a white star ().

Inheritance presents a significant problem with documenting object-oriented libraries, because the bulk
of a class's methods tend to be hiding in the superclasses. Even if you're very familiar with object-
oriented software development, when you're trying to look up a method under the pressure of some
deadline, it's easy to forget that you need to look at the superclasses in addition to the class you're
interested in itself. Nowhere is this problem worse than in AWT, where some classes (in particular,
components and containers) inherit well over 100 methods, and provide few methods of their own. For
example, the Button class contains seven public methods, none of which happens to be setFont().
The font used to display a button's label is certainly settable--but to find it, you have to look in the
superclass Component.

So far, we haven't found a way around this problem. The description of each class has an abbreviated
class hierarchy diagram, showing superclasses (all the way back to Object), immediate subclasses, and
the interfaces that the class implements. Ideally, it would be nice to have a list of all the inherited
methods--and in other parts of Java, that's possible. For AWT, the lists would be longer than the rest of
this book, much too long to be practical, or even genuinely useful. Someday, electronic documentation
may be able to solve this problem, but we're not there yet.

Printing Arbitrary Content Package diagrams

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_05.htm

Chapter 19

19. java.awt Reference
Contents:

AWTEvent

AWTEventMulticaster
AWTException

Adjustable
BorderLayout
Button
Canvas
CardLayout
Checkbox
CheckboxGroup
CheckboxMenuItem
Choice
Color
Component
Container

Cursor
Dialog
Dimension
Event

EventQueue
FileDialog
FlowLayout
Font
FontMetrics
Frame

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_18.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_19.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_20.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_21.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_21.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_22.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_23.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_24.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_5F25.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_26.htm

Graphics
GridBagConstraints
GridBagLayout
GridLayout

IllegalComponentStateException
Image
Insets

ItemSelectable
Label
LayoutManager

LayoutManager2
List
MediaTracker
Menu
MenuBar
MenuComponent
MenuContainer
MenuItem

MenuShortcut
Panel
Point
Polygon

PopupMenu

PrintGraphics

PrintJob
Rectangle

ScrollPane
Scrollbar

Shape

SystemColor
TextArea
TextComponent
TextField
Toolkit
Window

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_32.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_33.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_34.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_34.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_35.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_36.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_37.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_37.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_38.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_39.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_5F40.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_41.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_42.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_43.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_44.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_45.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_45.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_46.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_47.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_48.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_49.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_49.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_50.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_50.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_51.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_51.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_52.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_53.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_53.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_54.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_55.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_55.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_57.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_58.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_59.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_60.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_61.htm

AWTError

Name

AWTError

[Graphic: Figure from the text]

Description

An AWTError; thrown to indicate a serious runtime error.

Class Definition

public class java.awt.AWTError
 extends java.lang.Error {

 // Constructors
 public AWTError (String message);
}

Constructors

AWTError

public AWTError (String message)

Parameters

message

Detail message

See Also

Error, String

Window AWTEvent

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_61.htm

Chapter 20

20. java.awt.datatransfer Reference
Contents:

Clipboard

ClipboardOwner

DataFlavor

StringSelection

Transferable

UnsupportedFlavorException

Clipboard

Name

Clipboard

[Graphic: Figure from the text]

Description

The Clipboard class is a repository for a Transferable object and can be used for cut, copy, and paste operations. The
system clipboard can be accessed by calling Toolkit.getDefaultToolkit().getSystemClipboard(). You can
use this technique if you are interested in exchanging data between your application and other applications (Java or non-Java)
running on the system. In addition, Clipboard can be instantiated directly, if "private" clipboards are needed.

Class Definition

public class java.awt.datatransfer.Clipboard
 extends java.lang.Object {
 // Variables
 protected Transferable contents;
 protected ClipboardOwner owner;
 // Constructors

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_61.htm

 public Clipboard (String name);
 // Instance Methods
 public synchronized Transferable getContents (Object requestor);
 public String getName();
 public synchronized void setContents (Transferable contents, ClipboardOwner owner);
}

Variables

contents

protected Transferable contents

The object that the Clipboard contains, i.e., the object that has been cut or copied.

owner

protected ClipboardOwner owner

The object that owns the contents. When something else is placed on the clipboard, owner is notified via lostOwnership().

Constructors

Clipboard

public Clipboard (String name)

Parameters

name

The name for this Clipboard.

Description

Constructs a Clipboard object with the given name.

Instance Methods

getContents

public synchronized Transferable getContents (Object requestor)

Parameters

requestor

The object asking for the contents.

Returns

An object that implements the Transferable interface.

Description

Returns the current contents of the Clipboard. You could use this method to paste data from the clipboard into your
application.

getName

public String getName()

Returns

Clipboard's name.

Description

Returns the name used when this clipboard was constructed. Toolkit.getSystemClipboard() returns a
Clipboard named "System".

setContents

public synchronized void setContents (Transferable contents, ClipboardOwner owner)

Parameters

contents

New contents.

owner

Owner of the new contents.

Description

Changes the contents of the Clipboard. You could use this method to cut or copy data from your application to the
clipboard.

See Also

ClipboardOwner, Toolkit, Transferable

Window ClipboardOwner

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_61.htm

Chapter 21

21. java.awt.event Reference
Contents:

ActionListener

AdjustmentEvent

AdjustmentListener

ComponentAdapter

ComponentEvent

ComponentListener

ContainerAdapter

ContainerEvent

ContainerListener

FocusAdapter

FocusEvent

FocusListener

InputEvent

ItemEvent

ItemListener

KeyAdapter

KeyEvent

KeyListener

MouseAdapter

MouseEvent

MouseListener

MouseMotionAdapter

MouseMotionListener

PaintEvent

TextEvent

TextListener

WindowAdapter

WindowEvent

WindowListener

ActionEvent

Name

ActionEvent

Description

Action events are fired off when the user performs an action on a component, such as pushing a button, double-
clicking on a list item, or selecting a menu item. There is only one action event type, ACTION_PERFORMED.

Class Definition

public class java.awt.event.ActionEvent
 extends java.awt.AWTEvent {
 // Constants
 public final static int ACTION_FIRST;
 public final static int ACTION_LAST;
 public final static int ACTION_PERFORMED;
 public final static int ALT_MASK;
 public final static int CTRL_MASK;
 public final static int META_MASK;
 public final static int SHIFT_MASK;
 // Constructors
 public ActionEvent (Object source, int id, String command);
 public ActionEvent (Object source, int id, String command, int modifiers);
 // Instance Methods
 public String getActionCommand();
 public int getModifiers();
 public String paramString();

}

Constants

ACTION_FIRST

public final static int ACTION_FIRST

Specifies the beginning range of action event ID values.

ACTION_LAST

public final static int ACTION_LAST

Specifies the ending range of action event ID values.

ACTION_PERFORMED

public final static int ACTION_PERFORMED

The only action event type; it indicates that the user has performed an action.

ALT_MASK

public final static int ALT_MASK

A constant representing the ALT key. ORed with other masks to form modifiers setting of an AWTEvent.

CTRL_MASK

public final static int CTRL_MASK

A constant representing the Control key. ORed with other masks to form modifiers setting of an AWTEvent.

META_MASK

public final static int META_MASK

A constant representing the META key. ORed with other masks to form modifiers setting of an AWTEvent.

SHIFT_MASK

public final static int SHIFT_MASK

A constant representing the Shift key. ORed with other masks to form modifiers setting of an AWTEvent.

Constructors

ActionEvent

public ActionEvent (Object source, int id, String command)

Parameters

source

The object that generated the event.

id

The type ID of the event.

command

The action command string.

Description

Constructs an ActionEvent with the given characteristics.

public ActionEvent (Object source, int id, String command, int modifiers)

Parameters

source

The object that generated the event.

id

The type ID of the event.

command

The action command string.

modifiers

A combination of the key mask constants.

Description

Constructs an ActionEvent with the given characteristics.

Instance Methods

getActionCommand

public String getActionCommand()

Returns

The action command string for this ActionEvent.

Description

Generally the action command string is the label of the component that generated the event. Also, when
localization is necessary, the action command string can provide a setting that does not get localized.

getModifiers

public int getModifiers()

Returns

A combination of the key mask constants.

Description

Returns the modifier keys that were held down when this action was performed. This enables you to
perform special processing if, for example, the user holds down Shift while pushing a button.

paramString

public String paramString()

Returns

String with current settings of ActionEvent.

Overrides

AWTEvent.paramString()

Description

Helper method for toString() to generate string of current settings.

See Also

ActionListener, AWTEvent, String

WindowListener ActionListener

Chapter 22

22. java.awt.image Reference
Contents:
ColorModel
CropImageFilter
DirectColorModel
FilteredImageSource
ImageConsumer
ImageFilter
ImageObserver
ImageProducer
IndexColorModel
MemoryImageSource
PixelGrabber

ReplicateScaleFilter
RGBImageFilter

AreaAveragingScaleFilter

Name

AreaAveragingScaleFilter

Description

The AreaAveragingScaleFilter class scales an image using a simple smoothing algorithm.

Class Definition

public class java.awt.image.AreaAveragingScaleFilter
 extends java.awt.image.ReplicateScaleFilter {
 // Constructor
 public AreaAveragingScaleFilter (int width, int height);
 // Instance Methods
 public void setHints (int hints);
 public void setPixels (int x, int y, int w, int h, ColorModel model,
 byte[] pixels, int off, int scansize);
 public void setPixels (int x, int y, int w, int h, ColorModel model,
 int[] pixels, int off, int scansize);
}

Constructor

AreaAveragingScaleFilter

public AreaAveragingScaleFilter (int width, int height)

Parameters

width

Width of scaled image.

height

Height of scaled image.

Description

Constructs an AverageScaleFilter that scales the original image to the specified size.

Instance Methods

setHints

public void setHints (int hints)

Parameters

hints

Flags indicating how data will be delivered.

Overrides

ImageFilter.setHints(int)

Description

Gives this filter hints about how data will be delivered.

setPixels

public void setPixels (int x, int y, int w, int h, ColorModel model, byte[] pixels, int off, int
scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

w

Width of the rectangle of pixel data delivered with this method call.

h

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

off

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Overrides

ReplicateScaleFilter.setPixels(int, int, int, int, ColorModel,
byte[], int, int)

Description

Receives a rectangle of image data from the ImageProducer; scales these pixels and delivers
them to any ImageConsumers.

public void setPixels (int x, int y, int w, int h, ColorModel model, int[] pixels, int off, int
scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

w

Width of the rectangle of pixel data delivered with this method call.

h

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

off

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Overrides

ReplicateScaleFilter.setPixels(int, int, int, int, ColorModel,
int[], int, int)

Description

Receives a rectangle of image data from the ImageProducer; scales these pixels and delivers
them to any ImageConsumers.

See Also

ColorModel, ReplicateScaleFilter

WindowListener ColorModel

Chapter 23

23. java.awt.peer Reference
Contents:
CanvasPeer
CheckboxMenuItemPeer
CheckboxPeer
ChoicePeer
ComponentPeer
ContainerPeer
DialogPeer
FileDialogPeer

FontPeer
FramePeer
LabelPeer

LightweightPeer
ListPeer
MenuBarPeer
MenuComponentPeer
MenuItemPeer
MenuPeer
PanelPeer

PopupMenuPeer
ScrollbarPeer

ScrollPanePeer
TextAreaPeer
TextComponentPeer
TextFieldPeer
WindowPeer

ButtonPeer

Name

ButtonPeer

Description

ButtonPeer is an interface that defines the basis for buttons.

Interface Definition

public abstract interface java.awt.peer.ButtonPeer
extends java.awt.peer.ComponentPeer {
 // Interface Methods
 public abstract void setLabel (String label);
}

Interface Methods

setLabel

public abstract void setLabel (String label)

Parameters

label

New text for label of button's peer.

Description

Changes the text of the label of button's peer.

See Also

ComponentPeer, String

WindowPeer

Appendix B

B. HTML Markup For Applets
Contents:
The Applet Tag

B.1 The Applet Tag

The introduction of Java created the need for additional HTML tags. In the alpha release of Java, the
HotJava browser used the <APP> tag to include applets within HTML files. However, <APP> was
unacceptable to the standards committee because it could have an infinite number of parameters. It was
replaced by the <APPLET> tag, used in conjunction with the <PARAM> tag. Apparently, the standards
folks did not like the <APPLET> tag either, so you can expect it to be replaced eventually, although at
this point, there is no agreement about its successor, and it is highly unlikely that any production browser
would stop supporting <APPLET>.

The syntax of the <APPLET> tag is shown below; the order of the parameters does not matter:

<APPLET
 [ALIGN = alignment]
 [ALT = alternate-text]
 CODE = applet-filename or OBJECT = serialized-applet
 [CODEBASE = applet-directory-url]
 [ARCHIVE = filename.zip/filename.jar]
 HEIGHT = applet-pixel-height
 [HSPACE = horizontal-pixel-margin]
 [MAYSCRIPT = true/false]
 [NAME = applet-name]
 [VSPACE = vertical-pixel-margin]
 WIDTH = applet-pixel-width
>
<PARAM NAME=parameter1 VALUE=value1>

file:///C|/download/ftp.selab.org/ebook/javaref/awt/appa_03.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm

<PARAM NAME=parameter2 VALUE=value2>
<PARAM NAME=parameter3 VALUE=value3>
...
[alternate-html]
</APPLET>

<APPLET>

The <APPLET> tag specifies where and how to display an applet within the HTML document. If
the browser does not understand the <APPLET> and <PARAM> tags, it displays the alternate-
html. (It displays the alternate-html because it doesn't understand the surrounding tags and
ignores them. There's no magic to the alternate-html itself.) If a browser does understand
<APPLET> but cannot run Java (for example, a browser on Windows 3.1) or Java has been
disabled, the browser displays the alternate-html or the alternate-text specified by
the optional ALT parameter. The CODE, WIDTH, and HEIGHT parameters are required. Parameters
within the <APPLET> tag are separated by spaces, not by commas.

</APPLET>

Closes the <APPLET> tag. Anything prior to </APPLET> is considered alternate-html if it
is not a <PARAM> tag. The alternate-html is displayed when Java is disabled, when Java
cannot be run in the current browser, or when the browser does not understand the <APPLET> tag.

The following parameters may appear inside the <APPLET> tag.

ALIGN

alignment, optional. Specifies the applet's alignment on the Web page. Valid values are: left,
right, top, texttop, middle, absmiddle, baseline, bottom, absbottom. Default:
left. The alignment values have the same meanings as they do in the tag.

ALT

alternate-text, optional. The alternate text is displayed when the browser understands the
<APPLET> tag but is incapable of executing applets, either because Java is disabled or not
supported on the platform. Support of this tag is browser dependent; most browsers just display the
alternate-html since that is not restricted to text.

ARCHIVE

filename.zip/filename.jar, optional. Points to a comma-separated list of uncompressed
ZIP or JAR files that contain one or more Java classes. Each file is downloaded once to the user's

disk and searched for the class named in the CODE parameter, and any helper classes required to
execute that class. JAR files may be signed to grant additional access. (JAR files are Java
archives, a new archive format defined in Java 1.1. JAR files support features like digital
signatures and compression. While they are not yet in wide use, they should become an important
way of distributing sets of Java classes.)

CODE

applet-filename. This parameter or the OBJECT parameter is required. Name of applet
.class file. The .class extension is not required in the <APPLET> tag but is required in the class's
actual filename. The filename has to be a quoted string only if it includes whitespace.

CODEBASE

applet-directory-url, optional. Relative or absolute URL specifying the directory in
which to locate the .class file or ZIP archive for the applet. Default: html directory.

HEIGHT

applet-pixel-height, required. Initial height of applet in pixels. Many browsers do not
allow applets to change their height.

HSPACE

horizontal-pixel-margin, optional. Horizontal margin left and right of the applet, in
pixels.

MAYSCRIPT

Required for applets that wish to use LiveConnect and the netscape.javascript classes to
interact with JavaScript. Set to true to communicate with JavaScript. Set to false, or omit this
parameter to disable communication with JavaScript. Both Java and JavaScript must be enabled in
the browser.

NAME

applet-name, optional. Allows simultaneously running applets to communicate by this name.
Default: the applet's class name.

OBJECT

serialized-applet. This parameter or the CODE parameter is required. Name of applet

saved to a file as a serialized object. When loaded, init() is not called again but start() is.
Parameters for running the applet are taken from this <APPLET> tag, not the original.

VSPACE

vertical-pixel-margin, optional. Vertical margin above and below the applet, in pixels.

WIDTH

applet-pixel-width, required. Initial width of applet in pixels. Many browsers do not allow
applets to change their width.

The <PARAM> tag may appear between the <APPLET> and </APPLET> tags:

<PARAM>

The <PARAM> tag allows the HTML author to provide run-time parameters to the applet as a
series of NAME and VALUE pairs. The NAME is case insensitive, a String. See Chapter 14, And
Then There Were Applets for a discussion of how to read parameters in an applet. Quotes are
required around the parameter name or its value if there are any embedded spaces. There can be an
infinite number of <PARAM> tags, and they all must appear between <APPLET> and
</APPLET>

The special parameter name CABBASE is used for sending CAB files with Internet Explorer 3.0.
CAB files are similar to ZIP files but are compressed into a CABinet file and can store audio and
image files, in addition to classes. (For a full explanation see:
http://207.68.137.43/workshop/java/overview.htm.) When .class files are placed within a CAB file,
they are decompressed at the local end. Here's an example:

<APPLET CODE="oreilly.class" WIDTH=400 HEIGHT=400>
<PARAM NAME="cabbase" VALUE="ora.cab>
</APPLET>

The special parameter name ARCHIVES is reserved for sending JAR files. JAR files can also be
specified using the ARCHIVES parameter to the <APPLET> tag.[1] Here's an example:

[1] For a full explanation see
http://www.javasoft.com/products/JDK/1.1/docs/guide/jar/index.html.

<APPLET CODE="oreilly.class" WIDTH=400 HEIGHT=400>
<PARAM NAME="archives" VALUE="ora.jar>

file:///C|/download/207.68.137.43/workshop/java/overview.htm
file:///C|/download/www.javasoft.com/products/JDK/1.1/docs/guide/jar/index.html

</APPLET>

Resource Bundles Platform-Specific Event
Handling

file:///C|/download/ftp.selab.org/ebook/javaref/awt/appa_03.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm

Appendix D

D. Image Loading
Contents:
How Images are Loaded
A Brief Tour of sun.awt.image

D.1 How Images are Loaded

You have seen how easy it is to display an image on screen and have probably guessed that there's more
going on behind the scenes. The getImage() and drawImage() methods trigger a series of events
that result in the image being available for display on the ImageObserver. The image is fetched
asynchronously in another thread. The entire process[1] goes as follows:

[1] This summary covers Sun's implementation (JDK). Implementations that don't derive
from the JDK may behave completely differently.

1. The call to getImage() triggers Toolkit to call createImage() for the image's
InputStreamImageSource (which is a URLImageSource in this case; it would be a
FileImageSource if we were loading the image from a local file).

2. The Toolkit registers the image as being "desired." Desired just means that something will
eventually want the image loaded. The system then waits until an ImageObserver registers its
interest in the image.

3. The drawImage() method (use of MediaTracker or prepareImage()) registers an
ImageObserver as interested.

4. Registering an ImageObserver kicks the image's ImageRepresentation into action; this
is the start of the loading process, although image data isn't actually transferred until step 9.
ImageRepresentation implements the ImageConsumer interface.

5. The start of production registers the image source (ImageProducer URLImageSource) with
the ImageFetcher and also registers the ImageRepresentation as an ImageConsumer
for the image.

6. The ImageFetcher creates a thread to get the image from its source.

7. The ImageFetcher reads data and passes it along to the InputStreamImageSource,
which is a URLImageSource.

8. The URLImageSource determines that JPEGImageDecoder is the proper ImageDecoder
for converting the input stream into an Image. (Other ImageDecoders are used for other
image types, like GIF.)

9. The ImageProducer starts reading the image data from the source; it calls the
ImageConsumer (i.e., the ImageRepresentation) as it processes the image. The most
important method in the ImageConsumer interface is setPixels(), which delivers pixel
data to the consumer for rendering onscreen.

10. As the ImageConsumer (i.e., the ImageRepresentation) gets additional information, it
notifies the ImageObserver via imageUpdate() calls.

11. When the image is fully acquired across the network, the thread started by the ImageFetcher
stops.

As you see, there are a lot of unfamiliar moving pieces. Many of them are from the java.awt.image
package and are discussed in Chapter 12, Image Processing. Others are from the sun.awt.image
package; they are hidden in that you don't need to know anything about them to do image processing in
Java. However, if you're curious, we'll briefly summarize these classes in the next section.

Test Program A Brief Tour of
sun.awt.image

Index

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X

A
ABORT constant : ImageObserver Interface
ABORTED constant : MediaTracker Methods
abortGrabbing() : PixelGrabber
action() : Dealing With Events
Button component : Button Events
Checkbox component : Checkbox Events
Choice component : Choice Events
Component class : Component Events
List component : List Events
MenuItem class : MenuItem Events
TextField class : TextField Events
ACTION_ constants : ActionEvent
action keys : KeyEvent
ActionEvent class
ActionEvent

ActionEvent (New)
ActionListener() : AWTEventMulticaster
ActionListener interface
ActionListener

ActionListener (New)
actionPerformed()
Constants
ActionListener
ACTION_EVENT event : Constants
activeCaption color : SystemColor Methods
activeCaptionBorder color : SystemColor Methods
activeCaptionText color : SystemColor Methods
adapter classes : The Java 1.1 Event Model
add() : Rectangle Methods
add listener interfaces

file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_b.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_c.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_d.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_e.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_f.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_g.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_h.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_i.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_j.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_k.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_l.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_m.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_n.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_o.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_p.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_q.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_r.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_s.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_t.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_u.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_v.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_w.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_x.htm

The Java 1.1 Event Model
AWTEventMulticaster
Choice component : Component Methods
Component class : Component Methods
Container class : Container Methods
List component : List Methods
Menu class : Menu Methods
MenuBar class : MenuBar Methods
addActionListener() : Button Events
List component : List Events
MenuItem class : MenuItem Events
TextField class : TextField Events
addAdjustmentListener()
Adjustable interface : Methods of the Adjustable Interface
Scrollbar class : Scrollbar Events
addComponentListener() : Component Events
addConsumer()
FilteredImageSource class : FilteredImageSource
ImageProducer interface : ImageProducer Interface
MemoryImageSource class : MemoryImageSource
addContainerListener() : Container Methods
addFocusListener() : Component Events
addImage() : MediaTracker Methods
addImpl()
Container class : Container Methods
ScrollPane container : ScrollPane Methods
addInternal() : AWTEventMulticaster
addItem()
Choice component : Component Methods
List component : List Methods
addItemListener()
Checkbox component : Checkbox Events
Choice component : Choice Events
List component : List Events
Menu class : CheckboxMenuItem Events
addKeyListener() : Component Events
addLayoutComponent()
BorderLayout layout
BorderLayout Methods

CardLayout layout
CardLayout Methods
FlowLayout layout : FlowLayout Methods
GridBagLayout layout
GridBagLayout Methods
GridLayout layout : GridLayout Methods
HorizBagLayout layout : HorizBagLayout
LayoutManager interface
Methods of the LayoutManager Interface
LayoutManager Methods
LayoutManager2 interface : The LayoutManager2 Interface
VerticalBagLayout layout : VerticalBagLayout
addMouseListener() : Component Events
addMouseMotionListener() : Component Events
addNotify()
Button component : Button Methods
Canvas class : Canvas Methods
Checkbox component : Checkbox Methods
CheckboxMenuItem class : CheckboxMenuItem Methods
Choice component : Component Methods
Container class
Component Methods
Container Methods
Dialog class : Dialog Constructors and Methods
FileDialog class : FileDialog Methods
Frame class : Frame Methods
Label component : Label Methods
List component : List Methods
Menu class : Menu Methods
MenuBar class : MenuBar Methods
MenuItem class : MenuItem Methods
Panel class : Panel Methods
PopupMenu class : PopupMenu Methods
Scrollbar class : Scrollbar Methods
ScrollPane container : ScrollPane Methods
TextArea class : TextArea Methods
TextField class : TextField Methods
Window class : Window Methods
addPoint() : Polygon Methods

addSeparator() : Menu Methods
addTextListener() : TextComponent Events
addWindowListener() : Window Events
Adjustable interface
The Adjustable Interface

Adjustable (New)
ADJUSTMENT_ constants : AdjustmentEvent
AdjustmentEvent() : AdjustmentEvent
AdjustmentEvent class
AdjustmentEvent

AdjustmentEvent (New)
AdjustmentListener interface
AdjustmentListener

AdjustmentListener (New)
adjustmentValueChanged()
Constants
AdjustmentListener
alignment
ALIGN parameter (<APPLET> tag) : The Applet Tag
BorderLayout vs. GridBagLayout : GridBagLayout
centering text (example) : The FontMetrics Class
Component class constants : Component Methods
of components : Component Methods
container components : Container Methods
of containers : The LayoutManager2 Interface
GridBagLayout layout for
GridBagLayout
GridBagLayout
GridBagLayout
GridLayout layout for
GridLayout
GridLayout
GridLayout
labels : Label Methods
layout managers and (see under specific layout manager)
VariableGridLayout layout for : VariableGridLayout
ALLBITS constant : ImageObserver Interface
allowsMultipleMode() : List Methods

alpha component, pixel
ColorModel Methods
DirectColorModel
IndexColorModel
Alt key (see modifiers)
ALT parameter (<APPLET> tag) : The Applet Tag
anchor variable (GridBagContraints class) : GridBagConstraints Methods
animation : Simple Animation
MemoryImageSource class for
MemoryImageSource
append() : TextArea Methods
appendText() : TextArea Methods
Applet() : Applet Methods
appletResize() : AppletStub Interface
applets
Applets
And Then There Were Applets
Applet class
Applet Methods
Applet
<APPLET> tag (HTML) : The Applet Tag
AppletConext interface : AppletContext
AppletContext interface : AppletContext Interface
AppletStub interface
AppletStub Interface
AppletStub
audio and : Applet Methods
arcHeight, arcWidth parameters : Graphics Methods
ARCHIVES parameter
<APPLET> tag : The Applet Tag
<PARAM> tag : The Applet Tag
arcs : Graphics Methods
AreaAveragingScaleFilter class
Graphics Methods
AreaAveragingScaleFilter

AreaAveragingScaleFilter (New)
ascent, font : The FontMetrics Class
audio : Audio in Applications
applets and : Applet Methods

file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_m.htm

AudioClip interface
AudioClip Interface
AudioClip
AudioData class : AudioData
AudioDataStream class : AudioDataStream
AudioPlayer class : AudioPlayer
AudioStream class : AudioStream
AudioStreamSequence class : AudioStreamSequence
beep() : Toolkit Methods
ContinuousAudioDataStream class : ContinuousAudioDataStream
AWT
versions of : Abstract Window Toolkit Overview
AWT, versions of : Preface
AWTError error
AWTError
AWTError
AWTEvent() : AWTEvent
AWTEvent class
The Java 1.1 Event Model

AWTEvent (New)
constants of : AWTEvent
AWTEventMulticaster() : AWTEventMulticaster
AWTEventMulticaster class
AWTEventMulticaster

AWTEventMulticaster (New)
AWTException exception
AWTException
AWTException

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_b.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_c.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_d.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_e.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_f.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_g.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_h.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_i.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_j.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_k.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_l.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_m.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_n.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_o.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_p.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_q.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_r.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_s.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_t.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_u.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_v.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_w.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/index/idx_x.htm

Chapter 1

1. Introduction
Contents:
A "Hello World" Program
New Language Features in Java 1.1
Compiling a Java Source File
Running a Java Application
Notational Conventions

Java is a relatively new programming language. However, many of the features that make up the
language are not new at all. Java's designers borrowed features from a variety of older languages, such as
Smalltalk and Lisp, in order to achieve their design goals.

Java is designed to be both robust and secure, so that it can be used to write small, hosted programs, or
applets, that can be run safely by hosting programs such as Web browsers and cellular phones. Java also
needs to be portable, so that these programs can run on many different kinds of systems. What follows is
a list of the important features that Java's designers included to create a robust, secure, and portable
language.

● Java is a simple language. It borrows most of its syntax from C/C++, so it is easy for C/C++
programmers to understand the syntax of Java code. But that is where the similarities end. Java
does not support troublesome features from C/C++, so it is much simpler than either of those
languages. In fact, if you examine the features of Java, you'll see that it has more in common with
languages like Smalltalk and Lisp.

● Java is a statically typed language, like C/C++. This means that the Java compiler can perform
static type checking and enforce a number of usage rules.

● Java is fully runtime-typed as well. The Java runtime system keeps track of all the objects in the
system, which makes it possible to determine their types at runtime. For example, casts from one
object type to another are verified at runtime. Runtime typing also makes it possible to use

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch00_07.htm

completely new, dynamically loaded objects with some amount of type safety.

● Java is a late-binding language, like Smalltalk, which means that it binds method calls to their
definitions at runtime. Runtime binding is essential for an object-oriented language, where a
subclass can override methods in its superclass, and only the runtime system can determine which
method should be invoked. However, Java also supports the performance benefits of early
binding. When the compiler can determine that a method cannot be overridden by subclassing, the
method definition is bound to the method call at compile-time.

● Java takes care of memory management for applications, which is unlike C/C++, where the
programmer is responsible for explicit memory management. Java supports the dynamic
allocation of arrays and objects, and then takes care of reclaiming the storage for objects and
arrays when it is safe to do so, using a technique called garbage collection. This eliminates one of
the largest sources of bugs in C/C++ programs.

● Java supports object references, which are like pointers in C/C++. However, Java does not allow
any manipulation of references. For example, there is no way that a programmer can explicitly
dereference a reference or use pointer arithmetic. Java implicitly handles dereferencing
references, which means that they can be used to do most of the legitimate things that C/C++
pointers can do.

● Java uses a single-inheritance class model, rather than the error-prone multiple-inheritance model
used by C++. Instead, Java provides a feature called an interface (borrowed from Objective C)
that specifies the behavior of an object without defining its implementation. Java supports
multiple inheritance of interfaces, which provides many of the benefits of multiple inheritance,
without the associated problems.

● Java has support for multiple threads of execution built into the language, so there are
mechanisms for thread synchronization and explicit waiting and signaling between threads.

● Java has a powerful exception-handling mechanism, somewhat like that in newer implementations
of C++. Exception handling provides a way to separate error-handling code from normal code,
which leads to cleaner, more robust applications.

● Java is both a compiled and an interpreted language. Java code is compiled to Java byte-codes,
which are then executed by a Java runtime environment, called the Java virtual machine. The
specifications of the Java language and the virtual machine are fully defined; there are no
implementation-dependent details. This architecture makes Java an extremely portable language.

● Java uses a three-layer security model to protect a system from untrusted Java code. The byte-
code verifier reads byte-codes before they are run and makes sure that they obey the basic rules of
the Java language. The class loader takes care of bringing compiled Java classes into the runtime

interpreter. The security manager handles application-level security, by controlling whether or not
a program can access resources like the filesystem, network ports, external processes, and the
windowing system.

As you can see, Java has quite a list of interesting features. If you are a C/C++ programmer, many of the
constructs of the Java language that are covered in this book should look familiar to you. Just be warned
that you shouldn't take all of these constructs at face value, since many of them are different in Java than
they are in C/C++.

1.1 A "Hello World" Program

Before diving into the various constructs provided by the Java language, you should have at least a
general understanding of the Java programming environment. In the fine tradition of all language
reference manuals, here is a short Java program that outputs "Hello world!" and then exits:

/*
 * Sample program to print "Hello World"
 */
class HelloWorld { // Declare class HelloWorld
 public static void main(String argv[]) {
 System.out.println("Hello World!");
 }
}

This example begins with a comment that starts with /* and ends with */. This type of comment is
called a C-style comment. The example also uses another kind of comment that begins with // and ends
at the end of the line. This kind of comment is called a single-line comment; it is identical to that style of
comment in C++. Java supports a third type of comment, called a documentation comment, that provides
for the extraction of comment text into a machine-generated document.

Comments aside, the example consists of a single class declaration for the class called HelloWorld. If
you are unfamiliar with classes, you can think of a class as a collection of variables and pieces of
executable code called methods for the purposes of this discussion. In Java, most executable code is part
of a method. Methods are identical to virtual member functions in C++, except that they can exist only as
part of a class. Methods are also similar to functions, procedures, and subroutines in other programming
languages.

The HelloWorld class contains a single method named main(). When you ask the Java interpreter to
run a Java program, you tell it what code to run by giving it the name of a class. The Java interpreter then
loads the class and searches it for a method named main() that has the same attributes and parameters
as shown in the example. The interpreter then calls that main() method.

In the declaration of main(), the name main is preceded by the three keywords: public, static,
and void. The public modifier makes the main() method accessible from any class. The static
modifier, when applied to a method, means that the method can be called independently of an instance of
a class. The void keyword means that the method returns no value. The main() method of an
application should always be declared with these three keywords. Although the meanings of these
keywords is similar to their meanings in C++, there are some differences in the meaning of the keyword
static as used in Java and C++.

The main() method contains a single line of executable code that calls the println() method of the
object System.out. Passing the argument "Hello World!" to the println() method results in
"Hello World!" being output. System.out is an object that encapsulates an application's standard
output. It is similar in purpose to stdout in C and cout in C++. Java also has System.in and
System.err objects that are similar in purpose to stdin and stderr in C and cin and cerr in
C++, respectively.

Acknowledgments New Language Features in
Java 1.1

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch00_07.htm

Chapter 2

2. Lexical Analysis
Contents:
Pre-Processing
Tokenization

When the Java compiler compiles a program, the first thing it does is determine the structure of the
program. The compiler reads the characters in the program source and then applies rules to recognize
progressively larger chunks of the file, such as identifiers, expressions, statements, and classes. The
process of discovering the organization of the program is divided into two components:

● The lexical analyzer. This component looks for sequences of characters called tokens that form
identifiers, literals, operators, and the like.

● The parser. This component is responsible for discovering higher levels of organization in the
sequences of tokens discovered by lexical analysis.

This chapter describes the rules governing the lexical analysis of Java programs. The rules governing the
parsing of Java programs are described over the course of subsequent chapters.

The lexical analysis rules for Java can appear slightly ambiguous. Where ambiguity occurs, the rules for
interpreting character sequences specify that conflicts are resolved in favor of the interpretation that
matches the most characters. That's a bit confusing, so an example should help. Take the character
sequence:

+++

The ambiguity is that the sequence could potentially be interpreted as either + followed by ++ or the
other way around; both are valid tokens. But according to the lexical analysis rules that insist that
tokenization favor the longest character match, Java interprets the character sequence as:

++ +

Because ++ is longer than +, Java first recognizes the token ++ and then the +.

These rules can produce undesired results when character sequences are not separated by white space.
For example, the following sequence is ambiguous:

x++y

The programmer probably intended this sequence to mean "x + (+y)", but the lexical analyzer always
produces the token sequence "x ++ y". This sequence is syntactically incorrect.

Java lexical analysis consists of two phases: pre-processing and tokenization. The pre-processing phase is
discussed in the following section. The tokenization phase is responsible for recognizing the tokens in the
pre-processed input and is discussed later in this chapter.

2.1 Pre-Processing

A Java program is a sequence of characters. These characters are represented using 16-bit numeric codes
defined by the Unicode standard.[1] Unicode is a 16-bit character encoding standard that includes
representations for all of the characters needed to write all major natural languages, as well as special
symbols for mathematics. Unicode defines the codes 0 through 127 to be consistent with ASCII. Because
of that consistency, Java programs can be written in ASCII without any need for programmers to be
aware of Unicode.

[1] Unicode is defined by an organization called the Unicode Consortium. The defining
document for Unicode is The Unicode Standard, Version 2.0 (published by Addison-
Wesley, ISBN 0-201-48345-9). More recent information about Unicode is available at
http://unicode.org/.

Java is based on Unicode to allow Java programs to be useful in as many parts of the world as possible.
Internally, Java programs store characters as 16-bit Unicode characters. The benefits of using Unicode
are currently difficult to realize, however, because most operating environments do not support Unicode.
And those environments that do support Unicode generally do not include fonts that cover more than a
small subset of the Unicode character set.

Since most operating environments do not support Unicode, Java uses a pre-processing phase to make
sure that all of the characters of a program are in Unicode. This pre-processing comprises two steps:

● Translate the program source into Unicode characters if it is in an encoding other than Unicode.
Java defines escape sequences that allow all characters that can be represented in Unicode to be

represented in other character encodings, such as ASCII or EBCDIC. The escape sequences are
recognized by the compiler, even if the program is already represented in Unicode.

● Divide the stream of Unicode characters into lines.

Conversion to Unicode

The first thing a Java compiler does is translate its input from the source character encoding (e.g., ASCII
or EBCDIC) into Unicode. During the conversion process, Java translates escape sequences of the form
\u followed by four hexadecimal digits into the Unicode characters indicated by the given hexadecimal
values. These escape sequences let you represent Unicode characters in whatever character set you are
using for your source code, even if it is not Unicode. For example, \u0000 is a way of representing the
NUL character.

More formally, the compiler input is converted from a stream of EscapedSourceCharacters into a stream
of Unicode characters. EscapedSourceCharacter is defined as:

[Graphic: Figure from the text]

HexDigit is either a Digit or one of the following letters: A, a, B, b, C, c, D, d, E, e, F, or f.

A Digit is one of the following characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

As you can see, the definition of EscapedSourceCharacter specifies that the `u' in the escape sequence
can occur multiple times. Multiple occurrences have the same meaning as a single occurrence of `u'.

If the program source is already in Unicode, this conversion step is still performed in order to process
these \u escapes.

The Java language specification recommends, but does not require, that the classes that come with Java
use the \uxxxx escapes when called upon to display a character that would not otherwise be displayable.

Division of the Input Stream into Lines

The second step of pre-processing is responsible for recognizing sequences of characters that terminate
lines. The character sequence that indicates the end of a line varies with the operating environment. By
recognizing end-of-line character sequences during pre-processing, Java makes sure that subsequent
compilation steps do not need to be concerned with multiple representations for the end of a line.

In this step, the lexical analyzer recognizes the combinations of carriage return (\u000D) and line feed
(\u000A) characters that are in widespread use as end-of-line indicators:

[Graphic: Figure from the text]

As always, ambiguities in lexical rules are resolved by matching the longest possible sequence of
characters. That means that the sequence of a carriage return character followed by a linefeed character is
always recognized as a one-line terminator, never as two.

Notational Conventions Tokenization

Chapter 3

3. Data Types
Contents:
Primitive Types
Reference Types

A data type defines the set of values that an expression can produce or a variable can contain. The data
type of a variable or expression also defines the operations that can be performed on the variable or
expression. The type of a variable is established by the variable's declaration, while the type of an
expression is determined by the definitions of its operators and the types of their operands.

Conceptually, there are two types of data in Java programs: primitive types and reference types. The
primitive types are self-contained values that can be contained in a variable. The primitive types are
comprised of integer types, floating-point types, and the boolean type. Of these, the integer types and
floating-point types are considered arithmetic types, since arithmetic can be performed on them.
Reference types contain values that point to or identify arrays or objects. The syntax for specifying a type
is:

[Graphic: Figure from the text]

References Arithmetic Types; Boolean Type; Floating-point types; Integer types; Interface method
return type; Interface Variables; Local Variables; Method return type; Primitive Types; Reference Types;
Variables

3.1 Primitive Types

A primitive data type represents a single value, such as a number, a character, or a Boolean value. Java
has primitive types for arithmetic and Boolean data:

[Graphic: Figure from the text]

References Arithmetic Types; Boolean Type

Arithmetic Types

Unlike in C/C++, all of the arithmetic data types in Java are specified to have representations that are
independent of the particular computer running a Java program. This guarantees that numeric
computations made by Java programs produce the same results on all platforms.

There are two kinds of arithmetic types: integer and floating-point.

The integer types are: byte, short, int, long, and char. Like C/C++, character data is considered
an integer type because of its representation and because arithmetic operations can be performed on
char data. Unlike C/C++, however, short int and long int are not valid data types in Java. In
addition, signed and unsigned do not have any special meaning in Java.

The floating-point data types are float and double.

The formal definition of an arithmetic type is:

[Graphic: Figure from the text]

References Integer types; Floating-point types

Integer types

Java provides integer data types in a variety of sizes. Unlike C/C++, however, the sizes of these types are
part of the language specification; they are not platform-dependent. Formally:

[Graphic: Figure from the text]

The values represented by these types are specified in Table 3-1. The representation shown is used on all
platforms and is independent of the native platform architecture.

Table 3.1: Integer Types and Their Representations

Type Representation Range

byte 8-bit, signed, two's complement -128 to 127

short 16-bit, signed, two's complement -32768 to 32767

int 32-bit, signed, two's complement -2147483648 to 2147483647

long 64-bit, signed, two's complement -9223372036854775808 to 9223372036854775807

char 16-bit, unsigned, Unicode '\u0000' to '\uffff'

All of the signed integer types in Java use a two's complement representation. Two's complement is a
binary encoding for integers, which has the following properties:

● The leftmost bit is the sign bit. If the sign bit is 1, the number is negative.

● Positive numbers have the usual binary representation.

● Negating a number involves complementing all of the bits in the number and then adding 1 to the
result.

● The most negative value does not have a positive equivalent.

The java.lang package includes the Byte, Short, Integer, Long, and Character classes.
These classes provide object wrappers for byte, short, int, long, and char values, respectively.
Each of these classes defines static MIN_VALUE and MAX_VALUE variables for its minimum and
maximum values.

Java performs all integer arithmetic using int or long operations. A value that is of type byte,
short, or char is widened to an int or a long before the arithmetic operation is performed.

A value of any integer type can be cast (i.e., converted) to a value of any other integer type. Integer
types, however, cannot be cast to a boolean value, nor can the boolean type be cast to an integer-
type value. A value of a signed integer type can be assigned to a value of the same or wider type without
a cast. In this case, the value is automatically widened to the appropriate type. Table 3-2 shows whether
an assignment from a particular integer type to another integer type can be done directly or if it requires a
type cast.

Table 3.2: Assignment Compatibility Between Integer Types

To/From byte char short int long

byte Assignable Cast needed Cast needed Cast needed Cast needed

char Cast needed Assignable Cast needed Cast needed Cast needed

short Assignable Cast needed Assignable Cast needed Cast needed

int Assignable Assignable Assignable Assignable Cast needed

long Assignable Assignable Assignable Assignable Assignable

The principle underlying the above table is that assignments that do not lose information do not require a
type cast. Assigning a short value to an int without a cast is allowed because all of the values that can
be represented by a short can also be represented by int. However, assigning an int value to a
short is not allowed without a cast because it involves going from a 32-bit signed quantity to a 16-bit
signed quantity. Similarly, a byte value cannot be assigned to char without a cast. byte is an 8-bit
signed quantity, so it can represent negative numbers. However, char is a 16-bit unsigned quantity, so it
cannot represent negative numbers.

Java provides the following kinds of operators for integer values:

● Comparison operators

● Arithmetic operators

● Increment and decrement operators

● Bitwise logical operators

If all of the operands of an operator are of an integer type, the operation is performed as an integer
operation. Normally, integer operations are performed with a precision of 32 bits. If at least one of the
operands of an integer operation is a long, however, the operation is performed with a precision of 64
bits.

When an integer operation overflows or underflows, there is no indication given that the overflow or
underflow occurred.

If the right-hand operand (the divisor) of a division or remainder operation is 0, Java throws an
ArithmeticException. Division by zero is the only circumstance that can cause an integer
operation to throw an exception.

References Additive Operators; Assignment Operators; Bitwise/Logical Operators; Byte; Character;
Conditional Operator; Equality Comparison Operators; Increment/Decrement Operators; Integer; Integer
literals; Long; Multiplicative Operators; Relational Comparison Operators; Runtime exceptions; Shift
Operators; Short; Unary Operators

Floating-point types

Like C/C++, Java provides two sizes of floating-point numbers: single precision and double precision.

Formally:

[Graphic: Figure from the text]

Java uses the single precision 32-bit IEEE 754 format to represent float data and the double precision
64-bit IEEE 754 format to represent double data.[1] These representations are used on all platforms,
whether or not there is native support for the formats. The values represented by these types are shown in
Table 3-3.

[1] The IEEE 754 floating-point data representation and operations on it are defined in
IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985 (IEEE,
New York). The standard can be ordered by calling (908) 981-0060 or writing to IEEE,
445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331, USA.

Table 3.3: Floating-Point Types and Their Representations

Type Representation Range

float 32-bit, IEEE 754 1.40239846e-45 to 3.40282347e+38

double 64-bit, IEEE 754 4.94065645841246544e-324 to 1.79769313486231570e+308

Normally, non-zero float values are represented as:

sign*mantissa*2^exponent

where sign is +1 or -1, mantissa is a positive integer less than 2^24, and exponent is an integer in
the inclusive range -149 to 104.

Non-zero double values are represented as:

sign*mantissa*2^exponent

where sign is +1 or -1, mantissa is a positive integer less than 2^53, and exponent is an integer in
the inclusive range -1045 to 1000.

In addition, the IEEE 754 standard defines three special values:

Positive infinity

This value is produced when a float or double operation overflows, or a positive value is
divided by zero. Positive infinity is by definition greater than any other float or double value.

Negative infinity

This value is produced when a float or double operation overflows, or a negative value is
divided by zero. Negative infinity is by definition less than any other float or double value.

Not-a-number (NaN)

This value is produced by the float and double operations such as the division of zero by
zero. When NaN is one of the operands for an operation, most arithmetic operations return NaN
as the result. Since NaN is unordered, most comparison operators (e.g., <, <=, ==, >=, >) return
false when one of their arguments is NaN. The exception is !=, which returns true when one
of its arguments is NaN.

The java.lang package includes Float and Double classes that provide object wrappers for
float and double values. Each class defines the three special values as symbolic constants:
POSITIVE_INFINITY, NEGATIVE_INFINITY, and NaN. Each class also defines MIN_VALUE and
MAX_VALUE constants for its minimum and maximum values.

Floating-point operations never throw exceptions. Operations that overflow produce positive or negative
infinity. Operations that underflow produce positive or negative zero. Operations that have no defined
result produce not-a-number.

Both float and double data types have distinct representations for positive and negative zero. These
values compare as equal (0.0 == -0.0). Positive and negative zero do produce different results for
some arithmetic operations, however: 1.0/0.0 produces positive infinity, while 1.0/-0.0 produces
negative infinity.

A float value can be assigned to a double variable without using a type cast, but assigning a
double value to a float variable does require a cast. Conversion from a float or double value to
any other data type also requires a cast. Either of the floating-point data types can be cast to any other
arithmetic type, but they cannot be cast to boolean. When a floating-point number is cast to an integer
type, it is truncated (i.e., rounded toward zero).

Java provides the following kinds of operators for floating-point values:

● Comparison operators

● Arithmetic operators

● Increment and decrement operators

If any of the arguments of an operation are of a floating-point type, the operation is performed as a
floating-point operation. In other words, any of the integer operands are converted to floating point
before the operation takes place. Floating-point operations are normally performed with a precision of 32
bits. However, if at least one of the operands of the operation is a double, the operation is performed
with a precision of 64 bits.

References Additive Operators; Assignment Operators; Conditional Operator; Equality Comparison
Operators; Double; Float; Floating-point literals; Increment/Decrement Operators; Multiplicative
Operators; Relational Comparison Operators; Unary Operators

Boolean Type

The boolean data type represents two values: true and false. These values are keywords in Java.
The java.lang package includes a Boolean class that provides an object wrapper for boolean
values. This Boolean class defines the constant objects Boolean.TRUE and Boolean.FALSE.

Java provides the following kinds of operators for boolean values:

● Equality and inequality operators

● Boolean logical operators

The following Java constructs require a boolean value to specify a condition:

● if

● while

● for

● do

● The conditional operator ? :

Unlike C/C++, any attempt to substitute a different type for boolean in these constructs is treated as an
error by Java.

No other data type can be cast to or from boolean. In particular, using the integer 1 to represent true
and 0 to represent false does not work in Java. Though Java does not provide conversions between
boolean and other types, it is possible to provide explicit logic to accomplish the same thing:

int i;
i != 0 // This is true if i is not equal to zero
boolean b;
b ? 1 : 0 // If b is true produce 1; otherwise 0

References Boolean; Bitwise/Logical Operators; Boolean literals; Boolean Negation Operator !; Boolean
Operators; Conditional Operator; Equality Comparison Operators; The do Statement; The for Statement;
The if Statement; The while Statement

Tokenization Reference Types

Chapter 4

4. Expressions
Contents:
Allocation Expressions
Increment/Decrement Operators
Unary Operators
Multiplicative Operators
Additive Operators
Shift Operators
Relational Comparison Operators
Equality Comparison Operators
Bitwise/Logical Operators
Boolean Operators
Conditional Operator
Assignment Operators
Order of Operations
Data Type of an Expression
Constant Expressions

Expressions in Java are used to fetch, compute, and store values. To fetch a value, you use a type of
expression called a primary expression. To compute and store values, you use the various operators
described in this chapter. In Java, expressions are most often used in methods and constructors; they can
also appear in field variable initializers and static initializers.

Most expressions, when they are evaluated, produce values that can be used by other expressions. The
one exception is an expression that calls a method declared with the void return type. An expression
that invokes a void method cannot be embedded in another expression. The evaluation of an expression
can also produce side effects, such as variable assignments and increment and decrement operations.

The value produced by an expression can be either a pure value or a variable or array element. The

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch04_15.htm

distinction is that a pure value cannot be used to store a value, while a variable or array element can.[1]
An expression that produces a variable or an array element can be used anywhere that an expression that
produces a pure value can be used.

[1] Note that Java's distinction between pure values and variable and array elements is
similar to the distinction in C and C++ between rvalues and lvalues.

This chapter refers to values as being either pure values or variables. Saying that a value is a pure value
means that it is a value such as 24 that contains information, but cannot be used as the target of an
assignment expression. Saying that a value is a variable means that it is something like var or ar[i]
that can be used as the target of an assignment. The generic term "value" is used to mean either a variable
or a pure value.

The formal definition of an expression is:

[Graphic: Figure from the text]

The above diagram may seem deceptively simple; why is such a definition even necessary? Expressions
in Java are defined with a number of mutually recursive railroad diagrams. You can think of the
Expression definition as being both the lowest-level definition and the highest-level definition of these
mutually recursive diagrams. In other words, a=b[i]+c[i] is an expression, as are b[i], c[i], a, b,
c, and i. This first diagram defines an expression to be an AssignmentExpression, which is the final
definition used to describe Java expressions.

References Assignment Operators

4.1 Primary Expressions

A primary expression is the most elementary type of expression. Primary expressions are constructs that
fetch or create values, but do not directly perform computations on them:

[Graphic: Figure from the text]

Terms are those primary expressions that produce values, by doing such things as accessing fields in
classes, invoking methods, and accessing array elements:

[Graphic: Figure from the text]

References Allocation Expressions; Expression 4; FieldExpression 4.1.6; Identifiers; Index Expressions;
Literals; Method Call Expression; Class Literals

this

The keyword this can be used only in the body of a constructor or an instance method (i.e., a method
that is not declared static), or in the initializer for an instance variable. A static method is not
associated with an object, so this makes no sense in such a method and is treated as an undefined
variable. If this is used in an inappropriate place, a compile-time error occurs.

The value produced by this is a reference to the object associated with the expression that is being
evaluated. The type of the primary expression this is a reference to the class in which it appears.

One common use for this is to allow access to a field variable when there is a local variable with the
same name. For example:

int foo;
void setFoo(int foo) {
 this.foo = foo;
}

Another common usage is to implement a callback mechanism. Passing this to another object allows
that object to call methods in the object associated with the calling code. For example, to allow an object
inside of an applet to be able to access parameters passed to the applet in the HTML <applet> tag, you
can use code like the following:

public class MyApplet extends Applet {
 ...
 Foo foo;

 public void init() {
 foo = new Foo(this);
 ...
 }
}
class Foo {
 Applet app;
 ...
 Foo(Applet app) {
 this.app = app;
 }
 ...
 void doIt() {
 String dir = app.getParameter("direction");
 ...
 }
 ...
}

Another use for the keyword this is in a special kind of FieldExpression that refers to an enclosing
instance of this object. A reference to an enclosing instance is written as the class name of the enclosing
instance followed by a dot and the keyword this (as described in 5.3.7.2 Member classes). Consider the
following code:

public class ImageButton extends Canvas {
 ...
 private class MyImage extends Image {
 Image fileImage;
 MyImage(String fileName) throws IOException {
 URL url = new URL(fileName);
 ImageProducer src = (ImageProducer)url.getContent();
 Image fileImage = createImage(src);
 prepareImage(this, ImageButton.this);
 }
 ...

The call to prepareImage() takes two arguments. The first argument is a reference to this instance
of the MyImage class. The second argument is a reference to this object's enclosing instance, which is
an instance of the ImageButton class.

References Constructors; Constructor implementation; FieldExpression 4.1.6; Inner Classes; Methods

super

The keyword super can be used only in the body of a constructor or an instance method (i.e., a method
that is not declared static), or in the initializer for an instance variable. In addition, super cannot
appear in the class Object because Object has no superclass. If super is used in an inappropriate
place, a compile-time error occurs.

In most cases, the primary expression super has a value that is equivalent to casting the value of the
primary expression this to the superclass of the class in which it appears. In other words, super
causes the object to be treated as an instance of its superclass. The type of the primary expression super
is a reference to the superclass of the class in which it appears.

There are two situations in which super produces a result that is different than what would be produced
by casting this to its superclass:

● When super is used to explicitly call a constructor in the superclass from a constructor in the
class, the field variables for the class are initialized when the superclass's constructor returns.

● If a class contains a method that overrides a method declared in its superclass, calling the method
by casting this to the superclass results in a call to the overriding method. However, calling the
method with the special reference provided by super calls the overridden method in the
superclass.

The main purpose of super is to allow the behavior of methods and constructors to be extended, rather
than having to be totally replaced. Consider the following example:

class A {
 public int foo(int x) {
 return x*x;
 }
 public int bar(int x) {
 return x*8;
 }
}
class B extends A{
 public int foo(int x) {
 return super.foo(x)+x;
 }
 public int bar(int x){
 return x*5;
 }
}

The foo() method in class B extends the behavior of the foo() method in class A by calling that
method and performing further computations on its result. On the other hand, the bar() method in class
B totally replaces the behavior of the bar() method in class A.

References Constructors; Constructor implementation; Methods

null

The primary expression null produces a special object reference value that does not refer to any object,
but is assignment-compatible with all object reference types.

An operation on an object reference that does not attempt to access the referenced object works the same
way for null as it does for other object reference values. For example:

foo == null

However, any operation that attempts to access an object through a null reference throws a
NullPointerException. The one exception to this rule is the string concatenation operator (+),
which converts a null operand to the string literal "null".

References Runtime exceptions; String Concatenation Operator +

Literal Expressions

A primary expression that consists of a literal produces a pure value. The data type of this pure value is
the data type of the literal.

References Literals

Parenthetical Expressions

A primary expression that consists of a parenthesized expression produces the same pure value as the
expression in parentheses. The data type of this pure value is also the same as the data type of the
expression in parentheses. A parenthetical expression can only produce a pure value. Thus, the following
code produces an error:

(x) = 5; // Illegal

References Expression 4

Field Expressions

A field expression is a primary expression that fetches such things as local variables, formal parameters,
and field variables. A field expression can evaluate to a pure value or a variable. The data type of a field
expression is the data type of the pure value, variable, or array element produced by the following
expression.

[Graphic: Figure from the text]

[Graphic: Figure from the text]

Essentially, a field expression can be a simple identifier, a primary expression followed by an identifier,
or a class or interface name followed by an identifier. Here's an example of a field expression that
consists of a simple Identifier :

myVar

Before the Java compiler can decide what to do with a lone identifier such as this, it must first match it
with a declaration. The compiler first looks in the method where the identifier appears for a local variable
or formal parameter with the same name as the identifier. If the compiler finds a matching local variable
or formal parameter, the field expression produces the matching variable or parameter.

If the identifier does not match a local variable or a formal parameter, it is expected to match the name of
a field variable in the class in which it occurs.

If the matching variable is declared final, the field expression produces the pure value specified by the
variable's initializer. Otherwise, the field expression produces the matching field variable. If the method
that the identifier appears in is declared static, the matching variable must also be declared static
or the compiler declares an error.

A lone identifier that matches the name of a field variable is equivalent to:

this.Identifier

This form of a field expression can be used to access a field variable that is shadowed by a local variable

or a formal parameter. For example:

class Shadow {
 int value;
 Shadow(int value) {
 this.value=value;
 }
}

In the above example, the identifier value is used as both the name of a field variable and the name of a
formal parameter in the constructor. Within the constructor, the unqualified identifier value refers to
the formal parameter, not to the field variable. In order to access the field variable, you have to qualify
value with this.

In addition to allowing an object to refer to itself, the keyword this has another use in field expressions.
The construct ClassOrInterfaceName.this identifies the enclosing instance of an object that is an
instance of an inner class.[2] Consider the following example:

[2] Since this construct fetches an object reference, you might expect it to be a primary
expression. However, due to the way in which inner classes are implemented, this
construct is actually a field expression.

public class ImageButton extends Canvas {
 ...
 private class MyImage extends Image {
 Image fileImage;
 MyImage(String fileName) throws IOException {
 URL url = new URL(fileName);
 ImageProducer src = (ImageProducer)url.getContent();
 Image fileImage = createImage(src);
 prepareImage(this, ImageButton.this);
 }
 ...

The call to prepareImage() takes two arguments. The first argument is a reference to this instance
of the MyImage class. The second argument is a reference to this object's enclosing instance, which is
an instance of the ImageButton class.

Here are some examples of field expressions that consist of a PrimaryExpression and an Identifier:

this.myVar
size().height

(new Foo()).bar

A primary expression that appears at the beginning of a field expression must produce a reference to an
object. The identifier to the right of the dot must be the name of a field variable in the object referred to
by the primary expression. If, at runtime, the primary expression in a field expression produces the value
null, a NullPointerException is thrown.

Here's an example of a field expression that consists of a ClassOrInterfaceName and an Identifier:

Double.POSITIVE_INFINITY

A field expression that begins with ClassOrInterfaceName produces a field variable of the specified
class. If the field variable is not declared static, the specified class must either be the same class in
which the field expression appears or a superclass of that class.

Such a field expression is approximately equivalent to:

((ClassOrInterfaceName)this).Identifier

If ClassOrInterfaceName specifies a class or interface defined in a different package than the package in
which the field expression appears, the class name must be qualified by the package in which the class is
defined. For example:

java.awt.Event.MOUSE_UP

However, if an import statement imports the specified class, the package name is not necessary.

ClassOrInterfaceName can refer to an inner class or a nested top-level class or interface by qualifying the
name of the class or interface with the name of the enclosing class. For example, consider the following
declaration:

public class A {
 public class B {
 }
}

Based on this declaration, you can create a new instance of B as follows:

new A.B()

Most field expressions produce variables when they are evaluated. This means that the field expression

can be used as the left operand of an assignment operator. A field expression produces a pure value,
rather than a variable, if the identifier at the end of the field expression is a field variable that is declared
final. Such a field expression returns a pure value because the value of a final variable cannot be
modified. A field expression that produces a pure value cannot be the left operand of an assignment
operator, or the operand of the ++ or - - operators. Here's an erroneous example:

final int four=4
four++

This is equivalent to:

4++

As such, it causes the Java compiler to issue an error message.

When the Java compiler detects an expression that uses the value of a local variable that may not have
been initialized, it issues an error message. For example:

{
 int x;
 if (testForSomething())
 x = 4;
 System.out.println(x); // Compiler complains
}

The compiler complains about the use of x in the println() method because x may not have been
given an explicit value when the program reaches that statement. Even though there is an assignment to x
in the preceding statement, the compiler recognizes that the assignment may not have been performed,
since it is enclosed within a conditional statement. The Java language specification requires that a
compiler issue an error message when it detects an uninitialized local variable.

References Identifiers; Inheritance; Inner Classes; Interface Variables; Local Variables; Packages;
Primary Expressions; Runtime exceptions; Variables

Index Expressions

An index expression is a primary expression that produces an array element when it is evaluated. The
value produced by an index expression is a variable; it can be used as the left operand of an assignment
expression. The data type of an index expression is the data type of the array element produced by the
expression:

[Graphic: Figure from the text]

When the compiler evaluates an index expression, the term to the left of the square brackets is evaluated
before the expression inside of the square brackets. If the term produces the value null, a
NullPointerException is thrown.

Array indexing uses an int-valued expression between the square brackets. If the type of the expression
is byte, char, or short, the value is automatically converted to int. An array index cannot be of
type long. The value of the array index must be in the range zero to one less than the length of the array.
An array object detects an out-of-range index value and throws an
ArrayIndexOutOfBoundsException.

Because of the precedence of Java expressions, an array allocation expression can only be indexed when
the expression is enclosed in parentheses. For example:

(new int[6])[3]

This expression refers to the fourth element of the newly created array. Leaving out the parentheses
results in the following:

new int[6][3]

This is not an index expression, but an array allocation expression that allocates an array of 3 arrays of 6
integers.

References Array Allocation Expressions; Array Types; Expression 4; Term 4.1; Exceptions

Method Call Expression

A method call expression is a primary expression that invokes a method:

[Graphic: Figure from the text]

[Graphic: Figure from the text]

A method call expression produces the pure value returned by the method; the type of this value is
specified by the return type in the method declaration. But if the method has the return type void, the
expression does not produce a value.

The PrimaryExpression, if present, is evaluated first. Then expressions provided as method arguments
are evaluated from left to right. Finally, the method is invoked.

When a method call is made to a method that is not static, the call is made through an object
reference:

● If the method call expression does not contain a PrimaryExpression or ClassOrInterfaceName
before the method name, the method call is made implicitly through the object referenced by the
keyword this. This form of a method call expression is treated as if it were written:

this.Identifier(...)

● If the method call expression contains a PrimaryExpression before the method name, the call is
made through the object reference produced by the PrimaryExpression.

● If the method call expression contains a ClassOrInterfaceName before the method name, then the
specified class must either be the same class in which the method call expression appears or a
superclass of that class. In this case, the method call is made through the object referenced by the
keyword this. This form of a method call expression is treated as if it were written:

((ClassOrInterfaceName)this).Identifier(...)

When a method call is made to a static method, the call is made through a class or interface type:

● If the method call expression does not contain a PrimaryExpression or ClassOrInterfaceName
before the method name, the method call is made implicitly through the class that contains the
call.

● If the method call expression contains a PrimaryExpression before the method name, the call is
made through the class of the object reference produced by the PrimaryExpression.

● If the method call expression contains a ClassOrInterfaceName before the method name, the

method call is made through the specified class or interface type.

The rules for supplying actual values for the formal parameters of a method are similar to the rules for
assignment. A particular value can be specified as the actual value of a formal parameter if and only if it
is assignment-compatible with the type of the formal parameter. You can use a type cast to make a value
assignment compatible with a formal parameter.

The process that the Java compiler uses to select the actual method that will be invoked at runtime is
rather involved. The compiler begins by finding any methods that have the specified name. If the method
call has been made through an object reference, the compiler searches in the class of that object
reference. If the call has been made through a specific class or interface name, the compiler searches in
that class or interface. The compiler searches all of the methods defined in the particular class or
interface, as well as any methods that are inherited from superclasses or super-interfaces. At this point,
the compiler is searching for both static and non-static methods, since it does not know which
type of method is being called.

If the compiler finds more than one method, that means the method is overloaded. Consider this example:

public class MyMath {
 public int square(int x) { return x*x; }
 public long square(long x) { return x*x; }
 public float square(float x) { return x*x; }
 public double square(double x) { return x*x; }
 public double hypotenuse(double x, double y) {
 return Math.sqrt(x*x + y*y);
 }
}

In the above example, the square() method is overloaded, while hypotenuse() is not.

If the method is overloaded, the compiler then determines which of the methods has formal parameters
that are compatible with the given arguments. If more than one method is compatible with the given
arguments, the method that most closely matches the given parameters is selected. If the compiler cannot
select one of the methods as a better match than the others, the method selection process fails and the
compiler issues an error message. Note that the return types of overloaded methods play no part in
selecting which method is to be invoked.

After the compiler successfully selects the method that most closely matches the specified arguments, it
knows the name and signature of the method that will be invoked at runtime. It does not, however, know
for certain what class that method will come from. Although the compiler may have selected a method
from MyMath, it is possible that a subclass of MyMath could define a method that has the same name
and the same number and types of parameters as the selected method. In this case, the method in the

subclass overrides the method in MyMath. The compiler cannot know about overriding methods, so it
generates runtime code that dynamically selects the appropriate method.

Here are the details of the three-step method selection process:

Step One

The method definitions are searched for methods that, taken in isolation, could be called by the
method call expression. If the method call expression uses an object reference, the search takes
place in the class of that object reference. If the expression uses a specific class or interface name,
the search takes place in that class or interface. The search includes all of the methods defined in
the particular class or interface, as well as any methods inherited from superclasses or super-
interfaces. The search also includes both static and non-static methods.

A method is a candidate if it meets the following criteria:

❍ The name of the method is the same as the name specified in the method call expression.

❍ The method is accessible to the method call expression, based on any access modifiers
specified in the method's declaration.

❍ The number of formal parameters declared for the method is the same as the number of
actual arguments provided in the method call expression.

❍ The data type of each actual parameter is assignment-compatible with the corresponding
formal parameter.

Consider the following expression that calls a method defined in the preceding example:

MyMath m;
m.square(3.4F)

Here is how the Java compiler uses the above criteria to decide which method the expression
actually calls:

❍ The name square matches four methods defined in the MyMath class, so the compiler
must decide which one of those methods to invoke.

❍ All four methods are declared public, so they are all accessible to the above expression
and are thus all still viable candidates.

❍ The method call expression provides one argument. Since the four methods under
consideration each take one argument, there are still four possible choices.

❍ The method call expression is passing a float argument. Because a float value cannot
be assigned to an int or a long variable, the compiler can eliminate the versions of
square() that take these types of arguments. That still leaves two possible methods for
the above expression: the version of square() that takes a float argument and the one
that takes a double argument.

Step Two

If more than one method meets the criteria in Step One, the compiler tries to determine if one
method is a more specific match than the others. If there is no method that matches more
specifically, the selection process fails and the compiler issues an error message.

Given two methods, A() and B(), that are both candidates to be invoked by the same method
call expression, A() is more specific than B() if:

❍ The class in which the method A() is declared is the same class or a subclass of the class
in which the method B() is declared.

❍ Each parameter of A() is assignment-compatible with the corresponding parameter of
B().

Let's go back to our previous example. We concluded by narrowing the possible methods that the
expression m.square(3.4F) might match to the methods in MyMath named square() that
take either a float or a double argument. Using the criteria of this step, we can further narrow
the possibilities. These methods are declared in the same class, but the version of square() that
takes a float value is more specific than the one that takes a double value. It is more specific
because a float value can be assigned to a double variable, but a double value cannot be
assigned to a float variable without a type cast.

There are some cases in which it is not possible to choose one method that is more specific than
others. When this happens, the Java compiler treats the situation as an error and issues an
appropriate error message.

For example, consider a situation where the compiler needs to choose between two methods
declared as follows:

double foo(float x, double y)
double foo(double x, float y)

Neither method is more specific than the other. The first method is not more specific because the
type of its second parameter is double and double values cannot be assigned to float
variables. The second method is not more specific because of a similar problem with its first
parameter.

Step Three

After successfully completing the previous two steps, the Java compiler knows that the expression
in our example will call a method named square() and that the method will take one float
argument. However, the compiler does not know if the method called at runtime will be the one
defined in the MyMath class. It is possible that a subclass of MyMath could define a method that
is also called square() and takes a single float argument. This method in a subclass would
override the method in MyMath. If the variable m in the expression m.square(3.4F) refers to
such a subclass, the method defined in the subclass is called instead of the one defined in
MyMath.

The Java compiler generates code to determine at runtime which method named square() that
takes a single float argument it should call. The Java compiler must always generate such
runtime code for method call expressions, unless it is able to determine at compile time the exact
method to be invoked at runtime.

There are four cases in which the compiler can know exactly which method is to be called at
runtime:

❍ The method is called through an object reference, and the type of the reference is a final
class. Since the type of the reference is a final class, Java does not allow any subclasses
of that class to be defined. Therefore, the object reference will always refer to an object of
the class declared final. The Java compiler knows the actual class that the reference will
refer to, so it can know the actual method to be called at runtime.

❍ The method is invoked through an object reference, and the type of the reference is a class
that defines or inherits a final method that has the method name, number of parameters,
and types of parameters determined by the preceding steps. In this case, the compiler
knows the actual method to be called at runtime because final methods cannot be
overridden.

❍ The method is a static method. When a method is declared static, it is also implicitly
declared final. Thus, the compiler can be sure that the method to be called at runtime is the
one defined in or inherited by the specified class that has the method name, number of
parameters, and types of parameters determined by the preceding steps.

❍ The compiler is able to deduce that a method is invoked through an object reference that

will always refer to the same class of object at runtime. One way the compiler might
deduce this is through data flow analysis.

If none of the above cases applies to a method call expression, the Java compiler must generate
runtime code to determine the actual method to be invoked. The runtime selection process begins
by getting the class of the object through which the method is being invoked. This class is
searched for a method that has the same name and the same number and types of parameters as
the method selected in Step Two. If this class does not contain such a definition, its immediate
superclass is searched. If the immediate superclass does not contain an appropriate definition, its
superclasses are searched, and so on up the inheritance hierarchy. This search process is called
dynamic method lookup.

Dynamic method lookup always begins with the class of the actual object being referenced. The
type of the reference being used to access the object does not influence where the search for a
method begins. The one exception to this rule occurs when the keyword super is used as part of
the method call expression. The form of this type of method call expression is:

super.Identifier(...)

In this case, dynamic method lookup begins by searching the superclass of the class that the
calling code appears in.

Now that we've gone through the entire method selection process, let's consider an example that
illustrates the process:

class A {}
class B extends A {}
class C extends B {}
class D extends C {}
class W {
 void foo(D d) {System.out.println("C");}
}
class X extends W {
 void foo(A a) {System.out.println("A");}
 void foo(B b) {System.out.println("X.B");}
}
class Y extends X {
 void foo(B b) {System.out.println("Y.B");}
}
class Z extends Y {
 void foo(C c) {System.out.println("D");}
}

public class CallSelection {
 public static void main(String [] argv) {
 Z z = new Z();
 ((X) z).foo(new C());
 }
}

In the class CallSelection, the method main() contains a call to a method named foo(). This
method is called through an object reference. Although the object refers to an instance of the class Z, it is
treated as an instance of the class X because the reference is type cast to the class X. The process of
selecting which method to call proceeds as follows:

1. The compiler finds all of the methods named foo() that are accessible through an object of class
X: foo(A), foo(B), and foo(D). However, because a reference to an object of class C cannot
be assigned to a variable of class D, foo(D) is not a candidate to be invoked by the method call
expression.

2. Now the compiler must choose one of the two remaining foo() methods as more specific than
the other. Both methods are defined in the same class, but foo(B) is more specific than foo(A)
because a reference to an object of class B can be assigned to a variable declared with a type of
class A.

3. At runtime, the dynamic method lookup process finds that it has a reference to an object of class
Z. The fact that the reference is cast to class X is not significant, since dynamic lookup is
concerned with the class of an object, not the type of the reference used to access the object. The
definition of class Z is searched for a method named foo() that takes one parameter that is a
reference to an object of class B. No such method is found in the definition of class Z, so its
immediate superclass, class Y, is searched. Such a method is found in class Y, so that method is
invoked.

Here is another example that shows some ambiguous and erroneous method call expressions:

class A {}
class B extends A {}
class AmbiguousCall {
 void foo(B b, double x){}
 void foo(A a, int i){}
 void doit() {
 foo(new A(), 8); // Matches foo(A, int)
 foo(new A(), 8.0); // Error: doesn't match anything
 foo(new B(), 8); // Error: ambiguous, matches both
 foo(new B(), 8.0); // Matches foo(B, double)

 }
}

References Assignment Compatibility; ClassOrInterfaceName 4.1.6; Casts; Expression 4; Identifiers;
Inheritance; Interface Methods; Methods; Primary Expressions

Class Literals

A class literal is an expression that produces a reference to a Class object that identifies a specified
data type. Class literals are not supported prior to Java 1.1. Here's the syntax for a class literal:

[Graphic: Figure from the text]

If the type in a class literal is a reference type, the class literal produces a reference to the Class object
that defines the specified reference type. The following are some examples of this type of class literal:

String.class
java.util.Stack.class
myNewClass.class

Such a class literal can throw a NoClassDefFoundError if the specified class is not available.

You can also call Class.forName() with the name of a specified reference type to retrieve the
Class object for that type. For example:

Class.forName("java.util.Stack")

A class literal and a call to Class.forName() for the same reference type return the same Class
object. There are certain situations when it makes sense to use a class literal, while in other cases a call to
Class.forName() is more appropriate. Here are the differences between the two techniques for
retrieving a Class object:

● A class literal cannot contain an expression, so it always refers to the same type. However, the
argument passed to Class.forName() can be an expression that produces different strings

that name different classes.

● The class or interface name passed to Class.forName() must be fully qualified by its
package name. The class or interface name in a class literal, however, does not typically need to
include a package name because the Java compiler can use information provided in package and
import directives to deduce the package name.

● The name of an inner class can be used directly with a class literal. Because of the way that inner-
class names are encoded, however, when an inner-class name is passed to Class.forName(),
the name must contain dollar signs ($) in place of dots (.).

● The efficiency of a class literal is comparable to a field reference; it is more efficient than the
method call required by Class.forName().

If the type in a class literal is void or a primitive type, the class literal produces a reference to a unique
Class object that represents void or the specified type. The special Class object that represents
void or a primitive type can be distinguished from a Class object that represents a reference type by
calling its isPrimitive() method. This method only returns true if the Class object represents
void or a primitive type. The getName() method of a special Class object returns a string that
contains the name of the primitive type represented by the object. The easiest way to determine the
primitive type of a special Class object is to compare it to the TYPE variables of the primitive wrapper
classes. The following comparisons always produce true:

boolean.class == Boolean.TYPE
byte.class == Byte.TYPE
short.class == Short.TYPE
int.class == Integer.TYPE
long.class == Long.TYPE
char.class == Character.TYPE
float.class == Float.TYPE
double.class == Double.TYPE
void.class == Void.TYPE

References Boolean; Byte; Character; Class; Double; Errors; Float; Inner Classes; Integer; Long; Short;
Void; Type 3

Reference Types Allocation Expressions

Chapter 5

5. Declarations
Contents:
Naming Conventions
Lexical Scope of Declarations
Object-Orientation Java Style
Class Declarations
Interface Declarations

A declaration is a construct that associates a name with storage that contains specified data or a specified
type of data. More specifically, declarations associate names with classes, interfaces, methods, and
variables. In addition, the declaration of a class, interface, or method defines the actual class, interface, or
method that is associated with the name. Methods and variables can only be declared within classes and
interfaces, so this chapter covers method and variable declarations in the context of class and interface
declarations.

Every name has a lexical scope. The scope of a declaration determines the portions of a program in
which the declaration is applicable.

A declaration can be preceded by modifiers that specify attributes of the name or of the data associated
with the name. One such attribute for a name is its accessibility. The accessibility modifiers specify the
other classes that can access the data associated with the name. The static modifier specifies an
attribute for data; it indicates whether the data is associated with a class or with individual instances of a
class.

Because Java is an object-oriented programming language, this chapter also describes the object-oriented
model used by the language. An understanding of this model is necessary for a complete understanding
of class and interface declarations.

5.1 Naming Conventions

The Java language has no requirements for choosing names, aside from the lexical requirements for
identifiers stated in Identifiers. However, there are certain conventions that you should follow when
choosing names; these conventions are the ones used by Sun in much of the Java API. Following these
conventions makes your programs easier to read, as many programmers are already accustomed to
reading programs that use them:

● If an identifier is logically made up of multiple words, the first letter of each word other than the
first is uppercase and the rest of the letters are lowercase (e.g., aSimpleExample). Sun is
consistent about following this convention.

● The first letter of the name of a class or interface is uppercase, while the first letter of all other
names is lowercase. Sun is also consistent about following this convention.

● The names of final variables that are intended to represent symbolic constants are all uppercase;
logical words contained in the name are separated by underscore characters (e.g.,
MAX_LEGAL_VALUE). Sun uses this convention quite often, but is not entirely consistent.

● Some Java programmers have adopted the additional convention of beginning the names of
instance variables with an underscore (e.g., _value).

● Avoid the use of $ in names to prevent confusion with compiler-generated names. Sun is
consistent about following this convention.

References Class Name; Identifiers; Interface Name; Interface Variables; Variables

Constant Expressions Lexical Scope of Declarations

Chapter 6

6. Statements and Control Structures
Contents:
Labeled Statements
The Empty Statement
Expression Statements
The if Statement
The switch Statement
Iteration Statements
The break Statement
The continue Statement
The return Statement
The throw Statement
The try Statement
The synchronized Statement

A statement is the construct used to control the flow of program execution in Java:

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_03.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_04.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_13.htm

[Graphic: Figure from the text]

Statements are executed in sequence, unless a statement alters the flow of control. Statements usually
correspond to executable code.

References Blocks; The break Statement; The continue Statement; The Empty Statement; Expression
Statements; The if Statement; Iteration Statements; Labeled Statements; The return Statement; The
switch Statement; The synchronized Statement; The throw Statement; The try Statement

6.1 Blocks

A block is a sequence of zero or more statements, local variable declarations, or local class declarations
enclosed in curly braces:

[Graphic: Figure from the text]

The bodies of methods, constructors, static initializers, and instance initializers are blocks. A variable
declaration in a block causes a local variable to be defined, while a class declaration in a block causes a

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_03.htm#JLR2-CH-6-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_04.htm#JLR2-CH-6-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_04.htm#JLR2-CH-6-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_13.htm#JLR2-CH-6-SECT-13

local class to be defined. A block is itself a kind of statement, so a block can contain other blocks. Here is
an example of a block:

{
 int tmp = x;
 x = y;
 y = tmp;
}

The statements in a block are executed in the sequence in which they occur, unless a statement that alters
the sequence of execution is executed. If, as a result of such a statement, the Java compiler can determine
that a statement will never be executed, the compiler is required to produce an error message about the
unreachable statement.

The one exception to this rule allows if statements that have constant Boolean expressions. The
compiler recognizes if statements that have constant Boolean expressions and does not generate code
for the portion of the statement that can never be executed. This mechanism can be used for conditional
compilation; it is similar to the C/C++ preprocessor features that are used for this purpose.

References Constant Expressions; Constructors; Instance Initializers; Local Classes; Local Variables;
Methods; Statement 6; Static Initializers; The switch Statement

Local Variables

Local variables declared in a block exist only from their declaration to the end of the block. A local
variable declaration cannot include any modifiers except the final modifier. In other words, a variable
declaration in a block cannot include any of the following keywords: public, protected, private,
static, transient, or volatile. The syntax that permits the use of the final modifier with
local variables is new as of Java 1.1; the usage is not permitted with earlier versions of the language.

The syntax of a local variable declaration is:

[Graphic: Figure from the text]

A local variable declaration is really made up of two distinct things:

● A type, which can be either a primitive type or a reference type.

● Any number of identifiers that name variables. Each name can be followed by pairs of square
brackets to indicate an array variable, as well as an optional initializer for the variable.

A local variable declared within a block that has an initializer is initialized when its declaration is
executed. Within the body of a method or constructor, its formal parameters are treated as local variables.
Formal parameters are initialized when a method is called. A local variable can also be declared in the
header of a for statement.

The following are some examples of local variable declarations:

int x;
double[] k, m[];

References Variable initializers; Expression 4; Identifiers; Interface Variables; Type 3; The for
Statement; Variables

Final local variables

If a local variable is declared with the final modifier, the variable is a named constant value. As such,
it must be assigned an initial value. Any assignment to a final local variable, other than the one that
provides its initial value, is a compile-time error. The initial value for a final local variable is typically
provided by an initializer that is part of the variable's declaration. For example:

final int X = 4;

A final local variable that is not initialized in its declaration is called a blank final. A blank final must
be assigned a value exactly once. The compiler uses flow analysis that takes if statements and iteration
statements into account to ensure that a blank final is assigned a value exactly once. Thus, it is possible
to have multiple assignments to a blank final, so long as exactly one of them can be executed. For
example, here is an instance initializer that sets the value of a blank final:

{
 final int DAYS_IN_YEAR;
 if (isLeapYear(new Date()))
 DAYS_IN_YEAR = 366;
 else
 DAYS_IN_YEAR = 365;
 ...
}

Local variables that are declared final are not supported prior to Java 1.1.

References Instance Initializers; The do Statement; The for Statement; The if Statement; The while
Statement; Variable modifiers

Local variable type

A local variable declaration must always specify the type of the variable. If the declaration of a local
variable uses a primitive type, the variable contains a value of the specified primitive type. If the
declaration uses a reference type, the variable contains a reference to the specified type of object.

The presence of square brackets in a variable declaration, after either the type or the variable name,
indicates that the variable contains a reference to an array. For example:

int a[]; // a is an array of int
int[] b; // b is also an array of int

It is also possible to declare a variable to contain an array of arrays, or more generally, arrays nested to
any level. Each pair of square brackets in the declaration corresponds to a dimension of the array; it
makes no difference whether the brackets appear after the type or the variable name. For example:

int[][][] d3; // Each of these is an array of
int[][] f3[]; // arrays of arrays of integers
int[] g3[][];
int h3[][][];
int[] j3, k3[]; // An array and an array of arrays

References Array Types; Primitive Types; Reference Types

Local variable name

The identifier that follows the variable type is the name of the local variable. When a local variable
definition is in effect, all occurrences of that name are taken to mean the local variable. If a local variable
is declared with the same name as a class, an interface, or a field of the class in which the local variable
is declared, the definition of the class, interface, or field is hidden. Fields that are hidden by a local
variable can be referenced using the keyword this. For example:

class myClass {
 int value;
 void doit(int x) {
 int value;

 value = x*4; // Set local variable
 this.value = value + 1; // Set field variable
}

A block cannot have multiple local variables with the same name. This means that a local variable cannot
be declared at a point in a block where a local variable with the same name is already defined. For
example, consider the following code:

myMethod(char c){
 int j; // Okay
 char c; // Error
 int j; // Error
 {
 int j; // Error
 }
 {
 int x; // Okay
 }
 {
 int x; // Okay
 }
 int x; // Okay
}

In the above example, the declaration of c as a local variable is an error because it occurs in a method
that has a formal parameter with that name. The second declaration of j is an error because there is
already a local variable defined with that name. The third declaration of j as a local variable is also an
error for the same reason; the nested block sees all of the declarations that are visible in the enclosing
block, including the declaration of j in the outer block.

The first declaration of x is fine because there is no previous declaration of x for it to conflict with. The
second declaration of x is also fine because there is no previous declaration of x in the enclosing block
for it to conflict with. The first declaration of x occurs in a nested block, so it is not visible in the
enclosing block. The third declaration of x is also fine because the preceding declarations occurred in
nested blocks; they are not visible in the enclosing block.

References Identifiers; this

Local variable initializers

A local variable declaration can contain an initializer. If the variable is of a non-array type, the
expression in the initializer is evaluated and the variable is set to the result of the expression, as long as

the result is assignment-compatible with the variable. If the variable is of an array type, the initializer
must be an array initializer, as described in Variable initializers. If the variable is declared final, the
initializer sets the value of the named constant.

A local variable declaration with an initializer is similar in effect to a local variable declaration without
an initializer immediately followed by an assignment statement that sets the declared variable. Take the
following example:

int a = 4;

This is equivalent to:

int a;
a = 4;

If a local variable has an initializer, the value of the variable is set to the value of the initializer when the
declaration is executed.

Any attempt to access the value of a local variable before its value is set by an assignment statement or
an initializer is treated as an error by the Java compiler. For example:

int foo(int x) {
 int a = x + 1;
 int b, c;
 if (a > 4)
 b = 3;
 a = a * c; // Error: c not initialized
 a = b * 8 + a; // Error: b might not be initialized

This example contains two errors. First, the compiler complains about the expression a*c because c is
not initialized. The compiler also complains about the expression b* 8+a because the preceding
assignment to b may not executed, depending on the value of a. If the compiler cannot guarantee that a
local variable will be initialized, it generates an error message when the variable is used.

References Variable initializers; Assignment Operators

Local Classes

Local classes declared in a block exist only in the scope of that block. Local classes are not supported
prior to Java 1.1 Here's the syntax of a local class declaration:

[Graphic: Figure from the text]

A local class can access local variables in the enclosing block that are declared final. A local class can
also access instance variables of the enclosing class if they are not declared inside of a static method
or static initializer.

There is an alternate syntax for a local class that allows an anonymous local class to be defined. This
syntax is available as part of an allocation expression.

References Allocation Expressions; Anonymous classes; Local classes; Local Variables; Class
Declarations; Variables

Local class modifiers

The keywords abstract and final can be used in the declaration of a local class. These modifiers
have the following meanings:

abstract

If a local class is declared abstract, no instances of the class may be created. A local class
declared abstract may contain abstract methods. Classes not declared abstract may
not contain abstract methods and must override any abstract methods they inherit with
methods that are not abstract. Classes that implement an interface and are not declared
abstract must contain or inherit methods that are not abstract that have the same name,
have the same number of parameters, and have corresponding parameter types as the methods
declared in the interfaces that the class implements.

final

If a local class is declared final, it cannot be subclassed. In other words, it cannot appear in the
extends clause of another class.

References Class Modifiers; Inner class modifiers

Local class members

The body of a local class cannot declare any static variables, static methods, static classes, or
static initializers. Beyond those restrictions, the remainder of the declaration is the same as that for a top-
level class declaration, which is described in Class Declarations.

References Class Declarations; Constructors; Instance Initializers; Methods; Nested Top-Level and
Member Classes; Static Initializers; Variables

Interface Declarations Labeled Statements

Chapter 7

7. Program Structure
Contents:
Compilation Units
Packages
The import Directive
Documentation Comments
Applications
Applets

This chapter discusses the higher levels of program structure for Java programs. The two levels of
organization discussed in this chapter are compilation units and packages. A compilation unit contains
the source code for one or more classes or interfaces. A package is a collection of related compilation
units.

This chapter also discusses the two most common top-level Java program architectures: applications and
applets. An application is a stand-alone Java program that can be run directly from the command line (or
other operating system environment). An applet is a Java program that must be run from within another
program, such as a Web browser. In the future, applets will even be hosted by other environments, such
as cellular phones and personal digital assistants.

7.1 Compilation Units

A compilation unit is the highest-level syntactic structure that Java recognizes:

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_13.htm

[Graphic: Figure from the text]

Only one of the classes or interfaces declared in a compilation unit can be declared public.

A compilation unit usually corresponds to a single source code file. However, the Java language
specification allows compilation units to be stored in a database. If compilation units are stored in a
database, the limit of one public class or interface per compilation unit does not apply, as long as there
is a way to extract the compilation units from the database and place them in individual files that contain
no more than one public class or interface per file. This exception to the one public class or
interface per compilation unit rule is useful if you are implementing a Java development environment.

Every compilation unit is part of exactly one package. That package is specified by the package
directive that appears at the beginning of the compilation unit. If there is no package directive, the
compilation unit is part of the default package.

References ClassDeclaration 5.4; Class Modifiers; The import Directive; Interface Declarations;
Interface Modifiers; PackageDirective 7.2

The synchronized Statement Packages

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_13.htm

Chapter 8

8. Threads
Contents:
Using Thread Objects
Synchronizing Multiple Threads

Threads provide a way for a Java program to do multiple tasks concurrently. A thread is essentially a
flow of control in a program and is similar to the more familiar concept of a process. An operating
system that can run more than one program at the same time uses processes to keep track of the various
programs that it is running. However, processes generally do not share any state, while multiple threads
within the same application share much of the same state. In particular, all of the threads in an
application run in the same address space, sharing all resources except the stack. In concrete terms, this
means that threads share field variables, but not local variables.

When multiple processes share a single processor, there are times when the operating system must stop
the processor from running one process and start it running another process. The operating system must
execute a sequence of events called a context switch to transfer control from one process to another.
When a context switch occurs, the operating system has to save a lot of information for the process that is
being paused and load the comparable information for the process being resumed. A context switch
between two processes can require the execution of thousands of machine instructions. The Java virtual
machine is responsible for handling context switches between threads in a Java program. Because threads
share much of the same state, a context switch between two threads typically requires the execution of
less than 100 machine instructions.

There are a number of situations where it makes sense to use threads in a Java program. Some programs
must be able to engage in multiple activities and still be able to respond to additional input from the user.
For example, a web browser should be able to respond to user input while fetching an image or playing a
sound. Because threads can be suspended and resumed, they can make it easier to control multiple
activities, even if the activities do not need to be concurrent. If a program models real world objects that
display independent, autonomous behavior, it makes sense to use a separate thread for each object.
Threads can also implement asynchronous methods, so that a calling method does not have to wait for
the method it calls to complete before continuing with its own activity.

Java applets make considerable use of threads. For example, an animation is generally implemented with
a separate thread. If an applet has to download extensive information, such as an image or a sound, to
initialize itself, the initialization can take a long time. This initialization can be done in a separate thread
to prevent the initialization from interfering with the display of the applet. If an applet needs to process
messages from the network, that work generally is done in a separate thread so that the applet can
continue painting itself on the screen and responding to mouse and keyboard events. In addition, if each
message is processed separately, the applet uses a separate thread for each message.

For all of the reasons there are to use threads, there are also some compelling reasons not to use them. If
a program uses inherently sequential logic, where one operation starts another operation and then must
wait for the other operation to complete before continuing, one thread can implement the entire sequence.
Using multiple threads in such a case results in a more complex program with no accompanying benefits.
There is considerable overhead in creating and starting a thread, so if an operation involves only a few
primitive statements, it is faster to handle it with a single thread. This can even be true when the
operation is conceptually asynchronous. When multiple threads share objects, the objects must use
synchronization mechanisms to coordinate thread access and maintain consistent state. Synchronization
mechanisms add complexity to a program, can be difficult to tune for optimal performance, and can be a
source of bugs.

8.1 Using Thread Objects

The Thread class in the java.lang package creates and controls threads in Java programs. The
execution of Java code is always under the control of a Thread object. The Thread class provides a
static method called currentThread() that provides a reference to the Thread object that
controls the current thread of execution.

References Thread

Associating a Method with a Thread

The first thing you need to do to make a Thread object useful is to associate it with a method you want
it to run. Java provides two ways of associating a method with a Thread:

● Declare a subclass of Thread that defines a run() method.

● Pass a reference to an object that implements the Runnable interface to a Thread constructor.

For example, if you need to load the contents of a URL as part of an applet's initialization, but the applet
can provide other functionality before the content is loaded, you might want to load the content in a
separate thread. Here is a class that does just that:

import java.net.URL;
class UrlData extends Thread {
 private Object data;
 private URL url
 public UrlData(String urlName) throws MalformedURLException {
 url = new URL(urlName);
 start();
 }
 public void run(){
 try {
 data = url.getContent();
 } catch (java.io.IOException e) {
 }
 }
 public Object getUrlData(){
 return data;
 }
}

The UrlData class is declared as a subclass of Thread so that it can get the contents of the URL in a
separate thread. The constructor creates a java.net.URL object to fetch the contents of the URL, and
then calls the start() method to start the thread. Once the thread is started, the constructor returns; it
does not wait for the contents of the URL to be fetched. The run() method is executed after the thread
is started; it does the real work of fetching the data. The getUrlData() method is an access method
that returns the value of the data variable. The value of this variable is null until the contents of the
URL have been fetched, at which time it contains a reference to the actual data.

Subclassing the Thread class is convenient when the method you want to run in a separate thread does
not need to belong to a particular class. Sometimes, however, you need the method to be part of a
particular class that is a subclass of a class other than Thread. Say, for example, you want a graphical
object that is displayed in a window to alternate its background color between red and blue once a
second. The object that implements this behavior needs to be a subclass of the java.awt.Canvas
class. However, at the same time, you need a separate thread to alternate the color of the object once a
second.

In this situation, you want to tell a Thread object to run code in another object that is not a subclass of
the Thread class. You can accomplish this by passing a reference to an object that implements the
Runnable interface to the constructor of the Thread class. The Runnable interface requires that an
object has a public method called run() that takes no arguments. When a Runnable object is
passed to the constructor of the Thread class, it creates a Thread object that calls the Runnable
object's run() method when the thread is started. The following example shows part of the code that
implements an object that alternates its background color between red and blue once a second:

class AutoColorChange extends java.awt.Canvas implements Runnable {
 private Thread myThread;
 AutoColorChange () {
 myThread = new Thread(this);
 myThread.start();
 ...
 }
 public void run() {
 while (true) {
 setBackground(java.awt.Color.red);
 repaint();
 try {
 myThread.sleep(1000);
 } catch (InterruptedException e) {}
 setBackground(java.awt.Color.blue);
 repaint();
 try {
 myThread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 }
}

The AutoChangeColor class extends java.awt.Canvas, alternating the background color
between red and blue once a second. The constructor creates a new Thread by passing the current
object to the Thread constructor, which tells the Thread to call the run() method in the
AutoChangeColor class. The constructor then starts the new thread by calling its start() method,
so that the color change happens asynchronously of whatever else is going on. The class has an instance
variable called myThread that contains a reference to the Thread object, so that can control the thread.
The run() method takes care of changing the background color, using the sleep() method of the
Thread class to temporarily suspend the thread and calling repaint() to redisplay the object after
each color change.

References Runnable; Thread

Controlling a Thread

As shown in the previous section, you start a Thread by calling its start() method. Before the
start() method is called, the isAlive() method of the Thread object always returns false.
When the start() method is called, the Thread object becomes associated with a scheduled thread in
the underlying environment. After the start() method has returned, the isAlive() method always

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_16.htm

returns true. The Thread is now scheduled to run until it dies, unless it is suspended or in another
unrunnable state.

It is actually possible for isAlive() to return true before start() returns, but not before
start() is called. This can happen because the start() method can return either before the started
Thread begins to run or after it begins to run. In other words, the method that called start() and the
new thread are now running concurrently. On a multiprocessor system, the start() method can even
return at the same time the started Thread begins to run.

Thread objects have a parent-child relationship. The first thread created in a Java environment does not
have a parent Thread. However, after the first Thread object is created, the Thread object that
controls the thread used to create another Thread object is considered to be the parent of the newly
created Thread. This parent-child relationship is used to supply some default values when a Thread
object is created, but it has no further significance after a Thread has been created.

References Thread

Stopping a thread

A thread dies when one of the following things happens:

● The run() method called by the Thread returns.

● An exception is thrown that causes the run() method to be exited.

● The stop() method of the Thread is called.

The stop() method of the Thread class works by throwing a ThreadDeath object in the run()
method of the thread. Normally, you should not catch ThreadDeath objects in a try statement. If you
need to catch ThreadDeath objects to detect that a Thread is about to die, the try statement that
catches ThreadDeath objects should rethrow them.

When an object (ThreadDeath or otherwise) is thrown out of the run() method for the Thread, the
uncaughtException() method of the ThreadGroup for that Thread is called. If the thrown
object is an instance of the ThreadDeath class, the thread dies, and the thrown object is ignored.
Otherwise, if the thrown object is of any other class, uncaughtException() calls the thrown
object's printStackTrace() method, the thread dies, and the thrown object is ignored. In either
case, if there are other nondaemon threads running in the system, the current program continues to run.

References Errors; The try Statement; Thread; ThreadGroup

Interrupting a thread

In some situations, you need to kill a thread in a way that allows it to complete what it is currently doing
before dying. For example, if a thread is in the middle of processing a transaction, you might want the
transaction to complete before the thread dies. The Thread class provides support for this in the form of
the interrupt() method.

There are a number of methods in the Java API, such as wait() and join(), that are declared as
throwing an InterruptedException. Both of these methods temporarily suspend the execution of
a thread. In Java 1.1, if a thread is waiting for one of these methods to return and another thread calls
interrupt() on the waiting thread, the method that is waiting throws an
InterruptedException.

The interrupt() method sets an internal flag in a Thread object. Before the interrupt()
method is called, the isInterrupted() method of the Thread object always returns false. After
the interrupt() method is called, isInterrupted() returns true.

Prior to version 1.1, the methods in the Java API that are declared as throwing an
InterruptedException do not actually do so. However, the isInterrupted() method does
return True if the thread has been interrupted. Thus, if the code in the run() method for a thread
periodically calls isInterrupted(), the thread can respond to a call to interrupt() by shutting
down in an orderly fashion.

References Other exceptions; Thread

Thread priority

One of the attributes that controls the behavior of a thread is its priority. Although Java does not
guarantee much about how threads are scheduled, it does guarantee that a thread with a priority that is
higher than that of another thread will be scheduled to run at least as often, and possibly more often, than
the thread with the lower priority. The priority of a thread is set when the Thread object is created, by
passing an argument to the constructor that creates the Thread object. If an explicit priority is not
specified, the Thread inherits the priority of its parent Thread object.

You can query the priority of a Thread object by calling its getPriority() method. Similarly, you
can set the priority of a Thread using its setPriority() method. The priority you specify must be
greater than or equal to Thread.MIN_PRIORITY and less than or equal to
Thread.MAX_PRIORITY.

Before actually setting the priority of a Thread object, the setPriority() method checks the
maximum allowable priority for the ThreadGroup that contains the Thread by calling
getMaxPriority() on the ThreadGroup. If the call to setPriority() tries to set the priority

to a value that is higher than the maximum allowable priority for the ThreadGroup, the priority is
instead set to the maximum priority. It is possible for the current priority of a Thread to be greater than
the maximum allowable priority for the ThreadGroup. In this case, an attempt to raise the priority of
the Thread results in its priority being lowered to the maximum priority.

References Thread; ThreadGroup

Daemon threads

A daemon thread is a thread that runs continuously to perform a service, without having any connection
with the overall state of the program. For example, the thread that runs the garbage collector in Java is a
daemon thread. The thread that processes mouse events for a Java program is also a daemon thread. In
general, threads that run application code are not daemon threads, and threads that run system code are
daemon threads. If a thread dies and there are no other threads except daemon threads alive, the Java
virtual machine stops.

A Thread object has a boolean attribute that specifies whether or not a thread is a daemon thread.
The daemon attribute of a thread is set when the Thread object is created, by passing an argument to
the constructor that creates the Thread object. If the daemon attribute is not explicitly specified, the
Thread inherits the daemon attribute of its parent Thread object.

The daemon attribute is queried using the isDaemon() method; it is set using the setDaemon()
method.

References Thread

Yielding

When a thread has nothing to do, it can call the yield() method of its Thread object. This method
tells the scheduler to run a different thread. The value of calling yield() depends largely on whether
the scheduling mechanism for the platform on which the program is running is preemptive or
nonpreemptive.

By choosing a maximum length of time a thread can continuously, a preemptive scheduling mechanism
guarantees that no single thread uses more than its fair share of the processor. If a thread runs for that
amount of time without yielding control to another thread, the scheduler preempts the thread and causes
it to stop running so that another thread can run.

A nonpreemptive scheduling mechanism cannot preempt threads. A nonpreemptive scheduler relies on
the individual threads to yield control of the processor frequently, so that it can provide reasonable
performance. A thread explicitly yields control by calling the Thread object's yield() method. More
often, however, a thread implicitly yields control when it is forced to wait for something to happen

elsewhere.

Calling a Thread object's yield() method during a lengthy computation can be quite valuable on a
platform that uses a nonpreemptive scheduling mechanism, as it allows other threads to run. Otherwise,
the lengthy computation can prevent other threads from running. On a platform that uses a preemptive
scheduling mechanism, calling yield() does not usually make any noticeable difference in the
responsiveness of threads.

Regardless of the scheduling algorithm that is being used, you should not make any assumptions about
when a thread will be scheduled to run again after it has called yield(). If you want to prevent a thread
from being scheduled to run until a specified amount of time has elapsed, you should call the sleep()
method of the Thread object. The sleep() method takes an argument that specifies a minimum
number of milliseconds that must elapse before the thread can be scheduled to run again.

References Thread

Controlling groups of threads

Sometimes it is necessary to control multiple threads at the same time. Java provides the ThreadGroup
class for this purpose. Every Thread object belongs to a ThreadGroup object. By passing an
argument to the constructor that creates the Thread object, the ThreadGroup of a thread can be set
when the Thread object is created. If an explicit ThreadGroup is not specified, the Thread belongs
to the same ThreadGroup as its parent Thread object.

References Thread; ThreadGroup

Applets Synchronizing Multiple
Threads

Chapter 9

9. Exception Handling
Contents:
Handling Exceptions
Declaring Exceptions
Generating Exceptions
The Exception Hierarchy

Exception handling is a mechanism that allows Java programs to handle various exceptional conditions,
such as semantic violations of the language and program-defined errors, in a robust way. When an
exceptional condition occurs, an exception is thrown. If the Java virtual machine or run-time environment
detects a semantic violation, the virtual machine or run-time environment implicitly throws an exception.
Alternately, a program can throw an exception explicitly using the throw statement. After an exception
is thrown, control is transferred from the current point of execution to an appropriate catch clause of an
enclosing try statement. The catch clause is called an exception handler because it handles the
exception by taking whatever actions are necessary to recover from it.

9.1 Handling Exceptions

The try statement provides Java's exception-handling mechanism. A try statement contains a block of
code to be executed. Putting a block in a try statement indicates that any exceptions or other abnormal
exits in the block are going to be handled appropriately. A try statement can have any number of
optional catch clauses that act as exception handlers for the try block. A try statement can also have
a finally clause. The finally block is always executed before control leaves the try statement; it
cleans up after the try block. Note that a try statement must have either a catch clause or a
finally clause.

Here is an example of a try statement that includes a catch clause and a finally clause:

try {
 out.write(b);

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm

} catch (IOException e) {
 System.out.println("Output Error");
} finally {
 out.close();
}

If out.write() throws an IOException, the exception is caught by the catch clause. Regardless
of whether out.write() returns normally or throws an exception, the finally block is executed,
which ensures that out.close() is always called.

A try statement executes the block that follows the keyword try. If an exception is thrown from within
the try block and the try statement has any catch clauses, those clauses are searched, in order, for
one that can handle the exception. If a catch clause handles an exception, that catch block is
executed.

However, if the try statement does not have any catch clauses that can handle the exception (or does
not have any catch clauses at all), the exception propagates up through enclosing statements in the
current method. If the current method does not contain a try statement that can handle the exception,
the exception propagates up to the invoking method. If this method does not contain an appropriate try
statement, the exception propagates up again, and so on. Finally, if no try statement is found to handle
the exception, the currently running thread terminates.

A catch clause is declared with a parameter that specifies the type of exception it can handle. The
parameter in a catch clause must be of type Throwable or one of its subclasses. When an exception
occurs, the catch clauses are searched for the first one with a parameter that matches the type of the
exception thrown or is a superclass of the thrown exception. When the appropriate catch block is
executed, the actual exception object is passed as an argument to the catch block. The code within a
catch block should do whatever is necessary to handle the exceptional condition.

The finally clause of a try statement is always executed, no matter how control leaves the try
statement. Thus it is a good place to handle clean-up operations, such as closing files, freeing resources,
and closing network connections.

References The throw Statement; The try Statement; Throwable

Synchronizing Multiple
Threads

Declaring Exceptions

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_02.htm

Chapter 10

10. The java.lang Package
Contents:

Select a new section and then

The package java.lang contains classes and interfaces that are essential to the Java language. These
include:

● Object, the ultimate superclass of all classes in Java

● Thread, the class that controls each thread in a multithreaded program

● Throwable, the superclass of all error and exception classes in Java

● Classes that encapsulate the primitive data types in Java

● Classes for accessing system resources and other low-level entities

● Math, a class that provides standard mathematical methods

● String, the class that is used to represent strings

Because the classes in the java.lang package are so essential, the java.lang package is implicitly
imported by every Java source file. In other words, you can refer to all of the classes and interfaces in
java.lang using their simple names.

Figure 10.1 shows the class hierarchy for the java.lang package.

Figure 10.1: The java.lang package

Boolean

Name

Boolean

Synopsis

Class Name:

java.lang.Boolean

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The Boolean class provides an object wrapper for a boolean value. This is useful when you need to
treat a boolean value as an object. For example, there are a number of utility methods that take a
reference to an Object as one of their arguments. You cannot specify a boolean value for one of
these arguments, but you can provide a reference to a Boolean object that encapsulates the boolean
value. Furthermore, as of JDK 1.1, the Boolean class is necessary to support the Reflection API and
class literals.

Class Summary

public final class java.lang.Boolean {
 // Constants
 public final static Boolean FALSE;
 public final static Boolean TRUE;
 public final static Class TYPE; // New in 1.1
 // Constructors
 public Boolean(boolean value);
 public Boolean(String s);
 // Class Methods
 public static boolean getBoolean(String name);
 public static Boolean valueOf(String s);
 // Instance Methods
 public boolean booleanValue();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Constants

TRUE

public static final Boolean TRUE

Description

A constant Boolean object that has the value true.

FALSE

public static final Boolean FALSE

Description

A constant Boolean object that has the value false.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type boolean. It is always true that Boolean.TYPE ==
boolean.class.

Constructors

Boolean

public Boolean(boolean value)

Parameters

value

The boolean value to be made into a Boolean object.

Description

Constructs a Boolean object with the given value.

public Boolean(String s)

Parameters

s

The string to be made into a Boolean object.

Description

Constructs a Boolean object with the value specified by the given string. If the string equals
'true' (ignoring case), the value of the object is true; otherwise it is false.

Class Methods

getBoolean

public static boolean getBoolean(String name)

Parameters

name

The name of a system property.

Returns

The boolean value of the system property.

Description

This methods retrieves the boolean value of a named system property.

valueOf

public static Boolean valueOf(String s)

Parameters

s

The string to be made into a Boolean object.

Returns

A Boolean object with the value specified by the given string.

Description

This method returns a Boolean object with the value true if the string equals "true"
(ignoring case); otherwise the value of the object is false.

Instance Methods

booleanValue

public boolean booleanValue()

Returns

The boolean value contained by the object.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Boolean, and it contains the same value as
the object this method is associated with.

hashCode

public int hashCode()

Returns

A hashcode based on the boolean value of the object.

Overrides

Object.hashCode()

toString

public String toString()

Returns

"true" if the value of the object is true; "false" otherwise.

Overrides

Object.toString()

Description

This method returns a string representation of the Boolean object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Boolean Type; Boolean literals; Class; Object; System

Void Byte

Appendix A

A. The Unicode 2.0 Character Set
Characters Description

\u0000 - \u1FFF Alphabets

\u0020 - \u007F Basic Latin

\u0080 - \u00FF Latin-1 supplement

\u0100 - \u017F Latin extended-A

\u0180 - \u024F Latin extended-B

\u0250 - \u02AF IPA extensions

\u02B0 - \u02FF Spacing modifier letters

\u0300 - \u036F Combining diacritical marks

\u0370 - \u03FF Greek

\u0400 - \u04FF Cyrillic

\u0530 - \u058F Armenian

\u0590 - \u05FF Hebrew

\u0600 - \u06FF Arabic

\u0900 - \u097F Devanagari

\u0980 - \u09FF Bengali

\u0A00 - \u0A7F Gurmukhi

\u0A80 - \u0AFF Gujarati

\u0B00 - \u0B7F Oriya

\u0B80 - \u0BFF Tamil

\u0C00 - \u0C7F Telugu

\u0C80 - \u0CFF Kannada

\u0D00 - \u0D7F Malayalam

\u0E00 - \u0E7F Thai

\u0E80 - \u0EFF Lao

\u0F00 - \u0FBF Tibetan

\u10A0 - \u10FF Georgian

\u1100 - \u11FF Hangul Jamo

\u1E00 - \u1EFF Latin extended additional

\u1F00 - \u1FFF Greek extended

\u2000 - \u2FFF Symbols and punctuation

\u2000 - \u206F General punctuation

\u2070 - \u209F Superscripts and subscripts

\u20A0 - \u20CF Currency symbols

\u20D0 - \u20FF Combining diacritical marks for symbols

\u2100 - \u214F Letterlike symbols

\u2150 - \u218F Number forms

\u2190 - \u21FF Arrows

\u2200 - \u22FF Mathematical operators

\u2300 - \u23FF Miscellaneous technical

\u2400 - \u243F Control pictures

\u2440 - \u245F Optical character recognition

\u2460 - \u24FF Enclosed alphanumerics

\u2500 - \u257F Box drawing

\u2580 - \u259F Block elements

\u25A0 - \u25FF Geometric shapes

\u2600 - \u26FF Miscellaneous symbols

\u2700 - \u27BF Dingbats

\u3000 - \u33FF CJK auxiliary

\u3000 - \u303F CJK symbols and punctuation

\u3040 - \u309F Hiragana

\u30A0 - \u30FF Katakana

\u3100 - \u312F Bopomofo

\u3130 - \u318F Hangul compatibility Jamo

\u3190 - \u319F Kanbun

\u3200 - \u32FF Enclosed CJK letters and months

\u3300 - \u33FF CJK compatibility

\u4E00 - \u9FFF
CJK unified ideographs: Han characters used in China, Japan, Korea, Taiwan,
and Vietnam

\uAC00 - \uD7A3 Hangul syllables

\uD800 - \uDFFF Surrogates

\uD800 - \uDB7F High surrogates

\uDB80 - \uDBFF High private use surrogates

\uDC00 - \uDFFF Low surrogates

\uE000 - \uF8FF Private use

\uF900 - \uFFFF Miscellaneous

\uF900 - \uFAFF CJK compatibility ideographs

\uFB00 - \uFB4F Alphabetic presentation forms

\uFB50 - \uFDFF Arabic presentation forms-A

\uFE20 - \uFE2F Combing half marks

\uFE30 - \uFE4F CJK compatibility forms

\uFE50 - \uFE6F Small form variants

\uFE70 - \uFEFE Arabic presentation forms-B

\uFEFF Specials

\uFF00 - \uFFEF Halfwidth and fullwidth forms

\uFFF0 - \uFFFF Specials

Void

Index

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | R | S | T | U | V | W | Y | Z

Symbols
& (ampersand)
& (bitwise AND) operator : Bitwise/Logical AND Operator &
&& (boolean AND) operator : Boolean AND Operator &&
* (asterisk)
in import directive : The import Directive
* (multiplication) operator : Multiplication Operator *
@ tags, javadoc : Documentation Comments
\ (backslash) (see Unicode characters) : Character literals
\u escapes (see Unicode characters)
! (bang)
! (unary negation) operator : Boolean Negation Operator !
!= (not-equal-to) operator : Not-Equal-To-Operator !=
[] (brackets)
array allocation expressions : Array Allocation Expressions
in array type declarations
Array Types
Local variable type
^ (bitwise exclusive OR) operator : Bitwise/Logical Exclusive OR Operator ^
, (comma)
Operators
The for Statement
= (equal sign)
= (assignment) operator : Assignment Operators
= = (equal-to) operator : Equal-To Operator ==
- (hyphen)
- (arithmetic subtraction) operator : Arithmetic Subtraction Operator -
- (unary minus) operator : Unary Minus Operator -
- - (decrement) operator
Field Expressions
Increment/Decrement Operators
< (left angle bracket)
< (less-than) operator : Less-Than Operator <

file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_a.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_b.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_c.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_d.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_e.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_f.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_g.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_h.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_i.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_j.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_k.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_l.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_m.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_n.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_o.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_p.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_r.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_s.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_t.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_u.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_v.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_w.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_y.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_z.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_u.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/index/idx_u.htm

<= (less-than-or-equal-to) operator : Less-Than-Or-Equal-To Operator <=
<< (left shift) operator : Left Shift Operator <<
() (parentheses) : Parenthetical Expressions
cast operations : Casts
object allocation expressions : Object Allocation Expressions
% (remainder) operator : Remainder Operator %
+ (plus)
+ (arithmetic addition) operator : Arithmetic Addition Operator +
+ (string concatentation) operator
null
String Concatenation Operator +
+ (unary plus) operator : Unary Plus Operator +
++ (increment) operator
Field Expressions
Increment/Decrement Operators
?: (conditional) operator : Conditional Operator
> (right angle bracket)
> (greater-than) operator : Greater-Than Operator >
>= (greater-than-or-equal-to) operator : Greater-Than-Or-Equal-To Operator >=
>> (right shift) operator : Right Shift Operator >>
>>> (unsigned right shift) operator : Unsigned Right Shift Operator >>>
; (semicolon) : Method implementation
/ (slash)
/ (division) operator : Division Operator /
/* */ C-style comments
A "Hello World" Program
Comments
// single-line comments
A "Hello World" Program
Comments
/** */ documentation comments
Comments
Documentation Comments
~ ((bitwise negation) operator : Bitwise Negation Operator ~
| (vertical bar)
| (bitwise include OR) operator : Bitwise/Logical Inclusive OR Operator |
|| (boolean OR) operator : Boolean OR Operator ||

Chapter 6
Applets

6.5 Reading Applet Parameters

Example 6.4 shows an extension to our Scribble applet. The ColorScribble class is a subclass of
Scribble that adds the ability to scribble in a configurable foreground color over a configurable
background color. (The ColorScribble applet looks a lot like the Scribble applet of Figure 6.3 and is
not pictured here.)

ColorScribble has an init() method that reads the value of two "applet parameters" that can be
optionally specified with the <PARAM> tag in the applet's HTML file. The returned string values are
converted to colors and specified as the default foreground and background colors for the applet. Note that
the init() method invokes its superclass's init() method, just in case a future version of Scribble
defines that method to perform initialization.

This example also introduces the getAppletInfo() and getParameterInfo() methods. These
methods provide textual information about the applet (its author, its version, its copyright, etc.) and the
parameters that it can accept (the parameter names, their types, and their meanings). An applet should
generally define these methods, although the current generation of Web browsers do not actually ever make
use of them. (The appletviewer application in the JDK does call these methods, however.)

Example 6.4: Reading Applet Parameters

import java.applet.*;
import java.awt.*;
public class ColorScribble extends Scribble {
 // Read in two color parameters and set the colors.
 public void init() {
 super.init();
 Color foreground = getColorParameter("foreground");
 Color background = getColorParameter("background");
 if (foreground != null) this.setForeground(foreground);
 if (background != null) this.setBackground(background);
 }
 // Read the specified parameter. Interpret it as a hexadecimal

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch06_04.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch06_04.htm#JNUT2-CH-6-FIG-3

 // number of the form RRGGBB and convert it to a color.
 protected Color getColorParameter(String name) {
 String value = this.getParameter(name);
 try { return new Color(Integer.parseInt(value, 16)); }
 catch (Exception e) { return null; }
 }
 // Return information suitable for display in an About dialog box.
 public String getAppletInfo() {
 return "ColorScribble v. 0.02. Written by David Flanagan.";
 }
 // Return info about the supported parameters. Web browsers and applet
 // viewers should display this information, and may also allow users to
 // set the parameter values.
 public String[][] getParameterInfo() { return info; }
 // Here's the information that getParameterInfo() returns.
 // It is an array of arrays of strings describing each parameter.
 // Format: parameter name, parameter type, parameter description
 private String[][] info = {
 {"foreground", "hexadecimal color value", "foreground color"},
 {"background", "hexadecimal color value", "background color"}
 };
}

The following HTML fragment references the applet, and demonstrates how parameter values can be set
with the <PARAM> tag:

<APPLET code="ColorScribble.class" width=300 height=300>
<PARAM name="foreground" value="0000FF">
<PARAM name="background" value="FFCCCC">
</APPLET>

Handling Events Images and Sounds

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch06_04.htm

Chapter 6
Applets

6.6 Images and Sounds

Example 6.5 shows a Java applet that implements a simple client-side imagemap, which has the capability to
highlight the "hot spots" in the image and play a sound clip when the user clicks on the image. Figure 6.4 shows what
this applet might look like, when configured with an appropriate image.

Figure 6.4: An imagemap applet

This applet demonstrates quite a few important applet techniques:

● getParameter() looks up the name of the image to display and the audio clip to play when the user clicks,
and it also reads a list of rectangles and URLs that define the hot spots and hyperlinks of the imagemap.

● The getImage() and getDocumentBase() methods load the image in the init() method, and
Graphics.drawImage() displays the image in the paint() method.

● getAudioClip() loads a sound file in the init() method, and AudioClip.play() plays the sound
in the mousePressed() method.

● Events are handled by an "event listener" object, which is defined by an inner class (see Chapter 5, Inner
Classes and Other New Language Features). This is an example of the Java 1.1 event handling model (see
Chapter 7, Events). Therefore, this applet only runs in Web browsers that support Java 1.1.

● The showStatus() method displays the destination URL when the user presses the mouse button over a hot
spot, while the AppletContext.showDocument() method makes the browser display that URL when
the user releases the mouse button.

● The applet uses "XOR mode" of the Graphics class to highlight an area of the image in a way that can be
easily "un-highlighted" by redrawing.

● The individual hot spots are represented by instances of a nested top-level class. The java.util.Vector
class stores the list of hot spot objects, and java.util.StringTokenizer parses the descriptions of
those hot spots.

The following HTML fragment shows an example of the properties read by this applet:

<APPLET code="Soundmap.class" width=288 height=288>
<PARAM name="image" value="image.gif">
<PARAM name="sound" value="sound.au">
<PARAM name="rect0" value="114,95,151,33,#part1">
<PARAM name="rect1" value="114,128,151,33,#part2">
<PARAM name="rect2" value="114,161,151,33,#part3">
<PARAM name="rect3" value="114,194,151,33,#part4">
<PARAM name="rect4" value="114,227,151,33,#part5">
</APPLET>

Example 6.5: An Imagemap Applet

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.util.*;
/**
 * A Java applet that simulates a client-side imagemap.
 * Plays a sound whenever the user clicks on one of the hyperlinks.
 */
public class Soundmap extends Applet {
 protected Image image; // The image to display.
 protected Vector rects; // A list of rectangles in it.
 protected AudioClip sound; // A sound to play on user clicks in a rectangle.
 /** Initialize the applet. */
 public void init() {
 // Look up the name of the image, relative to a base URL, and load it.
 // Note the use of three Applet methods in this one line.

 image = this.getImage(this.getDocumentBase(), this.getParameter("image"));
 // Lookup and parse a list of rectangular areas and the URLs they map to.
 // The convenience routine getRectangleParameter() is defined below.
 rects = new Vector();
 ImagemapRectangle r;
 for(int i = 0; (r = getRectangleParameter("rect" + i)) != null; i++)
 rects.addElement(r);
 // Look up a sound to play when the user clicks one of those areas.
 sound = this.getAudioClip(this.getDocumentBase(),
 this.getParameter("sound"));
 // Specify an "event listener" object to respond to mouse button
 // presses and releases. Note that this is the Java 1.1 event model.
 // Note that it also uses a Java 1.1 inner class, defined below.
 this.addMouseListener(new Listener());
 }
 /** Called when the applet is being unloaded from the system.
 * We use it here to "flush" the image we no longer need. This may
 * result in memory and other resources being freed more quickly. */
 public void destroy() { image.flush(); }
 /** To display the applet, we simply draw the image. */
 public void paint(Graphics g) { g.drawImage(image, 0, 0, this); }
 /** We override this method so that it doesn't clear the background
 * before calling paint(). No clear is necessary, since paint() overwrites
 * everything with an image. Causes less flickering this way. */
 public void update(Graphics g) { paint(g); }
 /** Parse a comma-separated list of rectangle coordinates and a URL.
 * Used to read the imagemap rectangle definitions from applet parameters. */
 protected ImagemapRectangle getRectangleParameter(String name) {
 int x, y, w, h;
 URL url;
 String value = this.getParameter(name);
 if (value == null) return null;
 try {
 StringTokenizer st = new StringTokenizer(value, ",");
 x = Integer.parseInt(st.nextToken());
 y = Integer.parseInt(st.nextToken());
 w = Integer.parseInt(st.nextToken());
 h = Integer.parseInt(st.nextToken());
 url = new URL(this.getDocumentBase(), st.nextToken());
 }
 catch (NoSuchElementException e) { return null; }
 catch (NumberFormatException e) { return null; }
 catch (MalformedURLException e) { return null; }
 return new ImagemapRectangle(x, y, w, h, url);
 }
 /**
 * An instance of this inner class is used to respond to mouse events.
 */
 class Listener extends MouseAdapter {

 /** The rectangle that the mouse was pressed in. */
 private ImagemapRectangle lastrect;
 /** Called when a mouse button is pressed. */
 public void mousePressed(MouseEvent e) {
 // On button down, check if we're inside one of the specified rectangles.
 // If so, highlight the rectangle, display a message, and play a sound.
 // The utility routine findrect() is defined below.
 ImagemapRectangle r = findrect(e);
 if (r == null) return;
 Graphics g = Applet.this.getGraphics();
 g.setXORMode(Color.red);
 g.drawRect(r.x, r.y, r.width, r.height); // highlight rectangle
 Applet.this.showStatus("To: " + r.url); // display URL
 sound.play(); // play the sound
 lastrect = r; // Remember the rectangle so it can be un-highlighted.
 }
 /** Called when a mouse button is released. */
 public void mouseReleased(MouseEvent e) {
 // When the button is released, un-highlight the rectangle. If the
 // mouse is still inside it, ask the browser to go to the URL.
 if (lastrect != null) {
 Graphics g = Applet.this.getGraphics();
 g.setXORMode(Color.red);
 g.drawRect(lastrect.x, lastrect.y, lastrect.width, lastrect.height);
 Applet.this.showStatus(""); // Clear the message.
 ImagemapRectangle r = findrect(e);
 if ((r != null) && (r == lastrect)) // If still in the same rectangle
 Applet.this.getAppletContext().showDocument(r.url); // Go to the URL
 lastrect = null;
 }
 }
 /** Find the rectangle we're inside. */
 protected ImagemapRectangle findrect(MouseEvent e) {
 int i, x = e.getX(), y = e.getY();
 for(i = 0; i < rects.size(); i++) {
 ImagemapRectangle r = (ImagemapRectangle) rects.elementAt(i);
 if (r.contains(x, y)) return r;
 }
 return null;
 }
 }
 /**
 * A helper class. Just like java.awt.Rectangle, but with a URL field.
 * Note the use of a nested top-level class for neatness.
 */
 static class ImagemapRectangle extends Rectangle {
 URL url;
 public ImagemapRectangle(int x, int y, int w, int h, URL url) {
 super(x, y, w, h);

 this.url = url;
 }
 }
}

Reading Applet Parameters JAR Files

Chapter 6
Applets

6.7 JAR Files

The Soundmap applet defined in the previous section requires five files to operate: the class file for the
applet itself, the class files for the two nested classes it contains, the image file, and the sound clip file. It can
be loaded using an <APPLET> tag like this:

<APPLET code="Soundmap.class" width=288 height=288>
 ...
</APPLET>

When the applet is loaded in this manner, however, each of the five files is transferred in uncompressed form
using a separate HTML request. As you might imagine, this is quite inefficient.

In Java 1.1, you can instead combine the five files into a single JAR (Java ARchive) file. This single,
compressed file (it is a ZIP file) can be transferred from Web server to browser much more efficiently. To
create a JAR file, use the jar tool, which has a syntax reminiscent of the UNIX tar command:

% jar cf soundmap.jar *.class image.gif sound.au

This command creates a new file, soundmap.jar, that contains all the .class files in the current directory, and
also contains the files image.gif and sound.au. jar can also be used to list and extract the contents of a JAR
file. See Chapter 16, JDK Tools for complete documentation.

To use a JAR file, you specify it as the value of the archive attribute of the <APPLET> tag:

<APPLET archive="soundmap.jar" code="Soundmap.class" width=288 height=288>
 ...
</APPLET>

Note that the archive attribute does not replace the code attribute. archive specifies where to look for
files, but code is still required to tell the browser which of the files in the archive is the applet class file to be
executed. The archive attribute may actually specify a comma-separated list of JAR files. The Web browser
or applet viewer searches these archives for any files the applet requires. If a file is not found in an archive,

however, the browser falls back upon its old behavior and attempts to load the file from the Web server using
a new HTTP request.

Images and Sounds Applet Security Restrictions

Chapter 7

7. Events
Contents:
The Java 1.0 Event Model
Scribbling in Java 1.0
The Java 1.1 Event Model
Scribbling in Java 1.1
Scribbling with Inner Classes
Inside the Java 1.1 Event Model

The heart of any applet or graphical user interface is the event processing code. Graphical applications
are event-driven: they do nothing until the user moves the mouse or clicks a button or types a key. An
event-driven program is structured around its event-processing model, so a solid understanding of event
handling mechanisms is crucial for good programming.

Unfortunately, the Java event handling model has changed between Java 1.0 and Java 1.1. The Java 1.0
model is a simple one, well suited to writing basic applets. It has a number of shortcomings, however,
and does not scale well to complicated interfaces. Although the 1.0 event model is deprecated in Java
1.1, you'll still need to use it for any applets that you want to run on Web browsers based on Java 1.0.
The Java 1.1 event model solves many of the shortcomings of the 1.0 model it replaces, but would be
quite cumbersome to use if it were not for the new inner class features also introduced in Java 1.1. This
chapter covers both event models and provides examples of each.

7.1 The Java 1.0 Event Model

In Java 1.0, all events are represented by the Event class. This class has a number of instance variables
that describe the event. One of these variables, id, specifies the type of the event. Event defines a
number of constants that are the possible values for the id field. The target field specifies the object
(typically a Component) that generated the event, or on which the event occurred (i.e., the source of the
event). The other fields may or may not be used, depending on the type of the event. For example, the x

and y fields are defined when id is BUTTON_EVENT, but not when it is ACTION_EVENT. The arg
field can provide additional type-dependent data.

Java 1.0 events are dispatched first to the handleEvent() method of the Component on which they
occurred. The default implementation of this method checks the id field of the Event object and
dispatches the most commonly used types of events to various type-specific methods, listed in Table 7.1.

Table 7.1: Java 1.0 Event Processing Methods of
Component

action() lostFocus() mouseExit()

gotFocus() mouseDown() mouseMove()

keyDown() mouseDrag() mouseUp()

keyUp() mouseEnter()

The methods listed in Table 7.1 are defined by the Component class. One of the primary characteristics
of the Java 1.0 event model is that you must override these methods in order to process events. This
means that you must create a subclass to define custom event-handling behavior, which is exactly what
we do when we write an applet, for example. Notice, however, that not all of the event types are
dispatched by handleEvent() to more specific methods. So, if you are interested in LIST_SELECT
or WINDOW_ICONIFY events, for example, you have to override handleEvent() itself, rather than
one of the more specific methods. If you do this, you should usually invoke super.handleEvent()
to continue dispatching events of other types in the default way.

The handleEvent() method, and all of the type-specific methods, return boolean values. If an
event-handling method returns false, as they all do by default, it means that the event was not handled,
so it should be passed to the container of the current component to see if that container is interested in
processing it. If a method returns true, on the other hand, it is a signal that the event has been handled
and no further processing is needed.

The fact that unhandled events are passed up the containment hierarchy is important. It means that we
can override the action() method (for example) in an applet in order to handle the ACTION_EVENT
events that are generated by the buttons within the applet. If they were not propagated up as they are, we
would have to create a custom subclass of Button for every button we wanted to add to an interface!

In programs that use the Java 1.0 event model, it is typical to handle events at the top-level component.
In an applet, for example, you override the handleEvent() method, or some of the other type-
specific methods, of the Applet subclass you create. Or, in a stand-alone program that creates its own
window, you subclass Frame to provide definitions of the event-handling methods. When a program
displays a dialog box, it subclasses Dialog to define the methods. With complex interfaces, the event-
handling methods of the containers at the top of the hierarchy can become long and somewhat

convoluted, so you need to be careful when writing them.

Components and Their Events

In the Java 1.0 model, there is no defacto way to know what types of events are generated by what GUI
components. You simply have to look this information up in the documentation. Additionally, different
components use different fields of the Event object, and pass different values in the arg field of that
object. Table 7.2 lists each of the AWT components, and for each one, lists the type of events it
generates. The first column of the table specifies both the type of the component and the type of the
event. The event type is the constant stored in the id field of the Event.

The second through sixth columns indicate whether the when (timestamp), x (mouse x coordinate), y
(mouse y coordinate), key (the key that was pressed), and modifiers (modifier keys that were down)
fields are set for a given event. If a dot appears in this column, the event sets a value for the
corresponding field. The seventh column explains what occurred to trigger the event, and what the value
of the arg field of the Event object is.

Events listed for the Component component type apply to all java.awt Component subclasses.
The events listed for the Window component type also apply to the Window subclasses, Dialog and
Frame.

Table 7.2: AWT Components and the Java 1.0 Events They Generate

Component

when x y key mods

Event Meaning

Event Type (id) arg (Type: value)

Button User clicked on the button

ACTION_EVENT String: the button label

Checkbox User clicked on checkbox

ACTION_EVENT Boolean: new checkbox state

Choice User selected an item

ACTION_EVENT String: label of selected item

Component Got input focus

GOT_FOCUS unused

Component * * * * * User pressed a function key

KEY_ACTION unused--key contains key

 constant

Component * * * * * User released a function key

KEY_ACTION_RELEASE unused--key contains key

 constant

Component * * * * * User pressed a key

KEY_PRESS unused--key contains ASCII

 key value

Component * * * * * User released a key

KEY_RELEASE unused--key contains ASCII

 key value

Component Lost input focus

LOST_FOCUS unused

Component * * * Mouse entered the Component

MOUSE_ENTER unused

Component * * * Mouse left the Component

MOUSE_EXIT unused

Component * * * * User pressed mouse button

MOUSE_DOWN unused

Component * * * * User released mouse button

MOUSE_UP unused

Component * * * * User moved mouse

MOUSE_MOVE unused

Component * * * * User dragged mouse

MOUSE_DRAG unused

List User double-clicked on an item

ACTION_EVENT String: label of activated item

List User selected an item

LIST_SELECT Integer: index of selected item

List User deselected an item

LIST_DESELECT Integer: index of deselected item

MenuItem User selected an item

ACTION_EVENT String: label of selected item

Scrollbar User requested scroll

SCROLL_LINE_UP Integer: position to scroll to

Scrollbar User requested scroll

SCROLL_LINE_DOWN Integer: position to scroll to

Scrollbar User requested scroll

SCROLL_PAGE_UP Integer: position to scroll to

Scrollbar User requested scroll

SCROLL_PAGE_DOWN Integer: position to scroll to

Scrollbar User requested scroll

SCROLL_ABSOLUTE Integer: position to scroll to

TextField User struck <Return>

ACTION_EVENT String: user's input text

Window Window was destroyed

WINDOW_DESTROY unused

Window Window was iconified

WINDOW_ICONIFY unused

Window Window was deiconified

WINDOW_DEICONIFY unused

Window * * Window was moved

WINDOW_MOVED unused

Key and Modifier Constants

The java.awt.Event class contains the field key, which is filled in when a keyboard event has
occurred, and the field modifiers, which list the keyboard modifier keys currently in effect for key
and mouse events.

Four modifier constants are defined by the java.awt.Event class; they are listed in Table 7.3. They
are mask values that are ORed into the modifiers field. You can test for them using AND. You can
also check a given event for the first three of the modifiers with the Event methods shiftDown(),
controlDown(), and metaDown().

Table 7.3: Java Keyboard Modifiers

Modifier Constant Meaning

Event.SHIFT_MASK SHIFT key is held down (or CAPS LOCK on)

Event.CTRL_MASK CONTROL key is held down

Event.META_MASK META key is held down

Event.ALT_MASK ALT key is held down

When a KEY_PRESS or KEY_RELEASE event occurs, it means that the user pressed a key that is a
normal printing character, a control character, or a non-printing character with a standard ASCII value--
one of RETURN (ASCII 10 or '\n'), TAB (ASCII 9 or '\t'), ESCAPE (ASCII 27), BACKSPACE
(ASCII 8), or DELETE (ASCII 127). In this case, the value of the key field in the event is simply the
ASCII value of the key that was pressed or released.

When a KEY_ACTION or KEY_ACTION_RELEASE event occurs, it means that the user pressed some
sort of function key, one which does not have an ASCII representation.

java.awt.Event defines constants for each of these function keys, which are listed in Table 7.4.

Table 7.4: Java Function Key Constants

Key Constant Meaning

Event.HOME HOME key

Event.END END key

Event.PGUP PAGE UP key

Event.PGDN PAGE DOWN key

Event.UP UP arrow key

Event.DOWN DOWN arrow key

Event.LEFT LEFT arrow key

Event.RIGHT RIGHT arrow key

Event.F1 to Event.F12 Function keys 1 through 12

Mouse Buttons

In order to maintain platform independence, Java only recognizes a single mouse button--the Event
class does not have any kind of mouseButton field to indicate which button has been pressed on a
multi-button mouse.

On platforms that support two- or three-button mouses, the right and center buttons generate mouse
down, mouse drag, and mouse up events as if the user were holding down modifier keys, as shown in

Table 7.5.

Table 7.5: Mouse Button Modifiers

Mouse Button Flag Set in Event.modifiers Field

Left button none

Right button Event.META_MASK

Middle button Event.ALT_MASK

Using keyboard modifiers to indicate the mouse button that has been pressed maintains compatibility
with platforms that only have one-button mouses, but still allows programs to use the right and middle
buttons on platforms that support them. Suppose, for example, you want to write a program that allows
the user to draw lines with the mouse using two different colors. You might draw in the primary color if
there are no modifier flags set, and draw in the secondary color when the META_MASK modifier is set. In
this way, users with a two- or three-button mouse can simply use the left and right mouse buttons to draw
in the two colors; and users with a one-button mouse can use the META key, in conjunction with the
mouse, to draw in the secondary color.

Signed Applets Scribbling in Java 1.0

Chapter 6
Applets

6.8 Applet Security Restrictions

Applets loaded over the network are usually considered to be untrusted code. (The exception, as we'll see
in the next section, is when the applet bears the digital signature of an entity that you've specified you
trust.) The only way to be sure that an untrusted applet cannot perform any malicious actions (e.g.,
deleting your files, sending out fake email that looks like it came from you, using your computer as a
remote file server) is to run it in a tightly controlled environment. For this reason, Web browsers and
applet viewers carefully restrict what an applet is allowed to do. When designing an applet, you must be
aware of a fairly long list of things that an applet is not allowed to do. The following list details the
security restrictions imposed by the appletviewer application in Java 1.1. Different Web browsers and
applet viewers may impose somewhat different restrictions on applets, and some (including
appletviewer) may allow the user to relax or customize the restrictions. In general, however, you should
assume that your applets will be restricted in the following ways:

● Untrusted code cannot read from or write to the local filesystem. This means that untrusted code
cannot:

❍ Read files.

❍ List directories.

❍ Check for the existence of files.

❍ Obtain the size or modification date of files.

❍ Obtain the read and write permissions of a file.

❍ Test whether a filename is a file or directory.

❍ Write files.

❍ Delete files.

❍ Create directories.

❍ Rename files.

❍ Read or write from FileDescriptor objects.

● appletviewer allows a system administrator to set properties that allow applets to read and write
files within a specified list of directories.

Untrusted code cannot perform networking operations, except in certain restricted ways.
Untrusted code cannot:

❍ Create a network connection to any computer other than the one from which the code was
itself loaded.

❍ Listen for network connections on any of the privileged ports with numbers less than or
equal to 1024.

❍ Accept network connections on ports less than or equal to 1024 or from any host other than
the one from which the code itself was loaded.

❍ Use multicast sockets.

❍ Create or register a SocketImplFactory, URLStreamHandlerFactory, or
ContentHandlerFactory.

● appletviewer uses the "host-of-origin" policy described above by default, but can also be
configured to disallow all networking or to allow all networking.

Untrusted code cannot make use of certain system facilities. It cannot:

❍ Exit the Java interpreter by calling System.exit() or Runtime.exit().

❍ Spawn new processes by calling any of the Runtime.exec() methods.

❍ Dynamically load native code libraries with the load() or loadLibrary() methods
of Runtime or System.

● Untrusted code cannot make use of certain AWT facilities. One major restriction is that all

windows created by untrusted code will display a prominent visual indication that they have been
created by untrusted code and are "insecure." This is to prevent untrusted code from spoofing the
on-screen appearance of trusted code. Additionally, untrusted code cannot:

❍ Initiate a print job.

❍ Access the system clipboard.

❍ Access the system event queue.

● Untrusted code has restricted access to system properties. It cannot call
System.getProperties(), and so cannot modify or insert properties into the system
properties list. It can call System.getProperty() to read individual properties, but can only
read system properties to which it has been explicitly granted access. By default, appletviewer
grants access to only the following ten properties. Note that user.home and user.dir are
excluded:

❍ java.version

❍ java.class.version

❍ java.vendor

❍ java.vendor.url

❍ os.name

❍ os.version

❍ os.arch

❍ file.separator

❍ path.separator

❍ line.separator

● Untrusted code cannot create or access threads or thread groups outside of the thread group in
which the untrusted code is running.

● Untrusted code has restrictions on the classes it can load and define. It cannot:

❍ Explicitly load classes from the sun.* packages.

❍ Define classes in any of the java.* or sun.* packages.

❍ Create a ClassLoader object or call any ClassLoader methods.

● Untrusted code cannot use the java.lang.Class reflection methods to obtain information
about non-public members of a class, unless the class was loaded from the same host as the
untrusted code.

● Untrusted code has restrictions on its use of the java.security package. It cannot:

❍ Manipulate security identities in any way.

❍ Set or read security properties.

❍ List, lookup, insert, or remove security providers.

❍ Finally, to prevent untrusted code from circumventing all of these restrictions, it is not
allowed to create or register a SecurityManager object.

Local Applet Restrictions

When an applet is loaded from the local file system, instead of through a network protocol, Web
browsers and applet viewers may relax some, or even many, of the above restrictions. The reason for this
is that local applets are assumed to be more trustworthy than anonymous applets from the network.

Intermediate applet security policies are also possible. For example, an applet viewer could be written
that would place fewer restrictions on applets loaded from an internal corporate network than on those
loaded from the Internet.

Applet Security Implementation

Implementing the security restrictions described above is the responsibility of the
java.lang.SecurityManager class. This class defines a number of methods that the system calls
to check whether a certain operation (such as reading a file) is permitted in the current environment.
Applet viewers create a subclass of SecurityManager to implement a particular security policy. A
security policy is put in place by instantiating a SecurityManager object and registering it with
System.setSecurityManager(). (One of the obvious security restrictions that must be enforced
is that untrusted code may not register its own SecurityManager object!)

Loading Classes Securely

Another component of Java security is the way Java classes are loaded over the network. The
java.lang.ClassLoader class defines how this is done. Applet viewers and Web browsers create
subclasses of this class that implement security policies and define how class files are loaded via various
protocols.

One important function of the class loader is to ensure that loaded classes reside in a separate namespace
than classes loaded from the local system. This prevents naming conflicts, and also prevents a malicious
applet from replacing standard Java classes with its own versions.

Byte-Code Verification

Another important function of the class loader is to ensure that all untrusted Java code (generally code
loaded over the network) is passed through the Java byte-code verification process. This process ensures
that the loaded code does not violate Java namespace restrictions or type conversion restrictions. It also
checks that the code:

● Is valid Java Virtual Machine code.

● Does not overflow or underflow the stack.

● Does not use registers incorrectly.

● Does not convert data types illegally.

The purpose of these checks is to verify that the loaded code cannot forge pointers or do memory
arithmetic, which could give it access to the underlying machine. The checks also ensure that the code
cannot crash the Java interpreter or leave it in an undefined state, which might allow malicious code to
take advantage of security flaws that could exist in some interpreter implementations. Essentially, the
byte-code verification process protects against code from an "untrusted" Java compiler.

Denial of Service Attacks

The one "security hole" that remains when running an untrusted applet is that the applet can perform a
"denial of service attack" on your computer. For example, it could frivolously allocate lots of memory,
run many threads, or download lots of data. This sort of attack consumes system resources and can slow
your computer (or your network connection) considerably. While this sort of attack by an applet is
inconvenient, fortunately it cannot usually do any significant damage.

JAR Files Signed Applets

Chapter 16

16. JDK Tools
Contents:
appletviewer
jar
java
javac
javadoc
javah
javakey
javap
jdb
native2ascii
serialver

appletviewer

Name

appletviewer---The Java Applet Viewer

Availability

JDK 1.0 and later.

Synopsis

appletviewer [-debug] [-Jjavaoption] [-encoding enc] url|file...

Description

appletviewer reads or downloads one or more HTML documents specified by filename or URL on the
command line. It reads or downloads all the applets referenced in each document and displays them, each
in their own window. If none of the named documents has an <APPLET> tag, appletviewer does
nothing.

Options

-debug

If this option is specified, the appletviewer is started within jdb (the Java debugger). This allows
you to debug the applets referenced by the document or documents.

-Jjavaoption

This option passes the following javaoption as a command-line argument to the Java
interpreter. The specified javaoption should not contain spaces. If a multi-word option must
be passed to the Java interpreter, multiple -J options should be used. See java for a list of valid
Java interpreter options. Available in JDK 1.1 and later.

-encodingenc

This option specifies the character encoding that appletviewer should use when reading the
contents of the specified files or URLs. It is used in the conversion of applet parameter values to
Unicode. Available in JDK 1.1 and later.

Commands

The window displayed by appletviewer contains a single Applet menu, with the following commands
available:

Restart

Stops and destroys the current applet, then re-initializes and restarts it.

Reload

Stops, destroys, and unloads the applet, then reloads, reinitializes, and restarts it.

Stop

Stops the current applet. Available in Java 1.1 and later.

Save

Serializes the applet and saves the serialized applet in the file Applet.ser in the user's home
directory. The applet should be stopped before selecting this option. Available in Java 1.1 and
later.

Start

Restarts a stopped applet. Available in Java 1.1 and later.

Clone

Creates a new copy of the applet in a new appletviewer window.

Tag

Pops up a dialog box that displays the <APPLET> tag and all associated <PARAM> tags that
created the current applet.

Info

Pops up a dialog box that contains information about the applet. This information is provided by
the getAppletInfo() and getParameterInfo() methods implemented by the applet.

Edit

This command is not implemented. The Edit menu item is disabled.

Character Encoding

Displays the current character encoding in the status line. Available in Java 1.1 and later.

Print

Prints the applet. Available in Java 1.1 and later.

Properties

Displays a dialog that allows the user to set appletviewer preferences, including settings for
firewall and caching proxy servers.

Close

Closes the current appletviewer window.

Quit

Quits appletviewer, closing all open windows.

Properties

When it starts up, appletviewer reads property definitions from the file ~/.hotjava/properties (UNIX) or
the .hotjava\properties file relative to the HOME environment variable (Windows). These properties are
stored in the system properties list and are used to specify the various error and status messages the
applet viewer displays, as well as its security policies and use of proxy servers. The properties that affect
security and proxies are described below.

Security

The following properties specify the security restrictions that appletviewer places on untrusted applets:

acl.read

This is a list of files and directories that an untrusted applet is allowed to read. The elements of
the list should be separated with colons on UNIX systems and semicolons on Windows systems.
On UNIX systems, the ~ character is replaced with the home directory of the current user. If the
plus character appears as an element in the list, it is replaced by the value of the
acl.read.default property. This provides an easy way to enable read access--by simply
setting acl.read to "+". By default, untrusted applets are not allowed to read any files or
directories.

acl.read.default

This is a list of files and directories that are readable by untrusted applets if the acl.read

property contains a plus character.

acl.write

This is a list of files and directories that an untrusted applet is allowed to write to. The elements of
the list should be separated with colons on UNIX systems and semicolons on Windows systems.
On UNIX systems, the ~ character is replaced with the home directory of the current user. If the
plus character appears as an element in the list, it is replaced by the value of the
acl.write.default property. This provides an easy way to enable write access--by simply
setting acl.write to "+". By default, untrusted applets are not allowed to write to any files or
directories.

acl.write.default

This is a list of files and directories that are writable by untrusted applets if the acl.write
property contains a plus character.

appletviewer.security.mode

This property specifies the types of network access an untrusted applet is allowed to perform. If it
is set to "none", then the applet can perform no networking at all. The value "host" is the default,
and specifies that the applet can connect only to the host from which it was loaded. The value
"unrestricted" specifies that an applet may connect to any host without restrictions.

package.restrict.access.package-prefix

Properties of this form may be set to true to prevent untrusted applets from using classes in any
package that has the specified package name prefix as the first component of its name. For
example, to prevent applets from using any of the Sun classes (such as the Java compiler and the
appletviewer itself) that are shipped with the JDK, you could specify the following property:

package.restrict.access.sun=true

appletviewer sets this property to true by default for the sun.* and netscape.* packages.

package.restrict.definition.package-prefix

Properties of this form may be set to true to prevent untrusted applets from defining classes in a
package that has the specified package name prefix as the first component of its name. For
example, to prevent an applet from defining classes in any of the standard Java packages, you
could specify the following property:

package.restrict.definition.java=true

appletviewer sets this property to true by default for the java.*, sun.*, and netscape.*
packages.

property.applet

When a property of this form is set to true in Java 1.1, it specifies that an applet should be
allowed to read the property named property from the system properties list. By default,
applets are only allowed to read ten standard system properties (see Chapter 14, System
Properties, for a list). For example, to allow an applet to read the user.home property, specify a
property of the form

user.home.applet=true

Proxies

appletviewer uses the following properties to configure its use of firewall and caching proxy servers:

firewallHost

This is the firewall proxy host to connect to if the firewallSet property is true.

firewallPort

This is the port of the firewall proxy host to connect to if the firewallSet property is true.

firewallSet

This tells you whether the applet viewer should use a firewall proxy. Values are true or false.

proxyHost

This is the caching proxy host to connect to if the proxySet property is true.

proxyPort

This is the port of the caching proxy host to connect to if the proxySet property is true.

proxySet

This tells you whether the applet viewer should use a caching proxy. Values are true or false.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on UNIX, semicolon-separated on Windows systems)
of directories and ZIP files in which appletviewer should look for class definitions. When a path is
specified with this environment variable, appletviewer always implicitly appends the location of
the system classes to the end of the path. If this environment variable is not specified, the default
path is the current directory and the system classes. Note that appletviewer does not support the -
classpath command-line argument, except indirectly through the -J option.

See Also

java, javac, jdb

serialver jar

Chapter 6
Applets

6.9 Signed Applets

In Java 1.1 it is possible to circumvent these applet security restrictions by attaching a digital signature to
a JAR file. When a Web browser or applet viewer loads a JAR file that has been signed by a trusted
entity (the user specifies whom she trusts), the browser may grant the applet contained in the JAR file
special privileges, such as the ability to read and write local files, that are not available to untrusted
applets.

Signing an applet with the javakey tool provided by the JDK is a somewhat cumbersome task. First, of
course, you must have a security database set up. The database must contain the certificate and the public
and private keys that you want to use to sign the applet. See the javakey documentation in Chapter 16,
JDK Tools for details on this process.

Once you have a properly configured security database, you must create a simple "directive file" that
gives javakey the information it needs to sign your JAR file. A directive file might look like this:

The entity doing the signing
signer=david
The certificate number to use
cert=1
Currently unused
chain=0
The base name of the signature files to be added to the JAR manifest
signature.file=DAVIDSIG

Having created a directive file named mysig, for example, you could then sign a JAR file like this:

% javakey -gs mysig soundmap.jar

This command creates a new JAR file named soundmap.jar.sig that you can use in an HTML archive
attribute just as you would use an unsigned JAR file.

The javakey tool is used for all aspects of administering the Java system security database. One of the
other things you can do with it is to declare which entities are trusted. You do this with the -t option.
For example, you might declare your trust for the author as follows:

% javakey -t DavidFlanagan true

Or you could revoke your trust like this:

% javakey -t DavidFlanagan false

The appletviewer program makes use of any trust values declared in this way. Note that javakey and
appletviewer support only untrusted entities and fully-trusted entities, without any gradations in between.
We may see additional levels of trust in the future.

Bear in mind that the javakey techniques described here apply only to the JDK. Other vendors may
provide other mechanisms for signing applets, and Web browsers may provide other ways of declaring
trusted entities.

Applet Security Restrictions Events

Chapter 7
Events

7.2 Scribbling in Java 1.0

Example 7.1 shows a simple applet that uses the Java 1.0 event model. It overrides the mouseDown()
and mouseDrag() methods to allow the user to scribble with the mouse. It overrides the keyDown()
method and clears the screen when it detects the "C" key. And it overrides the action() method to
clear the screen when the user clicks on a Clear button. We've seen applets much like this elsewhere in
the book; this one is not pictured here.

Example 7.1: Scribble: Using the 1.0 Event Model

import java.applet.*;
import java.awt.*;
/** A simple applet using the Java 1.0 event handling model */
public class Scribble1 extends Applet {
 private int lastx, lasty; // Remember last mouse coordinates.
 Button clear_button; // The Clear button.
 Graphics g; // A Graphics object for drawing.
 /** Initialize the button and the Graphics object. */
 public void init() {
 clear_button = new Button("Clear");
 this.add(clear_button);
 g = this.getGraphics();
 }
 /** Respond to mouse clicks. */
 public boolean mouseDown(Event e, int x, int y) {
 lastx = x; lasty = y;
 return true;
 }
 /** Respond to mouse drags. */
 public boolean mouseDrag(Event e, int x, int y) {
 g.setColor(Color.black);
 g.drawLine(lastx, lasty, x, y);

 lastx = x; lasty = y;
 return true;
 }
 /** Respond to key presses. */
 public boolean keyDown(Event e, int key) {
 if ((e.id == Event.KEY_PRESS) && (key == 'c')) {
 clear();
 return true;
 }
 else return false;
 }
 /** Respond to Button clicks. */
 public boolean action(Event e, Object arg) {
 if (e.target == clear_button) {
 clear();
 return true;
 }
 else return false;
 }
 /** convenience method to erase the scribble */
 public void clear() {
 g.setColor(this.getBackground());
 g.fillRect(0, 0, bounds().width, bounds().height);
 }
}

The Java 1.0 Event Model The Java 1.1 Event Model

Chapter 7
Events

7.3 The Java 1.1 Event Model

The Java 1.1 event model is used by both the AWT and by Java Beans. In this model, different classes of
events are represented by different Java classes. Every event is a subclass of
java.util.EventObject. AWT events, which is what we are concerned with here, are subclasses
of java.awt.AWTEvent. For convenience, the various types of AWT events, such as MouseEvent
and ActionEvent, are placed in the new java.awt.event package.

Every event has a source object, which can be obtained with getSource(), and every AWT event has
a type value, which can be obtained with getID(). This value is used to distinguish the various types of
events that are represented by the same event class. For example, the FocusEvent has two possible
types: FocusEvent.FOCUS_GAINED and FocusEvent.FOCUS_LOST. Event subclasses contain
whatever data values are pertinent to the particular event type. For example, MouseEvent has
getX(), getY(), and getClickCount() methods; it also inherits the getModifiers() and
getWhen() methods, among others.

The 1.1 event handling model is based on the concept of an "event listener." An object interested in
receiving events is an event listener. An object that generates events (an event source) maintains a list of
listeners that are interested in being notified when events occur, and provides methods that allow
listeners to add themselves and remove themselves from this list of interested objects. When the event
source object generates an event (or when a user input event occurs on the event source object), the event
source notifies all the listener objects that the event has occurred.

An event source notifies an event listener object by invoking a method on it and passing it an event
object (an instance of a subclass of EventObject). In order for a source to invoke a method on a
listener, all listeners must implement the required method. This is ensured by requiring that all event
listeners for a particular type of event implement a corresponding interface. For example, event listener
objects for ActionEvent events must implement the ActionListener interface. The
java.awt.event package defines an event listener interface for each of the event types it defines.
(Actually, for MouseEvent events, it defines two listener interfaces: MouseListener and
MouseMotionListener.) All event listener interfaces themselves extend
java.util.EventListener. This interface does not define any methods, but instead acts as a

marker interface, clearly identifying all event listeners as such.

An event listener interface may define more than one method. For example, an event class like
MouseEvent represents several different types of mouse events, such as a button press event and a
button release event, and these different event types cause different methods in the corresponding event
listener to be invoked. By convention, the methods of an event listener are passed a single argument,
which is an event object of the type that corresponds to the listener. This event object should contain all
the information a program needs to respond to the event. Table 7.6 lists the event types defined in
java.awt.event, the corresponding listener (or listeners), and the methods defined by each listener
interface.

Table 7.6: Java 1.1 Event Types, Listeners, and Listener Methods

Event Class Listener Interface Listener Methods

ActionEvent ActionListener actionPerformed()

AdjustmentEvent AdjustmentListener adjustmentValueChanged()

ComponentEvent ComponentListener componentHidden()

 componentMoved()

 componentResized()

 componentShown()

ContainerEvent ContainerListener componentAdded()

 componentRemoved()

FocusEvent FocusListener focusGained()

 focusLost()

ItemEvent ItemListener itemStateChanged()

KeyEvent KeyListener keyPressed()

 keyReleased()

 keyTyped()

MouseEvent MouseListener mouseClicked()

 mouseEntered()

 mouseExited()

 mousePressed()

 mouseReleased()

 _ _

 MouseMotionListener mouseDragged()

 mouseMoved()

TextEvent TextListener textValueChanged()

WindowEvent WindowListener windowActivated()

 windowClosed()

 windowClosing()

 windowDeactivated()

 windowDeiconified()

 windowIconified()

 windowOpened()

For each of the event listener interfaces that contains more than one method, java.awt.event
defines a simple "adapter" class that provides an empty body for each of the methods in the interface.
When you are only interested in one or two of the defined methods, it is sometimes easier to subclass the
adapter class than it is to implement the interface. If you subclass the adapter, you only have to override
the methods of interest, but if you implement the interface directly you have to define all of the methods,
which means you must provide empty bodies for all the methods that are not of interest. These pre-
defined no-op adapter classes bear the same name as the interfaces they implement, with "Listener"
changed to "Adapter": MouseAdapter, WindowAdapter, etc.

Once you have implemented a listener interface, or subclassed a adapter class, you must instantiate your
new class to define an individual event listener object. You then register that listener with the appropriate
event source. In AWT programs, an event source is always some sort of AWT component. Event listener
registration methods follow a standard naming convention: if an event source generates events of type X,
it has a method named addXListener() to add an event listener, and a method
removeXListener() to remove a listener. One of the nice features of the 1.1 event model is that it is
easy to determine the types of events a component can generate--just look for the event listener
registration methods. For example, by inspecting the API of the Button object, you can determine that
it generates ActionEvent events. Table 7.7 lists AWT components and the events they generate.

Table 7.7: AWT Components and the Java 1.1 Events They Generate

Component Events Generated Meaning

Button ActionEvent User clicked on the button

Checkbox ItemEvent User selected or deselected an item

CheckboxMenuItem ItemEvent User selected or deselected an item

Choice ItemEvent User selected or deselected an item

Component ComponentEvent Component moved, resized, hidden, or shown

 FocusEvent Component gained or lost focus

 KeyEvent User pressed or released a key

 MouseEvent

User pressed or released mouse button, mouse entered or
exited component, or user moved or dragged mouse. Note:
MouseEvent has two corresponding listeners,
MouseListener and MouseMotionListener.

Container ContainerEvent Component added to or removed from container

List ActionEvent User double-clicked on list item

 ItemEvent User selected or deselected an item

MenuItem ActionEvent User selected a menu item

Scrollbar AdjustmentEvent User moved the scrollbar

TextComponent TextEvent User changed text

TextField ActionEvent User finished editing text

Window WindowEvent
Window opened, closed, iconified, deiconified, or close
requested

Scribbling in Java 1.0 Scribbling in Java 1.1

Chapter 7
Events

7.4 Scribbling in Java 1.1

The Java 1.1 event model is quite flexible, and, as we'll see, there are several different ways you can use it to
structure your event-handling code. Example 7.2 shows the first technique. Once again, this is our basic
Scribble applet, this time using the Java 1.1 event model. This version of the applet implements the
MouseListener and MouseMotionListener interfaces itself, and registers itself with its own
addMouseListener() and addMouseMotionListener() methods.

Example 7.2: Scribble: Implementing the Listener Interfaces Directly

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
public class Scribble2 extends Applet
 implements MouseListener, MouseMotionListener {
 private int last_x, last_y;
 public void init() {
 // Tell this applet what MouseListener and MouseMotionListener
 // objects to notify when mouse and mouse motion events occur.
 // Since we implement the interfaces ourself, our own methods are called.
 this.addMouseListener(this);
 this.addMouseMotionListener(this);
 }
 // A method from the MouseListener interface. Invoked when the
 // user presses a mouse button.
 public void mousePressed(MouseEvent e) {
 last_x = e.getX();
 last_y = e.getY();
 }
 // A method from the MouseMotionListener interface. Invoked when the
 // user drags the mouse with a button pressed.
 public void mouseDragged(MouseEvent e) {
 Graphics g = this.getGraphics();
 int x = e.getX(), y = e.getY();
 g.drawLine(last_x, last_y, x, y);
 last_x = x; last_y = y;

 }
 // The other, unused methods of the MouseListener interface.
 public void mouseReleased(MouseEvent e) {;}
 public void mouseClicked(MouseEvent e) {;}
 public void mouseEntered(MouseEvent e) {;}
 public void mouseExited(MouseEvent e) {;}
 // The other method of the MouseMotionListener interface.
 public void mouseMoved(MouseEvent e) {;}
}

The Java 1.1 Event Model Scribbling with Inner Classes

Chapter 7
Events

7.5 Scribbling with Inner Classes

The Java 1.1 event model was designed to work well with another new Java 1.1 feature: inner classes. Example 7.3
shows what the applet looks like when the event listeners are implemented as anonymous inner classes. Note how
succinct this representation is. This is perhaps the most common way to use the Java 1.1 event model, so you'll
probably see a lot of code that looks like this. In this case, our simple applet is nothing but event-handling code, so
this version of it consists almost entirely of anonymous class definitions.

Note that we've added a feature to the applet. It now includes a Clear button. An ActionListener object is
registered with the button; it clears the scribble when the appropriate event occurs.

Example 7.3: Scribble: Using Inner Classes

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
public class Scribble3 extends Applet {
 int last_x, last_y;
 public void init() {
 // Define, instantiate, and register a MouseListener object.
 this.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 last_x = e.getX();
 last_y = e.getY();
 }
 });
 // Define, instantiate, and register a MouseMotionListener object.
 this.addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent e) {
 Graphics g = getGraphics();
 int x = e.getX(), y = e.getY();
 g.setColor(Color.black);
 g.drawLine(last_x, last_y, x, y);
 last_x = x; last_y = y;
 }
 });

 // Create a clear button.
 Button b = new Button("Clear");
 // Define, instantiate, and register a listener to handle button presses.
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) { // clear the scribble
 Graphics g = getGraphics();
 g.setColor(getBackground());
 g.fillRect(0, 0, getSize().width, getSize().height);
 }
 });
 // And add the button to the applet.
 this.add(b);
 }
}

Scribbling in Java 1.1 Inside the Java 1.1 Event
Model

Chapter 7
Events

7.6 Inside the Java 1.1 Event Model

The listener-based event model we've seen in the sections above is ideal for creating a GUI out of pre-defined AWT
components or out of Java Beans. It becomes a little cumbersome, however, when developing custom AWT
components. AWT components (but not beans) provide a lower-level interface to this event model that is sometimes
more convenient to use.

When an AWTEvent is delivered to a component, there is some default processing that goes on before the event is
dispatched to the appropriate event listeners. When you define a custom component (by subclassing), you have the
opportunity to override methods and intercept the event before it is sent to listener objects. When an AWTEvent is
delivered to a component, it is passed to the processEvent() method.

By default, processEvent() simply checks the class of the event object and dispatches the event to a class-
specific method. For example, if the event object is an instance of FocusEvent, it dispatches it to a method named
processFocusEvent(). Or, if the event is of type ActionEvent, it is dispatched to
processActionEvent(). In other words, any event type XEvent is dispatched to a corresponding
processXEvent() method. The exception is for MouseEvent events, which are dispatched either to
processMouseEvent() or processMouseMotionEvent(), depending on the type of the mouse event that
occurred. For any given component, it is the individual processXEvent() methods that are responsible for
invoking the appropriate methods of all registered event listener objects. The processMouseEvent() method, for
example, invokes the appropriate method for each registered MouseListener object. There is a one-to-one
mapping between these methods and the event listener interfaces defined in java.awt.event. Each
processXEvent() method corresponds to an XListener interface.

As you can see, there is a clear analogy between the Java 1.0 event model and this Java 1.1 low-level event model.
processEvent() is analogous to the Java 1.0 handleEvent() method, and methods like
processKeyEvent() are analogous to the Java 1.0 keyDown() and keyUp() methods. As with the Java 1.0
model, there are two levels at which you can intercept events: you can override processEvent() itself or you can
rely on the default version of processEvent() to dispatch the events based on their class and instead override the
individual event methods, such as processFocusEvent() and processActionEvent().

There is one additional requirement to make this low-level Java 1.1 event model work. In order to receive events of a
particular type for a component, you must tell the component that you are interested in receiving that type of event. If
you do not do this, for efficiency, the component does not bother to deliver that type of event. When using event
listeners, the act of registering a listener is enough to notify the component that you are interested in receiving events
of that type. But when you use the low-level model, you must register your interest explicitly. You do this by calling
the enableEvents() method of the component and passing a bit mask that specifies each of the event types you

are interested in. The bit mask is formed by ORing together various EVENT_MASK constants defined by the
AWTEvent class.

Scribbling with Low-Level Event Handling

Example 7.4 is another variation on the Scribble applet. This one uses the Java 1.1 low-level event-handling
model. It overrides the event-specific methods processMouseEvent(), processMouseMotionEvent(),
and processKeyEvent(). Note how it calls enableEvents() in its init() method to register interest in
events of that type. Furthermore, it calls requestFocus() to ask that it be given the keyboard focus, so that it can
receive key events. Notice also that it passes events it is not interested in to the superclass event-processing method.
In this case, the superclass is not going to use those events, but this is still a good practice.

Example 7.4: Scribble: Using the Low-Level Event Model

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
public class Scribble4 extends Applet {
 private int lastx, lasty;
 /** Tell the system we're interested in mouse events, mouse motion events,
 * and keyboard events. This is required or events won't be sent.
 */
 public void init() {
 this.enableEvents(AWTEvent.MOUSE_EVENT_MASK |
 AWTEvent.MOUSE_MOTION_EVENT_MASK |
 AWTEvent.KEY_EVENT_MASK);
 this.requestFocus(); // Ask for keyboard focus so we get key events.
 }
 /** Invoked when a mouse event of some type occurs */
 public void processMouseEvent(MouseEvent e) {
 if (e.getID() == MouseEvent.MOUSE_PRESSED) { // Check the event type.
 lastx = e.getX(); lasty = e.getY();
 }
 else super.processMouseEvent(e); // Pass unhandled events to superclass.
 }
 /** Invoked when a mouse motion event occurs */
 public void processMouseMotionEvent(MouseEvent e) {
 if (e.getID() == MouseEvent.MOUSE_DRAGGED) { // check type
 int x = e.getX(), y = e.getY();
 Graphics g = this.getGraphics();
 g.drawLine(lastx, lasty, x, y);
 lastx = x; lasty = y;
 }
 else super.processMouseMotionEvent(e);
 }
 /** Called on key events: clear the screen when 'c' is typed. */
 public void processKeyEvent(KeyEvent e) {
 if ((e.getID() == KeyEvent.KEY_TYPED) && (e.getKeyChar() == 'c')) {

 Graphics g = this.getGraphics();
 g.setColor(this.getBackground());
 g.fillRect(0, 0, this.getSize().width, this.getSize().height);
 }
 else super.processKeyEvent(e); // Pass unhandled events to our superclass.
 }
}

Another way to implement this example would be to override processEvent() directly instead of overriding the
various methods that it invokes. If we did this, we'd end up with a large switch statement that separated events by
type. When overriding processEvent(), it is particularly important to remember to pass unhandled events to
super.processEvent() so that they can be dispatched correctly.

Scribbling with Inner Classes New AWT Features

Chapter 16
JDK Tools

jar

Name

jar---Java Archive Tool

Availability

JDK 1.1 and later.

Synopsis

jar c|t|x[f][m][v] [jar-file] [manifest-file] [files]

Description

jar is a tool that can be used to create and manipulate Java Archive (JAR) files. A JAR file is a
compressed ZIP file with an additional "manifest" file. The syntax of the jar command is reminiscent of
the Unix tar (tape archive) command.

Options to jar are specified as a block of concatenated letters passed as a single argument, rather than as
individual command-line arguments. The first letter of this option argument specifies what action jar is
to perform and is required. Other option letters are optional. The various file arguments depend on which
option letters are specified.

Options

The first argument to jar is a set of letters that specifies the operation it is to perform. The first letter
specifies the basic action and is required. The three possible values are the following:

c

Create a new JAR archive. A list of input files and/or directories must be specified as the final
arguments to jar.

t

List the contents of a JAR archive. If a JAR file is specified with the f option, its contents are
listed. Otherwise, the JAR file to be listed is read from standard input.

x

Extract the contents of a JAR archive. If a JAR file is specified with the f option, its contents are
extracted. Otherwise, the JAR file to be extracted is read from standard input. If the command is
followed by a list of files and/or directories, only those files or directories are extracted from the
JAR archive. Otherwise, all files in the archive are extracted.

This action specifier can be followed by optional command letters:

f

This option indicates that the JAR file to create, list, or extract from is specified on the command
line. When f is used with c, t, or x, the JAR filename must be the second command-line
argument to jar (i.e., it must follow the block of option letters). If this option is not specified, jar
writes the JAR file it creates to standard output, or reads a JAR file from standard input.

m

This option is only used with the c action. It indicates that jar should read the manifest file
(partial or complete) specified on the command line and use that file as the basis for the manifest
it includes in the JAR file. When this argument is specified after the f option, the manifest
filename should follow the destination filename. If m precedes the f option, the manifest filename
should precede the destination filename.

v

Verbose. If this letter is specified with a c action, jar lists each file it adds to the archive with
compression statistics. If it is used with a t action, jar lists the size and modification date for each

file in the archive, instead of simply listing the filename. If v is used with x, jar displays the name
of each file it extracts from the archive.

Examples

To create a simple JAR file:

% jar cvf my.jar *.java images

To list the contents of a file:

% jar tvf your.jar

To extract the manifest file from a JAR file:

% jar xf the.jar META-INF/MANIFEST.MF

To create a JAR file with a partial manifest specified:

% jar cfmv YesNoDialog.jar manifest.stub oreilly/beans/yesno

See Also

javakey

appletviewer java

Chapter 16
JDK Tools

java

Name

java---The Java Interpreter

Availability

JDK 1.0 and later.

Synopsis

java [interpreter options] classname [program arguments]
java_g [interpreter options] classname [program arguments]

Description

java is the Java byte-code interpreter--it runs Java programs. java_g is a debugging version of the
interpreter. It is unoptimized, and has some additional options for tracing the execution of a program.

The program to be run is the class specified by classname. This must be a fully qualified name, it
must include the package name of the class, but not the .class file extension. Note that you specify the
package and class name, with components separated by '.', not the directory and filename of the class,
which has its components separated by '/' or '/'. If a Java class has no package statement, then it is not
in any package, and the class name is specified alone. Examples:

% java david.games.Checkers
% java test

See the description of the -classpath option and the CLASSPATH environment variable below for
information on specifying where java should look for classes.

The class specified by classname must contain a method main() with exactly the following
signature:

public static void main(String argv[])

Any arguments following the classname on the java command line are placed into an array and passed
to the main() method when java starts up.

If main() creates any threads, java runs until the last thread exits. Otherwise, the interpreter executes
the body of main() and exits.

Although only a single class name is specified when invoking java, the interpreter automatically loads
any additional classes required by the program. These classes are located relative to the Java class path,
described under the -classpath option below.

By default, java runs a byte-code verifier on all classes loaded over the network. This verifier performs a
number of tests on the byte-code of the loaded class to ensure, for example, that it does not corrupt the
internal operand stack and that it performs appropriate run-time checks on such things as array
references. The -verify, -noverify, and -verifyremote options control the byte-code
verification process.

Options

-classpath path

The path that java uses to look up the specified classname and all other classes that it loads.
Specifying this option overrides the default path and the CLASSPATH environment variable. The
class path is an ordered list of directories and ZIP files within and below which java searches for
named classes. On UNIX systems, a path is specified as a colon-separated list of directories and
ZIP files. On Windows systems, directories and ZIP files (which may have drive specifiers that
use colons) are separated from each other with semicolons. For example, a UNIX -classpath
specification might look like this:

-classpath /usr/lib/java/classes:.:~/java/classes

On a Windows system, the specification might be:

-classpath C:\tools\java\classes.zip;.;D:\users\david\classes

A period by itself in the path indicates that the current working directory is searched. Directories
and ZIP files are searched in the order they appear. Place the standard Java classes first in the path
if you do not want them to be accidentally or maliciously overridden by classes with the same
name in other directories.

java expects to find class files in a directory hierarchy (or with a directory name within a ZIP file)
that maps to the fully qualified name of the class. Thus, on a UNIX system, Java would load the
class java.lang.String by looking for the file java/lang/String.class beneath one of the
directories specified in the class path. Similarly, on a Windows 95 or Windows NT system (which
support long filenames), java would look for the file java\lang\String.class beneath a specified
directory or within a specified ZIP file.

If you do not specify -classpath or the CLASSPATH environment variable, the default class
path is:

.:$JAVA/classes:$JAVA/lib/classes.zip UNIX systems

.;$JAVA\classes;$JAVA\lib\classes.zip Windows systems

Where $JAVA is JDK installation directory.

-cs, -checksource

Both of these options tell java to check the modification times on the specified class file and its
corresponding source file. If the class file cannot be found or if it is out of date, it is automatically
recompiled from the source.

-Dpropertyname=value

Defines propertyname to equal value in the system properties list. Your Java program can
then look up the specified value by its property name. You may specify any number of -D
options. For example:

% java -Dawt.button.color=gray -Dmy.class.pointsize=14 my.class

-debug

Causes java to display a password as it starts up. This password can be used to allow the jdb
debugger to attach itself to this interpreter session. Note that this password should not be
considered cryptographically secure.

-help

Print a usage message and exit.

-ldigit

Sets the logging level for trace output. java_g only.

-ms initmem[k|m]

Specifies how much memory is allocated for the heap when the interpreter starts up. By default,
initmem is specified in bytes. You can specify it in kilobytes by appending the letter k or in
megabytes by appending the letter m. The default is 1 MB. For large or memory intensive
applications (such as the Java compiler), you can improve run-time performance by starting the
interpreter with a larger amount of memory. You must specify an initial heap size of at least 1000
bytes.

-mx maxmem[k|m]

Specifies the maximum heap size the interpreter will use for dynamically allocated objects and
arrays. maxmem is specified in bytes by default. You can specify maxmem in kilobytes by
appending the letter k and in megabytes by appending the letter m. The default is 16 MB. You
must not specify a heap size less than 1000 bytes.

-noasyncgc

Do not do garbage collection asynchronously. With this option specified, java only performs
garbage collection when it runs out of memory or when the garbage collector is explicitly
invoked. Without this option, java runs the garbage collector as a separate, low-priority thread.

-noclassgc

Do not garbage collect loaded classes that are no longer in use. This option is only available in
JDK 1.1 and later.

-noverify

Never run the byte-code verifier.

-oss stacksize[k|m]

Sets the size of each thread's Java code stack. By default, stacksize is specified in bytes. You
can specify it in kilobytes by appending the letter k or in megabytes by appending the letter m.
The default value is 400 KB. You must specify at least 1000 bytes.

-prof[:file]

Output profiling information to the specified file or to the file java.prof in the current directory.
The format of this profiling information is not well documented. Prior to JDK 1.1, no file can
be specified; profiling information is always output to ./java.prof.

-ss stacksize[k|m]

Sets the size of each thread's native code stack. By default, stacksize is specified in bytes.
You can specify it in kilobytes by appending the letter k or in megabytes by appending the letter
m. The default value is 128 KB. You must specify at least 1000 bytes.

-t

Output a trace of all bytecodes executed. java_g only.

-tm

Output a trace of all methods executed. java_g only.

-v, -verbose

Print a terminal message each time java loads a class.

-verbosegc

Print a message whenever the garbage collector frees memory.

-verify

Run the byte-code verifier on all classes that are loaded.

-verifyremote

Run the byte-code verifier on all classes that are loaded through a class loader. (This generally
means classes that are dynamically loaded from an untrusted location.) This is the default
behavior for java.

-version

Print the version of the Java interpreter and exit.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on UNIX, semicolon-separated on Windows systems)
of directories and ZIP files in which java should look for class definitions. When a path is
specified with this environment variable, java always implicitly appends the location of the
system classes to the end of the path. If this environment variable is not specified, the default path
is the current directory and the system classes. This variable is overridden by the -classpath
option. See -classpath above for more information on specifying paths.

See Also

javac, jdb

jar javac

Chapter 16
JDK Tools

javac

Name

javac---The Java Compiler

Availability

JDK 1.0 and later.

Synopsis

javac [options] files

Description

javac is the Java compiler--it compiles Java source code (in .java files) into Java byte-codes (in .class
files). The Java compiler is itself written in Java.

javac may be passed any number of Java source files, whose names must all end with the .java extension.
javac produces a separate .class class file for each class defined in the source files, regardless of how
many source files there are. In other words, there need not be a one-to-one mapping between Java source
files and Java class files. Note also that the compiler requires that there be only a single public class
defined in any one source file, and that the name of the file (minus the .java extension) be the same as the
name of the class (minus its package name, of course).

By default, javac places the class files it generates in the same directory as the corresponding source file.
You can override this behavior with the -d option.

When a source file references a class that is not defined in another source file on the command line, javac
searches for the definition of that class using the class path. The default class path contains only the
current directory and the system classes. You may specify additional classes and packages to be searched
with the -classpath option or the CLASSPATH environment variable.

If javac compiles a source file that relies on a class that is out of date (i.e., if the source file for that class
is newer than the class file), it automatically recompiles that file.

Options

-classpath path

The path that javac uses to look up classes referenced in the specified source code. This option
overrides the default path and any path specified by the CLASSPATH environment variable. The
path specified is an ordered list of directories and ZIP files, separated by colons on UNIX
systems or semicolons on Windows systems.

To specify additional directories or ZIP files to be searched, without overriding the default system
class path, use the CLASSPATH environment variable. See the java reference page for more
information on specifying paths.

-d directory

The directory in which (or beneath which) class files should be stored. By default, javac stores the
.class files it generates in the same directory as the .java file that those classes were defined in. If
the -d flag is specified, however, the specified directory is treated as the root of the class
hierarchy and .class files are placed in this directory, or in the appropriate subdirectory below it,
depending on the package name of the class. Thus, the following command:

% javac -d java/classes java/src/Checkers.java

places the file Checkers.class in the directory java/classes if the Checkers.java file has no
package statement. On the other hand, if the source file specifies that it is in a package:

package david.games;

then the .class file is stored in java/classes/david/games. When the -d option is specified, javac
automatically creates any directories it needs to store its class files in the appropriate place.

-depend

Tells javac to recompile any out-of-date class files it encounters, not just those that are referenced
from one of the specified source files.

-deprecation

Tells javac to issue a warning for every use of a deprecated API. By default, javac issues only a
single warning if a program uses deprecated APIs. Available in JDK 1.1 and later.

-g

This option tells javac to add line numbers and local variable information to the output class files,
for use by debuggers. By default, javac only generates the line numbers. With the -O option,
javac does not generate even that information.

-Jjavaoption

Pass the argument javaoption directly through to the Java interpreter. javaoption should
not contain spaces; if multiple arguments must be passed to the interpreter, use multiple -J
options. Available in JDK 1.1 and later.

-nowarn

Tells javac not to print warning messages. Errors are still reported as usual.

-nowrite

Tells javac not to create any class files. Source files are parsed as usual, but no output is written.
This option is useful when you want to check that a file will compile without actually compiling
it.

-O

Enable optimization of class files. This option may cause javac to compile static, final, and
private methods inline, so that they execute faster. The trade-off is that the class files will be
larger. This option also prevents javac from adding line number debugging information to the
class files.

-verbose

Tells the compiler to display messages about what it is doing.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on UNIX, semicolon-separated on Windows systems)
of directories and ZIP files in which javac should look for class definitions. When a path is
specified with this environment variable, javac always implicitly appends the location of the
system classes to the end of the path. If this environment variable is not specified, the default path
is the current directory and the system classes. This variable is overridden by the -classpath
option.

See Also

java, jdb

java javadoc

Chapter 16
JDK Tools

javadoc

Name

javadoc---The Java Documentation Generator

Availability

JDK 1.0 and later.

Synopsis

javadoc [options] packagename
javadoc [options] filenames

Description

javadoc generates API documentation, in HTML format, for the specified package, or for the individual
Java source files specified on the command line.

When a package name is specified on the command line, javadoc looks for a corresponding package
directory relative to the class path. It then parses all of the .java source files in that directory and
generates an HTML documentation file for each class and an HTML index of the classes in the package.
By default, the HTML files are placed in the current directory. The -d option allows you to override this
default.

Note that the packagename argument to javadoc is the name of the package (components separated by
periods) and not the name of the package directory. You may need to specify the -sourcepath option

so that javadoc can find your package source code correctly, if it is not stored in the same location as the
package class files.

javadoc may also be invoked with any number of Java source files specified on the command line. Note
that these are filenames, not class names, and are specified with any necessary directory components, and
with the .java extension. When javadoc is invoked in this way, it reads the specified source files and
generates HTML files (in the current directory, by default) that describe each public class defined in the
specified source files.

The class documentation files that javadoc generates describe the class (or interface) and its inheritance
hierarchy, and index and describe each of the public and protected members of the class. The
generated file also contains any "doc comments" that are associated with the class and with its methods,
constructors, and variables. A "doc comment," or documentation comment, is a Java comment that
begins with /** and ends with */. A doc comment may include any HTML markup tags (although it
should not include structuring tags like <H1> or <HR>), and may also include tag values that are treated
specially by javadoc. These special tags and their syntax are documented fully in Chapter 13, Java
Syntax.

Options

-author path

Specifies that author information specified with the @author tag should be output. This
information is not output by default.

-classpath path

This option specifies a path that javadoc uses to look up both class files and source files for the
specified package. If you specify this option to tell javadoc to look for your source files, you must
also be sure to include the standard system classpath as well, or javadoc will not be able to find
the classes it needs. This option overrides the default path and any path specified by the
CLASSPATH environment variable. The path specified is an ordered list of directories and ZIP
files, separated by colons on UNIX systems or semicolons on Windows systems. To specify
additional directories or ZIP files to search without overriding the default system class path, use
the CLASSPATH environment variable. See the java reference page for more information on
specifying paths.

-d directory

The directory in which javadoc should store the HTML files it generates. The default is the
current directory.

-docencoding encoding-name

Specifies the character encoding to be used for the output documents generated by javadoc.
Available in JDK 1.1 and later.

-encoding encoding-name

Specifies the character encoding to be used to read the input source files and the documentation
comments they contain. Available in JDK 1.1 and later.

-Jjavaoption

Pass the argument javaoption directly through to the Java interpreter. javaoption should
not contain spaces; if multiple arguments must be passed to the interpreter, use multiple -J
options. Available in JDK 1.1 and later.

-nodeprecated

Specifies that javadoc should not include @deprecated tags in its output, as it does by default.
Available in JDK 1.1 and later.

-noindex

Specifies that javadoc should not generate the AllNames.html index file that it creates by default.

-notree

Specifies that javadoc should not generate the tree.html class hierarchy file that it creates by
default.

-sourcepath path

A synonym for -classpath. Note that any specified "sourcepath" must include the system
classpath.

-verbose

Tells javadoc to print additional messages about what it is doing.

-version path

Specifies that version information specified with the @version tag should be output. This
information is not output by default. Note that this option does not tell javadoc to print its own
version number.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on UNIX, semicolon-separated on Windows systems)
of directories and ZIP files in which javadoc should look for class definitions. When a path is
specified with this environment variable, javadoc always implicitly appends the location of the
system classes to the end of the path. If this environment variable is not specified, then the default
path is the current directory and the system classes. This variable is overridden by the -
classpath option.

Bugs

When javadoc cannot find a specified package, it produces a stub HTML file and does not warn you that
the package was not found.

See Also

java, javac

javac javah

Chapter 16
JDK Tools

javah

Name

javah---Native Method C File Generator

Availability

JDK 1.0 and later.

Synopsis

javah [options] classnames

Description

javah generates C header and source files (.h and .c files) that describe the specified classes. Note that
classes are specified by classname, not filename. These generated C files provide the information
necessary for implementing native methods for the specified classes in C. By default, javah produces
output files suitable for the native interface used in JDK 1.0. If the -jni option is specified, it generates
output files for use with the Java 1.1 Java Native Interface (JNI).

By default, javah generates a header file for the specified class or classes. This header file declares a C
struct that contains fields that correspond to the instance fields of the Java class. The header also
declares a procedure that you must implement for each of the native methods that the Java class contains.
(A full description of how to implement Java native methods in C is beyond the scope of this reference
page.)

If javah is run with the -stubs option, it generates a .c file that contains additional stub procedures
necessary for linking the native method into the Java environment. Note that you should not put your
native method implementation in this generated stub file.

With the -jni option specified, javah generates C header files that declare function prototypes each of
the native methods of the specified classes. No structure definitions are required using this new native
interface. The JNI does not require stub files, either, so -stubs should not be specified with -jni.

By default, javah creates C files in the current directory and bases their name on the name of the class. If
the name of the class includes a package name, then the C files include all the components of the fully
qualified class name, with periods replaced by underscores. You can override this default behavior with
the -d and -o options.

Options

-classpath path

The path that javah uses to look up the classes named on the command line. This option overrides
the default path, and any path specified by the CLASSPATH environment variable. The path
specified is an ordered list of directories and ZIP files, separated by colons on UNIX systems or
semicolons on Windows systems.

To specify additional directories or ZIP files for javah to search without overriding the default
system class path, use the CLASSPATH environment variable. See the java reference page for
more information on specifying paths.

-d directory

Specifies a directory where javah should store the files it generates. By default it stores them in
the current directory. This option does not work with -o; you must specify any desired directory
within the -o filename.

-help

Causes javah to display a simple usage message and exit.

-jni

Specifies that javah should output a header file for use with the new JNI (Java Native Interface),
rather than using the old JDK 1.0 native interface. Available in JDK 1.1 and later.

-o outputfile

Combine all .h or .c file output into a single file, outputfile. This is a convenience when you
want to implement native methods for a number of classes in a single package. It allows you to
avoid having many short .h and .c files that must be manipulated separately.

-stubs

Generate .c stub files for the class or classes, and do not generate the .h header files. Without this
option, javah generates header files.

-td directory

The directory where javah should store temporary files. The default is /tmp.

-trace

Specifies that javah should include tracing output commands in the stub files it generates.

-v

Verbose. Causes javah to print messages about what it is doing.

-version

Causes javah to display its version number.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on UNIX, semicolon-separated on Windows systems)
of directories and ZIP files in which javah should look for class definitions. When a path is
specified with this environment variable, javah always implicitly appends the location of the
system classes to the end of the path. If this environment variable is not specified, the default path
is the current directory and the system classes. This variable is overridden by the -classpath
option.

See Also

java, javac

javadoc javakey

Chapter 16
JDK Tools

javakey

Name

javakey---Key Management and Digital Signatures

Availability

JDK 1.1 and later.

Synopsis

javakey options

Description

javakey provides a command-line interface to a number of complex key and certificate generation and
management tasks, including the generation of digital signatures. There are quite a few options that
perform a number of distinct operations. javakey manages a system database of entities. Each entity may
have public and private keys and/or certificates associated with it, and in addition, each entity may be
declared to be trusted or not. Any entity in the database may be an "identity" or a "signer." Identities have
only a public key associated with them, while signers have both a public and private key, and thus may
sign files.

The different javakey operations are specified with the various options described below.

Options

-c identity-name [true|false]

Create. Create and add a new identity to the database, using the specified name. If the identity
name is followed by true, declare the identity to be trusted. Otherwise make it untrusted.

-cs signer-name [true|false]

Create signer. Create and add a new signer entity to the database, using the specified name. If the
name is followed by true, declare the signer to be trusted. Otherwise make it untrusted.

-t entity-name true|false

Assign trust. Specify whether the named entity is trusted (true) or not (false).

-l

List. List the names of all entities in the security database.

-ld

List details. List the names and other details about all entities in the security database.

-li entity-name

List information. List detailed information about the named entity from the security database.

-r entity-name

Remove. Remove the named entity from the security database.

-ik identity-name keyfile

Import key. Read a public key from the specified file and associate it with the named identity. The
key must be in X.509 format.

-ikp signer-name pubkeyfile privkeyfile

Import key pair. Read the specified public key and private key files and associate them with the
named signer entity. The keys must be in X.509 format.

-ic entity-name certificate-file

Import certificate. Read a certificate from the named certificate file and associate it with the
named entity. If the entity already has a public key, compare it to the key in the certificate and
issue a warning if they do not match. If the entity has not had a public key assigned, use the public
key from the certificate.

-ii entity-name

Import information. This command allows you to enter arbitrary textual information about an
entity into the database.

-gk signer algorithm size [pubfile [privfile]]

Generate key. Generate a public and private key and associate them with the named signer. Use
the specified algorithm. Currently, the only supported algorithm is "DSA." Generates keys of the
specified number of bits, which must be between 512 and 1024. If pubfile is specified, write
the public key to the specified file. If privfile is specified, write the private key to the
specified file.

-g signer algorithm size [pubfile [privfile]]

A synonym for the -gk command.

-gc directivefile

Generate certificate. Generate a certificate according to the parameters specified in the directive
file. The directive file is a Properties file that must provide values for the following named
properties:

❍ issuer.name. The name of the entity issuing the certificate.

❍ issuer.cert. The issuer's certificate number to be used to sign the generated certificate
(unless the certificate will be self-signed.)

❍ subject.name. The database name of the entity that the certificate is being issued to.

❍ subject.real.name. The real name of the entity that the certificate is being issued to.

❍ subject.country. The country that the subject entity is in.

❍ subject.org. The organization that the subject entity is affiliated with.

❍ subject.org.unit. A division within the subject's organization.

❍ start.date. The starting date (and time) of the certificate.

❍ end.date. The ending date (and time) of the certificate.

❍ serial.number. A serial number for the certificate. This number must be unique
among all certificates generated by the issuer.

❍ out.file. An optional filename that specifies what file the certificate should be written
to.

-dc certfile

Display certificate. Display the contents of the certificate stored in certfile.

-ec entity certificate-number file

Export certificate. Output the numbered certificate of the specified entity into the specified file.
Use the -li command to inspect the certificate numbers for a given entity.

-ek entity pubfile [privfile]

Export key. Output the public key of the specified entity into the specified file. If the entity is a
signer, and the privfile is specified, additionally export the private key of the entity to that
file.

-gs directivefile jarfile

Generate signature. Apply a digital signature to the specified JAR file using the directives in the
specified directive file. The directive file is a Properties file that must provide values for the
following named properties:

❍ signer. The entity name of the signer.

❍ cert. The certificate number to use for the signature.

❍ chain. The length of a chain of certificates to include. This is not currently supported;
specify 0.

❍ signature.file. The basename of the signature file and signature block to be inserted
into the JAR file. It must be 8 characters or less. This name should not conflict with any
other digital signatures that may be inserted into the JAR file.

❍ out.file. This optional property specifies the name that should be used for the signed
JAR file that is generated.

See Also

jar

javah javap

Chapter 16
JDK Tools

javap

Name

javap---The Java Class Disassembler

Availability

JDK 1.0 and later.

Synopsis

javap [options] classnames

Description

javap disassembles the class files specified by the class names on the command line and prints a human-
readable version of those classes.

By default, javap prints declarations of the non-private members of each of the classes specified on
the command line. The -l, -p, and -c options specify additional information to be printed, including a
complete disassembly of the byte-codes in each of the specified classes. javap can also be used to run the
class verifier on Java classes.

Options

-c

Print the Java Virtual Machine instructions for each of the methods in each of the specified
classes. This option disassembles all methods, including private methods.

-classpath path

The path that javap uses to look up the classes named on the command line. This option overrides
the default path and any path specified by the CLASSPATH environment variable. The path
specified is an ordered list of directories and ZIP files, separated by colons on UNIX systems or
semicolons on Windows systems.

To specify additional directories or ZIP files for javap to search without overriding the default
system class path, use the CLASSPATH environment variable. See the java reference page for
more information on specifying paths.

-h

Outputs the class in a form suitable for inclusion in a C header file.

-l

Prints line numbers and local variable tables in addition to the public fields of the class. Note that
line numbers and local variable information is included for use with debuggers. Local variable
information is available only if a class was compiled with the -g option to javac; line number
information is available only if a class was compiled without the -O option.

-p

Prints private methods and variables of the specified class in addition to the public ones.
Note that some compilers (though not javac) may allow this private field information to be
"obfuscated" in such a way that private fields and method arguments no longer have
meaningful names. This makes Java classes harder to disassemble or reverse engineer.

-s

Outputs the class member declarations using the internal Virtual Machine format.

-v

Verbose. Outputs additional information (in the form of Java comments) about each member of
each specified class.

-verify

Causes javap to run the class verifier on the specified classes and display the results of
verification.

-version

Causes javap to display its version number.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on UNIX, semicolon-separated on Windows systems)
of directories and ZIP files in which javap should look for class definitions. When a path is
specified with this environment variable, javap always implicitly appends the location of the
system classes to the end of the path. If this environment variable is not specified, the default path
is the current directory and the system classes. This variable is overridden by the -classpath
option.

See Also

java, javac

javakey jdb

Chapter 16
JDK Tools

jdb

Name

jdb---The Java Debugger

Availability

JDK 1.0 and later.

Synopsis

jdb [java options] class
jdb [-host hostname] -password password

Description

jdb is a debugger for Java classes. It is text-based, command-line oriented, and has a command syntax
like that of the UNIX dbx or gdb debuggers.

When jdb is invoked with the name of a Java class, it starts another copy of the java interpreter, passing
any specified java options to the interpreter. jdb is itself a Java program, running in its own copy of the
interpreter. This new interpreter loads the specified class file and stops for debugging before executing
the first Java byte-code.

jdb may also be started with the -password and optional -host arguments. Invoked in this way, jdb
"attaches itself" to an already running copy of the interpreter. In order for this to work, the Java
interpreter running the program to be debugged must have been started with the -debug option. When

the interpreter is started with this option, it prints a password that must be used with the jdb -password
option.

Once a debugging session is started, you may issue any of the commands described below.

Options

When invoking jdb with a specified class file, any of the java interpreter options may be specified. See
the java reference page for an explanation of these options.

When attaching jdb to an already running Java interpreter, the following options are available:

-host hostname

Specifies the name of the host upon which the desired interpreter session is running.

-password password

This option is required to attach to a running interpreter. The interpreter must have been started
with the -debug option, and this -password option specifies the password that the interpreter
generated. Only a debugger that knows this password is allowed to attach to the interpreter. Note
that the passwords generated by java should not be considered cryptologically secure.

Commands

jdb understands the following debugging commands:

!!

This is a shorthand command that is replaced with the text of the last command entered. It may be
followed with additional text that is appended to that previous command.

catch [exception class]

Cause a breakpoint whenever the specified exception is thrown. If no exception is specified, the
command lists the exceptions currently being caught. Use ignore to stop these breakpoints from
occurring.

classes

List all classes that have been loaded.

clear [class:line]

Remove the breakpoint set at the specified line of the specified class. Typing clear or stop
with no arguments displays a list of current breakpoints and the line numbers that they are set at.

cont

Resume execution. This command should be used when the current thread is stopped at a
breakpoint.

down [n]

Move down n frames in the call stack of the current thread. If n is not specified, move down one
frame.

dump id(s)

Print the value of all fields of the specified object or objects. If you specify the name of a class,
dump displays all class (static) methods and variables of the class, and also displays the
superclass and list of implemented interfaces. Objects and classes may be specified by name or by
their eight-digit hexadecimal ID number. Threads may also be specified with the shorthand
t@thread-number.

exit (or quit)

Quit jdb.

gc

Run the garbage collector to force unused objects to be reclaimed.

help (or ?)

Display a list of all jdb commands.

ignore exception class

Do not treat the specified exception as a breakpoint. This command turns off a catch command.

list [line number]

List the specified line of source code as well as several lines that appear before and after it. If no
line number is specified, use the line number of the current stack frame of the current thread. The
lines listed are from the source file of the current stack frame of the current thread. Use the use
command to tell jdb where to find source files.

load classname

Load the specified class into jdb.

locals

Display a list of local variables for the current stack frame. Java code must be compiled with the -
g option in order to contain local variable information.

memory

Display a summary of memory usage for the Java program being debugged.

methods class

List all methods of the specified class. Use dump to list the instance variables or an object or the
class (static) variables of a class.

print id(s)

Print the value of the specified item or items. Each item may be a class, object, field, or local
variable, and may be specified by name or by eight-digit hexadecimal ID number. You may also
refer to threads with the special syntax t@thread-number. The print command displays an
object's value by invoking its toString() method.

resume [thread(s)]

Resume execution of the specified thread or threads. If no threads are specified, all suspended
threads are resumed. See also suspend.

run [class] [args]

Run the main() method of the specified class, passing the specified arguments to it. If no class
or arguments are specified, use the class and arguments specified on the jdb command line.

step

Run the current line of the current thread and stop again.

stop [at class:line]
stop [in class.method]

Set a breakpoint at the specified line of the specified class or at the beginning of the specified
method of the specified class. Program execution stops when it reaches this line or enters the
method. If stop is executed with no arguments, then it lists the current breakpoints.

suspend [thread(s)]

Suspend the specified thread or threads. If no threads are specified, suspend all running threads.
Use resume to restart them.

thread thread

Set the current thread to the specified thread. This thread is used implicitly by a number of other
jdb commands. The thread may be specified by name or number.

threadgroup name

Set the current thread group to the named thread group.

threadgroups

List all thread groups running in the Java interpreter session being debugged.

threads [threadgroups]

List all threads in the named thread group. If no thread group is specified, list all threads in the
current thread group (specified by threadgroup).

up [n]

Move up n frames in the call stack of the current thread. If n is not specified, move up one frame.

use [source-file-path]

Set the path used by jdb to look up source files for the classes being debugged. If no path is
specified, display the current source path being used.

where [thread] [all]

Display a stack trace for the specified thread. If no thread is specified, display a stack trace for the
current thread. If all is specified, display a stack trace for all threads.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on UNIX, semicolon-separated on Windows systems)
of directories and ZIP files in which jdb should look for class definitions. When a path is specified
with this environment variable, jdb always implicitly appends the location of the system classes to
the end of the path. If this environment variable is not specified, the default path is the current
directory and the system classes. This variable is overridden by the -classpath option.

See Also

java

javap native2ascii

Chapter 16
JDK Tools

native2ascii

Name

native2ascii---Convert Java source code to ASCII

Availability

JDK 1.1 and later.

Synopsis

native2ascii [options] [inputfile [outputfile]]

Description

javac can only process files encoded in ASCII, with any other characters encoded using the \uxxxx
Unicode notation. native2ascii is a simple program that reads a Java source file encoded using a local
encoding and converts it to the ASCII-plus-encoded-Unicode form required by javac.

The inputfile and outputfile are optional. If unspecified, standard input and standard output are
used, making native2ascii suitable for use in pipes.

Options

-encoding encoding-name

Specifies the encoding used by source files. If this option is not specified, the encoding is taken
from the file.encoding system property.

-reverse

Specifies that the conversion should be done in reverse--from encoded \uxxxx characters to
characters in the native encoding.

See Also

java.io.InputStreamReader, java.io.OutputStreamWriter

jdb serialver

Chapter 16
JDK Tools

serialver

Name

serialver---Class Version Number Generator

Availability

JDK 1.1 and later.

Synopsis

serialver [-show] classname...

Description

serialver displays the version number, or serialization-unique identifier, for a named class or classes. If
the class declares a long serialVersionUID constant, the value of that field is displayed.
Otherwise, a unique version number is computed by applying the Secure Hash Algorithm (SHA) to the
API defined by the class. This program is primarily useful for computing an initial unique version
number for a class, which is then declared as a constant in the class. The output of serialver is a line of
legal Java code, suitable for pasting into a class definition.

Options

-show

When the -show option is specified, serialver displays a simple graphical interface that allows
the user to type in a single classname at a time and obtain its serialization UID. When using -
show, no class names may be specified on the command-line.

Environment

CLASSPATH

serialver is written in Java, and so it is sensitive to the CLASSPATH environment variable in the
same way that the java interpreter is. The specified classes are looked up relative to this class
path.

See Also

java.io.ObjectStreamClass

native2ascii How To Use This Quick
Reference

Chapter 14

14. System Properties
Contents:
Standard System Properties
Working with System Properties

Java programs cannot read environment variables the way that native programs can. The reason is that
environment variables are platform dependent. Similar mechanisms exist, however, that allow
applications to read the value of a named resource. These resource values allow customization of an
application's behavior based on site-specific parameters, such as the type of host, or based on user
preferences.

These named resource values are specified for applications in the "system properties" list. Applications
can read these "system properties" with the System.getProperty() method, or can read the entire
list of properties with System.getProperties(). System.getProperty() returns the
property value as a string. Applications can also read properties in parsed form using methods that are
based on System.getProperty(), such as Font.getFont(), Color.getColor(),
Integer.getInteger(), and Boolean.getBoolean().

14.1 Standard System Properties

When the Java interpreter starts, it inserts a number of standard properties into the system properties list.
These properties, and the meaning of their values, are listed in Table 14.1. The table also specifies
whether untrusted applets are allowed (at least by default) to read the value of these properties. For
reasons of security, untrusted code is only allowed to read the values of properties to which it has
explicitly been granted access. (Untrusted applets are not allowed to set the value of system properties,
nor are they allowed to call System.getProperties() to obtain the entire list of properties.)

Table 14.1: Standard System Properties

Name Value Applet Access

java.version Version of the Java interpreter yes

java.vendor Vendor-specific identifier string yes

java.vendor.url Vendor's URL yes

java.class.version The version of the Java API yes

java.class.path The classpath value no

java.home The directory Java is installed in no

java.compiler The JIT compiler to use, if any (Java 1.1) no

os.name The name of the operating system yes

os.arch The host hardware architecture yes

os.version Version of the host operating system yes

file.separator Platform-dependent file separator (e.g., / or #) yes

path.separator Platform-dependent path separator (e.g., : or ;) yes

line.separator Platform-dependent line separator (e.g., #n or #r#n) yes

user.name The username of the current user no

user.home The home directory of the current user no

user.dir The current working directory no

user.language The 2-letter language code of the default locale (Java 1.1) no

user.region The 2-letter country code of the default locale (Java 1.1) no

user.timezone The default time zone (Java 1.1) no

file.encoding The character encoding for the default locale (Java 1.1) no

file.encoding.pkg
The package that contains converters between local encodings and
Unicode (Java 1.1)

no

Java Documentation
Comment Syntax

Working with System
Properties

Chapter 17

17. The java.applet Package
Contents:
java.applet.Applet (JDK 1.0)
java.applet.AppletContext (JDK 1.0)
java.applet.AppletStub (JDK 1.0)
java.applet.AudioClip (JDK 1.0)

An applet is a small, embeddable Java program. The java.applet package is a small one. It contains the
Applet class, which is the superclass of all applets, and three related interfaces. Figure 17.1 shows the class
hierarchy of this package. See Chapter 6, Applets, for more information about this package.

Figure 17.1: The java.applet package

17.1 java.applet.Applet (JDK 1.0)

This class implements an applet. To create your own applet, you should create a subclass of this class and override
some or all of the following methods. Note that you never need to call these methods--they are called when
appropriate by a Web browser or other applet viewer.

init() should perform any initialization for the applet; it is called when the applet first starts. destroy()
should free up any resources that the applet is holding; it is called when the applet is about to be permanently

stopped. start() is called to make the applet start doing whatever it is that it does. Often, it starts a thread to
perform an animation or similar task. stop() should temporarily stop the applet from executing. It is called when
the applet temporarily becomes hidden or non-visible.

getAppletInfo() should return text suitable for display in an About dialog posted by the Web browser or
applet viewer. getParameterInfo() should return an arbitrary-length array of three-element arrays of strings
where each element describes one of the parameters that this applet understands. The three elements of each
parameter description are strings that specify, respectively, the parameter's name, type, and description.

In addition to these methods, an applet also typically overrides several of the methods of java.awt.Component,
notably the paint() method to draw the applet on the screen. There are also several Applet methods that you do
not override but may call from applet code: showStatus() displays text in the Web browser or applet viewer's
status line. getImage() and getAudioClip() read image (GIF and JPEG formats) and audio files (AU
format) over the network and return corresponding Java objects. getParameter() looks up the value of a
parameter specified with a <PARAM> tag within an <APPLET>...</APPLET> pair. getCodeBase() returns
the base URL from which the applet's code was loaded, and getDocumentBase() returns the base URL from
which the HTML document containing the applet was loaded. getAppletContext() returns an
AppletContext object, which also has useful methods.

public class Applet extends Panel {
 // Default Constructor: public Applet()
 // Public Instance Methods
 public void destroy();
 public AppletContext getAppletContext();
 public String getAppletInfo();
 public AudioClip getAudioClip(URL url);
 public AudioClip getAudioClip(URL url, String name);
 public URL getCodeBase();
 public URL getDocumentBase();
 public Image getImage(URL url);
 public Image getImage(URL url, String name);
 public Locale getLocale(); // Overrides Component
 public String getParameter(String name);
 public String[][] getParameterInfo();
 public void init();
 public boolean isActive();
 public void play(URL url);
 public void play(URL url, String name);
 public void resize(int width, int height); // Overrides Component
 public void resize(Dimension d); // Overrides Component
 public final void setStub(AppletStub stub);
 public void showStatus(String msg);
 public void start();
 public void stop();
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->Container-
>Panel->Applet

Returned By:

AppletContext.getApplet()

Reading a Quick Reference
Entry

java.applet.AppletContext
(JDK 1.0)

Part 5
How To Use This Quick

Reference

5.2 Reading a Quick Reference Entry

Each class and interface has its own entry in this quick reference. These quick-reference entries
document the class or interface as described below. Because the information in each entry is quite dense,
the descriptions of it that follow are somewhat complicated. I recommend that you flip through the
following chapters as you read to find examples of each of the features described.

Name and Availability

Each quick reference entry has a title that is the name of the class or interface it documents. To the right
of that title, you'll find availability information that indicates when the class or interface was added to the
Java API. The string "JDK 1.0" indicates that the class or interface has been around since the original
release of Java. The string "JDK 1.1" indicates that it has been added in the Java 1.1 release, and is
therefore not backwards compatible with Java 1.0 environments. If the availability string is followed by
the word "Deprecated," it means that the class or interface has been deprecated and its use is discouraged.
There are two such deprecated classes in Java 1.1.

Description

The class name is followed by a short description of the most important features of the class. This
description may be anywhere from a couple of sentences to several paragraphs long.

Synopsis

The description is always followed by a synopsis of the class or interface. This is a listing that looks like
a Java class definition, except that method bodies and field initializers are omitted. This synopsis
contains the following information:

Class Modifiers

The synopsis begins with a list of class modifiers. All classes and interfaces in this quick
reference are public; some are also declared abstract or final

Class or Interface

If the modifiers are followed by the class keyword, it is a class that is being documented. If
they are followed by the interface keyword, it is an interface that is being documented.

Class Name

The name of the class or interface follows the class or interface keyword. It is highlighted
in bold.

Superclass

The superclass of the class follows the extends keywords.

Interfaces

The list of interfaces that the class implements, if any, follows the implements keyword.

Members

The constructors, fields, and methods defined by the class or interface form the bulk of the
synopsis. All public and protected members are listed. They are divided into the following
categories, and listed alphabetically by name within each category. Each category begins with a
comment to break the synopsis listing into logical sections. The categories, in the order listed, are:

1. Public constructors

2. Protected constructors

3. Constants

4. Class variables

5. Public instance variables

6. Protected instance variables

7. Class methods

8. Public instance methods

9. Protected instance methods

Availability

If a member synopsis begins with the string "1.1", it indicates that the constructor, field, or
method has been added to the class or interface in Java 1.1. Note that this indication only appears
in classes and interfaces that are not themselves new in Java 1.1. If a member synopsis begins
with "#", it means that the constructor, field, or method has been deprecated in Java 1.1, and that
its use is discouraged.

Member Modifiers

The modifiers for each member are listed. These provide important information about how the
members are used. The modifiers you may find listed are: public, protected, static,
abstract, final, synchronized, native, and transient.

Member Type

The listing for a member may include a type. The types of fields and constants are shown, as are
the return types of methods. Constructors do not have return types in Java.

Member Name

The name of each class member is in bold, for easy scanning.

Parameters

The synopsis for a method or constructor includes the type and name of each parameter that it
takes. The parameter names are shown in italic to indicate that they are not to be used literally.

Exceptions

The exceptions that may be thrown by a method or constructor follow the throws keyword in
the synopsis.

Inheritance

The synopsis for a method may be followed by a comment that includes a class or interface name.
If a method is followed by a //Overrides comment, the method overrides a method by the
same name in the specified superclass. If a method synopsis is followed by a //Defines
comment, the method provides the definition of an abstract method of the specified
superclass. Finally, if a method synopsis is followed by a //From comment, the method
implements a method from the named interface (which is implemented by the class or a
superclass).

Cross References

The synopsis section is followed by a number of optional "cross reference" sections that indicate other,
related classes that may be of interest. In the first edition of this book, this information was available in
separate index chapters. We think it should be even more useful when associated directly with each class
and interface entry. The cross reference sections are the following:

Hierarchy

This section lists all of the superclasses of the class, as well as any interfaces implemented by
those superclasses. It may also list any interfaces extended by an interface. This section only
appears when it provides information that is not available from the extends and implements
clauses of the class synopsis. In the hierarchy listing, arrows indicate superclass to subclass
relationships, while the interfaces implemented by a class follow the class name in parentheses.
This information can be useful, for example, to determine whether a class implements
Serializable or Cloneable somewhere up its superclass hierarchy.

Extended By

This section lists all direct subclasses of this class, or any interfaces that extend this interface,
which tells you that there are more specific classes or interfaces to look at.

Implemented By

This section lists all of the classes that directly implement this interface, which is useful when you
know that you want to use the interface but you don't know what implementations of it are
available.

Passed To

This section lists all of the methods and constructors that are passed an object of this type as an
argument, which is useful when you have an object of a given type and want to figure out what
you can do with it.

Returned By

This section lists all of the methods (but not constructors) that return an object of this type, which
is useful when you know that you want to work with an object of this type, but don't know how to
obtain one.

Type Of

This section lists all of the fields and constants that are of this type, which can help you figure out
how to obtain an object of this type.

Thrown By

For exception and error classes, this section lists all of the methods and constructors that throw
exceptions of this type. This material helps you figure out when a given exception or error may be
thrown. Note, however, that this section is based on the exception types listed in the throws
clauses of methods and constructors. Subclasses of RuntimeException do not have to be
listed in throws clauses, so it is not possible to generate a complete cross reference of methods
that throw these types of "unchecked" exceptions.

Finding a Quick Reference
Entry

The java.applet Package

Part 5

5. How To Use This Quick Reference
Contents:
Finding a Quick Reference Entry
Reading a Quick Reference Entry

The quick-reference section that follows packs a lot of information into a small space. This introduction
explains how to get the most out of that information. It explains how the quick reference is organized and
how to read the individual quick-ref entries.

5.1 Finding a Quick Reference Entry

The following chapters each document one package of the Java API. The packages are listed
alphabetically, beginning with java.applet and ending with java.util.zip. Each chapter begins
with an overview of the package, including a hierarchy diagram for the classes and interfaces in the
package. Within each chapter, the classes and interfaces of a package are themselves listed
alphabetically.

If you know the name of a class, but not of the package that it is a part of, or if you know the name of a
method or field, but do not know what class defines it, use the index in Chapter 32, Class, Method, and
Field Index to find the information you need.

serialver Reading a Quick Reference
Entry

Chapter 17
The java.applet Package

17.2 java.applet.AppletContext (JDK 1.0)

This interface defines the methods that allow an applet to interact with the context in which it runs
(which is usually a Web browser or an applet viewer). The object that implements the
AppletContext interface is returned by Applet.getAppletContext(). You can use it to take
advantage of a Web browser's cache, or to display a message to the user in the Web browser's or applet
viewer's message area.

The getAudioClip() and getImage() methods may make use of a Web browser's caching
mechanism. showDocument() and showStatus() give an applet a small measure of control over
the appearance of the browser or applet viewer. The getApplet() and getApplets() methods
allow an applet to find out what other applets are running at the same time.

public abstract interface AppletContext {
 // Public Instance Methods
 public abstract Applet getApplet(String name);
 public abstract Enumeration getApplets();
 public abstract AudioClip getAudioClip(URL url);
 public abstract Image getImage(URL url);
 public abstract void showDocument(URL url);
 public abstract void showDocument(URL url, String target);
 public abstract void showStatus(String status);
}

Returned By:

Applet.getAppletContext(), AppletStub.getAppletContext()

java.applet.Applet (JDK 1.0) java.applet.AppletStub (JDK
1.0)

Chapter 17
The java.applet Package

17.3 java.applet.AppletStub (JDK 1.0)

This is an internal interface used when implementing an applet viewer.

public abstract interface AppletStub {
 // Public Instance Methods
 public abstract void appletResize(int width, int height);
 public abstract AppletContext getAppletContext();
 public abstract URL getCodeBase();
 public abstract URL getDocumentBase();
 public abstract String getParameter(String name);
 public abstract boolean isActive();
}

Passed To:

Applet.setStub()

java.applet.AppletContext
(JDK 1.0)

java.applet.AudioClip (JDK
1.0)

Chapter 17
The java.applet Package

17.4 java.applet.AudioClip (JDK 1.0)

This interface describes the essential methods that an audio clip must have.
AppletContext.getAudioClip() and Applet.getAudioClip() both return an object that
implements this interface. The current JDK implementations of this interface only work with sounds
encoded in AU format. The AudioClip interface is in the java.applet package only because there
is not a better place for it.

public abstract interface AudioClip {
 // Public Instance Methods
 public abstract void loop();
 public abstract void play();
 public abstract void stop();
}

Returned By:

Applet.getAudioClip(), AppletContext.getAudioClip()

java.applet.AppletStub (JDK
1.0)

The java.awt Package

Chapter 18

18. The java.awt Package
Contents:
java.awt.AWTEvent (JDK 1.1)
java.awt.AWTEventMulticaster (JDK 1.1)
java.awt.AWTException (JDK 1.0)
java.awt.Adjustable (JDK 1.1)
java.awt.BorderLayout (JDK 1.0)
java.awt.Button (JDK 1.0)
java.awt.Canvas (JDK 1.0)
java.awt.CardLayout (JDK 1.0)
java.awt.Checkbox (JDK 1.0)
java.awt.CheckboxGroup (JDK 1.0)
java.awt.CheckboxMenuItem (JDK 1.0)
java.awt.Choice (JDK 1.0)
java.awt.Color (JDK 1.0)
java.awt.Component (JDK 1.0)
java.awt.Container (JDK 1.0)
java.awt.Cursor (JDK 1.1)
java.awt.Dialog (JDK 1.0)
java.awt.Dimension (JDK 1.0)
java.awt.Event (JDK 1.0)
java.awt.EventQueue (JDK 1.1)
java.awt.FileDialog (JDK 1.0)
java.awt.FlowLayout (JDK 1.0)
java.awt.Font (JDK 1.0)
java.awt.FontMetrics (JDK 1.0)
java.awt.Frame (JDK 1.0)
java.awt.Graphics (JDK 1.0)

java.awt.GridBagConstraints (JDK 1.0)
java.awt.GridBagLayout (JDK 1.0)
java.awt.GridLayout (JDK 1.0)
java.awt.IllegalComponentStateException (JDK 1.1)
java.awt.Image (JDK 1.0)
java.awt.Insets (JDK 1.0)
java.awt.ItemSelectable (JDK 1.1)
java.awt.Label (JDK 1.0)
java.awt.LayoutManager (JDK 1.0)
java.awt.LayoutManager2 (JDK 1.1)
java.awt.List (JDK 1.0)
java.awt.MediaTracker (JDK 1.0)
java.awt.Menu (JDK 1.0)
java.awt.MenuBar (JDK 1.0)
java.awt.MenuComponent (JDK 1.0)
java.awt.MenuContainer (JDK 1.0)
java.awt.MenuItem (JDK 1.0)
java.awt.MenuShortcut (JDK 1.1)
java.awt.Panel (JDK 1.0)
java.awt.Point (JDK 1.0)
java.awt.Polygon (JDK 1.0)
java.awt.PopupMenu (JDK 1.1)
java.awt.PrintGraphics (JDK 1.1)
java.awt.PrintJob (JDK 1.1)
java.awt.Rectangle (JDK 1.0)
java.awt.ScrollPane (JDK 1.1)
java.awt.Scrollbar (JDK 1.0)
java.awt.Shape (JDK 1.1)
java.awt.SystemColor (JDK 1.1)
java.awt.TextArea (JDK 1.0)
java.awt.TextComponent (JDK 1.0)
java.awt.TextField (JDK 1.0)
java.awt.Toolkit (JDK 1.0)
java.awt.Window (JDK 1.0)

The java.awt package is the Abstract Windowing Toolkit. The classes of this package may be roughly
divided into three categories (see Figure 18.1 and Figure 18.2).

● Graphics: These classes define colors, fonts, images, polygons, and so forth.

● Components: These classes are GUI (graphical user interface) components such as buttons,
menus, lists, and dialog boxes.

● Layout Managers: These classes control the layout of components within their container objects.

Note that separate packages, java.awt.datatransfer, java.awt.event, and
java.awt.image, contain classes for cut-and-paste, event handling, and image manipulation.

Figure 18.1: Graphics, event, and exception classes of the java.awt package

In the first category of classes, Graphics is probably the most important. This class defines methods
for doing line and text drawing and image painting. It relies on other classes such as Color, Font,
Image, and Polygon. Image is itself an important class, used in many places in java.awt and
throughout the related package java.awt.image. Event is another important class that describes a
user or window system event that has occurred. In Java 1.1, Event is superseded by the AWTEvent
class.

Component and MenuComponent are root classes in the second category of java.awt classes.
Their subclasses are GUI components that can appear in interfaces and menus. The Container class is
one that contains components and arranges them visually. You add components to a container with the
add() method and specify a layout manager for the container with the setLayout() method.

There are three commonly used Container subclasses. Frame is a toplevel window that can contain a
menu bar and have a custom cursor and an icon. Dialog is a dialog window. Panel is a container that
does not have its own window--it is contained within some other container.

The third category of java.awt classes is the layout managers. The subclasses of LayoutManager
are responsible for arranging the Component objects contained within a specified Container.
GridBagLayout, BorderLayout, and GridLayout are probably the most useful of these layout
managers.

See Chapter 8, New AWT Features, for examples of using some of the new Java 1.1 features of this
package.

Figure 18.2: Component and layout classes of the java.awt package

18.1 java.awt.AWTError (JDK 1.0)

Signals that an error has occurred in the java.awt package.

public class AWTError extends Error {

 // Public Constructor
 public AWTError(String msg);
}

Hierarchy:

Object->Throwable(Serializable)->Error->AWTError

java.applet.AudioClip (JDK
1.0)

java.awt.AWTEvent (JDK
1.1)

Chapter 8

8. New AWT Features
Contents:
The ScrollPane Container
Popup Menus and Menu Shortcuts
Printing
Data Transfer with Cut-and-Paste
New Feature Demo

In addition to the new AWT event model that we saw in Chapter 7, Events, there are a number of important
new AWT features in Java 1.1. These new features were outlined in Chapter 4, What's New in Java 1.1. This
chapter details many of those new features and demonstrates them in a single extended example application at
the end of the chapter. The major features of the example are:

● The new ScrollPane component

● Popup menus and menu shortcuts

● Printing

● Data transfer through cut-and-paste

In addition, the example also demonstrates the use of object serialization to save and load application state.
This functionality is described in Chapter 9, Object Serialization.

8.1 The ScrollPane Container

The new ScrollPane container holds a single child component that is usually larger than the
ScrollPane itself. The ScrollPane displays a fixed-size area of the child and provides horizontal and
vertical scrollbars so the user can scroll the child component within the "viewport" of the ScrollPane.
Figure 8.1 shows a top-level window created by the application listed in Example 8.1 at the end of this
chapter. As you can see, the application creates a ScrollPane container to hold the larger Scribble

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_05.htm#JNUT2-CH-8-EX-1

component that supports free-hand drawing.

Figure 8.1: New AWT features demo application

[Graphic: Figure 8-1]

The ScrollPane is quite easy to use. Simply create it and add a child component as you would with any
other container. Note, however, that ScrollPane only supports a single child and it cannot have a
LayoutManager specified. The ScrollPane is created in the ScribbleFrame() constructor of the
example. The important thing to note is that the ScrollPane does not have any preferred or natural size of
its own, so you should use setSize() to specify the size you want it to be. The ScrollPane class defines
three constants that are legal values of its "scrollbar display policy." Because the example does not specify one
of these constants, the policy defaults to SCROLLBARS_AS_NEEDED, which indicates that scrollbars are
displayed for any dimension in which the contained child is larger than the available "viewport" space of the
ScrollPane container.

Here is an excerpt of the ScribbleFrame() constructor that shows the creation of the ScrollPane:

ScrollPane pane = new ScrollPane(); // Create a ScrollPane.
pane.setSize(300, 300); // Specify its size.
this.add(pane, "Center"); // Add it to the frame.
Scribble scribble;
scribble = new Scribble(this, 500, 500); // Create a bigger scribble area.
pane.add(scribble); // Add it to the ScrollPane.

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_02.htm

Inside the Java 1.1 Event
Model

Popup Menus and Menu
Shortcuts

Chapter 28
The java.net Package

28.23 java.net.URLConnection (JDK 1.0)

This abstract class defines a network connection to an object specified by a URL. URL.openConnection() returns a
URLConnection instance. You would use a URLConnection object when you want more control over the
downloading of data than is available through the simpler URL methods.

connect() actually performs the network connection. Other methods that depend on being connected will call this
method. getContent() returns the data referred to by the URL, parsed into an appropriate type of Object. If the URL
protocol supports read and write operations, then getInputStream() and getOutputStream() respectively return
input and output streams to the object referred to by the URL.

getContentLength(), getContentType(), getContentEncoding(), getExpiration(), getDate(),
and getLastModified() return the appropriate information about the object referred to by the URL, if that information
can be determined (e.g., from HTTP header fields). getHeaderField() returns an HTTP header field specified by
name or by number. getHeaderFieldInt() and getHeaderFieldDate() return the value of a named header
field parsed as an integer or a date.

There are a number of options that you may specify to control how the URLConnection behaves. These options are set
with the various set() methods, and may be queried with corresponding get() methods. The options must be set before
the connect() method is called. setDoInput() and setDoOutput() allow you to specify whether you use the
URLConnection for input and/or output. The default is input-only. setAllowUserInteraction() specifies
whether user interaction (such as typing a password) is allowed during the data transfer. The initial default is false.
setDefaultAllowUserInteraction() is a class method that allows you to change the default value for user
interaction. setUseCaches() allows you to specify whether a cached version of the URL may be used. You can set this
to false to force a URL to be reloaded. setDefaultUseCaches() sets the default value for setUseCaches().
setIfModifiedSince() allows you to specify that a URL should not be fetched (if it is possible to determine its
modification date) unless it has been modified since a specified time.

public abstract class URLConnection extends Object {
 // Protected Constructor
 protected URLConnection(URL url);
 // Class Variables
 1.1public static FileNameMap fileNameMap;
 // Protected Instance Variables
 protected boolean allowUserInteraction;
 protected boolean connected;
 protected boolean doInput;
 protected boolean doOutput;
 protected long ifModifiedSince;
 protected URL url;

 protected boolean useCaches;
 // Class Methods
 public static boolean getDefaultAllowUserInteraction();
 public static String getDefaultRequestProperty(String key);
 protected static String guessContentTypeFromName(String fname);
 public static String guessContentTypeFromStream(InputStream is) throws
IOException;
 public static synchronized void
setContentHandlerFactory(ContentHandlerFactory fac);
 public static void setDefaultAllowUserInteraction(boolean
defaultallowuserinteraction);
 public static void setDefaultRequestProperty(String key, String value);
 // Public Instance Methods
 public abstract void connect() throws IOException;
 public boolean getAllowUserInteraction();
 public Object getContent() throws IOException;
 public String getContentEncoding();
 public int getContentLength();
 public String getContentType();
 public long getDate();
 public boolean getDefaultUseCaches();
 public boolean getDoInput();
 public boolean getDoOutput();
 public long getExpiration();
 public String getHeaderField(String name);
 public String getHeaderField(int n);
 public long getHeaderFieldDate(String name, long Default);
 public int getHeaderFieldInt(String name, int Default);
 public String getHeaderFieldKey(int n);
 public long getIfModifiedSince();
 public InputStream getInputStream() throws IOException;
 public long getLastModified();
 public OutputStream getOutputStream() throws IOException;
 public String getRequestProperty(String key);
 public URL getURL();
 public boolean getUseCaches();
 public void setAllowUserInteraction(boolean allowuserinteraction);
 public void setDefaultUseCaches(boolean defaultusecaches);
 public void setDoInput(boolean doinput);
 public void setDoOutput(boolean dooutput);
 public void setIfModifiedSince(long ifmodifiedsince);
 public void setRequestProperty(String key, String value);
 public void setUseCaches(boolean usecaches);
 public String toString(); // Overrides Object
}

Extended By:

HttpURLConnection

Passed To:

ContentHandler.getContent()

Returned By:

URL.openConnection(), URLStreamHandler.openConnection()

java.net.URL (JDK 1.0) java.net.URLEncoder (JDK
1.0)

Chapter 28
The java.net Package

28.25 java.net.URLStreamHandler (JDK 1.0)

This abstract class defines the openConnection() method that creates a URLConnection for a given URL. A
separate subclass of this class may be defined for various URL protocol types. A URLStreamHandler is created by
a URLStreamHandlerFactory.

Normal applications never need to use or subclass this class.

public abstract class URLStreamHandler extends Object {
 // Default Constructor: public URLStreamHandler()
 // Protected Instance Methods
 protected abstract URLConnection openConnection(URL u) throws
IOException;
 protected void parseURL(URL u, String spec, int start, int limit);
 protected void setURL(URL u, String protocol, String host, int port,
String file, String ref);
 protected String toExternalForm(URL u);
}

Returned By:

URLStreamHandlerFactory.createURLStreamHandler()

java.net.URLEncoder (JDK
1.0)

java.net.URLStreamHandlerFactory
(JDK 1.0)

Chapter 13
Java Syntax

13.2 Character Escape Sequences

Java uses the escape sequences listed in Table 13.2 to represent certain special character values. These
escape sequences may appear in any Java char or String literal.

Table 13.2: Java Escape Characters

Escape Sequence Character Value

\b Backspace

\t Horizontal tab

\n Newline

\f Form feed

\r Carriage return

\" Double quote

\' Single quote

\\ Backslash

\xxx
The character corresponding to the octal value xxx, where xxx is between 000 and
0377.

\uxxxx
The Unicode character with encoding xxxx, where xxxx is one to four
hexidecimal digits. Unicode escapes are distinct from the other escape types listed
here; they are described below in more detail.

Java characters, strings, and identifiers (e.g., field, method, and class names) are composed of 16-bit
Unicode characters. The Unicode \u escape sequence may be used anywhere in a Java program (not
only in char and String literals) to represent a Unicode character.

Unicode \u escape sequences are processed before the other escape sequences described in Character
Escape Sequences, and thus the two types of escape sequences can have very different semantics. A

Unicode escape is simply an alternative way to represent a character which may not be displayable on
non-Unicode systems. The character escapes, however, can represent special characters in a way that
prevents the usual interpretation of those characters by the compiler.

Primitive Data Types Operators

Chapter 13
Java Syntax

13.4 Modifiers

There are quite a few Java keywords that serve as modifiers for Java classes, interfaces, methods, and
fields. They are described in Table 13.4.

Table 13.4: Java Modifiers

Modifier Used On Meaning

abstract

class The class contains unimplemented methods and cannot be instantiated.

interface
All interfaces are abstract. The modifier is optional in interface
declarations.

method
No body is provided for the method (it is provided by a subclass). The
signature is followed by a semicolon. The enclosing class must also be
abstract.

final

class The class may not be subclassed.

field
The field may not have its value changed (compiler may precompute
expressions).

method The method may not be overridden (compiler may optimize).

variable
Java 1.1 and later: the local variable or method or exception parameter may
not have its value changed.

native method
The method is implemented in C, or in some other platform-dependent way.
No body is provided; the signature is followed by a semicolon.

none (package)

class A non-public class is accessible only in its package

interface A non-public interface is accessible only in its package

member
A member that is not private, protected, or public has package
visiblity and is accessible only within its package.

private member The member is only accessible within the class that defines it.

protected member
The member is only accessible within the package in which it is defined,
and within subclasses.

public

class The class is accessible anywhere its package is.

interface The interface is accessible anywhere its package is.

member The member is accessible anywhere its class is.

static

class In Java 1.1, a class delared static is a toplevel class, not an inner class.

field
A static field is a "class field." There is only one instance of the field,
regardless of the number of class instances created. It may be accessed
through the class name.

initializer
The intializer is run when the class is loaded, rather than when an instance is
created.

method
A static method is a "class method." It is not passed as an implicit this
object reference. It may be invoked through the class name.

synchronized method

The method makes non-atomic modifications to the class or instance, and
care must be taken to ensure that two threads cannot modify the class or
instance at the same time. For a static method, a lock for the class is
acquired before executing the method. For a non-static method, a lock
for the specific object instance is acquired.

transient field
The field is not part of the persistent state of the object, and should not be
serialized with the object.

volatile field
The field may be accessed by unsynchronized threads, so certain code
optimizations must not be performed on it.

Table 13.5 summarizes the visibility modifiers; it shows the circumstances under which class members
of the various visibility types are accessible.

Table 13.5: Class Member Accessibility

Accessible to:
Member Visibility

public protected package private

Same class yes yes yes yes

Class in same package yes yes yes no

Subclass in different package yes yes no no

Non-subclass, different package yes no no no

Operators Reserved Words

Chapter 13
Java Syntax

13.5 Reserved Words

Table 13.6 lists reserved words in Java. These are keywords or boolean literal values. Note that
byvalue, cast, const, future, generic, goto, inner, operator, outer, rest, and var
are reserved by Java but currently unused.

Table 13.6: Java Reserved Words

abstract default goto operator synchronized

boolean do if outer this

break double implements package throw

byte else import private throws

byvalue extends inner protected transient

case false instanceof public true

cast final int rest try

catch finally interface return var

char float long short void

class for native static volatile

const future new super while

continue generic null switch

Reserved Method Names

Table 13.7 lists the method names of the Object class. Strictly speaking, these method names are not
reserved, but since the methods are inherited by every class, they should not be used as the name of a
method, except when intentionally overriding an Object method.

Table 13.7: Reserved Method
Names

clone getClass notifyAll

equals hashCode toString

finalize notify wait

Modifiers Java Documentation
Comment Syntax

Preface

Acknowledgments

Many people contributed to putting this book together under a schedule that became increasingly rushed
as time passed. Thanks to their efforts, we gave birth to something we can all be proud of.

Foremost we would like to thank Tim O'Reilly for giving us the opportunity to write this book. Special
thanks to Mike Loukides, the series editor, whose endless patience and experience got us through the
difficult parts and to Paula Ferguson, whose organizational and editing abilities got the material into its
final form. It's due largely to Mike and Paula's tireless efforts that this book has gotten to you as quickly
as it has. We could not have asked for a more skillful or responsive team of people with whom to work.

Particular thanks are due to our technical reviewers: Andrew Cohen, Eric Raymond, and Lisa Farley. All
of them gave thorough reviews that were invaluable in assembling the final draft. Eric contributed many
bits of text that eventually found their way into the book.

Speaking of borrowings, the original version of the glossary came from David Flanagan's book, Java in a
Nutshell. We also borrowed the class hierarchy diagrams from David's book. These diagrams were based
on similar diagrams by Charles L. Perkins. His original diagrams are available at
http://rendezvous.com/java/.

Thanks also to Marc Wallace and Steven Burkett for reading the book in progress. As for the crowd in
St. Louis: a special thanks to LeeAnn Langdon of the Library Ltd. and Kerri Bonasch. Deepest thanks to
Victoria Doerr for her patience and love. Finally, thanks for the support of the "lunch" crowd: Karl
"Gooch" Stefvater, Bryan "Butter" O'Connor, Brian "Brian" Gottlieb, and the rest of the clan at
Washington University.

Many people in O'Reilly's production and design groups contributed their blood, sweat, and tears to the
project. Mary Anne Weeks Mayo was production editor and copy editor, and had the stress-filled job of
working under a very tight deadline with chapters arriving asynchronously (which means at random and
later than expected). Seth Maislin wrote the index, and Stephen Spainhour adapted David Flanagan's
glossary for this book. Chris Reilley converted rough diagrams into professional technical illustrations.
Erik Ray, Ellen Siever, and Lenny Muellner converted HTML files into SGML and made sure we could

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch00_05.htm
file:///C|/download/rendezvous.com/java/default.htm

convert electrons into paper without mishap. Lenny also implemented a new design for this book, which
was created by Nancy Priest. Hanna Dyer created the back cover; Edie Freedman designed the front
cover.

Conventions Used in This
Book

Yet Another Language?

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch00_05.htm

Chapter 1
Yet Another Language?

1.2 A Virtual Machine

Java is both a compiled and an interpreted language. Java source code is turned into simple binary
instructions, much like ordinary microprocessor machine code. However, whereas C or C++ source is
refined to native instructions for a particular model of processor, Java source is compiled into a universal
format--instructions for a virtual machine.

Compiled Java byte-code, also called J-code, is executed by a Java run-time interpreter. The run-time
system performs all the normal activities of a real processor, but it does so in a safe, virtual environment.
It executes the stack-based instruction set and manages a storage heap. It creates and manipulates
primitive data types, and loads and invokes newly referenced blocks of code. Most importantly, it does
all this in accordance with a strictly defined open specification that can be implemented by anyone who
wants to produce a Java-compliant virtual machine. Together, the virtual machine and language
definition provide a complete specification. There are no features of Java left undefined or
implementation dependent. For example, Java specifies the sizes of all its primitive data types, rather
than leave it up to each implementation.

The Java interpreter is relatively lightweight and small; it can be implemented in whatever form is
desirable for a particular platform. On most systems, the interpreter is written in a fast, natively compiled
language like C or C++. The interpreter can be run as a separate application, or it can be embedded in
another piece of software, such as a Web browser.

All of this means that Java code is implicitly portable. The same Java application can run on any
platform that provides a Java run-time environment, as shown in Figure 1.1. You don't have to produce
alternate versions of your application for different platforms, and you never have to distribute source
code to end users.

Figure 1.1: Java virtual machine environment

[Graphic: Figure 1-1]

The fundamental unit of Java code is the class. As in other object-oriented languages, classes are
application components that hold executable code and data. Compiled Java classes are distributed in a
universal binary format that contains Java byte-code and other class information. Classes can be
maintained discretely and stored in files or archives on a local system or on a network server. Classes are
located and loaded dynamically at run-time, as they are needed by an application.

In addition to the platform-specific run-time system, Java has a number of fundamental classes that
contain architecture-dependent methods. These native methods serve as Java's gateway to the real world.
These methods are implemented in a native language on the host platform. They provide access to
resources such as the network, the windowing system, and the host filesystem. The rest of Java is written
entirely in Java, and is therefore portable. This includes fundamental Java utilities like the Java compiler,
which is also a Java application and is therefore immediately available on all Java platforms.

In general, interpreters are slow, but because the Java interpreter runs compiled byte-code, Java is a fast
interpreted language. Java has also been designed so that software implementations of the run-time
system can optimize their performance by compiling byte-code to native machine code on the fly. This is
called "just in time" compilation. Sun claims that with just in time compilation, Java code can execute
nearly as fast as native compiled code and maintain its transportability and security. The one
performance hit that natively compiled Java code will always suffer is array bounds checking. But on the
other hand, some of the basic design features of Java place more information in the hands of the
compiler, which allows for certain kinds of optimizations not possible in C or C++.

Enter Java Java Compared

Chapter 1
Yet Another Language?

1.3 Java Compared

Java is a new language, but it draws on many years of programming experience with other languages in
its choice of features. So a lot can be said in comparing and contrasting Java with other languages. There
are at least three pillars necessary to support a universal language for network programming today:
portability, speed, and security. Figure 1.2 shows how Java compares to other languages.

Figure 1.2: Programming languages compared

[Graphic: Figure 1-2]

You may have heard that Java is a lot like C or C++, but that's really not true, except at a superficial level.
When you first look at Java code, you'll see that the basic syntax looks a lot like C or C++. But that's
where the similarities end. Java is by no means a direct descendant of C or a next generation C++. If you
compare language features, you'll see that Java actually has more in common with languages like
Smalltalk and Lisp. In fact, Java's implementation is about as far from native C as you can imagine.

The surface-level similarities to C and C++ are worth noting, however. Java borrows heavily from C and
C++ syntax, so you'll see lots of familiar language constructs, including an abundance of curly braces and
semicolons. Java also subscribes to the C philosophy that a good language should be compact; in other
words, it should be sufficiently small and regular so that a programmer can hold all the language's

capabilities in his or her head at once. As C is extensible with libraries, packages of Java classes can be
added to the core language components.

C has been successful because it provides a reasonably featureful programming environment, with high
performance and an acceptable degree of portability. Java also tries to balance functionality, speed, and
portability, but it does so in a very different way. While C trades functionality to get portability, Java
trades speed for portability. Java also addresses security issues, while C doesn't.

Java is an interpreted language, so it won't be as fast as a compiled language like C. But Java is fast
enough, especially for interactive, network-based applications, where the application is often idle, waiting
for the user to do something or waiting for data from the network. For situations where speed is critical, a
Java implementation can optimize performance by compiling byte-code to native machine code on the
fly.

Scripting languages, like Tcl, Perl, and Wksh, are becoming quite popular, and for good reason. There's
no reason a scripting language could not be suitable for safe, networked applications (e.g., Safe Tcl), but
most scripting languages are not designed for serious, large-scale programming. The attraction to
scripting languages is that they are dynamic; they are powerful tools for rapid prototyping. Some scripting
languages, like awk and Perl, also provide powerful tools for text-processing tasks more general-purpose
languages find unwieldy. Scripting languages are also highly portable.

One problem with scripting languages, however, is that they are rather casual about program structure and
data typing. Most scripting languages (with a hesitant exception for Perl 5.0) are not object oriented. They
also have vastly simplified type systems and generally don't provide for sophisticated scoping of variables
and functions. These characteristics make them unsuitable for building large, modular applications. Speed
is another problem with scripting languages; the high-level, fully interpreted nature of these languages
often makes them quite slow.

Java offers some of the essential advantages of a scripting language, along with the added benefits of a
lower-level language.[1] Incremental development with object-oriented components, combined with
Java's simplicity, make it possible to develop applications rapidly and change them easily, with a short
concept to implementation time. Java also comes with a large base of core classes for common tasks such
as building GUIs and doing network communications. But along with these features, Java has the
scalability and software-engineering advantages of more static languages. It provides a safe structure on
which to build higher-level networked tools and languages.

[1] Don't confuse Java with JavaScript. JavaScript is an object-based scripting language
being developed by Netscape and is designed to create dynamic, interactive Web
applications. JavaScript is a very different language from Java in most respects. For more
information on JavaScript, check out Netscape's Web site (http://home.netscape.com).

As I've already said, Java is similar in design to languages like Smalltalk and Lisp. However, these

file:///C|/download/home.netscape.com/default.htm

languages are used mostly as research vehicles, rather than for developing large-scale systems. One
reason is that they never developed a standard portable binding to operating-system services analogous to
the C standard library or the Java core classes. Smalltalk is compiled to an interpreted byte-code format,
and it can be dynamically compiled to native code on the fly, just like Java. But Java improves on the
design by using a byte-code verifier to ensure the correctness of Java code. This verifier gives Java a
performance advantage over Smalltalk because Java code requires fewer run-time checks. Java's byte-
code verifier also helps with security issues, something that Smalltalk doesn't address. Smalltalk is a
mature language though, and Java's designers took lessons from many of its features.

Throughout the rest of this chapter, we'll take a bird's eye view of the Java language. I'll explain what's
new and what's not so new about Java; how it differs from other languages, and why.

A Virtual Machine Safety of Design

Chapter 1
Yet Another Language?

1.4 Safety of Design

You have no doubt heard a lot about the fact that Java is designed to be a safe language. But what do we
mean by safe? Safe from what or whom? The security features that attract the most attention for Java are
those features that make possible new types of dynamically portable software. Java provides several
layers of protection from dangerously flawed code, as well as more mischievous things like viruses and
trojan horses. In the next section, we'll take a look at how the Java virtual machine architecture assesses
the safety of code before it's run, and how the Java class loader builds a wall around untrusted classes.
These features provide the foundation for high-level security policies that allow or disallow various kinds
of activities on an application-by-application basis.

In this section though, we'll look at some general features of the Java programming language. What is
perhaps more important, although often overlooked in the security din, is the safety that Java provides by
addressing common design and programming problems. Java is intended to be as safe as possible from
the simple mistakes we make ourselves, as well as those we inherit from contractors and third-party
software vendors. The goal with Java has been to keep the language simple, provide tools that have
demonstrated their usefulness, and let users build more complicated facilities on top of the language
when needed.

Syntactic Sweet 'n Low

Java is parsimonious in its features; simplicity rules. Compared to C, Java uses few automatic type
coercions, and the ones that remain are simple and well-defined. Unlike C++, Java doesn't allow
programmer-defined operator overloading. The string concatenation operator + is the only system-
defined, overloaded operator in Java. All methods in Java are like C++ virtual methods, so overridden
methods are dynamically selected at run-time.

Java doesn't have a preprocessor, so it doesn't have macros, #define statements, or conditional source
compilation. These constructs exist in other languages primarily to support platform dependencies, so in
that sense they should not be needed in Java. Another common use for conditional compilation is for
debugging purposes. Debugging code can be included directly in your Java source code by making it

conditional on a constant (i.e., static and final) variable. The Java compiler is smart enough to
remove this code when it determines that it won't be called.

Java provides a well-defined package structure for organizing class files. The package system allows the
compiler to handle most of the functionality of make. The compiler also works with compiled Java
classes because all type information is preserved; there is no need for header files. All of this means that
Java code requires little context to read. Indeed, you may sometimes find it faster to look at the Java
source code than to refer to class documentation.

Java replaces some features that have been troublesome in other languages. For example, Java supports
only a single inheritance class hierarchy, but allows multiple inheritance of interfaces. An interface, like
an abstract class in C++, specifies the behavior of an object without defining its implementation, a
powerful mechanism borrowed from Objective C. It allows a class to implement the behavior of the
interface, without needing to be a subclass of the interface. Interfaces in Java eliminate the need for
multiple inheritance of classes, without causing the problems associated with multiple inheritance.

As you'll see in Chapter 4, The Java Language, Java is a simple, yet elegant, programming language.

Type Safety and Method Binding

One attribute of a language is the kind of type checking it uses. When we categorize a language as static
or dynamic we are referring to the amount of information about variable types that is known at compile
time versus what is determined while the application is running.

In a strictly statically typed language like C or C++, data types are etched in stone when the source code
is compiled. The compiler benefits from having enough information to enforce usage rules, so that it can
catch many kinds of errors before the code is executed. The code doesn't require run-time type checking,
which is advantageous because it can be compiled to be small and fast. But statically typed languages are
inflexible. They don't support high-level constructs like lists and collections as naturally as languages
with dynamic type checking, and they make it impossible for an application to safely import new data
types while it's running.

In contrast, a dynamic language like Smalltalk or Lisp has a run-time system that manages the types of
objects and performs necessary type checking while an application is executing. These kinds of
languages allow for more complex behavior, and are in many respects more powerful. However, they are
also generally slower, less safe, and harder to debug.

The differences in languages have been likened to the differences between kinds of automobiles.[2]
Statically typed languages like C++ are analogous to a sports car--reasonably safe and fast--but useful
only if you're driving on a nicely paved road. Highly dynamic languages like Smalltalk are more like an
offroad vehicle: they afford you more freedom, but can be somewhat unwieldy. It can be fun (and
sometimes faster) to go roaring through the back woods, but you might also get stuck in a ditch or

mauled by bears.

[2] The credit for the car analogy goes to Marshall P. Cline, author of the C++ FAQ.

Another attribute of a language deals with when it binds method calls to their definitions. In an early-
binding language like C or C++, the definitions of methods are normally bound at compile-time, unless
the programmer specifies otherwise. Smalltalk, on the other hand, is a late-binding language because it
locates the definitions of methods dynamically at run-time. Early-binding is important for performance
reasons; an application can run without the overhead incurred by searching method tables at run-time.
But late-binding is more flexible. It's also necessary in an object-oriented language, where a subclass can
override methods in its superclass, and only the run-time system can determine which method to run.

Java provides some of the benefits of both C++ and Smalltalk; it's a statically typed, late-binding
language. Every object in Java has a well-defined type that is known at compile time. This means the
Java compiler can do the same kind of static type checking and usage analysis as C++. As a result, you
can't assign an object to the wrong type of reference or call nonexistent methods within it. The Java
compiler goes even further and prevents you from messing up and trying to use uninitialized variables.

However, Java is fully run-time typed as well. The Java run-time system keeps track of all objects and
makes it possible to determine their types and relationships during execution. This means you can inspect
an object at run-time to determine what it is. Unlike C or C++, casts from one type of object to another
are checked by the run-time system, and it's even possible to use completely new kinds of dynamically
loaded objects with a level of type safety.

Since Java is a late-binding language, all methods are like virtual methods in C++. This makes it possible
for a subclass to override methods in its superclass. But Java also allows you to gain the performance
benefits of early-binding by declaring (with the final modifier) that certain methods can't be
overridden by subclassing, removing the need for run-time lookup.

Incremental Development

Java carries all data-type and method-signature information with it from its source code to its compiled
byte-code form. This means that Java classes can be developed incrementally. Your own Java classes can
also be used safely with classes from other sources your compiler has never seen. In other words, you can
write new code that references binary class files, without losing the type safety you gain from having the
source code. The Java run-time system can load new classes while an application is running, thus
providing the capabilities of a dynamic linker.

A common irritation with C++ is the "fragile base class" problem. In C++, the implementation of a base
class can be effectively frozen by the fact that it has many derived classes; changing the base class may
require recompilation of the derived classes. This is an especially difficult problem for developers of
class libraries. Java avoids this problem by dynamically locating fields within classes. As long as a class

maintains a valid form of its original structure, it can evolve without breaking other classes that are
derived from it or that make use of it.

Dynamic Memory Management

Some of the most important differences between Java and C or C++ involve how Java manages memory.
Java eliminates ad hoc pointers and adds garbage collection and true arrays to the language. These
features eliminate many otherwise insurmountable problems with safety, portability, and optimization.

Garbage collection alone should save countless programmers from the single largest source of
programming errors in C or C++: explicit memory allocation and deallocation. In addition to maintaining
objects in memory, the Java run-time system keeps track of all references to those objects. When an
object is no longer in use, Java automatically removes it from memory. You can simply throw away
references to objects you no longer use and have confidence that the system will clean them up at an
appropriate time. Sun's current implementation of Java uses a conservative, mark and sweep garbage
collector that runs intermittently in the background, which means that most garbage collecting takes
place between mouse clicks and keyboard hits. Once you get used to garbage collection, you won't go
back. Being able to write air-tight C code that juggles memory without dropping any on the floor is an
important skill, but once you become addicted to Java you can "realloc" some of those brain cells to new
tasks.

You may hear people say that Java doesn't have pointers. Strictly speaking, this statement is true, but it's
also misleading. What Java provides are references--a safe kind of pointer--and Java is rife with them. A
reference is a strongly typed handle for an object. All objects in Java, with the exception of primitive
numeric types, are accessed through references. If necessary, you can use references to build all the
normal kinds of data structures you're accustomed to building with pointers, like linked lists, trees, and so
forth. The only difference is that with references you have to do so in a type-safe way.

Another important difference between a reference and a pointer is that you can't do pointer arithmetic
with references. A reference is an atomic thing; you can't manipulate the value of a reference except by
assigning it to an object. References are passed by value, and you can't reference an object through more
than a single level of indirection. The protection of references is one of the most fundamental aspects of
Java security. It means that Java code has to play by the rules; it can't peek into places it shouldn't.

Unlike C or C++ pointers, Java references can point only to class types. There are no pointers to
methods. People often complain about this missing feature, but you will find that most tasks that call for
pointers to methods, such as callbacks, can be accomplished using interfaces and anonymous adapter
classes instead. [3]

[3] Java 1.1 does have a Method class, which lets you have a reference to a method. You
can use a Method object to construct a callback, but it's tricky.

Finally, arrays in Java are true, first-class objects. They can be dynamically allocated and assigned like
other objects. Arrays know their own size and type, and although you can't directly define array classes
or subclass them, they do have a well-defined inheritance relationship based on the relationship of their
base types. Having true arrays in the language alleviates much of the need for pointer arithmetic like that
in C or C++.

Error Handling

Java's roots are in networked devices and embedded systems. For these applications, it's important to
have robust and intelligent error management. Java has a powerful exception-handling mechanism,
somewhat like that in newer implementations of C++. Exceptions provide a more natural and elegant
way to handle errors. Exceptions allow you to separate error-handling code from normal code, which
makes for cleaner, more readable applications.

When an exception occurs, it causes the flow of program execution to be transferred to a predesignated
catcher block of code. The exception carries with it an object that contains information about the
situation that caused the exception. The Java compiler requires that a method either declare the
exceptions it can generate or catch and deal with them itself. This promotes error information to the same
level of importance as argument and return typing. As a Java programmer, you know precisely what
exceptional conditions you must deal with, and you have help from the compiler in writing correct
software that doesn't leave them unhandled.

Multithreading

Applications today require a high degree of parallelism. Even a very single-minded application can have
a complex user interface. As machines get faster, users become more sensitive to waiting for unrelated
tasks that seize control of their time. Threads provide efficient multiprocessing and distribution of tasks.
Java makes threads easy to use because support for them is built into the language.

Concurrency is nice, but there's more to programming with threads than just performing multiple tasks
simultaneously. In many cases, threads need to be synchronized, which can be tricky without explicit
language support. Java supports synchronization based on the monitor and condition model developed by
C.A.R. Hoare--a sort of lock and key system for accessing resources. A keyword, synchronized,
designates methods for safe, serialized access within an object. Only one synchronized method within the
object may run at a given time. There are also simple, primitive methods for explicit waiting and
signaling between threads interested in the same object.

Learning to program with threads is an important part of learning to program in Java. See Chapter 6,
Threads for a discussion of this topic. For complete coverage of threads, see Java Threads, by Scott Oaks
and Henry Wong (O'Reilly & Associates).

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm

Scalability

At the lowest level, Java programs consist of classes. Classes are intended to be small, modular
components. They can be separated physically on different systems, retrieved dynamically, and even
cached in various distribution schemes. Over classes, Java provides packages, a layer of structure that
groups classes into functional units. Packages provide a naming convention for organizing classes and a
second level of organizational control over the visibility of variables and methods in Java applications.

Within a package, a class is either publicly visible or protected from outside access. Packages form
another type of scope that is closer to the application level. This lends itself to building reusable
components that work together in a system. Packages also help in designing a scalable application that
can grow without becoming a bird's nest of tightly coupled code dependency.

Java Compared Safety of Implementation

Chapter 1
Yet Another Language?

1.5 Safety of Implementation

It's one thing to create a language that prevents you from shooting yourself in the foot; it's quite another
to create one that prevents others from shooting you in the foot.

Encapsulation is a technique for hiding data and behavior within a class; it's an important part of object-
oriented design. It helps you write clean, modular software. In most languages however, the visibility of
data items is simply part of the relationship between the programmer and the compiler. It's a matter of
semantics, not an assertion about the actual security of the data in the context of the running program's
environment.

When Bjarne Stroustrup chose the keyword private to designate hidden members of classes in C++,
he was probably thinking about shielding you from the messy details of a class developer's code, not the
issues of shielding that developer's classes and objects from the onslaught of someone else's viruses and
trojan horses. Arbitrary casting and pointer arithmetic in C or C++ make it trivial to violate access
permissions on classes without breaking the rules of the language. Consider the following code:

// C++

class Finances {
 private:
 char creditCardNumber[16];
 ...
 };

main() {
 Finances finances;

 // Forge a pointer to peek inside the class
 char *cardno = (char *)finances;
 printf("Card Number = %s\n", cardno);
}

In this little C++ drama, we have written some code that violates the encapsulation of the Finances
class and pulls out some secret information. If this example seems unrealistic, consider how important it
is to protect the foundation (system) classes of the run-time environment from similar kinds of attacks. If
untrusted code can corrupt the components that provide access to real resources, such as the filesystem,
the network, or the windowing system, it certainly has a chance at stealing your credit card numbers.

In Visual BASIC, it's also possible to compromise the system by peeking, poking, and, under DOS,
installing interrupt handlers. Even some recent languages that have some commonalities with Java lack
important security features. For example, the Apple Newton uses an object-oriented language called
NewtonScript that is compiled into an interpreted byte-code format. However, NewtonScript has no
concept of public and private members, so a Newton application has free reign to access any information
it finds. General Magic's Telescript language is another example of a device-independent language that
does not fully address security concerns.

If a Java application is to dynamically download code from an untrusted source on the Internet and run it
alongside applications that might contain confidential information, protection has to extend very deep.
The Java security model wraps three layers of protection around imported classes, as shown in Figure
1.3.

Figure 1.3: The Java security model

[Graphic: Figure 1-3]

At the outside, application-level security decisions are made by a security manager. A security manager
controls access to system resources like the filesystem, network ports, and the windowing environment.
A security manager relies on the ability of a class loader to protect basic system classes. A class loader
handles loading classes from the network. At the inner level, all system security ultimately rests on the
Java verifier, which guarantees the integrity of incoming classes.

The Java byte-code verifier is an integral part of the Java run-time system. Class loaders and security
managers, however, are implemented by applications that load applets, such as applet viewers and Web
browsers. All these pieces need to be functioning properly to ensure security in the Java environment.[4]

[4] You may have seen reports about various security flaws in Java. While these
weaknesses are real, it's important to realize that they have been found in the
implementations of various components, namely Sun's byte-code verifier and Netscape's
class loader and security manager, not in the basic security model itself. One of the reasons
Sun has released the source code for Java is to encourage people to search for weaknesses,
so they can be removed.

The Verifier

Java's first line of defense is the byte-code verifier. The verifier reads byte-code before they are run and
makes sure they are well-behaved and obey the basic rules of the Java language. A trusted Java compiler
won't produce code that does otherwise. However, it's possible for a mischievous person to deliberately
assemble bad code. It's the verifier's job to detect this.

Once code has been verified, it's considered safe from certain inadvertent or malicious errors. For
example, verified code can't forge pointers or violate access permissions on objects. It can't perform
illegal casts or use objects in ways other than they are intended. It can't even cause certain types of
internal errors, such as overflowing or underflowing the operand stack. These fundamental guarantees
underlie all of Java's security.

You might be wondering, isn't this kind of safety implicit in lots of interpreted languages? Well, while
it's true that you shouldn't be able to corrupt the interpreter with bogus BASIC code, remember that the
protection in most interpreted languages happens at a higher level. Those languages are likely to have
heavyweight interpreters that do a great deal of run-time work, so they are necessarily slower and more
cumbersome.

By comparison, Java byte-code is a relatively light, low-level instruction set. The ability to statically
verify the Java byte-code before execution lets the Java interpreter run at full speed with full safety,
without expensive run-time checks. Of course, you are always going to pay the price of running an
interpreter, but that's not a serious problem with the speed of modern CPUs. Java byte-code can also be
compiled on the fly to native machine code, which has even less run-time overhead.

The verifier is a type of theorem prover. It steps through the Java byte-code and applies simple, inductive
rules to determine certain aspects of how the byte-code will behave. This kind of analysis is possible
because compiled Java byte-code has a lot more type information stored within it than other languages of
this kind. The byte-code also has to obey a few extra rules that simplify its behavior. First, most byte-
code instructions operate only on individual data types. For example, with stack operations, there are
separate instructions for object references and for each of the numeric types in Java. Similarly, there is a
different instruction for moving each type of value into and out of a local variable.

Second, the type of object resulting from any operation is always known in advance. There are no byte-

code operations that consume values and produce more than one possible type of value as output. As a
result, it's always possible to look at the next instruction and its operands, and know the type of value that
will result.

Because an operation always produces a known type, by looking at the starting state, it's possible to
determine the types of all items on the stack and in local variables at any point in the future. The
collection of all this type information at any given time is called the type state of the stack; this is what
Java tries to analyze before it runs an application. Java doesn't know anything about the actual values of
stack and variable items at this time, just what kind of items they are. However, this is enough
information to enforce the security rules and to insure that objects are not manipulated illegally.

To make it feasible to analyze the type state of the stack, Java places an additional restriction on how
Java byte-code instructions are executed: all paths to the same point in the code have to arrive with
exactly the same type state.[5] This restriction makes it possible for the verifier to trace each branch of
the code just once and still know the type state at all points. Thus, the verifier can insure that instruction
types and stack value types always correspond, without actually following the execution of the code.

[5] The implications of this rule are mainly of interest to compiler writers. The rule means
that Java byte-code can't perform certain types of iterative actions within a single frame of
execution. A common example would be looping and pushing values onto the stack. This
is not allowed because the path of execution would return to the top of the loop with a
potentially different type state on each pass, and there is no way that a static analysis of the
code can determine whether it obeys the security rules.

Class Loader

Java adds a second layer of security with a class loader. A class loader is responsible for bringing Java
binary classes that contain byte-code into the interpreter. Every application that loads classes from the
network must use a class loader to handle this task.

After a class has been loaded and passed through the verifier, it remains associated with its class loader.
As a result, classes are effectively partitioned into separate namespaces based on their origin. When a
class references another class, the request is served by its original class loader. This means that classes
retrieved from a specific source can be restricted to interact only with other classes retrieved from that
same location. For example, a Java-enabled Web browser can use a class loader to build a separate space
for all the classes loaded from a given uniform resource locator (URL).

The search for classes always begins with the built-in Java system classes. These classes are loaded from
the locations specified by the Java interpreter's class path (see Chapter 3, Tools of the Trade). Classes in
the class path are loaded by the system only once and can't be replaced. This means that it's impossible
for an applet to replace fundamental system classes with its own versions that change their functionality.

Security Manager

Finally, a security manager is responsible for making application-level security decisions. A security
manager is an object that can be installed by an application to restrict access to system resources. The
security manager is consulted every time the application tries to access items like the filesystem, network
ports, external processes, and the windowing environment, so the security manager can allow or deny the
request.

A security manager is most useful for applications that run untrusted code as part of their normal
operation. Since a Java-enabled Web browser can run applets that may be retrieved from untrusted
sources on the Net, such a browser needs to install a security manager as one of its first actions. This
security manager then restricts the kinds of access allowed after that point. This lets the application
impose an effective level of trust before running an arbitrary piece of code. And once a security manager
is installed, it can't be replaced.

A security manager can be as simple or complex as a particular application warrants. Sometimes it's
sufficient simply to deny access to all resources or to general categories of services such as the filesystem
or network. But it's also possible to make sophisticated decisions based on high-level information. For
example, a Java-enabled Web browser could implement a security manager that lets users specify how
much an applet is to be trusted or that allows or denies access to specific resources on a case-by-case
basis. Of course, this assumes that the browser can determine which applets it ought to trust. We'll see
how this problem is solved shortly.

The integrity of a security manager is based on the protection afforded by the lower levels of the Java
security model. Without the guarantees provided by the verifier and the class loader, high-level assertions
about the safety of system resources are meaningless. The safety provided by the Java byte-code verifier
means that the interpreter can't be corrupted or subverted, and that Java code has to use components as
they are intended. This, in turn, means that a class loader can guarantee that an application is using the
core Java system classes and that these classes are the only means of accessing basic system resources.
With these restrictions in place, it's possible to centralize control over those resources with a security
manager.

Safety of Design Application and User Level
Security

Chapter 1
Yet Another Language?

1.6 Application and User Level Security

There's a fine line between having enough power to do something useful and having all the power to do
anything you want. Java provides the foundation for a secure environment in which untrusted code can
be quarantined, managed, and safely executed. However, unless you are content with keeping that code
in a little black box and running it just for its own benefit, you will have to grant it access to at least some
system resources so that it can be useful. Every kind of access carries with it certain risks and benefits.
The advantages of granting an untrusted applet access to your windowing system, for example, are that it
can display information and let you interact in a useful way. The associated risks are that the applet may
instead display something worthless, annoying, or offensive. Since most people can accept that level of
risk, graphical applets and the World Wide Web in general are possible.

At one extreme, the simple act of running an application gives it a resource, computation time, that it
may put to good use or burn frivolously. It's difficult to prevent an untrusted application from wasting
your time, or even attempting a "denial of service" attack. At the other extreme, a powerful, trusted
application may justifiably deserve access to all sorts of system resources (e.g., the filesystem, process
creation, network interfaces); a malicious application could wreak havoc with these resources. The
message here is that important and sometimes complex security issues have to be addressed.

In some situations, it may be acceptable to simply ask the user to "OK" requests. Sun's HotJava Web
browser can pop up a dialog box and ask the user's permission for an applet to access an otherwise
restricted file. However, we can put only so much burden on our users. An experienced person will
quickly grow tired of answering questions; an inexperienced user may not even be able to answer the
questions. Is it okay for me to grant an applet access to something if I don't understand what that is?

Making decisions about what is dangerous and what is not can be difficult. Even ostensibly harmless
access, like displaying a window can become a threat when paired with the ability for an untrusted
application to communicate off of your host. The Java SecurityManager provides an option to flag
windows created by an untrusted application with a special, recognizable border to prevent it from
impersonating another application and perhaps tricking you into revealing your password or your secret
recipe collection. There is also a grey area, in which an application can do devious things that aren't quite
destructive. An applet that can mail a bug report can also mail-bomb your boss. The Java language

provides the tools to implement whatever security policies you want. However, what these policies will
be ultimately depends on who you are, what you are doing, and where you are doing it.

To fully exploit the power of Java, we need to have some basis on which to make reasonable decisions
about the level of trust an application should have. Web browsers such as HotJava start by defining a few
rules and some coarse levels of security that restrict where applets may come from and what system
resources they may access. These rules are sufficient to keep the waving Duke applet from clutching
your password file, but they aren't sufficient for applications you'd like to trust with sensitive
information. What if you want to implement a secure applet to carry a credit card number to the mall, or
more likely the credit-card company? How are people to trust that the applet they are using is really
secure? If it's named the "Bank of Boofa" applet, how do they know it's legit?

You might think of trusting only certain hosts for these kinds of applications. However, as Java class
files begin to fill the Net, the situation will become more complicated. Hosts can be impersonated. If
your communications pass through an untrusted network, you can't be sure you're talking to the intended
entity. Furthermore, class files may need to be cached or retrieved through complicated distribution
mechanisms. For these kinds of applications, what we really need is a mechanism for verifying the
authorship and authenticity of an item and making sure that it has not been tampered with by the time
that you received it. Fortunately, this is a problem solved a while ago by your friendly neighborhood
cryptographers.

Signing Classes

Digital signatures provide a means of authenticating documents. Like their inky analogs, they associate a
name with an item in a way that is supposed to be difficult to forge. Unlike pen on paper, though,
electronic digital signatures are actually difficult to forge when used properly. By their nature, digital
signatures also provide the benefit that, if authenticated, a document is known not to have been altered in
transit. In other words, you can't clip out a digital signature and attach it to a new document.

The details of cryptography are a bit beyond the scope of this book but the basics are important and
interesting.[6] Digital signatures are one side of the coin of public-key cryptography. Public-key
algorithms rely on the fundamental mathematical difficulty of factoring arbitrarily large numbers. In a
public-key system, there are two pieces of information: a public key (as you might have guessed) and a
private one. These keys have a special asymmetric relationship such that a message encrypted with one
key can be decrypted only by knowing the other. This means that by giving you my public key, you can
send me messages that only I can read. No one else, including you, has enough information to decrypt
the encoded message, so it's safe to send it over untrusted networks. Now, by reversing this process, I can
encrypt something with my private key so that anyone can use my public key to read the message. The
important thing in this case is that the task of creating such a message without the private key is just as
difficult as decoding the message in the first scenario. Since no one else knows my private key, only the
real me could have sent the message. This is the basis for digital signatures. For Java, this means that we
can tell a browser "I trust applets signed by John Doe"; if the browser succeeds in decoding an applet

using John Doe's public key, it knows that the applet really came from John Doe, and therefore can be
allowed greater privileges.

[6] See Bruce Schneier's encyclopedic Applied Cryptography (John Wiley & Sons).

This process can be used to authenticate Java class files and other types of objects sent over the network.
The author of a class signs the code with a digital signature, and we authenticate it when we retrieve it.
Now we know that we have the authentic class, or do we? There is one problem that a digital signature
alone doesn't solve: at some point we still have to assume we have the author's authentic public key. This
is where a key-certification agency comes into play.

A key-certification agency validates a key by issuing a certificate that lists a name and an official public
key. The certificate is signed with the agency's own digital signature. The agency presumably has a well-
known public key to verify the certificate. Of course, this doesn't solve the problem entirely, but it
reduces the number of people you have to trust and the amount of information you have to transport
reliably. Presumably the agency is a reputable organization, its private keys are well guarded, and it
certifies keys only after some kind of real-world validation such as person-to-person contact.

The most recent Java release (1.1) contains the tools you need to work with signed classes. You can sign
Java classes; you can tell the HotJava browser whose classes you trust (and how much you trust them).
Other browsers, like Netscape Navigator, should support signed classes in the future. You can also use
the security API in your own Java programs to handle sensitive data safely. The important thing is, as
always, to know who you are dealing with and what kind of software and security you have in place
before sending any kind of confidential information over the Net. Don't become paranoid, just keep
yourself informed so that you can weigh the risks and the benefits.

Safety of Implementation Java and the World Wide
Web

Chapter 1
Yet Another Language?

1.7 Java and the World Wide Web

Alice was beginning to get very tired of sitting by her sister on the bank, and of having
nothing to do: once or twice she had peeped into the book her sister was reading, but it had
no pictures or conversations in it, "and what is the use of a book," thought Alice, "without
pictures or conversations?"

--Alice in Wonderland

The application-level safety features of Java make it possible to develop new kinds of applications not
necessarily feasible before now. A Web browser that implements the Java run-time system can
incorporate Java applets as executable content inside of documents. This means that Web pages can
contain not only static hypertext information but also full-fledged interactive applications. The added
potential for use of the WWW is enormous. A user can retrieve and use software simply by navigating
with a Web browser. Formerly static information can be paired with portable software for interpreting
and using the information. Instead of just providing some data for a spreadsheet, for example, a Web
document might contain a fully functional spreadsheet application embedded within it that allows users
to view and manipulate the information.

Applets

The term applet is used to mean a small, subordinate, or embeddable application. By embeddable, I mean
it's designed to be run and used within the context of a larger system. In that sense, most programs are
embedded within a computer's operating system. An operating system manages its native applications in
a variety of ways: it starts, stops, suspends, and synchronizes applications; it provides them with certain
standard resources; and it protects them from one another by partitioning their environments.

In this book, I'll be describing Java applets, which are Java applications meant to be embedded in and
controlled by a larger application, such as a Java-enabled Web browser or an applet viewer. To include
an applet as executable content in a Web document, you use a special HTML tag. The <applet> tag
points to an applet and provides configuration information about the applet.

As far as the Web browser model is concerned, an applet is just another type of object to display.
Browsers make a distinction between items presented inline and items anchored via hypertext links and
made available by external means, such as a viewer or helper application. If you download an MPEG
video clip, for instance, and your browser doesn't natively understand MPEG, it will look for a helper
application (an MPEG player) to pass the information to. Java-enabled Web browsers generally execute
applets inline, in the context of a particular document, as shown in Figure 1.4. However, less capable
browsers could initially provide some support for Java applets through an external viewer.

Figure 1.4: Applets in a Web document

[Graphic: Figure 1-4]

A Java applet is a compiled Java program, composed of classes just like any Java program. While a
simple applet may consist of only a single class, most large applets should be broken into many classes.
Each class is stored in a separate class file. The class files for an applet are retrieved from the network as
they are needed. A large applet doesn't need to retrieve all its parts or all its data before beginning to
interact with the user. Well-designed applets can take advantage of multithreading to wait for certain
resources in the background, while performing other activities.

An applet has a four-part life cycle. When an applet is initially loaded by a Web browser, it's asked to
initialize itself. The applet is then informed each time it's displayed and each time it's no longer visible to
the user. Finally, the applet is told when it's no longer needed, so that it can clean up after itself. During
its lifetime, an applet may start and suspend itself, do work, communicate with other applications, and
interact with the Web browser.

Applets are autonomous programs, but they are confined within the walls of a Web browser or applet
viewer, and have to play by its rules. I'll be discussing the details of what applets can and can't do as we
explore features of the Java language. However, under the most conservative security policies, an applet
can interact only with the user and can only communicate over the network with the host from which it
originated. Other types of activities, like accessing files or interacting directly with outside applications,
are typically prevented by the security manager that is part of the Web browser or applet viewer. But
aside from these restrictions, there is no fundamental difference between a Java applet and a standalone
Java application.

New Kinds of Applications

Sun's HotJava Web browser is written entirely in Java. Because it's a Java application, HotJava is
immediately available on any platform with the Java run-time system. This goes a long way towards the
goal of a Web browser serving as a universal access point for resources on the Net. And where one Web
browser leads the way, more will surely follow.

In addition to displaying Java applets as executable content in Web pages, the HotJava application
dynamically extends itself by loading Java code from the Net. HotJava uses protocol handlers and
content handlers to provide this functionality.[7] Protocol handlers and content handlers are classes in
the Java API that let an application implement new types of URLs and interpret the objects retrieved
from them. A Web browser that supports this functionality can load handlers from a remote location and
effectively upgrade itself on the fly to use new protocols and access new kinds of information.

[7] Downloadable content and protocol handlers are not supported in HotJava 1.0, but will
be supported in a future release.

Like applets, content handlers and protocol handlers can be served by a Web site, along with the
information they interpret. As an example, consider the new Portable Network Graphics (PNG) format, a
freely distributable alternative to GIF. By supplying a PNG content handler along with PNG images on
our server, we give users the ability to use the new image format, just as they would a built-in format.
We don't have to create a new standard and force every Web browser to support the new format. Instead,
the first time a user loads a document referencing a PNG image from our site, the Web browser will
realize it doesn't understand the object and will ask the server if it has a content handler for it. Since
we've provided a content handler, the browser can load it and then use it to interpret and display the
image dynamically.

In a similar manner, protocol handlers allow a Web browser to start speaking a new protocol with the
server. This is especially useful for things like security protocols. If we invent a revolutionary new
cryptographic protocol late one night, all we have to do is implement it in the form of a protocol handler
and place it on our server. We can then start using URLs that point through our new protocol at objects
on our server, and people can immediately begin using it.

These scenarios describe just a few things that safe, transportable code will allow. We will undoubtedly
see many other new breeds of application we can't even begin to anticipate.

New Kinds of Media

When it was first released, Java quickly achieved a reputation for multimedia capabilities. Frankly, this
wasn't really deserved. At that point, Java provided facilities for doing simple animations and playing
audio. You could even animate and play audio simultaneously, though you couldn't synchronize the two.
Still, this was a significant advance for the Web, and people thought it was pretty impressive.

JavaSoft is now working on real media features, which go far beyond anything that has yet been seen on
the Web. This includes CD quality sound, 3D animation, media players that synchronize audio and
video, speech synthesis and recognition, and more. These new features aren't yet in Java 1.1, but will
make their way into Java over the next eighteen months. In short, if you were impressed by Java 1.0, you
haven't seen anything yet. Java's multimedia capabilities will be taking shape over the next two years.

New Software Development Models

For some time now, people have been using visual development environments to develop user interfaces.
These environments let you generate applications by moving components around on the screen,
connecting components to each other, and so on. In short, designing a user interface is a lot more like
drawing a picture than like writing code.

For visual development environments to work well, you need to be able to create reusable software
components. That's what Java Beans are all about. The JavaBeans architecture defines a way to package
software as reusable building blocks. A graphical development tool can figure out a component's
capabilities, customize the component, and connect it to other components to build applications.
JavaBeans takes the idea of graphical development a step further. Beans aren't limited to visible, user
interface components: you can have Beans that are entirely invisible, and whose job is purely
computational. For example, you could have a Bean that did database access; you could connect this to a
Bean that let the user request information from the database; and you could use another Bean to display
the result. Or you could have a set of Beans that implemented the functions in a mathematical library;
you could then do numerical analysis by connecting different functions to each other. In either case, you
could "write" programs without writing a single line of code. Granted, someone would have to write the
Beans in the first place; but that's a much smaller task, and we expect markets to develop for "off the
shelf" Bean collections.

Before it can use a Bean, an application builder must find out the Bean's capabilities. There are a few
ways it can do this; the simplest is called "reflection". To write a Bean that uses reflection, all you need
to do is follow some simple design patterns. Let's say that you're writing a Bean that is capable of
changing its color. Then you would write two methods that report the current color and change its value:

...
private Color c;
public Color getMyColor() { return c; }
public void setMyColor(Color c) { this.c = c; }

These methods follow some well defined conventions (design patterns) that let the graphical interface
builder (or any other tool that wants to do the work) analyze the Bean, and discover that it has a property
called MyColor, that the value of this property is a Color object, and that the methods
getMyColor() and setMyColor() should be used to change its value.

If they need to, Beans can provide additional information using a process called "introspection". But even
without introspection, you can see that a graphical development tool can easily analyze a Bean, figure out
what it can do, and let a user change the Bean's properties without writing any code.

Of course, once a development tool has customized a Bean and connected it to other Beans, it needs a
way to save the result. A process called "serialization" lets a tool save the Bean's current state, along with
any extra code it has written to stitch Beans together in an application.

Visual development tools that support Java Beans include Borland's JBuilder (http://www.borland.com),
Symantec's Visual Cafe (http://www.symantec.com), and SunSoft's Java Workshop. By using a "bridge",
Java Beans will be able to interact with other component environments, including ActiveX, OpenDoc,
and LiveConnect. A beta version of the ActiveX bridge is currently available.

Application and User Level
Security

Java as a General Application
Language

file:///C|/download/www.borland.com/default.htm
file:///C|/download/www.symantec.com/default.htm

Chapter 1
Yet Another Language?

1.8 Java as a General Application Language

The Java applet API is a framework that allows Java-enabled Web browsers to manage and display
embedded Java applications within WWW documents. However, Java is more than just a tool for
building transportable multimedia applications. Java is a powerful, general-purpose programming
language that just happens to be safe and architecture independent. Standalone Java applications are not
subject to the restrictions placed on applets; they can do all activities that software written in a language
like C does.

Any software that implements the Java run-time system can run Java applications. Applications written
in Java can be large or small, standalone or component-like, as in other languages. Java applets are
different from other Java applications only in that they expect to be managed by a larger application. In
this book, we will build examples of both applets and standalone Java applications. With the exception of
the few things applets can't do, such as access files, all of the tools we examine in this book apply to both
applets and standalone Java applications.

Java and the World Wide
Web

A Java Road Map

Chapter 1
Yet Another Language?

1.9 A Java Road Map

With everything that's going on, it's hard to keep track of what's available now, what's promised, and
what has been around for some time. Here's a road map that tries to impose some order on Java's past,
present, and future.

The Past: Java 1.0

Java 1.0 provided the basic framework for Java development: the language itself, plus packages that let
you write applets and simple applications. Java 1.0 is officially obsolete, though it will be some time
before vendors catch up with the new release.

The Present: Java 1.1

Java 1.1 is the current version of Java. It incorporates major improvements in the AWT package (Java's
windowing facility). It also adds many completely new features, including:

JDBC

A general facility for interacting with databases.

RMI

Remote Method Invocation: a facility that lets you call methods that are provided by a server
running somewhere else on the network.

JavaBeans

Java's component architecture, which we discussed earlier.

Security

A facility for cryptography; this is the basis for signed classes, which we discussed earlier.

Internationalization

The ability to write programs that adapt themselves to the language the user wants to use; the
program automatically displays text in the appropriate language.

Java 1.1 incorporates many other improvements and new features, but these are the most important. As
of May, 1997, most Web browsers haven't yet incorporated Java 1.1, but they will as soon as possible. In
this book, we'll try to give you a taste of as many features as possible; unfortunately for us, the Java
environment has become so rich that it's impossible to cover everything in a single book.

The Future

We've mentioned a few of the things that are in the pipeline, including high quality audio, advanced 3D
rendering, and speech synthesis. Other things to look forward to are class libraries for advanced 2D
graphics (Java 2D), electronic commerce (JECF), managing network devices (Java Management),
naming and directory services (JNDI), telephony (JTAPI), and writing network servers (Java Server).
Beta versions of some of these facilities are available now.

We're also starting to see new kinds of computing devices that incorporate Java. Network computers that
are based on Java and use the HotJava browser as their user interface are already available, as are "smart
cards": credit card-like devices with a Java processor built in. You can expect to see Java incorporated
into PDAs, telephones, and many other devices.

Java as a General Application
Language

Availability

Chapter 1
Yet Another Language?

1.10 Availability

By the time you read this book, you should have several choices for Java development environments and
run-time systems. As this book goes to press, Sun's Java Development Kit (JDK) 1.1 is available for
Solaris, Windows NT, and Windows 95. The JDK provides an interpreter and a compiler for building
general-purpose Java applications. A beta version of JDK 1.1 for the Macintosh will be available later in
1997. Visit Sun's Java Web site, http://www.javasoft.com/ for more information about the JDK. There
are also a number of JDK ports for various platforms. Some of the most significant platforms are Novell,
HP-UX, OSF/1 (including Digital UNIX), Silicon Graphics' IRIX, and Linux. For more information, see
the Web pages maintained by the vendor you're interested in. JavaSoft maintains a Web page
summarizing porting efforts at http://www.javasoft.com/products/jdk/jdk-ports.html. Another good
source for current information is the Java FAQ from the comp.lang.java newsgroup.

There are efforts under way to produce a free clone of Java, redistributable in source form. The Java
Open Language Toolkit (JOLT) Project is working to assemble a high-quality Java implementation that
will pass Sun's validation tests and earn a Java stamp. The JOLT Project Web page is accessible from
http://www.redhat.com/.

The Netscape Navigator Web browser comes with its own implementation of the Java run-time system
that runs Java applets. Netscape also provides a -java switch that lets you execute Java applications
(including the Java compiler) and applets and run nongraphical applications. Netscape's Web site is
located at http://home.netscape.com/. Check there for information on the latest version of Netscape
Navigator.

A Java Road Map A First Applet

file:///C|/download/www.javasoft.com/default.htm
file:///C|/download/www.javasoft.com/products/jdk/jdk-ports.html
file:///C|/download/www.redhat.com/default.htm
file:///C|/download/home.netscape.com/default.htm

Chapter 2
A First Applet

2.2 Hello Web! II: The Sequel

Let's make our applet a little more interactive, shall we? The following improvement, HelloWeb2,
allows us to drag the message around with the mouse. HelloWeb2 is also customizable. It takes the text
of its message from a parameter of the <applet> tag of the HTML document.

HelloWeb2 is a new applet--another subclass of the Applet class. In that sense, it's a sibling of
HelloWeb. Having just seen inheritance at work, you might wonder why we aren't creating a subclass
of HelloWeb and exploiting inheritance to build upon our previous example and extend its
functionality. Well, in this case, that would not necessarily be an advantage, and for clarity we simply
start over.[2] Here is HelloWeb2:

[2] You are left to consider whether such a subclassing would even make sense. Should
HelloWeb2 really be a kind of HelloWeb? Are we looking for refinement or just code
reuse?

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
public class HelloWeb2 extends Applet implements MouseMotionListener {
 int messageX = 125, messageY = 95;
 String theMessage;

 public void init() {
 theMessage = getParameter("message");
 addMouseMotionListener(this);
 }

 public void paint(Graphics graphics) {
 graphics.drawString(theMessage, messageX, messageY);
 }
 public void mouseDragged(MouseEvent e) {

 messageX = e.getX();
 messageY = e.getY();
 repaint();
 }
 public void mouseMoved(MouseEvent e) { }
}

Place the text of this example in a file called HelloWeb2.java and compile it as before. You should get a
new class file, HelloWeb2.class, as a result. We need to create a new <applet> tag for HelloWeb2.
You can either create another HTML document (copy HelloWeb.html and modify it) or simply add a
second <applet> tag to the existing HelloWeb.html file. The <applet> tag for HelloWeb2 has to
use a parameter; it should look like:

<applet code=HelloWeb2 width=300 height=200>
<param name="message" value="Hello Web!" >
</applet>

Feel free to substitute your own salacious comment for the value of message.

Run this applet in your Java-enabled Web browser, and enjoy many hours of fun, dragging the text
around with your mouse.

Import

So, what have we added? First you may notice that a few lines are now hovering above our class:

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
public class HelloWeb2 extends Applet implements MouseMotionListener {
...

The import statement lists external classes to use in this file and tells the compiler where to look for
them. In our first HellowWeb example, we designated the Applet class as the superclass of
HelloWeb. Applet was not defined by us and the compiler therefore had to look elsewhere for it. In
that case, we referred to Applet by its fully qualified name, java.applet.Applet, which told the
compiler that Applet belongs to the java.applet package so it knew where to find it.

The import statement is really just a convenience; by importing java.applet.Applet in our
newer example, we tell the compiler up front we are using this class and, thereafter in this file, we can
simply refer to it as Applet. The second import statement makes use of the wildcard "*" to tell the
compiler to import all of the classes in the java.awt package. But don't worry, the compiled code

doesn't contain any excess baggage. Java doesn't do things like that. In fact, compiled Java classes don't
contain other classes at all; they simply note their relationships. Our current example uses only the
java.awt.Graphics class. However, we are anticipating using several more classes from this
package in the upcoming examples. We also import all the classes from the package
java.awt.event; these classes provide the Event objects that we use to communicate with the user.
By listening for events, we find out when the user moved the mouse, clicked a button, and so on. Notice
that importing java.awt.* doesn't automatically import the event package. The star only imports the
classes in a particular package, not other packages.

The import statement may seem a bit like the C or C++ preprocessor #include statement, which
injects header files into programs at the appropriate places. This is not true; there are no header files in
Java. Unlike compiled C or C++ libraries, Java binary class files contain all necessary type information
about the classes, methods, and variables they contain, obviating the need for prototyping.

Instance Variables

We have added some variables to our example:

public class HelloWeb2 extends Applet {
 int messageX = 125, messageY = 95;
 String theMessage;
...

messageX and messageY are integers that hold the current coordinates of our movable message. They
are initialized to default values, which should place a message of our length somewhere near the center
of the applet. Java integers are always 32-bit signed numbers. There is no fretting about what architecture
your code is running on; numeric types in Java are precisely defined. The variable theMessage is of
type String and can hold instances of the String class.

You should note that these three variables are declared inside the braces of the class definition, but not
inside any particular method in that class. These variables are called instance variables because they
belong to the entire class, and copies of them appear in each separate instance of the class. Instance
variables are always visible (usable) in any of the methods inside their class. Depending on their
modifiers, they may also be accessible from outside the class.

Unless otherwise initialized, instance variables are set to a default value of 0 (zero), false, or null.
Numeric types are set to zero, boolean variables are set to false, and class type variables always
have their value set to null, which means "no value." Attempting to use an object with a null value
results in a run-time error.

Instance variables differ from method arguments and other variables that are declared inside of a single
method. The latter are called local variables. They are effectively private variables that can be seen only

by code inside the method. Java doesn't initialize local variables, so you must assign values yourself. If
you try to use a local variable that has not yet been assigned a value, your code will generate a compile-
time error. Local variables live only as long as the method is executing and then disappear (which is fine
since nothing outside of the method can see them anyway). Each time the method is invoked, its local
variables are recreated and must be assigned values.

Methods

We have made some changes to our previously stodgy paint() method. All of the arguments in the
call to drawString() are now variables.

Several new methods have appeared in our class. Like paint(), these are methods of the base Applet
class we override to add our own functionality. init() is an important method of the Applet class.
It's called once, when our applet is created, to give us an opportunity to do any work needed to set up
shop. init() is a good place to allocate resources and perform other activities that need happen only
once in the lifetime of the applet. A Java-enabled Web browser calls init() when it prepares to place
the Applet on a page.

Our overridden init() method does two things; it sets the text of the theMessage instance variable,
and it tells the system "Hey, I'm interested in anything that happens involving the mouse":

public void init() {
 theMessage = getParameter("message");
 addMouseMotionListener(this);
}

When an applet is instantiated, the parameters given in the <applet> tag of the HTML document are
stored in a table and made available through the getParameter() method. Given the name of a
parameter, this method returns the value as a String object. If the name is not found, it returns a null
value.

So what, you may ask, is the type of the argument to the getParameter() method? It, too, is a
String. With a little magic from the Java compiler, quoted strings in Java source code are turned into
String objects. A bit of funny-business is going on here, but it's simply for convenience. (See Chapter
7, Basic Utility Classes for a complete discussion of the String class.)

getParameter() is a public method we inherited from the Applet class. We can use it from any of
our methods. Note that the getParameter() method is invoked directly by name; there is no object
name prepended to it with a dot. If a method exists in our class, or is inherited from a superclass, we can
call it directly by name.

In addition, we can use a special read-only variable, called this, to explicitly refer to our object. A
method can use this to refer to the instance of the object that holds it. The following two statements are
therefore equivalent:

theMessage = getParameter("message");

or

theMessage = this.getParameter("message");

I'll always use the shorter form. We will need the this variable later when we have to pass a reference
to our object to a method in another class. We often do this so that methods in another class can give us a
call back later or can watch our public variables.

The other method that we call in init() is addMouseMotionListener(). This method is part of
the event mechanism, which we discuss next.

Events

The last two methods of HelloWeb2 let us get information from the mouse. Each time the user
performs an action, such as hitting a key on the keyboard, moving the mouse, or perhaps banging his or
her head against a touch-sensitive screen, Java generates an event. An event represents an action that has
occurred; it contains information about the action, such as its time and location. Most events are
associated with a particular graphical user interface (GUI) component in an application. A keystroke, for
instance, could correspond to a character being typed into a particular text entry field. Pressing a mouse
button could cause a certain graphical button on the screen to activate. Even just moving the mouse
within a certain area of the screen could be intended to trigger effects such as highlighting or changing
the cursor to a special mouse cursor.

The way events work is one of the biggest changes between Java 1.0 and Java 1.1. We're going to talk
about the Java 1.1 events only; they're a big improvement, and there's no sense in learning yesterday's
news. In Java 1.1, there are many different event classes: MouseEvent, KeyEvent, ActionEvent,
and many others. For the most part, the meaning of these events is fairly intuitive. A MouseEvent
occurs when the user does something with the mouse, a KeyEvent occurs when the user types a key,
and so on. ActionEvent is a little special; we'll see it at work in our third applet. For now, we'll focus
on dealing with a MouseEvent.

The various GUI components in Java generate events. For example, if you click the mouse inside an
applet, the applet generates a mouse event. (In the future, we will probably see events as a general
purpose way to communicate between Java objects; for the moment, let's limit ourselves to the simplest
case.) In Java 1.1, any object can ask to receive the events generated by some other component. We call
the object that wants to receive events a "listener." To declare that it wants to receive some component's

mouse motion events, you call that component's addMouseMotionListener() method. That's what
our applet is doing in init(). In this case, the applet is calling its own
addMouseMotionListener() method, with the argument this, meaning "I want to receive my
own mouse motion events." (For the time being, we're ignoring a minor distinction between "mouse
events" and "mouse motion events." Suffice it to say that in this example, we only care about mouse
motions.)

That's how we register to receive events. But how do we actually get them? That's what the two
remaining methods in our applet are for. The mouseDragged() method is called automatically
whenever the user drags the mouse--that is, moves the mouse with any button pressed. The
mouseMoved() method is called whenever the user moves the mouse without pressing a button. Our
mouseMoved() method is simple: it doesn't do anything. We're ignoring simple mouse motions.

mouseDragged() has a bit more meat to it. It is called repeatedly to give us updates on the position of
the mouse. Here it is:

 public void mouseDragged(MouseEvent e) {
 messageX = e.getX();
 messageY = e.getY();
 repaint();
 }

The first argument to mouseDragged() is a MouseEvent object, e, that contains all the information
we need to know about this event. We ask the MouseEvent to tell us the x and y coordinates of the
mouse's current position by calling its getX() and getY() methods. These are saved in the
messageX and messageY instance variables. Now, having changed the coordinates for the message,
we would like HelloWeb2 to redraw itself. We do this by calling repaint(), which asks the system
to redraw the screen at a later time. We can't call paint() directly because we don't have a graphics
context to pass to it.

The real beauty of this event model is that you only have to handle the kinds of events you want. If you
don't care about keyboard events, you just don't register a listener for them; the user can type all he or she
wants, and you won't be bothered. Java doesn't go around asking potential recipients whether they might
be interested in some event, as it did in older versions. If there are no listeners for a particular kind of
event, Java won't even generate it. The result is that event handling in Java 1.1 is quite efficient.

I've danced around one question that should be bothering you by now: how does the system know to call
mouseDragged() and mouseMoved()? And why do we have to supply a mouseMoved() method
that doesn't do anything? The answer to these questions has to do with "interfaces." We'll discuss
interfaces after clearing up some unfinished business with repaint().

The repaint() Method

We can use the repaint() method of the Applet class to request our applet be redrawn.
repaint() causes the Java windowing system to schedule a call to our paint() method at the next
possible time; Java supplies the necessary Graphics object, as shown in Figure 2.5.

Figure 2.5: Invoking the repaint() method

[Graphic: Figure 2-5]

This mode of operation isn't just an inconvenience brought about by not having the right graphics context
handy at the moment. The foremost advantage to this mode of operation is that the repainting is handled
by someone else, while we are free to go about our business. The Java system has a separate, dedicated
thread of execution that handles all repaint() requests. It can schedule and consolidate repaint()
requests as necessary, which helps to prevent the windowing system from being overwhelmed during
painting-intensive situations like scrolling. Another advantage is that all of the painting functionality can
be kept in our paint() method; we aren't tempted to spread it throughout the application.

Interfaces

Now it's time to face up to the question I avoided earlier: how does the system know to call
mouseDragged() when a mouse event occurs? Is it simply a matter of knowing that
mouseDragged() is some magic name that our event handling method must have? No; the answer to
the question lies in the discussion of interfaces, which are one of the most important features of the Java
language.

The first sign of an interface comes on the line of code that introduces the HelloWeb2 applet: we say
that the applet implements MouseMotionListener. MouseMotionListener is an interface that
the applet implements. Essentially, it's a list of methods that the applet must have; this particular
interface requires our applet to have methods called mouseDragged() and mouseMoved(). The
interface doesn't say what these methods have to do--and indeed, mouseMoved() doesn't do anything.
It does say that the methods must take a MouseEvent as an argument and return void (i.e., no return
value).

Another way of looking at an interface is as a contract between you, the code developer, and the
compiler. By saying that your applet implements the MouseMotionListener interface, you're saying
that these methods will be available for other parts of the system to call. If you don't provide them, the

compiler will notice and give you an error message.

But that's not the only impact interfaces have on this program. An interface also acts like a class. For
example, a method could return a MouseMotionListener, or take a MouseMotionListener as
an argument. This means that you don't care about the object's class; the only requirement is that the
object implement the given interface. In fact, that's exactly what the method
addMouseMotionListener() does. If you look up the documentation for this method, you'll find
that it takes a MouseMotionListener as an argument. The argument we pass is this, the applet
itself. The fact that it's an applet is irrelevant, it could be a Cookie, an Aardvark, or any other class
we dream up. What is important is that it implements MouseMotionListener, and thus declares that
it will have the two named methods. That's why we need a mouseMoved() method, even though the
one we supplied doesn't do anything: the MouseMotionListener interface says we have to have
one.

In other languages, you'd handle this problem by passing a function pointer; for example, in C, the
argument to addMouseMotionListener() might be a pointer to the function you want to have
called when an event occurs. This technique is called a "callback." For security reasons, the Java
language has eliminated function pointers. Instead, we use interfaces to make contracts between classes
and the compiler. (Some new features of the language make it easier to do something similar to a
callback, but that's beyond the present discussion.)

The Java distribution comes with many interfaces that define what classes have to do in various
situations. Furthermore, in Chapter 5, Objects in Java, you'll see how to define your own interfaces. It
turns out that this idea of a contract between the compiler and a class is very important. There are many
situations like the one we just saw, where you don't care what class something is, you just care that it has
some capability, like listening for mouse events. Interfaces give you a way of acting on objects based on
their capabilities, without knowing or caring about their actual type.

Furthermore, interfaces provide an important escape clause to the rule that any new class can only extend
a single class (formally called "single inheritance"). They provide most of the advantages of multiple
inheritance (a feature of languages like C++) without the confusion. A class in Java can only extend one
class, but can implement as many interfaces as it wants; our next applet will implement two interfaces,
and the final example in this chapter will implement three. In many ways, interfaces are almost like
classes, but not quite. They can be used as data types, they can even extend other interfaces (but not
classes), and can be inherited by classes (if class A implements interface B, subclasses of A also
implement B). The crucial difference is that applets don't actually inherit methods from interfaces; the
interfaces only specify the methods the applet must have.

Hello Web! Hello Web! III: The Button
Strikes!

Chapter 2
A First Applet

2.3 Hello Web! III: The Button Strikes!

Well, now that we have those concepts under control, we can move on to some fun stuff. HelloWeb3
brings us a new graphical interface component: the Button. We add a Button component to our applet
that changes the color of our text each time the button is pressed. Our new example is shown below.

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
public class HelloWeb3 extends Applet
 implements MouseMotionListener, ActionListener {
 int messageX = 125, messageY = 95;
 String theMessage;
 Button theButton;
 int colorIndex = 0;
 static Color[] someColors = {
 Color.black, Color.red, Color.green, Color.blue, Color.magenta };

 public void init() {
 theMessage = getParameter("message");
 theButton = new Button("Change Color");
 add(theButton);
 addMouseMotionListener(this);
 theButton.addActionListener(this);
 }

 public void paint(Graphics gc) {
 gc.drawString(theMessage, messageX, messageY);
 }
 public void mouseDragged(MouseEvent e) {
 messageX = e.getX();
 messageY = e.getY();
 repaint();
 }

 public void mouseMoved(MouseEvent e) { }
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == theButton) {
 changeColor();
 }
 }
 synchronized private void changeColor() {
 if (++colorIndex == someColors.length)
 colorIndex = 0;
 setForeground(currentColor());
 repaint();
 }
 synchronized private Color currentColor() {
 return someColors[colorIndex];
 }
}

Create HelloWeb3 just as the other applets and put an <applet> tag referencing it in an HTML
document. An <applet> tag just like the one for HelloWeb2 will do nicely. Run the example, and you
should see the display shown in Figure 2.6. Drag the text. Each time you press the button the color should
change. Call your friends! They should be duly impressed.

Figure 2.6: Hello Web! III

[Graphic: Figure 2-6]

The New Operator

So what have we added this time? Well, for starters we have a new variable:

Button theButton;

The theButton variable is of type Button and is going to hold an instance of the java.awt.Button
class. The Button class, as you might expect, represents a graphical button, which should look like other
buttons in your windowing system.

Two additional lines in init() actually create the button and cause it to be displayed in our applet:

theButton = new Button("Change Color");
add(theButton);

The first line brings us to something new. The new keyword is used to create an instance of a class. Recall
that the variable we have declared is just an empty reference and doesn't yet point to a real object--in this
case, an instance of the Button class. This is a fundamental and important concept. We have dealt with
objects previously in our examples. We have assigned them to variables, and we have called methods in
them. So far, however, these objects have always been handed to us ready to go, and we have not had to
explicitly create them ourselves. In the case of our paint() method, we were given a Graphics object
with which to draw. The system created this instance of the Graphics class for our area of the screen and
passed it to us in the parameter variable gc. Our theMessage variable is of type String, and we used it
to hold a String that was returned by the getParameter() method. In each case, some other method
instantiated (created a new instance of) the class for us.

The closest we came to actually instantiating an object was when we passed the name of the HTML
<applet> parameter as an argument to the getParameter() method. In that case, we created a
String object and passed it as the argument, but we did it in a rather sneaky fashion. As I mentioned
previously, String objects have special status in the Java language. Because strings are used so frequently,
the Java compiler creates an instance of the String class for us whenever it comes across quoted text in our
source code. String objects are, in all other respects, normal objects. (See Chapter 7, Basic Utility
Classes.)

The new operator provides the general mechanism for instantiating objects. It's the feature of the Java
language that creates a new instance of a specified class. It arranges for Java to allocate storage for the object
and then calls the constructor method of the objects' class to initialize it.

Constructors

A constructor is a special method that is called to set up a new instance of a class. When a new object is
created, Java allocates storage for it, sets variables to their default values, and then calls the constructor
method for the class to do whatever application-level setup is required.

A constructor method looks like a method with the same name as its class. For example, the constructor for

the Button class is called Button(). Constructors don't have a return type; by definition they return an
object of that class. But like other methods, constructors can take arguments. Their sole mission in life is to
configure and initialize newly born class instances, possibly using whatever information is passed to them in
parameters.

It's important to understand the difference between a constructor and a method like our init() method.
Constructors are special methods of a class that help set up and initialize an instance of a class when it's first
created. The init() method of the Applet class serves a very similar purpose; however, it's quite
different. Constructors are a feature of the Java language. Every class, including Applet, has constructors.
init(), however, is just a method of the Applet class like any other. It's an application-level
phenomenon that happens to perform initialization.

An object is created by using the new operator with the constructor for the class and any necessary
arguments. The resulting object instance is returned as a value. In our example, we create a new instance of
Button and assign it to our theButton variable:

theButton = new Button("Change Color");

This Button constructor takes a String as an argument and, as it turns out, uses it to set the label of the
button on the screen. A class could also, of course, provide methods that allow us to configure an object
manually after it's created or to change its configuration at a later time. Many classes do both; the constructor
simply takes its arguments and passes them to the appropriate methods. The Button class, for example, has
a public method, setLabel(), that allows us to set a Button's label at any time. Constructors with
parameters are therefore a convenience that allows a sort of short hand to set up a new object.

Method Overloading

I said this Button constructor because there could be more than one. A class can have multiple
constructors, each taking different parameters and possibly using them to do different kinds of setup. When
there are multiple constructors for a class, Java chooses the correct one based on the types of arguments that
are passed to it. We call the Button constructor and pass it a String argument, so Java locates the
constructor method of the Button class that takes a single String argument and uses it to set up the
object. This is called method overloading. All methods in Java, not just constructors, can be overloaded; this
is one aspect of the object-oriented programming principle of polymorphism.

A constructor method that takes no arguments is called the default constructor. As you'll see in Chapter 7,
Basic Utility Classes, default constructors play a special role in the initialization of inherited class members.

Garbage Collection

I've told you how to create a new object with the new operator, but I haven't said anything about how to get
rid of an object when you are done with it. If you are a C programmer, you're probably wondering why not.
The reason is that you don't have to do anything to get rid of objects when you are done with them.

The Java run-time system uses a garbage collection mechanism to deal with objects no longer in use. The
garbage collector sweeps up objects not referenced by any variables and removes them from memory.
Garbage collection is one of the most important features of Java. It frees you from the error-prone task of
having to worry about details of memory allocation and deallocation.

Components

I have used the terms component and container somewhat loosely to describe graphical elements of Java
applications. However, you may recall from Figure 2.3 that these terms are the names of actual classes in the
java.awt package.

Component is a base class from which all of Java's GUI components are derived. It contains variables that
represent the location, shape, general appearance, and status of the object, as well as methods for basic
painting and event handling. The familiar paint() method we have been using in our example is actually
inherited from the Component class. Applet is, of course, a kind of Component and inherits all of its
public members, just as other (perhaps simpler) types of GUI components do.

The Button class is also derived from Component and therefore shares this functionality. This means that
the developer of the Button class had methods like paint() available with which to implement the
behavior of the Button object, just as we did when creating our applet. What's exciting is that we are
perfectly free to further subclass components like Button and override their behavior to create our own
special types of user-interface components.

Both Button and Applet are, in this respect, equivalent types of things. However, the Applet class is
further derived from a class called Container, which gives it the added ability to hold other components
and manage them.

Containers

A Button object is a simple GUI component. It makes sense only in the context of some larger application.
The Container class is an extended type of Component that maintains a list of child components and
helps to group them. The Container causes its children to be displayed and arranges them on the screen
according to a particular scheme. A Container may also receive events related to its child components. As
I mentioned earlier, if a component doesn't respond to a particular type of event by overriding the appropriate
event-handling method and handling the event, the event is passed to the parent Container of the
component. This is the default behavior for the standard Java AWT components, which gives us a great deal
of flexibility in managing interface components. We could, for example, create a smart button by subclassing
the Button class and overriding certain methods to deal with the action of being pressed. Alternatively, we
could simply have the Button's container note which Button is pressed and handle the event
appropriately. In the interest of keeping our examples contained in a single class, I am using the gestalt view
and letting our Button's container, HelloWeb3, deal with its events.

Remember that a Container is a Component too and, as such, can be placed alongside other
Component objects in other Containers, in a hierarchical fashion, as shown in Figure 2.7. Our
HelloWeb3 applet is a kind of Container and can therefore hold and manage other Java AWT
components and containers like buttons, sliders, text fields, and panels.

Figure 2.7: A hypothetical layout of Java containers and components

[Graphic: Figure 2-7]

In Figure 2.7, the italicized items are components, and the bold items are containers. The keypad is
implemented as a container object that manages a number of keys. The keypad itself is contained in the
GizmoTool container object.

Layout

After creating the Button object, we'd like to stick it in our applet. To do so, we invoke the add() method
of Applet, passing the Button object as a parameter:

add(theButton);

add() is a method inherited by our Applet from the Container class. It appends our Button to the
list of components HelloWeb3 manages. Thereafter, HelloWeb3 is responsible for the Button: the
applet causes the button to be displayed, it determines where in our part of the screen the button should be
placed, and it receives events when the button is pushed.

Java uses an object called a LayoutManager to determine the precise location in HelloWeb3's screen
area the Button is displayed. A LayoutManager object embodies a particular scheme for arranging
components on the screen and adjusting their sizes. You'll learn more about layout managers in Chapter 12,
Layout Managers. There are several standard layout managers to choose from, and we can, of course, create
new ones. In our case, we have not specified a layout manager, so we get the default one, which means our
button appears centered at the top of the applet.

Subclassing and Subtypes

If you look up the add() method of the Container class, you'll see that it takes a Component object as
an argument. But in our example we've given it a Button object. What's going on?

Well, if you check the inheritance diagram in Figure 2.3 again, you'll see that Button is a subclass of the
Component class. Because a subclass is a kind of its superclass and has, at minimum, the same public
methods and variables, we can use an instance of a subclass anywhere we use an instance of its superclass.
This is a very important concept, and it's a second aspect of the object-oriented principle of polymorphism.
Button is a kind of Component, and any method that expects a Component as an argument will accept
a Button.

More Events and Interfaces

Now that we have a Button, we need some way to communicate with it: that is, to get the events it
generates. We could just listen for mouse clicks, figure out whether they were close enough to the button,
and act accordingly. But that would take a lot of work, and would give up the advantages of using a pre-built
component. Buttons generate a special kind of event called an ActionEvent when someone clicks on
them. To receive these events, we have added another method to our class:

public void actionPerformed(ActionEvent e) {
 if (e.getSource() == theButton) {
 changeColor();
 }
}

If you understood the previous applet, you shouldn't be surprised to see that HelloWeb3 now declares that
it implements the ActionListener interface, in addition to MouseMotionListener.
ActionListener requires us to implement an actionPerformed() method, which is called
whenever an ActionEvent occurs. You also shouldn't be surprised to see that we added a line to init(),
registering the applet as a listener for the button's action events: this is the call to
theButton.addActionListener(this).

The actionPerformed() method takes care of any action events that arise. First, it checks to make sure
that the event's source (the component generating the event) is what we think it should be: theButton, the
only button we've put in the applet. This may seem superfluous; after all, what else could possibly generate
an action event? In this applet, nothing. But it's a good idea to check, because another applet may have
several buttons, and you may need to figure out which one is meant. Or you may add a second button to this
applet later, and you don't want the applet to break something. To make this check, we call the
getSource() method of the ActionEvent object, e. Then we use the "==" operator to make sure that
the event source matches theButton. Remember that in Java, == is a test for identity, not equality; it is
true if the event source and theButton are the same object. The distinction between equality and identity

is important. We would consider two String objects to be equal if they have the same characters in the
same sequence. However, they might not be the same object. In Chapter 5, Objects in Java, we'll look at the
equals() method, which tests for equivalence. Once we establish that the event e comes from the right
button, we call our changeColor() method, and we're done.

You may be wondering why we don't have to change mouseDragged() now that we have a Button in
our applet. The rationale is that the coordinates of the event are all that matter for this method. We are not
particularly concerned if the event happens to fall within an area of the screen occupied by another
component. This means that you can drag the text right through the Button and even lose it behind the
Button if you aren't careful: try it and see!

Color Commentary

To support HelloWeb3's colorful side we have added a couple of new variables and two helpful methods.
We create and initialize an array of Color objects representing the colors through which we cycle when the
button is pressed. We also declare an integer variable that serves as an index to this array, specifying the
current color:

Color[] someColors = {
 Color.black, Color.red, Color.green, Color.blue, Color.magenta };
int colorIndex;

A number of things are going on here. First let's look at the Color objects we are putting into the array.
Instances of the java.awt.Color class represent colors and are used by all classes in the java.awt
package that deal with color graphics. Notice that we are referencing variables such as Color.black and
Color.red. These look like normal references to an object's instance variables; however Color is not an
object, it's a class. What is the meaning of this?

Static Members

If you recall our discussion of classes and instances, I hinted then that a class can contain methods and
variables that are shared among all instances of the class. These shared members are called static variables
and static methods. The most common use of static variables in a class is to hold predefined constants or
unchanging objects all of the instances can use.

There are two advantages to this approach. The more obvious advantage is that static members take up space
only in the class; the members are not replicated in each instance. The second advantage is that static
members can be accessed even if no instances of the class exist. A hypothetical Component class might
have a static variable called maximumWidth. Some other class that has to deal with this component, such
as a layout manager, might want to know the maximum width of such a component, even if there aren't any
around at the moment. Since maximumWidth is a static variable, the layout manager can get this
information.

An instance of the Color class represents a color. For convenience, the Color class contains some static,
predefined color objects with friendly names like green, red, and (my favorite) magenta.
Color.green is thus a predefined Color object that is set to a green color. In this case, these static
members of Color are not changeable, so they are effectively constants and can be optimized as such by the
compiler. Constant static members make up for the lack of a #define construct in Java. However, static
variables don't, in general, have to be constant. I'll say more about static class members in Chapter 5, Objects
in Java. The alternative to using these predefined colors is to create a color manually by specifying its red,
green, blue (RGB) components using a Color class constructor.

Arrays

Next, we turn our attention to the array. We have declared a variable called someColors, which is an array
of Color objects. Arrays are syntactically supported by the Java language; however, they are true, first-
class objects. This means that an array is, itself, a type of object that knows how to hold an indexed list of
some other type of object. An array is indexed by integers; when you index an array, the resulting value is
the object in the corresponding slot in the array. Our code uses the colorIndex variable to index
someColors. It's also possible to have an array of simple primitive types, rather than objects.

When we declare an array, we can initialize it by using the familiar C-like curly brace construct. Specifying a
comma-separated list of elements inside of curly braces is a convenience that instructs the compiler to create
an instance of the array with those elements and assign it to our variable. Alternatively, we could have just
declared our someColors variable and, later, allocated an array object for it and assigned individual
elements to that array's slots. See Chapter 4, The Java Language for a complete discussion of arrays.

Our Color Methods

So, we now have an array of Color objects and a variable with which to index them. What do we do with
them? Well, we have declared two private methods that do the actual work for us. The private modifier
on these methods specifies that they can be called only by other methods in the same instance of the class.
They are not visible outside of the object. We declare members to be private to hide the detailed inner
workings of a class from the outside world. This is called encapsulation and is another tenet of object-
oriented design, as well as good programming practice. Private methods are also often created as helper
functions for use solely within the class implementation.

The first method, currentColor(), is simply a convenience routine that returns the Color object
representing the current text color. It returns the Color object in the someColors array at the index
specified by our colorIndex variable:

synchronized private Color currentColor() {
 return someColors[colorIndex];
}

We could just as readily have used the expression someColors[colorIndex] everywhere we use

currentColor(); however, creating methods to wrap common tasks is another way of shielding
ourselves from the details of our class. In an alternative implementation, we might have shuffled off details
of all color-related code into a separate class. We could have created a class that takes an array of colors in
its constructor and then provided two methods: one to ask for the current color and one to cycle to the next
color (just some food for thought).

The second method, changeColor(), is responsible for incrementing the colorIndex variable to point
to the next Color in the array. changeColor() is called from our action() method whenever the
button is pressed.

synchronized private void changeColor() {
 if (++colorIndex == someColors.length)
 colorIndex = 0;
 setForeground(currentColor());
 repaint();
}

We increment colorIndex and compare it to the length of the someColors array. All array objects have
a variable called length that specifies the number of elements in the array. If we have reached the end of
the array, we reset our index to zero and start over. After changing the currently selected color, we do two
things. First, we call the applet's setForeground() method, which changes the color used to draw text in
the applet and the color of the button's label. Then we call repaint() to cause the applet to be redrawn
with the new color for the draggable message.

So, what is the synchronized keyword that appears in front of our currentColor() and
changeColor() methods? Synchronization has to do with threads, which we'll examine in the next
section. For now, all you need know is that the synchronized keyword indicates these two methods can
never be running at the same time. They must always run one after the other.

The reason is that in changeColor() we increment colorIndex before testing its value. That means
that for some brief period of time while Java is running through our code, colorIndex can have a value
that is past the end of our array. If our currentColor() method happened to run at that same moment,
we would see a run-time "array out of bounds" error. There are, of course, ways in which we could fudge
around the problem in this case, but this simple example is representative of more general synchronization
issues we need to address. In the next section, you'll see that Java makes dealing with these problems easy
through language-level synchronization support.

Hello Web! II: The Sequel Hello Web! IV: Netscape's
Revenge

Chapter 2
A First Applet

2.4 Hello Web! IV: Netscape's Revenge

We have explored quite a few features of Java with the first three versions of the HelloWeb applet. But
until now, our applet has been rather passive; it has waited patiently for events to come its way and
responded to the whims of the user. Now our applet is going to take some initiative--HelloWeb4 will blink!
The code for our latest version is shown below.

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
public class HelloWeb4 extends Applet
 implements MouseMotionListener, ActionListener, Runnable {
 int messageX = 125, messageY = 95;
 String theMessage;
 Button theButton;
 int colorIndex = 0;
 static Color[] someColors = {
 Color.black, Color.red, Color.green, Color.blue, Color.magenta };
 Thread blinkThread;
 boolean blinkState;
 public void init() {
 theMessage = getParameter("message");
 theButton = new Button("Change Color");
 add(theButton);
 addMouseMotionListener(this);
 theButton.addActionListener(this);
 }

 public void paint(Graphics graphics) {
 graphics.setColor(blinkState ? Color.white : currentColor());
 graphics.drawString(theMessage, messageX, messageY);
 }
 public void mouseDragged(MouseEvent e) {
 messageX = e.getX();

 messageY = e.getY();
 repaint();
 }
 public void mouseMoved(MouseEvent e) { }
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == theButton) {
 changeColor();
 }
 }
 synchronized private void changeColor() {
 if (++colorIndex == someColors.length)
 colorIndex = 0;
 theButton.setForeground(currentColor());
 repaint();
 }
 synchronized private Color currentColor() {
 return someColors[colorIndex];
 }
 public void run() {
 while (true) {
 blinkState = !blinkState;
 repaint();
 try {
 Thread.sleep(500);
 } catch (Exception e) {
 // Handle error condition here...
 }
 }
 }
 public void start() {
 if (blinkThread == null) {
 blinkThread = new Thread(this);
 blinkThread.start();
 }
 }
 public void stop() {
 if (blinkThread != null) {
 blinkThread.stop();
 blinkThread = null;
 }
 }
}

If you create HelloWeb4 as you have the other applets and then run it in a Java-enabled Web browser,
you'll see that the text does in fact blink. My apologies if you don't like blinking text--I'm not overly fond of

it either--but it does make for a simple, instructive example.

Threads

All the changes we've made in HelloWeb4 have to do with setting up a separate thread of execution to
make the text of our applet blink. Java is a multithreaded language, which means there can be many threads
running at the same time. A thread is a separate flow of control within a program. Conceptually, threads are
similar to processes, except that unlike processes, multiple threads share the same address space, which
means that they can share variables and methods (but they have their own local variables). Threads are also
quite lightweight in comparison to processes, so it's conceivable for a single application to be running
hundreds of threads concurrently.

Multithreading provides a way for an application to handle many different tasks at the same time. It's easy to
imagine multiple things going on at the same time in an application like a Web browser. The user could be
listening to an audio clip while scrolling an image, and in the background the browser is downloading an
image. Multithreading is especially useful in GUI-based applications, as it can improve the interactive
performance of these applications.

Unfortunately for us, programming with multiple threads can be quite a headache. The difficulty lies in
making sure routines are implemented so they can be run by multiple concurrent threads. If a routine changes
the value of a state variable, for example, then only one thread can be executing the routine at a time. Later
in this section, we'll examine briefly the issue of coordinating multiple thread's access to shared data. In other
languages, synchronization of threads can be an extremely complex and error-prone endeavor. You'll see that
Java gives you a few simple tools that help you deal with many of these problems. Java threads can be
started, stopped, suspended, and prioritized. Threads are preemptive, so a higher priority thread can interrupt
a lower priority thread when vying for processor time. See Chapter 6, Threads for a complete discussion of
threads.

The Java run-time system creates and manages a number of threads. I've already mentioned the AWT thread,
which manages repaint() requests and event processing for GUI components that belong to the
java.awt package. A Java-enabled Web browser typically has at least one separate thread of execution it
uses to manage the applets it displays. Until now, our example has done most of its work from methods of
the Applet class, which means that is has been borrowing time from these threads. Methods like
mouseDragged() and actionPerformed() are invoked by the AWT thread and run on its time.
Similarly, our init() method is called by a thread in the Web browser. This means we are somewhat
limited in the amount of processing we do within these methods. If we were, for instance, to go into an
endless loop in our init() method, our applet would never appear, as it would never finish initializing. If
we want an applet to perform any extensive processing, such as animation, a lengthy calculation, or
communication, we should create separate threads for these tasks.

The Thread Class

As you might have guessed, threads are created and controlled as Thread objects. We have added a new

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm

instance variable, blinkThread, to our example to hold the Thread that handles our blinking activity:

Thread blinkThread;

An instance of the Thread class corresponds to a single thread. It contains methods to start, control, and
stop the thread's execution. Our basic plan is to create a Thread object to handle our blinking code. We call
the Thread's start() method to begin execution. Once the thread starts, it continues to run until we call
the Thread's stop() method to terminate it.

But Java doesn't allow pointers to methods, so how do we tell the thread which method to run? Well, the
Thread object is rather picky; it always expects to execute a method called run() to perform the action of
the thread. The run() method can, however, with a little persuasion, be located in any class we desire.

We specify the location of the run() method in one of two ways. First, the Thread class itself has a
method called run(). One way to execute some Java code in a separate thread is to subclass Thread and
override its run() method to do our bidding. In this case, we simply create an instance of this subclass and
call its start() method.

But it's not always desirable or possible to create a subclass of Thread to contain our run() method. In
this case, we need to tell the Thread which object contains the run() method it should execute. The
Thread class has a constructor that takes an object reference as its argument. If we create a Thread object
using this constructor and call its start() method, the Thread executes the run() method of the target
object, rather than its own. In order to accomplish this, Java needs to have a guarantee that the object we are
passing it does indeed contain a compatible run() method. We already know how to make such a
guarantee: we use an interface. Java provides an interface named Runnable that must be implemented by
any class that wants to become a Thread.

The Runnable Interface

The second technique I described for creating a Thread object involved passing an object that implements
the Runnable interface to the Thread constructor. The Runnable interface specifies that the object
contains a run() method that takes no arguments and returns no value. This method is called automatically
when the system needs to start the thread.

Sticking with our technique for implementing our applet in a single class, we have opted to add the run()
method for blinkThread to our HelloWeb4 class. This means that HelloWeb4 needs to implement the
Runnable interface. We indicate that the class implements the interface in our class declaration:

public class HelloWeb4 extends Applet
 implements MouseMotionListener, ActionListener, Runnable {...}

At compile time, the Java compiler checks to make sure we abide by this statement. We have carried through
by adding an appropriate run() method to our applet. Our run() method has the task of changing the

color of our text a couple of times a second. It's a very short routine, but I'm going to delay looking at it until
we tie up some loose ends in dealing with the Thread itself.

start() and stop()

Now that we know how to create a Thread to execute our applet's run() method, we need to figure out
where to actually do it. The start() and stop() methods of the Applet class are similar to init().
The start() method is called when an applet is first displayed. If the user then leaves the Web document
or scrolls the applet off the screen, the stop() method is invoked. If the user subsequently returns, the
start() method is called again, and so on. Unlike init(), start() and stop() can be called
repeatedly during the lifetime of an applet.

The start() and stop() methods of the Applet class have absolutely nothing to do with the Thread
object, except that they are a good place for an applet to start and stop a thread. An applet is responsible for
managing the threads that it creates. It would be considered rude for an applet to continue such tasks as
animation, making noise, or performing extensive calculations long after it's no longer visible on the screen.
It's common practice, therefore, to start a thread when an applet becomes visible and stop it when the applet
is no longer visible.

Here's the start() method from HelloWeb4:

public void start() {
 if (blinkThread == null) {
 blinkThread = new Thread(this);
 blinkThread.start();
 }
}

The method first checks to see if there is an object assigned to blinkThread; recall that an uninitialized
instance variable has a default value of null. If not, the method creates a new instance of Thread, passing
the target object that contains the run() method to the constructor. Since HelloWeb4 contains our run()
method, we pass the special variable this to the constructor to let the thread know where to find the run()
method it should run. this always refers to our object. Finally, after creating the new Thread, we call its
start() method to begin execution.

Our stop() method takes the complimentary position:

public void stop() {
 if (blinkThread != null) {
 blinkThread.stop();
 blinkThread = null;
 }
}

This method checks to see if blinkThread is empty. If not, it calls the thread's stop() method to
terminate its execution. By setting the value of blinkThread back to null, we have eliminated all
references to the thread object we created in the start() method, so the garbage collector can dispose of
the object.

run()

Our run() method does its job by setting the value of the variable blinkState. We have added
blinkState, a boolean value, to represent whether we are currently blinking on or off:

boolean blinkState;

The setColor() line of our paint() method has been modified slightly to handle blinking. The call to
setColor() now draws the text in white when blinkState is true:

gc.setColor(blinkState ? Color.white : currentColor());

Here we are being somewhat terse and using the C-like ternary operator to return one of two alternate color
values based on the value of blinkState.

Finally, we come to the run() method itself:

public void run() {
 while (true) {
 blinkState = !blinkState;
 repaint();
 try {
 Thread.sleep(500);
 }
 catch (InterruptedException e) {
 }
 }
}

At its outermost level, run() uses an infinite while loop. This means the method will run continuously
until the thread is terminated by a call to the controlling Thread object's stop() method.

The body of the loop does three things on each pass:

● Flips the value of blinkState to its opposite value using the not operator, !.

● Calls repaint() so that our paint() method can have an opportunity to redraw the text in

accordance with blinkState.

● Uses a try/catch statement to trap for an error in our call to the sleep() method of the Thread
class. sleep() is a static method of the Thread class. The method can be invoked from anywhere
and has the effect of putting the current thread to sleep for the specified number of milliseconds. The
effect here is to give us approximately two blinks per second.

Exceptions

The try/catch statement in Java is used to handle special conditions called exceptions. An exception is a
message that is sent, normally in response to an error, during the execution of a statement or a method. When
an exceptional condition arises, an object is created that contains information about the particular problem or
condition. Exceptions act somewhat like events. Java stops execution at the place where the exception
occurred, and the exception object is said to be thrown by that section of code. Like events, an exception
must be delivered somewhere and handled. The section of code that receives the exception object is said to
catch the exception. An exception causes the execution of the instigating section of code to abruptly stop and
transfers control to the code that receives the exception object.

The try/catch construct allows you to catch exceptions for a section of code. If an exception is caused by
a statement inside of a try clause, Java attempts to deliver the exception to the appropriate catch clause.
A catch clause looks like a method declaration with one argument and no return type. If Java finds a
catch clause with an argument type that matches the type of the exception, that catch clause is invoked.
A try clause can have multiple catch clauses with different argument types; Java chooses the appropriate
one in a way that is analogous to the selection of overloaded methods.

If there is no try/catch clause surrounding the code, or a matching catch clause is not found, the
exception is thrown up the call stack to the calling method. If the exception is not caught there, it's thrown up
another level, and so on until the exception is handled. This provides a very flexible error-handling
mechanism, so that exceptions in deeply nested calls can bubble up to the surface of the call stack for
handling. As a programmer, you need to know what exceptions a particular statement can generate, so
methods in Java are required to declare the exceptions they can throw. If a method doesn't handle an
exception itself, it must specify that it can throw that exception, so that the calling method knows that it may
have to handle it. See Chapter 4, The Java Language for a complete discussion of exceptions and the
try/catch clause.

So, why do we need a try/catch clause around our sleep() call? What kind of exception can
Thread's sleep() method throw and why do we care about it, when we don't seem to check for
exceptions anywhere else? Under some circumstances, Thread's sleep() method can throw an
InterruptedException, indicating that it was interrupted by another thread. Since the run() method
specified in the Runnable interface doesn't declare it can throw an InterruptedException, we must
catch it ourselves, or the compiler will complain. The try/catch statement in our example has an empty
catch clause, which means that it handles the exception by ignoring it. In this case, our thread's
functionality is so simple it doesn't matter if it's interrupted. All of the other methods we have used either

handle their own exceptions or throw only general-purpose exceptions that are assumed to be possible
everywhere and don't need to be explicitly declared.

A Word About Synchronization

At any given time, there can be a number of threads running in the Java interpreter. Unless we explicitly
coordinate them, these threads will be executing methods without any regard for what the other threads are
doing. Problems can arise when these methods share the same data. If one method is changing the value of
some variables at the same time that another method is reading these variables, it's possible that the reading
thread might catch things in the middle and get some variables with old values and some with new.
Depending on the application, this situation could cause a critical error.

In our HelloWeb examples, both our paint() and mouseDrag() methods access the messageX and
messageY variables. Without knowing the implementation of our particular Java environment, we have to
assume that these methods could conceivably be called by different threads and run concurrently. paint()
could be called while mouseDrag() is in the midst of updating messageX and messageY. At that point,
the data is in an inconsistent state and if paint() gets lucky, it could get the new x value with the old y
value. Fortunately, in this case, we probably would not even notice if this were to happen in our application.
We did, however, see another case, in our changeColor() and currentColor() methods, where
there is the potential for a more serious "out of bounds" error to occur.

The synchronized modifier tells Java to acquire a lock for the class that contains the method before
executing that method. Only one method can have the lock on a class at any given time, which means that
only one synchronized method in that class can be running at a time. This allows a method to alter data and
leave it in a consistent state before a concurrently running method is allowed to access it. When the method
is done, it releases the lock on the class.

Unlike synchronization in other languages, the synchronized keyword in Java provides locking at the
language level. This means there is no way that you can forget to unlock a class. Even if the method throws
an exception or the thread is terminated, Java will release the lock. This feature makes programming with
threads in Java much easier than in other languages. See Chapter 6, Threads for more details on coordinating
threads and shared data.

Whew! Now it's time to say goodbye to HelloWeb. I hope that you have developed a feel for the major
features of the Java language, and that this will help you as you go on to explore the details of programming
with Java.

Hello Web! III: The Button
Strikes!

Tools of the Trade

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm

Chapter 3
Tools of the Trade

3.2 The Class Path

The concept of a path should be familiar to anyone who has worked on a DOS or UNIX platform. It's a
piece of environment information that provides an application with a list of places to look for some
resource. The most common example is a path for executable programs. In a UNIX shell, the PATH
environment variable is a colon-separated list of directories that are searched, in order, when the user
types the name of a command. The Java CLASSPATH environment variable, similarly, is a list of
locations that can be searched for packages containing Java class files. Both the Java interpreter and the
Java compiler use CLASSPATH when searching for files on the local host platform.

Classes loaded from the local host via the class path have special features. For example, the Java
interpreter loads classes in the class path just once; after a core class has been loaded, it can't be modified
or replaced. The interpreter can also be told to trust classes in the class path and to load them without
passing them through the byte-code verification process. This is important because certain kinds of
optimizations on Java virtual machine instructions produce valid byte-code that, nonetheless, can't pass
the verification process. Byte-code that is precompiled on the native host is an extreme example.

The class path is a list of locations where Java class packages are found. A location can be a path such as
a directory name or the name of a class archive file. Java supports archives of class files in the
uncompressed ZIP format.[1] It automatically looks inside ZIP archives and retrieves classes, which then
allows large groups of classes to be distributed in a single archive file. The precise means and format for
setting the class path varies from system to system. On a UNIX system, you set the CLASSPATH
environment variable with a colon-separated list of directories and class archive files:

[1] The ZIP format is an open standard for file archiving and compression. There are ZIP
utilities available for most platforms; you'll need to get one if you want to store Java
classes in ZIP archives. Use ftp://ftp.uu.net/pub/archiving/zip/ to access an archive of
freely available ZIP utilities.

CLASSPATH=/usr/lib/java/classes.zip:/home/vicky/Java/classes:\
 /home/vicky/.netscape/moz2_0.zip:.

file:///C|/download/ftp@ftp.uu.net/pub/archiving/zip/default.htm

On a Windows system, the CLASSPATH environment variable is set with a semicolon-separated list of
directories and class archive files:

CLASSPATH=C:\tools\java\classes.zip;D:\users\vicky\Java\classes;.

The class path can also be set with the -classpath option to the Java interpreter java and the Java
compiler javac.

The above UNIX example specifies a class path with four locations: a ZIP archive in /usr/lib/java, a
directory in the user's home, another ZIP file in the user's Netscape collection, and the current directory,
which is always specified with a dot (.). The last component of the class path, the current directory, is
useful when tinkering with classes, but as a general rule, it's bad practice to put the current directory in
any kind of path.

The Java interpreter searches each of these four locations in order to find classes. java expects to find
class files in a directory hierarchy or in a directory within a ZIP archive that maps to the fully qualified
name of the class. The components of a class-package name become the components of a pathname.
Given the above class path, the first time we reference a class with the fully qualified name of
animals.birds.BigBird, for example, java begins the search with the classes.zip archive in
/usr/lib/java. It looks for a class archived under the path animals/birds/BigBird. If java does not find the
class there, it looks for the class in /home/vicky/Java/classes/animals/birds/BigBird. If it's not found
there, java moves on to the archive file specified next in the class path, and so on.

If you don't specify the CLASSPATH environment variable or the -classpath option, java uses the
following default class path:

.:$JAVA/classes:$JAVA/lib/classes.zip UNIX systems

.;$JAVA\classes;$JAVA\lib\classes.zip Windows systems

In this path, $JAVA is the main Java directory on your system. Notice that the current directory (.) is the
first location in the default class path; this means the files in your current directory are always available.
If you change the class path and don't include the current directory, these files will no longer be
accessible.

The Java Interpreter The Java Compiler

Chapter 3
Tools of the Trade

3.3 The Java Compiler

In this section, I'm going to say a few words about javac, the Java compiler that is supplied as part of
Sun's JDK. (If you are happily working in another development environment, you may want to skip
ahead to the next section.) The javac compiler is written entirely in Java, so it's available for any platform
that supports the Java run-time system. The ability to support its own development environments is an
important stage in a language's development. Java makes this bootstrapping automatic by supplying a
ready-to-run compiler at the same cost as porting the interpreter.

javac turns Java source code into a compiled class that contains Java virtual machine byte-code. By
convention, source files are named with a .java extension; the resulting class files have a .class extension.
javac considers a file to be a single compilation unit. As you'll see in Chapter 5, Objects in Java, classes
in a given compilation unit share certain features like package and import statements.

javac allows you one public class per file and insists the file have the same name as the class. If the
filename and class name don't match, javac issues a compilation error. A single file can contain multiple
classes, as long as only one of the classes is public. You should avoid packing lots of classes into a
single file. The compiler lets you include extra non-public classes in a .java file, so that you can
implement a class that is tightly coupled to another class without a lot of hassle. But you should have
more than one class in a file if the public class in the file is the only one that ever uses additional
classes.

Now for an example. The source code for the following class should be placed in a file called
BigBird.java:

package animals.birds

public class BigBird extends Bird {
 ...
}

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch03_04.htm

We can then compile it with:

% javac BigBird.java

Unlike the Java interpreter, which takes a class name as its argument, javac requires an actual filename to
process. The above command produces the class file BigBird.class and stores it in the same directory as
the source file. While it's useful to have the class file in the same directory as the source when you are
working on a simple example, for most real applications you'll need to store the class file in an
appropriate place in the class path.

You can use the -d option to javac to specify an alternate directory for storing the class files it generates.
The specified directory is used as the root of the class hierarchy, so .class files are placed in this directory
or in a subdirectory below it, depending on the package name of the class. For example, we can use the
following command to put our BigBird.class file in an appropriate location:

% javac -d /home/vicky/Java/classes BigBird.java

When you use the -d option, javac automatically creates any directories needed to store the class file in
the appropriate place. In the above command, the BigBird.class file is stored in
/home/vicky/Java/classes/animals/birds.

You can specify multiple .java files in a single javac command; the compiler simply creates a class file
for each source file. But you don't need to list source files for other classes your class references, as long
as the other classes have already been compiled. During compilation, Java resolves other class references
using the class path. If our class references other classes in animals.birds or other packages, the
appropriate paths should be listed in the class path at compile time, so that javac can find the appropriate
class files. You either make sure that the CLASSPATH environment variable is set or use the -
classpath option to javac.

The Java compiler is more intelligent than your average compiler and replaces some of the functionality
of a make utility. For example, javac compares the modification times of the source and class files for all
referenced classes and recompiles them as necessary. A compiled Java class remembers the source file
from which it was compiled, so as long as the source file is in the same directory as the class file, javac
can recompile the source if necessary. If, in the above example, class BigBird references another class,
animals.furry.Grover, javac looks for the source Grover.java in an animals.furry package
and recompiles it if necessary to bring the Grover.class class file up to date.

It's important to note that javac can do its job even if only the compiled versions of referenced classes are
available. Java class files contain all the data type and method signature information source files do, so
compiling against binary class files is as type safe (and exception safe) as compiling with Java source
code.

The Class Path The Netscape Alternative

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch03_04.htm

Chapter 3
Tools of the Trade

3.5 The Applet Tag

 Add stuff about 'archive' tag.

Applets are embedded in HTML documents with the <applet> tag. The <applet> tag resembles the
HTML image tag.[2] It contains attributes that identify the applet to be displayed and, optionally,
give the Web browser hints about how it should be displayed. The standard image tag sizing and
alignment attributes, such as height and width, can be used inside the applet tag. Unlike images,
however, applets have both an opening <applet> and a closing </applet> tag. Sandwiched between
these can be any number of <param> tags that contain application-specific parameters to be passed to
the applet itself:

[2] If you are not familiar with HTML or other markup languages, you may want to refer to
HTML: The Definitive Guide, from O'Reilly & Associates, for a complete reference on
HTML and structured Web documents.

<applet attribute [attribute] ... >
[<param parameter >]
[<param parameter >]
...
<\applet>

Attributes

Attributes are name/value pairs that are interpreted by a Web browser or applet viewer. (Many HTML
tags besides <applet> have attributes.) Attributes of the <applet> tag specify general features that
apply to all applets, such as size and alignment. The definition of the <applet> tag lists a fixed set of
recognized attributes; specifying an incorrect or nonexistent attribute should be considered an HTML
error.

Three attributes, code, width, and height, are always required in the <applet> tag. code specifies

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch03_04.htm

the name of the applet to be loaded; width and height determine its initial size. Other attributes are
optional.

The following is an HTML fragment for a hypothetical, simple clock applet that takes no parameters and
requires no special HTML layout:

<applet code=AnalogClock width=100 height=100></applet>

The HTML file that contains this <applet> tag needs to be stored in the same directory as the
AnalogClock.class class file. The applet tag is not sensitive to spacing, so the above is therefore
equivalent to:

<applet
 code=AnalogClock
 width=100
 height=100>
<\applet>

You can use whatever form seems appropriate.

Parameters

Parameters are analogous to command-line arguments; they provide a way to pass information to an
applet. Each <param> tag contains a name and a value that are passed as strings to the applet:

<param name = parameter_name value = parameter_value>

Parameters provide a means of embedding application-specific data and configuration information within
an HTML document.[3] Our AnalogClock applet, for example, might accept a parameter that selects
between local and universal time:

[3] If you are wondering why the applet's parameters are specified in yet another type of
tag, here's the reason. In the original alpha release of Java, applet parameters were included
inside of a single <app> tag along with formatting attributes. However, this format was not
SGML-compliant, so the <param> tag was added.

<applet code=AnalogClock width=100 height=100>
 <param name=zone value=GMT>
<\applet>

Presumably, this AnalogClock applet is designed to look for a parameter named zone with a possible
value of GMT.

Parameter names and values can be quoted to contain spaces and other special characters. We could
therefore be more verbose and use a parameter value like the following:

<param name=zone value="Greenwich Mean Time">

The parameters a given applet expects are determined by the developer of that applet. There is no fixed
set of parameter names or values; it's up to the applet to interpret the parameter name/value pairs that are
passed to it. Any number of parameters can be specified, and the applet may choose to use or ignore them
as it sees fit. The applet might also consider parameters to be either optional or required and act
accordingly.

Hablo Applet?

Web browsers ignore tags they don't understand; if the Web browser doesn't interpret the <applet> or
<param> tags, they should disappear and any HTML between the <applet>and </applet> tags
should appear normally.

By convention, Java-enabled Web browsers do the opposite and ignore any extra HTML between the
<applet> and </applet> tags. This means we can place some alternate HTML inside the
<applet> tag, which is then displayed only by Web browsers that can't run the applet.

For our AnalogClock example, we could display a small text explanation and an image of the clock
applet as a teaser:

<applet code=AnalogClock width=100 height=100>
 <param name=zone value=GMT>
 If you see this you don't have a Java-enabled Web
 browser. Here's a picture of what you are missing.

<\applet>

The Complete Applet Tag

We can now spell out the full-blown <applet> tag:[4]

[4] The HTML working group of the IETF is investigating standardization of embedded
objects in HTML. A draft document can be found at ftp://ds.internic.net/internet-drafts/draft-
ietf-html-cda-00.txt. They would prefer a slightly less application-centric name such as
<embed>. However, their discussion, for the most part, parallels the <applet> tag.

file:///C|/download/ftp@ds.internic.net/internet-drafts/draft-ietf-html-cda-00.txt
file:///C|/download/ftp@ds.internic.net/internet-drafts/draft-ietf-html-cda-00.txt

<applet
 code = class name
 width = pixels wide
 height = pixels high
 [codebase = location URL]
 [name = instance name]
 [alt = alternate text]
 [align = alignment style]
 [vspace = vertical pad pixels]
 [hspace = horizontal pad pixels]
>
[<param name = parameter name value = parameter value>]
[<param name = parameter name value = parameter value>]
...
[HTML for non Java aware browsers]
<\applet>

The width, height, align, vspace, and hspace attributes have the same meanings as those of the
 tag and determine the preferred size, alignment, and padding respectively.

The alt attribute specifies alternate text that is displayed by browsers that understand the <applet>
tag and its attributes, but can't actually run applets. This attribute can also describe the applet, since in this
case any alternate HTML between <applet> and <\applet> is ignored.

The name attribute specifies an instance name for the executing applet. This is a name specified as a
unique label for each copy of an applet on a particular HTML page. For example, if we include our clock
twice on the same page (using two applet tags), we could give each instance a unique name to
differentiate them:

<applet code=AnalogClock name="bigClock" width=300 height=300><\applet>
<applet code=AnalogClock name="smallClock" width=50 height=50><\applet>

Applets use instance names to recognize and communicate with other applets on the same page. We
could, for instance, create a "clock setter" applet that knows how to set the time on a AnalogClock
applet and pass it the instance name of a particular target clock on this page as a parameter. This might
look something like:

<applet code=ClockSetter>
 <param name=clockToSet value="bigClock">
<\applet>

Loading Class Files

The code attribute of the <applet> tag should specify the name of an applet. This is either a simple
class name, or a package path and class name. For now, let's look at simple class names; I'll discuss
packages in a moment. By default, the Java run-time system looks for the class file in the same location as
the HTML document that contains it. This location is known as the base URL for the document.

Consider an HTML document, clock.html, that contains our clock applet example:

<applet code=AnalogClock width=100 height=100><\applet>

Let's say we retrieve the document at the following URL:

http://www.time.ch/documents/clock.html

Java tries to retrieve the applet class file from the same base location:

http://www.time.ch/documents/AnalogClock.class

The codebase attribute of the <applet> tag can be used to specify an alternative base URL for the
class file search. Let's say our HTML document now specifies codebase, as in the following example:

<applet
 codebase=http://www.joes.ch/stuff/
 code=AnalogClock
 width=100
 height=100>
<\applet>

Java now looks for the applet class file at:

http://www.joes.ch/stuff/AnalogClock.class

Packages

Packages are groups of Java classes; see Chapter 5, Objects in Java for more information. A package
name is a little like an Internet hostname, in that they both use a hierarchical, dot-separated naming
convention. A Java class file can be identified by its full name by prefixing the class name with the
package name. We might therefore have a package called time for time-related Java classes, and perhaps
a subordinate package called time.clock to hold classes related to one or more clock applications.

In addition to providing a naming scheme, packages can be used to locate classes stored at a particular
location. Before a class file is retrieved from a server, its package-name component is translated by the

client into a relative path name under the base URL of the document. The components of a class package
name are simply turned into the components of a path name, just like with classes on your local system.

Let's suppose that our AnalogClock has been placed into the time.clock package and now has the
fully qualified name of time.clock.AnalogClock. Our simple <applet> tag would now look
like:

<applet code=time.clock.AnalogClock width=100 height=100><\applet>

Let's say the clock.html document is once again retrieved from:

http://www.time.ch/documents/clock.html

Java now looks for the class file in the following location:

http://www.time.ch/documents/time/clock/AnalogClock.class

The same is true when specifying an alternative codebase:

<applet
 codebase=http://www.joes.ch/stuff/
 code=time.clock.AnalogClock
 width=100
 height=100>
<\applet>

Java now tries to find the class in the corresponding path under the new base URL:

http://www.joes.ch/stuff/time/clock/AnalogClock.class

One possible package-naming convention proposes that Internet host and domain names be incorporated
as part of package names to form a unique identifier for classes produced by a given organization. If a
company with the domain name foobar.com produced our AnalogClock class, they might distribute
it in a package called com.foobar.time.clock. The fully qualified name of the AnalogClock
class would then be com.foo.time.clock.AnalogClock. This would presumably be a unique
name stored on an arbitrary server. A future version of the Java class loader might use this to
automatically search for classes on remote hosts.

Perhaps soon we'll run Sun's latest and greatest Web browser directly from its source with:

% java com.sun.java.hotjava.HotJava

Viewing Applets

Sun's JDK comes with an applet-viewer program aptly called appletviewer. To use appletviewer, specify
the URL of the document on the command line. For example, to view our AnalogClock at the URL
shown above, use the following command:

% appletviewer http://www.time.ch/documents/clock.html

The appletviewer retrieves all applets in the specified document and displays each one in a separate
window. appletviewer is not a Web browser; it doesn't attempt to display HTML. It's primarily a
convenience for testing and debugging applets. If the document doesn't contain <applet> tags,
appletviewer does nothing.

The Netscape Alternative The Java Language

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch03_04.htm

Chapter 4
The Java Language

4.2 Comments

Java supports both C-style block comments delimited by /* and */ and C++-style line comments
indicated by //:

/* This is a
 multiline
 comment. */

// This is a single line comment
// and so // is this

As in C, block comments can't be nested. Single-line comments are delimited by the end of a line; extra
// indicators inside a single line have no effect. Line comments are useful for short comments within
methods because you can still wrap block comments around large chunks of code during development.

By convention, a block comment beginning with /** indicates a special "doc comment." A doc
comment is commentary that is extracted by automated documentation generators, such as Sun's javadoc
program that comes with the Java Development Kit. A doc comment is terminated by the next */, just as
with a regular block comment. Leading spacing up to a * on each line is ignored; lines beginning with @
are interpreted as special tags for the documentation generator:

/**
 * I think this class is possibly the most amazing thing you will
 * ever see. Let me tell you about my own personal vision and
 * motivation in creating it.
 * <p>
 * It all began when I was a small child, growing up on the
 * streets of Idaho. Potatoes were the rage, and life was good...
 *
 * @see PotatoPeeler
 * @see PotatoMasher

 * @author John 'Spuds' Smith
 * @version 1.00, 19 Dec 1996
 */

javadoc creates HTML class documentation by reading the source code and the embedded comments.
The author and version information is presented in the output and the @see tags make hypertext links to
the appropriate class documentation. The compiler also looks at the doc comments; in particular, it is
interested in the @deprecated tag, which means that the method has been declared obsolete and
should be avoided in new programs. The compiler generates a warning message whenever it sees you use
a deprecated feature in your code.

Doc comments can appear above class, method, and variable definitions, but some tags may not be
applicable to all. For example, a variable declaration can contain only a @see tag. Table 4.1 summarizes
the tags used in doc comments.

Table 4.1: Doc Comment Tags

Tag Description Applies to

@see Associated class name Class, method, or variable

@author Author name Class

@version Version string Class

@param Parameter name and description Method

@return Description of return value Method

@exception Exception name and description Method

@deprecated Declares an item obsolete Class, method, or variable

Text Encoding Types

Chapter 4
The Java Language

4.3 Types

The type system of a programming language describes how its data elements (variables and constants) are
associated with actual storage. In a statically typed language, such as C or C++, the type of a data element
is a simple, unchanging attribute that often corresponds directly to some underlying hardware
phenomenon, like a register value or a pointer indirection. In a more dynamic language like Smalltalk or
Lisp, variables can be assigned arbitrary elements and can effectively change their type throughout their
lifetime. A considerable amount of overhead goes into validating what happens in these languages at run-
time. Scripting languages like Tcl and awk achieve ease of use by providing drastically simplified type
systems in which only certain data elements can be stored in variables, and values are unified into a
common representation such as strings.

As I described in Chapter 1, Yet Another Language?, Java combines the best features of both statically
and dynamically typed languages. As in a statically typed language, every variable and programming
element in Java has a type that is known at compile-time, so the interpreter doesn't normally have to check
the type validity of assignments while the code is executing. Unlike C or C++ though, Java also maintains
run-time information about objects and uses this to allow safe run-time polymorphism.

Java data types fall into two categories. Primitive types represent simple values that have built-in
functionality in the language; they are fixed elements like literal constants and numeric expressions.
Reference types (or class types) include objects and arrays; they are called reference types because they
are passed "by reference" as I'll explain shortly.

Primitive Types

Numbers, characters, and boolean values are fundamental elements in Java. Unlike some other (perhaps
more pure) object-oriented languages, they are not objects. For those situations where it's desirable to treat
a primitive value as an object, Java provides "wrapper" classes (see Chapter 7, Basic Utility Classes). One
major advantage of treating primitive values as such is that the Java compiler can more readily optimize
their usage.

Another advantage of working with the Java virtual-machine architecture is that primitive types are
precisely defined. For example, you never have to worry about the size of an int on a particular
platform; it's always a 32-bit, signed, two's complement number. Table 4.2 summarizes Java's primitive
types.

Table 4.2: Java Primitive Data Types

Type Definition

boolean true or false

char 16-bit Unicode character

byte 8-bit signed two's complement integer

short 16-bit signed two's complement integer

int 32-bit signed two's complement integer

long 64-bit signed two's complement integer

float 32-bit IEEE 754 floating-point value

double 64-bit IEEE 754 floating-point value

If you think the primitive types look like an idealization of C scalar types on a byte-oriented 32-bit
machine, you're absolutely right. That's how they're supposed to look. The 16-bit characters were forced
by Unicode, and generic pointers were deleted for other reasons we'll touch on later, but in general the
syntax and semantics of Java primitive types are meant to fit a C programmer's mental habits. If you're
like most of this book's readers, you'll probably find this saves you a lot of mental effort in learning the
language.

Declaration and initialization

Variables are declared inside of methods or classes in C style. For example:

int foo;
double d1, d2;
boolean isFun;

Variables can optionally be initialized with an appropriate expression when they are declared:

int foo = 42;
double d1 = 3.14, d2 = 2 * 3.14;
boolean isFun = true;

Variables that are declared as instance variables in a class are set to default values if they are not

initialized. In this case, they act much like static variables in C or C++. Numeric types default to the
appropriate flavor of zero, characters are set to the null character "\0," and boolean variables have the
value false. Local variables declared in methods, on the other hand, must be explicitly initialized before
they can be used.

Integer literals

Integer literals can be specified in octal (base 8), decimal (base 10), or hexadecimal (base 16). A decimal
integer is specified by a sequence of digits beginning with one of the characters 1-9:

int i = 1230;

Octal numbers are distinguished from decimal by a leading zero:

int i = 01230; // i = 664 decimal

(An interesting, but meaningless, observation is that this would make the number 0 an octal value in the
eyes of the compiler.)

As in C, a hexadecimal number is denoted by the leading characters 0x or 0X (zero "x"), followed by
digits and the characters a-f or A-F, which represent the decimal values 10-15 respectively:

int i = 0xFFFF; // i = 65535 decimal

Integer literals are of type int unless they are suffixed with an L, denoting that they are to be produced
as a long value:

long l = 13L;
long l = 13; // equivalent--13 is converted from type int

(The lowercase character l ("el") is also acceptable, but should be avoided because it often looks like the
numeral 1).

When a numeric type is used in an assignment or an expression involving a type with a larger range, it can
be promoted to the larger type. For example, in the second line of the above example, the number 13 has
the default type of int, but it's promoted to type long for assignment to the long variable. Certain
other numeric and comparison operations also cause this kind of arithmetic promotion. A numeric value
can never be assigned to a type with a smaller range without an explicit (C-style) cast, however:

int i = 13;
byte b = i; // Compile time error--explicit cast needed
byte b = (byte) i; // Okay

Conversions from floating point to integer types always require an explicit cast because of the potential
loss of precision.

Floating-point literals

Floating-point values can be specified in decimal or scientific notation. Floating-point literals are of type
double unless they are suffixed with an f denoting that they are to be produced as a float value:

double d = 8.31;
double e = 3.00e+8;
float f = 8.31F;
float g = 3.00e+8F;

Character literals

A literal character value can be specified either as a single-quoted character or as an escaped ASCII or
Unicode sequence:

char a = 'a';
char newline = '\n';
char octalff = \u00ff;

Reference Types

In C, you can make a new, complex data type by creating a structure. In Java (and other object-
oriented languages), you instead create a class that defines a new type in the language. For instance, if
we create a new class called Foo in Java, we are also implicitly creating a new type called Foo. The type
of an item governs how it's used and where it's assigned. An item of type Foo can, in general, be assigned
to a variable of type Foo or passed as an argument to a method that accepts a Foo value.

In an object-oriented language like Java, a type is not necessarily just a simple attribute. Reference types
are related in the same way as the classes they represent. Classes exist in a hierarchy, where a subclass is a
specialized kind of its parent class. The corresponding types have a similar relationship, where the type of
the child class is considered a subtype of the parent class. Because child classes always extend their
parents and have, at a minimum, the same functionality, an object of the child's type can be used in place
of an object of the parent's type. For example, if I create a new class, Bar, that extends Foo, there is a
new type Bar that is considered a subtype of Foo. Objects of type Bar can then be used anywhere an
object of type Foo could be used; An object of type Bar is said to be assignable to a variable of type
Foo. This is called subtype polymorphism and is one of the primary features of an object-oriented
language. We'll look more closely at classes and objects in Chapter 5, Objects in Java.

Primitive types in Java are used and passed "by value." In other words, when a primitive value is assigned
or passed as an argument to a method, it's simply copied. Reference types, on the other hand, are always
accessed "by reference." A reference is simply a handle or a name for an object. What a variable of a
reference type holds is a reference to an object of its type (or of a subtype). A reference is like a pointer in
C or C++, except that its type is strictly enforced and the reference value itself is a primitive entity that
can't be examined directly. A reference value can't be created or changed other than through assignment to
an appropriate object. When references are assigned or passed to methods, they are copied by value. You
can think of a reference as a pointer type that is automatically dereferenced whenever it's mentioned.

Let's run through an example. We specify a variable of type Foo, called myFoo, and assign it an
appropriate object:

Foo myFoo = new Foo();
Foo anotherFoo = myFoo;

myFoo is a reference type variable that holds a reference to the newly constructed Foo object. For now,
don't worry about the details of creating an object; we'll cover that in Chapter 5, Objects in Java. We
designate a second Foo type variable, anotherFoo, and assign it to the same object. There are now two
identical references: myFoo and anotherFoo. If we change things in the state of the Foo object itself,
we will see the same effect by looking at it with either reference. The comparable code in C++ would be:

// C++
Foo& myFoo = *(new Foo());
Foo& anotherFoo = myFoo;

We can pass one of the variables to a method, as in:

myMethod(myFoo);

An important, but sometimes confusing distinction to make at this point is that the reference itself is
passed by value. That is, the argument passed to the method (a local variable from the method's point of
view) is actually a third copy of the reference. The method can alter the state of the Foo object itself
through that reference, but it can't change the caller's reference to myFoo. That is, the method can't
change the caller's myFoo to point to a different Foo object. For the times we want a method to change a
reference for us, we have to pass a reference to the object that contains it, as shown in Chapter 5, Objects
in Java.

Reference types always point to objects, and objects are always defined by classes. However, there are
two special kinds of reference types that specify the type of object they point to in a slightly different
way. Arrays in Java have a special place in the type system. They are a special kind of object
automatically created to hold a number of some other type of object, known as the base type. Declaring an
array-type reference implicitly creates the new class type, as you'll see in the next section.

Interfaces are a bit sneakier. An interface defines a set of methods and a corresponding type. Any object
that implements all methods of the interface can be treated as an object of that type. Variables and method
arguments can be declared to be of interface types, just like class types, and any object that implements
the interface can be assigned to them. This allows Java to cross the lines of the class hierarchy in a type
safe way, as you'll see in Chapter 5, Objects in Java.

A Word About Strings

Strings in Java are objects; they are therefore a reference type. String objects do, however, have some
special help from the Java compiler that makes them look more primitive. Literal string values in Java
source code are turned into String objects by the compiler. They can be used directly, passed as
arguments to methods, or assigned to String type variables:

System.out.println("Hello World...");
String s = "I am the walrus...";
String t = "John said: \"I am the walrus...\"";

The + symbol in Java is overloaded to provide string concatenation; this is the only overloaded operator
in Java:

String quote = "Four score and " + "seven years ago,";
String more = quote + " our" + " fathers" + " brought...";

Java builds a single String object from the concatenated strings and provides it as the result of the
expression. We will discuss the String class in Chapter 7, Basic Utility Classes.

Comments Statements and Expressions

Chapter 4
The Java Language

4.4 Statements and Expressions

Although the method declaration syntax of Java is quite different from that of C++, Java statement and
expression syntax is very much like that of C. Again, the design intention was to make the low-level
details of Java easily accessible to C programmers, so that they can concentrate on learning the parts of
the language that are really different. Java statements appear inside of methods and class and variable
initializers; they describe all activities of a Java program. Variable declarations and initializations like
those in the previous section are statements, as are the basic language structures like conditionals and
loops. Expressions are statements that produce a result that can be used as part of another statement.
Method calls, object allocations, and, of course, mathematical expressions are examples of expressions.

One of the tenets of Java is to keep things simple and consistent. To that end, when there are no other
constraints, evaluations and initializations in Java always occur in the order in which they appear in the
code--from left to right. We'll see this rule used in the evaluation of assignment expressions, method
calls, and array indexes, to name a few cases. In some other languages, the order of evaluation is more
complicated or even implementation dependent. Java removes this element of danger by precisely and
simply defining how the code is evaluated. This doesn't, however, mean you should start writing obscure
and convoluted statements. Relying on the order of evaluation of expressions is a bad programming
habit, even when it works. It produces code that is hard to read and harder to modify. Real programmers,
however, are not made of stone, and you may catch me doing this once or twice when I can't resist the
urge to write terse code.

Statements

As in C or C++, statements and expressions in Java appear within a code block. A code block is
syntactically just a number of statements surrounded by an open curly brace ({) and a close curly brace
(}). The statements in a code block can contain variable declarations:

{
 int size = 5;
 setName("Max");

 ...
}

Methods, which look like C functions, are in a sense code blocks that take parameters and can be called
by name.

setupDog(String name) {
 int size = 5;
 setName(name);
 ...
}

Variable declarations are limited in scope to their enclosing code block. That is, they can't be seen
outside of the nearest set of braces:

{
 int i = 5;
}

i = 6; // compile time error, no such variable i

In this way, code blocks can be used to arbitrarily group other statements and variables. The most
common use of code blocks, however, is to define a group of statements for use in a conditional or
iterative statement.

Since a code block is itself collectively treated as a statement, we define a conditional like an if/else
clause as follows:

if (condition)
 statement;
[else
 statement;]

Thus, if/else in Java has the familiar functionality of taking either of the forms:

if (condition)
 statement;

or:

if (condition) {
 [statement;]

 [statement;]
 [...]
}

Here the condition is a boolean expression. In the second form, the statement is a code block, and
all of its enclosed statements are executed if the conditional succeeds. Any variables declared within that
block are visible only to the statements within the successful branch of the condition. Like the if/else
conditional, most of the remaining Java statements are concerned with controlling the flow of execution.
They act for the most part like their namesakes in C or C++.

The do and while iterative statements have the familiar functionality, except that their conditional test
is also a boolean expression. You can't use an integer expression or a reference type; in other words
you must explicitly test your value. In other words, while i==0 is legitimate, i is not, unless i is
boolean. Here are the forms of these two statements:

while (conditional)
 statement;

do
 statement;
while (conditional);

The for statement also looks like it does in C:

for (initialization; conditional; incrementor)
 statement;

The variable initialization expression can declare a new variable; this variable is limited to the scope of
the for statement:

for (int i = 0; i < 100; i++) {
 System.out.println(i)
 int j = i;
 ...
}

Java doesn't support the C comma operator, which groups multiple expressions into a single expression.
However, you can use multiple, comma-separated expressions in the initialization and increment sections
of the for loop. For example:

for (int i = 0, j = 10; i < j; i++, j--) {
 ... }

The Java switch statement takes an integer type (or an argument that can be promoted to an integer
type) and selects among a number of alternative case branches[2] :

[2] An object-based switch statement is desirable and could find its way into the
language someday.

switch (int expression) {
 case int expression :
 statement;
 [case int expression
 statement;
 ...
 default :
 statement;]
}

No two of the case expressions can evaluate to the same value. As in C, an optional default case can
be specified to catch unmatched conditions. Normally, the special statement break is used to terminate
a branch of the switch:

switch (retVal) {
 case myClass.GOOD :
 // something good
 break;
 case myClass.BAD :
 // something bad
 break;
 default :
 // neither one
 break;
}

The Java break statement and its friend continue perform unconditional jumps out of a loop or
conditional statement. They differ from the corresponding statements in C by taking an optional label as
an argument. Enclosing statements, like code blocks and iterators, can be labeled with identifier
statements:

one:
 while (condition) {
 ...
 two:
 while (condition) {

 ...
 // break or continue point
 }
 // after two
 }
// after one

In the above example, a break or continue without argument at the indicated position would have
the normal, C-style effect. A break would cause processing to resume at the point labeled "after two"; a
continue would immediately cause the two loop to return to its condition test.

The statement break two at the indicated point would have the same effect as an ordinary break, but
break one would break two levels and resume at the point labeled "after one." Similarly, continue
two would serve as a normal continue, but continue one would return to the test of the one loop.
Multilevel break and continue statements remove much of the need for the evil goto statement in
C and C++.

There are a few Java statements we aren't going to discuss right now. The try, catch, and finally
statements are used in exception handling, as we'll discuss later in this chapter. The synchronized
statement in Java is used to coordinate access to statements among multiple threads of execution; see
Chapter 6, Threads for a discussion of thread synchronization.

On a final note, I should mention that the Java compiler flags "unreachable" statements as compile-time
errors. Of course, when I say unreachable, I mean those statements the compiler determines won't be
called by a static look at compile-time.

Expressions

As I said earlier, expressions are statements that produce a result when they are evaluated. The value of
an expression can be a numeric type, as in an arithmetic expression; a reference type, as in an object
allocation; or the special type void, which results from a call to a method that doesn't return a value. In
the last case, the expression is evaluated only for its side effects (i.e., the work it does aside from
producing a value). The type of an expression is known at compile-time. The value produced at run-time
is either of this type or, in the case of a reference type, a compatible (assignable) type.

Operators

Java supports almost all standard C operators. These operators also have the same precedence in Java as
they do in C, as you can see in Table 4.3.

Table 4.3: Java Operators

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm

Precedence Operator Operand Type Description

1 ++, -- Arithmetic Increment and decrement

1 +, - Arithmetic Unary plus and minus

1 ~ Integral Bitwise complement

1 ! Boolean Logical complement

1 (type) Any Cast

2 *, /, % Arithmetic Multiplication, division, remainder

3 +, - Arithmetic Addition and subtraction

3 + String String concatenation

4 << Integral Left shift

4 >> Integral Right shift with sign extension

4 >>> Integral Right shift with no extension

5 <, <=, >, >= Arithmetic Numeric comparison

5 instanceof Object Type comparison

6 ==, != Primitive Equality and inequality of value

6 ==, != Object Equality and inequality of reference

7 & Integral Bitwise AND

7 & Boolean Boolean AND

8 ^ Integral Bitwise XOR

8 ^ Boolean Boolean XOR

9 | Integral Bitwise OR

9 | Boolean Boolean OR

10 && Boolean Conditional AND

11 || Boolean Conditional OR

12 ?: NA Conditional ternary operator

13 = Any Assignment

13
*=, /=, %=, +=, -=, <<=,
>>=, >>>=, &=, ^=, |=

Any Assignment with operation

There are a few operators missing from the standard C collection. For example, Java doesn't support the
comma operator for combining expressions, although the for statement allows you to use it in the
initialization and increment sections. Java doesn't allow direct pointer manipulation, so it does not
support the reference (*), dereference (&), and sizeof operators.

Java also adds some new operators. As we've seen, the + operator can be used with String values to
perform string concatenation. Because all integral types in Java are signed values, the >> operator
performs a right-shift operation with sign extension. The >>> operator treats the operand as an unsigned
number and performs a right shift with no extension. The new operator is used to create objects; we will
discuss it in detail shortly.

Assignment

While variable initialization (i.e., declaration and assignment together) is considered a statement, variable
assignment alone is an expression:

int i, j;
i = 5; // expression

Normally, we rely on assignment for its side effects alone, but, as in C, an assignment can be used as a
value in another part of an expression:

j = (i = 5);

Again, relying on order of evaluation extensively (in this case, using compound assignments in complex
expressions) can make code very obscure and hard to read. Do so at your own peril.

null

The expression null can be assigned to any reference type. It has the meaning of "no reference." A
null reference can't be used to select a method or variable and attempting to do so generates a
NullPointerException at run-time.

Variable access

Using the dot (.) to access a variable in an object is a type of expression that results in the value of the
variable accessed. This can be either a numeric type or a reference type:

int i;
String s;
i = myObject.length;
s = myObject.name;

A reference type expression can be used in further evaluations, by selecting variables or calling methods
within it:

int len = myObject.name.length();
int initialLen = myObject.name.substring(5, 10).length();

Here we have found the length of our name variable by invoking the length() method of the
String object. In the second case, we took an intermediate step and asked for a substring of the name
string. The substring method of the String class also returns a String reference, for which we
ask the length. (Chapter 7, Basic Utility Classes describes all of these String methods in detail.)

Method invocation

A method invocation is basically a function call, or in other words, an expression that results in a value,
the type of which is the return type of the method. Thus far, we have seen methods invoked via their
name in simple cases:

System.out.println("Hello World...");
int myLength = myString.length();

When we talk about Java's object-oriented features in Chapter 5, Objects in Java, we'll look at some rules
that govern the selection of methods.

Like the result of any expression, the result of a method invocation can be used in further evaluations, as
we saw above. Whether to allocate intermediate variables and make it absolutely clear what your code is
doing or to opt for brevity where it's appropriate is a matter of coding style.

Object creation

Objects in Java are allocated with the new operator:

Object o = new Object();

The argument to new is a constructor that specifies the type of object and any required parameters to
create it. The return type of the expression is a reference type for the created object.

We'll look at object creation in detail in Chapter 5, Objects in Java. For now, I just want to point out that
object creation is a type of expression, and that the resulting object reference can be used in general
expressions. In fact, because the binding of new is "tighter" than that of the dot-field selector, you can
easily allocate a new object and invoke a method in it for the resulting expression:

int hours = new Date().getHours();

The Date class is a utility class that represents the current time. Here we create a new instance of Date

with the new operator and call its getHours() method to retrieve the current hour as an integer value.
The Date object reference lives long enough to service the method call and is then cut loose and garbage
collected at some point in the future.

Calling methods in object references in this way is, again, a matter of style. It would certainly be clearer
to allocate an intermediate variable of type Date to hold the new object and then call its getHours()
method. However, some of us still find the need to be terse in our code.

instanceof

The instanceof operator can be used to determine the type of an object at run-time. instanceof
returns a boolean value that indicates whether an object is an instance of a particular class or a
subclass of that class:

Boolean b;
String str = "foo";
b = (str instanceof String); // true
b = (str instanceof Object); // also true
b = (str instanceof Date); // false--not a Date or subclass

instanceof also correctly reports if an object is of the type of an arry or a specified interface.

 if (foo instanceof byte[])
 ...

(See Chapter 5, Objects in Java for a full discussion of interfaces.)

It is also important to note that the value null is not considered an instance of any object. So the
following test will return false, no matter what the declared type of the variable:

String s = null;
if (s istanceof String)
 // won't happen

Types Exceptions

Chapter 4
The Java Language

4.5 Exceptions

Do, or do not... There is no try.

--Yoda (The Empire Strikes Back)

Java's roots are in embedded systems--software that runs inside specialized devices like hand-held
computers, cellular phones, and fancy toasters. In those kinds of applications, it's especially important
that software errors be handled properly. Most users would agree that it's unacceptable for their phone to
simply crash or for their toast (and perhaps their house) to burn because their software failed. Given that
we can't eliminate the possibility of software errors, a step in the right direction is to at least try to
recognize and deal with the application-level errors that we can anticipate in a methodical and systematic
way.

Dealing with errors in a language like C is the responsibility of the programmer. There is no help from
the language itself in identifying error types, and there are no tools for dealing with them easily. In C and
C++, a routine generally indicates a failure by returning an "unreasonable" value (e.g., the idiomatic -1
or null). As the programmer, you must know what constitutes a bad result, and what it means. It's often
awkward to work around the limitations of passing error values in the normal path of data flow.[3] An
even worse problem is that certain types of errors can legitimately occur almost anywhere, and it's
prohibitive and unreasonable to explicitly test for them at every point in the software.

[3] The somewhat obscure setjmp() and longjmp() statements in C can save a point
in the execution of code and later return to it unconditionally from a deeply buried
location. In a limited sense, this is the functionality of exceptions in Java.

Java offers an elegant solution to these problems with exception handling. (Java exception handling is
similar to, but not quite the same as, exception handling in C++.) An exception indicates an unusual
condition or an error condition. Program control becomes unconditionally transferred or thrown to a
specially designated section of code where it's caught and handled. In this way, error handling is
somewhat orthogonal to the normal flow of the program. We don't have to have special return values for

all our methods; errors are handled by a separate mechanism. Control can be passed long distance from a
deeply nested routine and handled in a single location when that is desirable, or an error can be handled
immediately at its source. There are still a few methods that return -1 as a special value, but these are
limited to situations in which there isn't really an error.[4]

[4] For example, the getHeight() method of the Image class returns -1 if the height
isn't known yet. No error has occurred; the height will be available in the future. In this
situation, throwing an exception would be inappropriate.

A Java method is required to specify the exceptions it can throw (i.e., the ones that it doesn't catch itself);
this means that the compiler can make sure we handle them. In this way, the information about what
errors a method can produce is promoted to the same level of importance as its argument and return
types. You may still decide to punt and ignore obvious errors, but in Java you must do so explicitly.

Exceptions and Error Classes

Exceptions are represented by instances of the class java.lang.Exception and its subclasses.
Subclasses of Exception can hold specialized information (and possibly behavior) for different kinds
of exceptional conditions. However, more often they are simply "logical" subclasses that exist only to
serve as a new exception type (more on that later). Figure 4.1 shows the subclasses of Exception;
these classes are defined in various packages in the Java API, as indicated in the diagram.

Figure 4.1: Java exception classes

[Graphic: Figure 4-1]

An Exception object is created by the code at the point where the error condition arises. It can hold
whatever information is necessary to describe the exceptional condition, including a full stack trace for
debugging. The exception object is passed, along with the flow of control, to the handling block of code.
This is where the terms "throw" and "catch" come from: the Exception object is thrown from one
point in the code and caught by the other, where execution resumes.

The Java API also defines the java.lang.Error class for eggregious or unrecoverable errors. The
subclasses of Error are shown in Figure 4.2. You needn't worry about these errors (i.e., you do not have
to catch them); they normally indicate linkage problems or virtual machine errors. An error of this kind
usually causes the Java interpreter to display a message and exit.

Figure 4.2: Java error classes

[Graphic: Figure 4-2]

Exception Handling

The try/catch guarding statements wrap a block of code and catch designated types of exceptions
that occur within it:

try {
 readFromFile("foo");
 ...
}

catch (Exception e) {
 // Handle error
 System.out.println("Exception while reading file: " + e);
 ...
}

In the above example, exceptions that occur within the body of the try statement are directed to the
catch clause for possible handling. The catch clause acts like a method; it specifies an argument of
the type of exception it wants to handle, and, if it's invoked, the Exception object is passed into its
body as an argument. Here we receive the object in the variable e and print it along with a message.

A try statement can have multiple catch clauses that specify different specific types (subclasses) of
Exception:

try {
 readFromFile("foo");
 ...
}
catch (FileNotFoundException e) {
 // Handle file not found
 ...
}
catch (IOException e) {
 // Handle read error
 ...
}
catch (Exception e) {
 // Handle all other errors
 ...
}

The catch clauses are evaluated in order, and the first possible (assignable) match is taken. At most one
catch clause is executed, which means that the exceptions should be listed from most specific to least.
In the above example, we'll assume that the hypothetical readFromFile() can throw two different
kinds of exceptions: one that indicates the file is not found; the other indicates a more general read error.
Any subclass of Exception is assignable to the parent type Exception, so the third catch clause
acts like the default clause in a switch statement and handles any remaining possibilities.

It should be obvious, but one beauty of the try/catch statement is that any statement in the try block
can assume that all previous statements in the block succeeded. A problem won't arise suddenly because
a programmer forgot to check the return value from some method. If an earlier statement fails, execution
jumps immediately to the catch clause; later statements are never executed.

Bubbling Up

What if we hadn't caught the exception? Where would it have gone? Well, if there is no enclosing
try/catch statement, the exception pops to the top of the method in which it appeared and is, in turn,
thrown from that method. In this way, the exception bubbles up until it's caught, or until it pops out of the
top of the program, terminating it with a run-time error message. There's a bit more to it than that
because, in this case, the compiler would have reminded us to deal with it, but we'll get back to that in a
moment.

Let's look at another example. In Figure 4.3, the method getContent() invokes the method
openConnection() from within a try/catch statement. openConnection(), in turn, invokes
the method sendRequest(), which calls the method write() to send some data.

Figure 4.3: Exception propagation

[Graphic: Figure 4-3]

In this figure, the second call to write() throws an IOException. Since sendRequest() doesn't
contain a try/catch statement to handle the exception, it's thrown again, from the point that it was
called in the method openConnection(). Since openConnection() doesn't catch the exception
either, it's thrown once more. Finally it's caught by the try statement in getContent() and handled
by its catch clause.

Since an exception can bubble up quite a distance before it is caught and handled, we may need a way to
determine exactly where it was thrown. All exceptions can dump a stack trace that lists their method of
origin and all of the nested method calls that it took to arrive there, using the printStackTrace() method.

try {
 // complex task
} catch (Exception e) {
 // dump information about exactly where the exception ocurred
 e.printStackTrack(System.err);
 ...

}

The throws Clause and checked Exceptions

I mentioned earlier that Java makes us be explicit about our error handling. But Java is programmer-
friendly, and it's not possible to require that every conceivable type of error be handled in every situation.
So, Java exceptions are divided into two categories: checked exceptions and unchecked exceptions. Most
application level exceptions are checked, which means that any method that throws one, either by
generating it itself (as we'll discuss below) or by passively ignoring one that occurs within it, must
declare that it can throw that type of exception in a special throws clause in its method declaration. We
haven't yet talked in detail about declaring methods; we'll cover that in Chapter 5, Objects in Java. For
now all you need know is that methods have to declare the checked exceptions they can throw or allow to
be thrown.

Again in Figure 4.3, notice that the methods openConnection() and sendRequest() both
specify that they can throw an IOException. If we had to throw multiple types of exceptions we could
declare them separated with commas:

void readFile(String s) throws IOException, InterruptedException {
 ...
}

The throws clause tells the compiler that a method is a possible source of that type of checked exception
and that anyone calling that method must be prepared to deal with it. The caller may use a try/catch block
to catch it, or it may, itself, declare that it can throw the exception.

Exceptions that are subclasses of the java.lang.RuntimeException class are unchecked. See
Figure 4.1 for the subclasses of RuntimeException. It's not a compile-time error to ignore the
possibility of these exceptions being thrown; additionally, methods don't have to declare they can throw
them. In all other respects, run-time exceptions behave the same as other exceptions. We are perfectly
free to catch them if we wish; we simply aren't required to.

Checked exceptions

Exceptions a reasonable application should try to handle gracefully.

Unchecked exception (Runtime exceptions)

Exceptions from which we would not normally expect our software to try to recover.

The category of checked exceptions includes application-level problems like missing files and

unavailable hosts. As good programmers (and upstanding citizens), we should design software to recover
gracefully from these kinds of conditions. The category of unchecked exceptions includes problems such
as "out of memory" and "array index out of bounds." While these may indicate application-level
programming errors, they can occur almost anywhere and aren't generally easy to recover from.
Fortunately, because there are unchecked exceptions, you don't have to wrap every one of your array-
index operations in a try/catch statement.

Throwing Exceptions

We can throw our own exceptions: either instances of Exception or one of its predefined subclasses,
or our own specialized subclasses. All we have to do is create an instance of the Exception and throw
it with the throw statement:

throw new Exception();

Execution stops and is transferred to the nearest enclosing try/catch statement. (Note that there is
little point in keeping a reference to the Exception object we've created here.) An alternative
constructor of the Exception class lets us specify a string with an error message:

throw new Exception("Something really bad happened");

By convention, all types of Exception have a String constructor like this. Note that the String message
above is somewhat facetious and vague. Normally you won't be throwing a plain old Exception, but a
more specific subclass. For example:

public void checkRead(String s) {
 if (new File(s).isAbsolute() || (s.indexOf("..") != -1))
 throw new SecurityException(
 x"Access to file : "+ s +" denied.");
}

In the above, we partially implement a method to check for an illegal path. If we find one, we throw a
SecurityException, with some information about the transgression.

Of course, we could include whatever other information is useful in our own specialized subclasses of
Exception (or SecurityException). Often though, just having a new type of exception is good enough,
because it's sufficient to help direct the flow of control. For example, if we are building a parser, we
might want to make our own kind of exception to indicate a particular kind of failure.

class ParseException extends Exception {
 ParseException() {

 super(); }
 ParseException(String desc) {
 super(desc) };
}

See Chapter 5, Objects in Java for a full description of classes and class constructors. The body of our
exception class here simply allows a ParseException to be created in the conventional ways that we have
created exceptions above. Now that we have our new exception type, we we might guard for it in the
following kind of situation:

// Somewhere in our code
...
try {
 parseStream(input);
} catch (ParseException pe) {
 // Bad input...
} catch (IOException ioe) {
 // Low level communications problem
}

As you can see, although our new exception doesn't currently hold any specialized information about the
problem (it certainly could), it does let us distinguish a parse error from an arbitrary communications
error in the same chunk of code. You might call this kind of specialization of an exception to be making
a "logical" exception.

Re-throwing exceptions

Sometimes you'll want to take some action based on an exception and then turn around and throw a new
exception in its place. For example, suppose that we want to handle an IOException by freeing up some
resources before allowing the failure to pass on to the rest of the application. You can do this in the
obvious way, by simply catching the exception and then throwing it again or throwing a new one.

 *** I was going to say something about fillInStackTrack() here ***

Try Creep

The try statement imposes a condition on the statements they guard. It says that if an exception occurs
within it, the remaining statements will be abandoned. This has consequences for local variable
initialization. If the compiler can't determine whether a local variable assignment we placed inside a
try/catch block will happen, it won't let us use the variable:

void myMethod() {

 int foo;

 try {
 foo = getResults();
 }
 catch (Exception e) {
 ...
 }

 int bar = foo; // Compile time error--foo may not
 // have been initialized

In the above example, we can't use foo in the indicated place because there's a chance it was never
assigned a value. One obvious option is to move the assignment inside the try statement:

try {
 foo = getResults();
 int bar = foo; // Okay because we only get here
 // if previous assignment succeeds
}
catch (Exception e) {
 ...
}

Sometimes this works just fine. However, now we have the same problem if we want to use bar later in
myMethod(). If we're not careful, we might end up pulling everything into the try statement. The
situation changes if we transfer control out of the method in the catch clause:

try {
 foo = getResults();
}
catch (Exception e) {
 ...
 return;
}

int bar = foo; // Okay because we only get here
 // if previous assignment succeeds

Your code will dictate its own needs; you should just be aware of the options.

The finally Clause

What if we have some clean up to do before we exit our method from one of the catch clauses? To
avoid duplicating the code in each catch branch and to make the cleanup more explicit, Java supplies
the finally clause. A finally clause can be added after a try and any associated catch clauses.
Any statements in the body of the finally clause are guaranteed to be executed, no matter why control
leaves the try body:

try {
 // Do something here
}
catch (FileNotFoundException e) {
 ...
}
catch (IOException e) {
 ...
}
catch (Exception e) {
 ...
}
finally {
 // Cleanup here
}

In the above example the statements at the cleanup point will be executed eventually, no matter how
control leaves the try. If control transfers to one of the catch clauses, the statements in finally are
executed after the catch completes. If none of the catch clauses handles the exception, the finally
statements are executed before the exception propagates to the next level.

If the statements in the try execute cleanly, or even if we perform a return, break, or continue,
the statements in the finally clause are executed. To perform cleanup operations, we can even use
try and finally without any catch clauses:

try {
 // Do something here
 return;
}
finally {
 System.out.println("Whoo-hoo!");
}

Exceptions that occur in a catch or finally clause are handled normally; the search for an enclosing
try/catch begins outside the offending try statement.

Statements and Expressions Arrays

Chapter 4
The Java Language

4.6 Arrays

An array is a special type of object that can hold an ordered collection of elements. The type of the
elements of the array is called the base type of the array; the number of elements it holds is a fixed
attribute called its length. (For a collection with a variable length, see the discussion of Vector objects
in Chapter 7, Basic Utility Classes.) Java supports arrays of all numeric and reference types.

The basic syntax of arrays looks much like that of C or C++. We create an array of a specified length and
access the elements with the special index operator, []. Unlike other languages, however, arrays in Java
are true, first-class objects, which means they are real objects within the Java language. An array is an
instance of a special Java array class and has a corresponding type in the type system. This means that to
use an array, as with any other object, we first declare a variable of the appropriate type and then use the
new operator to create an instance of it.

Array objects differ from other objects in Java in three respects:

● Java implicitly creates a special array class for us whenever we declare an array type variable. It's
not strictly necessary to know about this process in order to use arrays, but it helps in
understanding their structure and their relationship to other objects in Java.

● Java lets us use the special [] operator to access array elements, so that arrays look as we expect.
We could implement our own classes that act like arrays, but because Java doesn't have user-
defined operator overloading, we would have to settle for having methods like get() and
put() instead of using the special [] notation.

● Java provides a corresponding special form of the new operator that lets us construct an instance
of an array and specify its length with the [] notation.

Array Types

An array type variable is denoted by a base type followed by empty brackets []. Alternatively, Java

accepts a C-style declaration, with the brackets placed after the array name. The following are
equivalent:

int [] arrayOfInts;
int arrayOfInts [];

In each case, arrayOfInts is declared as an array of integers. The size of the array is not yet an issue,
because we are declaring only the array type variable. We have not yet created an actual instance of the
array class, with its associated storage. It's not even possible to specify the length of an array as part of its
type.

An array of objects can be created in the same way:

String [] someStrings;
Button someButtons [];

Array Creation and Initialization

Having declared an array type variable, we can now use the new operator to create an instance of the
array. After the new operator, we specify the base type of the array and its length, with a bracketed
integer expression:

arrayOfInts = new int [42];
someStrings = new String [number + 2];

We can, of course, combine the steps of declaring and allocating the array:

double [] someNumbers = new double [20];
Component widgets [] = new Component [12];

As in C, array indices start with zero. Thus, the first element of someNumbers [] is 0 and the last
element is 19. After creation, the array elements are initialized to the default values for their type. For
numeric types, this means the elements are initially zero:

int [] grades = new int [30];
grades[0] = 99;
grades[1] = 72;
// grades[2] == 0

The elements of an array of objects are references to the objects, not actual instances of the objects. The
default value of each element is therefore null, until we assign instances of appropriate objects:

String names [] = new String [4];
names [0] = new String();
names [1] = "Boofa";
names [2] = someObject.toString();
// names[3] == null

This is an important distinction that can cause confusion. In many other languages, the act of creating an
array is the same as allocating storage for its elements. In Java, an array of objects actually contains only
reference variables and those variables, have the value null until they are assigned to real objects.[5]
Figure 4.4 illustrates the names array of the previous example:

[5] The analog in C or C++ would be an array of pointers to objects. However, pointers in
C or C++ are themselves two- or four-byte values. Allocating an array of pointers is, in
actuality, allocating the storage for some number of those pointer objects. An array of
references is conceptually similar, although references are not themselves objects. We can't
manipulate references or parts of references other than by assignment, and their storage
requirements (or lack thereof) are not part of the high-level language specification.

Figure 4.4: The names array

names is a variable of type String[] (i.e., a string array). The String[] object can be thought of as
containing four String type variables. We have assigned String objects to the first three array
elements. The fourth has the default value null.

Java supports the C-style curly braces {} construct for creating an array and initializing its elements
when it is declared:

int [] primes = { 1, 2, 3, 5, 7, 7+4 }; // primes[2] == 3

An array object of the proper type and length is implicitly created and the values of the comma-separated
list of expressions are assigned to its elements.

We can use the {} syntax with an array of objects. In this case, each of the expressions must evaluate to
an object that can be assigned to a variable of the base type of the array, or the value null. Here are
some examples:

String [] verbs = { "run", "jump", someWord.toString() };
Button [] controls = { stopButton, new Button("Forwards"),
 new Button("Backwards") };
// all types are subtypes of Object
Object [] objects = { stopButton, "A word", null };

You should create and initialize arrays in whatever manner is appropriate for your application. The
following are equivalent:

Button [] threeButtons = new Button [3];
Button [] threeButtons = { null, null, null };

Using Arrays

The size of an array object is available in the public variable length:

char [] alphabet = new char [26];
int alphaLen = alphabet.length; // alphaLen == 26

String [] musketeers = { "one", "two", "three" };
int num = musketeers.length; // num == 3

length is the only accessible field of an array; it is a variable, not a method.

Array access in Java is just like array access in C; you access an element by putting an integer-valued
expression between brackets after the name of the array. The following example creates an array of
Button objects called keyPad and then fills the array with Button objects:

Button [] keyPad = new Button [10];
for (int i=0; i < keyPad.length; i++) keyPad[i] = new Button(
Integer.toString(i));

Attempting to access an element that is outside the range of the array generates an
ArrayIndexOutOfBoundsException. This is a type of RuntimeException, so you can either

catch it and handle it yourself, or ignore it, as we already discussed:

String [] states = new String [50];

try {
 states[0] = "California";
 states[1] = "Oregon";
 ...
 states[50] = "McDonald's Land"; // Error--array out of bounds
}
catch (ArrayIndexOutOfBoundsException err) {
 System.out.println("Handled error: " + err.getMessage());
}

It's a common task to copy a range of elements from one array into another. Java supplies the
arraycopy() method for this purpose; it's a utility method of the System class:

System.arraycopy(source, sourceStart, destination,
 destStart, length);

The following example doubles the size of the names array from an earlier example:

String [] tmpVar = new String [2 * names.length];
System.arraycopy(names, 0, tmpVar, 0, names.length);
names = tmpVar;

A new array, twice the size of names, is allocated and assigned to a temporary variable tmpVar.
arraycopy() is used to copy the elements of names to the new array. Finally, the new array is
assigned to names. If there are no remaining references to the old array object after names has been
copied, it will be garbage collected on the next pass.

Anonymous Arrays

You often want to create "throw-away" arrays: arrays that are only used in one place, and never
referenced anywhere else. Such arrays don't need to have a name, because you never need to refer to
them again in that context. For example, you may want to create a collection of objects to pass as an
argument to some method. It's easy enough to create a normal, named array--but if you don't actually
work with the array (if you use the array only as a holder for some collection), you shouldn't have to.
Java makes it easy to create "anonymous" (i.e., unnamed) arrays.

Let's say you need to call a method named setPets(), which takes an array of Animal objects as
arguments. Cat and Dog are subclasses of Animal. Here's how to call setPets() using an

anonymous array:

Dog pokey = new Dog ("gray");
Cat squiggles = new Cat ("black");
Cat jasmine = new Cat ("orange");
setPets (new Animal [] { pokey, squiggles, jasmine });

The syntax looks just like the initialization of an array in a variable declaration. We implicitly define the
size of the array and fill in its elements using the curly brace notation. However, since this is not a
variable declaration we have to explicitly use the new operator to create the array object.

You can use anonymous arrays to simulate variable length argument lists (often called VARARGS), a
feature of many programming languages that Java doesn't provide. The advantage of anonymous arrays
over variable length argument lists is that it allows stricter type checking; the compiler always knows
exactly what arguments are expected, and therefore can verify that method calls are correct.

Multidimensional Arrays

Java supports multidimensional arrays in the form of arrays of array type objects. You create a
multidimensional array with C-like syntax, using multiple bracket pairs, one for each dimension. You
also use this syntax to access elements at various positions within the array. Here's an example of a
multidimensional array that represents a chess board:

ChessPiece [][] chessBoard;
chessBoard = new ChessPiece [8][8];
chessBoard[0][0] = new ChessPiece("Rook");
chessBoard[1][0] = new ChessPiece("Pawn");
...

Here chessBoard is declared as a variable of type ChessPiece[][] (i.e., an array of
ChessPiece arrays). This declaration implicitly creates the type ChessPiece[] as well. The
example illustrates the special form of the new operator used to create a multidimensional array. It
creates an array of ChessPiece[] objects and then, in turn, creates each array of ChessPiece
objects. We then index chessBoard to specify values for particular ChessPiece elements. (We'll
neglect the color of the pieces here.)

Of course, you can create arrays of with more than two dimensions. Here's a slightly impractical
example:

Color [][][] rgbCube = new Color [256][256][256];
rgbCube[0][0][0] = Color.black;
rgbCube[255][255][0] = Color.yellow;

...

As in C, we can specify the initial index of a multidimensional array to get an array type object with
fewer dimensions. In our example, the variable chessBoard is of type ChessPiece[][]. The
expression chessBoard[0] is valid and refers to the first element of chessBoard, which is of type
ChessPiece[]. For example, we can create a row for our chess board:

ChessPiece [] startRow = {
 new ChessPiece("Rook"), new ChessPiece("Knight"),
 new ChessPiece("Bishop"), new ChessPiece("King"),
 new ChessPiece("Queen"), new ChessPiece("Bishop"),
 new ChessPiece("Knight"), new ChessPiece("Rook")
};

chessBoard[0] = startRow;

We don't necessarily have to specify the dimension sizes of a multidimensional array with a single new
operation. The syntax of the new operator lets us leave the sizes of some dimensions unspecified. The
size of at least the first dimension (the most significant dimension of the array) has to be specified, but
the sizes of any number of the less significant array dimensions may be left undefined. We can assign
appropriate array type values later.

We can create a checkerboard of boolean values (which is not quite sufficient for a real game of
checkers) using this technique:

boolean [][] checkerBoard;
checkerBoard = new boolean [8][];

Here, checkerBoard is declared and created, but its elements, the eight boolean[] objects of the
next level, are left empty. Thus, for example, checkerBoard[0] is null until we explicitly create an
array and assign it, as follows:

checkerBoard[0] = new boolean [8];
checkerBoard[1] = new boolean [8];
...
checkerBoard[7] = new boolean [8];

The code of the previous two examples is equivalent to:

boolean [][] checkerBoard = new boolean [8][8];

One reason we might want to leave dimensions of an array unspecified is so that we can store arrays

given to us by another method.

Note that since the length of the array is not part of its type, the arrays in the checkerboard do not
necessarily have to be of the same length. Here's a defective (but perfectly legal) checkerboard:

checkerBoard[2] = new boolean [3];
checkerBoard[3] = new boolean [10];

Since Java implements multidimensional arrays as arrays of arrays, multidimensional arrays do not have
to be rectangular. For example, here's how you could create and initialize a triangular array:

int []][] triangle = new int [5][];
for (int i = 0; i < triangle.length; i++) {
 triangle[i] = new int [i + 1];
 for (int j = 0; j < i + 1; j++)
 triangle[i][j] = i + j; }

Inside Arrays

I said earlier that arrays are instances of special array classes in the Java language. If arrays have classes,
where do they fit into the class hierarchy and how are they related? These are good questions; however,
we need to talk more about the object-oriented aspects of Java before I can answer them. For now, take it
on faith that arrays fit into the class hierarchy; details are in Chapter 5, Objects in Java.

Exceptions Objects in Java

Chapter 5
Objects in Java

5.2 Methods

Methods appear inside class bodies. They contain local variable declarations and other Java statements
that are executed by a calling thread when the method is invoked. Method declarations in Java look like
ANSI C-style function declarations with two restrictions:

● A method in Java always specifies a return type (there's no default). The returned value can be a
primitive numeric type, a reference type, or the type void, which indicates no returned value.

● A method always has a fixed number of arguments. The combination of method overloading and
true arrays removes most of the need for a variable number of arguments. These techniques are
type-safe and easier to use than C's variable argument list mechanism.

Here's a simple example:

class Bird {
 int xPos, yPos;

 double fly (int x, int y) {
 double distance = Math.sqrt(x*x + y*y);
 flap(distance);
 xPos = x;
 yPos = y;
 return distance;
 }
 ...
}

In this example, the class Bird defines a method, fly(), that takes as arguments two integers: x and y.
It returns a double type value as a result.

Local Variables

The fly() method declares a local variable called distance that it uses to compute the distance
flown. A local variable is temporary; it exists only within the scope of its method. Local variables are
allocated and initialized when a method is invoked; they are normally destroyed when the method
returns. They can't be referenced from outside the method itself. If the method is executing concurrently
in different threads, each thread has its own copies of the method's local variables. A method's arguments
also serve as local variables within the scope of the method.

An object created within a method and assigned to a local variable may or may not persist after the
method has returned. As with all objects in Java, it depends on whether any references to the object
remain. If an object is created, assigned to a local variable, and never used anywhere else, that object will
no longer be referenced when the local variable is destroyed, so garbage collection will remove the
object. If, however, we assign the object to an instance variable, pass it as an argument to another
method, or pass it back as a return value, it may be saved by another variable holding its reference. We'll
discuss object creation and garbage collection in more detail shortly.

Shadowing

If a local variable and an instance variable have the same name, the local variable shadows or hides the
name of the instance variable within the scope of the method. In the following example, the local
variables xPos and yPos hide the instance variables of the same name:

class Bird {
 int xPos, yPos;
 int xNest, yNest;
 ...
 double flyToNest() {
 int xPos = xNest;
 int yPos = yNest:
 return (fly(xPos, yPos));
 }
 ...
}

When we set the values of the local variables in flyToNest(), it has no effect on the values of the
instance variables.

this

The special reference this refers to the current object. You can use it any time you need to refer

explicitly to the current object instance. Often, you don't need to use this because the reference to the
current object is implicit; this is the case with using instance variables and methods inside of a class. But
we can use this to refer explicitly to instance variables in the object, even if they are shadowed.

The subsequent example shows how we can use this to allow us argument names that shadow instance
variable names. This is a fairly common technique, as it saves your having to deliberately make up
alternate names (as we'll try to emphasize in this book, names are important). Here's how we could
implement our fly() method with shadowed variables:

class Bird {
 int xPos, yPos;

 double fly (int xPos, int yPos) {
 double distance = Math.sqrt(xPos*xPos + yPos*yPos);
 flap(distance);
 this.xPos = xPos;
 this.yPos = yPos;
 return distance;
 }
 ...
}

In this example, the expression this.xPos refers to the instance variable xPos and assigns it the value
of the local variable xPos, which would otherwise hide its name. The only reason we need to use this
in the above example is because we've used argument names that hide our instance variables, and we
want to refer to the instance variables.

Static Methods

Static methods (class methods), like static variables, belong to the class and not to an individual instance
of the class. What does this mean? Well, foremost, a static method lives outside of any particular class
instance. It can be invoked by name, through the class name, without any objects around. Because it is
not bound to a particular object instance, a static method can only directly access other static members of
classes. It can't directly see any instance variables or call any instance methods, because to do so we'd
have to ask: "on which instance?" Static methods can be called from instances, just like instance
methods, but the important thing is that they can also be used independently.

Our fly() method uses a static method: Math.sqrt(). This method is defined by the
java.lang.Math class; we'll explore this class in detail in Chapter 7, Basic Utility Classes. For now,
the important thing to note is that Math is the name of a class and not an instance of a Math object (you
can't even make an instance of Math). Because static methods can be invoked wherever the class
name is available, class methods are closer to normal C-style functions. Static methods are particularly

useful for utility methods that perform work that might be useful either independently of instances of the
class or in creating instances of the class.

For example, in our Bird class we can enumerate all types of birds that can be created:

class Bird {
 ...
 static String [] getBirdTypes() {
 String [] types;
 // Create list...
 return types;
 }
 ...
}

Here we've defined a static method getBirdTypes() that returns an array of strings containing
bird names. We can use getBirdTypes() from within an instance of Bird, just like an instance
method. However, we can also call it from other classes, using the Bird class name as a reference:

String [] names = Bird.getBirdTypes();

Perhaps a special version of the Bird class constructor accepts the name of a bird type. We could use
this list to decide what kind of bird to create.

Local Variable Initialization

In the flyToNest() example, we made a point of initializing the local variables xPos and yPos.
Unlike instance variables, local variables must be initialized before they can be used. It's a compile-time
error to try to access a local variable without first assigning it a value:

void myMethod() {
 int foo = 42;
 int bar;

 // bar += 1; // Compile time error, bar uninitialized

 bar = 99;
 bar += 1; // ok here
}

Notice that this doesn't imply local variables have to be initialized when declared, just that the first time
they are referenced must be in an assignment. More subtle possibilities arise when making assignments

inside of conditionals:

void myMethod {
 int foo;

 if (someCondition) {
 foo = 42;
 ...
 }

 foo += 1; // Compile time error
 // foo may not have been initialized

In the above example, foo is initialized only if someCondition is true. The compiler doesn't let
you make this wager, so it flags the use of foo as an error. We could correct this situation in several
ways. We could initialize the variable to a default value in advance or move the usage inside of the
conditional. We could also make sure the path of execution doesn't reach the uninitialized variable
through some other means, depending on what makes sense for our particular application. For example,
we could return from the method abruptly:

int foo;
...
if (someCondition) {
 foo = 42;
 ...
} else
 return;

foo += 1;

In this case, there's no chance of reaching foo in an unused state and the compiler allows the use of foo
after the conditional.

Why is Java so picky about local variables? One of the most common (and insidious) sources of error in
C or C++ is forgetting to initialize local variables, so Java tries to help us out. If it didn't, Java would
suffer the same potential irregularities as C or C++.[2]

[2] As with malloc'ed storage in C or C++, Java objects and their instance variables are
allocated on a heap, which allows them default values once, when they are created. Local
variables, however, are allocated on the Java virtual machine stack. As with the stack in C
and C++, failing to initialize these could mean successive method calls could receive
garbage values, and program execution might be inconsistent or implementation
dependent.

Argument Passing and References

Let's consider what happens when you pass arguments to a method. All primitive data types (e.g., int,
char, float) are passed by value. Now you're probably used to the idea that reference types (i.e., any
kind of object, including arrays and strings) are used through references. An important distinction (that
we discussed briefly in Chapter 4) is that the references themselves (the pointers to these objects) are
actually primitive types, and are passed by value too.

Consider the following piece of code:

// somewhere
 int i = 0;
 SomeKindOfObject obj = new SomeKindOfObject();
 myMethod(i, obj);
 ...
void myMethod(int j, SomeKindOfObject o) {
 ...
}

The first chunk of code calls myMethod(), passing it two arguments. The first argument, i, is passed
by value; when the method is called, the value of i is copied into the method's parameter j. If
myMethod() changes the value of i, it's changing only its copy of the local variable.

In the same way, a copy of the reference to obj is placed into the reference variable o of myMethod().
Both references refer to the same object, of course, and any changes made through either reference affect
the actual (single) object instance, but there are two copies of the pointer. If we change the value of, say,
o.size, the change is visible through either reference. However, if myMethod() changes the
reference o itself--to point to another object--it's affecting only its copy. In this sense, passing the
reference is like passing a pointer in C and unlike passing by reference in C++.

What if myMethod() needs to modify the calling method's notion of the obj reference as well (i.e.,
make obj point to a different object)? The easy way to do that is to wrap obj inside some kind of
object. A good candidate would be to wrap the object up as the lone element in an array:

SomeKindOfObject [] wrapper = { obj };

All parties could then refer to the object as wrapper[0] and would have the ability to change the
reference. This is not very asthetically pleasing, but it does illustrate that what is needed is the level of
indirection. Another possibility is to use this to pass a reference to the calling object.

Let's look at another piece of code that could be from an implementation of a linked list:

class Element {
 public Element nextElement;

 void addToList(List list) {
 list.addToList(this);
 }
}

class List {
 void addToList(Element element) {
 ...
 element.nextElement = getNextElement();
 }
}

Every element in a linked list contains a pointer to the next element in the list. In this code, the
Element class represents one element; it includes a method for adding itself to the list. The List class
itself contains a method for adding an arbitrary Element to the list. The method addToList() calls
addToList() with the argument this (which is, of course, an Element). addToList() can use
the this reference to modify the Element's nextElement instance variable. The same technique
can be used in conjunction with interfaces to implement callbacks for arbitrary method invocations.

Method Overloading

Method overloading is the ability to define multiple methods with the same name in a class; when the
method is invoked, the compiler picks the correct one based on the arguments passed to the method. This
implies, of course, that overloaded methods must have different numbers or types of arguments. In a later
section we'll look at method overriding, which occurs when we declare methods with identical signatures
in different classes.

Method overloading is a powerful and useful feature. It's another form of polymorphism (ad-hoc
polymorphism). The idea is to create methods that act in the same way on different types of arguments
and have what appears to be a single method that operates on any of the types. The Java
PrintStream's print() method is a good example of method overloading in action. As you've
probably deduced by now, you can print a string representation of just about anything using the
expression:

System.out.print(argument)

The variable out is a reference to an object (a PrintStream) that defines nine different versions of
the print() method. They take, respectively, arguments of the following types: Object, String,

char[], char, int, long, float, double, and boolean.

class PrintStream {
 void print(Object arg) { ... }
 void print(String arg) { ... }
 void print(char [] arg) { ... }
 ...
}

You can invoke the print() method with any of these types as an argument, and it's printed in an
appropriate way. In a language without method overloading, this would require something more
cumbersome, such as a separate method for printing each type of object. Then it would be your
responsibility to remember what method to use for each data type.

In the above example, print() has been overloaded to support two reference types: Object and
String. What if we try to call print() with some other reference type? Say, perhaps, a Date object?
The answer is that since Date is a subclass of Object, the Object method is selected. When there's
not an exact type match, the compiler searches for an acceptable, assignable match. Since Date, like all
classes, is a subclass of Object, a Date object can be assigned to a variable of type Object. It's
therefore an acceptable match, and the Object method is selected.

But what if there's more than one possible match? Say, for example, we tried to print a subclass of
String called MyString. (Of course, the String class is final, so it can't be subclassed, but allow
me this brief transgression for purposes of explanation.) MyString is assignable to either String or to
Object. Here the compiler makes a determination as to which match is "better" and selects that method.
In this case it's the String method.

The intuitive explanation is that the String class is closer to MyString in the inheritance hierarchy. It
is a more specific match. A more rigorous way of specifying it would be to say that a given method is
more specific than another method with respect to some arguments it wants to accept if the argument
types of the first method are all assignable to the argument types of the second method. In this case, the
String method is more specific to a subclass of String than the Object method because type
String is assignable to type Object. The reverse is obviously not true.

If you're paying close attention, you may have noticed I said that the compiler resolves overloaded
methods. Method overloading is not something that happens at run-time; this is an important distinction.
It means that the selected method is chosen once, when the code is compiled. Once the overloaded
method is selected, the choice is fixed until the code is recompiled, even if the class containing the called
method is later revised and an even more specific overloaded method is added. This is in contrast to
overridden (virtual) methods, which are located at run-time and can be found even if they didn't exist
when the calling class was compiled. We'll talk about method overriding later in the chapter.

One last note about overloading. In earlier chapters, we've pointed out that Java doesn't support
programmer-defined overloaded operators, and that + is the only system-defined overloaded operator. If
you've been wondering what an overloaded operator is, I can finally clear up that mystery. In a language
like C++, you can customize operators such as + and * to work with objects that you create. For
example, you could create a class Complex that implements complex numbers, and then overload
methods corresponding to + and * to add and multiply Complex objects. Some people argue that
operator overloading makes for elegant and readable programs, while others say it's just "syntactic sugar"
that makes for obfuscated code. The Java designers clearly espoused the later opinion when they chose
not to support programmer-defined overloaded operators.

Classes Object Creation

Chapter 5
Objects in Java

5.3 Object Creation

Objects in Java are allocated from a system heap space, much like malloc'ed storage in C or C++.
Unlike C or C++, however, we needn't manage that memory ourselves. Java takes care of memory
allocation and deallocation for you. Java explicitly allocates storage for an object when you create it with
the new keyword. More importantly, objects are removed by garbage collection when they're no longer
referenced.

Constructors

You allocate an object by specifying the new operator with an object constructor. A constructor is a
special method with the same name as its class and no return type. It's called when a new class instance is
created, which gives the class an opportunity to set up the object for use. Constructors, like other methods,
can accept arguments and can be overloaded (they are not, however, inherited like other methods; we'll
discuss inheritance later).

class Date {
 long time;

 Date() {
 time = currentTime();
 }

 Date(String date) {
 time = parseDate(date);
 }
 ...
}

In the above example, the class Date has two constructors. The first takes no arguments; it's known as
the default constructor. Default constructors play a special role in that, if we don't define any constructors
for a class, an empty default constructor is supplied for us. The default constructor is what gets called

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm

whenever you create an object by calling its constructor with no arguments. Here we have implemented
the default constructor so that it sets the instance variable time by calling a hypothetical method:
currentTime(), which resembles the functionality of the real java.util.Date class.

The second constructor takes a String argument. Presumably, this String contains a string
representation of the time that can be parsed to set the time variable.

Given the constructors above, we create a Date object in the following ways:

Date now = new Date();
Date christmas = new Date("Dec 25, 1997");

In each case, Java chooses the appropriate constructor at compile-time based on the rules for overloaded
method selection.

If we later remove all references to an allocated object, it'll be garbage collected, as we'll discuss shortly:

christmas = null; // fair game for the garbage collector

Setting the above reference to null means it's no longer pointing to the "Dec 25, 1997" object. Unless
that object is referenced by another variable, it's now inaccessible and can be garbage collected. Actually,
setting christmas to any other value would have the same results, but using the value null is a clear
way to indicate that christmas no longer has a useful value.

A few more notes about constructors. Constructors can't be abstract, synchronized, or final.
Constructors can, however, be declared with the visibility modifiers public, private, or protected, to
control their accessibility. We'll talk in detail about visibility modifiers later in the chapter.

Working with Overloaded Constructors

A constructor can refer to another constructor in the same class or the immediate superclass using special
forms of the this and super references. We'll discuss the first case here, and return to that of the
superclass constructor again after we have talked more about subclassing and inheritance.

A constructor can invoke another, overloaded constructor in its class using the reference this() with
appropriate arguments to select the desired constructor. If a constructor calls another constructor, it must
do so as its first statement (we'll explain why in a bit):

class Car {
 String model;
 int doors;

 Car(String m, int d) {
 model = m;
 doors = d;
 // other, complicated setup
 ...
 }

 Car(String m) {
 this(m, 4);
 }
 ...
}

In the example above, the class Car has two overloaded constructors. The first, more explicit one, accepts
arguments specifying the car's model and its number of doors and uses them to set up the object. We have
also provided a simpler constructor that takes just the model as an argument and, in turn, calls the first
constructor with a default value of four doors. The advantage of this approach is that you can have a
single constructor do all the complicated setup work; other auxiliary constructors simply feed the
appropriate arguments to that constructor.

The important point is the call to this(), which must appear as the first statement our second
constructor. The syntax is restricted in this way because there's a need to identify a clear chain of
command in the calling of constructors. At one end of the chain, Java invokes the constructor of the
superclass (if we don't do it explicitly) to ensure that inherited members are initialized properly before we
proceed. There's also a point in the chain, just after the constructor of the superclass is invoked, where the
initializers of the current class's instance variables are evaluated. Before that point, we can't even
reference the instance variables of our class. We'll explain this situation again in complete detail after we
have talked about inheritance.

For now, all you need to know is that you can invoke a second constructor only as the first statement of
another constructor. In addition, you can't do anything at that point other than pass along arguments of the
current constructor. For example, the following is illegal and causes a compile-time error:

Car(String m) {
 int doors = determineDoors();
 this(m, doors); // Error
} // Constructor call must be first statement

The simple model name constructor can't do any additional setup before calling the more explicit
constructor. It can't even refer to an instance member for a constant value:

class Car {
 ...

 final int default_doors = 4;
 ...

 Car(String m) {
 this(m, default_doors); // Error
 // Referencing uninitialized variable
 }
 ...
}

The instance variable defaultDoors above is not initialized until a later point in the chain of
constructor calls, so the compiler doesn't let us access it yet. Fortunately, we can solve this particular
problem by making the identifier static as well:

class Car {
 ...
 static final int DEFAULT_DOORS = 4;
 ...

 Car(String m) {
 this(m, DEFAULT_DOORS); // Okay now
 }
 ...
}

The static members of our class have been initialized for some time (since the class was first loaded),
so it's safe to access them.

Static and Nonstatic Code Blocks

It's possible to declare a code block (some statements within curly braces) directly within the scope of a
class. This code block doesn't belong to any method; instead, it's executed just once, at the time the object
is constructed, or, in the case of a code block marked static, at the time the class is loaded.

Nonstatic code blocks can be thought of as just an extension of instance variable initialization. They are
called at the time the instance variable's initializers are evaluated (after superclass construction), in the
textual order in which they appear in the class source.

class MyClass {
 Properties myProps = new Properties();
 // set up myProps
 {
 myProps.put("foo", "bar);

 myProps.put("boo", "gee);
 }
 int a = 5;
 ...

You can use static code blocks to initialize static class members in this way. So the static members of
a class can have complex initialization just like objects:

class ColorWheel {
 static Hashtable colors = new Hashtable();

 // set up colors
 static {
 colors.put("Red", Color.red);
 colors.put("Green", Color.green);
 colors.put("Blue", Color.blue);
 ...
 }
 ...
}

In the above example, the class ColorWheel provides a variable colors that maps the names of
colors to Color objects in a Hashtable. The first time the class ColorWheel is referenced and
loaded, the static components of ColorWheel are evaluated, in the order they appear in the source.
In this case, the static code block simply adds elements to the colors Hashtable.

Methods Object Destruction

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm

Chapter 5
Objects in Java

5.5 Subclassing and Inheritance

Classes in Java exist in a class hierarchy. A class in Java can be declared as a subclass of another class
using the extends keyword. A subclass inherits variables and methods from its superclass and uses
them as if they're declared within the subclass itself:

class Animal {
 float weight;
 ...
 void eat() {
 ...
 }
 ...
}

class Mammal extends Animal {
 int heartRate;
 // inherits weight
 ...
 void breathe() {
 ...
 }
 // inherits eat()
}

In the above example, an object of type Mammal has both the instance variable weight and the method
eat(). They are inherited from Animal.

A class can extend only one other class. To use the proper terminology, Java allows single inheritance of
class implementation. Later we'll talk about interfaces, which take the place of multiple inheritance as it's
primarily used in C++.

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm

A subclass can, of course, be further subclassed. Normally, subclassing specializes or refines a class by
adding variables and methods:

class Cat extends Mammal {
 boolean longHair;
 // inherits weight and heartRate
 ...
 void purr() {
 ...
 }
 // inherits eat() and breathe()
}

The Cat class is a type of Mammal that is ultimately a type of Animal. Cat objects inherit all the
characteristics of Mammal objects and, in turn, Animal objects. Cat also provides additional behavior
in the form of the purr() method and the longHair variable. We can denote the class relationship in
a diagram, as shown in Figure 5.3.

Figure 5.3: A class hierarchy

[Graphic: Figure 5-3]

A subclass inherits all members of its superclass not designated as private. As we'll discuss shortly,
other levels of visibility affect what inherited members of the class can be seen from outside of the class
and its subclasses, but at a minimum, a subclass always has the same set of visible members as its parent.
For this reason, the type of a subclass can be considered a subtype of its parent, and instances of the
subtype can be used anywhere instances of the supertype are allowed. For example:

Cat simon = new Cat();
Animal creature = simon;

The Cat simon in the above example can be assigned to the Animal type variable creature
because Cat is a subtype of Animal.

Shadowed Variables

In the previous section on methods, we saw that a local variable of the same name as an instance variable
hides the instance variable. Similarly, an instance variable in a subclass can shadow an instance variable
of the same name in its parent class, as shown in Figure 5.4.

Figure 5.4: The scope of shadowed variables

[Graphic: Figure 5-4]

In Figure 5.4, the variable weight is declared in three places: as a local variable in the method
foodConsumption() of the class Mammal, as an instance variable of the class Mammal, and as an
instance variable of the class Animal. The actual variable selected depends on the scope in which we
are working.

In the above example, all variables were of the same type. About the only reason for declaring a variable
with the same type in a subclass is to provide an alternate initializer. A more important use of shadowed
variables involves changing their types. We could, for example, shadow an int variable with a double
variable in a subclass that needs decimal values instead of integer values. We do this without changing
the existing code because, as its name suggests, when we shadow variables, we don't replace them but
instead mask them. Both variables still exist; methods of the superclass see the original variable, and
methods of the subclass see the new version. The determination of what variables the various methods
see is static and happens at compile-time.

Here's a simple example:

class IntegerCalculator {

 int sum;
 ...
}

class DecimalCalculator extends IntegerCalculator {
 double sum;
 ...
}

In this example, we override the instance variable sum to change its type from int to double.[3]
Methods defined in the class IntegerCalculator see the integer variable sum, while methods
defined in DecimalCalculator see the decimal variable sum. However, both variables actually exist
for a given instance of DecimalCalculator, and they can have independent values. In fact, any
methods that DecimalCalculator inherits from IntegerCalculator actually see the integer
variable sum.

[3] Note that a better way to design our calculators would be to have an abstract
Calculator class with two subclasses: IntegerCalculator and
DecimalCalculator.

Since both variables exist in DecimalCalculator, we need to reference the variable inherited from
IntegerCalculator. We do that using the super reference:

int s = super.sum

Inside of DecimalCalculator, the super keyword used in this manner refers to the sum variable
defined in the superclass. I'll explain the use of super more fully in a bit.

Another important point about shadowed variables has to do with how they work when we refer to an
object by way of a less derived type. For example, we can refer to a DecimalCalculator object as
an IntegerCalculator. If we do so and then access the variable sum, we get the integer variable,
not the decimal one:

DecimalCalculator dc = new DecimalCalculator();
IntegerCalculator ic = dc;

int s = ic.sum; // Accesses IntegerCalculator sum

After this detailed explanation, you may still be wondering what shadowed variables are good for. Well,
to be honest, the usefulness of shadowed variables is limited, but it's important to understand the
concepts before we talk about doing the same thing with methods. We'll see a different and more
dynamic type of behavior with method shadowing, or more correctly, method overriding.

Overriding Methods

In a previous section, we saw we could declare overloaded methods (i.e., methods with the same name
but a different number or type of arguments) within a class. Overloaded method selection works the way
I described on all methods available to a class, including inherited ones. This means that a subclass can
define some overloaded methods that augment the overloaded methods provided by a superclass.

But a subclass does more than that; it can define a method that has exactly the same method signature
(arguments and return type) as a method in its superclass. In that case, the method in the subclass
overrides the method in the superclass and effectively replaces its implementation, as shown in Figure
5.5. Overriding methods to change the behavior of objects is another form of polymorphism (sub-type
polymorphism): the one most people think of when they talk about the power of object-oriented
languages.

Figure 5.5: Method overriding

[Graphic: Figure 5-5]

In Figure 5.5, Mammal overrides the reproduce() method of Animal, perhaps to specialize the
method for the peculiar behavior of Mammals giving live birth.[4] The Cat object's sleeping behavior is
overridden to be different from that of a general Animal, perhaps to accommodate cat naps. The Cat
class also adds the more unique behaviors of purring and hunting mice.

[4] We'll ignore the platypus, which is an obscure nonovoviviparous mammal.

From what you've seen so far, overridden methods probably look like they shadow methods in
superclasses, just as variables do. But overridden methods are actually more powerful than that. An
overridden method in Java acts like a virtual method in C++. When there are multiple

implementations of a method in the inheritance hierarchy of an object, the one in the most derived class
always overrides the others, even if we refer to the object by way of a less derived type. In other words, if
we have a Cat instance assigned to a variable of the more general type Animal and we call its
sleep() method, we get the sleep() method implemented in the Cat class, not the one in Animal:

Cat simon = new Cat();
Animal creature = simon;

creature.sleep(); // Accesses Cat sleep();

In other respects, the variable creature looks like an Animal. For example, access to a shadowed
variable would find the implementation in the Animal class, not the Cat class. However, because
methods are virtual, the appropriate method in the Cat class can be located, even though we are dealing
with an Animal object. This means we can deal with specialized objects as if they were more general
types of objects and still take advantage of their specialized implementations of behavior.

Much of what you'll be doing when you're writing a Java applet or application is overriding methods
defined by various classes in the Java API. For example, think back to the applets we developed in the
tutorial in Chapter 2, A First Applet. Almost all of the methods we implemented for those applets were
overridden methods. Recall that we created a subclass of Applet for each of the examples. Then we
overrode various methods: init() set up our applet, mouseDrag() to handle mouse movement, and
paint() to draw our applet.

A common programming error in Java (at least for me) is to miss and accidentally overload a method
when trying to override it. Any difference in the number or type of arguments or the return type of a
method produces two overloaded methods instead of a single, overridden method. Make it a habit to look
twice when overriding methods.

Overridden methods and dynamic binding

In a previous section, I mentioned that overloaded methods are selected by the compiler at compile-time.
Overridden methods, on the other hand, are selected dynamically at run-time. Even if we create an
instance of a subclass our code has never seen before (perhaps a new object type loaded from the
network), any overridden methods that it contains will be located and invoked at run-time to replace
those that existed when we last compiled our code.

In contrast, if we load a new class that implements an additional, more specific overloaded method, our
code will continue to use the implementation it discovered at compile-time. Another effect of this is that
casting (i.e., explicitly telling the compiler to treat an object as one of its assignable types) affects the
selection of overloaded methods, but not overridden methods.

Static method binding

Static methods do not belong to any object instance, they are accessed directly through a class name, so
they are not dynamically selected at run-time like instance methods. That is why static methods are
called "static"--they are always bound at compile time.

A static method in a superclass can be shadowed by another static method in a subclass, as long
as the original method was not declared final. However, you can't override a static method with a
nonstatic method. In other words, you can't change a static method into an instance method in a
subclass.

Dynamic method selection and peformance

When Java has to dynamically search for overridden methods in subclasses, there's a small performance
penalty. In languages like C++, the default is for methods to act like shadowed variables, so you have to
explicitly declare the methods you want to be virtual. Java is more dynamic, and the default is for all
instance methods to be virtual. In Java you can, however, go the other direction and explicitly declare
that an instance method can't be overridden, so that it will not be subject to dynamic binding and will not
suffer in terms of performance. This is done with the final modifier. We have seen final used with
variables to effectively make them constants. When final is applied to a method, it means that that
method can't be overridden (in some sense, its implementation is constant). final can also be applied to
an entire class, which means the class can't be subclassed.

Compiler optimiziations

When javac, the Java compiler, is run with the -O switch, it performs certain optimizations. It can inline
final methods to improve performance (while slightly increasing the size of the resulting class file).
private methods, which are effectively final, can also be inlined, and final classes may also
benefit from more powerful optimizations.

Another kind of optimization allows you to include debugging code in your Java source without penalty.
Java doesn't have a pre-processor, to explicitly control what source is included, but you can get some of
the same effects by making a block of code conditional on a constant (i.e., static and final)
variable. The Java compiler is smart enough to remove this code when it determines that it won't be
called. For example:

static final boolean DEBUG = false;
...
static void debug (String message) {
 if (DEBUG) {
 System.err.println(message);
 // do other stuff
 ...

 }
}

If we compile the above code using the -O switch, the compiler will recognize that the condition on the
DEBUG variable is always false, and the body of the debug() method will be optimized away. But that's
not all--since debug() itself is also final it can be inlined, and an empty inlined method generates no code
at all. So, when we compile with DEBUG set to false, calls to the debug() method will generate no
residual code at all.

Method selection revisited

By now you should have a good, intuitive idea as to how methods are selected from the pool of
potentially overloaded and overridden method names of a class. If, however, you are dying for a dry
definition, I'll provide one now. If you are satisfied with your understanding, you may wish to skip this
little exercise in logic.

In a previous section, I offered an inductive rule for overloaded method resolution. It said that a method
is considered more specific than another if its arguments are polymorphically assignable to the arguments
of the second method. We can now expand this rule to include the resolution of overridden methods by
adding the following condition: to be more specific than another method, the type of the class containing
the method must also be assignable to the type of the class holding the second method.

What does that mean? Well, the only classes whose types are assignable are classes in the same
inheritance hierarchy. So, what we're talking about now is the set of all methods of the same name in a
class or any of its parent or child classes. Since subclass types are assignable to superclass types, but not
vice versa, the resolution is pushed, in the way that we expect, down the chain, towards the subclasses.
This effectively adds a second dimension to the search, in which resolution is pushed down the
inheritance tree towards more refined classes and, simultaneously, towards the most specific overloaded
method within a given class.

Exceptions and overridden methods

When we talked about exception handling in Chapter 4, The Java Language, there's one thing I didn't
mention because it wouldn't have made sense then. An important restriction on overridden methods is
that they must adhere to the throws clause of the parent method's signature. If an overridden method
throws an exception, the exception must be of the type specified by the parent or a subtype of that
exception. Because the exception can be a subtype of the one specified by the parent, the overridden
method can refine the type of exception thrown to go along with its new behavior. For example:

// A more refined exception
class MeatInedibleException extends InedibleException { ...
}

class Animal {
 void eat(Food f) throws InedibleException { ...
}
class Herbivore extends Animal {
 void eat(Food f) throws InedibleException {
 if (f instanceof Meat)
 throw new MeatInedibleException();

 }
}

In the example above, Animal specifies that it can throw an InedibleException from its eat() method.
Herbivore is a subclass Animal, so it must be able to do this too. However, Herbivore's eat() method
actually throws a more specific exception: MeatInedibleException. It can do this because
MeatInedibleException is a subtype of InedibleException (remember that Exceptions are classes too).
Our calling code's catch clause can therefore be more specific:

Animal creature = ...
try {
 creature.eat(food);
} catch (MeatInedibleException) {
 // creature can't eat this food because it's meat
} catch (InedibleException) {
 // creature can't eat this food
}

this and super

The special references this and super allow you to refer to the members of the current object instance
or those of the superclass, respectively. We have seen this used elsewhere to pass a reference to the
current object and to refer to shadowed instance variables. The reference super does the same for the
parents of a class. You can use it to refer to members of a superclass that have been shadowed or
overridden. A common arrangement is for an overridden method in a subclass to do some preliminary
work and then defer to the method of the superclass to finish the job.

class Animal {
 void eat(Food f) throws InedibleException {
 // consume food
 }
}

class Herbivore extends Animal {
 void eat(Food f) throws InedibleException {
 // check if edible
 ...
 super.eat(f);
 }
}

In the above example, our Herbivore class overrides the Animal eat() method to first do some
checking on the food object. After doing its job it simply calls the (otherwise overridden) implementation
of eat() in its superclass, using super.

super prompts a search for the method or variable to begin in the scope of the immediate superclass
rather than the current class. The inherited method or variable found may reside in the immediate
superclass, or in a more distant one. The usage of the super reference when applied to overridden
methods of a superclass is special; it tells the method resolution system to stop the dynamic method
search at the superclass, instead of in the most derived class (as it otherwise does). Without super, there
would be no way to access overridden methods.

Casting

As in C++, a cast explicitly tells the compiler to change the apparent type of an object reference. Unlike
in C++, casts in Java are checked both at compile- and at run-time to make sure they are legal.
Attempting to cast an object to an incompatible type at run-time results in a ClassCastException.
Only casts between objects in the same inheritance hierarchy (and as we'll see later, to appropriate
interfaces) are legal in Java and pass the scrutiny of the compiler and the run-time system.

Casts in Java affect only the treatment of references; they never change the form of the actual object.
This is an important rule to keep in mind. You never change the object pointed to by a reference by
casting it; you change only the compiler's (or run-time system's) notion of it.

A cast can be used to narrow the type of a reference--to make it more specific. Often, we'll do this when
we have to retrieve an object from a more general type of collection or when it has been previously used
as a less derived type. (The prototypical example is using an object in a Vector or Hashtable, as
you'll see in Chapter 7, Basic Utility Classes.) Continuing with our Cat example:

Animal creature = ...
Cat simon = ...

creature = simon; // Okay
// simon = creature; // Compile time error, incompatible type
simon = (Cat)creature; // Okay

We can't reassign the reference in creature to the variable simon even though we know it holds an
instance of a Cat (Simon). We have to perform the indicated cast. This is also called downcasting the
reference.

Note that an implicit cast was performed when we went the other way to widen the reference simon to
type Animal during the first assignment. In this case, an explicit cast would have been legal, but
superfluous.

If casting seems complicated, here's a simple way to think about it. Basically, you can't lie about what an
object is. If you have a Cat object, you can cast it to a less derived type (i.e., a type above it in the class
hierarchy) such as Animal or even Object, since all Java classes are a subclass of Object. If you
have an Object you know is a Cat, you can downcast the Object to be an Animal or a Cat.
However, if you aren't sure if the Object is a Cat or a Dog at run-time, you should check it with
instanceof before you perform the cast. If you get the cast wrong, Java throws a
ClassCastException.

As I mentioned earlier, casting can affect the selection of compile-time items like variables and
overloaded methods, but not the selection of overridden methods. Figure 5.6 shows the difference. As
shown in the top half of the diagram, casting the reference simon to type Animal (widening it) affects
the selection of the shadowed variable weight within it. However, as the lower half of the diagram
indicates, the cast doesn't affect the selection of the overridden method sleep().

Figure 5.6: Casting and its effect on method and variable selection

[Graphic: Figure 5-6]

Using superclass constructors

When we talked earlier about constructors, we discussed how the special statement this() invokes an
overloaded constructor upon entry to another constructor. Similarly, the statement super() explicitly
invokes the constructor of a superclass. Of course, we also talked about how Java makes a chain of
constructor calls that includes the superclass's constructor, so why use super() explicitly? When Java
makes an implicit call to the superclass constructor, it calls the default constructor. So, if we want to
invoke a superclass constructor that takes arguments, we have to do so explicitly using super().

If we are going to call a superclass constructor with super(), it must be the first statement of our
constructor, just as this() must be the first call we make in an overloaded constructor. Here's a simple
example:

class Person {
 Person (String name) {
 // setup based on name
 ...
 }
 ...
}

class Doctor extends Person {
 Doctor (String name, String specialty) {

 super(name);
 // setup based on specialty
 ...
 }
 ...
}

In this example, we use super() to take advantage of the implementation of the superclass constructor
and avoid duplicating the code to set up the object based on its name. In fact, because the class Person
doesn't define a default (no arguments) constructor, we have no choice but to call super() explicitly.
Otherwise, the compiler would complain that it couldn't find an appropriate default constructor to call.
Said another way, if you subclass a class that has only constructors that take arguments, you have to
invoke one of the superclass's constructors explicitly from your subclass constructor.

Instance variables of the class are initialized upon return from the superclass constructor, whether that's
due to an explicit call via super() or an implicit call to the default superclass constructor.

We can now give the full story of how constructors are chained together and when instance variable
initialization occurs. The rule has three parts and is applied repeatedly for each successive constructor
invoked.

● If the first statement of a constructor is an ordinary statement--i.e., not a call to this() or
super()--Java inserts an implicit call to super() to invoke the default constructor of the
superclass. Upon returning from that call, Java initializes the instance variables of the current
class and proceeds to execute the statements of the current constructor.

● If the first statement of a constructor is a call to a superclass constructor via super(), Java
invokes the selected superclass constructor. Upon its return, Java initializes the current class's
instance variables and proceeds with the statements of the current constructor.

● If the first statement of a constructor is a call to an overloaded constructor via this(), Java
invokes the selected constructor and upon its return simply proceeds with the statements of the
current constructor. The call to the superclass's constructor has happened within the overloaded
constructor, either explicitly or implicitly, so the initialization of instance variables has already
occurred.

Abstract Methods and Classes

As in C++, a method can be declared with the abstract modifier to indicate that it's just a prototype.
An abstract method has no body; it's simply a signature definition followed by a semicolon. You can't
directly use a class that contains an abstract method; you must instead create a subclass that implements
the abstract method's body.

abstract vaporMethod(String name);

In Java, a class that contains one or more abstract methods must be explicitly declared as an abstract
class, also using the abstract modifier :

abstract class vaporClass {
 ...
 abstract vaporMethod(String name);
 ...
}

An abstract class can contain other, nonabstract methods and ordinary variable declarations; however, it
can't be instantiated. To be used, it must be subclassed and its abstract methods must be overridden with
methods that implement a body. Not all abstract methods have to be implemented in a single subclass,
but a subclass that doesn't override all its superclass's abstract methods with actual, concrete
implementations must also be declared abstract.

Abstract classes provide a framework for classes that are to be "filled in" by the implementor. The
java.io.InputStream class, for example, has a single abstract method called read(). Various
subclasses of InputStream implement read() in their own ways to read from their own sources.
The rest of the InputStream class, however, provides extended functionality built on the simple
read() method. A subclass of InputStream inherits these nonabstract methods that provide
functionality based on the simple read() method that the subclass implements.

It's often desirable to specify only the prototypes for a whole set of methods and provide no
implementation. In C++, this would be a purely abstract class. In Java, you should instead use an
interface. An interface is like a purely abstract class; it defines a set of methods a class must implement
(i.e., the behavior of a class). However, unlike in C++, a class in Java can simply say that it
implements an interface and go about implementing those methods. As we'll discuss later, a class that
implements an interface doesn't have to inherit from any particular part of the inheritance hierarchy or
use a particular implementation.

Object Destruction Packages and Compilation
Units

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm

Chapter 5
Objects in Java

5.6 Packages and Compilation Units

A package is a name for a group of related classes. In Chapter 3, Tools of the Trade, we discussed how
Java uses package names to locate classes during compilation and at run-time. In this sense, packages are
somewhat like libraries; they organize and manage sets of classes. Packages provide more than just
source code-level organization though. They also create an additional level of scope for their classes and
the variables and methods within them. We'll talk about the visibility of classes in this section. In the
next section, we'll discuss the effect that packages have on access to variables and methods between
classes.

Compilation Units

The source code for a Java class is called a compilation unit. A compilation unit normally contains a
single class definition and is named for that class. The definition of a class named MyClass, for
instance, should appear in a file named MyClass.java. For most of us, a compilation unit is just a file
with a .java extension, but in an integrated development environment, it could be an arbitrary entity. For
brevity here, we'll refer to a compilation unit simply as a file.

The division of classes into their own compilation units is important because, as described in Chapter 3,
Tools of the Trade, the Java compiler assumes much of the responsibility of a make utility. The compiler
relies on the names of source files to find and compile dependent classes. It's possible (and common) to
put more than one class definition into a single file, but there are some restrictions we'll discuss shortly.

A class is declared to belong to a particular package with the package statement. The package
statement must appear as the first statement in a compilation unit. There can be only one package
statement, and it applies to the entire file:

package mytools.text;

class TextComponent {
 ...

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm

}

In the above example, the class TextComponent is placed in the package mytools.text.

A Word About Package Names

You should recall from Chapter 3, Tools of the Trade that package names are constructed in a
hierarchical way, using a dot-separated naming convention. Package-name components construct a
unique path for the compiler and run-time systems to locate files; however, they don't affect the contents
directly in any other way. There is no such thing as a subpackage (the package name space is really flat,
not hierarchical) and packages under a particular part of a package hierarchy are related only by
association. For example, if we create another package called mytools.text.poetry (presumably
for text classes specialized in some way to work with poetry), those classes would not be considered part
of the mytools.text package and would have no special access to its members. In this sense, the
package-naming convention can be misleading.

Class Visibility

By default, a class is accessible only to other classes within its package. This means that the class
TextComponent is available only to other classes in the mytools.text package. To be visible
elsewhere, a class must be declared as public:

package mytools.text;

public class TextEditor {
 ...
}

The class TextEditor can now be referenced anywhere. There can be only a single public class
defined in a compilation unit; the file must be named for that class.

By hiding unimportant or extraneous classes, a package builds a subsystem that has a well-defined
interface to the rest of the world. Public classes provide a facade for the operation of the system and the
details of its inner workings can remain hidden, as shown in Figure 5.7. In this sense, packages hide
classes in the way classes hide private members.

Figure 5.7: Class visibility and packages

[Graphic: Figure 5-7]

Figure 5.7 shows part of the the hypothetical mytools.text package. The classes TextArea and
TextEditor are declared public and can be used elsewhere in an application. The class
TextComponent is part of the implementation of TextArea and is not accessible from outside of the
package.

Importing Classes

Classes within a package can refer to each other by their simple names. However, to locate a class in
another package, we have to supply a qualifier. Continuing with the above example, an application refers
directly to our editor class by its fully qualified name of mytools.text.TextEditor. But we'd
quickly grow tired of typing such long class names, so Java gives us the import statement. One or more
import statements can appear at the top of a compilation unit, beneath the package statement. The
import statements list the full names of classes to be used within the file. Like a package statement,
import statements apply to the entire compilation unit. Here's how you might use an import
statement:

package somewhere.else;

import mytools.text.TextEditor;

class MyClass {
 TextEditor editBoy;
 ...
}

As shown in the example above, once a class is imported, it can be referenced by its simple name
throughout the code. It's also possible to import all of the classes in a package using the * notation:

import mytools.text.*;

Now we can refer to all public classes in the mytools.text package by their simple names.

Obviously, there can be a problem with importing classes that have conflicting names. If two different
packages contain classes that use the same name, you just have to fall back to using fully qualified names
to refer to those classes. Other than the potential for naming conflicts, there's no penalty for importing
classes. Java doesn't carry extra baggage into the compiled class files. In other words, Java class files
don't contain other class definitions, they only reference them.

The Unnamed Package

A class that is defined in a compilation unit that doesn't specify a package falls into the large, amorphous
unnamed package. Classes in this nameless package can refer to each other by their simple names. Their
path at compile- and run-time is considered to be the current directory, so package-less classes are useful
for experimentation, testing, and brevity in providing examples for books about Java.

Subclassing and Inheritance Variable and Method
Visibility

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm

Chapter 5
Objects in Java

5.8 Interfaces

Interfaces are kind of like Boy Scout (or Girl Scout) merit badges. When a scout has learned to build a bird
house, he can walk around wearing a little patch with a picture of one on his sleeve. This says to the world,
"I know how to build a bird house." Similarly, an interface is a list of methods that define some set of
behavior for an object. Any class that implements each of the methods listed in the interface can declare that
it implements the interface and wear, as its merit badge, an extra type--the interface's type.

Interface types act like class types. You can declare variables to be of an interface type, you can declare
arguments of methods to accept interface types, and you can even specify that the return type of a method is
an interface type. In each of these cases, what is meant is that any object that implements the interface (i.e.,
wears the right merit badge) can fill that spot. In this sense, interfaces are orthogonal to the class hierarchy.
They cut across the boundaries of what kind of object an item is and deal with it only in terms of what it can
do. A class implements as many interfaces as it desires. In this way, interfaces in Java replace the need for
multiple inheritance (and all of its messy side effects).

An interface looks like a purely abstract class (i.e., a class with only abstract methods). You define
an interface with the interface keyword and list its methods with no bodies:

interface Driveable {
 boolean startEngine();
 void stopEngine();
 float accelerate(float acc);
 boolean turn(Direction dir);
}

The example above defines an interface called Driveable with four methods. It's acceptable, but not
necessary, to declare the methods in an interface with the abstract modifier, so we haven't used it here.
Interfaces define capabilities, so it's common to name interfaces after their capabilities in a passive sense.
"Driveable" is a good example; "runnable" and "updateable" would be two more.

Any class that implements all the methods can then declare it implements the interface by using a special
implements clause in its class definition:

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_09.htm

class Automobile implements Driveable {
 ...
 boolean startEngine() {
 if (notTooCold)
 engineRunning = true;
 ...
 }

 void stopEngine() {
 engineRunning = false;
 }

 float accelerate(float acc) {
 ...
 }

 boolean turn(Direction dir) {
 ...
 }
 ...
}

The class Automobile implements the methods of the Driveable interface and declares itself
Driveable using an implements clause.

As shown in Figure 5.9, another class, such as LawnMower, can also implement the Driveable interface.
The figure illustrates the Driveable interface being implemented by two different classes. While it's
possible that both Automobile and Lawnmower could derive from some primitive kind of vehicle, they
don't have to in this scenario. This is a significant advantage of interfaces over standard multiple inheritance
as implemented in C++.

Figure 5.9: Implementing the Driveable interface

[Graphic: Figure 5-9]

After declaring the interface, we have a new type, Driveable. We can declare variables of type
Driveable and assign them any instance of a Driveable object:

Automobile auto = new Automobile();
Lawnmower mower = new Lawnmower();
Driveable vehicle;

vehicle = auto;
vehicle.startEngine();
vehicle.stopEngine();
...
vehicle = mower;
vehicle.startEngine();
vehicle.stopEngine();

Both Automobile and Lawnmower implement Driveable and can be considered of that type.

Interfaces as Callbacks

Interfaces can be used to implement callbacks in Java. A callback is a situation where you'd like to pass a
reference to some behavior and have another object invoke it later. In C or C++, this is prime territory for
function pointers; in Java, we'll use interfaces instead.

Consider two classes: a TickerTape class that displays data and a TextSource class that provides an
information feed. We'd like our TextSource to send any new text data. We could have TextSource

store a reference to a TickerTape object, but then we could never use our TextSource to send data to
any other kind of object. Instead, we'd have to proliferate subclasses of TextSource that dealt with
different types. A more elegant solution is to have TextSource store a reference to an interface type,
TextUpdateable:

interface TextUpdateable {
 receiveText(String text);
}

class TickerTape implements TextUpdateable {
 TextSource source;

 init() {
 source = new TextSource(this);
 ...
 }

 public receiveText(String text) {
 scrollText(text):
 }
 ...
}

class TextSource {
 TextUpdateable receiver;

 TextSource(TextUpdateable r) {
 receiver = r;
 }

 private sendText(String s) {
 receiver.receiveText(s);
 }
 ...
}

The only thing TextSource really cares about is finding the right method to invoke to send text. Thus, we
can list that method in an interface called TextUpdateable and have our TickerTape implement the
interface. A TickerTape object can then be used anywhere we need something of the type
TextUpdateable. In this case, the TextSource constructor takes a TextUpdateable object and
stores the reference in an instance variable of type TextUpdateable. Our TickerTape object simply
passes a reference to itself as the callback for text updates, and the source can invoke its receiveText()
method as necessary.

Interface Variables

Although interfaces allow us to specify behavior without implementation, there's one exception. An interface
can contain constant variable identifiers; these identifiers appear in any class that implements the interface.
This functionality allows for predefined parameters that can be used with the methods:

interface Scaleable {
 static final int BIG = 0, MEDIUM = 1, SMALL = 2;

 void setScale(int size);
}

The Scaleable interface defines three integers: BIG, MEDIUM, and SMALL. All variables defined in
interfaces are implicitly final and static; we don't have to use the modifiers here but, for clarity, we
recommend you do so.

A class that implements Scaleable sees these variables:

class Box implements Scaleable {

 void setScale(int size) {
 switch(size) {
 case BIG:
 ...
 case MEDIUM:
 ...
 case SMALL:
 ...
 }
 }
 ...
}

Empty Interfaces

Sometimes, interfaces are created just to hold constants; anyone who implements the interfaces can see the
constant names, much as if they were included by a C/C++ include file. This is a somewhat degenerate, but
acceptable use of interfaces.

Sometimes completely empty interfaces will be used to serve as a marker that a class has some special
property. The java.io.Serializeable interface is a good example (See Chapter 8). Classes that implement
Serializable don't add any methods or variables. Their additional type simply identifies them to Java as
classes that want to be able to be serialized.

Interfaces and Packages

Interfaces behave like classes within packages. An interface can be declared public to make it visible
outside of its package. Under the default visibility, an interface is visible only inside of its package. There
can be only one public interface declared in a compilation unit.

Subinterfaces

An interface can extend another interface, just as a class can extend another class. Such an interface is called
a subinterface:

interface DynamicallyScaleable extends Scaleable {
 void changeScale(int size);
}

The interface DynamicallyScaleable extends our previous Scaleable interface and adds an
additional method. A class that implements DynamicallyScaleable must implement all methods of
both interfaces.

Interfaces can't specify that they implement other interfaces, instead they are allowed to extend more than
one interface. (This is multiple inheritence for interfaces). More than one superinterface can be specified
with the comma operator:

 interface DynamicallyScaleable extends Scaleable, SomethingElseable {
 ...

Inside Arrays

At the end of Chapter 4, The Java Language, I mentioned that arrays have a place in the Java class hierarchy,
but I didn't give you any details. Now that we've discussed the object-oriented aspects of Java, I can give you
the whole story.

Array classes live in a parallel Java class hierarchy under the Object class. If a class is a direct subclass of
Object, then an array class for that base type also exists as a direct subclass of Object. Arrays of more
derived classes are subclasses of the corresponding array classes. For example, consider the following class
types:

class Animal { ... }
class Bird extends Animal { ... }
class Penguin extends Bird { ... }

Figure 5.10 illustrates the class hierarchy for arrays of these classes.

Figure 5.10: Arrays in the Java class hierarchy

[Graphic: Figure 5-10]

Arrays of the same dimension are related to one another in the same manner as their base type classes. In our
example, Bird is a subclass of Animal, which means that the Bird[] type is a subtype of Animal[]. In
the same way a Bird object can be used in place of an Animal object, a Bird[] array can be assigned to
an Animal[] array:

Animal [][] animals;
Bird [][] birds = new Bird [10][10];
birds[0][0] = new Bird();

// make animals and birds reference the same array object
animals = birds;
System.out.println(animals[0][0]); // prints Bird

Because arrays are part of the class hierarchy, we can use instanceof to check the type of an array:

if (birds instanceof Animal[][]) // yes

An array is a subtype of Object and can therefore be assigned to Object type variables:

Object something;
something = animals;

Since Java knows the actual type of all objects, you can also cast back if appropriate:

animals = (Animal [][])something;

Under unusual circumstances, Java may not be able to check the types of objects you place into arrays at

compile-time. In those cases, it's possible to receive an ArrayStoreException if you try to assign the
wrong type of object to an array element. Consider the following:

class Dog { ... }
class Poodle extends Dog { ... }
class Chihuahua extends Dog { ... }

Dog [] dogs;
Poodle [] poodles = new Poodle [10];

dogs = poodles;

dogs[3] = new Chihuahua(); // Run-time error, ArrayStoreException

Both Poodle and Chihuahua are subclasses of Dog, so an array of Poodle objects can therefore be
assigned to an array of Dog objects, as I described previously. The problem is that an object assignable to an
element of an array of type Dog[] may not be assignable to an element of an array of type Poodle. A
Chihuahua object, for instance, can be assigned to a Dog element because it's a subtype of Dog, but not to
a Poodle element.[6]

[6] In some sense this could be considered a tiny hole in the Java type system. It doesn't occur
elsewhere in Java, only with arrays. This is because array objects exhibit covariance in
overriding their assignment and extraction methods. Covariance allows array subclasses to
override methods with arguments or return values that are subtypes of the overridden methods,
where the methods would normally be overloaded or prohibited. This allows array subclasses
to operate on their base types with type safety, but also means that subclasses have different
capabilities than their parents, leading to the problem shown above.

Variable and Method
Visibility

Inner Classes

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_09.htm

Chapter 5
Objects in Java

5.10 The Object and Class Classes

java.lang.Object is the mother of all objects; it's the primordial class from which all other classes
are ultimately derived. Methods defined in Object are therefore very important because they appear in
every instance of any class, throughout all of Java. At last count, there were nine public methods in
Object. Five of these are versions of wait() and notify() that are used to synchronize threads on
object instances, as we'll discuss in Chapter 6, Threads. The remaining four methods are used for basic
comparison, conversion, and administration.

Every object has a toString() method that is called when it's to be represented as a text value.
PrintStream objects use toString() to print data, as discussed in Chapter 8, Input/Output
Facilities. toString() is also used when an object is referenced in a string concatenation. Here are
some examples:

MyObj myObject = new MyObj();
Answer theAnswer = new Answer();

System.out.println(myObject);
String s = "The answer is: " + theAnswer ;

To be friendly, a new kind of object should override toString() and implement its own version that
provides appropriate printing functionality. Two other methods, equals() and hashCode(), may
also require specialization when you create a new class.

Equality

equals() compares whether two objects are equivalent. Precisely what that means for a particular
class is something that you'll have to decide for yourself. Two String objects, for example, are
considered equivalent if they hold precisely the same characters in the same sequence:

String userName = "Joe";

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_09.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_11.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm

...
if (userName.equals(suspectName))
 arrest(userName);

Note that using equals() is *not* the same as:

// if (userName == suspectName) // Wrong!

The above code tests to see if the two String objects are the same object, which is sufficient but not
necessary for them to be equivalent objects.

A class should override the equals() method if it needs to implement its own notion of equality. If
you have no need to compare objects of a particular class, you don't need to override equals().

Watch out for accidentally overloading equals() when you mean to override it. equals() takes an
Object as an argument and returns a boolean value. While you'll probably want to check only if an
object is equivalent to an object of its own type, in order to properly override equals(), the method
should accept a generic Object as its argument. Here's an example of implementing equals():

class Sneakers extends Shoes {
 public boolean equals(Object arg) {
 if ((arg != null) && (arg instanceof Sneakers)) {
 // compare arg with this object to check equivalence
 // If comparison is okay...
 return true;
 }
 return false;
 }
 ...
}

A Sneakers object can now be properly compared by any current or future Java classes. If we had
instead used a Sneakers type object as the argument to equals(), all would be well for classes that
reference our objects as Sneakers, but methods that simply use Shoes would not see the overloaded
method and would compare Sneakers against other Sneakers improperly.

Hashcodes

The hashCode() method returns an integer that is a hashcode for a class instance. A hashcode is like a
signature for an object; it's an arbitrary-looking identifying number that is (with important exceptions)
generally different for different instances of the class. Hashcodes are used in the process of storing
objects in a Hashtable, or a similar kind of collection. The hashcode is essentially an index into the

collection. See Chapter 7, Basic Utility Classes for a complete discussion of Hashtable objects and
hashcodes.

The default implementation of hashCode() in Object assigns each object instance a unique number
to be used as a hashcode. If you don't override this method when you create a new class, each instance of
the class will have a unique hashcode. This is sufficient for most objects. However, if the class has a
notion of equivalent objects, then you should probably override hashCode() so that equivalent objects
are given the same hashcode.

java.lang.Class

The last method of Object we need to discuss is getClass(). This method returns a reference to the
Class object that produced the object instance.

A good measure of the complexity of an object-oriented language is the degree of abstraction of its class
structures. We know that every object in Java is an instance of a class, but what exactly is a class? In
C++, objects are formulated by and instantiated from classes, but classes are really just artifacts of the
compiler. Thus, you see only classes mentioned in C++ source code, not at run-time. By comparison,
classes in Smalltalk are real, run-time entities in the language that are themselves described by "meta-
classes" and "meta-class classes." Java strikes a happy medium between these two languages with what
is, effectively, a two-tiered system that uses Class objects.

Classes in Java source code are represented at run-time by instances of the java.lang.Class class.
There's a Class object for every class you use; this Class object is responsible for producing instances
for its class. This may sound overwhelming, but you don't have to worry about any of it unless you are
interested in loading new kinds of classes dynamically at run-time.

We can get the Class associated with a particular object with the getClass() method:

String myString = "Foo!"
Class c = myString.getClass();

We can also get the Class reference for a particular class statically, using the special .class notation:

Class c = String.class;

The .class reference looks like a static field that exists in every class. However, it is really resolved by the
compiler.

One thing we can do with the Class object is to ask for the name of the object's class:

String s = "Boofa!";
Class strClass = s.getClass();
System.out.println(strClass.getName()); // prints "java.lang.String"

Another thing that we can do with a Class is to ask it to produce a new instance of its type of object.
Continuing with the above example:

try {
 String s2 = (String)strClass.newInstance();
}
catch (InstantiationException e) { ... }
catch (IllegalAccessException e) { ... }

newInstance() has a return type of Object, so we have to cast it to a reference of the appropriate
type. A couple of problems can occur here. An InstantiationException indicates we're trying to
instantiate an abstract class or an interface. IllegalAccessException is a more general
exception that indicates we can't access a constructor for the object. Note that newInstance() can
create only an instance of a class that has an accessible default constructor. There's no way for us to pass
any arguments to a constructor.

All this becomes more meaningful when we add the capability to look up a Class by name.
forName() is a static method of Class that returns a Class object given its name as a String:

try {
 Class sneakersClass = Class.forName("Sneakers");
}
catch (ClassNotFoundException e) { ... }

A ClassNotFoundException is thrown if the class can't be located.

Combining the above tools, we have the power to load new kinds of classes dynamically. When
combined with the power of interfaces, we can use new data types by name in our applications:

interface Typewriter {
 void typeLine(String s);
 ...
}

class Printer implements Typewriter {
 ...
}

class MyApplication {
 ...
 String outputDeviceName = "Printer";

 try {
 Class newClass = Class.forName(outputDeviceName);
 Typewriter device = (Typewriter)newClass.newInstance();
 ...
 device.typeLine("Hello...");
 }
 catch (Exception e) {
}

Inner Classes Reflection

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_09.htm
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_11.htm

Chapter 7
Basic Utility Classes

7.2 Math Utilities

Java supports integer and floating-point arithmetic directly. Higher-level math operations are supported
through the java.lang.Math class. Java provides wrapper classes for all primitive data types, so you
can treat them as objects if necessary. Java also provides the java.util.Random class for generating
random numbers.

Java handles errors in integer arithmetic by throwing an ArithmeticException:

int zero = 0;

try {
 int i = 72 / zero;
}
catch (ArithmeticException e) { // division by zero
}

To generate the error in the above example, we created the intermediate variable zero. The compiler is
somewhat crafty and would have caught us if we had blatantly tried to perform a division by zero.

Floating-point arithmetic expressions, on the other hand, don't throw exceptions. Instead, they take on the
special out-of-range values shown in Table 7.3.

Table 7.3: Special Floating-Point Values

Value Mathematical representation

POSITIVE_INFINITY 1.0/0.0

NEGATIVE_INFINITY -1.0/0.0

NaN 0.0/0.0

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch07_03.htm

The following example generates an infinite result:

double zero = 0.0;
double d = 1.0/zero;

if (d == Double.POSITIVE_INFINITY)
 System.out.println("Division by zero");

The special value NaN indicates the result is "not a number." The value NaN has the special distinction of
not being equal to itself (NaN != NaN). Use Float.isNaN() or Double.isNaN() to test for
NaN.

java.lang.Math

The java.lang.Math class serves as Java's math library. All its methods are static and used
directly ; you can't instantiate a Math object. We use this kind of degenerate class when we really want
methods to approximate normal functions in C. While this tactic defies the principles of object-oriented
design, it makes sense in this case, as it provides a means of grouping some related utility functions in a
single class. Table 7.4 summarizes the methods in java.lang.Math.

Table 7.4: Methods in java.lang.Math

Method Argument type(s) Functionality

Math.abs(a) int, long, float, double Absolute value

Math.acos(a) double Arc cosine

Math.asin(a) double Arc sine

Math.atan(a) double Arc tangent

Math.atan2(a,b) double Converts rectangular to polar coordinates

Math.ceil(a) double
Smallest whole number greater than or equal to
a

Math.cos(a) double Cosine

Math.exp(a) double Exponential number to the power of a

Math.floor(a) double Largest whole number less than or equal to a

Math.log(a) double Natural logarithm of a

Math.max(a, b) int, long, float, double Maximum

Math.min(a, b) int, long, float, double Minimum

Math.pow(a, b) double a to the power of b

Math.random() None Random number generator

Math.rint(a) double
Converts double value to integral value in
double format

Math.round(a) float, double Rounds

Math.sin(a) double Sine

Math.sqrt(a) double Square root

Math.tan(a) double Tangent

log(), pow(), and sqrt() can throw an ArithmeticException. abs(), max(), and min()
are overloaded for all the scalar values, int, long, float, or double, and return the corresponding
type. Versions of Math.round() accept either float or double and return int or long
respectively. The rest of the methods operate on and return double values:

double irrational = Math.sqrt(2.0);
int bigger = Math.max(3, 4);
long one = Math.round(1.125798);

For convenience, Math also contains the static final double values E and PI:

double circumference = diameter * Math.PI;

java.math

If a long or a double just isn't big enough for you, the java.math package provides two classes,
BigInteger and BigDecimal, that support arbitrary-precision numbers. These are full-featured
classes with a bevy of methods for performing arbitrary-precision math. In the following example, we
use BigInteger to add two numbers together.

try {
 BigDecimal twentyone = new BigDecimal("21");
 BigDecimal seven = new BigDecimal("7");
 BigDecimal sum = twentyone.add(seven);

 int twentyeight = sum.intValue();
}
catch (NumberFormatException nfe) { }
catch (ArithmeticException ae) { }

Wrappers for Primitive Types

In languages like Smalltalk, numbers and other simple types are objects, which makes for an elegant
language design, but has trade-offs in efficiency and complexity. By contrast, there is a schism in the
Java world between class types (i.e., objects) and primitive types (i.e., numbers, characters, and boolean
values). Java accepts this trade-off simply for efficiency reasons. When you're crunching numbers you
want your computations to be lightweight; having to use objects for primitive types would seriously
affect performance. For the times you want to treat values as objects, Java supplies a wrapper class for
each of the primitive types, as shown in Table 7.5.

Table 7.5: Primitive Type Wrappers

Primitive Wrapper

void java.lang.Void

boolean java.lang.Boolean

char java.lang.Character

byte java.lang.Byte

short java.lang.Short

int java.lang.Integer

long java.lang.Long

float java.lang.Float

double java.lang.Double

An instance of a wrapper class encapsulates a single value of its corresponding type. It's an immutable
object that serves as a container to hold the value and let us retrieve it later. You can construct a wrapper
object from a primitive value or from a String representation of the value. The following code is
equivalent:

Float pi = new Float(3.14);
Float pi = new Float("3.14");

Wrapper classes throw a NumberFormatException when there is an error in parsing from a string:

try {
 Double bogus = new Double("huh?");
}
catch (NumberFormatException e) { // bad number
}

You should arrange to catch this exception if you want to deal with it. Otherwise, since it's a subclass of
RuntimeException, it will propagate up the call stack and eventually cause a run-time error if not

caught.

Sometimes you'll use the wrapper classes simply to parse the String representation of a number:

String sheep = getParameter("sheep");
int n = new Integer(sheep).intValue();

Here we are retrieving the value of the sheep parameter. This value is returned as a String, so we
need to convert it to a numeric value before we can use it. Every wrapper class provides methods to get
primitive values out of the wrapper; we are using intValue() to retrieve an int out of Integer.
Since parsing a String representation of a number is such a common thing to do, the Integer and
Long classes also provide the static methods Integer.parseInt() and Long.parseLong()
that read a String and return the appropriate type. So the second line above is equivalent to:

int n = Integer.parseInt(sheep);

All wrappers provide access to their values in various forms. You can retrieve scalar values with the
methods doubleValue(), floatValue(), longValue(), and intValue():

Double size = new Double (32.76);

double d = size.doubleValue();
float f = size.floatValue();
long l = size.longValue();
int i = size.intValue();

The code above is equivalent to the primitive double value cast to the various types. For convenience,
you can cast between the wrapper classes like Double class and the primitive data types.

Another common use of wrappers occurs when we have to treat a primitive value as an object in order to
place it in a list or other structure that operates on objects. As you'll see shortly, a Vector is an
extensible array of Objects. We can use wrappers to hold numbers in a Vector, along with other
objects:

Vector myNumbers = new Vector();

Integer thirtyThree = new Integer(33);
myNumbers.addElement(thirtyThree);

Here we have created an Integer wrapper so that we can insert the number into the Vector using
addElement(). Later, when we are taking elements back out of the Vector, we can get the number
back out of the Integer as follows:

Integer theNumber = (Integer)myNumbers.firstElement();
int n = theNumber.intValue(); // n = 33

Random Numbers

You can use the java.util.Random class to generate random values. It's a pseudo-random number
generator that can be initialized with a 48-bit seed.[1] The default constructor uses the current time as a
seed, but if you want a repeatable sequence, specify your own seed with:

[1] The generator uses a linear congruential formula. See The Art of Computer
Programming, Volume 2 "Semi-numerical Algorithms," by Donald Knuth (Addison-
Wesley).

long seed = mySeed;
Random rnums = new Random(seed);

This code creates a random-number generator. Once you have a generator, you can ask for random
values of various types using the methods listed in Table 7.6.

Table 7.6: Random Number Methods

Method Range

nextInt() -2147483648 to 2147483647

nextLong() -9223372036854775808 to 9223372036854775807

nextFloat() -1.0 to 1.0

nextDouble() -1.0 to 1.0

By default, the values are uniformly distributed. You can use the nextGaussian() method to create a
Gaussian distribution of double values, with a mean of 0.0 and a standard deviation of 1.0.

The static method Math.random() retrieves a random double value. This method initializes a
private random-number generator in the Math class, using the default Random constructor. So every
call to Math.random() corresponds to a call to nextDouble() on that random number generator.

Strings Dates

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch07_03.htm

Chapter 7
Basic Utility Classes

7.4 Vectors and Hashtables

Vectors and hashtables are collection classes. Each stores a group of objects according to a particular
retrieval scheme. Aside from that, they are not particularly closely related things. A hashtable is a
dictionary; it stores and retrieves objects by a key value. A vector, on the other hand, holds an ordered
collection of elements. It's essentially a dynamic array. Both of these, however, have more subtle
characteristics in common. First, they are two of the most useful aspects of the core Java distribution.
Second, they both take full advantage of Java's dynamic nature at the expense of some of its more static
type safety.

If you work with dictionaries or associative arrays in other languages, you should understand how useful
these classes are. If you are someone who has worked in C or another static language, you should find
collections to be truly magical. They are part of what makes Java powerful and dynamic. Being able to
work with lists of objects and make associations between them is an abstraction from the details of the
types. It lets you think about the problems at a higher level and saves you from having to reproduce
common structures every time you need them.

java.util.Vector

A Vector is a dynamic array; it can grow to accommodate new items. You can also insert and remove
elements at arbitrary positions within it. As with other mutable objects in Java, Vector is thread-safe.
The Vector class works directly with the type Object, so we can use them with instances of any kind
of class.[3] We can even put different kinds of Objects in a Vector together; the Vector doesn't
know the difference.

[3] In C++, where classes don't derive from a single Object class that supplies a base
type and common methods, the elements of a collection would usually be derived from
some common collectable class. This forces the use of multiple inheritance and brings its
associated problems.

As you might guess, this is where things get tricky. To do anything useful with an Object after we take

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch07_03.htm

it back out of a Vector, we have to cast it back (narrow) it to its original type. This can be done with
safety in Java because the cast is checked at run-time. Java throws a ClassCastException if we try
to cast an object to the wrong type. However, this need for casting means that your code must remember
types or methodically test them with instanceof. That is the price we pay for having a completely
dynamic collection class that operates on all types.

You might wonder if you can subclass Vector to produce a class that looks like a Vector, but that
works on just one type of element in a type-safe way. Unfortunately, the answer is no. We could override
Vector's methods to make a Vector that rejects the wrong type of element at run-time, but this does
not provide any new compile-time, static type safety. In C++, templates provide a safe mechanism for
parameterizing types by restricting the types of objects used at compile-time. The keyword generic is
a reserved word in Java. This means that it's possible that future versions might support C++-style
templates, using generic to allow statically checked parameterized types.

We can construct a Vector with default characteristics and add elements to it using addElement()
and insertElement():

Vector things = new Vector();

String one = "one";
String two = "two";
String three = "three";

things.addElement(one);
things.addElement(three);
things.insertElementAt(two, 1);

things now contains three String objects in the order "one," "two," and "three." We can retrieve
objects by their position with elementAt(), firstElement(), and lastElement():

String s1 = (String)things.firstElement(); // "one"
String s3 = (String)things.lastElement(); // "three"
String s2 = (String)things.elementAt(1); // "two"

We have to cast each Object back to a String in order to assign it a String reference.
ClassCastException is a type of RuntimeException, so we can neglect to guard for the
exception if we are feeling confident about the type we are retrieving. Often, as in this example, you'll
just have one type of object in the Vector. If we were unsure about the types of objects we were
retrieving, we would want to be prepared to catch the ClassCastException or test the type
explicitly with the instanceof operator.

We can search for an item in a Vector with the indexOf() method:

int i = things.indexOf(three); // i = 2

indexOf() returns a value of -1 if the object is not found. As a convenience, we can also use
contains() simply to test for the presence of the object.

Finally, removeElement() removes a specified Object from the Vector:

things.removeElement(two);

The element formerly at position three now becomes the second element.

The size() method reports the number of objects currently in the Vector. You might think of using
this to loop through all elements of a Vector, using elementAt() to get at each element. This works
just fine, but there is a more general way to operate on a complete set of elements like those in a
Vector.

java.util.Enumeration

The java.util.Enumeration interface can be used by any sort of set to provide serial access to its
elements. An object that implements the Enumeration interface presents two methods:
nextElement() and hasMoreElements(). nextElement() returns an Object type, so it can
be used with any kind of collection. As with taking objects from a Vector, you need to know or
determine what the objects are and cast them to the appropriate types before using them.

Enumeration is useful because any type of object can implement the interface and then use it to
provide access to its elements. If you have an object that handles a set of values, you should think about
implementing the Enumeration interface. Simply provide a hasMoreElements() test and a
nextElement() iterator and declare that your class implements java.util.Enumeration. One
advantage of an Enumeration is that you don't have to provide all values up front; you can provide
each value as it's requested with nextElement(). And since Enumeration is an interface, you can
write general routines that operate on all of the elements Enumeration.

An Enumeration does not guarantee the order in which elements are returned, however, so if order is
important you don't want to use an Enumeration. You can iterate through the elements in an
Enumeration only once; there is no way to reset it to the beginning or move backwards through the
elements.

A Vector returns an Enumeration of its contents when we call the elements() method:

Enumeration e = things.elements();

while (e.hasMoreElements()) {
 String s = (String)e.nextElement();
 System.out.println(s):
}

The above code loops three times, as call nextElement(), to fetch our strings. The actual type of
object returned by elements() is a VectorEnumeration, but we don't have to worry about that.
We can always refer to an Enumeration simply by its interface.

Note that Vector does not implement the Enumeration interface. If it did, that would put a serious
limitation on Vector because we could cycle through the elements in it only once. That's clearly not the
purpose of a Vector, which is why Vector instead provides a method that returns an Enumeration.

java.util.Hashtable

As I said earlier, a hashtable is a dictionary, similar to an associative array. A hashtable stores and
retrieves elements with key values; they are very useful for things like caches and minimalist databases.
When you store a value in a hashtable, you associate a key with that value. When you need to look up the
value, the hashtable retrieves it efficiently using the key. The name hashtable itself refers to how the
indexing and storage of elements is performed, as we'll discuss shortly. First I want to talk about how to
use a hashtable.

The java.util.Hashtable class implements a hashtable that, like Vector, operates on the type
Object. A Hashtable stores an element of type Object and associates it with a key, also of type
Object. In this way, we can index arbitrary types of elements using arbitrary types as keys. As with
Vector, casting is generally required to narrow objects back to their original type after pulling them out
of a hashtable.

A Hashtable is quite easy to use. We can use the put() method to store items:

Hashtable dates = new Hashtable();

dates.put("christmas",
 new GregorianCalendar(1997, Calendar.DECEMBER, 25));
dates.put("independence",
 new GregorianCalendar(1997, Calendar.JULY, 4));
dates.put("groundhog",
 new GregorianCalendar(1997, Calendar.FEBRUARY, 2));

First we create a new Hashtable. Then we add three GregorianCalendar objects to the
hashtable, using String objects as keys. The key is the first argument to put(); the value is the
second. Only one value can be stored per key. If we try to store a second object under a key that already

exists in the Hashtable, the old element is booted out and replaced by the new one. The return value
of the put() method is normally null, but if the call to put() results in replacing an element, the
method instead returns the old stored Object.

We can now use the get() method to retrieve each of the above dates by name, using the String key
by which it was indexed:

GregorianCalendar g = (GregorianCalendar)dates.get("christmas");

The get() method returns a null value if no element exists for the given key. The cast is required to
narrow the returned object back to type GregorianCalendar. I hope you can see the advantage of
using a Hashtable over a regular array. Each value is indexed by a key instead of a simple number, so
unlike a simple array, we don't have to remember where each GregorianCalendar is stored.

Once we've put a value in a Hashtable, we can take it back out with the remove() method, again
using the key to access the value:

dates.remove("christmas");

We can test for the existence of a key with containsKey():

if (dates.containsKey("groundhog")) { // yes

Just like with a Vector, we're dealing with a set of items. Actually, we're dealing with two sets: keys
and values. The Hashtable class has two methods, keys() and elements(), for getting at these
sets. The keys() method returns an Enumeration of the keys for all of the elements in the
Hashtable. We can use this Enumeration to loop through all of the keys:

for (Enumeration e = dates.keys(); e.hasMoreElements();) {
 String key = (String)e.nextElement();
 ...
}

Similarly, elements() provides an Enumeration of the elements themselves.

Hashcodes and key values

If you've used a hashtable before, you've probably guessed that there's more going on behind the scenes
than I've let on so far. An element in a hashtable is not associated with its key by identity, but by
something called a hashcode. Every object in Java has an identifying hashcode value determined by its
hashCode() method, which is inherited from the Object class. When you store an element in a

hashtable, the hashcode of the key object registers the element internally. Later, when you retrieve the
item, that same hashcode looks it up efficiently.

A hashcode is usually a random-looking integer value based on the contents of an object, so it's different
for different instances of a class. Two objects that have different hashcodes serve as unique keys in a
hashtable; each object can reference a different stored object. Two objects that have the same hashcode
value, on the other hand, appear to a hashtable as the same key. They can't coexist as keys to different
objects in the hashtable.

Generally, we want our object instances to have unique hash codes, so we can put arbitrary items in a
hashtable and index them with arbitrary keys. The default hashCode() method in the Object class
simply assigns each object instance a unique number to be used as a hashcode. If a class does not
override this method, each instance of the class will have a unique hashcode. This is sufficient for most
objects.

However, it's also useful to allow equivalent objects to serve as equivalent keys. String objects
provide a good example of this case. Although Java does its best to consolidate them, a literal string that
appears multiple times in Java source code is often represented by different String objects at run-time.
If each of these String objects has a different hash code, even though the literal value is the same, we
could not use strings as keys in a hashtable, like we did the in above examples.

The solution is to ensure that equivalent String objects return the same hashcode value so that they can
act as equivalent keys. The String class overrides the default hashCode() method so that equivalent
String objects return the same hash code, while different String objects have unique hashcodes.
This is possible because String objects are immutable; the contents can't change, so neither can the
hashcode.

A few other classes in the Java API also override the default hashCode() method in order to provide
equivalent hashcodes for equivalent objects. For example, each of the primitive wrapper classes provides
a hashCode() method for this purpose. Other objects likely to be used as hashtable keys, such as
Color, Date, File, and URL, also implement their own hashCode()methods.

So now maybe you're wondering when you need to override the default hashCode() method in your
objects. If you're creating a class to use for keys in a hashtable, think about whether the class supports the
idea of "equivalent objects." If so, you should implement a hashCode() method that returns the same
hashcode value for equivalent objects.

To accomplish this, you need to define the hashcode of an object to be some suitably complex and
arbitrary function of the contents of that object. The only criterion for the function is that it should be
almost certain to provide different values for different contents of the object. Because the capacity of an
integer is limited, hashcode values are not guaranteed to be unique. This limitation is not normally a
problem though, as there are 2^32 possible hashcodes to choose from. The more sensitive the hashcode

function is to small differences in the contents the better. A hashtable works most efficiently when the
hashcode values are as randomly and evenly distributed as possible. As an example, you could produce a
hashcode for a String object by adding the character values at each position in the string and
multiplying the result by some number, producing a large random-looking integer.

java.util.Dictionary

java.util.Dictionary is the abstract superclass of Hashtable. It lays out the basic
get(), put(), and remove() functionality for dictionary-style collections. You could derive other
types of dictionaries from this class. For example, you could implement a dictionary with a different
storage format, such as a binary tree.

Dates Properties

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch07_03.htm

Chapter 7
Basic Utility Classes

7.5 Properties

The java.util.Properties class is a specialized hashtable for strings. Java uses the
Properties object to replace the environment variables used in other programming environments.
You can use a Properties table to hold arbitrary configuration information for an application in an
easily accessible format. The Properties object can also load and store information using streams
(see Chapter 8, Input/Output Facilities for information on streams).

Any string values can be stored as key/value pairs in a Properties table. However, the convention is
to use a dot-separated naming hierarchy to group property names into logical structures, as is done with
X resources on UNIX systems.[4] The java.lang.System class provides system-environment
information in this way, through a system Properties table I'll describe shortly.

[4] Unfortunately, this is just a naming convention right now, so you can't access logical
groups of properties as you can with X resources.

Create an empty Properties table and add String key/value pairs just as with any Hashtable:

Properties props = new Properties();
props.put("myApp.xsize", "52");
props.put("myApp.ysize", "79");

Thereafter, you can retrieve values with the getProperty()method:

String xsize = props.getProperty("myApp.xsize");

If the named property doesn't exist, getProperty() returns null. You can get an Enumeration
of the property names with the propertyNames() method:

for (Enumeration e = props.propertyNames(); e.hasMoreElements;) {
 String name = e.nextElement();

 ...
}

Default Values

When you create a Properties table, you can specify a second table for default property values:

Properties defaults;
...
Properties props = new Properties(defaults);

Now when you call getProperty(), the method searches the default table if it doesn't find the named
property in the current table. An alternative version of getProperty() also accepts a default value;
this value is returned if the property is not found in the current list or in the default list:

String xsize = props.getProperty("myApp.xsize", "50");

Loading and Storing

You can save a Properties table to an OutputStream using the save() method. The property
information is output in flat ASCII format. Continuing with the above example, output the property
information to System.out as follows:

props.save(System.out, "Application Parameters");

As we'll discuss in Chapter 8, Input/Output Facilities, System.out is a standard output stream similar
to C's stdout. We could also save the information to a file by using a FileOutputStream as the
first argument to save(). The second argument to save() is a String that is used as a header for
the data. The above code outputs something like the following to System.out:

#Application Parameters
#Mon Feb 12 09:24:23 CST 1997
myApp.ysize=79
myApp.xsize=52

The load() method reads the previously saved contents of a Properties object from an
InputStream:

FileInputStream fin;
...
Properties props = new Properties()

props.load(fin);

The list() method is useful for debugging. It prints the contents to an OutputStream in a format
that is more human-readable but not retrievable by load().

System Properties

The java.lang.System class provides access to basic system environment information through the
static System.getProperty() method. This method returns a Properties table that
contains system properties. System properties take the place of environment variables in other
programming environments.

Table 7.7 summarizes system properties that are guaranteed to be defined in any Java environment.

Table 7.7: System Properties

System Property Meaning

java.vendor Vendor-specific string

java.vendor.url URL of vendor

java.version Java version

java.home Java installation directory

java.class.version Java class version

java.class.path The class path

os.name Operating-system name

os.arch Operating-system architecture

os.version Operating-system version

file.separator File separator (such as "/" or " \")

path.separator Path separator (such as ":" or ";")

line.separator Line separator (such as "\n" or "\r\n")

user.name User account name

user.home User's home directory

user.dir Current working directory

Applets are, by current Web browser conventions, prevented from reading the following properties:
java.home, java.class.path, user.name, user.home, and user.dir. As you'll see in the
next section, these restrictions are implemented by a SecurityManager object.

Vectors and Hashtables The Security Manager

Chapter 7
Basic Utility Classes

7.6 The Security Manager

As I described in Chapter 1, Yet Another Language?, a Java application's access to system resources,
such as the display, the filesystem, threads, external processes, and the network, can be controlled at a
single point with a security manager. The class that implements this functionality in the Java API is the
java.lang.SecurityManager class.

An instance of the SecurityManager class can be installed once, and only once, in the life of the
Java run-time environment. Thereafter, every access to a fundamental system resource is filtered through
specific methods of the SecurityManager object by the core Java packages. By installing a
specialized SecurityManager, we can implement arbitrarily complex (or simple) security policies
for allowing access to individual resources.

When the Java run-time system starts executing, it's in a wide-open state until a SecurityManager is
installed. The "null" security manager grants all requests, so the Java virtual environment can perform
any activity with the same level of access as other programs running under the user's authority. If the
application that is running needs to ensure a secure environment, it can install a SecurityManager
with the static System.setSecurityManager() method. For example, a Java-enabled Web
browser like Netscape Navigator installs a SecurityManager before it runs any Java applets.

java.lang.SecurityManager must be subclassed to be used. This class does not actually contain
any abstract methods; it's abstract as an indication that its default implementation is not very
useful. By default, each security method in SecurityManager is implemented to provide the strictest
level of security. In other words, the default SecurityManager simply rejects all requests.

The following example, MyApp, installs a trivial subclass of SecurityManager as one of its first
activities:

class FascistSecurityManager extends SecurityManager { }

public class MyApp {

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch07_07.htm

 public static void main(Strings [] args) {
 System.setSecurityManager(new FascistSecurityManager());
 // No access to files, network, windows, etc.
 ...
 }
}

In the above scenario, MyApp does little aside from reading from System.in and writing to
System.out. Any attempts to read or write files, access the network, or even open an window, results
in a SecurityException being thrown.

After this draconian SecurityManager is installed, it's impossible to change the
SecurityManager in any way. The security of this feature is not dependent on the
SecurityManager; you can't replace or modify the SecurityManager under any circumstances.
The upshot of this is that you have to install one that handles all your needs up front.

To do something more useful, we can override the methods that are consulted for access to various kinds
of resources. Table 7.7 lists some of the more important access methods. You should not normally have
to call these methods yourself, although you could. They are called by the core Java classes before
granting particular types of access.

Table 7.8: SecurityManager Methods

Method Can I...?

checkAccess(Thread g) Access this thread?

checkExit(int status) Execute a System.exit()?

checkExec(String cmd) exec() this process?

checkRead(String file) Read a file?

checkWrite(String file) Write a file?

checkDelete(String file) Delete a file?

checkConnect(String host, int port) Connect a socket to a host?

checkListen(int port) Create a server socket?

checkAccept(String host, int port) Accept this connection?

checkPropertyAccess(String key) Access this system property?

checkTopLevelWindow(Object window) Create this new top-level window?

All these methods, with the exception of checkTopLevelWindow(), simply return to grant access. If
access is not granted, they throw a SecurityException. checkTopLevelWindow() returns a

boolean value. A value of true indicates the access is granted; a value of false indicates the access
is granted with the restriction that the new window should provide a warning border that serves to
identify it as an untrusted window.

Let's implement a silly SecurityManager that allows only files beginning with the name foo to be
read:

class FooFileSecurityManager extends SecurityManager {

 public void checkRead(String s) {
 if (!s.startsWith("foo"))
 throw new SecurityException("Access to non-foo file: " +
 s + " not allowed.");
 }
}

Once the FooFileSecurityManager is installed, any attempt to read a filename other than foo*
from any class will fail and cause a SecurityException to be thrown. All other security methods
are inherited from SecurityManager, so they are left at their default restrictiveness.

All restrictions placed on applets by an applet-viewer application are enforced through a
SecurityManager, which allows untrusted code loaded from over the network to be executed safely.
The restrictions placed on applets are currently fairly harsh. As time passes and security considerations
related to applets are better understood and accepted, the applet API will hopefully become more
powerful and allow forms of persistence and access to designated public information.

Properties Internationalization

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch07_07.htm

Chapter 8
Input/Output Facilities

8.2 Files

Unless otherwise restricted, a Java application can read and write to the host filesystem with the same level of access
as the user who runs the Java interpreter. Java applets and other kinds of networked applications can, of course, be
restricted by the SecurityManager and cut off from these services. We'll discuss applet access at the end of this
section. First, let's take a look at the tools for basic file access.

Working with files in Java is still somewhat problematic. The host filesystem lies outside of Java's virtual
environment, in the real world, and can therefore still suffer from architecture and implementation differences. Java
tries to mask some of these differences by providing information to help an application tailor itself to the local
environment; I'll mention these areas as they occur.

java.io.File

The java.io.File class encapsulates access to information about a file or directory entry in the filesystem. It gets
attribute information about a file, lists the entries in a directory, and performs basic filesystem operations like
removing a file or making a directory. While the File object handles these tasks, it doesn't provide direct access for
reading and writing file data; there are specialized streams for that purpose.

File constructors

You can create an instance of File from a String pathname as follows:

File fooFile = new File("/tmp/foo.txt");
File barDir = new File("/tmp/bar");

You can also create a file with a relative path like:

File f = new File("foo");

In this case, Java works relative to the current directory of the Java interpreter. You can determine the current
directory by checking the user.dir property in the System Properties list
(System.getProperty('user.dir')).

An overloaded version of the File constructor lets you specify the directory path and filename as separate String
objects:

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch08_03.htm

File fooFile = new File("/tmp", "foo.txt");

With yet another variation, you can specify the directory with a File object and the filename with a String:

File tmpDir = new File("/tmp");
File fooFile = new File (tmpDir, "foo.txt");

None of the File constructors throw any exceptions. This means the object is created whether or not the file or
directory actually exists; it isn't an error to create a File object for an nonexistent file. You can use the exists()
method to find out whether the file or directory exists.

Path localization

One of the reasons that working with files in Java is problematic is that pathnames are expected to follow the
conventions of the local filesystem. Java's designers intend to provide an abstraction that deals with most system-
dependent filename features, such as the file separator, path separator, device specifier, and root directory.
Unfortunately, not all of these features are implemented in the current version.

On some systems, Java can compensate for differences such as the direction of the file separator slashes in the above
string. For example, in the current implementation on Windows platforms, Java accepts paths with either forward
slashes or backslashes. However, under Solaris, Java accepts only paths with forward slashes.

Your best bet is to make sure you follow the filename conventions of the host filesystem. If your application is just
opening and saving files at the user's request, you should be able to handle that functionality with the
java.awt.FileDialog class. This class encapsulates a graphical file-selection dialog box. The methods of the
FileDialog take care of system-dependent filename features for you.

If your application needs to deal with files on its own behalf, however, things get a little more complicated. The File
class contains a few static variables to make this task easier. File.separator defines a String that specifies
the file separator on the local host (e.g., "/" on UNIX and Macintosh systems and "\" on Windows systems), while
File.separatorChar provides the same information in character form. File.pathSeparator defines a
String that separates items in a path (e.g., ":" on UNIX systems; ";" on Macintosh and Windows systems);
File.pathSeparatorChar provides the information in character form.

You can use this system-dependent information in several ways. Probably the simplest way to localize pathnames is
to pick a convention you use internally, say "/", and do a String replace to substitute for the localized separator
character:

// We'll use forward slash as our standard
String path = "mail/1995/june/merle";
path = path.replace('/', File.separatorChar);
File mailbox = new File(path);

Alternately, you could work with the components of a pathname and built the local pathname when you need it:

String [] path = { "mail", "1995", "june", "merle" };

StringBuffer sb = new StringBuffer(path[0]);
for (int i=1; i< path.length; i++)
 sb.append(File.separator + path[i]);
 File mailbox = new File(sb.toString());

One thing to remember is that Java interprets the backslash character (\) as an escape character when used in a
String. To get a backslash in a String, you have to use " \\".

File methods

Once we have a valid File object, we can use it to ask for information about the file itself and to perform standard
operations on it. A number of methods lets us ask certain questions about the File. For example, isFile() returns
true if the File represents a file, while isDirectory() returns true if it's a directory. isAbsolute()
indicates whether the File has an absolute or relative path specification.

The components of the File pathname are available through the following methods: getName(), getPath(),
getAbsolutePath(), and getParent(). getName() returns a String for the filename without any
directory information; getPath() returns the directory information without the filename. If the File has an
absolute path specification, getAbsolutePath() returns that path. Otherwise it returns the relative path appended
to the current working directory. getParent() returns the parent directory of the File.

Interestingly, the string returned by getPath() or getAbsolutePath() may not be the same, case-wise, as the
actual name of the file. You can retrieve the case-correct version of the file's path using getCanonicalPath(). In
Windows 95, for example, you can create a File object whose getAbsolutePath() is C:\Autoexec.bat
but whose getCanonicalPath() is C:\AUTOEXEC.BAT.

We can get the modification time of a file or directory with lastModified(). This time value is not useful as an
absolute time; you should use it only to compare two modification times. We can also get the size of the file in bytes
with length(). Here's a fragment of code that prints some information about a file:

File fooFile = new File("/tmp/boofa");

String type = fooFile.isFile() ? "File " : "Directory ";
String name = fooFile.getName();
long len = fooFile.length();
System.out.println(type + name + ", " + len + " bytes ");

If the File object corresponds to a directory, we can list the files in the directory with the list() method:

String [] files = fooFile.list();

list() returns an array of String objects that contains filenames. (You might expect that list() would return
an Enumeration instead of an array, but it doesn't.)

If the File refers to a nonexistent directory, we can create the directory with mkdir() or mkdirs(). mkdir()
creates a single directory; mkdirs() creates all of the directories in a File specification. Use renameTo() to

rename a file or directory and delete() to delete a file or directory. Note that File doesn't provide a method to
create a file; creation is handled with a FileOutputStream as we'll discuss in a moment.

Table 8.1 summarizes the methods provided by the File class.

Table 8.1: File Methods

Method Return type Description

canRead() boolean Is the file (or directory) readable?

canWrite() boolean Is the file (or directory) writable?

delete() boolean Deletes the file (or directory)

exists() boolean Does the file (or directory) exist?

getAbsolutePath() String Returns the absolute path of the file (or directory)

getCanonicalPath() String Returns the absolute, case-correct path of the file (or directory)

getName() String Returns the name of the file (or directory)

getParent() String Returns the name of the parent directory of the file (or directory)

getPath() String Returns the path of the file (or directory)

isAbsolute() boolean Is the filename (or directory name) absolute?

isDirectory() boolean Is the item a directory?

isFile() boolean Is the item a file?

lastModified() long Returns the last modification time of the file (or directory)

length() long Returns the length of the file

list() String [] Returns a list of files in the directory

mkdir() boolean Creates the directory

mkdirs() boolean Creates all directories in the path

renameTo(File dest) boolean Renames the file (or directory)

File Streams

Java provides two specialized streams for reading and writing files in the filesystem: FileInputStream and
FileOutputStream. These streams provide the basic InputStream and OutputStream functionality
applied to reading and writing the contents of files. They can be combined with the filtered streams described earlier
to work with files in the same way we do other stream communications.

Because FileInputStream is a subclass of InputStream, it inherits all standard InputStream functionality
for reading the contents of a file. FileInputStream provides only a low-level interface to reading data, however,
so you'll typically wrap another stream like a DataInputStream around the FileInputStream.

You can create a FileInputStream from a String pathname or a File object:

FileInputStream foois = new FileInputStream(fooFile);

FileInputStream passwdis = new FileInputStream("/etc/passwd");

When you create a FileInputStream, Java attempts to open the specified file. Thus, the FileInputStream
constructors can throw a FileNotFoundException if the specified file doesn't exist, or an IOException if
some other I/O error occurs. You should be sure to catch and handle these exceptions in your code. When the stream
is first created, its available() method and the File object's length() method should return the same value.
Be sure to call the close() method when you are done with the file.

To read characters from a file, you can wrap an InputStreamReader around a FileInputStream. If you
want to use the default character encoding scheme, you can use the FileReader class instead, which is provided as
a convenience. FileReader works just like FileInputStream, except that it reads characters instead of bytes
and wraps a Reader instead of an InputStream.

The following class, ListIt, is a small utility that displays the contents of a file or directory to standard output:

import java.io.*;

class ListIt {
 public static void main (String args[]) throws Exception {
 File file = new File(args[0]);

 if (!file.exists() || !file.canRead()) {
 System.out.println("Can't read " + file);
 return;
 }

 if (file.isDirectory()) {
 String [] files = file.list();
 for (int i=0; i< files.length; i++)
 System.out.println(files[i]);
 }
 else
 try {
 FileReader fr = new FileReader (file);
 BufferedReader in = new BufferedReader(fr);
 String line;
 while ((line = in.readLine()) != null)
 System.out.println(line);
 }
 catch (FileNotFoundException e) {
 System.out.println("File Disappeared");
 }
 } }

ListIt constructs a File object from its first command-line argument and tests the File to see if it exists and is
readable. If the File is a directory, ListIt prints the names of the files in the directory. Otherwise, ListIt reads
and prints the file.

FileOutputStream is a subclass of OutputStream, so it inherits all the standard OutputStream
functionality for writing to a file. Just like FileInputStream though, FileOutputStream provides only a low-
level interface to writing data. You'll typically wrap another stream like a DataOutputStream or a
PrintStream around the FileOutputStream to provide higher-level functionality. You can create a
FileOutputStream from a String pathname or a File object. Unlike FileInputStream however, the
FileOutputStream constructors don't throw a FileNotFoundException. If the specified file doesn't exist,
the FileOutputStream creates the file. The FileOutputStream constructors can throw an IOException if
some other I/O error occurs, so you still need to handle this exception.

If the specified file does exist, the FileOutputStream opens it for writing. When you actually call a write()
method, the new data overwrites the current contents of the file. If you need to append data to an existing file, you
should use a different constructor that accepts an append flag, as shown here:

FileInputStream foois = new FileInputStream(fooFile);
FileInputStream passwdis = new FileInputStream("/etc/passwd");

Antoher alternative for appending files is to use a RandomAccessFile, as I'll discuss shortly.

To write characters (instead of bytes) to a file, you can wrap an OutputStreamWriter around a
FileOutputStream. If you want to use the default character encoding scheme, you can use the FileWriter
class instead, which is provided as a convenience. FileWriter works just like FileOutputStream, except that
it writes characters instead of bytes and wraps a Writer instead of an OutputStream.

The following example reads a line of data from standard input and writes it to the file /tmp/foo.txt:

String s = new BufferedReader(new InputStreamReader(System.in)).readLine();

File out = new File("/tmp/foo.txt");
FileWriter fw = new FileWriter (out);
PrintWriter pw = new PrintWriter(fw, true)
pw.println(s);

Notice how we have wrapped a PrintWriter around the FileWriter to facilitate writing the data. To be a good
filesystem citizen, you need to call the close() method when you are done with the FileWriter.

java.io.RandomAccessFile

The java.io.RandomAccessFile class provides the ability to read and write data from or to any specified
location in a file. RandomAccessFile implements both the DataInput and DataOutput interfaces, so you
can use it to read and write strings and Java primitive types. In other words, RandomAccessFile defines the same
methods for reading and writing data as DataInputStream and DataOutputStream. However, because the
class provides random, rather than sequential, access to file data, it's not a subclass of either InputStream or
OutputStream.

You can create a RandomAccessFile from a String pathname or a File object. The constructor also takes a
second String argument that specifies the mode of the file. Use "r" for a read-only file or "rw" for a read-write file.
Here's how to create a simple database to keep track of user information:

try {
 RandomAccessFile users = new RandomAccessFile("Users", "rw");
 ...
}
catch (IOException e) {
}

When you create a RandomAccessFile in read-only mode, Java tries to open the specified file. If the file doesn't
exist, RandomAccessFile throws an IOException. If, however, you are creating a RandomAccessFile in
read-write mode, the object creates the file if it doesn't exist. The constructor can still throw an IOException if
some other I/O error occurs, so you still need to handle this exception.

After you have created a RandomAccessFile, call any of the normal reading and writing methods, just as you
would with a DataInputStream or DataOutputStream. If you try to write to a read-only file, the write
method throws an IOException.

What makes a RandomAccessFile special is the seek() method. This method takes a long value and uses it to
set the location for reading and writing in the file. You can use the getFilePointer() method to get the current
location. If you need to append data on the end of the file, use length() to determine that location. You can write
or seek beyond the end of a file, but you can't read beyond the end of a file. The read methods throws a
EOFException if you try to do this.

Here's an example of writing some data to our user database:

users.seek(userNum * RECORDSIZE);
users.writeUTF(userName);
users.writeInt(userID);

One caveat to notice with this example is that we need to be sure that the String length for userName, along with
any data that comes after it, fits within the boundaries of the record size.

Applets and Files

For security reasons, applets are not permitted to read and write to arbitrary places in the filesystem. The ability of an
applet to read and write files, as with any kind of system resource, is under the control of a SecurityManager
object. A SecurityManager is installed by the application that is running the applet, such as an applet viewer or
Java-enabled Web browser. All filesystem access must first pass the scrutiny of the SecurityManager. With that
in mind, applet-viewer applications are free to implement their own schemes for what, if any, access an applet may
have.

For example, Sun's HotJava Web browser allows applets to have access to specific files designated by the user in an
access-control list. Netscape Navigator, on the other hand, currently doesn't allow applets any access to the filesystem.

It isn't unusual to want an applet to maintain some kind of state information on the system where it's running. But for
a Java applet that is restricted from access to the local filesystem, the only option is to store data over the network on
its server. Although, at the moment, the Web is a relatively static, read-only environment, applets have at their

disposal powerful, general means for communicating data over networks, as you'll see in Chapter 9, Network
Programming. The only limitation is that, by convention, an applet's network communication is restricted to the
server that launched it. This limits the options for where the data will reside.

The only means of writing data to a server in Java is through a network socket. In Chapter 9, Network Programming
we'll look at building networked applications with sockets in detail. With the tools of that chapter it's possible to build
powerful client/server applications.

Streams Serialization

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch08_03.htm

Chapter 9
Network Programming

9.3 Working with URLs

A URL points to an object on the Internet. It's a collection of information that identifies an item, tells you where
to find it, and specifies a method for communicating with it or retrieving it from its source. A URL refers to any
kind of information source. It might point to static data, such as a file on a local filesystem, a Web server, or an
FTP archive; or it can point to a more dynamic object such as a news article on a news spool or a record in a
WAIS database. URLs can even refer to less tangible resources such as Telnet sessions and mailing addresses.

A URL is usually presented as a string of text, like an address.[3] Since there are many different ways to locate
an item on the Net, and different mediums and transports require different kinds of information, there are
different formats for different kinds of URLs. The most common form specifies three things: a network host or
server, the name of the item and its location on that host, and a protocol by which the host should communicate:

[3] The term URL was coined by the Uniform Resource Identifier (URI) working group of the
IETF to distinguish URLs from the more general notion of Uniform Resource Names or URNs.
URLs are really just static addresses, whereas URNs would be more persistent and abstract
identifiers used to resolve the location of an object anywhere on the Net. URLs are defined in RFC
1738 and RFC 1808.

protocol://hostname/location/item

protocol is an identifier such as "http," "ftp," or "gopher"; hostname is an Internet hostname; and the
location and item components form a path that identifies the object on that host. Variants of this form allow
extra information to be packed into the URL, specifying things like port numbers for the communications
protocol and fragment identifiers that reference parts inside the object.

We sometimes speak of a URL that is relative to a base URL. In that case we are using the base URL as a starting
point and supplying additional information. For example, the base URL might point to a directory on a Web
server; a relative URL might name a particular file in that directory.

The URL class

A URL is represented by an instance of the java.net.URL class. A URL object manages all information in a
URL string and provides methods for retrieving the object it identifies. We can construct a URL object from a

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm

URL specification string or from its component parts:

try {
 URL aDoc = new URL("../../../../foo.bar.com/documents/homepage.html");
 URL sameDoc =
 new URL("http","foo.bar.com","documents/homepage.html");
}
catch (MalformedURLException e) { }

The two URL objects above point to the same network resource, the homepage.html document on the server
foo.bar.com. Whether or not the resource actually exists and is available isn't known until we try to access it. At
this point, the URL object just contains data about the object's location and how to access it. No connection to the
server has been made. We can examine the URL's components with the getProtocol(), getHost(), and
getFile() methods. We can also compare it to another URL with the sameFile() method. sameFile()
determines if two URLs point to the same resource. It can be fooled, but sameFile does more than compare the
URLs for equality; it takes into account the possibility that one server may have several names, and other factors.

When a URL is created, its specification is parsed to identify the protocol component. If the protocol doesn't make
sense, or if Java can't find a protocol handler for it, the URL constructor throws a MalformedURLException.
A protocol handler is a Java class that implements the communications protocol for accessing the URL resource.
For example, given an "http" URL, Java prepares to use the HTTP protocol handler to retrieve documents from
the specified server.

Stream Data

The most general way to get data back from URL is to ask for an InputStream from the URL by calling
openStream(). If you're writing an applet that will be running under Netscape, this is about your only choice.
In fact, it's a good choice if you want to receive continuous updates from a dynamic information source. The
drawback is that you have to parse the contents of an object yourself. Not all types of URLs support the
openStream() method; you'll get an UnknownServiceException if yours doesn't.

The following code reads a single line from an HTML file:

try {
 URL url = new URL("../../../../server/index.html");
 DataInputStream dis = new DataInputStream(url.openStream());
 String line = dis.readLine();

We ask for an InputStream with openStream(), and wrap it in a DataInputStream to read a line of
text. Here, because we are specifying the "http" protocol in the URL, we still require the services of an HTTP
protocol handler. As we'll discuss more in a bit, that brings up some questions about what handlers we have
available to us and where. This example partially works around those issues because no content handler is
involved; we read the data and interpret it as a content handler would. However, there are even more limitations
on what applets can do right now. For the time being, if you construct URLs relative to the applet's
codeBase(), you should be able to use them in applets as in the above example. This should guarantee that the

needed protocol is available and accessible to the applet. Again, we'll discuss the more general issues a bit later.

Getting the Content as an Object

openStream() operates at a lower level than the more general content-handling mechanism implemented by
the URL class. We showed it first because, until some things are settled, you'll be limited as to when you can use
URLs in their more powerful role. When a proper content handler is available to Java (currently, only if you
supply one with your standalone application), you'll be able to retrieve the object the URL addresses as a
complete object, by calling the URL's getContent() method. getContent() initiates a connection to the
host, fetches the data for you, determines the data's MIME type, and invokes a content handler to turn the data
into a Java object.

For example: given the URL http://foo.bar.com/index.html, a call to getContent() uses the HTTP protocol
handler to receive the data and the HTML content handler to turn the data into some kind of object. A URL that
points to a plain-text file would use a text-content handler that might return a String object. A GIF file might
be turned into an Image object for display, using a GIF content handler. If we accessed the GIF file using an
"ftp" URL, Java would use the same content handler, but would use the FTP protocol handler to receive the data.

getContent() returns the output of the content handler. Now we're faced with a problem: exactly what did we
get? Since the content handler can return almost anything, the return type of getContent() is Object.
Before doing anything meaningful with this Object, we must cast it into some other data type that we can work
with. For example, if we expect a String, we'll cast the result of getContent() to a String:

String content;

try
 content = (String)myURL.getContent();
catch (Exception e) { }

Of course, we are presuming we will in fact get a String object back from this URL. If we're wrong, we'll get a
ClassCastException. Since it's common for servers to be confused (or even lie) about the MIME types of
the objects they serve, it's wise to catch that exception (it's a subclass of RuntimeException, so catching it is
optional) or to check the type of the returned object with the instanceof operator:

if (content instanceof String) {
 String s = (String)content;
 ...

Various kinds of errors can occur when trying to retrieve the data. For example, getContent() can throw an
IOException if there is a communications error; IOException is not a type of RuntimeException, so
we must catch it explicitly, or declare the method that calls getContent() can throw it. Other kinds of errors
can happen at the application level: some knowledge of how the handlers deal with errors is necessary.

For example, consider a URL that refers to a nonexistent file on an HTTP server. When requested, the server
probably returns a valid HTML document that consists of the familiar "404 Not Found" message. An appropriate

file:///C|/download/foo.bar.com/index.html

HTML content handler is invoked to interpret this and return it as it would any other HTML object. At this point,
there are several alternatives, depending entirely on the content handler's implementation. It might return a
String containing the error message; it could also conceivably return some other kind of object or throw a
specialized subclass of IOException. To find out that an error occurred, the application may have to look
directly at the object returned from getContent(). After all, what is an error to the application may not be an
error as far as the protocol or content handlers are concerned. "404 Not Found" isn't an error at this level; it's a
perfectly valid document.

Another type of error occurs if a content handler that understands the data's MIME type isn't available. In this
case, getContent() invokes a minimal content handler used for data with an unknown type and returns the
data as a raw InputStream. A sophisticated application might specialize this behavior to try to decide what to
do with the data on its own.

The openStream() and getContent() methods both implicitly create a connection to the remote URL
object. For some applications, it may be necessary to use the openConnection() method of the URL to
interact directly with the protocol handler. openConnection() returns a URLConnection object, which
represents a single, active connection to the URL resource. We'll examine URLConnections further when we
start writing protocol handlers.

Datagram Sockets Web Browsers and Handlers

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm

Chapter 9
Network Programming

9.4 Web Browsers and Handlers

The content- and protocol-handler mechanisms I've introduced can be used by any application that
accesses data via URLs. This mechanism is extremely flexible; to handle a URL, you need only the
appropriate protocol and content handlers. To extend a Java-built Web browser so that it can handle new
and specialized kinds of URLs, you need only supply additional content and protocol handlers.
Furthermore, Java's ability to load new classes over the Net means that the handlers don't even need to be
a part of the browser. Content and protocol handlers could be downloaded over the Net, from the same
site that supplies the data, and used by the browser. If you wanted to supply some completely new data
type, using a completely new protocol, you could make your data file plus a content handler and a
protocol handler available on your Web server; anyone using a Web browser built in Java would
automatically get the appropriate handlers whenever they access your data. In short, Java lets you build
automatically extendible Web browsers; instead of being a gigantic do-everything application, the
browser becomes a lightweight scaffold that dynamically incorporates extensions as needed. Figure 9.3
shows the conceptual operation of a content handler; Figure 9.4 does the same for a protocol handler.

Figure 9.3: A content handler at work

[Graphic: Figure 9-3]

Figure 9.4: A protocol handler at work

[Graphic: Figure 9-4]

Sun's HotJava was the first browser to demonstrate these features. When HotJava encounters a type of
content or a protocol it doesn't understand, it searches the remote server for an appropriate handler class.
HotJava also interprets HTML data as a type of content; that is, HTML isn't a privileged data type built
into the browser. HTML documents use the same content- and protocol-handler mechanisms as other
data types.

Unfortunately, a few nasty flies are stuck in this ointment. Content and protocol handlers are part of the
Java API: they're an intrinsic part of the mechanism for working with URLs. However, specific content
and protocol handlers aren't part of the API; the ContentHandler class and the two classes that make
up protocol handlers, URLStreamHandler and URLConnection, are all abstract classes. They
define what an implementation must provide, but they don't actually provide an implementation. This is
not as paradoxical as it sounds. After all, the API defines the Applet class, but doesn't include any
specific applets. Likewise, the standard Java classes don't include content handlers for HTML, GIF,
MPEG, or other common data types. Even this isn't a real problem, although a library of standard content
handlers would be useful. (JDK provides some content and protocol handlers in the
sun.net.www.content and sun.net.www.protocol packages, but these are undocumented
and subject to change.) There are two real issues here:

● There isn't any standard that tells you what kind of object the content handler should return. I
danced around the issue just above, but it's a real problem. It's common sense that GIF data should
be turned into an Image object, but at the moment, that's an application-level decision. If you're
writing your own application and your own content handlers, that isn't an issue: you can make any
decision you want. But if you're writing content handlers that interface to arbitrary Web browsers,
you need a standard that defines what the browser expects. You can use the sun.net classes to
make a guess, but a real standard hasn't been worked out yet.

● There isn't any standard that tells you where to put content and protocol handlers so that an

application (like a Web browser) can find them. Again, you can make application-level decisions
about where to place your own handlers, but that doesn't solve the real problem: we want our
content and protocol handlers to be usable by any browser. It's possible to make an educated guess
about what the standard will be, but it's still a guess.

The next release of Sun's HotJava Web browser should certainly take full advantage of handlers,[4] but
current versions of Netscape Navigator do not. When the next release of HotJava appears, it may resolve
these questions, at least on a de facto basis. (It would certainly be in Sun's interest to publish some kind
of standard as soon as possible.) Although we can't tell you what standards will eventually evolve, we
can discuss how to write handlers for standalone applications. When the standards issues are resolved,
revising these handlers to work with HotJava and other Web browsers should be simple.

[4] Downloadable handlers will be part of HotJava 1.0, though they are not supported by
the "pre-beta 1" release. The current release does support local content and protocol
handlers. HotJava 1.0 also promises additional classes to support network applications.

The most common Java-capable platform, Netscape Navigator, doesn't use the content- and protocol-
handler mechanisms to render Net resources. It's a classic monolithic application: knowledge about
certain kinds of objects, like HTML and GIF files, is built-in. It can be extended via a plug-in
mechanism, but plug-ins aren't portable (they're written in C) and can't be downloaded dynamically over
the Net. Applets running in Netscape can use a limited version of the URL mechanism, but the browser
imposes many restrictions. As I said earlier, you can construct URLs relative to the applet's code base,
and use the openStream() method to get a raw input stream from which to read data, but that's it. For
the time being, you can't use your own content or protocol handlers to work with applets loaded over the
Net. Allowing this would be a simple extension, even without content- and protocol-handler support
integrated into Netscape itself. We can only hope they add this support soon.

Working with URLs Writing a Content Handler

Chapter 9
Network Programming

9.5 Writing a Content Handler

getContent() invokes a content handler whenever it's called to retrieve an object at some URL. The
content handler must read the flat stream of data produced by the URL's protocol handler (the data read
from the remote source), and construct a well-defined Java object from it. By "flat," I mean that the data
stream the content handler receives has no artifacts left over from retrieving the data and processing the
protocol. It's the protocol handler's job to fetch and decode the data before passing it along. The protocol
handler's output is your data, pure and simple.

The roles of content and protocol handlers do not overlap. The content handler doesn't care how the data
arrives, or what form it takes. It's concerned only with what kind of object it's supposed to create. For
example, if a particular protocol involves sending an object over the network in a compressed format, the
protocol handler should do whatever is necessary to unpack it before passing the data on to the content
handler. The same content handler can then be used again with a completely different protocol handler to
construct the same type of object received via a different transport mechanism.

Let's look at an example. The following lines construct a URL that points to a GIF file on an FTP archive
and attempt to retrieve its contents:

try {
 URL url = new URL ("ftp://ftp.wustl.edu/graphics/gif/a/apple.gif");
 Image img = (Image)url.getContent();
 ...

When we construct the URL object, Java looks at the first part of the URL string (i.e., everything prior to
the colon) to determine the protocol and locate a protocol handler. In this case, it locates the FTP protocol
handler, which is used to open a connection to the host and transfer data for the specified file.

After making the connection, the URL object asks the protocol handler to identify the resource's MIME
type.[5] It does this through a variety of means, but in this case it probably just looks at the filename
extension (.gif) and determines that the MIME type of the data is image/gif. The protocol handler
then looks for the content handler responsible for the image/gif type and uses it to construct the right

kind of object from the data. The content handler returns an Image object, which getContent()
returns to us as an Object; we cast this Object back to the Image type so we can work with it.

[5] MIME stands for Multipurpose Internet Mail Extensions. It's a standard design to
facilitate multimedia email, but it has become more widely used as a way to specify the
treatment of data contained in a document.

In an upcoming section, we'll build a simple content handler. To keep things as simple as possible, our
example will produce text as output; the URL's getContent() method will return this as a String
object.

Locating Content Handlers

As I said earlier, there's no standard yet for where content handlers should be located. However, we're
writing code now and need to know what package to place our class files in. In turn, this determines
where to place the class files in the local filesystem. Because we are going to write our own standalone
application to use our handler, we'll place our classes in a package in our local class path and tell Java
where they reside. However, we will follow the naming scheme that's likely to become the standard. If
other applications expect to find handlers in different locations (either locally or on servers), you'll simply
have to repackage your class files according to their naming scheme and put them in the correct place.

Package names translate to path names when Java is searching for a class. This holds for locating content-
handler classes as well as other kinds of classes. For example, on a UNIX- or DOS-based system, a class
in a package named net.www.content would live in a directory with net/www/content/ as part of its
pathname. To allow Java to find handler classes for arbitrary new MIME types, content handlers are
organized into packages corresponding to the basic MIME type categories. The handler classes
themselves are then named after the specific MIME type. This allows Java to map MIME types directly to
class names.

According to the scheme we'll follow, a handler for the image/gif MIME type is called gif and
placed in a package called net.www.content.image. The fully qualified name of the class would
then be net.www.content.image.gif, and it would be located in the file
net/www/content/image/gif.class, somewhere in the local class path or on a server. Likewise, a content
handler for the video/mpeg MIME type would be called mpeg, and there would be an mpeg.class file
located (again, on a UNIX-/DOS-like filesystem) in a net/www/content/video/ directory somewhere in a
local class path or on a server.

Many MIME type names include a dash (-), which is illegal in a class name. You should convert dashes
and other illegal characters into underscores when building Java class and package names. Also note that
there are no capital letters in the class names. This violates the coding convention used in most Java
source files, in which class names start with capital letters. However, capitalization is not significant in
MIME type names, so it's simpler to name the handler classes accordingly. Table 9.1 shows how some

typical MIME types are converted to package and class names.[6]

[6] The "pre-beta 1" release of HotJava has a temporary solution that is compatible with the
convention described here. In the HotJava properties file, add the line:
java.content.handler.pkgs=net.www.content.

Table 9.1: Converting MIME Types to Class and Package Names

MIME type Package name Class name Class location

image/gif net.www.content.image gif net/www/content/image/

image/jpeg net.www.content.image jpeg net/www/content/image/

text/html net.www.content.text html net/www/content/text/

The application/x-tar Handler

In this section, we'll build a simple content handler that reads and interprets tar (tape archive) files. tar is
an archival format widely used in the UNIX-world to hold collections of files, along with their basic type
and attribute information.[7] A tar file is similar to a ZIP file, except that it's not compressed. Files in the
archive are stored sequentially, in flat text or binary with no special encoding. In practice, tar files are
usually compressed for storage using an application like UNIX compress or GNU gzip and then named
with a filename extension like .tar.gz or .tgz.

[7] There are several slightly different versions of the tar format. This content handler
understands the most widely used variant.

Most Web browsers, upon retrieving a tar file, prompt the user with a File Save dialog. The assumption is
that if you are retrieving an archive, you probably want to save it for later unpacking and use. We would
like to instead implement a tar content handler that allows an application to read the contents of the
archive and give us a listing of the files that it contains. In itself, this would not be the most useful thing in
the world, because we would be left with the dilemma of how to get at the archive's contents. However, a
more complete implementation of our content handler, used in conjunction with an application like a Web
browser, could generate output that lets us select and save individual files within the archive.

The code that fetches the .tar file and lists its contents looks like this:

try {
 URL listing =
 new URL("../../../../somewhere.an.edu/lynx/lynx2html.tar");
 String s = (String)listing.getContents();
 System.out.println(s);
 ...

We'll produce a listing similar to the UNIX tar application's output:

Tape Archive Listing:

0 Tue Sep 28 18:12:47 CDT 1993 lynx2html/
14773 Tue Sep 28 18:01:55 CDT 1993 lynx2html/lynx2html.c
470 Tue Sep 28 18:13:24 CDT 1993 lynx2html/Makefile
172 Thu Apr 01 15:05:43 CST 1993 lynx2html/lynxgate
3656 Wed Mar 03 15:40:20 CST 1993 lynx2html/install.csh
490 Thu Apr 01 14:55:04 CST 1993 lynx2html/new_globals.c
...

Our content handler dissects the file to read the contents and generates the listing. The URL's
getContent() method returns that information to our application as a String object.

First we must decide what to call our content handler and where to put it. The MIME-type hierarchy
classifies the tar format as an "application type extension." Its proper MIME type is then
application/x-tar. Therefore, our handler belongs to the net.www.content.application
package, and goes into the class file net/www/content/application/x_tar.class. Note that the name of our
class is x_tar, rather than x-tar; you'll remember the dash is illegal in a class name so, by convention,
we convert it to an underscore.

Here's the code for the content handler; compile it and place it in the net/www/content/application/
package, somewhere in your class path:

package net.www.content.application;

import java.net.*;
import java.io.*;
import java.util.Date;

public class x_tar extends ContentHandler {
 static int
 RECORDLEN = 512,
 NAMEOFF = 0, NAMELEN = 100,
 SIZEOFF = 124, SIZELEN = 12,
 MTIMEOFF = 136, MTIMELEN = 12;

 public Object getContent(URLConnection uc) throws IOException {
 InputStream is = uc.getInputStream();
 StringBuffer output =
 new StringBuffer("Tape Archive Listing:\n\n");
 byte [] header = new byte[RECORDLEN];

 int count = 0;

 while ((is.read(header) == RECORDLEN) &&
 (header[NAMEOFF] != 0)) {

 String name =
 new String(header, 0, NAMEOFF, NAMELEN).trim();
 String s = new String(header, 0, SIZEOFF, SIZELEN).trim();
 int size = Integer.parseInt(s, 8);
 s = new String(header, 0, MTIMEOFF, MTIMELEN).trim();
 long l = Integer.parseInt(s, 8);
 Date mtime = new Date(l*1000);

 output.append(size + " " + mtime + " " + name + "\n");

 count += is.skip(size) + RECORDLEN;
 if (count % RECORDLEN != 0)
 count += is.skip (RECORDLEN - count % RECORDLEN);
 }

 if (count == 0)
 output.append("Not a valid TAR file\n");

 return(output.toString());
 }
}

The ContentHandler class

Our x_tar handler is a subclass of the abstract class java.net.ContentHandler. Its job is to
implement one method: getContent(), which takes as an argument a special "protocol connection"
object and returns a constructed Java Object. The getContent() method of the URL class ultimately
uses this getContent() method when we ask for the contents of the URL.

The code looks formidable, but most of it's involved with processing the details of the tar format. If we
remove these details, there isn't much left:

public class x_tar extends ContentHandler {

 public Object getContent(URLConnection uc) throws IOException {
 // get input stream
 InputStream is = uc.getInputStream();

 // read stream and construct object

 // ...

 // return the constructed object
 return(output.toString());
 }
}

That's really all there is to a content handler; it's relatively simple.

The URLConnection

The java.net.URLConnection object that getContent() receives represents the protocol
handler's connection to the remote resource. It provides a number of methods for examining information
about the URL resource, such as header and type fields, and for determining the kinds of operations the
protocol supports. However, its most important method is getInputStream(), which returns an
InputStream from the protocol handler. Reading this InputStream gives you the raw data for the
object the URL addresses. In our case, reading the InputStream feeds x_tar the bytes of the tar file
it's to process.

Constructing the object

The majority of our getContent() method is devoted to interpreting the stream of bytes of the tar file
and building our output object: the String that lists the contents of the tar file. Again, this means that
this example involves the particulars of reading tar files, so you shouldn't fret too much about the details.

After requesting an InputStream from the URLConnection, x_tar loops, gathering information
about each file. Each archived item is preceded by a header that contains attribute and length fields.
x_tar interprets each header and then skips over the remaining portion of the item. It accumulates the
results (the file listings) in a StringBuffer. (See Chapter 7, Basic Utility Classes for a discussion of
StringBuffer.) For each file, we add a line of text listing the name, modification time, and size.
When the listing is complete, getContent() returns the StringBuffer as a String object.

The main while loop continues as long as it's able to read another header record, and as long as the
record's "name" field isn't full of ASCII null values. (The tar file format calls for the end of the archive to
be padded with an empty header record, although most tar implementations don't seem to do this.) The
while loop retrieves the name, size, and modification times as character strings from fields in the
header. The most common tar format stores its numeric values in octal, as fixed-length ASCII strings. We
extract the strings and use Integer.parseInt() to parse them.

After reading and parsing the header, x_tar skips over the data portion of the file and updates the
variable count, which keeps track of the offset into the archive. The two lines following the initial skip
account for tar's "blocking" of the data records. In other words, if the data portion of a file doesn't fit

precisely into an integral number of blocks of RECORDLEN bytes, tar adds padding to make it fit.

Whew. Well, as I said, the details of parsing tar files are not really our main concern here. But x_tar
does illustrate a few tricks of data manipulation in Java.

It may surprise you that we didn't have to provide a constructor; our content handler relies on its default
constructor. We don't need to provide a constructor because there isn't anything for it to do. Java doesn't
pass the class any argument information when it creates an instance of it. You might suspect that the
URLConnection object would be a natural thing to provide at that point. However, when you are
calling the constructor of a class that is loaded at run-time, you can't pass it any arguments, as we
discussed in Chapter 5, Objects in Java.

Using our new handler

When I began this discussion of content handlers, I showed a brief example of how our x_tar content
handler would work for us. We need to make a few brief additions to that code in order to use our new
handler and fetch URLs that point to .tar files. Since we're writing a standalone application, we're not
only responsible for writing handlers that obey the package/class naming scheme we described earlier; we
are also responsible for making our application use the naming scheme.

In a standalone application, the mapping between MIME types and content-handler class names is done
by a special java.net.ContentHandlerFactory object we must install. The
ContentHandlerFactory accepts a String containing a MIME type and returns the appropriate
content handler. It's responsible for implementing the naming convention and creating an instance of our
handler. Note that you don't need a content-handler factory if you are writing handlers for use by remote
applications; a browser like HotJava, that loads content handlers over the Net, has its own content-handler
factory.

To make absolutely clear what's happening, we'll provide a simple factory that knows only about our
x_tar handler and install it at the beginning of our application:

import java.net.*;
import java.io.*;

class OurContentHandlerFactory implements ContentHandlerFactory {

 public ContentHandler createContentHandler(String mimetype) {
 if (mimetype.equalsIgnoreCase("application/x-tar"))
 return new net.www.content.application.x_tar();
 else
 return null;
 }
}

public class TarURLTest {
 public static void main (String [] args) throws Exception {

 URLConnection.setContentHandlerFactory(new
 OurContentHandlerFactory());

 URL url = new URL(args[0]);
 String s = (String)url.getContent();
 System.out.println(s);
 }
}

The class OurContentHandlerFactory implements the ContentHandlerFactory interface. It
recognizes the MIME-type application/x-tar and returns a new instance of our x_tar handler.
TarURLTest uses the static method URLConnection.setContentHandlerFactory() to
install our new ContentHandlerFactory. After it's installed, our factory is called every time we
retrieve the contents of a URL object. If it returns a null value, Java looks for handlers in a default
location.[8]

[8] If we don't install a ContentHandlerFactory (or later, as we'll see a
URLStreamHandlerFactory for protocol handlers), Java defaults to searching for a
vendor-specific package name. If you have Sun's Java Development Kit, it searches for
content handlers in the sun.net.www.content package hierarchy and protocol handler
classes in the sun.net.www.protocol package hierarchy.

After installing the factory, TarURLTest reads a URL from the command line, opens that URL, and
lists its contents. Now you have a portable tar command that can read its tar files from arbitrary locations
on the Net. I'll confess that I was lazy about exception handling in this example. Of course, a real
application would need to catch and handle the appropriate exceptions; but we already know how to do
that.

A final design note. Our content handler returned the tar listing as a String. I don't want to harp on the
point, but this isn't the only option. If we were writing a content handler to work in the context of a Web
browser, we might want it to produce some kind of HTML object that might display the listing as
hypertext. Again, knowing the right solution requires that we know what kind of object a browser expects
to receive, and currently that's undefined.

In the next section, we'll turn the tables and look at protocol handlers. There we'll be building
URLConnection objects and someone else will have the pleasure of reconstituting the data.

Web Browsers and Handlers Writing a Protocol Handler

Chapter 9
Network Programming

9.6 Writing a Protocol Handler

A URL object uses a protocol handler to establish a connection with a server and perform whatever protocol
is necessary to retrieve data. For example, an HTTP protocol handler knows how to talk to an HTTP server
and retrieve a document; an FTP protocol handler knows how to talk to an FTP server and retrieve a file. All
types of URLs use protocol handlers to access their objects. Even the lowly "file" type URLs use a special
"file" protocol handler that retrieves files from the local filesystem. The data a protocol handler retrieves is
then fed to an appropriate content handler for interpretation.

While we refer to a protocol handler as a single entity, it really has two parts: a
java.net.URLStreamHandler and a java.net.URLConnection. These are both abstract
classes we will subclass to create our protocol handler. (Note that these are abstract classes, not
interfaces. Although they contain abstract methods we are required to implement, they also contain many
utility methods we can use or override.) The URL looks up an appropriate URLStreamHandler, based on
the protocol component of the URL. The URLStreamHandler then finishes parsing the URL and creates a
URLConnection when it's time to communicate with the server. The URLConnection represents a
single connection with a server, and implements the communication protocol itself.

Locating Protocol Handlers

Protocol handlers are organized in a package hierarchy similar to content handlers. Unlike content handlers,
which are grouped into packages by the MIME types of the objects that they handle, protocol handlers are
given individual packages. Both parts of the protocol handler (the URLStreamHandler class and the
URLConnection class) are located in a package named for the protocol they support.

For example, the classes for an FTP protocol handler would be found in the net.www.protocol.ftp
package. The URLStreamHandler is placed in this package and given the name Handler; all
URLStreamHandlers are named Handler and distinguished by the package in which they reside. The
URLConnection portion of the protocol handler is placed in the same package, and can be given any
name. There is no need for a naming convention because the corresponding URLStreamHandler is
responsible for creating the URLConnection objects it uses. Table 9.2 gives the obvious examples.[9]

[9] The "pre-beta 1" release of HotJava has a temporary solution that is compatible with the

convention described here. In the HotJava properties file, add the line:
java.protocol.handler.pkgs=net.www.protocol.

Table 9.2: Mapping Protocols into Package and Class Names

Protocol Package URLStreamHandler Handler

 name class name class location

FTP net.www.protocol.ftp Handler net/www/protocol/ftp/

HTTP net.www.protocol.http Handler net/www/protocol/http/

URLs, Stream Handlers, and Connections

The URL, URLStreamHandler, URLConnection, and ContentHandler classes work together
closely. Before diving into an example, let's take a step back, look at the parts a little more closely, and see
how these things communicate. Figure 9.5 shows how these components relate to each other.

Figure 9.5: The protocol handler machinery

[Graphic: Figure 9-5]

We begin with the URL object, which points to the resource we'd like to retrieve. The
URLStreamHandler helps the URL class parse the URL specification string for its particular protocol.
For example, consider the following call to the URL constructor:

URL url = new URL("protocol_3A/foo.bar.com/file.ext");

The URL class parses only the protocol component; later, a call to the URL class's getContent() or
openStream() method starts the machinery in motion. The URL class locates the appropriate protocol
handler by looking in the protocol-package hierarchy. It then creates an instance of the appropriate
URLStreamHandler class.

The URLStreamHandler is responsible for parsing the rest of the URL string, including hostname and

filename, and possibly an alternative port designation. This allows different protocols to have their own
variations on the format of the URL specification string. Note that this step is skipped when a URL is
constructed with the "protocol," "host," and "file" components specified explicitly. If the protocol is
straightforward, its URLStreamHandler class can let Java do the parsing and accept the default behavior.
For this illustration, we'll assume that the URL string requires no special parsing. (If we use a nonstandard
URL with a strange format, we're responsible for parsing it ourselves, as I'll show shortly.)

The URL object next invokes the handler's openConnection() method, prompting the handler to create a
new URLConnection to the resource. The URLConnection performs whatever communications are
necessary to talk to the resource and begins to fetch data for the object. At that time, it also determines the
MIME type of the incoming object data and prepares an InputStream to hand to the appropriate content
handler. This InputStream must send "pure" data with all traces of the protocol removed.

The URLConnection also locates an appropriate content handler in the content-handler package hierarchy.
The URLConnection creates an instance of a content handler; to put the content handler to work, the
URLConnection's getContent() method calls the content handler's getContent() method. If this
sounds confusing, it is: we have three getContent() methods calling each other in a chain. The newly
created ContentHandler object then acquires the stream of incoming data for the object by calling the
URLConnection's getInputStream() method. (Recall that we acquired an InputStream in our
x_tar content handler.) The content handler reads the stream and constructs an object from the data. This
object is then returned up the getContent() chain: from the content handler, the URLConnection, and
finally the URL itself. Now our application has the desired object in its greedy little hands.

To summarize, we create a protocol handler by implementing a URLStreamHandler class that creates
specialized URLConnection objects to handle our protocol. The URLConnection objects implement
the getInputStream() method, which provides data to a content handler for construction of an object.
The base URLConnection class implements many of the methods we need; therefore, our
URLConnection needs only to provide the methods that generate the data stream and return the MIME
type of the object data.

Okay. If you're not thoroughly confused by all that terminology (or even if you are), let's move on to the
example. It should help to pin down what all these classes are doing.

The crypt Handler

In this section, we'll build a crypt protocol handler. It parses URLs of the form:

crypt:type//hostname[:port]/location/item

type is an identifier that specifies what kind of encryption to use. The protocol itself is a simplified version
of HTTP; we'll implement the GET command and no more. I added the type identifier to the URL to show
how to parse a nonstandard URL specification. Once the handler has figured out the encryption type, it
dynamically loads a class that implements the chosen encryption algorithm and uses it to retrieve the data.

Obviously, we don't have room to implement a full-blown public-key encryption algorithm, so we'll use the
rot13InputStream class from Chapter 8, Input/Output Facilities. It should be apparent how the
example can be extended by plugging in a more powerful encryption class.

The Encryption class

First, we'll lay out our plug-in encryption class. We'll define an abstract class called CryptInputStream
that provides some essentials for our plug-in encrypted protocol. From the CryptInputStream we'll
create a subclass, rot13CryptInputStream, that implements our particular kind of encryption:

package net.www.protocol.crypt;
import java.io.*;

abstract class CryptInputStream extends InputStream {
 InputStream in;
 OutputStream talkBack;
 abstract public void set(InputStream in, OutputStream talkBack);
}

class rot13CryptInputStream extends CryptInputStream {

 public void set(InputStream in, OutputStream talkBack) {
 this.in = new example.io.rot13InputStream(in);
 }
 public int read() throws IOException {
 if (in == null)
 throw new IOException("No Stream");

 return in.read();
 }
}

Our CryptInputStream class defines a method called set() that passes in the InputStream it's to
translate. Our URLConnection calls set() after creating an instance of the encryption class. We need a
set() method because we want to load the encryption class dynamically, and we aren't allowed to pass
arguments to the constructor of a class when it's dynamically loaded. We ran into this same restriction in our
content handler. In the encryption class, we also provide an OutputStream. A more complex kind of
encryption might use the OutputStream to transfer public-key information. Needless to say, rot13
doesn't, so we'll ignore the OutputStream here.

The implementation of rot13CryptInputStream is very simple. set() just takes the InputStream
it receives and wraps it with the rot13InputStream filter we developed in Chapter 8, Input/Output
Facilities. read() reads filtered data from the InputStream, throwing an exception if set() hasn't
been called.

The URLStreamHandler

Next we'll build our URLStreamHandler class. The class name is Handler; it extends the abstract
URLStreamHandler class. This is the class the Java URL looks up by converting the protocol name
(crypt) into a package name (net.www.protocol.crypt). The fully qualified name of this class is
net.www.protocol.crypt.Handler:

package net.www.protocol.crypt;

import java.io.*;
import java.net.*;

public class Handler extends URLStreamHandler {
 String cryptype;

 protected void parseURL(URL u, String spec, int start, int end) {
 int slash = spec.indexOf('/');
 cryptype = spec.substring(start, slash);
 start=slash;
 super.parseURL(u, spec, start, end);
 }

 protected URLConnection openConnection(URL url)
 throws IOException {

 return new CryptURLConnection(url, cryptype);
 }
}

Java creates an instance of our URLStreamHandler when we create a URL specifying the crypt protocol.
Handler has two jobs: to assist in parsing the URL specification strings and to create
CryptURLConnection objects when it's time to open a connection to the host.

Our parseURL(default.htm) method overrides the parseURL(default.htm) method in the
URLStreamHandler class. It's called whenever the URL constructor sees a URL requesting the crypt
protocol. For example:

URL url = new URL("crypt_3Arot13/foo.bar.com/file.txt");

parseURL(default.htm) is passed a reference to the URL object, the URL specification string, and
starting and ending indexes that shows what portion of the URL string we're expected to parse. The URL
class has already identified the protocol name, otherwise it wouldn't have found our protocol handler. Our
version of parseURL(default.htm) retrieves our type identifier from the specification, stores it in the
variable cryptype, and then passes the rest on to the superclass's parseURL(default.htm) method

to complete the job. To find the encryption type, take everything between the starting index we were given
and the first slash in the URL string. Before calling super.parseURL(default.htm), we update the
start index, so that it points to the character just after the type specifier. This tells the superclass
parseURL(default.htm) that we've already parsed everything prior to the first slash, and it's
responsible for the rest.

Before going on, I'll note two other possibilities. If we hadn't hacked the URL string for our own purposes by
adding a type specifier, we'd be dealing with a standard URL specification. In this case, we wouldn't need to
override parseURL(default.htm); the default implementation would have been sufficient. It could
have sliced the URL into host, port, and filename components normally. On the other hand, if we had created
a completely bizarre URL format, we would need to parse the entire string. There would be no point calling
super.parseURL(default.htm); instead, we'd have called the URLStreamHandler's protected
method setURL(default.htm) to pass the URL's components back to the URL object.

The other method in our Handler class is openConnection(). After the URL has been completely
parsed, the URL object calls openConnection() to set up the data transfer. openConnection() calls
the constructor for our URLConnection with appropriate arguments. In this case, our URLConnection
object is named CryptURLConnection, and the constructor requires the URL and the encryption type as
arguments. parseURL(default.htm) picked the encryption type from the URL string and stored it in
the cryptype variable. openConnection() returns a reference to our URLConnection, which the
URL object uses to drive the rest of the process.

The URLConnection

Finally, we reach the real guts of our protocol handler, the URLConnection class. This is the class that
opens the socket, talks to the server on the remote host, and implements the protocol itself. This class doesn't
have to be public, so you can put it in the same file as the Handler class we just defined. We call our class
Crypt-URLConnection; it extends the abstract URLConnection class. Unlike ContentHandler
and StreamURLConnection, whose names are defined by convention, we can call this class anything we
want; the only class that needs to know about the URLConnection is the URLStreamHandler, which
we wrote ourselves.

class CryptURLConnection extends URLConnection {
 CryptInputStream cis;
 static int defaultPort = 80;

 CryptURLConnection (URL url, String cryptype)
 throws IOException {
 super(url);
 try {
 String name = "net.www.protocol.crypt." + cryptype
 + "CryptInputStream";
 cis = (CryptInputStream)Class.forName(name).newInstance();
 }

 catch (Exception e) { }
 }

 synchronized public void connect() throws IOException {
 int port;
 if (cis == null)
 throw new IOException("Crypt Class Not Found");
 if ((port = url.getPort()) == -1)
 port = defaultPort;
 Socket s = new Socket(url.getHost(), port);

 // Send the filename in plaintext
 OutputStream server = s.getOutputStream();
 new PrintStream(server).println("GET "+url.getFile());

 // Initialize the CryptInputStream
 cis.set(s.getInputStream(), server);
 connected = true;
 }

 synchronized public InputStream getInputStream()
 throws IOException {
 if (!connected)
 connect();
 return (cis);
 }

 public String getContentType() {
 return guessContentTypeFromName(url.getFile());
 }
}

The constructor for our CryptURLConnection class takes as arguments the destination URL and the
name of an encryption type. We pass the URL on to the constructor of our superclass, which saves it in a
protected url instance variable. We could have saved the URL ourselves, but calling our parent's constructor
shields us from possible changes or enhancements to the base class. We use cryptype to construct the
name of an encryption class, using the convention that the encryption class is in the same package as the
protocol handler (i.e., net.www.protocol.crypt); its name is the encryption type followed by the
suffix CryptInputStream.

Once we have a name, we need to create an instance of the encryption class. To do so, we use the static
method Class.forName() to turn the name into a Class object and newInstance() to load and
instantiate the class. (This is how Java loads the content and protocol handlers themselves.)
newInstance() returns an Object; we need to cast it to something more specific before we can work
with it. Therefore, we cast it to our CryptInputStream class, the abstract class that

rot13CryptInputStream extends. If we implement any additional encryption types as extensions to
CryptInputStream and name them appropriately, they will fit into our protocol handler without
modification.

We do the rest of our setup in the connect() method of the URLConnection. There, we make sure we
have an encryption class and open a Socket to the appropriate port on the remote host. getPort()
returns -1 if the URL doesn't specify a port explicitly; in that case we use the default port for an HTTP
connection (port 80). We ask for an OutputStream on the socket, assemble a GET command using the
getFile() method to discover the filename specified by the URL, and send our request by writing it into
the OutputStream. (For convenience, we wrap the OutputStream with a PrintStream and call
println() to send the message.) We then initialize the CryptInputStream class by calling its set()
method and passing it an InputStream from the Socket and the OutputStream.

The last thing connect() does is set the boolean variable connected to true. connected is a
protected variable inherited from the URLConnection class. We need to track the state of our
connection because connect() is a public method. It's called by the URLConnection's
getInputStream() method, but it could also be called by other classes. Since we don't want to start a
connection if one already exists, we use connected to tell us if this is so.

In a more sophisticated protocol handler, connect() would also be responsible for dealing with any
protocol headers that come back from the server. In particular, it would probably stash any important
information it can deduce from the headers (e.g., MIME type, content length, time stamp) in instance
variables, where it's available to other methods. At a minimum, connect() strips the headers from the data
so the content handler won't see them. I'm being lazy and assuming that we'll connect to a minimal server,
like the modified TinyHttpd daemon I discuss below, which doesn't bother with any headers.

The bulk of the work has been done; a few details remain. The URLConnection's getContent()
method needs to figure out which content handler to invoke for this URL. In order to compute the content
handler's name, getContent() needs to know the resource's MIME type. To find out, it calls the
URLConnection's getContentType() method, which returns the MIME type as a String. Our
protocol handler overrides getContentType(), providing our own implementation.

The URLConnection class provides a number of tools to help determine the MIME type. It's possible that
the MIME type is conveyed explicitly in a protocol header; in this case, a more sophisticated version of
connect() would have stored the MIME type in a convenient location for us. Some servers don't bother to
insert the appropriate headers, though, so you can use the method guessContentTypeFromName() to
examine filename extensions, like .gif or .html, and map them to MIME types. In the worst case, you can use
guessContentTypeFromStream() to intuit the MIME type from the raw data. The Java developers
call this method "a disgusting hack" that shouldn't be needed, but that is unfortunately necessary "in a world
where HTTP servers lie about content types and extensions are often nonstandard." We'll take the easy way
out and use the guessContentTypeFromName() utility of the URLConnection class to determine
the MIME type from the filename extension of the URL we are retrieving.

Once the URLConnection has found a content handler, it calls the content handler's getContent()

method. The content handler then needs to get an InputStream from which to read the data. To find an
InputStream, it calls the URLConnection's getInputStream() method. getInputStream()
returns an InputStream from which its caller can read the data after protocol processing is finished. It
checks whether a connection is already established; if not, it calls connect() to make the connection.
Then it returns a reference to our CryptInputStream.

A final note on getting the content type: if you read the documentation, it's clear that the Java developers had
some ideas about how to find the content type. The URLConnection's default getContentType()
calls getHeaderField(), which is presumably supposed to extract the named field from the protocol
headers (it would probably spit back information connect() had stored in protected variables). The
problem is there's no way to implement getHeaderField() if you don't know the protocol, and since the
Java developers were designing a general mechanism for working with protocols, they couldn't make any
assumptions. Therefore, the default implementation of getHeaderField() returns null; you have to
override it to make it do anything interesting. Why wasn't it an abstract method? I can only guess, but
making getHeaderField() abstract would have forced everyone building a protocol handler to
implement it, whether or not they actually needed it.

The application

We're almost ready to try out a crypt URL! We still need an application (a mini-browser, if you will) to use
our protocol handler, and a server to serve data with our protocol. If HotJava were available, we wouldn't
need to write the application ourselves; in the meantime, writing this application will teach us a little about
how a Java-capable browser works. Our application is similar to the application we wrote to test the x_tar
content handler.

Because we're working in a standalone application, we have to tell Java how to find our protocol-handler
classes. Java relies on a java.net.URLStreamHandlerFactory object to take a protocol name and
return an instance of the appropriate handler. The URLStreamHandlerFactory is very similar to the
ContentHandlerFactory we saw earlier. We'll provide a trivial implementation that knows only our
particular handler. Again, if we were using our protocol handler with HotJava, this step would not be
necessary; HotJava has its own stream-handler factory that tells it where to find handlers. To get HotJava to
read files with our new protocol, we'd only have to put our protocol handler in the right place. (Note too, that
an applet running in HotJava can use any of the methods in the URL class and therefore can use the content-
and protocol-handler mechanism; applets would also rely on HotJava's stream-handler and content-xhandler
factories.)

Here's our StreamHandlerFactory and sample application:

import java.net.*;

class OurURLStreamHandlerFactory implements URLStreamHandlerFactory {
 public URLStreamHandler createURLStreamHandler(String protocol) {
 if (protocol.equalsIgnoreCase("crypt"))
 return new net.www.protocol.crypt.Handler();

 else
 return null;
 }
}

class CryptURLTest {
 public static void main(String argv[]) throws Exception {

 URL.setURLStreamHandlerFactory(
 new OurURLStreamHandlerFactory());

 URL url = new URL("crypt_3Arot13/foo.bar.com_3A1234/myfile.txt");
 System.out.println(url.getContent());
 }
}

The CryptURLTest class installs our factory and reads a document via the new "crypt:rot13" URL. (In the
example, we have assumed that a rot13 server is running on port 1234 on the host foo.bar.com.) When the
CryptURLTest application calls the URL's getContent() method, it automatically finds our protocol
handler, which decodes the file.

OurURLStreamHandlerFactory is really quite simple. It implements the
URLStreamHandlerFactory interface, which requires a single method called
createURLStreamHandler(). In our case, this method checks whether the protocol's name is crypt ; if
so, the method returns an instance of our encryption protocol handler,
net.www.protocol.crypt.Handler. For any other protocol name, it returns null. If we were
writing a browser and needed to implement a more general factory, we would compute a class name from the
protocol name, check to see if that class exists, and return an instance of that class.

The server

We still need a rot13 server. Since the crypt protocol is nothing more than HTTP with some encryption
added, we can make a rot13 server by modifying one line of the TinyHttpd server we developed earlier,
so that it spews its files in rot13. Just change the line that reads the data from the file:

f.read(data);

To instead read through a rot13InputStream:

new example.io.rot13InputStream(f).read(data);

I assume you placed the rot13InputStream example in a package called example.io, and that it's
somewhere in your class path. Now recompile and run the server. It automatically encodes the files before
sending them; our sample application decodes them on the other end.

I hope that this example and the rest of this chapter have given you some food for thought. Content and
protocol handlers are among the most exciting ideas in Java. It's unfortunate that we have to wait for future
releases of HotJava and Netscape to take full advantage of them. In the meantime, you can experiment and
implement your own applications.

Writing a Content Handler Understand the Abstract
Windowing Toolkit

Chapter 10
Understand the Abstract

Windowing Toolkit

10.2 Applets

If you've been waiting for a more detailed discussion of the applet class, here it is. For examples of writing applets,
please see Chapter 2, A First Applet (the tutorial) and the examples in Chapter 11, Using and Creating GUI
Components and throughout the book.

An Applet is something like a Panel with a mission. It is a GUI Container that has some extra structure to allow it
to be used in an "alien" environment like a Web browser or appletviewer. Applets also have a life-cycle that lets them
act more like an application than a static component. Although applets tend to be relatively simple, there's no inherent
restriction on their complexity. There's no reason you couldn't write an air traffic control system (well, let's be less
ambitious: a word processor) as an applet.

Structurally, an applet is a sort of wrapper for your Java code. In contrast to a standalone graphical Java application,
which starts up from a main() method and creates a GUI, an applet is itself a Component that expects to be dropped
into someone else's GUI. Thus, an applet can't run by itself; it runs in the context of a Web browser or an appletviewer.
Instead of having your application create a Frame to hold your GUI, you stuff your application inside an Applet
(which is itself a Container) and let someone else add the applet to their GUI.

Pragmatically, an applet is an intruder into someone else's environment, and therefore has to be treated with suspicion.
The Web browsers that run applets impose restrictions on what the applet is allowed to do. The restrictions are enforced
by a security manager, which the applet is not allowed to change. The browser also provides an "applet context," which
is additional support that helps the applet live within its restrictions.

Aside from that top level structure and the security restrictions, there is no difference between an applet and an
application. If your application can live within the restrictions imposed by a browser's security manager, you can easily
structure it to function as an applet and a standalone application. (We'll show an example of an Applet that can also be
run as a standalone below.) Conversely, if you can supply all of the things that an applet requires from its environment,
you can use applets within your stand-alone applications and within other applets (though this requires a bit of work).

As we said a moment ago, an Applet expects to be embedded in GUI (perhaps a document) and used in a viewing
environment that provides it with special resources. In all other respects, however, applets are just ordinary Panel
objects. (See Figure 10.8.) Like a Panel, an Applet can contain user-interface components and implement all the
basic drawing and event-handling capabilities of the Component class. We draw on an Applet by overriding its
paint() method; we respond to events in the Applet's display area by providing the appropriate event-listeners.
The additional structure applets have helps them interact with the viewer environment.

Figure 10.8: The java.applet package

Applet Control

The Applet class contains four methods an applet can override to guide it through its life cycle. The init(),
start(), stop(), and destroy() methods are called by an applet viewer, such as a Web browser, to direct the
applet's behavior. init() is called once, after the applet is created. The init() method is where you perform basic
setup like parsing parameters, building a user interface, and loading resources. Given what we've said about objects,
you might expect the Applet's constructor would be the right place for such initialization. However, the constructor is
meant to be called by the applet's environment, for simple creation of the applet. This might happen before the applet
has access to certain resources, like information about its environment. Therefore, an applet doesn't normally do any
work in its constructor; it relies on the default constructor for the Applet class and does its initialization in the
init() method.

The start() method is called whenever the applet becomes visible; it shouldn't be a surprise then that the stop()
method is called whenever the applet becomes invisible. init() is only called once in the life of an applet, but
start() and stop() can be called any number of times (but always in the logical sequence). For example,
start() is called when the applet is displayed, such as when it scrolls onto the screen; stop() is called if the applet
scrolls off the screen or the viewer leaves the document. start() tells the applet it should be active. The applet may
want to create threads, animate, or otherwise perform useful (or annoying) activity. stop() is called to let the applet
know it should go dormant. Applets should cease CPU-intensive or wasteful activity when they are stopped and resume
it when (and if) they are restarted. However, there's no requirement that an invisible applet stop computing; in some
applications, it may be useful for the applet to continue running in the background. Just be considerate of your user,
who doesn't want an invisible applet dragging down system performance. And for the users: be aware of the tools that
will develop to let you monitor and squash rogue applets in your web browser.

Finally, the destroy() method is called to give the applet a last chance to clean up before it's removed--some time
after the call to stop(). For example, an applet might want to close down suspended communications channels or
remove graphics frames. Exactly when destroy() is called depends on the applet viewer; Netscape Navigator calls
destroy() just prior to deleting the applet from its cache. This means that although an applet can cling to life after

being told to stop(), how long it can go on is unpredictable. If you want to maintain your applet as the user
progresses through other activities, consider putting it in an HTML frame (see "Driving the Browser" later in this
chapter).

The Applet security Sandbox

Applets are quarantined within the browser by an applet SecurityManager. The SecurityManager is part of
the application that runs the applet, e.g., the web browser or applet viewer. It is installed before the browser loads any
applets and implements the basic restrictions that let you run untrusted applets safely. Remember that, aside from basic
language robustness, there are no inherent security restrictions on a standalone Java application. It is the browser's
responsibility to install a special security manager and limit what applets are allowed to do.

Most browsers impose the following restrictions on untrusted applets:

● Untrusted Applets cannot read or write files on the local host.

● Untrusted Applets can only open network connections (sockets) to the server from which they originated.

● Untrusted Applets cannot start other processes on the local host.

● Untrusted Applets cannot have native methods.

We discuss these restrictions in more detail in the relevant chapters in this book. However, the motivation for these
restrictions should be fairly obvious: you clearly wouldn't want a program coming from some random Internet site to
access your files, or run arbitrary programs. Although untrusted applets cannot directly read and write files on the client
side or talk to arbitrary hosts on the network, applets can work with servers to store data and communicate. For
example, an applet can use Java's RMI (Remote Method Invocation) facility to do processing on its server. An applet
can communicate with other applets on the Net by proxy through its server.

Trusted Applets

The latest version of Java makes it possible to sign archive files that contain applets. Because a signature identifies the
applet's origin unambiguously, we can now distinguish between "trusted" applets (i.e., applets that come from a site or
person you trust not to do anything harmful) and run of the mill "untrusted" applets. In web browsers that support
signing, trusted applets can be granted permission to "go outside" of the applet security sandbox. Trusted applets can be
allowed to do most of the things that standalone Java applications can do: read and write files, open network
connections to arbitrary machines, and interact with the local operating system by starting processes. Trusted applets
still can't have native methods, but including native methods in an applet would make it unportable, and would
therefore be a bad idea.

Chapter 3, Tools of the Trade discusses how to package your applet's class files and resources into a JAR file and sign
it with your digital signature. Currently, HotJava is the only browser that supports signing, but Netscape Navigator,
Internet Explorer, and others will probably catch up soon.

Getting Applet Resources

An applet needs to communicate with its applet viewer. For example, it needs to get its parameters from the HTML

document in which it appears. An applet may also need to load images, audio clips, and other items. It may also want to
ask the viewer about other applets on the same HTML page in order to communicate with them. To get resources from
the applet viewer environment, applets use the AppletStub and AppletContext interfaces. Unless you're writing
a browser or some other application that loads and runs applets, you won't have to implement these interfaces, but you
do use them within your applet.

Applet Parameters

An applet gets its parameters from the parameter tags placed inside the <applet> tag in the HTML document. For
example, the code below reads the "sheep" parameter from its HTML page:

String imageName = getParameter("imageName");
try {
 int numberOfSheep = Integer.parseInt(getParameter("sheep"));
} catch (NumberFormatException e) { // use default }

A friendly applet will provide information about the parameters it accepts through its getParameterInfo()
method. getParameterInfo() returns an array of string arrays, listing and describing the applet's parameters. For
each parameter, three strings are provided: the parameter name, its possible values or value types, and a verbose
description. For example:

public String [][] getParameterInfo() {
 String [][] appletInfo =
 {"logo", "url", "Main logo image"}
 {"timer", "int", "Time to wait before becoming annoying"},
 {"flashing", "constant | intermittant", "Flag for how to flash"},
 return appletInfo;
}

Applet Resources

An applet can find where it lives by calling the getDocumentBase() and getCodeBase() methods.
getDocumentBase() returns the base URL of the document in which the applet appears; getCodeBase()
returns the base URL of the Applet's class files. An applet can use these to construct relative URLs from which to
load other resources like images, sounds, and other data. The getImage() method takes a URL and asks for an
image from the viewer environment. The image may be pulled from a cache or loaded asynchronously when later used.
The getAudioClip() method, similarly, retrieves sound clips. See Chapter 9, Network Programming for a full
discussion of how to work with URLs, and Chapter 11, Using and Creating GUI Components for examples of applets
that load images.

The following example uses getCodeBase() to construct a URL and load a properties-configuration file, located at
the same location as the applet's class file. (See Chapter 7, Basic Utility Classes for a discussion of properties.)

Properties props = new Properties();
try {
 URL url = new URL(getCodeBase(), "appletConfig.props");
 props.load(url.openStream());
} catch (IOException e) { // failed }

A better way to load resources is by calling the getResource() and getResourceAsStream() methods of the
Class class, which search the applet's JAR files (if any) as well as its codebase. See Chapter 8, Input/Output Facilities
for a discussion of resource loading. The following code loads the properties file appletConfig.props:

Properties props = new Properties();
try {
 props.load(getClass().getResourceAsStream("appletConfig.props"));
} catch (IOException e) { // failed }

Driving the Browser

The status line is a blurb of text that usually appears somewhere in the viewer's display, indicating a current activity.
An applet can request that some text be placed in the status line with the showStatus() method. (The browser isn't
required to do anything in response to this call, but most browsers will oblige you.)

An applet can also ask the browser to show a new document. To do this, the applet makes a call to the showDocument(
url) method of the AppletContext. You can get a reference to the AppletContext with the Applet's
getAppletContext() method. showDocument() can take an additional String argument to tell the browser
where to display the new URL:

getAppletContext().showDocument(url, name);

The name argument can be the name of an existing labeled HTML frame; the document referenced by the URL will be
displayed in that frame. You can use this method to create an applet that "drives" the browser to new locations
dynamically, but stays active on the screen in a separate frame. If the named frame doesn't exist, the browser will create
a new top-level window to hold it. Alternatively, name can have one of the following special values:

_self Show in the current Frame

_parent Show in the parent of our Frame

_top Show in outer-most (top level) frame.

_blank Show in a new top level browser window.

Both showStatus() and showDocument() requests may be ignored by a cold-hearted viewer or Web browser.

 *** Missing Discussion of getApplet() ***
 *** Add a blurb about the upcoming InfoBus stuff ***

Applets vs. Standalone Applications

 *** Discuss getImage() and image loading from JAR files for applications ***

The following list summarizes the methods of the applet API:

// from the AppletStub
boolean isActive();

URL getDocumentBase();
URL getCodeBase();
String getParameter(String name);
AppletContext getAppletContext();
void appletResize(int width, int height);
// from the AppletContext
AudioClip getAudioClip(URL url);
Image getImage(URL url);
Applet getApplet(String name);
Enumeration getApplets();
void showDocument(URL url);
public void showDocument(URL url, String target);
void showStatus(String status);

These are the methods that are provided by the applet viewer environment. If your applet doesn't happen to use any of
them, or if you can provide alternatives to handle special cases (such as loading images from JAR files), your applet
could be made able to function as a standalone application as well as an applet. For example, our HelloWeb applet
from Chapter 2, A First Applet was very simple. We can easily give it a main() method to allow it to be run as a
standalone application:

public class HelloWeb extends Applet {

 public void paint(java.awt.Graphics gc) {
 gc.drawString("Hello Web!", 125, 95);
 }

 public static void main(String [] args) {
 Frame theFrame = new Frame();
 Applet helloWeb = new HelloWeb();
 theFrame.add("Center", helloWeb);
 theFrame.setSize(200,200);
 helloWeb.init();
 helloWeb.start();
 theFrame.show();
 }
}

Here we get to play "appletviewer" for a change. We have created an instance of HelloWeb using its constructor -
something we don't normally do$mdash;and added it to our own Frame. We call its init() method to give the
applet a chance to wake up and then call its start() method. In this example, HelloWeb doesn't implement these,
init() and start(), so we're calling methods inherited from the Applet class. This is the procedure that an
appletviewer would use to run an applet. (If we wanted to go further, we could implement our own AppletContext
and AppletStub, and set them in the Applet before startup).

Trying to make your applets into applications as well often doesn't make sense, and is not always trivial. We show this
only to get you thinking about the real differences between applets and applications. It is probably best to stay within
the applet API until you have a need to go outside it. Remember that trusted applets can do almost all of the things that
applications can. It is probably wiser to make an applet that requires trusted permissions than an application.

Events

We've spent a lot of time discussing the different kinds of objects in AWT--components, containers, and a few special
containers like applets. But we've neglected communications between different objects. A few times, we've mentioned
events, and we have even used them in the occasional program (like our applets in Chapter 2, A First Applet), but we
have deferred a discussion of events until later. Now is the time to pay that debt.

AWT objects communicate by sending events. The way we talk about "firing" events and "handling" them makes it
sound as if they are part of some special Java language feature. But they aren't. An event is simply an ordinary Java
object that is delivered to its receiver by invoking an ordinary Java method. Everything else, however interesting, is
purely convention. The entire Java event mechanism is really just a set of conventions for the kinds of descriptive
objects that should be delivered; these conventions prescribe when, how, and to whom events should be delivered.

Events are sent from a single source object to one or more listeners (or "targets"). A listener implements specific event
handling methods that enable it to receive a type of event. It then registers itself with a source of that kind of event.
Sometimes there may be an "adapter" object interposed between the event source and the listener, but there is always a
connection established before any events are delivered.

An event object is a subclass of java.util.EventObject that holds information about "something that's
happened" to its source. The EventObject class serves mainly to identify event objects; the only information it
contains is a reference to the event source (the object that sent the event). Components do not normally send or receive
EventObjects as such; they work with subclasses that provide more specific information. AWTEvent is a subclass
of EventObject that is used within AWT; further subclasses of AWTEvent provide information about specific
event types.

For example, events of type ActionEvent are fired by buttons when they are pushed. ActionEvents are also sent
when a menu item is selected or when a user presses ENTER in a TextField. Similarly, MouseEvents are
generated when you operate your mouse within a component's area. You can gather the general meaning of these two
events from their names; they are relatively self-descriptive. ActionEvents correspond to a decisive "action" that a
user has taken with the component--like pressing a button, or pressing ENTER to indicate that he has filled in a text
field. An ActionEvent thus carries the name of an action to be performed (the "action command") by the program.
MouseEvents describe the state of the mouse, and therefore carry information like the x and y coordinates and the
state of your mouse buttons at the time it was created. You might hear someone say that ActionEvent is at a "higher
semantic level" than MouseEvent. This means that ActionEvent is an interpretation of something that happened
and is, therefore, conceptually more powerful than the MouseEvent, which carries raw data. An ActionEvent lets
us know that a component has done its job, while a MouseEvent simply confers a lot of information about the mouse
at a given time. You could figure out that somebody clicked on a Button by examining mouse events, but it is simpler
to work with action events. The precise meaning of an event, however, can depend on the context in which it is
received. (More on that in a moment.)

Event Receivers and Listener Interfaces

An event is delivered by passing it as an argument to an event handler method in the receiving object.
ActionEvents, for example, are always delivered to a method called actionPerformed() in the receiver:

// Receiver
public void actionPerformed(ActionEvent e) {
 ...

}

For each type of event, there is a corresponding listener interface that describes the methods it must provide to receive
those events. In this case, any object that receives ActionEvents must implement the ActionListener interface:

public interface ActionListener extends java.util.EventListener {
 public void actionPerformed(ActionEvent e);
}
// Reciever implements ActionListener

All listener interfaces are subinterfaces of java.util.EventListener, but EventListener is simply an
empty interface. It exists only to help the compiler identify listener interfaces.

Listener interfaces are required for a number of reasons. First, they help to identify objects that are capable of receiving
a given type of event. This way we can give the event handler methods friendly, descriptive names and still make it
easy for documentation, tools, and humans to recognize them in a class. Next, listener interfaces are useful because
there can be several methods specified for an event receiver. For example, the FocusListener interface contains
two methods:

abstract void focusGained(FocusEvent e);
abstract void focusLost(FocusEvent e);

Athough these methods both take a FocusEvent as an argument, they correspond to different meanings for why the
event was fired; in this case, whether the FocusEvent means that focus was received or lost. You could figure out
what happened by inspecting the event; all AWTEvents contain a constant specifying the event's subtype. By requiring
two methods, the FocusListener interface saves you the effort: if focusGained() is called, you know the event
type was FOCUS_GAINED. Similarly, the MouseListener interface defines five methods for receiving mouse
events (and MouseMotionListener defines two more), each of which gives you some additional information
about why the event occurred. In general, the listener interfaces group sets of related event handler methods; the
method called in any given situation provides a context for the information in the event object.

There can be more than one listener interface for dealing with a particular kind of event. For example, the
MouseListener interface describes methods for receiving MouseEvents when the mouse enters or exits an area,
or a mouse button is pressed or released. MouseMotionListener is an entirely separate interface that describes
methods to get mouse events when the mouse is moved (no buttons pressed) or dragged (buttons pressed). By
separating mouse events into these two categories, Java lets you be a little more selective about the circumstances
under which you want to recieve MouseEvents. You can register as a listener for mouse events without receiving
mouse motion events; since mouse motion events are extremely common, you don't want to handle them if you don't
need to.

Finally, we should point out two simple patterns in the naming of AWT event listener interfaces and handler methods:

● Event handler methods are public methods that return type void and take a single event object (a subclass of
java.util.EventObject as an argument).[2]

[2] This rule is not complete. The full Java Beans allows event handler methods to take additional
arguments when absolutely necessary and also to throw checked exceptions.

● Listener interfaces are subclasses of java.util.EventListener that are named with the suffix
"Listener," e.g., FooListener.

These may seem pretty obvious, but they are important because they are our first hint of a design pattern governing
how to build components that work with events.

Event Sources

The previous section described the machinery that an event receiver uses to accept events. In this section we'll describe
how the receiver tells an event source to start sending it events as they occur.

To receive events, an eligible listener must register itself with an event source. It does this by calling an "add listener"
method in the event source, and passing a reference (a callback) to itself. For example, the AWT Button class is a
source of ActionEvents. In order to receive these events, our code might do something like the following:

// source of ActionEvents
Button theButton = new Button("Belly");

// receiver of ActionEvents
class TheReceiver implements ActionListener {
 setupReceiver() {
 ...
 theButton.addActionListener(this);
 }
 public void actionPerformed(ActionEvent e) {
 // Belly Button pushed...
 }

The receiver makes a call to addActionListener() to complete its setup and become eligible to receive
ActionEvents from the button when they occur. It passes the reference this, to add itself as the
ActionListener.

To manage its listeners, an ActionEvent source (like the Button) always implements two methods:

// ActionEvent source
public void addActionListener(ActionListener listener) {
 ...
}
public void removeActionListener(ActionListener listener) {
 ...
}

The removeActionListener() method complements addActionListener() and does what you'd expect: it
removes the listener from the list so that it will not receive future events from that source.

Now, you may be expecting an "event source" interface listing these two methods, but there isn't one. There are no
event source interfaces in the current conventions. If you are analyzing a class and trying to determine what events it
generates, you have to look for the add and remove methods. For example, the presence of the

addActionListener() and removeActionListener() methods define the object as a source of
ActionEvents. If you happen to be a human being, you can simply look at the documentation; but if the
documentation isn't available, or if you're writing a program that needs to analyze a class (a process called "reflection"),
you can look for this design pattern:

● A source of events for the FooListener interface must implement a pair of add/remove methods:

❍ addFooListener(FooListener listener) (*)

❍ removeFooListener(FooListener listener)

● If an event source can only support one event listener (unicast delivery), the add listener method can throw the
checked exception java.util.TooManyListenersException.

So, what do all the naming patterns up to this point accomplish? Well, for one thing they make it possible for
automated tools and integrated development environments to divine what are sources and what are sinks of particular
events. Tools that work with Java Beans will use the Java reflection and introspection APIs to search for these kinds of
design patterns and identify the events that can be fired and received by a component.

It also means that event hookups are strongly typed, just like the rest of Java. So, it's not easy to accidentally hook up
the wrong kind of components; for example, you can't register to receive ItemEvents from a Button, because a
button doesn't have an addItemListener() method. Java knows at compile time what types of events can be
delivered to whom.

Event Delivery

AWT events are multicast; every event is associated with a single source, but can be delivered to any number of
receivers. Events are registered and distributed using an observer/observable model. When an event listener registers
itself with an event source, the event source adds the listener to a list. When an event is fired, it is delivered
individually to each listener on the list.

Figure 10.9: Event delivery

There are no guarantees about the order in which events will be delivered. Neither are there any guarantees if you
register yourself more than once with an event source; you may get the event more than once, or not. Similarly, you

should assume that every listener receives the same event data. Events are "immutable"; they can't be changed by their
listeners. There's one important exception to this rule, which we'll discuss later.

To be complete we could say that event delivery is synchronous with respect to the event source, but that follows from
the fact that the event delivery is really just the invocation of a normal Java method. The source of the event calls the
handler method of each listener. However, listeners shouldn't assume that all of the events will be sent in the same
thread. An event source could decide to sent out events to all of the listeners in parallel.

How exactly an event source maintains its set of listeners, constructs, and fires the events is up to it. Often it is
sufficient to use a Vector to hold the list. We'll show the code for a component that uses a custom event in Chapter
11, Using and Creating GUI Components. For efficiency, AWT components all use the
java.awt.AWTEventMulticaster object, which maintains a linked tree of the listeners for the component. You
can use that too, if you are firing standard AWT events. We'll describe the event multicaster in Chapter 11, Using and
Creating GUI Components as well.

AWTEvents

All of the events used by AWT GUI components are subclasses of java.awt.AWTEvent. AWTEvent holds some
common information that is used by AWT to identify and process events. You can use or subclass any of the
AWTEvent types for use in your own components.

Use the event hierarchy from Java in a Nutshell or AWT Reference.

ComponentEvent is the base class for events that can be fired by any AWT component. This includes events that
provide notification when a component changes its dimensions or visibility, as well as the other event types for mouse
operation and key presses. ContainerEvents are fired by AWT containers when components are added or
removed.

java.awt.event.InputEvent

MouseEvents, which track the state of the mouse, and KeyEvents, which are fired when the user uses the keyboard,
are types of java.awt.event.InputEvent. Input events from the mouse and keyboard are a little bit special.
They are normally produced by the native Java machinery associated with the peers. When the user touches a key or
moves the mouse within a component's area, the events are generated with that component as the source.

Input events and some other AWT events are placed on a special event queue that is managed by the AWT Toolkit.
This gives the Toolkit control over how the events are delivered. First, under some circumstances, the Toolkit can
decide to "compress" a sequence of the same type of event into a single event. This is done to make some event types
more efficient--in particular, mouse events and some special internal events used to control repainting. Perhaps more
important to us, input events are delivered with a special arrangement that lets listeners decide if the component itself
should act on the event.

Consuming events

Normally, the native peer of a standard AWT component operates by receiving InputEvents telling it about the
mouse and keyboard. When you push a Button, the native ButtonPeer object receives a MouseEvent and does
its job in native land to accomplish the button-depressing behavior. But for InputEvents, the Toolkit first delivers

the event to any listeners registered with the the component and gives those listeners a chance to mark the event as
"consumed," effectively telling the peer to ignore it. An InputEvent is marked "consumed" by calling the
consume() method. (Yes, this is a case where an event is not treated as immutable.)

So, we could stop our Button from working by registering a listener with it that catches "mouse button depressed"
events. When it got one, we could call its consume() method to tell the ButtonPeer to ignore that event. This is
particularly useful if you happen to be building a develoment environment in Java and you want to "turn off"
components while the user arranges them.

If you need to, in a trusted application you can get access to the AWT event queue. The Toolkit uses an instance of
java.awt.EventQueue. With it you can peek at pending AWT events or even to push in new ones.

Mouse and Key Modifiers on InputEvents

InputEvents come with a set of flags for special modifiers. These let you detect if the SHIFT or ALT key was held
down during a mouse button or key press, or if the second or third mouse buttons were pressed. The following are the
flag values contained in java.awt.event.InputEvent:

● SHIFT_MASK

● CTRL_MASK

● META_MASK

● ALT_MASK

● BUTTON1_MASK

● BUTTON2_MASK

● BUTTON3_MASK

To check for these masks, you can simply do a boolean AND of the modifiers, returned by the InputEvent's
getModifiers() method and the flag or flags you're interested in:

public void mousePressed (MouseEvent e) {
 int mods = e.getModifiers();
 if ((mods & InputEvent.SHIFT_MASK) != 0)
 // Shifted Mouse Button press
}

In the list you'll notice there are three BUTTON flags. These can be used to detect if a particular mouse button was
used in a mouse press on a two or three button mouse. Be warned, if you use these you run the risk that your program
won't work on platforms without multibutton mice. Currently, BUTTON2_MASK is equivalent to ALT_MASK, and
BUTTON3_MASK is equivalent to META_MASK. This means that pushing the second mouse button is equivalent to
pressing the first (or only) button with the ALT key depressed, and the third button is equivalent to the first with the
META key depressed. However, if you really want to guarantee portability, you should limit yourself to a single

button, possibly in combination with keyboard modifiers, rather than relying on the button masks.

Key events provide one other situation in which events aren't immutable. You can change the character that the user
typed by calling setKeyChar(), setKeyCode(), or setKeyModifiers(). A user's keystroke isn't displayed
until the KeyEvent is delivered to the peer. Therefore, by changing the character in the KeyEvent, you can change
the character displayed on the screen. This is a good way to implement a field that only displays uppercase characters,
regardless of what the user types.

AWT Event Reference

The following tables summarize the AWT Events, which components fire them, and the methods of the listener
interfaces that receive them:

AWT Component and Container Events

Event Fired by Listener interface(s) Handler Method(s)

ComponentEvent

All Components (*)

ComponentListener

componentResized()

componentMoved()

componentShown()

componentHidden()

FocusEvent FocusListener
focusGained()

focusLost()

KeyEvent KeyListener

keyTyped()

keyPressed()

keyReleased()

MouseEvent

MouseListener

mouseClicked()

mousePressed()

mouseReleased()

mouseEntered()

mouseExited()

MouseMotionListener
mouseDragged()

mouseMoved()

ContainerEvent All Containers ContainerListener
componentAdded()

componentRemoved()

Component specific AWT Events

Event Fired by Listener interface(s) Handler Method(s)

ActionEvent

TextField

ActionListener actionPerformed()
MenuItem

List

Button

ItemEvent

List

ItemListener itemStateChanged()
Checkbox

Choice

CheckboxMenuItem

AdjustmentEvent
ScrollPane

AdjustmentListener adjustmentValueChanged()
Scrollbar

TextEvent
TextArea

TextListener textValueChanged()
TextField

WindowEvent Frame, Dialog WindowListener

windowOpened()

windowClosing()

windowClosed()

windowIconified()

windowDeiconified()

windowActivated()

windowDeactivated()

Adapter Classes

It's not ideal to have your application components implement a listener interface and receive events directly. Sometimes
it's not even possible. Being an event receiver forces you to modify or subclass your objects to implement the
appropriate event listener interfaces and add the code necessary to handle the events. A more subtle issue is that, since
we are talking about AWT events here, you are, of necessity, building GUI logic into parts of your application that
shouldn't have to know anything about the GUI. Let's look at an example:

Figure 10.10: Implementing the ActionListener interface

In Figure 10.10 we have drawn the plans for our Vegomatic food processor. Here we have made our Vegomatic object
implement the ActionListener interface so that it can receive events directly from the three Button components:
"Chop," "Puree," and "Frappe." The problem is that our Vegomatic object now has to know more than how to mangle
food. It also has to be aware that it will be driven by three controls, specifically buttons that send action commands, and
be aware of which methods in itself it should invoke for those commands. Our boxes labeling the GUI and Application
code overlap in an unwholesome way. If the marketing people should later want to add or remove buttons, or perhaps
just change the names, we have to be careful. We may have to modify the logic in our Vegomatic Object. All is not
well.

An alternative is to place an "adapter" class between our event source and receiver. An adapter is a simple object whose

sole purpose is to map an incoming event to an outgoing method.

Figure 10.11: A design using adapter classes

Figure 10.11 shows a better design that uses three adapter classes, one for each button. The implementation of the first
adapter might look like:

class VegomaticAdapter1 implements actionListener {
 Vegotmatic vegomatic;
 VegomaticAdapter1 (Vegotmatic vegomatic) {
 this.vegomatic = vegomatic;
 }
 public void actionPerformed(ActionEvent e) {
 vegomatic.chopFood();
 }
}

So somewhere in the code where we build our GUI, we could register our listener like so:

// building GUI for our Vegomatic
Vegomatic theVegomatic = ...;
Button chopButton = ...;
// make the hookup
chopButton.addActionListener(new VegomaticAdapter1(theVegomatic));

We have completely separated the messiness of our GUI from the application code. However, we have added three new
classes to our application, none of which does very much. Is that good? That depends on your vantage point.

Under different circumstances our buttons may have been able to share a common adapter class that was simply
instantiated with different parameters. There are various trade-off that can be made between size, efficiency, and
elegance of code. Often, adapter classes will be generated automatically by development tools. The way we have
named our adapter classes "VegomaticAdapter1," "VegomaticAdapter2," and "VegomaticAdapter3" hints at this. More
often, when hand coding, you'll use an inner class. At the other extreme, we can forsake Java's strong typing and use
the reflection API to create a completely dynamic hookup betwen an event source and listener.

AWT Dummy Adapters

Many listener interfaces contain more than one event handler method. Unfortunately, this means that to register
yourself as interested in any one of those events, you must implement the whole listener interface. And to accomplish
this you might find yourself typing in dummy "stubbed out" methods, simply to complete the interface. There is really
nothing wrong with this, but it is a bit tedious. To save you some trouble, AWT provides some helper classes that
implement these dummy methods for you. For each listener interface containing more than one method there is an
adapter class containing the stubbed methods. The adapter class serves as a base class for your own adapters. So, when
you need a class to patch together your event source and listener, you can simply subclass the adapter and override only
the methods you want.

For example, the MouseAdapter class implements the MouseListener interface and provides the following
implementation:

public void mouseClicked(MouseEvent e) {};
public void mousePressed(MouseEvent e) {};
public void mouseReleased(MouseEvent e) {};
public void mouseEntered(MouseEvent e) {};
public void mouseExited(MouseEvent e) {};

This may not look like a tremendous time saver, and you're right. It's simply a bit of sugar. The primary advantage
comes into play when we use the MouseAdapter as the base for your own adapter in an anonymous inner class. For
example, suppose we want to catch a mousePressed() event in some component and blow up a building. We can
use the following to make the hookup:

someComponent.addMouseListener(new MouseAdapter() {
 public void MousePressed(MouseEvent e) {
 building.blowUp();
 }
});

We've taken artistic liberties with the formatting, but I think it's very readable, and I like it. It's a common enough
activity that it's nice to avoid typing those extra few lines and perhaps stave off the onset of carpal tunnel syndrome for
a few more hours. Remember that any time you use an inner class, the compiler is generating a class for you, so the
messiness you've saved in your source still exists in the output classes.

Old Style and New Style Event Processing

Although Java is still a youngster, it has a bit of a legacy. Versions of Java before 1.1 used a different style of event
delivery. Back in the old days (a few months ago) event types were limited and events were only delivered to the
Component that generated it, or one of its parent containers. The old style component event handler methods (now
deprecated) returned a boolean value declaring whether or not they had "handled" the event.

boolean handleEvent(Event e) {
 ...
}

If the method returns false, the event is automatically redelivered to the component's container to give it a chance. If the
container does not handle it, it is passed on to its parent container and so on. In this way, events were propogated up the
containment hierarchy until they were either consumed or passed over to the component peer, just as current

InputEvents are ultimately interpreted used the peer if no registered event listeners have consumed them.

Although this style of event delivery was convenient for some simple applications, it is not very flexible. Events could
only be handled by components, which meant that you always had to subclass a Component or Container type to
handle events. This was a degenerate use of inheritance (bad design) that led to the creation of lots of unnecessary
classes.

We could, alternatively, receive the events for many embedded components in a single parent container, but that would
often lead to very convoluted logic in the container's event handling methods. It is also very costly to run every single
AWT event through a guantlet of (often empty) tests as it traverses its way up the tree of containers. This is why Java
now provides the more dynamic and general event source/listener model that we have described in this chapter. The old
style events and event handler methods are, however, still with us.

Java is not allowed to simply change and break an established API. Instead, as we described in Chapter 1, Yet Another
Language?, older ways of doing things are simply "deprecated" in favor of the new ones. This means that code using
the old style event handler methods will still work; you may see old-style code around for a long time. The problem
with relying on old-style event delivery, however, is that the old and new ways of doing things cannot be mixed.

By default, Java is obligated to perform the old behavior--offering events to the component and each of its parent
containers. However, Java turns off the old style delivery whenever it thinks that we have elected to use the new style.
Java determines whether a Component should recieve old style or new style events based on whether any event
listeners are registered, or whether new style events have been explicitly enabled. When an AWT event listener is
registered with a Component, new style events are implicitly turned on (a flag is set). Additionally, a mask is set
telling the component the types of AWT events it should process. The mask allows components to be more selective
about which events they process.

processEvent()

When new style events are enabled, all events are first routed to the dispatchEvent() method of the Component
class. The dispatchEvent() method examines the component's event mask and decides whether the event should
be processed or ignored. Events that have been "enabled" are sent to the processEvent() method, which simply
looks at the event's type and delegates it to a "helper" processing method named for its type. The helper processing
method finally dispatches the event to the set of registered listeners for its type.

This process closely parallels the way in which old style events are processed, and the way in which events are first
directed to a single handleEvent() method that dispatches them to more specific handler methods in the
Component class. The differences are that new style events are not delivered unless someone is listening for them,
and the listener registration mechanism means that we don't have to subclass the component in order to override its
event handler methods and insert our own code.

Enabling New Style Events Explicitly

Still, if you are subclassing a Component type for other reasons, or you really want to process all events in a single
method, you should be aware that it is possible to emulate the old style event handling and override your component's
event processing methods. You simply have to call the Component's enableEvents() method with the
appropriate mask value to turn on processing for the given type of event. You can then override the corresponding
method and insert your code. The mask values are found in the java.awt.AWTEvent class:

java.awt.AWTEvent mask method

COMPONENT_EVENT_MASK processComponentEvent()

FOCUS_EVENT_MASK processFocusEvent()

KEY_EVENT_MASK processKeyEvent()

MOUSE_EVENT_MASK processMouseEvent()

MOUSE_MOTION_EVENT_MASK processMouseMotionEvent()

For example:

 public void init() {
 ...
 enableEvent(AWTEvent.KEY_EVENT_MASK):
 }
 public void processKeyEvent(KeyEvent e) {
 if (e.getID() == KeyEvent.KEY_TYPED)
 // do work
 super.processKeyEvent(e);
 }

If you do this it is vital that you remember to make a call to super.process...Event() in order to allow normal
event delegation to continue. Of course, by emulating old-style event handling, we're giving up the virtues of the new
style; in particular, this code is a lot less flexible than the code we could write with the new event model. As we've
seen, the user interface is hopelessly tangled with the actual work your program does. A compromise solution would be
to have your subclass declare that it implements the appropriate listener interface and register itself, as we have done in
the simpler examples in this book:

class MyApplet implements KeyListener ...

 public void init() {
 addKeyListener(this):
 ...
 }
 public void keyTyped(KeyEvent e) {
 // do work
 }

GUI Concepts in Java Using and Creating GUI
Components

Chapter 11
Using and Creating GUI

Components

11.2 Text Components

AWT gives us two basic text components: TextArea is a multiline text editor with vertical and horizontal
scrollbars; TextField is a simple, single-line text editor. Both TextField and TextArea derive from
the TextComponent class, which provides the functionality they have in common. This includes
methods for setting and retrieving the displayed text, specifying whether the text is "editable" or read-only,
manipulating the caret (cursor) position in the display, and manipulating the "selection text."

Both TextAreas and TextFields send TextEvents to listeners when their text is modified. To
receive these events, you must implement the java.awt.TextListener interface and register by
calling the component's addTextListener() method. In addition, TextField components generate
an ActionEvent whenever the user presses the RETURN key within the field. To get these events,
implement the ActionListener interface and call addActionListener() to register.

Here are a couple of simple applets that show you how to work with text areas and fields.

A TextEntryBox

Our first example, TextEntryBox, creates a TextArea and ties it to a TextField, as you can see in
Figure 11.1.

When the user hits RETURN in the TextField, we receive an ActionEvent and add the line to the
TextArea's display.

Try it out. You may have to click your mouse in the TextField to give it focus before typing in it. If you
fill up the display with lines, you can test drive the scrollbar.

Figure 11.1: The TextEntryBox applet

[Graphic: Figure 11-1]

import java.awt.*;
import java.awt.event.*;
public class TextEntryBox extends java.applet.Applet
implements ActionListener {
 TextArea area;
 TextField field;

 public void init() {
 setLayout(new BorderLayout());
 add("Center", area = new TextArea());
 area.setFont(new Font("TimesRoman",Font.BOLD,18));
 area.setText("Howdy!\n");
 add("South", field = new TextField());
 field.addActionListener (this);
 }
 public void actionPerformed(ActionEvent e) {
 area.append(field.getText() + '\n');

 field.setText("");
 }
}

TextEntryBox is exceedingly simple; we've done a few things to make it more interesting. First, we set
the applet's layout manager to BorderLayout. We use BorderLayout to position the TextArea
above the TextField; the text area goes in the "North" region of the layout, and the text field is in the
"South" region. We give the text area a bigger font using Component's setFont() method; fonts are
discussed in Chapter 11, Using and Creating GUI Components. Finally, we want to be notified whenever
the user types RETURN in the text field, so we register our applet (this) as a listener for action events by
calling field.addActionListener(this).

Hitting RETURN in the TextField generates an action event, and that's where the fun begins. We
handle the event in the actionPerformed() method of our container, the TextEntryBox applet.
Then we use the getText() and setText() methods to manipulate the text the user has typed. These
methods can be used for both TextField and TextArea, because these components are derived from
the TextComponent class, and therefore have some common functionality.

Our event handler is called actionPerformed(), as required by the ActionListener interface.
First, actionPerformed() calls field.getText() to read the text that the user typed into our
TextField. It then adds this text to the TextArea by calling area.append(). Finally, we clear the
text field by calling field.setText(""), preparing it for more input.

By default, TextField and TextArea are editable; you can type and edit in both text components.
They can be changed to output-only areas with the setEditable() method. Both text components also
support selections. A selection is a subset of text that is highlighted for copying and pasting in your
windowing system. You select text by dragging the mouse over it; you can then copy and paste it into other
text windows. You can get the selected text explicitly with getSelectedText().

TextWatcher Applet

Our next example is a TextWatcher that consists of two linked text areas. Anything the user types into
either area is reflected in both. It demonstrates how to handle a TextEvent, which is generated whenever
the text changes in a TextComponent. It also demonstrates how to use an adapter class, which is a more
realistic way of setting up event listeners. Registering the applet as a listener is okay for simple programs,
but the technique shown here will serve you better in more complex situations.

Figure 11.2: The TextWatcher applet

[Graphic: Figure 11-2]

import java.awt.*;
import java.awt.event.*;
public class TextWatcher extends java.applet.Applet {
 TextArea area1, area2;

 public void init() {
 setLayout(new GridLayout(2,1));
 add(area1 = new TextArea());
 add(area2 = new TextArea());
 area1.addTextListener (new TextSyncAdapter(area2));
 area2.addTextListener (new TextSyncAdapter(area1));
 }
 class TextSyncAdapter implements TextListener {
 TextArea targetArea;
 TextSyncAdapter(TextArea targetArea) {
 this.targetArea = targetArea;
 }
 public void textValueChanged(TextEvent e) {
 TextArea sourceArea = (TextArea)e.getSource();
 if (! targetArea.getText().equals(sourceArea.getText()))
 targetArea.setText(sourceArea.getText());
 }
 }
}

Setting up the display is simple. We use a GridLayout and add two text areas to the layout. Then we add
our listeners for text events, which are generated whenever the text in a TextComponent is changed.
There is one listener for each text area; both are TextSyncAdapter objects. One listens to events from
area1 and modifies the text in area2; the other listens to events from area2 and modifies the text in
area1.

All the real work is done by the TextSyncAdapter. This is an inner class; its definition is contained

within TextWatcher and can't be referenced by classes outside of our TextWatcher. The adapter
implements the TextListener interface, and therefore includes a textValueChanged() method.

textValueChanged() is the heart of the listener. First, it extracts the source area from the incoming
event; this is the area that generated the event. The area whose text the listener is changing (the target area)
was stored by the constructor. Then it tests whether or not the texts in both areas are the same. If they
aren't, it calls the target area's setText() method to set its text equal to the source area's.

The one mysterious feature of this method is the test for equality. Why is it necessary? Why can't we just
say "the text in one area changed, so set the text in the other?" A TextEvent is generated whenever a
TextComponent is modified for any reason; this includes changes caused by software, not just changes
that occur when a user types. So think about what happens when the user types into area1. Typing
generates a TextEvent, which causes the adapter to change the text in area2. This generates another
TextEvent, which if we didn't do any testing, would cause us to change area1 again, which would
generate another TextEvent, ad infinitum. By checking whether or not the texts in our two areas are
equivalent, we prevent an infinite loop in which text events ping-pong back and forth between the two
areas.

Managing Text Yourself

Text areas and text fields do the work of handling keystrokes for you, but they're certainly not your only
options for dealing with keyboard input. Any Component can register KeyListeners to recieve
KeyEvents that occur when their component has focus Chapter 10, Understand the Abstract Windowing
Toolkit. We will provide an example here that shows how you might use these to make your own text
gadgets.

Figure 11.3: The KeyWatcher applet

[Graphic: Figure 11-3]

import java.awt.*;
import java.awt.event.*;
public class KeyWatcher extends java.applet.Applet {
 StringBuffer text = new StringBuffer();
 public void init () {
 setFont(new Font("TimesRoman",Font.BOLD,18));
 addKeyListener (new KeyAdapter() {
 public void keyPressed(KeyEvent e) {
 System.out.println(e);
 type(e.getKeyCode(), e.getKeyChar());
 }
 });
 requestFocus();
 }
 public void type(int code, char ch) {
 switch (code) {
 case (KeyEvent.VK_BACK_SPACE):
 if (text.length() > 0)
 text.setLength(text.length() - 1);
 break;
 case (KeyEvent.VK_ENTER):
 System.out.println(text); // Process line
 text.setLength(0);
 break;
 default:
 if ((ch >= ' ') && (ch <= '~'))
 text.append(ch);
 }
 repaint();
 }

 public void paint(Graphics g) {
 g.drawString(text.toString() + "_", 20, 20);
 }
}

Fundamentally, all we are doing is collecting text in a StringBuffer and using the drawString()
method to display it on the screen. As you'd expect, paint() is responsible for managing the display.

In this applet, we're interested in receiving KeyEvents, which occur whenever the user presses any key.
To get these events, the applet calls its own addKeyListener() method. The KeyListener itself is
an anonymous class. It doesn't have a name and can't be used anywhere else. We create this class by getting
a new KeyAdapter(), and overriding its keyPressed() method. (Remember that KeyAdapter

contains do-nothing implementations of the methods in the KeyListener interface.) All
keyPressed() does is call our private method type(), with two arguments: the key code of the key that
was pressed, and the logical character represented by the keystroke.

type() shows you how to deal with keystrokes. Each key event is identified with a code, which identifies
the actual key typed, and a character, which identifies what the user meant to type. This sounds confusing,
but it isn't. Basically, there is a constant for each key on the keyboard: VK_ENTER for the ENTER (return)
key, VK_A for the letter A, and so on. However, the physical keystroke isn't usually the same as what the
user types: the character capital A is made up of two keystrokes, while lower case a is made up of one.

Therefore, you can expect events for both physical keystrokes and typed characters. The int constant
VK_UNDEFINED is used for the physical key code when the event doesn't correspond to a single
keystroke. The char constant CHAR_UNDEFINED indicates that the event corresponds to a physical
keystroke, but not a typed character.

The type() method is called with both the key constant and the character as arguments. The way we use
them is relatively simple and would need more work for an industrial strength program. Simply, if the
physical key is VK_BACK_SPACE, we delete the last character from the StringBuffer we're building.
If it's VK_ENTER, we clear the StringBuffer. If the physical key has any other value, we look at the
character the user typed. If this is a printable character, we add it to the StringBuffer. Anything else
we ignore. Once we've handled the event, we call repaint() to update the screen. Using key codes to
handle operations like "Backspace" or "Enter" is easier and less bug-prone than working with odd
"Control" characters.

A final note on our anonymous adapter class: in essence our adapter is letting us write a "callback," by
calling type() whenever keyPressed() is called. That's one important use for adapters: to map
methods in the various listener interfaces into the methods that make sense for your class. Unlike C or C++,
Java won't let us pass a method pointer as an argument, but it will let us create an anonymous class that
calls our method and passes an instance of that class.

Buttons and Labels Lists

Chapter 11
Using and Creating GUI

Components

11.3 Lists

A List is a step up on the evolutionary chain. Lists let the user choose from a group of alternatives. They can
be configured to force the user to choose a single selection or to allow multiple choices. Usually, only a small
group of choices are displayed at a time; a built-in scrollbar lets you move to the choices that aren't visible.

A List generates two kinds of events. If the user single clicks on a selection, the List generates an
ItemEvent. If the user double-clicks, a List generates an ActionEvent. Therefore, a List can register
both ItemListeners and ActionListeners. In either case, the listener can use the event to figure out
what the user selected.

The applet below, SearchableListApplet, contains a List and a text field. Several of the items in the
list aren't visible, because the list is too long for the space we've allotted for it (enough to display three items).
When you type the name of an item into the text field, the applet displays the item you want and selects it. Of
course, you could do this with a scrollbar, but then we wouldn't have the opportunity to demonstrate how to
work with lists.

Figure 11.4: The SearchableList applet

[Graphic: Figure 11-4]

import java.awt.*;
import java.awt.event.*;
public class SearchableListApplet extends java.applet.Applet {
 public void init() {
 String [] items = { "One", "Two", "Three", "Four", "Five", "Six" };
 add(new SearchableList(items));
 }
}
class SearchableList extends Container implements ActionListener {
 List list;
 TextField field;
 SearchableList(String [] items) {
 list = new List(3); // Let some scroll for this example
 for(int i=0; i< items.length; i++)
 list.addItem(items[i]);
 field = new TextField();
 field.addActionListener(this);
 setLayout(new BorderLayout());
 add("Center", list);
 add("South", field);
 }
 public void actionPerformed(ActionEvent e) {
 String search = field.getText();
 for (int i=0; i< list.getItemCount(); i++)
 if (list.getItem(i).equals(search)) {
 list.select(i);
 list.makeVisible(i); // Scroll it into view
 break;
 }
 field.setText(""); // clear the text field
 }
}

We create the List and the TextField in a new class, SearchableList; the applet itself only displays
the SearchableList. SearchableList itself is a new kind of animal; it is a lightweight component that
subclasses Container directly. We'll talk a little more about lightweight components later in the chapter.

In the constructor for SearchableList, we create our List by calling its constructor, setting it to display at
most three components. We then call the addItem() method to add the possible selections to the list; these
are the numbers "One" through "Six," passed to us in an array.

We then create our TextField, and register ourselves (i.e., the SearchableList) as an
ActionListener for the field's events. Finally, we set the layout for SearchableList to a border layout,
put the List in the center of the layout, and the TextField at the bottom.

The actionPerformed() method is called whenever the user presses RETURN in our TextField. In
this method, we call getText() to extract the text the user typed. Then we loop through all the items in the
list to see if there's a match. getItemCount() tells us the number of items in the list; getItem() gives us
the text associated with any particular item. When we find a match, we call select() to make the matching
item the selected item, and we call makeVisible() to make sure that this item is displayed.

By default, a List only allows a single selection. We've done nothing in this example to allow multiple
selections, so whenever a user chooses an item, the previous selection is automatically dropped. If you want a
list that supports multiple selections, call setMultipleMode(true). In this case, you must use the
deselect() method to clear the user's selections.

Text Components Menus and Choices

Chapter 11
Using and Creating GUI

Components

11.4 Menus and Choices

A Menu is a standard, pull-down menu with a fixed name. Menus can hold other menus as submenu items,
letting you implement complex menu structures. Menus come with several restrictions; they must be attached to
a menu bar, and the menu bar can be attached only to a Frame (or another menu). You can't stick a Menu at an
arbitrary position within a container. A top-level Menu has a name that is always visible in the menu bar. (An
important exception to these rules is the PopupMenu, which we'll describe in the next section.)

A Choice is an item that lets you choose from a selection of alternatives. If this sounds like a menu, you're
right. Choices are free-spirited relatives of menus. A Choice item can be positioned anywhere, in any kind of
container. It looks something like a button, with the current selection as its label. When you press the mouse
button on a choice, it unfurls to show possible selections.

Both menus and choices send action events when an item is selected. We'll create a little example that illustrates
choices and menus and demonstrates how to work with the events they generate. Since a Menu has to be placed
in the menu bar of a Frame, we'll take this opportunity to show off a Frame object as well. DinnerMenu
pops up a window containing a Food choice and a menu of Utensils, as shown in Figure 11.2. DinnerMenu
prints a message for each selection; choosing Quit from the menu removes the window. Give it a try.

Figure 11.5: The DinnerMenu applet

[Graphic: Figure 11-5]

import java.awt.*;
import java.awt.event.*;
import java.util.EventListener;
public class DinnerMenu extends java.applet.Applet {
 public void init() {
 new DinnerFrame().show();
 }
}
class DinnerFrame extends Frame implements ActionListener, ItemListener {
 DinnerFrame() {
 setTitle("Dinner Helper");
 setLayout(new FlowLayout());
 add(new Label("Food"));
 Choice c = new Choice ();
 c.addItem("Chinese");
 c.addItem("Italian");
 c.addItem("American");
 c.addItemListener(this);
 add(c);
 Menu menu = new Menu("Utensils");
 menu.add(makeMenuItem("Fork"));
 menu.add(makeMenuItem("Knife"));
 menu.add(makeMenuItem("Spoon"));
 Menu subMenu = new Menu("Hybrid");
 subMenu.add(makeMenuItem("Spork"));
 subMenu.add(makeMenuItem("Spife"));
 subMenu.add(makeMenuItem("Knork"));
 menu.add(subMenu);
 menu.add(makeMenuItem("Quit"));
 MenuBar menuBar = new MenuBar();
 menuBar.add(menu);
 setMenuBar(menuBar);

 pack();
 }
 public void itemStateChanged(ItemEvent e) {
 System.out.println("Choice set to: " + e.getItem());
 }
 public void actionPerformed(ActionEvent e) {
 String command = e.getActionCommand();
 if (command.equals("Quit"))
 dispose();
 else
 System.out.println("Menu selected: " + e.getActionCommand());
 }
 private MenuItem makeMenuItem(String name) {
 MenuItem m = new MenuItem(name);
 m.addActionListener(this);
 return m;
 }
}

Yes, I know. Quit doesn't belong in the Utensils menu. If it's driving you crazy, you can go back and add a File
menu as an exercise when we're through.

So what do we have? Well, we've created a new kind of component called DinnerFrame that implements our
palette of dinner options. We do our set-up work in the DinnerFrame constructor. DinnerFrame sets the
name on its titlebar with setTitle(). The constructor also handles a few other miscellaneous details, such as
setting the layout manager that places things side by side in the display area and later, resizing itself by calling
pack().

We make an instance of Choice and add three options to it with its addItem() method. Choice options
are simple String objects. When one is picked, we get an action event with an argument that specifies the
selected option name. We can also examine the currently selected item at any time with the Choice's
getSelectedItem() method. A Choice generates an ItemEvent when a user makes a selection, so we
register the DinnerFrame as an ItemEvent listener by calling addItemListener(). (This means we
must also implement the ItemListener interface and provide an itemStateChanged() method.) As
with any component, we display the Choice by adding it to our applet's layout with add().

The Menu has a few more moving parts. A Menu holds MenuItem objects. A simple MenuItem just has a
String as a label. It sends this as an argument in an action event when it's selected. We can set its font with
setFont(). We can also turn it on or off with setEnabled(); this method controls whether the
MenuItem is available or not. A Menu object is itself a kind of MenuItem, and this allows us to use a menu
as a submenu in another menu.

We construct the Menu with its name and call its add() method to give it three new MenuItem objects. To
create the menu items, we call our own makeMenuItem() helper method. Next, we repeat this process to
make a new Menu object, subMenu, and add it as the fourth option. Its name appears as the menu item along

with a little arrow, indicating it's a submenu. When it's selected, the subMenu menu pops up to the side and we
can select from it. Finally, we add one last simple menu item, to serve as a Quit option.

We use a private method, makeMenuItem(), to create our menu items for us. This method is convenient
because, with menus, every item generates its own events. Therefore, we must register an ActionListener
for every selection on the menu. Rather than write lots of code, we use a helper method to register our
DinnerFrame (this) as the listener for every item. It should be no surprise then, that DinnerFrame must
implement ActionListener and provide an actionPerformed() method.

Now we have the menu; to use it, we have to insert it in a menu bar. A MenuBar holds Menu objects. We
create a MenuBar and set it as the menu bar for DinnerFrame with the Frame.setMenuBar() method.
We can then add our menu to it with menuBar.add():

MenuBar menuBar = new MenuBar();
menuBar.add(menu);
setMenuBar(menuBar);

Suppose our applet didn't have its own frame? Where could we put our menu? Ideally, you'd like the applet to
be able to add a menu to the top-level menu bar of the Web browser or applet viewer. Unfortunately, as of Java
1.1, there is no standard for doing so. (There are obvious security considerations in allowing an applet to modify
its viewer.) There has been talk of adding this ability as part of Java Beans, but so far, it's not possible.

One final note about the DinnerMenu example. As we said in the previous chapter, any time you use a
Frame, and thus create a new top-level window, you should add code to destroy your frame whenever the user
closes the window with his native window manager. To do so, you register your frame as a
WindowListener, implement the WindowListener interface, and provide a windowClosing()
method that calls dispose(). By calling dispose(), we indicate the window is no longer needed, so that it
can release its window-system resources.

Lists PopupMenus

Chapter 11
Using and Creating GUI

Components

11.5 PopupMenus

One of the new components in Java 1.1 is the PopupMenu: a menu that automatically appears when you press the
appropriate mouse button inside of a component. Which button you press depends on the platform you're using;
fortunately you don't have to care.

The care and feeding of a PopupMenu is basically the same as any other menu. You use a different constructor
(PopupMenu()) to create it, but otherwise, you build a menu and add elements to it the same way. The big
difference is that you don't need to attach it to a MenuBar, and consequently don't need to worry about putting the
MenuBar in a Frame. Instead, you call add() to add the PopupMenu to any component.

The PopupColorMenu applet contains three buttons. You can use a PopupMenu to set the color of each button
or the applet itself, depending on where you press the mouse. (Setting the color of the applet also sets the buttons'
colors). Figure 11.3 shows the applet in action; the user is preparing to change the color of the right-most button.

Figure 11.6: The PopupColorMenu Applet

[Graphic: Figure 11-6]

import java.awt.*;
import java.awt.event.*;
public class PopUpColorMenu extends java.applet.Applet

implements ActionListener {
 PopupMenu colorMenu;
 Component selectedComponent;
 public void init() {
 add(new Button("One"));
 add(new Button("Two"));
 add(new Button("Three"));

 colorMenu = new PopupMenu("Color");
 colorMenu.add(makeMenuItem("Red"));
 colorMenu.add(makeMenuItem("Green"));
 colorMenu.add(makeMenuItem("Blue"));
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 if (e.isPopupTrigger()) {
 selectedComponent = getComponentAt(e.getX(), e.getY());
 colorMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 }
 });
 add(colorMenu);
 }
 public void actionPerformed(ActionEvent e) {
 String color = e.getActionCommand();
 if (color.equals("Red"))
 selectedComponent.setBackground(Color.red);
 else if (color.equals("Green"))
 selectedComponent.setBackground(Color.green);
 else if (color.equals("Blue"))
 selectedComponent.setBackground(Color.blue);
 }
 private MenuItem makeMenuItem(String label) {
 MenuItem item = new MenuItem(label);
 item.addActionListener(this);
 return item;
 }
}

Because the popup menu is triggered by mouse events, we need to register a MouseListener. In our call to
addMouseListener(), we create an anonymous inner class based on the MouseAdapter. In this class, we
override the mousePressed() method to display the popup menu when we get an appropriate event. How do
we know what an "appropriate event" is? Fortunately, we don't need to worry about the specifics of our user's
platform; we just need to call the event's isPopupTrigger() method. If this method returns true, we know
the user has done whatever normally displays a popup menu on his system.

Once we know that the user wants to raise a popup menu, we figure out which component the mouse is over by
calling getComponentAt(), with the coordinates of the mouse click (given by e.getX() and e.getY()).

Then we display the popup menu by calling its show() method, again with the mouse coordinates as arguments.

If we wanted to provide different menus for different types of components or the background, we could add a test
within the check for the popup trigger:

if (e.isPopupTrigger()) {
 selectedComponent = getComponentAt(e.getX(), e.getY());

 if (selectedComponent instanceof Button)
 colorMenu.show(e.getComponent(),
 e.getX(), e.getY());
 else if (selectedComponent instanceof Applet)
 // show a menu for the background
 else if (selectedComponent instanceof someOtherComponent)
 // show another menu
}

The only thing left is to handle the action events from the popup menu items. As in our earlier example, we use a
helper method called makeMenuItem() to register the applet as an action listener for every item we add. The
applet implements ActionListener and has the required actionPerformed() method. This method reads
the action command from the event, which is equal to the selected menu item's label by default. It then sets the
background color of the selected component appropriately.

Menus and Choices Checkboxes and
CheckboxGroups

Chapter 11
Using and Creating GUI

Components

11.6 Checkboxes and CheckboxGroups

A Checkbox is a labeled toggle button. A group of such toggle buttons can be made mutually exclusive by
tethering them together with a CheckboxGroup object. By now you're probably well into the swing of things
and could easily master the Checkbox on your own. We'll throw out an example to illustrate a different way of
dealing with the state of components and to show off a few more things about containers.

A Checkbox sends item events when it's pushed, just like a List, a Menu, or a Choice. In our last example,
we caught the action events from our choice and menu selections and worked with them when they happened. For
something like a checkbox, we might want to be lazy and check on the state of the buttons only at some later time,
such as when the user commits an action. It's like filling out a form; you can change your choices until you submit
the form.

The following applet, DriveThrough, lets us check off selections on a fast food menu, as shown in Figure 11.4.
DriveThrough prints the results when we press the Place Order button. Therefore, we can ignore all the item
events generated by our checkboxes and listen only for the action events generated by the button.

Figure 11.7: The DriveThrough applet

[Graphic: Figure 11-7]

import java.awt.*;
import java.awt.event.*;
public class OrderForm extends java.applet.Applet implements ActionListener {
 Panel condimentsPanel = new Panel();

 CheckboxGroup entreeGroup = new CheckboxGroup();
 public void init() {
 condimentsPanel.add(new Checkbox("Ketchup"));
 condimentsPanel.add(new Checkbox("Mustard"));
 condimentsPanel.add(new Checkbox("Pickles"));
 Checkbox c;
 Panel entreePanel = new Panel();
 entreePanel.add(c = new Checkbox("Beef"));
 c.setCheckboxGroup(entreeGroup);
 entreePanel.add(c = new Checkbox("Chicken"));
 c.setCheckboxGroup(entreeGroup);
 entreePanel.add(c = new Checkbox("Veggie"));
 c.setCheckboxGroup(entreeGroup);
 entreeGroup.setCurrent(c);
 Panel orderPanel = new Panel();
 Button orderButton = new Button("Place Order");
 orderButton.addActionListener(this);
 orderPanel.add(orderButton);
 setLayout(new GridLayout(3, 1));
 add(entreePanel);
 add(condimentsPanel);
 add(orderPanel);
 }
 public void actionPerformed(ActionEvent e) {
 takeOrder();
 }
 void takeOrder() {
 Checkbox c = entreeGroup.getCurrent();
 System.out.println(c.getLabel() + " sandwich");
 Component [] components = condimentsPanel.getComponents();
 for (int i=0; i< components.length; i++)
 if ((c = (Checkbox)components[i]).getState())
 System.out.println("With " + c.getLabel());
 System.out.println("Thank you, drive through...");
 }
}

DriveThrough lays out two panels, each containing three checkboxes. The checkboxes in the entreePanel
are tied together through a single CheckboxGroup object. We call their setCheckboxGroup() methods to
put them in a single CheckboxGroup that makes the checkboxes mutually exclusive. The CheckboxGroup
object is an odd animal. One expects it to be a container or a component, but it isn't; it's simply a helper object that
coordinates the functionality of the Checkbox objects. Because a CheckboxGroup isn't a container, it doesn't
have an add() method. To put a checkbox into a group, you call the setCheckboxGroup() method of the
Checkbox class.

Once a set of checkboxes have been placed in a checkbox group, only one of the boxes may be checked at a time.
In this applet, the checkbox group forces you to choose a beef, chicken, or veggie entree, but not more than one.

The condiment choices, however, aren't in a checkbox group, so you can request ketchup, mustard, and pickles on
your chicken sandwich.

When the Place Order button is pushed, we receive an ActionEvent via our actionPerformed() method.
At this point, we gather the information in the checkboxes and print it. actionPerformed() simply calls our
takeOrder() method, which reads the checkboxes. We could have saved references to the checkboxes in a
number of ways; this example demonstrates two. First, we find out which entree was selected. To do so, we call
the CheckboxGroup's getCurrent() method. getCurrent() returns the selected Checkbox; we use
getLabel() to extract the entree's name.

To find out which condiments were selected, we use a more complicated procedure. The problem is that
condiments aren't mutually exclusive, so we don't have the convenience of a CheckboxGroup. Instead, we ask
the condiments Panel for a list of its components. The getComponent() method returns an array of references
to the container's child components. We'll use this to loop over the components and print the results. We cast each
element of the array back to Checkbox and call its getState() method to see if the checkbox is on or off.
Remember that if we were dealing with different types of components, we could determine what kind of
component we had with the instanceof operator.

PopupMenus ScrollPane and Scrollbars

Chapter 11
Using and Creating GUI

Components

11.7 ScrollPane and Scrollbars

One of the big advantages of Java 1.1 is the addition of a ScrollPane container. Previously, unless you were
working with a text component, you had to manage scrolling yourself. It wasn't terribly difficult, but it was a pain: you
had to create Scrollbar objects, attach them to whatever you were scrolling, and redisplay everything with new
positions whenever the user made an adjustment. ScrollPane does it all for you. About the only time you absolutely
need a Scrollbar is when you want to create a "volume control-type" object. For example, you might want to create
a paint mixer that blended different amounts of red, blue, and green, depending on some scrollbar settings.

The unifying theme behind both ScrollPane and Scrollbar is the Adjustable interface, which defines the
responsibilities of scrollable objects. An object that implements Adjustable lets you modify an integer value
through some fixed range. When a user changes the value, the object generates an AdjustmentEvent; as you might
expect, to get an AdjustmentEvent, you must implement AdjustmentListener and register by calling
addAdjustmentListener(). Scrollbars implement Adjustable, and a ScrollPane can return
Adjustable objects for each of its scrollbars.[2]

[2] There may be a bug in the Adjustable objects you get from a ScrollPane. Although you can
read their settings, you can't change them; methods like setMinimum() and setMaximum() (which
should set the object's minimum and maximum values) throw an AWTError.

In this section, we'll demonstrate both the ScrollPane and Scrollbar classes. We'll start with a ScrollPane.

Working With A ScrollPane

Technically, a ScrollPane is a Container, but it's a funny one. It has its own layout manager, which can't be
changed. It can only accomodate one component at a time. This seems like a big limitation, but it isn't. If you want to
put a lot of stuff in a ScrollPane, just put your components into a Panel, with whatever layout manager you like,
and put that panel into the ScrollPane.

When you create a ScrollPane, you can specify the conditions under which its srollbars will be displayed. This is
called the scrollbar display policy; you can specify the policy by using one of the three constants below as an argument
to the ScrollPane constructor.

SCROLLBARS_AS_NEEDED

Only displays scrollbars if the object in the ScrollPane doesn't fit.

SCROLLBARS_ALWAYS

Always displays scrollbars, regardless of the object's size.

SCROLLBARS_NEVER

Never displays scrollbars, even if the object is too big. If you use this policy, you should provide some other
way for the user to manipulate the ScrollPane.

By default, the policy is SCROLLBARS_AS_NEEDED.

Here's an applet that uses a ScrollPane to display a large image. As you'll see, the applet itself is very simple; all we
do is get the image, set the applet's layout manager, create a ScrollPane, put the image in our pane, and add the
ScrollPane to the applet. To make the program slightly cleaner, we create an ImageComponent component to
hold the image, rather than placing the image directly into the ScrollPane. Here's the applet itself:

import java.awt.*;
public class ScrollPaneApplet extends java.applet.Applet {
 public void init() {
 Image image = getImage(getClass().getResource(getParameter("image")));
 setLayout(new BorderLayout());
 ScrollPane scrollPane = new ScrollPane();
 scrollPane.add(new ImageComponent(image));
 add("Center", scrollPane);
 }
}

And here's the ImageComponent. It waits for the image to load, using a MediaTracker, and sets its size to the
size of the image. It also provides a paint() method to draw the image. This takes a single call to drawImage().
The first argument is the image itself; the next two are the coordinates of the image relative to the ImageComponent;
and the last is a reference to the ImageComponent itself (this), which serves as an image observer. (We'll discuss
image observers in Chapter 14, Working With Images; for the time being, take this on faith.)

We also supply an update() method that calls paint(). As we'll see later, the default version of update()
automatically clears the screen, which wastes time if we already know that our image will cover the entire screen.
Therefore, we override update() so that it doesn't bother clearing the screen first.

Finally, ImageComponent provides a getPreferredSize() method, overriding the method it inherits from
Component. This method simply returns the image's size, which is a Dimension object. When you're using a
ScrollPane, it's important for the object you're scrolling to provide a reliable indication of its size, particularly if the
object is a lightweight component.

import java.awt.*;
class ImageComponent extends Component {
 Image image;
 Dimension size;
 ImageComponent (Image image) {

 this.image = image;
 MediaTracker mt = new MediaTracker(this);
 mt.addImage(image, 0);
 try { mt.waitForAll(); } catch (InterruptedException e) { /* error */ };
 size = new Dimension (image.getWidth(null), image.getHeight(null));
 setSize(size);
 }
 public void update(Graphics g) {
 paint(g);
 }
 public void paint(Graphics g) {
 g.drawImage(image, 0, 0, this);
 }
 public Dimension getPreferredSize() {
 return size;
 }
}

Using Scrollbars

Our next example is basically the same as the previous, except that it doesn't use the ScrollPane; it implements its
own scroller using scrollbars. With Java 1.1, you'd never write code like this, but it does show how much work the
ScrollPane saves, and also demonstrates how to use scrollbars in other situations.

Figure 11.8: The ComponentScrollerApplet

[Graphic: Figure 11-8]

Our applet is called ComponentScrollerApplet; it uses a homegrown scroll pane called
ComponentScroller. The component that we scroll is the ImageComponent we developed in the previous
example.

Now let's dive into the code for ComponentScrollerApplet:

import java.awt.*;
import java.awt.event.*;
public class ComponentScrollerApplet extends java.applet.Applet {
 public void init() {
 Image image = getImage(getClass().getResource(getParameter("image")));
 ImageComponent canvas = new ImageComponent(image);
 setLayout(new BorderLayout());
 add("Center", new ComponentScroller(canvas));
 }
}
class ComponentScroller extends Container {
 Scrollbar horizontal, vertical;
 Panel scrollarea = new Panel();
 Component component;
 int orgX, orgY;
 ComponentScroller(Component comp) {
 scrollarea.setLayout(null); // We'll handle the layout
 scrollarea.add(component = comp);
 horizontal = new Scrollbar(Scrollbar.HORIZONTAL);
 horizontal.setMaximum(component.getSize().width);
 horizontal.addAdjustmentListener(new AdjustmentListener() {
 public void adjustmentValueChanged(AdjustmentEvent e) {
 component.setLocation(orgX = -e.getValue(), orgY);
 }
 });
 vertical = new Scrollbar(Scrollbar.VERTICAL);
 vertical.setMaximum(component.getSize().height);
 vertical.addAdjustmentListener(new AdjustmentListener() {
 public void adjustmentValueChanged(AdjustmentEvent e) {
 component.setLocation(orgX, orgY = -e.getValue());
 }
 });
 setLayout(new BorderLayout());
 add("Center", scrollarea);
 add("South", horizontal);
 add("East", vertical);
 }
 public void doLayout() {
 super.doLayout();
 horizontal.setVisibleAmount(scrollarea.getSize().width);
 vertical.setVisibleAmount(scrollarea.getSize().height);
 }
}

So, what do our new components do? Let's start at the top and work our way down. The applet itself is very simple; it
does all of its work in init(). First it sets its layout manager to BorderLayout. Then it acquires an Image object
with a call to getImage(). Finally, the applet creates an ImageComponent to hold our image, creates a

ComponentScroller to hold the ImageComponent, and adds the scroller to the "Center" region of the layout. I
chose BorderLayout because it resizes its central component to fill the entire area available.

Next comes the ComponentScroller itself. ComponentScroller takes a reference to our ImageComponent
in its constructor. It adds the component it will be scrolling to a Panel with no layout manager. It then creates
horizontal and vertical Scrollbar objects (HORIZONTAL and VERTICAL are constants of the Scrollbar class,
used to specify a scrollbar's direction), sets their maximum values using the height and width of the Panel, and
registers an AdjustmentListener for each scrollbar. The AdjustmentListener is an anonymous inner class
that implements the adjustmentValueChanged() method. This method is called whenever the user moves the
scrollbar. It extracts the new scrollbar setting from an AdjustmentEvent and uses this to move the component
we're scrolling to its new location. We have a separate listener for each scrollbar, so we don't have to figure out which
scrollbar generated the event. The listener for the horizontal scrollbar adjusts the component's x coordinate (orgX) and
leaves its y coordinate unchanged; likewise, the listener for the vertical scrollbar adjusts the component's y coordinate.
By adjusting the location of the ImageComponent, we control how much of the image is displayed; anything that
falls outside of the scroller's Panel (scrollarea) isn't displayed.

The ComponentScroller overrides the doLayout() method of the Container class. This gives us an
opportunity to change the size of the scrollbar "handles" whenever the scroller is resized. To do so, we call
super.doLayout() first, to make sure that the container gets arranged properly; although we're overriding this
method, we need to make sure that it does its work. Then we call the setVisibleAmount() method of each
scrollbar with the new width and height of the scrolling area.

So in review: we call setMaximum() to set the vertical scrollbar's maximum value to the image's height; we call
setVisibleAmount() to tell the vertical scrollbar how much area we have available; and it sets the size of its
"handle" accordingly. For example, if the image is 200 pixels high, and the visible amount is 100 pixels, the scrollbar
sets its handle to be roughly half its length. We do similar things to the horizontal scrollbar. As a result, the handles
grow or shrink as we change the size of the viewing area and indicate how much of the image is visible.

The setMaximum() and setVisibleAmount() are both part of the Adjustable interface, which scrollbars
implement. Other methods of this interface are:

getOrientation()

Tells you whether the scrollbar is
HORIZONTAL or VERTICAL. There is no
setOrientation() method in the
interface, but the Scrollbar class does
support setOrientation().

getVisibleAmount() and setVisibleAmount()

Lets you control the size of the scrollbar's
handle (slider). As we saw above, this is a
convenient way to give the user a feel for the
size of the object you're scrolling.

getValue() and setValue()
Lets you retrieve or change the scrollbar's
current setting.

getMinimum() and setMinimum()
Lets you control the scrollbar's minimum
value.

getMaximum() and setMaximum()
Lets you control the scrollbar's maximum
value.

getUnitIncrement() and setUnitIncrement()

Lets you control the amount the scrollbar will
move if the user clicks on the scrollbar's
arrows; in many environments, this means
the user wants to move up or down one line.

getBlockIncrement() and setBlockIncrement()

Lets you control the amount the scrollbar will
move if the user clicks between an arrow and
the slider; in many environments, this means
the user wants to move up or down one page.

addAdjustmentListener() and
removeAdjustmentListener()

Adds or removes listeners for the scrollbar's
events.

It's worth asking why we put our image in a Canvas, which we then put into a Panel, which we put into another
Panel, which we put into the applet. Surely there's a more efficient way. Yes there is, but we wanted to make as many
reusable components as possible. With this design, you can use ImageComponent wherever you need to display an
image and check that it is loaded first; you can use ComponentScroller wherever you need to scroll any kind of
component, not just an image or a Canvas. Making resuable components is one of the big advantages of object
oriented design; it's something you should always keep in mind.

Checkboxes and
CheckboxGroups

Dialogs

Chapter 11
Using and Creating GUI

Components

11.8 Dialogs

A Dialog is another standard feature of user interfaces. In Java, a Dialog is a kind of Window, which means
that it's really a container into which you put other components. A Dialog can be either modal or nonmodal. A
modal dialog seizes the attention of the user by staying in the foreground and grabbing all input until it is satisfied.
A non-modal dialog isn't quite so insistent; you're allowed to do other things before dealing with the dialog.
Dialog objects are useful for pop-up messages and queries or important user-driven decisions.

Most of the components we've seen so far have some special kinds of events associated with them. A Dialog
doesn't have any special events. Of course, this doesn't mean that a dialog doesn't generate events. Since a dialog is
a Window, it can generate any event that a Window can. However, there aren't any special events, like action
events or item events, to worry about. When you're dealing with a Dialog, your primary concern will be events
generated by the components that you put into the Dialog.

We'll do a quick example of a Dialog window and then take a look at FileDialog, a subclass of Dialog that
provides an easy-to-use file-selector component. Our example will be a modal dialog that asks a simple question:

A Simple Query Dialog

import java.awt.*;
import java.awt.event.*;
class ModalYesNoDialog extends Dialog implements ActionListener {
 private boolean isYes = false;
 ModalYesNoDialog(Frame frame, String question) {
 super(frame, true /* modal */);
 Label label = new Label(question);
 label.setFont(new Font("Dialog",Font.PLAIN,20));
 add("Center", label);
 Panel yn = new Panel();
 Button button = new Button("Yes");
 button.addActionListener(this);
 yn.add(button);
 button = new Button("No");
 button.addActionListener(this);
 yn.add(button);

 add("South", yn);
 pack();
 }
 synchronized public boolean answer() {
 return isYes;
 }
 synchronized public void actionPerformed (ActionEvent e) {
 isYes = e.getActionCommand().equals("Yes");
 dispose();
 }
 public static void main(String[] s) {
 Frame f = new Frame();
 f.add("Center", new Label("I'm the application"));
 f.add("South", new Button("Can you press me?"));
 f.pack();
 f.show();
 ModalYesNoDialog query = new ModalYesNoDialog(f, "Do you love me?");
 query.show();
 if (query.answer() == true)
 System.out.println("She loves me...");
 else
 System.out.println("She loves me not...");
 }
}

The heart of this example is a class called ModalYesNoDialog that implements a simple form with a question
and two buttons. To create the Dialog, our class's constructor calls its superclass's constructor (super()),
which is Dialog(). When we create the dialog, we must supply a parent Frame; we also specify that the
Dialog is modal.

The rest of the constructor--for that matter, the rest of the class--doesn't have any surprises. We use a Label to
display the question; we add a pair of buttons, labeled "Yes" and "No," for the user to give his answer. We provide
an answer() method so we can ask the dialog which button the user pushed; and we provide an
actionPerformed() method to receive the button events.

The rest of our program is an application that uses the ModalYesNoDialog. It creates a Frame, creates the
ModalYesNoDialog, displays the dialog by calling its show() method, and reads the answer.

We used an application rather than an applet to demonstrate the Dialog because dialogs are somewhat unweildy
in applets. You need to have a Frame to serve as the dialog's parent, and most applets don't need Frames.
However, there's a simple workaround. There's no reason an applet can't use an invisible frame: just create a
Frame, call its pack() method, but never call its show() method. The Frame won't be displayed, but will be
able to serve as the parent to a dialog box.

Now let's talk briefly about nonmodal dialogs. The most obvious change is in the constructor: now you call

new Dialog(myFrame, false);

But there are a few other issues to think about. Using a nonmodal dialog is slightly more complex because it's
asynchronous: the program doesn't wait until the user responds. Therefore, you might want to modify the
answer() method so that it calls wait() to wait until the user replies. The code would look like this:

// add a new boolean for the answer() method
private boolean isAnswered = false;
// add a wait() in the answer() method
synchronized public boolean answer() {
 while (!isAnswered)
 try { wait(); } catch (InterruptedException e) { /* error */ }
 return isYes;
}

If you do this, you also need to modify actionPerformed() to call notifyAll() and terminate the
wait():

 // add a notify() in the actionPeformed() method
 synchronized public void actionPerformed (ActionEvent e) {
 isYes = e.getActionCommand().equals("Yes");
 isAnswered = true;
 notifyAll();
 dispose();
 }
}

File Selection Dialog

A FileDialog is a standard file-selection box. As with other AWT components, most of FileDialog is
implemented in the native part of the AWT toolkit, so it looks and acts like a standard file selector on your
platform.

Now selecting files all day can be pretty boring without a greater purpose, so we'll exercise the FileDialog in a
mini-editor application. Editor provides a text area in which we can load and work with files. We'll stop just shy
of the capability to save and let you fill in the blanks (with a few caveats). The FileDialog created by Editor
is shown in Figure 11.6.

Figure 11.9: A FileDialog

[Graphic: Figure 11-9]

import java.awt.*;
import java.awt.event.*;
import java.io.*;
class Editor extends Frame implements ActionListener {
 TextArea textArea = new TextArea();
 Editor() {
 super("Editor");
 setLayout(new BorderLayout());
 add("Center", textArea);
 Menu menu = new Menu ("File");
 menu.add (makeMenuItem ("Load"));
 menu.add (makeMenuItem ("Save"));
 menu.add (makeMenuItem ("Quit"));
 MenuBar menuBar = new MenuBar();
 menuBar.add (menu);
 setMenuBar(menuBar);
 pack();
 }
 public void actionPerformed(ActionEvent e) {
 String command = e.getActionCommand();
 if (command.equals("Quit"))
 dispose();
 else if (command.equals("Load"))
 loadFile();

 else if (command.equals("Save"))
 saveFile();
 }
 private void loadFile () {
 FileDialog fd = new FileDialog(this, "Load File", FileDialog.LOAD);
 fd.show();
 String file = fd.getFile();
 if (file == null) // Cancel
 return;
 try {
 FileInputStream fis = new FileInputStream (fd.getFile());
 byte [] data = new byte [fis.available()];
 fis.read(data);
 textArea.setText(new String(data));
 } catch (IOException e) {
 textArea.setText("Could not load file...");
 }
 }
 private void saveFile() {
 FileDialog fd = new FileDialog(this, "Save File", FileDialog.SAVE);
 fd.show();
 // Save file data...
 }
 private MenuItem makeMenuItem(String name) {
 MenuItem m = new MenuItem(name);
 m.addActionListener(this);
 return m;
 }
 public static void main(String[] s) {
 new Editor().show();
 }
}

Editor is a Frame that lays itself out with a TextArea and a pull-down menu. From the pull-down File menu,
we can opt to Load, Save, or Quit. The action() method catches the events associated with these menu
selections and takes the appropriate action.

The interesting parts of Editor are the private methods loadFile() and saveFile(). loadFile()
creates a new FileDialog with three parameters: a parent frame (just as in the previous Dialog example), a
title, and a directive. This parameter should be one of the FileDialog class's static identifiers LOAD or
SAVE, which tell the dialog whether to load or save a file.

A FileDialog does its work when the show() method is called. Unlike most components, its show() method
blocks the caller until it completes its job; the file selector then disappears. After that, we can retrieve the
designated filename with the FileDialog's getFile() method. In loadFile(), we use a fragment of code
from Chapter 8, Input/Output Facilities to get the contents of the named file. We then add the contents to the
TextArea with setText(). You can use loadFile() as a roadmap for the unfinished saveFile()

method, but it would be prudent to add the standard safety precautions. For example, you could use the previous
YesNo example to prompt the user before overwriting an existing file.

ScrollPane and Scrollbars Creating custom components

Chapter 11
Using and Creating GUI

Components

11.9 Creating custom components

In the previous sections, we've worked with many different user interface objects, and made a lot of new classes that are sort of
like components. Our new classes do one particular thing well; a number of them can be added to applets or other containers
just like the standard AWT components; and several of them are lightweight components that use system resources efficiently
because they don't rely on a peer.

But these new classes still aren't really components. If you think about it, all our classes have been fairly self-contained; they
know everything about what to do, and don't rely on other parts of the program to do much processing. Therefore, they are
overly specialized. Our menu example created a DinnerFrame class that had a menu of dinner options, but it included all the
processing needed to handle the user's selections. If we wanted to process the selections differently, we'd have to modify the
class. That's not what we want; we'd like to separate registering the user's choices from processing those choices. In contrast,
true components don't do any processing. They let the user take some action, and then inform some other part of the program,
which processes the action.

So we need a way for our new classes to communicate with other parts of the program. Since we want our new classes to be
components, they should communicate the way components communicate: that is, by generating events and sending those
events to listeners. So far, we've written a lot of code that listened for events, but haven't seen any examples that generated
events.

Generating events sounds like it ought to be difficult, but it isn't. You can either create new kinds of events, by subclassing
AWTEvent, or use one of the standard event types. In either case, you need to register listeners for your events, and provide a
means to deliver events to your listeners. If you are using the standard events, AWT provides an AWTEventMulticaster
class that handles most of the machinery. We'll focus on that option in this section; at the end, we'll make some comments on
how you might manage events on your own.

The AWTEventMulticaster is one of those things that looks a lot more complicated than it is. It is confusing, but most of
the confusion occurs because it's hard to believe it's so simple. Its job is to maintain a linked list of event listeners and to
propagate events to all the listeners on that linked list. So we can use a multicaster to register (and unregister) event listeners
and to send any events we generate to all registered listeners.

The best way to show you how to use the multicaster is through an example. The following example creates a new component
called PictureButton. PictureButton looks at least somewhat button-like and responds to mouse clicks
(MOUSE_RELEASED events) by generating action events. (Figure 11.7 shows a PictureButton in both depressed and
raised modes.) The PictureButtonApplet is passed the events in its actionPerformed() method, just as with any
other button, and prints a message each time it's pressed.

Figure 11.10: The PictureButtonApplet

[Graphic: Figure 11-10]

import java.awt.*;
import java.awt.event.*;
public class PictureButtonApplet extends java.applet.Applet implements ActionListener
{
 Image image;
 public void init() {
 image = getImage(getClass().getResource(getParameter("image")));
 PictureButton pictureButton = new PictureButton(image);
 add (pictureButton);
 pictureButton.setActionCommand("Aaargh!");
 pictureButton.addActionListener(this);
 }

 public void actionPerformed(ActionEvent e) {
 System.out.println(e);
 }
}
class PictureButton extends Component {
 private Image image;
 boolean pressed = false;
 ActionListener actionListener;
 String actionCommand;
 PictureButton(Image image) {
 this.image = image;
 MediaTracker mt = new MediaTracker(this);
 mt.addImage(image, 0);
 try { mt.waitForAll(); } catch (InterruptedException e) { /* error */ };
 setSize(image.getWidth(null), image.getHeight(null));
 enableEvents(AWTEvent.MOUSE_EVENT_MASK);
 }
 public void paint(Graphics g) {
 g.setColor(Color.white);
 int width = getSize().width, height = getSize().height;
 int offset = pressed ? -2 : 0; // fake depth
 g.drawImage(image, offset, offset, width, height, this);
 g.draw3DRect(0, 0, width-1, height-1, !pressed);
 g.draw3DRect(1, 1, width-3, height-3, !pressed);
 }
 public Dimension getPreferredSize() {
 return getSize();

 }
 public void processEvent(AWTEvent e) {
 if (e.getID() == MouseEvent.MOUSE_PRESSED) {
 pressed = true;
 repaint();
 } else
 if (e.getID() == MouseEvent.MOUSE_RELEASED) {
 pressed = false;
 repaint();
 fireEvent();
 }
 super.processEvent(e);
 }
 public void setActionCommand(String actionCommand) {
 this.actionCommand = actionCommand;
 }
 public void addActionListener(ActionListener l) {
 actionListener = AWTEventMulticaster.add(actionListener, l);
 }
 public void removeActionListener(ActionListener l) {
 actionListener = AWTEventMulticaster.remove(actionListener, l);
 }
 private void fireEvent() {
 if (actionListener != null) {
 ActionEvent event = new ActionEvent(this,
 ActionEvent.ACTION_PERFORMED, actionCommand);
 actionListener.actionPerformed(event);
 }
 }
}

Before diving into the event multicaster, here are a few notes about the applet and the PictureButton. The applet is an
ActionListener because it is looking for events coming from the button. Therefore it registers itself as a listener and
contains an actionPerformed() method. The PictureButton doesn't have a label, so the applet explicitly sets the
button's action command by calling setActionCommand().

The button itself is concerned mostly with being pretty. It uses a media tracker to make sure that the image has loaded before
displaying itself. The paint() method, which we won't discuss in detail, is devoted to making the button appear "pressed"
(i.e., recessed) when the mouse is pressed. The getPreferredSize() method lets layout managers size the button
appropriately.

Now we'll start with the button's machinery. The button needs to receive mouse events. It could register as a mouse listener,
but in this case, it seems more appropriate to override processEvent(). processEvent() receives all incoming events.
It first checks whether we have a MOUSE_PRESSED event; if so, it tells the button to repaint itself in its "pressed" mode. If the
event is a MOUSE_RELEASED event, it tells the button to paint itself in its "unpressed" mode and calls the private
fireEvent() method, which sends an action event to all listeners. Finally, processEvent() calls
super.processEvent() to make sure normal event processing occurs; this is a good practice whenever you override a
method that performs a significant task.

However, processEvent() doesn't receive events if they aren't generated; and normally, events aren't generated if there are
no listeners. Therefore, the button's constructor calls enableEvents() with the argument MOUSE_EVENT_MASK to turn
on mouse event processing.

Now we're ready to talk about how to generate events. The picture button has addActionListener() and
removeActionListener() methods, for registering listeners. These just call the static methods add() and remove()
of the AWTEventMulticaster class. Here's the addActionListener() method:

public void addActionListener(ActionListener l) {
 actionListener = AWTEventMulticaster.add(actionListener, l);
}

If you look back to see how the instance variable actionListener is declared, you'll see that it is an ActionListener.
No big surprise--except that this code doesn't appear to make sense. It's saying "add an action listener to an action listener and
store the result back in the original action listener."

There are a couple of tricks here. First, an AWTEventMulticaster implements all of the listener interfaces. Therefore, a
multicaster can appear wherever an ActionListener (or any other listener) is required. In this case, the
actionListener object will be a multicaster--perhaps not what you expected, and certainly not what's being passed in the
argument l. Now the code is starting to make sense: earlier, I said that multicasters maintained linked lists of listeners. So this
method really adds l to the linked list of action listeners that a multicaster is managing, and saved the new list.

But that begs the question: where does the multicaster come from? The linked list has to start somewhere. This is where the
second trick comes in. add() is a static method, so we don't need a multicaster to call it. But we still need some way to start
the linked list. The class's constructor is never called--in fact, it's protected, so you can't call it. The answer lies in the add()
method, which creates an AWTEventMulticaster when you need it--that is, as soon as you add the second listener to the
list. The arguments to add() may be null; one of them probably is null when you register your first action listener.

Removing action listeners works the same way. We use the AWTEventMulticaster's remove() method. After the last
listener is taken off the linked list, remove() returns null.

With this machinery in place, sending an event to all registered listeners is very simple. You just create an event by calling its
constructor, and then call the appropriate method in the listener interface to deliver it. The AWTEventMulticaster makes
sure that the event gets to all the listeners. In this example, we create an ActionEvent and deliver the event to the listeners'
actionPerformed() methods by calling actionListener.actionPerformed(event).

The code to generate other kinds of events is almost exactly the same. Remember the multicaster implements all the listener
interfaces and has overloaded add() and remove() methods for every standard listener type. Therefore, it can be used for
any kind of AWTEvent. It shouldn't be hard to adapt this example to other situations.

What if you want to generate your own event type by subclassing AWTEvent? To make things concrete, let's say you want to
create an ExplosionEvent that you generate whenever your monitor catches fire. In this case, you should define your own
ExplosionListener interface, and (possibly) your own ExplosionAdapter class. You can't use the
AWTEventMulticaster unless your new event is a subclass of a standard event; extending the multicaster to support new
event types probably isn't worth the effort. It's easier to write an addExplosionListener() method that maintains a
Vector of listeners and to deliver events by calling the appropriate method of each listener in the Vector. We'll
demonstrate this approach in the next section, where we implement another new component: a Dial.

A Dial Component

 Things to mention in widgets Dial event example:
 synchronization issues in add/remove/fire.
 You should sync add/remove... but be wary of syncing fire,
 deadlocks

The standard AWT classes don't have a component that's similar to an old fashioned dial--for example, the volume control on
your radio. Such a component is something of a rarity; I don't remember seeing one in any application I've used. But there's no
reason we can't build one. In this section, we implement a Dial class. We also define a new event type, DialEvent, and a
new listener interface, DialListener. The dial can be used just like any other Java component. It is built entirely in Java
and, therefore, is a lightweight component; it extends Component directly and doesn't have a peer.

By defining a new event type, I'm stretching the point slightly. There's no reason our dial couldn't use the standard
AdjustmentEvent. However, this gives us a chance to show how to handle event listeners without using the event
multicaster. There are many situations in which defining a new event type will be the only appropriate solution.

Figure 11.11 shows what the dial looks like; it is followed by the code.

Figure 11.11: The Dial Applet

[Graphic: Figure 11-11]

import java.awt.*;
import java.awt.event.*;
import java.util.*;
public interface DialListener {
 void dialAdjusted(DialEvent e);
}
public class DialEvent extends AWTEvent {
 int value;
 public static final int DIAL_ADJUSTED = RESERVED_ID_MAX + 1;
 DialEvent(Dial source, int id, int value) {
 super(source, id);
 this.value = value;
 }
 public int getValue() {
 return value;
 }
}
public class Dial extends Component {
 int minValue = 0, value, maxValue = 100, radius;
 Vector dialListeners;
 Dial(int maxValue) {
 this.maxValue = maxValue;
 enableEvents(AWTEvent.MOUSE_MOTION_EVENT_MASK);
 }
 public void paint(Graphics g) {
 int tick = 10;
 radius = getSize().width/2 - tick;
 g.drawLine(radius*2+tick/2, radius, radius*2+tick, radius); // the tick

 draw3DCircle(g, 0, 0, radius, true);
 draw3DCircle(g, 1, 1, radius-1, true);
 int knobRadius = radius/7;
 double th = value*(2*Math.PI)/(maxValue-minValue);
 int x = (int)(Math.cos(th)*(radius-knobRadius*3)),
 y = (int)(Math.sin(th)*(radius-knobRadius*3));
 draw3DCircle(g, x+radius-knobRadius, y+radius-knobRadius, knobRadius, false
);
 }
 private void draw3DCircle(Graphics g, int x, int y, int radius, boolean raised)
{
 g.setColor(raised ? Color.white : Color.black);
 g.drawArc(x, y, radius*2, radius*2, 45, 180);
 g.setColor(raised ? Color.black : Color.white);
 g.drawArc(x, y, radius*2, radius*2, 225, 180);
 }
 public void processEvent(AWTEvent e) {
 if (e.getID() == MouseEvent.MOUSE_DRAGGED) {
 int y=((MouseEvent)e).getY();
 int x=((MouseEvent)e).getX();
 double th = Math.atan((1.0*y-radius)/(x-radius));
 int value = ((int)(th/(2*Math.PI) * (maxValue-minValue)));
 if (x < radius)
 setValue(value + maxValue/2);
 else if (y < radius)
 setValue(value + maxValue);
 else
 setValue(value);
 fireEvent();
 }
 super.processEvent(e);
 }
 public void setValue(int value) {
 this.value = value;
 repaint();
 }
 public int getValue() { return value; }
 public void setMinimum(int minValue) { this.minValue = this.minValue; }
 public int getMinimum() { return minValue; }
 public void setMaximum(int maxValue) { this.maxValue = maxValue; }
 public int getMaximum() { return maxValue; }
 public void addDialListener(DialListener listener) {
 if (dialListeners == null)
 dialListeners = new Vector();
 dialListeners.addElement(listener);
 }
 public void removeDialListener(DialListener listener) {
 if (dialListeners != null)
 dialListeners.removeElement(listener);
 }
 private void fireEvent() {
 if (dialListeners == null)
 return;

 DialEvent event = new DialEvent(this, DialEvent.DIAL_ADJUSTED, value);
 for (Enumeration e = dialListeners.elements(); e.hasMoreElements();)
 ((DialListener)e.nextElement()).dialAdjusted(event);
 }
}
public class DialApplet extends java.applet.Applet
 implements DialListener, AdjustmentListener {
 final int max = 100;
 Scrollbar scrollbar = new Scrollbar(Scrollbar.HORIZONTAL, 0, 1, 0, max);
 Dial dial = new Dial(max);
 public void init() {
 setLayout(new BorderLayout());
 dial.addDialListener(this);
 add("Center", dial);
 scrollbar.addAdjustmentListener(this);
 add("South", scrollbar);
 }
 public void dialAdjusted(DialEvent e) {
 scrollbar.setValue(e.getValue());
 }
 public void adjustmentValueChanged(AdjustmentEvent e) {
 dial.setValue(e.getValue());
 }
}

Let's start from the top. We'll focus on the event handling and leave you to figure out the trigonometry on your own. The
DialListener interface contains a single method, dialAdjusted(), which is called when a DialEvent occurs. The
DialEvent itself is simple. It defines a new event ID, DIAL_ADJUSTED, that identifies dial events. This constant is defined
so that it won't conflict with the ID numbers reserved for standard AWT events. The event itself only carries one item of data:
the dial's new value. It has a single method that returns this value.

The constructor for the Dial class stores the dial's maximum value; its minimum value is 0. It then enables mouse motion
events, which the Dial needs to tell how it is being manipulated.

paint(), draw3DCircle(), and processEvent() do a lot of trigonometry to figure out how to display the dial.
draw3DCircle() is a private helper method that draws a circle that appears either raised or depressed; we use this to make
the dial look three dimensional. processEvent() is called whenever any event occurs within the component's area. We
only expect to receive mouse motion events, because these are the only events we enabled. processEvent() first checks
the event's ID; if it is MOUSE_DRAGGED, the user has changed the dial's setting. We respond by computing a new value for the
dial, repainting the dial in its new position and firing a DialEvent. Any other events (in particular, MOUSE_MOVED) are
ignored. However, we call the superclass's processEvent() method to make sure that any other processing needed for this
event occurs.

The next group of methods provide ways to retrieve or change the dial's current setting, minimum, and maximum values. They
are similar to the methods in the Adjustable interface; you could argue that Dial really ought to implement
Adjustable.

Finally, we reach the methods that work with listeners. addDialListener() adds a new listener to a Vector of listeners
by calling addElement(). If the vector doesn't already exist, addDialListener() creates it.
removeDialListener() simply takes a listener off the list, so that it won't receive any further events. fireEvent() is a
private method that creates a DialEvent and sends it to every listener. It does so by converting the Vector into an
Enumeration and running through every element in the list by calling nextElement() until hasMoreElements()

returns false. To send the event to a listener, it calls the listener's dialAdjusted() method. Note that nextElement()
returns an Object; we must cast this object to DialListener before we can deliver the event.

To show how the applet is used, I included a simple applet called DialApplet. This applet places a Dial and a
Scrollbar in a border layout. Any change to either the dial or the scrollbar is reflected by the other. The applet implements
both DialListener and AdjustmentListener, and therefore has both dialAdjusted() and
adjustmentValueChanged() methods. Although this isn't necessarily a good argument for creating a new event type,
it's worth noticing that the logic of the listener methods is much simpler than it would have been if the dial generated
adjustment events.

Dialogs Layout Managers

Chapter 12
Layout Managers

12.2 GridLayout

GridLayout arranges components into regularly spaced rows and columns. The components are
arbitrarily resized to fit in the resulting areas; their minimum and preferred sizes are consequently
ignored. GridLayout is most useful for arranging very regular, identically sized objects and for
allocating space for Panels to hold other layouts in each region of the container.

GridLayout takes the number of rows and columns in its constructor. If you subsequently give it too
many objects to manage, it adds extra columns to make the objects fit. You can also set the number of
rows or columns to zero, which means that you don't care how many elements the layout manager packs
in that dimension. For example, GridLayout(2,0) requests a layout with two rows and an unlimited
number of columns; if you put ten components into this layout, you'll get two rows of five columns each.

The following applet sets a GridLayout with three rows and two columns as its layout manager; the
results are shown in Figure 12.3.

Figure 12.3: A grid layout

[Graphic: Figure 12-3]

import java.awt.*;

public class Grid extends java.applet.Applet {
 public void init() {
 setLayout(new GridLayout(3, 2));
 add(new Button("One"));
 add(new Button("Two"));
 add(new Button("Three"));
 add(new Button("Four"));
 add(new Button("Five"));
 }
}

The five buttons are laid out, in order, from left to right, top to bottom, with one empty spot.

FlowLayout BorderLayout

Chapter 12
Layout Managers

12.3 BorderLayout

BorderLayout is a little more interesting. It tries to arrange objects in one of five geographical
locations: "North," "South," "East," "West," and "Center," possibly with some padding between.
BorderLayout is the default layout for Window and Frame objects. Because each component is
associated with a direction, BorderLayout can manage at most five components; it squashes or
stretches those components to fit its constraints. As we'll see in the second example, this means that you
often want to have BorderLayout manage sets of components in their own panels.

When we add a component to a border layout, we need to specify both the component and the position at
which to add it. To do so, we use an overloaded version of the add() method that takes an additional
argument as a constraint. This additional argument is passed to the layout manager when the new
component is added. In this case it specifies the name of the position for the BorderLayout. Otherwise
the LayoutManager is not consulted until it's asked to lay out the components.

The following applet sets a BorderLayout layout and adds our five buttons again, named for their
locations; the result is shown in Figure 12.4.

Figure 12.4: A border layout

import java.awt.*;

public class Border extends java.applet.Applet {
 public void init() {
 setLayout(new java.awt.BorderLayout());
 add(new Button("North"), "North");
 add(new Button("East"), "East");
 add(new Button("South"), "South");
 add(new Button("West"), "West");
 add(new Button("Center"), "Center");
 }
}

So, how exactly is the area divided up? Well, the objects at "North" and "South" get their preferred
height and are expanded to fill the full area horizontally. "East" and "West" components on the other
hand, get their preferred width, and are expanded to fill the remaining area between "North" and "South"
vertically. Finally, the "Center" object takes all of the rest of the space. As you can see in Figure 12.5,
our buttons get distorted into interesting shapes.

What if we don't want BorderLayout messing with the sizes of our components? One option would
be to put each button in its own Panel. The default layout for a Panel is FlowLayout, which
respects the preferred size of components. The preferred sizes of the panels are effectively the preferred
sizes of the buttons, but if the panels are stretched, they won't pull their buttons with them. Border2
illustrates this approach as shown in Figure 12.5.

Figure 12.5: Another border layout

import java.awt.*;

public class Border2 extends java.applet.Applet {
 public void init() {
 setLayout(new BorderLayout());
 Panel p = new Panel();
 p.add(new Button("East"));
 add(p, "East");
 p = new Panel();
 p.add(new Button("West"));
 add(p, "West" ;
 p = new Panel();
 p.add(new Button("North"));
 add(p, "North");
 p = new Panel();
 p.add(new Button("South"));
 add(p, "South");
 p = new Panel();
 p.add(new Button("Center"));
 add(p, "Center");
 }
}

In this example, we create a number of panels, put our buttons inside the panels, and put the panels into
the applet, which has the BorderLayout manager. Now, the Panel for the "Center" button soaks up
the extra space that comes from the BorderLayout. Each Panel's FlowLayout centers the button
in the panel and uses the button's preferred size. In this case, it's all a bit awkward. (This is one of the
problems that getMaximumSize() will eventually solve.) We'll see how we could accomplish this
more directly using GridBagLayout shortly.

Finally, this version of the applet has a lot of unused space. If we wanted, we could get rid of the extra
space by resizing the applet:

setSize(getPreferredSize());

GridLayout CardLayout

Chapter 12
Layout Managers

12.4 CardLayout

CardLayout is a special layout manager for creating the effect of a stack of cards. Instead of arranging
all of the container's components, it displays only one at a time. You would use this kind of layout to
implement a hypercard stack or a Windows-style set of configuration screens. When you add a
component to the layout, you use the two-argument version of add(); the extra argument is an arbitrary
string that serves as the card's name:

add("netconfigscreen", myComponent);

To bring a particular card to the top of the stack, call the CardLayout's show() method with two
arguments: the parent Container and the name of the card you want to show. There are also methods
like first(), last(), next(), and previous() for working with the stack of cards. These
methods take a single argument: the parent Container. Here's a simple example:

import java.awt.*;

public class main extends java.applet.Applet {
 CardLayout cards = new CardLayout();

 public void init() {
 setLayout(cards);
 add(new Button("one"), "one");
 add(new Button("two"), "two");
 add(new Button("three"), "three");
 }

 public boolean action(Event e, Object arg) {
 cards.next(this);
 return true;
 }
}

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch12_05.htm

We add three buttons to the layout and cycle through them as they are pressed. In a more realistic
example, we would build a group of panels, each of which might implement some part of a complex user
interface, and add those panels to the layout. Each panel would have its own layout manager. The panels
would be resized to fill the entire area available (i.e., the area of the Container they are in), and their
individual layout managers would arrange their internal components.

BorderLayout GridBagLayout

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch12_05.htm

Chapter 12
Layout Managers

12.7 Absolute Positioning?

It's possible to set the layout manager to null: no layout control. You might do this to position an object
on the display at some absolute coordinates. This is almost never the right approach. Components might
have different minimum sizes on different platforms, and your interface would not be very portable.

The following applet doesn't use a layout manager and works with absolute coordinates instead:

import java.awt.*;

public class MoveButton extends java.applet.Applet {
 Button button = new Button("I Move");

 public void init() {
 setLayout(null);
 add(button);
 button.setSize(button.getPreferredSize());
 button.move(20, 20);
 }

 public boolean mouseDown(Event e, int x, int y) {
 button.move(x, y);
 return (true);
 }

}

Click in the applet area, outside of the button, to move the button to a new location. If you are running
the example in an external viewer, try resizing the window and note that the button stays at a fixed
position relative to the display origin.

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch12_06.htm

Nonstandard Layout
Managers

Drawing With the AWT

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch12_06.htm

Chapter 13
Drawing With the AWT

13.2 Colors

The TestPattern applet fills its shapes with a number of colors, using the setColor() method of
the Graphics object. setColor() sets the current color in the graphics context, so we set it to a
different color before each drawing operation. But where do these color values come from?

The java.awt.Color class handles color in Java. A Color object describes a single color. You can
create an arbitrary Color by specifying the red, green, and blue values, either as integers between 0 and
255 or as floating-point values between 0.0 and 1.0. You can also use getColor() to look up a named
color in the system properties table, as described in Chapter 7, Basic Utility Classes. getColor() takes
a String color property name, retrieves the integer value from the Properties list, and returns the
Color object that corresponds to that color.

The Color class also defines a number of static final color values; these are what we used in the
TestPattern example. These constants, such as Color.black and Color.red, provide a
convenient set of basic colors for your drawings.

Desktop Colors

The Color class I just described makes it easy to construct a particular color; however, that's not always
what you want to do. Sometimes you want to match a preexisting color scheme. This is particularly
important when you are designing a user interface; you might want your components to have the same
colors as other components on that platform, and to change automatically if the user redefines his or her
color scheme.

That's what the SystemColor class is for. A system color represents the color used by the local
windowing system in a certain context. The SystemColor class holds lots of pre-defined SystemColors,
just like the Color Class holds some pre-defined basic colors. For example, the field activeCaption
represents the color used for the background to the title of an active window; activeCaptionText
represents the color used for the title itself. menu represents the background color of menu selection;
menuText represents the color of a menu item's text when it is not selected; textHighlightText is

the color used when the item is selected; and so on. You could use the window value to set the color of a
Window to match the other Windows on the user's screen--whether or not they're generated by Java
programs.

myWindow.setBackground(SystemColor.window);

Because the SystemColor class is a subclass of Color, you can use it wherever you would use a
Color. However, the SystemColor constants are tricky. They are constants as far as you, the
programmer, are concerned; your code is not allowed to modify them. However, they can be modified at
run-time by the Toolkit. If the user changes his color scheme, the system colors are automatically
updated to follow suit; as a result, anything displayed with system colors will also change color the next
time it is redrawn. For example, the window myWindow would automatically change its background
color to the new background color.

The SystemColor class has one noticeable shortcoming. You can't compare a system color to a
Color directly; the Color.equals() method doesn't return reliable results. For example, if you
want to find out whether the window background color is red, you can't call:

Color.red.equals(SystemColor.window);

Instead, you should use getRGB() to find the color components of both objects, and compare them,
rather than comparing the objects themselves.

Basic Drawing Fonts

Chapter 13
Drawing With the AWT

13.3 Fonts

Text fonts in Java are represented by instances of the java.awt.Font class. A Font object is constructed from a font
name, style identifier, and a point size. We can create a Font at any time, but it's meaningful only when applied to a
particular component on a given display device. Here are a couple of fonts:

Font smallFont = new Font("Monospaced", Font.PLAIN, 10);
Font bigFont = new Font("Serif", Font.BOLD, 18);

The font name is a symbolic name for the font family. The following font names should be available on all platforms;
Figure 13.4 shows what these fonts look like on a typical platform:[2]

[2] The names Helvetica, TimesRoman, Courier, Symbol, and ZapfDingbats are supported in
Java 1.1 for backwards compatibility, but shouldn't be used; they may be removed in a future version.
Symbols and ZapfDingbats, which used to be available as Font names have now taken their proper
place as ranges in the Unicode character table: 2200-22ff and 2700-27ff respectively.

Figure 13.4: Font examples

[Graphic: Figure 13-4]

● Serif (generic name for TimesRoman)

● SansSerif (generic name for Helvetica)

● Monospaced (generic name for Courier)

● Dialog

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm

● DialogInput

The font you specify is mapped to an actual font on the local platform. Java's fonts.properties files map the font names to
the available fonts, covering as much of the Unicode character set as possible. If you request a font that doesn't exist, you
get the default font.

You can also use the static method Font.getFont() to look up a font name in the system properties list.
getFont() takes a String font property name, retrieves the font name from the Properties table, and returns the
Font object that corresponds to that font. You can use this mechanism, as with Colors, to define fonts with properties
from outside your application.

The Font class defines three static style identifiers: PLAIN, BOLD, and ITALIC. You can use these values on all
fonts. The point size determines the size of the font on a display. If a given point size isn't available, Font substitutes a
default size.[3]

[3] There is no straightforward way to determine if a given Font is available at a given point size in the
current release of Java. Fonts are one of Java's weak points. Sun has promised better Font handling (and
perhaps true, portable Fonts) in a future release.

You can retrieve information about an existing Font with a number of routines. The getName(), getSize() and
getStyle() methods retrieve the symbolic name, point size and style, respectively. You can use the getFamily()
method to find out the platform specific font family to which the font actually maps.

Finally, to actually use a Font object you can simply specify it as an argument to the setFont() method of a
Component or Graphics object. Subsequent text-drawing commands like drawString() for that component or in
that graphics context use the specified font.

Font Metrics

To get detailed size and spacing information for text rendered in a font, we can ask for a java.awt.FontMetrics
object. Different systems will have different real fonts available; the available fonts may not match the font you request.
Thus, a FontMetrics object presents information about a particular font on a particular system, not general information
about a font. For example, if you ask for the metrics of a nine-point Monospaced font, what you get isn't some abstract
truth about Monospaced fonts; you get the metrics of the font that the particular system uses for nine-point Monospaced--
which may not be exactly nine point or even Monospaced.

Use the getFontMetrics() method for a Component to retrieve the FontMetrics for a Font as it would appear
for that component:

public void init() {
 ...
 // Get the metrics for a particular font on this component
 FontMetrics smallFont = myLabel.getFontMetrics(smallFont);
 ...
}

The Graphics object also has a getFontMetrics() method that gets the FontMetrics information for the
current font in the graphics context.

public void paint(Graphics g) {
 // Get the metrics for the current font
 FontMetrics fm = g.getFontMetrics();
 ...
}

The following applet, FontShow, displays a word and draws reference lines showing certain characteristics of its font, as
shown in Figure 13.5. Clicking in the applet toggles the point size between a small and a large value.

Figure 13.5: The FontShow applet

[Graphic: Figure 13-5]

import java.awt.*;
import java.awt.event.*;
public class FontShow extends java.applet.Applet {
 static final int LPAD=25; // Frilly line padding
 boolean bigFont = true;
 public void init() {
 addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 bigFont = !bigFont;
 repaint();
 }
 });
 }
 public void paint(Graphics g) {
 String message = getParameter("word");
 g.drawRect(0, 0, getSize().width-1, getSize().height-1);
 if (bigFont)
 g.setFont(new Font("Dialog",Font.PLAIN,24));
 else
 g.setFont(new Font("Dialog",Font.PLAIN,12));
 FontMetrics metrics = g.getFontMetrics();
 int fontAscent = metrics.getMaxAscent ();
 int fontDescent = metrics.getMaxDescent();

 int messWidth = metrics.stringWidth (message);
 // Center text
 int startX = getSize().width/2 - messWidth/2;
 int startY = getSize().height/2 - fontDescent/2 + fontAscent/2;
 g.drawString(message, startX, startY);
 g.setColor(Color.white); // Base lines
 g.drawLine(startX-LPAD, startY, startX+messWidth+LPAD, startY);
 g.drawLine(startX, startY+ LPAD, startX, startY-fontAscent-LPAD);
 g.setColor(Color.green); // Ascent line
 g.drawLine(startX-LPAD, startY-fontAscent, startX+messWidth+LPAD, startY-
fontAscent);
 g.setColor(Color.red); // Descent line
 g.drawLine(startX-LPAD, startY+fontDescent, startX+messWidth+LPAD,
startY+fontDescent);
 }
}

Compile FontShow and run it with an applet tag like the following:

<applet height=200 width=250 code=FontShow>
 <param name="word" value="Lemming">
</applet>

The word parameter specifies the text to be displayed.

FontShow may look a bit complicated, but there's really not much to it. The bulk of the code is in paint(), which
simply sets the font, draws our word, and adds a few lines to illustrate some of the font's characteristics (metrics). For fun
we also catch mouse clicks (in the mouseClicked() method) and alternate the font size by setting the bigFont
variable and repainting.

By default, text is rendered above and to the right of the coordinates specified in the drawString() method. If you
think of that starting point as the origin of a coordinate system, we'll call the axes the "baselines" of the font. FontShow
draws these lines in white. The greatest height the characters stretch above the baseline is called the ascent and is shown
by a green line. Some fonts also have parts of letters that fall below the baseline. The farthest distance any character
reaches below the baseline is called the descent. FontShow illustrates this with a red line.

We ask for the ascent and descent of our font with the FontMetrics getMaxAscent() and getMaxDescent()
methods. We also ask for the width of our string (when rendered in this font) with the stringWidth() method. We use
this information to center the word in the display area. To center the word vertically, we average the influence of the
ascent and descent.

Table 13.2 provides a short list of methods that return useful font metrics.

Table 13.2: Font Metric Methods

Method Description

getFont() Font object these metrics describe

getAscent() Height above baseline

getDescent() Depth below baseline

getLeading() Standard vertical spacing between lines

getHeight() Total line height (ascent + descent + leading)

charWidth(char ch) Width of a character

stringWidth(String str) Width of a string

getWidths() The widths of the first 256 characters in this font; returns int[]

getMaxAdvance() Maximum character width of any character

Leading space is the padding between lines of text. The getHeight() method reports the total height of a line of text,
including the leading space.

Colors Images

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm

Chapter 13
Drawing With the AWT

13.5 Drawing Techniques

Having learned to walk, let's try a jog. In this section, we'll look at some techniques for doing fast and flicker-free drawing
and painting. If you're interested in animation or smooth updating, you should read on.[4]

[4] At this point, you still have to build your own animation software. JavaSoft will be releasing an animation
package as part of the Java Media APIs.

Drawing operations take time, and time spent drawing leads to delays and imperfect results. Our goal is to minimize the
amount of drawing work we do and, as much as possible, to do that work away from the eyes of the user. You'll remember
that our TestPattern applet had a blinking problem. It blinked because TestPattern performs several, large, area-
filling operations each time its paint() method is called. On a very slow system, you might even be able to see each shape
being drawn in succession. TestPattern could be easily fixed by drawing into an off-screen buffer and then copying the
completed buffer to the display. To see how to eliminate flicker and blinking problems, we'll look at an applet that needs
even more help.

TerribleFlicker illustrates some of the problems of updating a display. Like many animations, it has two parts: a
constant background and a changing object in the foreground. In this case, the background is a checkerboard pattern and the
object is a small, scaled image we can drag around on top of it, as shown in Figure 13.6. Our first version of
TerribleFlicker lives up to its name and does a very poor job of updating.

Figure 13.6: The TerribleFlicker applet

[Graphic: Figure 13-6]

import java.awt.*;
import java.awt.event.*;
public class TerribleFlicker extends java.applet.Applet

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm

 implements MouseMotionListener {
 int grid = 10;
 int currentX, currentY;
 Image img;
 int imgWidth = 60, imgHeight = 60;
 public void init() {
 img = getImage(getClass().getResource(getParameter("img")));
 addMouseMotionListener(this);
 }
 public void mouseDragged(MouseEvent e) {
 currentX = e.getX(); currentY = e.getY();
 repaint();
 }
 public void mouseMoved(MouseEvent e) { }; // complete MouseMotionListener
 public void paint(Graphics g) {
 int w = getSize().width/grid;
 int h = getSize().height/grid;
 boolean black = false;
 for (int y = 0; y <= grid; y++)
 for (int x = 0; x <= grid; x++) {
 g.setColor((black = !black) ? Color.black : Color.white);
 g.fillRect(x * w, y * h, w, h);
 }
 g.drawImage(img, currentX, currentY, imgWidth, imgHeight, this);
 }
}

Try dragging the image; you'll notice both the background and foreground flicker as they are repeatedly redrawn. What is
TerribleFlicker doing, and what is it doing wrong?

As the mouse is dragged, TerribleFlicker keeps track of its position in two instance variables, currentX and
currentY. On each call to mouseDragged(), the coordinates are updated, and repaint() is called to ask that the
display be updated. When paint() is called, it looks at some parameters, draws the checkerboard pattern to fill the applet's
area, and finally paints a small version of the image at the latest coordinates.

Our first, and biggest, problem is that we are updating, but we have neglected to implement the applet's update() method
with a good strategy. Because we haven't overridden update(), we are getting the default implementation of the
Component update() method, which looks something like this:

// Default implementation of applet update
public void update(Graphics g) {
 setColor (backgroundColor);
 fillRect(0, 0, getSize().width, getSize().height);
 paint (g);
}

This method simply clears the display to the background color and calls our paint() method. This is almost never the best
strategy, but is the only appropriate default for update(), which doesn't know how much of the screen we're really going to
paint.

Our applet paints its own background, in its entirety, so we can provide a simpler version of update() that doesn't bother

to clear the display:

// add to TerribleFlicker
public void update(Graphics g) {
 paint(g);
}

This applet works better because we have eliminated one large, unnecessary, and (in fact) annoying graphics operation.
However, although we have eliminated a fillRect() call, we're still doing a lot of wasted drawing. Most of the
background stays the same each time it's drawn. You might think of trying to make paint() smarter, so that it wouldn't
redraw these areas, but remember that paint() has to be able to draw the entire scene because it might be called in
situations when the display isn't intact. The solution is to have update() help out by restricting the area paint() can
draw.

Clipping

The setClip() method of the Graphics class restricts the drawing area of a graphics context to a smaller region. A
graphics context normally has an effective clipping region that limits drawing to the entire display area of the component. We
can specify a smaller clipping region with setClip().

How is the drawing area restricted? Well, foremost, drawing operations that fall outside of the clipping region are not
displayed. If a drawing operation overlaps the clipping region, we see only the part that's inside. A second effect is that, in a
good implementation, the graphics context can recognize drawing operations that fall completely outside the clipping region
and ignore them altogether. Eliminating unnecessary operations can save time if we're doing something complex, like filling
a bunch of polygons. This doesn't save the time our application spends calling the drawing methods, but the overhead of
calling these kinds of drawing methods is usually negligible compared to the time it takes to execute them. (If we were
generating an image pixel by pixel, this would not be the case, as the calculations would be the major time sink, not the
drawing.)

So we can save time in our applet by having our update method set a clipping region that results in only the affected portion
of the display being redrawn. We can pick the smallest rectangular area that includes both the old image position and the new
image position, as shown in Figure 13.7. This is the only portion of the display that really needs to change; everything else
stays the same.

Figure 13.7: Determining the clipping region

[Graphic: Figure 13-7]

An arbitrarily smart update() could save even more time by redrawing only those regions that have changed. However,
the simple clipping strategy we've implemented here can be applied to many kinds of drawing, and gives quite good
performance, particularly if the area being changed is small.

One important thing to note is that, in addition to looking at the new position, our updating operation now has to remember
the last position at which the image was drawn. Let's fix our applet so it will use a clipping region. To keep this short and
emphasize the changes, we'll take some liberties with design and make our next example a subclass of TerribleFlicker.
Let's call it ClippedFlicker:

public class ClippedFlicker extends TerribleFlicker {
 int nextX, nextY;

 public void mouseDragged(MouseEvent e) {
 nextX = e.getX(); nextY = e.getY();
 repaint();
 }
 void clipToAffectedArea(Graphics g, int oldx, int oldy, int newx,
 int newy, int width, int height) {
 int x = Math.min(oldx, newx);
 int y = Math.min(oldy, newy);
 int w = (Math.max(oldx, newx) + width) - x;
 int h = (Math.max(oldy, newy) + height) - y;
 g.setClip(x, y, w, h);
 }
 public void update(Graphics g) {
 int lastX = currentX, lastY = currentY;
 currentX = nextX; currentY = nextY;
 clipToAffectedArea(g, lastX, lastY, currentX, currentY, imgWidth, imgHeight
);
 paint(g);
 }
}

You should find that ClippedFlicker is significantly faster, though it still flickers. We'll make one more change in the
next section to eliminate that.

So, what have we changed? First, we've overridden mouseDragged() so that instead of setting the current coordinates of
the image, it sets another pair of coordinates called nextX and nextY. These are the coordinates at which we'll display the
image the next time we draw it.

update() now has the added responsibility of taking the next position and making it the current position, by setting the
currentX and currentY variables. This effectively decouples mouseDragged() from our painting routines. We'll
discuss why this is advantageous in a bit. update() then uses the current and next coordinates to set a clipping region on
the Graphics object before handing it off to paint().

We have created a new, private method to help it do this. clipToAffectedArea() takes as arguments the new and
old coordinates and the width and height of the image. It determines the bounding rectangle as shown in Figure 13.6, then
calls setClip() to set the clipping region. As a result, when paint() is called, it draws only the affected area of the
screen.

So, what's the deal with nextX and nextY? By making update() keep track of the next, current, and last coordinates

separately, we accomplish two things. First, we always have an accurate view of where the last image was drawn and second,
we have decoupled where the next image will be drawn from mouseDragged().

It's important to decouple painting from mouseDragged() because there isn't necessarily a one-to-one correspondence
between calls to repaint() and subsequent calls by AWT to our update() method. This isn't a defect; it's a feature that
allows AWT to schedule and consolidate painting requests. Our concern is that our paint() method may be called at
arbitrary times while the mouse coordinates are changing. This is not necessarily bad. If we are trying to position our object,
we probably don't want the display to be redrawn for every intermediate position of the mouse. It would slow down the
dragging unnecessarily.

If we were concerned about getting every single change in the mouse's position, we would have two options. We could either
do some work in the mouseDragged() method itself, or put our events into some kind of queue. We'll see an example of
the first solution in our DoodlePad example a bit later. The latter solution would mean circumventing AWT's own event-
scheduling capabilities and replacing them with our own, and we don't want to take on that responsibility.

Double Buffering

Now let's get to the most powerful technique in our toolbox: double buffering. Double buffering is a technique that fixes our
flickering problems completely. It's easy to do and gives us almost flawless updates. We'll combine it with our clipping
technique for better performance, but in general you can use double buffering with or without clipping.

Double buffering our display means drawing into an off-screen buffer and then copying our completed work to the display in
a single painting operation, as shown in Figure 13.8. It takes the same amount of time to draw a frame, but double buffering
instantaneously updates our display when it's ready.

Figure 13.8: Double buffering

[Graphic: Figure 13-8]

We can get this effect by changing just a few lines of our ClippedFlicker applet. Modify update() to look like the
following and add the new offScreenImage instance variable as shown:

...
public class DoubleBufferedClipped extends ClippedFlicker {
 Image offScreenImage;
 Graphics offScreenGC;
 public void update(Graphics g) {
 if (offScreenImage == null) {
 offScreenImage = createImage(getSize().width, getSize().height);
 offScreenGC = img.getGraphics();

 }
 int lastX = currentX, lastY = currentY;
 currentX = nextX; currentY = nextY;
 clipToAffectedArea(offScreenGC, lastX, lastY, currentX, currentY, imgWidth,
imgHeight);
 clipToAffectedArea(g, lastX, lastY, currentX, currentY, imgWidth, imgHeight
);
 paint(offScreenGC);
 g.drawImage(offScreenImage, 0, 0, this);
 }
}
...

Now, when you drag the image, you shouldn't see any flickering. The update rate should be about the same as in the previous
example (or marginally slower), but the image should move from position to position without noticeable repainting.

So, what have we done this time? Well, the new instance variable, offScreenImage, is our off-screen buffer. It is a
drawable Image object. We can get an off-screen Image for a component with the createImage() method.
createImage() is similar to getImage(), except that it produces an empty image area of the specified size. We can
then use the off-screen image like our standard display area by asking it for a graphics context with the Image
getGraphics() method. After we've drawn into the off-screen image, we can copy that image back onto the screen with
drawImage().

The biggest change to the code is that we now pass paint() the graphics context of our off-screen buffer, rather than that
of the on-screen display. paint() is now drawing on offScreenImage; it's our job to copy the image to the display
when it's done. This might seem a little suspicious to you, as we are now using paint() in two capacities. AWT calls
paint() whenever it's necessary to repaint our entire applet and passes it an on-screen graphics context. When we update
ourselves, however, we call paint() to do its work on our off-screen area and then copy that image onto the screen from
within update().

Note that we're still clipping. In fact, we're clipping both the on-screen and off-screen buffers. Off-screen clipping has the
same benefits we described earlier: AWT should be able to ignore wasted drawing operations. On-screen clipping minimizes
the area of the image that gets drawn back to the display. If your display is fast, you might not even notice the savings, but it's
an easy optimization, so we'll take advantage of it.

We create the off-screen buffer in update() because it's a convenient and safe place to do so. Also, note that our image
observer probably won't be called, since drawImage() isn't doing anything nasty like scaling, and the image itself is
always available.

The dispose() method of the Graphics class allows us to deallocate a graphics context explicitly when we are through
with it. This is simply an optimization. If we were creating new graphics contexts frequently (say, in each paint()), we could
give the system help in getting rid of them. This might provide some performance improvement when doing heavy drawing.
We could allow garbage collection to reclaim the unused objects; however, the garbage collection process might be hampered
if we are doing intense calculations or lots of repainting.

Off-Screen Drawing

In addition to serving as buffers for double buffering, off-screen images are useful for saving complex, hard-to-produce,
background information. We'll look at a simple example: the "doodle pad." DoodlePad is a simple drawing tool that lets us
scribble by dragging the mouse, as shown in Figure 13.9. It draws into an off-screen image; its paint() method simply

copies the image to the display area.

Figure 13.9: The DoodlePad applet

[Graphic: Figure 13-9]

import java.awt.*;
import java.awt.event.*;
public class DoodlePad extends java.applet.Applet implements ActionListener {
 DrawPad dp;
 public void init() {
 setLayout(new BorderLayout());
 add("Center", dp = new DrawPad());
 Panel p = new Panel();
 Button clearButton = new Button("Clear");
 clearButton.addActionListener(this);
 p.add(clearButton);
 add("South", p);
 }
 public void actionPerformed(ActionEvent e) {
 dp.clear();
 }
}
class DrawPad extends Canvas {
 Image drawImg;
 Graphics drawGr;
 int xpos, ypos, oxpos, oypos;
 DrawPad() {
 setBackground(Color.white);
 enableEvents(AWTEvent.MOUSE_EVENT_MASK
 | AWTEvent.MOUSE_MOTION_EVENT_MASK);
 }
 public void processEvent(AWTEvent e) {
 int x = ((MouseEvent)e).getX(), y = ((MouseEvent)e).getY();
 if (e.getID() == MouseEvent.MOUSE_DRAGGED) {
 xpos = x; ypos = y;

 if (drawGr != null)
 drawGr.drawLine(oxpos, oypos, oxpos=xpos, oypos=ypos);
 repaint();
 } else
 if (e.getID() == MouseEvent.MOUSE_PRESSED) {
 oxpos = x; oypos = y;
 }
 super.processEvent(e);
 }
 public void update(Graphics g) {
 paint(g);
 }
 public void paint(Graphics g) {
 if (drawImg == null) {
 drawImg = createImage(getSize().width, getSize().height);
 drawGr = drawImg.getGraphics();
 }
 g.drawImage(drawImg, 0, 0, null);
 }
 public void clear() {
 drawGr.clearRect(0, 0, getSize().width, getSize().height);
 repaint();
 }
}

Give it a try. Draw a nice moose, or a sunset. I just drew a lovely cartoon of Bill Gates. If you make a mistake, hit the Clear
button and start over.

The parts should be familiar by now. We have made a type of Canvas called DrawPad. The new DrawPad component
handles mouse events by enabling both simple mouse events (mouse clicks) and mouse motion events (mouse drags), and
then overriding the processEvent() method to handle these events. By doing so, we are simulating the old (Java 1.0)
event handling model; in this situation, it's a little more convenient than implementing all the methods of the
MouseListener and MouseMotionListener interfaces. The processEvent() method handles
MOUSE_DRAGGED movement events by drawing lines into an off-screen image and calling repaint() to update the
display. DrawPad's paint() method simply does a drawImage() to copy the off-screen drawing area to the display. In
this way, DrawPad saves our sketch information.

What is unusual about DrawPad is that it does some drawing outside of paint() or update(). In our clipping example,
we talked about decoupling update() and mouseDragged(); we were willing to discard some mouse movements in
order to save some updates. In this case, we want to let the user scribble with the mouse, so we should respond to every
mouse movement. Therefore, we do our work in processEvent() itself. As a rule, we should be careful about doing
heavy work in event handling methods because we don't want to interfere with other tasks the AWT thread is performing. In
this case, our line drawing operation should not be a burden, and our primary concern is getting as close a coupling as
possible between the mouse movement events and the sketch on the screen.

In addition to drawing a line as the user drags the mouse, the part of processEvent() that handles MOUSE_DRAGGED()
events maintains a set of old coordinates, to be used as a starting point for the next line segment. The part of
processEvent() that handles MOUSE_PRESSED events resets the old coordinates to the current mouse position
whenever the user picks up and moves to a new location. Finally, DrawPad provides a clear() method that clears the off-
screen buffer and calls repaint() to update the display. The DoodlePad applet ties the clear() method to an
appropriately labeled button through its actionPerformed() method.

What if we wanted to do something with the image after the user has finished scribbling on it? Well, as we'll see in the next
section, we could get the pixel data for the image from its ImageProducer object and work with that. It wouldn't be hard
to create a save facility that stores the pixel data and reproduces it later. Think about how you might go about creating a
networked "bathroom wall" where people could scribble on your Web pages.

Images Working With Images

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm

Chapter 14
Working With Images

14.2 Working with Audio

So you've read all the material on drawing and image processing, and you're wondering what in the world audio has to
do with images. Well, not much actually, except that true multimedia presentations often combine image techniques
such as animation with sound. So we're going to spend a few minutes here talking about audio, for lack of a better
place to discuss it.

As we write this, the good people at Sun are hard at work developing the API that Java applets will use for playing
audio. A future release of Java will undoubtedly have support for real-time and continuous audio streams, sound
management, mixing, synchronization, and filtering. Unfortunately, at the moment, we can tell you only about the
basics.

java.applet.AudioClip defines an interface for objects that can play sound. An object that implements
AudioClip can be told to play() its sound data, stop() playing the sound, or loop() continually.

An applet can call its getAudioClip() method to retrieve sounds over the network. This method takes an absolute
or relative URL to specify where the audio file is located. The viewer may take the sound from a cache or retrieve it
over the network. The following applet, NoisyButton, gives a simple example:

import java.awt.*;
import java.awt.event.*;
public class NoisyButton extends java.applet.Applet implements ActionListener {
 java.applet.AudioClip sound;
 public void init() {
 sound = getAudioClip(getClass().getResource(getParameter("sound")));
 Button button = new Button("Play Sound");
 button.addActionListener(this);
 add (button);
 }
 public void actionPerformed(ActionEvent e) {
 if (sound != null)
 sound.play();
 }
}

 *** Update description...

NoisyButton retrieves an AudioClip from the server; we use getCodeBase() to find out where the applet
lives and getParameter() to find the name of the audio file. (The applet tag that displays NoisyButton must
include a parameter tag for sound.) Unfortunately, this is about the extent of what we can do with sound right now.
If you want to experiment, there are a few additional methods in the sun.audio classes. Stay tuned for a bigger and
better audio API as part of the upcoming Java Media package.

Image Processing Glossary

Chapter 1
Introduction

1.3 The java.io Package

The java.io package contains the classes that handle fundamental input and output operations in Java.
Almost all fundamental I/O in Java is based on streams. A stream represents a flow of data, or a channel
of communication, with a reading process at one end of the stream and a writing process at the other end,
at least conceptually. As of Java 1.1, the java.io package is the largest of the fundamental packages.
See Chapter 6, I/O, for a more in-depth description of the basic I/O capabilities provided by this package.

Java 1.0 supports only byte streams. The InputStream class is the superclass of all of the Java 1.0
byte input streams, while OutputStream is the superclass of all the byte output streams. A number of
other byte stream classes extend the functionality of these basic streams. For example, the
FileInputStream and FileOutputStream classes read from and write to files, respectively,
while DataInputStream and DataOutputStream read and write binary representations of the
primitive Java data types. The main problem with these byte streams is that they do not handle the
conversion between the Unicode character set used internally by Java and other character sets used when
reading or writing data.

As of Java 1.1, java.io contains classes that represent character streams. These character stream
classes convert other character encodings that appear in I/O streams to and from Unicode characters. The
Reader class is the superclass of all the Java 1.1 character input streams, while Writer is the
superclass of all character output streams. Many of the reader and writer classes have analogous behavior
to corresponding byte stream classes. For instance, FileReader and FileWriter are character
streams that read from and write to files, respectively.

The InputStreamReader and OutputStreamWriter classes provide a bridge between byte
streams and character streams. If you wrap an InputStreamReader around an InputStream
object, the bytes in the byte stream are read and converted to characters using the character encoding
scheme specified by the InputStreamReader. Likewise, you can wrap an
OutputStreamWriter around any OutputStream object, which allows you to write characters
and have them converted to bytes.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_04.htm

As of Java 1.1, java.io also contains classes to support object serialization. Object serialization is the
ability to write the complete state of an object to an output stream, and then later recreate that object by
reading in the serialized state from an input stream. The ObjectOutputStream and
ObjectInputStream classes handle serializing and deserializing objects, respectively. These classes
provide basic serialization capabilities for all objects that implement the Serializable interface.
Chapter 7, Object Serialization, provides a more detailed explanation of the new object serialization
functionality in Java 1.1.

The RandomAccessFile class is the only class in java.io that does not use a stream for reading or
writing data. As its name implies, RandomAccessFile provides nonsequential access to a file, so you
can use it to read from or write to specific locations in a file.

The File class represents a file on the local filesystem. The class provides methods to identify a file,
both in terms of its path and its filename. There are also methods that retrieve information about a file,
such as its status as a directory or a file, its length, and its last modification time.

See Chapter 11, The java.io Package, for complete reference material on all of the classes in the
java.io package.

The java.lang.reflect Package The java.net Package

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_04.htm

Chapter 1
Introduction

1.6 The java.text Package

The java.text package is new in Java 1.1. It contains classes that support the parsing and formatting
of data. These classes also support the internationalization of Java programs. Internationalization refers
to the process of making a program flexible enough to run correctly in any locale. An internationalized
program must, however, be localized to enable it to run in a particular locale. The internationalization
capabilities in Java are quite significant, especially in this age of the global Internet.

Many of the classes in java.text are meant to handle formatting string representations of dates,
times, numbers, and messages based on the conventions of a locale. The Format class is the superclass
of all of the classes that generate and parse string representations of various types of data.

The DateFormat class formats and parses dates and times according to the customs and language of a
particular locale. By the same token, the NumberFormat class formats and parses numbers, including
currency values, in a locale-dependent manner. The MessageFormat class creates a textual message
from a pattern string, while ChoiceFormat maps numerical ranges to strings. By themselves, these
classes do not provide different results for different locales. However, they can be used in conjunction
with ResourceBundle objects from java.util that generate locale-specific pattern strings.

The Collator class handles collating strings according to the rules of a particular locale. Different
languages have different characters and different rules for sorting those characters; Collator and its
subclass, RuleBasedCollator, are designed to take those differences into account when collating
strings. In addition, the CollationKey class optimizes the sorting of a large collection of strings.

The BreakIterator class finds various boundaries, such as word boundaries and line boundaries, in
textual data. As you might expect, BreakIterator locates these boundaries according to the rules of
a particular locale.

See Chapter 16, The java.text Package, for complete reference material on all of the classes in the
java.text package.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_07.htm

The java.util Package The java.math Package

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_07.htm

Chapter 2
Strings and Related Classes

2.3 String Concatenation

Java's string concatenation operator (+) provides special support for the String and StringBuffer
classes. If either operand of the binary + operator is a reference to a String or StringBuffer
object, the operator is the string concatenation operator instead of the arithmetic addition operator. The
string concatenation operator produces a new String object that contains the concatenation of its
operands; the characters of the left operand precede the characters of the right operand in the newly
created string.

If one of the operands of the + operator is a reference to a string object and the other is not, the operator
converts the nonstring operand to a string object using the following rules:

● A null operand is converted to the string literal "null".

● If the operand is a non-null reference to an object that is not a string, the object's toString()
method is called. The result of the conversion is the value returned by the object's toString()
method, unless the return value is null, in which case the result of the conversion is the string
literal "null".

● A char operand is converted to a reference to a string object that has a length of one and contains
that character.

● An integer operand (other than char) is converted to a string object that contains the base 10
string representation of its value. If the value is negative, the string starts with a minus sign; if it is
positive there is no sign character. If the value is zero, the result of the conversion is "0".
Otherwise, the string representation of the integer does not have any leading zeros.

● If the operand is a floating-point value, the exact string representation depends on the value being
converted. If its absolute value is greater than or equal to 10^-3 or less than or equal to 10^7, it is
converted to a string with an optional minus sign (if the value is negative) followed by up to eight
digits before the decimal point, a decimal point, and the necessary number of digits after the

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_04.htm

decimal point (but no trailing zero if there is more than one significant digit). There is always a
minimum of one digit after the decimal point.

● Otherwise, the value is converted to a string with an optional minus sign (if the value is negative),
followed by a single digit, a decimal point, the necessary number of digits after the decimal point
(but no trailing zero if there is more than one significant digit), and the letter E followed by a plus
or a minus sign and a base 10 exponent of at least one digit. Again, there is always a minimum of
one digit after the decimal point.

● The values NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY, -0.0, and +0.0 are
represented by the strings "NaN", "--Infinity", "Infinity", "--0.0", and "0.0",
respectively.

● A boolean operand is converted to either the string literal "true" or the string literal
"false".

The following is a code example that uses the string concatenation operator:

// format seconds into hours, minutes, and seconds
String formatTime(int t) {
 int minutes, seconds;
 seconds = t%60;
 t /= 60;
 minutes = t%60;
 return t/60 + ":" + minutes + ":" + seconds;
}

Java uses StringBuffer objects to implement string concatenation. Consider the following code:

String s, s1, s2;
s = s1 + s2

To compute the string concatenation, Java's compiler generates this code:

s = new StringBuffer().append(s1).append(s2).toString()

StringBuffer StringTokenizer

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_04.htm

Chapter 3
Threads

3.2 Synchronizing Multiple Threads

The correct behavior of a multithreaded program generally depends on multiple threads cooperating with
each other. This often involves threads not doing certain things at the same time or waiting for each other
to perform certain tasks. This type of cooperation is called synchronization. This section discusses some
common strategies for synchronization and how they can be implemented in Java.

The simplest strategy for ensuring that threads are correctly synchronized is to write code that works
correctly when executed concurrently by any number of threads. However, this is more easily said than
done. Most useful computations involve doing some activity, such as updating an instance variable or
updating a display, that must be synchronized in order to happen correctly.

If a method only updates its local variables and calls other methods that only modify their local variables,
the method can be invoked by multiple threads without any need for synchronization. Math.sqrt()
and the length() method of the String class are examples of such methods.

A method that creates objects and meets the above criterion may not require synchronization. If the
constructors invoked by the method do not modify anything but their own local variables and instance
variables of the object they are constructing, and they only call methods that do not need to be
synchronized, the method itself does not need to be synchronized. An example of such a method is the
substring() in the String class.

Beyond these two simple cases, it is impossible to give an exhaustive list of rules that can tell you
whether or not a method needs to be synchronized. You need to consider what the method is doing and
think about any ill effects of concurrent execution in order to decide if synchronization is necessary.

Single-Threaded Execution

When more than one thread is trying to update the same data at the same time, the result may be wrong or
inconsistent. Consider the following example:

class CountIt {
 int i = 0;
 void count() {
 i = i + 1;
 }
}

The method count() is supposed to increment the variable i by one. However, suppose that there are
two threads, A and B, that call count() at the same time. In this case, it is possible that i could be
incremented only once, instead of twice. Say the value of i is 7. Thread A calls the count() method
and computes i+1 as 8. Then thread B calls the count() method and computes i+1 as 8 because
thread A has not yet assigned the new value to i. Next, thread A assigns the value 8 to the variable i.
Finally, thread B assigns the value 8 to the variable i. Thus, even though the count() method is called
twice, the variable has only been incremented once when the sequence is finished.

Clearly, this code can fail to produce its intended result when it is executed concurrently by more than
one thread. A piece of code that can fail to produce its intended result when executed concurrently is
called a critical section. However, a critical section does behave correctly when it is executed by only
one thread at a time. The strategy of single-threaded execution is to allow only one thread to execute a
critical section of code at a time. If a thread wants to execute a critical section that another thread is
already executing, the thread has to wait until the first thread is done and no other thread is executing that
code before it can proceed.

Java provides the synchronized statement and the synchronized method modifier for
implementing single-threaded execution. Before executing the block in a synchronized statement,
the current thread must obtain a lock for the object referenced by the expression. If a method is declared
with the synchronized modifer, the current thread must obtain a lock before it can invoke the
method. If the method is not declared static, the thread must obtain a lock associated with the object
used to access the method. If the method is declared static, the thread must obtain a lock associated
with the class in which the method is declared. Because a thread must obtain a lock before executing a
synchronized method, Java guarantees that synchronized methods are executed one thread at a
time.

Modifying the count() method to make it a synchronized method ensures that it works as
intended.

class CountIt {
 int i = 0;
 synchronized void count() {
 i = i + 1;
 }
}

The strategy of single-threaded execution can also be used when multiple methods update the same data.
Consider the following example:

class CountIt2 {
 int i = 0;
 void count() {
 i = i + 1;
 }
 void count2() {
 i = i + 2;
 }
}

By the same logic used above, if the count() and count2() methods are executed concurrently, the
result could be to increment i by 1, 2, or 3. Both the count() and count2() methods can be declared
as synchronized to ensure that they are not executed concurrently with themselves or each other:

class CountIt2 {
 int i = 0;
 synchronized void count() {
 i = i + 1;
 }
 synchronized void count2() {
 i = i + 2;
 }
}

Sometimes it's necessary for a thread to make multiple method calls to manipulate an object without
another thread calling that object's methods at the same time.

Consider the following example:

System.out.print(new Date());
System.out.print(" : ");
System.out.println(foo());

If the code in the example is executed concurrently by multiple threads, the output from the two threads
will be interleaved. The synchronized keyword provides a way to ensure that only one thread at a
time can execute a block of code. Before executing the block in a synchronized statement, the
current thread must obtain a lock for the object referenced by the expression. The above code can be
modified to give a thread exclusive access to the OutputStream object referenced by System.out:

synchronized (System.out) {
 System.out.print(new Date());
 System.out.print(" : ");
 System.out.println(foo());
}

Note that this approach only works if other code that wants to call methods in the same object also uses
similar synchronized statements, or if the methods in question are all synchronized methods. In
this case, the print() and println() methods are synchronized, so other pieces of code that
need to use these methods do not need to use a synchronized statement.

Another situation in which simply making a method synchronized does not provide the needed
single-threaded execution occurs when an inner class is updating fields in its enclosing instance. Consider
the following code:

public class Z extends Frame {
 int pressCount = 0;
 ...
 private class CountButton extends Button
 implements ActionListener {
 public void actionPerformed(ActionEvent evt) {
 pressCount ++;
 }
 }
 ...
}

If a Z object instantiates more than one instance of CountButton, you need to use single-threaded
execution to ensure that updates to pressCount are done correctly. Unfortunately, declaring the
actionPerformed() method of CountButton to be synchronized does not accomplish that
goal because it only forces the method to acquire a lock on the instance of CountButton it is
associated with before it executes. The object you need to acquire a lock for is the enclosing instance of
Z.

One way to have a CountButton object capture a lock on its enclosing instance of Z is to update
pressCount inside of a synchronized statement:

synchronized (Z.this) {
 pressCount ++;
}

The drawback to this approach is that every piece of code that accesses pressCount in any inner class

of Z must be in a similar synchronized statement. Otherwise, it is possible for pressCount to be
updated incorrectly. The more pieces of code that need to be inside of synchronized statements, the
more places there are to introduce bugs in your program.

A more robust approach is to have the inner class update a field in its enclosing instance by calling a
synchronized method in the enclosing instance:

public class Z extends Frame {
 int pressCount = 0;
 synchronized incrementPressCount() {
 pressCount++;
 }
 ...
 private class CountButton extends Button
 implements ActionListener {
 public void actionPerformed(ActionEvent evt) {
 incrementPressCount();
 }
 }
 ...
}

Optimistic Single-Threaded Execution

When multiple threads are updating a data structure, single-threaded execution is the obvious strategy to
use to ensure correctness of the operations on the data structure. However, single-threaded execution can
cause some problems of its own. Consider the following example:

public class Queue extends java.util.Vector {
 synchronized public void put(Object obj) {
 addElement(obj);
 }
 synchronized public Object get() throws EmptyQueueException {
 if (size() == 0)
 throw new EmptyQueueException();
 Object obj = elementAt(0);
 removeElementAt(0);
 return obj;
 }
}

This example implements a first-in, first-out (FIFO) queue. If the get() method of a Queue object is

called when the queue is empty, the method throws an exception. Now suppose that you want to write the
get() method so that when the queue is empty, the method waits for an item to be put in the queue,
rather than throwing an exception. In order for an item to be put in the queue, the put() method of the
queue must be invoked. But using the single-threaded execution strategy, the put() method will never
be able to run while the get() method is waiting for the queue to receive an item. A good way to solve
this dilemma is to use a strategy called optimistic single-threaded execution.

The optimistic single-threaded execution strategy is similar to the single-threaded execution strategy.
They both begin by getting a lock on an object to ensure that the currently executing thread is the only
thread that can execute a piece of code, and they both end by releasing that lock. The difference is what
happens in between. Using the optimistic single-threaded execution strategy, if a piece of code discovers
that conditions are not right to proceed, the code releases the lock it has on the object that enforces single-
threaded execution and waits. When another piece of code changes things in such a way that might allow
the first piece of code to proceed, it notifies the first piece of code that it should try to regain the lock and
proceed.

To implement this strategy, the Object class provides methods called wait(), notify(), and
notifyAll(). These methods are inherited by every other class in Java. The following example shows
how to implement a queue that uses the optimistic single-threaded execution strategy, so that when the
queue is empty, its get() method waits for the queue to have an item put in it:

public class Queue extends java.util.Vector {
 synchronized public void put(Object obj) {
 addElement(obj);
 notify();
 }
 synchronized public Object get() throws EmptyQueueException {
 while (size() == 0)
 wait();
 Object obj = elementAt(0);
 removeElementAt(0);
 return obj;
 }
}

In the above implementation of the Queue class, the get() method calls wait() when the queue is
empty. The wait() method releases the lock that excludes other threads from executing methods in the
Queue object, and then waits until another thread calls the put() method. When put() is called, it
adds an item to the queue and calls notify(). The notify() method tells a thread that is waiting to
return from a wait() method that it should attempt to regain its lock and proceed. If there is more than
one thread waiting to regain the lock on the object, notify() chooses one of the threads arbitrarily.
The notifyAll() method is similar to notify(), but instead of choosing one thread to notify, it
notifies all of the threads that are waiting to regain the lock on the object.

Notice that the get() method calls wait() inside a while loop. Between the time that wait() is
notified that it should try to regain its lock and the time it actually does regain the lock, another thread
may have called the get() method and emptied the queue. The while loop guards against this
situation.

Rendezvous

Sometimes it is necessary to have a thread wait to continue until another thread has completed its work
and died. This type of synchronization uses the rendezvous strategy. The Thread class provides the
join() method for implementing this strategy. When the join() method is called on a Thread
object, the method returns immediately if the thread is dead. Otherwise, the method waits until the thread
dies and then returns.

Balking

Some methods should not be executed concurrently and have a time-sensitive nature that makes
postponing calls to them a bad idea. This is a common situation when software is controlling real-world
devices. Suppose you have a Java program that is embedded in an electronic control for a toilet. There is
a method called flush() that is responsible for flushing a toilet, and flush() can be called from
more than one thread. If a thread calls flush() while another thread is already executing flush(),
the second call should do nothing. A toilet is capable of only one flush at a time, and having a concurrent
call to the flush() method result in a second flush would only waste water.

This scenario suggests the use of the balking strategy. The balking strategy allows no more than one
thread to execute a method at a time. If another thread attempts to execute the method, the method simply
returns without doing anything. Here is an example that shows what such a flush() method might look
like:

boolean busy;
void flush() {
 synchronized (this) {
 if (busy)
 return;
 busy = true;
 }
 // code to make flush happen goes here
 busy = false;
}

Explicit Synchronization

When the synchronization needs of a thread are not known in advance, you can use a strategy called
explicit synchronization. The explicit synchronization strategy allows you to explicitly tell a thread when
it can and cannot run. For example, you may want an animation to start and stop in response to external
events that happen at unpredictable times, so you need to be able to tell the animation when it can run.

To implement this strategy, the Thread class provides methods called suspend() and resume().
You can suspend the execution of a thread by calling the suspend() method of the Thread object
that controls the thread. You can later resume execution of the thread by calling the resume() method
on the Thread object.

Using Thread Objects Exception Handling

Chapter 5
Collections

5.4 Hashtables

The Dictionary class is an abstract class that defines methods for associating key objects with
value objects. Given a key, an instance of Dictionary is able to return its associated value. The
Hashtable class is a concrete subclass of Dictionary that uses a data structure called a hashtable
and a technique called chained hashing to allow values associated with keys to be fetched with minimal
searching. You might use a Hashtable object to associate weather reports with the names of cities and
towns, for example.

Before explaining hashtables or chained hashing, consider the problem of finding a key/value pair in an
array that contains references to key/value pairs in no particular order. The array might look something
like what is shown in Figure 5.1.

Figure 5.1: An array of key/value pairs

[Graphic: Figure 5-1]

Since we cannot make any assumptions about where in the array a key is to be found, the most
reasonable search strategy is a linear search that starts at one end of the array and looks at each array

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_03.htm

element until it finds what it is looking for or reaches the other end of the array. For an array with just a
few elements, a linear search is a reasonable strategy, but for an array with hundreds of elements it is not.
If we know where in the array to look for a key, however, we can eliminate most of the searching effort.
Knowing where to look for a key is the idea behind a hashtable.

With a hashtable, each key object has a relatively unique integer value that is called a hashcode. The
Object class defines a hashCode() method, so every object in Java has such a method. The
hashcode returned by this method computes an array index for a key object as follows:

array.length % hashCode()

This array index, or hash index, stores the key/value pair in a hashtable array. If there is nothing stored at
that index, the key/value pair is placed at that position in the array. However, if there is already a
key/value pair at that hash index, the Hashtable stores the key/value pair in a linked list at that
position in the array. This strategy for managing multiple keys with the same hash index is called
chained hashing. The array for hashtable that uses this strategy might look like Figure 5.2.

Figure 5.2: An array of key/value pairs that uses chained hashing

[Graphic: Figure 5-2]

Now, when we want to fetch a key/value pair, all we have to do is recalculate the hash index for the key
object and look at that position in the hashtable array. If the key stored at that hash index is the right key,
then we have found what we are looking for by examining only one array element instead of searching.
However, if the key is not the right key, all we have to do is search the items in the linked list at that
position to find our key/value pair.

You can create a Hashtable object using the constructor that takes no arguments:

Hashtable h = new Hashtable()

This constructor creates an empty Hashtable. There are other constructors that take parameters to
allow you to tune the performance of a Hashtable object. The first parameter you can specify is the
capacity of the hash table, which is the length of the array used to implement it. The longer the array, the
less likely it is that multiple keys will share the same hash index. The default array length is 101. To
create a Hashtable object with an array length of 1009, use the following constructor:

Hashtable h = new Hashtable(1009);

The number that you choose for the array length should be a prime number. If it is not, the key/value
pairs stored in the array will tend to be less evenly distributed.

The load factor of a hashtable is the ratio of the number of key/value pairs in the hashtable to the array
length. A load factor of 0 means that the Hashtable is empty. As the load factor increases, so does the
likelihood that multiple key/value pairs will share the same hash index. When the load factor becomes
greater than 1, it means that the number of key/value pairs in a hashtable is greater than the array length,
so that at least one hash index is being shared by multiple key/value pairs. Clearly, a low load factor is
better than a high load factor in terms of performance. You can specify the maximum permissible load
factor for a Hashtable object when you create it. For example:

Hashtable h = new Hashtable(1009, .62);

If not specified, the maximum load factor for a Hashtable object is .75. When a key/value pair is
added to a Hashtable that would otherwise cause the load factor to exceed the maximum value, the
Hashtable performs a rehash. This means that the Hashtable creates a new array with a length one
greater than double the length of the old array. It then recomputes the hash index for each key/value pair
in the old array and stores each key/value pair in the new array at the new hash index. Obviously, this is
an undesirable performance hit, so if you know approximately how many items you will add to a
Hashtable, you should create one with an appropriate initial capacity.

After you have created a Hashtable object, you can add new key/value pairs to it, or modify the value
in an existing key/value pair, by calling the put() method. The put() method takes two arguments: a
reference to a key object and a reference to a value object. It first looks for a key/value pair in the
hashtable with the key equal to the specified key. If there is such a key/value pair, the put() method
replaces the previous value with the specified value and returns a reference to the previous value object.
If, however, there is no such key/value pair, the put() method creates a new key/value pair, adds it to
the hashtable and returns null. Here is a fragment of a class that uses a Hashtable to store weather
forecasts.

import java.util.Hashtable;
class WeatherForecastDictionary {
 private Hashtable ht = new Hashtable(13291);
 public void putForecast(String locale, WeatherForecast forecast) {
 ht.put(locale, forecast);
 }
...

The get() method returns the value associated with a given key in a Hashtable object. It takes one
argument that is a reference to the key it should search for. If the get() method does not find a
key/value pair with a key equal to the specified key, it returns null. Here is a method that uses the
get() method to retrieve a weather forecast:

public WeatherForecast getForecast(String locale) {
 return (WeatherForecast)ht.get(locale);
}

The various equality tests done by a Hashtable use a given key object's equals() method. Because
of the way that an object's hashCode() and equals() methods are used by the Hashtable class, it
is important that if you override the definition of either of these methods, you do so in a consistent way.
In other words, if two objects are considered equal by the equals() method for the class, then the
hashCode() method for each object must return the same hashcode value. If that is not the case, when
those objects are used as keys in a Hashtable object, the Hashtable will produce inconsistent
results.

Once you have added key/value pairs to a Hashtable, you can use the keys() and elements()
methods to get Enumeration objects that iterate through the key and value objects, respectively. The
containsKey() method allows you to search the Hashtable for a particular key object, while
contains() searches for a particular value object. The Hashtable class also defines a remove()
method for removing key/value pairs from a Hashtable.

Stacks I/O

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_03.htm

Chapter 6
I/O

6.2 Output Streams and Writers

The OutputStream class is an abstract class that defines methods to write a stream of bytes sequentially. Java
provides subclasses of the OutputStream class for writing to files and byte arrays, among other things. Other
subclasses of OutputStream can be chained together to provide additional logic, such as writing multibyte data
types or converting data to a string representation. It is also easy to define a subclass of OutputStream that writes
to another kind of destination.

In Java 1.1, the Writer class is an abstract class that defines methods to write to a stream of characters
sequentially. Many of the byte-oriented subclasses of OutputStream have counterparts in the character-oriented
world of Writer objects. Thus, there are subclasses of Writer for writing to files and character arrays.

OutputStream

The OutputStream class is the abstract superclass of all other byte output stream classes. It defines three
write() methods for writing to a raw stream of bytes:

write(int b)
write(byte[] b)
write(byte[] b, int off, int len)

Some OutputStream subclasses may implement buffering to increase efficiency. OutputStream provides a
method, flush(), that tells the OutputStream to write any buffered output to the underlying device, which may
be a disk drive or a network.

Because the OutputStream class is abstract, you cannot create a "pure" OutputStream. However, the
various subclasses of OutputStream can be used interchangeably. For example, methods often take
OutputStream parameters. This means that such a method accepts any subclass of OutputStream as an
argument.

OutputStream is designed so that write(byte[]) and write(byte[], int, int) call write(int).
Thus, when you subclass OutputStream, you only need to define the write() method. However, for efficiency's
sake, you should also override write(byte[], int, int) with a method that can write a block of data more
efficiently than writing each byte separately.

Writer

The Writer class is the abstract parent class of all other character output stream classes. It defines nearly the
same methods as OutputStream, except that the write() methods deal with characters instead of bytes:

write(int c)
write(char[] cbuf)
write(char[] cbuf, int off, int len)
write(String str)
write(String str, int off, int len)

Writer also includes a flush() method that forces any buffered data to be written to the stream.

Writer is designed so that write(int) and write(char[]) both call write(char[], int, int). Thus,
when you subclass Writer, you only need to define the write(char[], int, int) method. Note that this
design is different from, and more efficient than, that of OutputStream.

OutputStreamWriter

The OutputStreamWriter class serves as a bridge between Writer objects and OutputStream objects.
Although an OutputStreamWriter acts like a character stream, it converts its characters to bytes using a
character encoding scheme and writes them to an underlying OutputStream. This class is the output counterpart of
InputStreamReader. When you create an OutputStreamWriter, specify the underlying OutputStream
and, optionally, the name of an encoding scheme. The following example shows how to construct an
OutputStreamWriter that writes characters to a file, encoded using the ISO 8859-5 encoding:

String fileName = "encodedfile.txt";
String encodingName = "8859_5";
OutputStreamWriter out;
try {
 FileOutputStream fileOut = new FileOutputStream (fileName);
 out = new OutputStreamWriter (fileOut, encodingName);
} catch (UnsupportedEncodingException e1) {
 System.out.println(encodingName + " is not a supported encoding scheme.");
} catch (IOException e2) {
 System.out.println("The file " + fileName + " could not be opened.");
}

FileWriter and FileOutputStream

The FileOutputStream class is a subclass of OutputStream that writes a stream of bytes to a file. The
FileOutputStream class has no explicit open method. Instead, the file is implicitly opened, if appropriate, when
you create the FileOutputStream object. There are several ways to create a FileOutputStream:

● You can create a FileOutputStream by passing the name of a file to be written:

FileOutputStream f1 = new FileOutputStream("foo.txt");

● Another constructor is available in Java 1.1 that allows you to specify whether you want to append to the file
or overwrite it. The following example constructs a FileOutputStream that appends the given file:

FileOutputStream f1 = new FileOutputStream("foo.txt", true);

● You can create a FileOutputStream with a File object:

File f = new File("foo.txt");
FileOutputStream f2 = new FileOutputStream(f);

● You can create a FileOutputStream with a FileDescriptor object. A FileDescriptor
encapsulates the native operating system's representation of an open file. You can get a FileDescriptor
from a RandomAccessFile by calling its getFD() method. You create a FileOutputStream that
writes to the open file associated with a RandomAccessFile as follows:

RandomAccessFile raf;
raf = new RandomAccessFile("z.txt","rw");
FileInputStream f3 = new FileOutputStream(raf.getFD());

The FileWriter class is a subclass of Writer that writes a stream of characters to a file. The characters to
be written are converted to bytes using the default character encoding scheme. If you do not want to use the
default encoding scheme, you need to wrap an OutputStreamWriter around a FileOutputStream as
shown above. You can create a FileWriter from a filename, a File object, or a FileDescriptor
object, as described above for FileOutputStream.

StringWriter

The StringWriter class is a subclass of Writer that stores its data in a String object. Internally, it uses a
StringBuffer, which can be examined using getBuffer(). A String containing the data that has been
written can be obtained with toString(). The following example creates a StringWriter and writes data into
it:

StringWriter out = new StringWriter();
char[] buffer = {'b', 'o', 'o', '!', 'h', 'a'};
out.write('B');
out.write("uga");
out.write(buffer, 0, 4);
System.out.println(out.toString());

This example produces the following output:

Bugaboo!

CharArrayWriter and ByteArrayOutputStream

The CharArrayWriter class is a subclass of Writer that writes characters to an internal array. There are three

ways to retrieve the data that has been written to the CharArrayWriter:

● The toCharArray() method returns a reference to a copy of the internal array.

● The toString() method returns a String constructed from the internal array.

● The writeTo() method writes the internal array to another Writer.

This example demonstrates how to create a CharArrayWriter, write data into it, and retrieve the data:

CharArrayWriter out = new CharArrayWriter();
try {
 out.write("Daphne");
}catch (IOException e) {}
char[] buffer = out.toCharArray();
System.out.println(buffer);
String result = out.toString();
System.out.println(result);

This example produces the following output:

Daphne
Daphne

The internal buffer of the CharArrayWriter is expanded as needed when data is written. If you know how many
characters you will be writing, you can make your CharArrayWriter a little more efficient by passing an initial
size to its constructor.

ByteArrayOutputStream is the byte-oriented equivalent of CharArrayWriter. It works in much the same
way, with the following exceptions:

● The write() methods deal with bytes, not characters. Additionally, ByteArrayOutputStream does not
have the write(String) methods that CharArrayWriter defines.

● Instead of toCharArray(), ByteArrayOutputStream has a toByteArray() method.

● Three toString() methods are provided. The one with no arguments converts the bytes in the internal array
to characters using the default encoding scheme.[1] In Java 1.1, the toString(int) method is deprecated,
since it does not convert bytes to characters appropriately. Instead, pass an encoding name to
toString(String); this method correctly converts the internal byte array to a character string.

[1] In Java 1.1, the default encoding scheme is used for the conversion. In earlier versions,
characters are simply created using the eight bits of each byte as the low eight bits of the
character.

PipedOutputStream and PipedWriter

The PipedOuputStream class is a subclass of OutputStream that facilitates communication between threads.
A PipedOutputStream must be connected to a PipedInputStream to be useful, as it writes bytes that can be
read by a connected PipedInputStream. There are a few ways to connect a PipedOutputStream to a
PipedInputStream. You can first create the PipedInputStream and pass it to the PipedOutputStream
constructor like this:

PipedInputStream pi = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream(pi);

You can also create the PipedOutputStream first and pass it to the PipedInputStream constructor like this:

PipedOutputStream po = new PipedOutputStream();
PipedInputStream pi = new PipedInputStream(po);

The PipedOutputStream and PipedInputStream classes each have a connect() method you can use to
explicitly connect a PipedOutputStream and a PipedInputStream as follows:

PipedOutputStream po = new PipedOutputStream();
PipedInputStream pi = new PipedInputStream();
po.connect(pi);

Or you can use connect() as follows:

PipedOutputStream po = new PipedOutputStream();
PipedInputStream pi = new PipedInputStream();
pi.connect(po);

Only one PipedInputStream can be connected to a PipedOutputStream at a time. If you use a connect()
method to connect a PipedOutputStream to an already connected PipedInputStream, any unread bytes
from the previously connected PipedOutputStream are lost.

PipedWriter is the character-based equivalent of PipedOutputStream. It works in the same way, except that
a PipedWriter is connected to a PipedReader to complete the pipe, using either the appropriate constructor or
the connect() method.

FilterOutputStream and FilterWriter

The FilterOutputStream class is a wrapper class for OutputStream objects. Conceptually, objects that
belong to a subclass of FilterOutputStream are wrapped around another OutputStream object. The
constructor for this class requires an OutputStream. The constructor sets the object's out instance variable to
reference the specified OutputStream, so from that point on, the FilterOutputStream is associated with the
given OutputStream. All of the methods of FilterOutputStream work by calling the corresponding methods
in the underlying OutputStream. Because the close() method of a FilterOutputStream calls the
close() method of the OutputStream that it wraps, you do not need to explicitly close the underlying
OutputStream.

A FilterOutputStream does not add any functionality to the object that it wraps, so by itself it is not very
useful. However, subclasses of the FilterOutputStream class do add functionality to the objects that they wrap
in two ways:

● Some subclasses add logic to the methods of OutputStream. For example, the
BufferedOutputStream class adds logic that buffers write operations.

● Other subclasses add new methods. An example of this is DataOutputStream, which provides methods for
writing primitive Java data types to the stream.

The FilterWriter class is the character-based equivalent of FilterOutputStream. A FilterWriter is
wrapped around an underlying Writer object; the methods of FilterWriter call the corresponding methods of
the underlying Writer. However, unlike FilterOutputStream, FilterWriter is an abstract class, so
you cannot instantiate it directly.

DataOutputStream

The DataOutputStream class is a subclass of the FilterOutputStream class that provides methods for
writing a variety of data types to an OutputStream. The DataOutputStream class implements the
DataOutput interface, so it defines methods for writing all of the primitive Java data types.

You create a DataOutputStream by passing a reference to an underlying OutputStream to the constructor.
Here is an example that creates a DataOutputStream and uses it to write the length of an array as an int and
then to write the values in array as long values:

void writeLongArray(OutputStream out, long[] a) throws IOException {
 DataOutputStream dout = new DataOutputStream(out);
 dout.writeInt(a.length);
 for (int i = 0; i < a.length; i++) {
 dout.writeLong(a[i]);
 }
}

BufferedWriter and BufferedOutputStream

The BufferedWriter class is a subclass of Writer that stores output destined for an underlying Writer in an
internal buffer. When the buffer fills up, the entire buffer is written, or flushed, to the underlying Writer. Using a
BufferedWriter is usually faster than using a regular Writer because it reduces the number of calls that must
be made to the underlying device, be it a disk or a network. You can use the flush() method to force a
BufferedWriter to write the contents of the buffer to the underlying Writer.

The following example shows how to create a BufferedWriter around a network socket's output stream:

public Writer getBufferedWriter(Socket s) throws IOException {
 OutputStreamWriter converter = new OutputStreamWriter(s.getOutputStream());
 return new BufferedWriter(converter);
}

First, create an OutputStreamWriter that converts characters to bytes using the default encoding scheme. After
they are converted, the bytes are written to the socket. Then simply wrap a BufferedWriter around the
OutputStreamWriter to buffer the output.

The BufferedOutputStream class is the byte-based equivalent of BufferedWriter. It works in the same
way as BufferedWriter, except that it buffers output for an underlying OutputStream. Here's how you would
rewrite the previous example to create a BufferedOutputStream around a socket:

public OutputStream getBufferedOutputStream(Socket s) throws IOException {
 return new BufferedOutputStream(s.getOutputStream());
}

PrintWriter and PrintStream

The PrintWriter class is a subclass of Writer that provides a set of methods for printing string representations
of every Java data type. A PrintWriter can be wrapped around an underlying Writer object or an underlying
OutputStream object. In the case of wrapping an OutputStream, any characters written to the PrintWriter
are converted to bytes using the default encoding scheme.[2] Additional constructors allow you to specify if the
underlying stream should be flushed after every line-separator character is written.

[2] You can achieve the same effect using an OutputStreamWriter, but it is easier to use the
PrintWriter(OutputStream) constructor. However, if you want to use an encoding scheme
other than the default one, you need to create your own OutputStreamWriter.

The PrintWriter class provides a print() and a println() method for every primitive Java data type. As
their names imply, the println() methods do the same thing as their print() counterparts, but also append a
line separator character.

The following example demonstrates how to wrap a PrintWriter around an OutputStream:

boolean b = true;
char c = '%'
double d = 8.31451
int i = 42;
String s = "R = ";
PrintWriter out = new PrintWriter(System.out, true);
out.print(s);
out.print(d);
out.println();
out.println(b);
out.println(c);
out.println(i);

This example produces the following output:

R = 8.31451

true
%
42

PrintWriter objects are often used to report errors. For this reason, the methods of this class do not throw
exceptions. Instead, the methods catch any exceptions thrown by any downstream OutputStream or Writer
objects and set an internal flag, so that the object can remember that a problem occurred. You can query the internal
flag by calling the checkError() method.

Although you can create a PrintWriter that flushes the underlying stream every time a line-separator character is
written, this may not always be exactly what you want. Suppose that you are writing a program that has a character-
based user interface, and that you want the program to output a prompt and then allow the user to input a response on
the same line. In order to make this work with a PrintWriter, you need to get the PrintWriter to write the
characters in its buffer without writing a line separator. You can do this by calling the flush() method.

PrintWriter is new as of Java 1.1; it is more capable than the PrintStream class. You should use
PrintWriter instead of PrintStream because it uses the default encoding scheme to convert characters to
bytes for an underlying OutputStream. The constructors for PrintStream are deprecated in Java 1.1. In fact,
the whole class probably would have been deprecated, except that it would have generated a lot of compilation
warnings for code that uses System.out and System.err.

Input Streams and Readers File Manipulation

Chapter 6
I/O

6.3 File Manipulation

While streams are used to handle most types of I/O in Java, there are some nonstream-oriented classes in
java.io that are provided for file manipulation. Namely, the File class represents a file on the local
filesystem, while the RandomAccessFile class provides nonsequential access to data in a file. In
addition, the FilenameFilter interface can be used to filter a list of filenames.

File

The File class represents a file on the local filesystem. You can use an instance of the File class to
identify a file, obtain information about the file, and even change information about the file. The easiest
way to create a File is to pass a filename to the File constructor, like this:

new File("readme.txt")

Although the methods that the File class provides for manipulating file information are relatively
platform independent, filenames must follow the rules of the local filesystem. The File class does
provide some information that can be helpful in interpreting filenames and path specifications. The
variable separatorChar specifies the system-specific character used to separate the name of a
directory from what follows.[3] In a Windows environment, this is a backslash (\), while in a UNIX or
Macintosh environment it is a forward slash (/). You can create a File object that refers to a file called
readme.txt in a directory called myDir as follows:

[3] This information is also available as
System.getProperty('file.separator'), which is how the File class gets
it.

new File("myDir" + File.separatorChar + "readme.txt")

The File class also provides some constructors that make this task easier. For example, there is a File
constructor that takes two strings as arguments: the first string is the name of a directory and the second

string is the name of a file. The following example does the exact same thing as the previous example:

new File("myDir", "readme.txt")

The File class has another constructor that allows you to specify the directory of a file using a File
object instead of a String:

File dir = new File("myDir");
File f = new File(dir, "readme.txt");

Sometimes a program needs to process a list of files that have been passed to it in a string. For example,
such a list of files is passed to the Java environment by the CLASSPATH environment variable and can
be accessed by the expression:

System.getProperty("java.class.path")

This list contains one or more filenames separated by separator characters. In a Windows or Macintosh
environment, the separator character is a semicolon (;), while in a UNIX environment, the separator
character is a colon (:). The system-specific separator character is specified by the
pathSeparatorChar variable. Thus, to turn the value of CLASSPATH into a collection of File
objects, we can write:

StringTokenizer s;
Vector v = new Vector();
s = new StringTokenizer(System.getProperty("java.class.path"),
 File.pathSeparator);
while (s.hasMoreTokens())
 v.addElement(new File(s.nextToken()));

You can retrieve the pathname of the file represented by a File object with getPath(), the filename
without any path information with getName(), and the directory name with getParent().

The File class also defines methods that return information about the actual file represented by a File
object. Use exists() to check whether or not the file exists. isDirectory() and isFile() tell
whether the file is a file or a directory. If the file is a directory, you can use list() to get an array of
filenames for the files in that directory. The canRead() and canWrite() methods indicate whether
or not a program is allowed to read from or write to a file. You can also retrieve the length of a file with
length() and its last modified date with lastModified().

A few File methods allow you to change the information about a file. For example, you can rename a
file with rename() and delete it with delete(). The mkdir() and mkdirs() methods provide a
way to create directories within the filesystem.

Many of these methods can throw a SecurityException if a program does not have permission to
access the filesystem, or particular files within it. If a SecurityManager has been installed, the
checkRead() and checkWrite() methods of the SecurityManager verify whether or not the
program has permission to access the filesystem.

FilenameFilter

The purpose of the FilenameFilter interface is to provide a way for an object to decide which
filenames should be included in a list of filenames. A class that implements the FilenameFilter
interface must define a method called accept(). This method is passed a File object that identifies a
directory and a String that names a file. The accept() method is expected to return true if the
specified file should be included in the list, or false if the file should not be included. Here is an
example of a simple FilenameFilter class that only allows files with a specified suffix to be in a
list:

import java.io.File;
import java.io.FilenameFilter;
public class SuffixFilter implements FilenameFilter {
 private String suffix;
 public SuffixFilter(String suffix) {
 this.suffix = "." + suffix;
 }
 public boolean accept(File dir, String name) {
 return name.endsWith(suffix);
 }
}

A FilenameFilter object can be passed as a parameter to the list() method of File to filter the
list that it creates. You can also use a FilenameFilter to limit the choices shown in a
FileDialog.

RandomAccessFile

The RandomAccessFile class provides a way to read from and write to a file in a nonsequential
manner. The RandomAccessFile class has two constructors that both take two arguments. The first
argument specifies the file to open, either as a String or a File object. The second argument is a
String that must be either "r" or "rw". If the second argument is "r", the file is opened for reading
only. If the argument is "rw", however, the file is opened for both reading and writing. The close()
method closes the file. Both constructors and all the methods of the RandomAccessFile class can
throw an IOException if they encounter an error.

The RandomAccessFile class defines three different read() methods for reading bytes from a file.
The RandomAccessFile class also implements the DataInput interface, so it provides additional
methods for reading from a file. Most of these additional methods are related to reading Java primitive
types in a machine-independent way. Multibyte quantities are read assuming the most significant byte is
first and the least significant byte is last. All of these methods handle an attempt to read past the end of
file by throwing an EOFException.

The RandomAccessFile class also defines three different write() methods for writing bytes of
output. The RandomAccessFile class also implements the DataOutput interface, so it provides
additional methods for writing to a file. Most of these additional methods are related to writing Java
primitive types in a machine-independent way. Again, multibyte quantities are written with the most
significant byte first and the least significant byte last.

The RandomAccessFile class would not live up to its name if it did not provide a way to access a file
in a nonsequential manner. The getFilePointer() method returns the current position in the file,
while the seek() method provides a way to set the position. Finally, the length() method returns
the length of the file in bytes.

Output Streams and Writers Object Serialization

Chapter 7
Object Serialization

7.3 Versioning of Classes

One you have written a class that works with serialization, the next concern is that serialized instances of
that class can be deserialized by programs that use a different version of the same class.

After a class is written, it is often necessary to modify its definition as requirements change or new
features are needed. Deserialization may fail if the definition of a class in use when an instance was
serialized is different than the definition in use when the instance is deserialized. If you do not take any
measures to assure the serialization mechanism that the two classes are different versions of the same
class, deserialization fails by throwing an InvalidClassException. And even if the serialization
mechanism is satisfied that the two class definitions represent different versions of the same class, it may
find incompatible differences between the definitions.

The following changes to the definition of a class are noticed by the serialization mechanism:

● Adding or deleting instance variables.

● Moving a class up or down the inheritance hierarchy.

● Making a non-static, non-transient variable either static or transient has the same
effect as deleting the variable. Similarly, changing a variable that is static or transient to
be non-static or non-transient has the same effect as adding the variable.

● Changing the data type of a transient variable from a primitive data type to an object
reference type or from an object reference type to a primitive data type.

● Changing the readObject() or writeObject() method of a class so that it calls
defaultReadObject() or defaultWriteObject() when it did not previously, or so
that it does not call one of these methods when it did previously. The removal or addition of a
readObject() or writeObject() method that does not call defaultReadObject() or
defaultWriteObject() has a similar effect.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm

● Changing a class from Serializable to Externalizable or from Externalizable to
Serializable.

It's possible to code around some of these problems if you can first convince the serialization mechanism
that the two class definitions are different versions of the same class. In order to convince the
serialization mechanism of such a thing, the class definition used for deserialization of an object must
define a static final long variable named serialVersionUID. If the class used for
serialization also defined that variable with the same value, the two class definitions are assumed to
define different versions of the same class.

If the class used for serialization does not define serialVersionUID, the serialization mechanism
performs the comparison using a value that is computed by calling the
ObjectStreamClass.getSerialVersionUID() method. That computation is based on the
fields defined by the class. To take advantage of this automatic computation when you define
serialVersionUID, you should use the serialver program that comes with the JDK to determine the
appropriate value for serialVersionUID. The serialver program computes a value for
serialVersionUID by calling the ObjectStreamClass.getSerialVersionUID()
method.

Assuming you've convinced the serialization mechanism that the two class definitions represent different
versions of the same class, here is some advice on how to deal with the differences that can be worked
around:

Missing variables

If the class used to deserialize an object defines variables the class used to serialize the object did
not define, the serialized object does not contain any values for those variables. This situation can
also arise if the class used to serialize the object defined a variable as static or transient,
while the class used to deserialize the object defines it as non-static or non-transient.

When an object is deserialized and there are variables missing in its serialized form, the variables
in the deserialized object are set to default values. In other words, the value of such a variable is
true if it has an arithmetic data type, false if it has a boolean data type, or null if it has an
object reference type. Deserialization ignores intializers in variable declarations.

When you add variables to a Serializable class, consider the possibility that the new version
of the class will deserialize an object serialized with an older version of the class. If that happens
and it is unacceptable for the new variables to have default values after deserialization, you can
define a validateObject() method for the class to check for the default values and provide
acceptable values or throw an InvalidObjectException.

Extra variables

If the serialized form of an object contains values for variables that are not defined by the class
used to deserialize that object, the values are read and then ignored. If the value of such a variable
is an object, the object is created and immediately becomes a candidate for garbage collection.

Missing classes

If the class used to deserialize an object inherits from an ancestor class that the class used to
serialize the object did not inherit from, the serialized object does not contain any values for the
variables of the additional ancestor class. Just as with missing variables, those variables are
deserialized with their default values.

When you add an ancestor class to a Serializable class, consider the possibility that the new
version of the class will deserialize an object serialized with an older version of the class. If that
happens and it is unacceptable for instance variables in the new ancestor class to have default
values after deserialization, you can define a validateObject() method for the class to
check for the default values and provide acceptable values or throw an
InvalidObjectException.

Extra classes

If the class used to serialize an object inherits from an ancestor class that the class used to
deserialize the object does not inherit from, the values for the variables defined by that extra
ancestor class are read but not used.

Adding writeObject() and readObject() methods

You can add writeObject() and readObject() methods to a class that did not have them.
In order to deserialize objects that were serialized using the older class definition, the new
methods must begin by calling defaultWriteObject() and defaultReadObject().
That ensures that information written out using default logic is still processed using default logic.

If the writeObject() and readObject() methods write and read additional information to
and from the byte stream, you should also add an additional variable to the class to serve as a
version indicator. For example, you might declare an int variable and initialize it to one. If, after
defaultReadObject() returns, the value of that variable is 0, you know the object was
serialized using the old class definition and that any additional information that would have been
written by the writeObject() method will not be there.

Removing writeObject() and readObject() methods

If you remove writeObject() and readObject() methods from a class and deserialize an
object using the new class definition, the information written by a call to writeObject() is
simply read by the default logic and any additional information is ignored.

Changing a class so that it implements Serializable

If a superclass of an object did not implement Serializable when the object was serialized,
and that superclass does implement Serializable when the object is deserialized, the result is
similar to the missing class situation. There is no information about the variables of the newly
Serializable superclass in the byte stream, so its instance variables are initialized to default
values.

Changing a class so that it does not implement Serializable

If a superclass of an object implemented Serializable when the object was serialized, and
that superclass does not implement Serializable when the object is deserialized, the result is
similar to the extra class situation. The information in the byte stream for that class is read and
discarded.

Writing Classes to Work with
Serialization

Networking

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm

Chapter 8
Networking

8.2 URL Objects

The URL class provides higher-level access to data than sockets do. A URL object encapsulates a
Uniform Resource Locator (URL) specification. Once you have created a URL object, you can use it to
access the data in the location specified by the URL. A URL allows you to access the data without
needing to be aware of the details of the protocol being used, such as HTTP or FTP. For some types of
data, a URL object provides a way to get the data already encapsulated in an appropriate kind of object.
For example, a URL can provide JPEG data encapsulated in an ImageProducer object or text data
encapsulated in a String object.

You can create a URL object as follows:

try {
 URL js = new URL("../../../../www.javasoft.com/index.html");
}catch (MalformedURLException e) {
 return;
}

This type of URL specification is called an absolute URL specification because it completely specifies
where to find the data. It is also possible to create a URL object with a relative URL specification that is
combined with an absolute specification:

try {
 URL jdk = new URL(js,"java.sun.com/products/JDK/index.html");
}catch (MalformedURLException e) {
 return;
}

In this example, the URL created in the previous example is combined with a relative URL specification
that doesn't specify a network address or a root directory. The constructor can only combine the
specifications if the protocol for both specifications is the same. If no protocol is specified, HTTP is

assumed. The rules for combining the specifications depend on the protocol. In fact, the syntax rules for
the portion of the URL after the protocol and up to an optional # depend on the protocol. If there's a # in
the URL specification, the portion of the spec after the # is considered reference information that
specifies a location within a file.

Once you have created a URL object, you can use the following access methods to get the information
that the URL object encapsulates:

● getProtocol()

● getHost()

● getFile()

● getPort()

● getRef()

If you want to determine if two URL objects refer to the same file, you can use the sameFile(URL)
method, which compares all the information in two URL objects except the reference information.

The highest level of functionality available from a URL object is provided by the getContent()
method. The getContent() method tries to determine the type of data in the file specified by the
URL, and then it returns the contents of the file encapsulated in an appropriate object for that type of data.
For example, if the file contains GIF data, getContent() returns an ImageProducer object. If the type
of data is not explicitly specified, getContent() tries to guess the type from the filename extension
and possibly also from the contents of the file. The data type names that Java uses conform to the naming
scheme for MIME data types, as do the filename extensions that are recognized. The data types that
correspond to various file extensions are shown in Table 8.2.

Table 8.2: File Extensions and Data Types

Suffix Data Type Suffix Data Type

.a [1] application/octet-stream .ms application/x-troff-ms

.ai application/postscript .mv video/x-sgi-movie

.aif audio/x-aiff .nc application/x-netcdf

.aifc audio/x-aiff .o [1] application/octet-stream

.aiff audio/x-aiff .obj [2] application/octet-stream

.arc application/octet-stream .oda application/oda

.au audio/basic .pbm image/x-portable-bitmap

.avi application/x-troff-msvideo .pdf application/pdf

.bcpio application/x-bcpio .pgm image/x-portable-graymap

.bin application/octet-stream .pl text/plain

.c text/plain .pnm image/x-portable-anymap

.c++ text/plain .ppm image/x-portable-pixmap

.cc text/plain .ps application/postscript

.cdf application/x-netcdf .qt video/quicktime

.cpio application/x-cpio .ras image/x-cmu-rast

.dump application/octet-stream .rgb image/x-rgb

.dvi application/x-dvi .roff application/x-troff

.el text/plain .rtf [2] application/rtf

.eps application/postscript .rtx application/rtf

.etx text/x-setext .saveme application/octet-stream

.exe application/octet-stream .sh application/x-shar

.gif image/gif .shar application/x-shar

.gtar application/x-gtar .snd audio/basic

.gz application/octet-stream .src application/x-wais-source

.h text/plain .sv4cpio application/x-sv4cpio

.hdf application/x-hdf .sv4crc application/x-sv4crc

.hqx application/octet-stream .t application/x-troff

.htm text/html .tar application/x-tar

.html text/html .tex application/x-tex

.ief image/ief .texi application/x-texinfo

.java text/plain .texinfo application/x-texinfo

.jfif image/jpeg .text text/plain

.jfif-tbnl image/jpeg .tif image/tiff

.jpe image/jpeg .tiff image/tiff

.jpeg image/jpeg .tr application/x-troff

.jpg image/jpeg .tsv text/tab-separated-values

.latex application/x-latex .txt text/plain

.lib [2] application/octet-stream .ustar application/x-ustar

.man application/x-troff-man .uu application/octet-stream

.me application/x-troff-me .wav audio/x-wav

.mime message/rfc822 .wsrc application/x-wais-source

.mov video/quicktime .xbm image/x-xbitmap

.movie video/x-sgi-movie .xpm image/x-xpixmap

.mpe video/mpeg .xwd image/x-xwindowdump

.mpeg video/mpeg .z [2] application/octet-stream

.mpg video/mpeg .zip [2] application/zip

Footnotes:

[1] UNIX only.

[2] Windows only.

If the filename does not end with a recognized extension, the first few bytes of the file are examined. If
the first few bytes match the signature of a known type, the file is assumed to be of that type. Table 8.3
shows the byte combinations that are recognized.

Table 8.3: File Contents and
Corresponding File Type

File Begins with Inferred Data Type

"GIF8" image/gif

"#def" image/x-bitmap

"! XPM2" image/x-pixmap

"<html>" text/html

"<head>" text/html

"<body>" text/html

If you want to access the raw contents of a file instead of getting it encapsulated in an object, you can call
the openStream() method of a URL. The openStream() method returns a reference to an
InputStream object that you can use to read the file.

URLConnection Objects

After a URL object has parsed its specification, it actually creates a URLConnection object that is
responsible for the protocol that it uses. The URLConnection is also responsible for determining the
type of data in the file. The object is an instance of a subclass of URLConnection that is specific to the
protocol specified by the URL object. As of Java 1.1, the java.net package includes the
HttpURLConnection class for the HTTP protocol.

The URLConnection object for a URL provides complete control over the downloading of data from
that URL. Unfortunately, the functionality of URLConnection is quite complex and goes beyond the
scope of this book. For a detailed explanation of URLConnection, see Java Network Programming by
Eliotte Rusty Harold, published by O'Reilly & Associates.

Sockets Security

Chapter 9
Security

9.2 ClassLoader

Java supports dynamically loaded classes, so the class loading mechanism plays an important role in the
Java security model. The default class loading mechanism in Java loads classes from local files found
relative to directories specified by the CLASSPATH environment variable. The CLASSPATH
environment variable should have a value made up of one or more directory paths separated by a colon.
The path implied by the package of a class is relative to the directories specified in the CLASSPATH
environment variable.

In contrast, an instance of the java.lang.ClassLoader class defines how classes are loaded over
the network. You can specify a security policy for loading classes by defining a subclass of
ClassLoader that implements the policy. The loadClass() method of a ClassLoader loads a
top-level class, such as a subclass of Applet. That ClassLoader object then becomes associated
with the loaded class. You can retrieve the ClassLoader object that loads the class by calling the
getClassLoader() of an instance of the loaded class; every class in Java inherits this method from
the Object class.

An object of a class loaded using a ClassLoader can attempt to load additional classes without
explicitly using a ClassLoader object. The object does this by calling the forName() method of the
Class class. However, if a ClassLoader object is associated with any pending method invocation in
the current thread, the forName() method uses that ClassLoader to load the additional classes. In
essence, this means that the object can only load classes through its associated ClassLoader.

If Java security is implemented correctly, an untrusted applet cannot escape the security policy
implemented by the ClassLoader object used to load it because it cannot access any other
ClassLoader objects. An applet should not be able to create its own ClassLoader objects. It is the
responsibility of the checkCreateClassLoader() method of SecurityManager to enforce this
restriction.

Because a SecurityManager can determine the ClassLoader, if any, used to load a class, it can
use the ClassLoader to help determine the trustworthiness ofthe class. Classes loaded by different

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_01.htm

ClassLoader objects cannot accidentally be mixed up because a class is identified by the combination
of its fully qualified name and its ClassLoader.

SecurityManager Accessing the Environment

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_01.htm

Chapter 11
The java.io Package

BufferedOutputStream

Name

BufferedOutputStream

Synopsis

Class Name:

java.io.BufferedOutputStream

Superclass:

java.io.FilterOutputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A BufferedOutputStream object provides a more efficient way to write just a few bytes at a time to an
OutputStream. BufferedOutputStream objects use a buffer to store output for an associated
OutputStream. In other words, a large number of bytes are stored in an internal buffer and only written when the

buffer fills up or is explicitly flushed. A BufferedOutputStream is more efficient than a regular
OutputStream because the data is written to memory, rather than a disk or a network. Minimizing the number of
write operations to a disk or the network minimizes the cumulative overhead for these operations.

You should wrap a BufferedOutputStream around any OutputStream whose write() operations may
be time consuming or costly, such as a FileOutputStream.

Class Summary

public class java.io.BufferedOutputStream
 extends java.io.FilterOutputStream {
 // Variables
 protected byte[] buf;
 protected int count;
 // Constructors
 public BufferedOutputStream(OutputStream out);
 public BufferedOutputStream(OutputStream out, int size);
 // Instance Methods
 public synchronized void flush();
 public synchronized void write(int b);
 public synchronized void write(byte[] b, int off, int len);
}

Variables

buf

protected byte[] buf

Description

The buffer that stores the data for the output stream.

count

protected int count

Description

The current position in the buffer.

Constructors

BufferedOutputStream

public BufferedOutputStream(OutputStream out)

Parameters

out

The output stream to buffer.

Description

This constructor creates a BufferedOutputStream that acts on the specified OutputStream, using a
buffer with the default size of 512 bytes.

public BufferedOutputStream(OutputStream out, int size)

Parameters

out

The output stream to buffer.

size

The size of buffer to use.

Description

This constructor creates a BufferedOutputStream that acts on the specified OutputStream, using a
buffer that is size bytes long.

Instance Methods

flush

public synchronized void flush() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterOutputStream.flush()

Description

This method writes the contents of the buffer to the underlying output stream. It is called automatically when
the buffer fills up. You can also call it before the buffer is full. This is known as "flushing" the buffer. This
method blocks until the underlying write() is complete.

write

public synchronized void write(int b) throws IOException

Parameters

b

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterOutputStream.write(int)

Description

This method places a byte containing the low-order eight bits of the given integer into the buffer. If the buffer
is full, it is flushed, and the value b is placed in the newly empty buffer. If the buffer is flushed, this method
blocks until flush() returns; otherwise this method returns immediately.

 public synchronized void write(byte b[], int off, int len) throws IOException

Parameters

b

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterOutputStream.write(byte[], int, int)

Description

This method copies len bytes from b, starting at off, into the buffer. If there is enough space left in the
buffer for the new data, it is copied into the buffer and the method returns immediately. Otherwise, the buffer
is flushed, and the new data is written directly to the underlying stream. This is subtly different from the
behavior of write(int), which places new data in the buffer after a flush().

Inherited Methods

Method Inherited From Method Inherited From

clone() Object close() FilterOutputStream

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

write(byte[]) FilterOutputStream

See Also

FilterOutputStream, IOException, OutputStream

BufferedInputStream BufferedReader

Chapter 11
The java.io Package

BufferedReader

Name

BufferedReader

Synopsis

Class Name:

java.io.BufferedReader

Superclass:

java.io.Reader

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A BufferedReader object provides a more efficient way to read just a few characters at a time from a
Reader. BufferedReader objects use a buffer to store input from an associated Reader. In other
words, a large number of characters are read from the underlying reader and stored in an internal buffer.
A BufferedReader is more efficient than a regular Reader because reading data from memory is
faster than reading it from a disk or a network. All reading is done directly from the buffer; the disk or
network needs to be accessed only occasionally to fill up the buffer.

You should wrap a BufferedReader around any Reader whose read() operations may be time
consuming or costly, such as a FileReader or InputStreamReader.

BufferedReader provides a way to mark a position in the stream and subsequently reset the stream
to that position, using mark() and reset().

A BufferedReader is similar to a BufferedInputStream, but it operates on a stream of Java
characters instead of a byte stream, which makes it easier to support internationalization.

Class Summary

public class java.io.BufferedReader extends java.io.Reader {
 // Constructors
 public BufferedReader(Reader in);
 public BufferedReader(Reader in, int sz);
 // Instance Methods
 public void close();
 public void mark(int readAheadLimit);
 public boolean markSupported();
 public int read();
 public int read(char[] cbuf, int off, int len);
 public String readLine();
 public boolean ready();
 public void reset();
 public long skip(long n);
}

Constructors

BufferedReader

public BufferedReader(Reader in)

Parameters

in

The reader to buffer.

Description

This constructor creates a BufferedReader that buffers input from the given Reader using a
buffer with the default size of 8192 characters.

public BufferedReader(Reader in, int sz)

Parameters

in

The reader to buffer.

sz

The size of buffer to use.

Throws

IllegalArgumentException

If the specified size is less than 0.

Description

This constructor creates a BufferedReader that buffers input from the given Reader, using a
buffer of the given size.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.close()

Description

This method closes this BufferedReader and its underlying Reader.

mark

public void mark(int readAheadLimit) throws IOException

Parameters

readlimit

The maximum number of bytes that can be read before the saved position becomes invalid.

Throws

IOException

If the stream is closed.

Overrides

Reader.mark(int)

Description

This method causes the BufferedReader to remember its current position. A subsequent call
to reset() causes the object to return to that saved position, and thus reread a portion of the

buffer.

markSupported

public boolean markSupported()

Returns

The boolean value true.

Overrides

Reader.markSupported()

Description

This method returns true to indicate that this class supports mark() and reset().

read

public int read() throws IOException

Returns

The next character of data, or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.read()

Description

This method returns the next character from the buffer. If all the characters in the buffer have
been read, the buffer is filled from the underlying Reader, and the next character is returned. If

the buffer does not need to be filled, this method returns immediately. If the buffer needs to be
filled, this method blocks until data is available from the underlying Reader, the end of the
stream is reached, or an exception is thrown.

public int read(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to be filled from the stream.

off

Offset into the character array.

len

Number of characters to read.

Returns

The actual number of characters read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.read(char[], int, int)

Description

This method reads characters from the internal buffer into the given array cbuf, starting at index
off and continuing for up to len bytes. If there are any characters in the buffer, this method
returns immediately. Otherwise the buffer needs to be filled; this method blocks until the data is
available from the underlying InputStream, the end of the stream is reached, or an exception
is thrown.

readLine

public String readLine() throws IOException

Returns

A String containing the line just read, or null if the end of the stream has been reached.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads a line of text. Lines are terminated by "\n", "\r", or "\r\n". The line
terminators are not returned with the line string.

ready

public boolean ready() throws IOException

Returns

A boolean value that indicates whether the stream is ready to be read.

Throws

IOException

If the stream is closed.

Overrides

Reader.ready()

Description

If there is data in the buffer, or if the underlying stream is ready, this method returns true. The
underlying stream is ready if the next read() is guaranteed to not block. Note that a return value
of false does not guarantee that the next read operation will block.

reset

public void reset() throws IOException

Throws

IOException

If the reader is closed, mark() has not been called, or the saved position has been
invalidated.

Overrides

Reader.reset()

Description

This method sets the position of the BufferedReader to a position that was saved by a
previous call to mark(). Subsequent characters read from this BufferedReader will begin
from the saved position and continue normally.

skip

public long skip(long n) throws IOException

Parameters

n

The number of characters to skip.

Returns

The actual number of characters skipped.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.skip()

Description

This method skips n characters of input. If the new position of the stream is still within the data
contained in the buffer, the method returns immediately. Otherwise the buffer is repeatedly filled
until the requested position is available.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object read(char[]) Reader

toString() Object void wait() Object

void wait(long) Object void wait(long, int) Object

See Also

IllegalArgumentException, IOException, Reader, String

BufferedOutputStream BufferedWriter

Chapter 11
The java.io Package

BufferedWriter

Name

BufferedWriter

Synopsis

Class Name:

java.io.BufferedWriter

Superclass:

java.io.Writer

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A BufferedWriter object provides a more efficient way to write just a few characters at a time to a
Writer. BufferedWriter objects use a buffer to store output for an associated Writer. In other
words, a large number of characters are stored in an internal buffer and only written when the buffer fills
up or is explicitly flushed. A BufferedWriter is more efficient than a regular Writer because the
data is written to memory, rather than a disk or a network. Minimizing the number of write operations to
a disk or the network minimizes the cumulative overhead for these operations.

You should wrap a BufferedWriter around any Writer whose write() operations may be time
consuming or costly, such as a FileWriter or a OutputStreamWriter.

This class is very similar to BufferedOutputStream, but it operates on a stream of Java characters
instead of a byte stream; this makes it easier to support internationalization.

Class Summary

public class java.io.BufferedWriter extends java.io.Writer {
 // Constructors
 public BufferedWriter(Writer out);
 public BufferedWriter(Writer out, int size);
 // Instance Methods
 public void close();
 public void flush();
 public void newLine();
 public void write(int c);
 public void write(char[] cbuf, int off, int len);
 public void write(String s, int off, int len);
}

Constructors

BufferedWriter

public BufferedWriter (Writer out)

Parameters

out

The output stream to buffer.

Description

This constructor creates a BufferedWriter that acts on the specified Writer, using a buffer
with the default size of 8192 characters.

public BufferedWriter (Writer out, int size)

Parameters

out

The output stream to buffer.

size

The size of buffer to use.

Throws

IllegalArgumentException

If the specified size is less than 0.

Description

This constructor creates a BufferedWriter that acts on the specified Writer, using a buffer
that is size bytes long.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.close()

Description

This method closes this BufferedWriter and its underlying Writer.

flush

public void flush() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.flush()

Description

This method writes the contents of the buffer to the underlying Writer and calls flush() on
the underlying Writer. It is called automatically when the buffer fills up. You can also call it
before the buffer is full. This is known as "flushing" the buffer. This method blocks until the
underlying write() is complete.

newLine

public void newLine() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes the newline character or characters to the stream. It uses
System.getProperty('line.separator') to choose the newline appropriate for the
run-time system. Calling this method is preferable to explicitly writing a newline character.

write

public void write(int c) throws IOException

Parameters

c

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.write(int)

Description

This method places the low-order 16 bits of the specified value into the buffer. If the buffer is full,
it is flushed, and the value c is placed in the newly empty buffer. If the buffer is flushed, this
method blocks while the data is written; otherwise this method returns immediately.

 public void write(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to write.

off

An offset into the character array.

len

The number of characters to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.write(char[], int, int)

Description

This method copies len characters from cbuf, starting at off, into the buffer. If there is enough
space left in the buffer for the new data, it is copied into the buffer, and the method returns
immediately. Otherwise, the buffer is filled and flushed repeatedly until all the new data has been
copied into the buffer.

public void write(String s, int off, int len) throws IOException

Parameters

s

The string to be written.

off

An offset into the string.

len

The number of characters to write.

Throws

IOException

If an I/O error occurs.

Overrides

Writer.write(String, int, int)

Description

This method copies len characters from s, starting at off, into the buffer. If there is enough
space left in the buffer for the new data, it is copied into the buffer and the method returns
immediately. Otherwise, the buffer is filled and flushed repeatedly until all the new data has been
copied into the buffer.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object write(char[]) Writer

write(String) Writer

See Also

IllegalArgumentException, IOException, String, Writer

BufferedReader ByteArrayInputStream

Chapter 11
The java.io Package

ByteArrayInputStream

Name

ByteArrayInputStream

Synopsis

Class Name:

java.io.ByteArrayInputStream

Superclass:

java.io.InputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A ByteArrayInputStream is a stream whose data comes from a byte array. None of the methods of
this class throw an IOException because the data comes from an array instead of an actual I/O device.
This class does not support the ability to mark a position in the stream. A call to reset(), however,
does position the stream at the beginning of the byte array.

The position of the end of the stream depends on the constructor used. If the
ByteArrayInputStream(byte[] buf) constructor is used, the end of the stream is the end of the
byte array. If the ByteArrayInputStream(byte[] buf, int offset, int length)
constructor is used, the end of the stream is reached at the index given by offset+length.

Class Summary

public class java.io.ByteArrayInputStream extends java.io.InputStream {
 // Variables
 protected byte[] buf;
 protected int count;
 protected int pos;
 // Constructors
 public ByteArrayInputStream(byte[] buf);
 public ByteArrayInputStream(byte[] buf, int offset, int length);
 // Instance Methods
 public synchronized int available();
 public synchronized int read();
 public synchronized int read(byte[] b, int off, int len);
 public synchronized void reset();
 public synchronized long skip(long n);
}

Variables

buf

protected byte[] buf

Description

The buffer represented by this stream.

count

protected int count

Description

A placeholder that marks the end of the data this ByteArrayInputStream represents.

pos

protected int pos

Description

The current position in the buffer.

Constructors

ByteArrayInputStream

public ByteArrayInputStream(byte[] buf)

Parameters

buf

The stream source.

Description

This constructor creates a ByteArrayInputStream object that uses the given array of bytes as
its data source. The data is not copied, so changes made to the array affect the data the
ByteArrayInputStream returns.

public ByteArrayInputStream(byte[] buf, int offset, int length)

Parameters

buf

The stream source.

offset

An index into the buffer where the stream should begin.

length

The number of bytes to read.

Description

This constructor creates a ByteArrayInputStream that uses, as its data source, length
bytes in a given array of bytes, starting at offset bytes from the beginning of the array. The data
is not copied, so changes made to the array affect the data the ByteArrayInputStream
returns.

Instance Methods

available

public synchronized int available()

Returns

The number of bytes remaining to be read in the array.

Overrides

InputStream.available()

Description

This method returns the number of bytes remaining to be read in the byte array.

read

public synchronized int read()

Returns

The next byte or -1 if the end of the stream is encountered.

Overrides

InputStream.read()

Description

This method returns the next byte in the array.

public synchronized int read(byte[] b, int off, int len)

Parameters

b

An array to read bytes into.

off

An offset into b.

len

The number of bytes to read.

Returns

The number of bytes read or -1 if the end of the stream is encountered.

Overrides

InputStream.read(byte[], int, int)

Description

This method copies up to len bytes from its internal byte array into the given array b, starting at
index off.

reset

public synchronized void reset()

Overrides

InputStream.reset()

Description

This method resets the position of the input stream to the beginning of the byte array. If you
specified an offset into the array, you might expect this method to reset the position to where you
first started reading from the stream, but that is not the case.

skip

public synchronized long skip(long n)

Parameters

n

The number of bytes to skip.

Returns

The number of bytes skipped.

Overrides

InputStream.skip()

Description

This method skips n bytes of input. If you try to skip past the end of the array, the stream is
positioned at the end of the array.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object close() InputStream

equals (Object) Object finalize() Object

getClass() Object hashCode() Object

mark(int) InputStream markSupported () InputStream

notify() Object notifyAll() Object

read(byte[]) InputStream toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

InputStream, String

BufferedWriter ByteArrayOutputStream

Chapter 11
The java.io Package

ByteArrayOutputStream

Name

ByteArrayOutputStream

Synopsis

Class Name:

java.io.ByteArrayOutputStream

Superclass:

java.io.FilterOutputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A ByteArrayOutputStream is a stream whose data is written to an internal byte array. None of the
methods of this class throws an IOException because the data is written to an array instead of an actual
I/O device.

The data for a ByteArrayOutputStream can be sent to another OutputStream using the
writeTo() method. A copy of the array can be obtained using the toCharArray() method.

Class Summary

public class java.io.ByteArrayOutputStream extends java.io.OutputStream {
 // Variables
 protected byte[] buf;
 protected int count;

 // Constructors
 public ByteArrayOutputStream();
 public ByteArrayOutputStream(int size);
 // Instance Methods
 public synchronized void reset();
 public int size();
 public synchronized byte[] toByteArray();
 public String toString();
 public String toString(int hibyte); // Deprecated in 1.1
 public String toString(String enc); // New in 1.1
 public synchronized void write(int b);
 public synchronized void write(byte[] b, int off, int len);
 public synchronized void writeTo(OutputStream out);
}

Variables

buf

protected byte[] buf

Description

The buffer that holds data for this stream.

count

protected int count

Description

A placeholder that marks the end of the data in the buffer.

Constructors

ByteArrayOutputStream

public ByteArrayOutputStream()

Description

This constructor creates a ByteArrayOutputStream with an internal buffer that has a default
size of 32 bytes. The buffer grows automatically as data is written to the stream.

public ByteArrayOutputStream(int size)

Parameters

size

The initial buffer size.

Description

This constructor creates a ByteArrayOutputStream with an internal buffer that has a size of
size bytes. The buffer grows automatically as data is written to the stream.

Instance Methods

reset

public synchronized void reset()

Description

This method discards the current contents of the buffer and resets the position of the stream to zero.
Subsequent data is written starting at the beginning of the array.

size

public int size()

Description

This method returns the number of bytes currently stored in this object's internal buffer. It is a count
of the number of bytes that have been written to the stream.

toByteArray

public synchronized byte[] toByteArray()

Returns

A copy of the data that has been written to this ByteArrayOutputStream.

Description

This method copies the data in the internal array and returns a reference to the copy. The returned
array is as long as the data that has been written to the stream, i.e., the same as size().

toString

public String toString()

Returns

A copy of the data that has been written to this ByteArrayOutputStream.

Overrides

Object.toString()

Description

This method returns a reference to a String object that contains a copy of the bytes currently stored
in this object's internal buffer. The bytes are assumed to represent characters in the encoding that is
customary for the native platform, so the bytes are converted to Unicode characters based on that
assumption.

public String toString(int hibyte)

Availability

Deprecated as of JDK 1.1

Parameters

hibyte

A value to use as the high byte of each character.

Returns

A copy of the data that has been written to this ByteArrayOutputStream, where each character
in the string has a high byte of hibyte and a low byte taken from the corresponding byte in the
array.

Description

This method provides a way to convert from bytes to characters. As of 1.1, it is deprecated and
replaced with toString(String).

 public String toString(String enc) throws UnsupportedEncodingException

Availability

New as of JDK 1.1

Parameters

enc

The encoding scheme to use.

Returns

A copy of the data that has been written to this ByteArrayOutputStream, converted from bytes
to characters via the named encoding scheme enc.

Throws

UnsupportedEncodingException

The specified encoding is not supported.

Description

This method returns a Java String created from the byte array of this stream. The conversion is
performed according to the encoding scheme enc.

write

public synchronized void write(int b)

Parameters

b

The value to write.

Overrides

OutputStream.write(int)

Description

This method writes the low-order 8 bits of the given value into the internal array. If the array is full, a
larger array is allocated.

public synchronized void write(byte b[], int off, int len)

Parameters

b

The array to copy from.

off

Offset into the byte array.

len

Number of bytes to write.

Overrides

OutputStream.write(byte[], int, int)

Description

This method copies len bytes to this object's internal array from b, starting oset elements from the
beginning of the supplied array b. If the internal array is full, a larger array is allocated.

writeTo

 public synchronized void writeTo(OutputStream out) throws IOException

Parameters

out

The destination stream.

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes the contents of this object's internal buffer to the given OutputStream. All the
data that has been written to this ByteArrayOutputStream is written to out.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object close() OutputStream

equals(Object) Object finalize() Object

flush() OutputStream getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

write(byte[]) OutputStream

See Also

IOException, OutputStream, String, UnsupportedEncodingException

ByteArrayInputStream CharArrayReader

Chapter 11
The java.io Package

CharArrayReader

Name

CharArrayReader

Synopsis

Class Name:

java.io.CharArrayReader

Superclass:

java.io.Reader

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The CharArrayReader class represents a stream whose data comes from a character array. This class
is similar to ByteArrayInputStream, but it deals with a Java character stream rather than a byte
stream. Furthermore, this class supports marking a position in the stream, which
ByteArrayInputStream does not.

The position of the end of the stream depends on the constructor used. If the
CharArrayReader(char[] buf) constructor is used, the end of the stream is the end of the
character array. If the CharArrayReader(char[] buf, int offset, int length)
constructor is used, the end of the stream is reached at the index given by offset+length.

Class Summary

public class java.io.CharArrayReader extends java.io.Reader {
 // Variables
 protected char[] buf;
 protected int count;
 protected int markedPos;
 protected int pos;
 // Constructors
 public CharArrayReader(char[] buf);
 public CharArrayReader(char[] buf, int offset, int length);
 // Instance Methods
 public void close();
 public void mark(int readAheadLimit);
 public boolean markSupported();
 public int read();
 public int read(char[] b, int off, int len);
 public boolean ready();
 public void reset();
 public long skip(long n);
}

Variables

buf

protected char[] buf

Description

The buffer represented by this reader.

count

protected int count

Description

The size of the buffer, or in other words, the length of the array.

markedPos

protected int markedPos

Description

The buffer position when mark() was called. If mark() has not been called, this variable is 0.

pos

protected int pos

Description

The current position in the buffer.

Constructors

CharArrayReader

public CharArrayReader(char[] buf)

Parameters

buf

The reader source.

Description

This constructor creates a CharArrayReader object that uses the given array of characters as
its data source. The data is not copied, so changes made to the array affect the data that the
CharArrayReader returns.

public CharArrayReader(char[] buf, int offset, int length)

Parameters

buf

The reader source.

offset

An offset into the array.

length

The number of bytes to read.

Description

This constructor creates a CharArrayReader that uses, as its data source, length characters
in a given array of bytes, starting at offset characters from the beginning of the array. The data
is not copied, so changes made to the array affect the data that the CharArrayReader returns.

Instance Methods

close

public void close()

Overrides

Reader.close()

Description

This method closes the reader by removing the link between this CharArrayReader and the
array it was created with.

mark

public void mark(int readAheadLimit) throws IOException

Parameters

readAheadLimit

The maximum number of characters that can be read before the saved position becomes
invalid.

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.mark(int)

Description

This method causes the CharArrayReader to remember its current position. A subsequent call
to reset() causes the object to return to that saved position, and thus reread a portion of the
buffer. Because the data for this stream comes from a char array, there is no limit on reading
ahead, so readAheadLimit is ignored.

markSupported

public boolean markSupported()

Returns

The boolean value true.

Overrides

Reader.markSupported()

Description

This method returns true to indicate that this class supports mark() and reset().

read

public int read() throws IOException

Returns

The next character or -1 if the end of the stream is encountered.

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.read()

Description

This method returns the next character in the array.

public int read(char[] b, int off, int len) throws IOException

Parameters

b

An array of characters to be filled from the stream.

off

An offset into the character array.

len

The number of characters to read.

Returns

The actual number of characters read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.read(char[], int, int)

Description

This method copies up to len characters from its internal array into the given array b, starting at
index off.

ready

public boolean ready() throws IOException

Returns

A boolean value that indicates whether the stream is ready to be read.

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.ready()

Description

If there is any data left to be read from the character array, this method returns true.

reset

public void reset() throws IOException

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.reset()

Description

This method resets the position of the CharArrayReader to the position that was saved by
calling the mark() method. If mark() has not been called, the CharArrayReader is reset to
read from the beginning of the array.

skip

public long skip(long n) throws IOException

Parameters

n

The number of characters to skip.

Returns

The actual number of characters skipped.

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.skip()

Description

This method skips n characters of input. If you try to skip past the end of the array, the stream is
positioned at the end of the array.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals (Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object read(char[]) Reader

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

IOException, Reader, String

ByteArrayOutputStream CharArrayWriter

Chapter 11
The java.io Package

CharArrayWriter

Name

CharArrayWriter

Synopsis

Class Name:

java.io.CharArrayWriter

Superclass:

java.io.Writer

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The CharArrayWriter class represents a stream whose data is written to an internal character array.
This class is similar to ByteArrayOutputStream, but it operates on an array of Java characters
instead of a byte array.

The data from a CharArrayWriter can be sent to another Writer using the writeTo() method.
A copy of the array can be obtained using the toCharArray() method.

Class Summary

public class java.io.CharArrayWriter extends java.io.Writer {
 // Variables
 protected char[] buf;
 protected int count;
 // Constructors
 public CharArrayWriter();
 public CharArrayWriter(int initialSize);
 // Instance Methods
 public void close();
 public void flush();
 public void reset();
 public int size();
 public char[] toCharArray();
 public String toString();
 public void write(int c);
 public void write(char[] c, int off, int len);
 public void write(String str, int off, int len);
 public void writeTo(Writer out);
}

Variables

buf

protected char[] buf

Description

The buffer that holds data for this stream.

count

protected int count

Description

A placeholder that marks the end of the data in the buffer.

Constructors

CharArrayWriter

public CharArrayWriter()

Description

This constructor creates a CharArrayWriter with an internal buffer that has a default size of
32 characters. The buffer grows automatically as data is written to the stream.

public CharArrayWriter(int initialSize)

Parameters

initialSize

The initial buffer size.

Description

This constructor creates a CharArrayWriter with an internal buffer that has a size of
initialSize characters. The buffer grows automatically as data is written to the stream.

Instance Methods

close

public void close()

Overrides

Writer.close()

Description

This method does nothing. For most subclasses of Writer, this method releases any system
resources that are associated with the Writer object. However, the CharArrayWriter's
internal array may be needed for subsequent calls to toCharArray() or writeTo(). For this
reason, close() does nothing, and the internal array is not released until the
CharArrayWriter is garbage collected.

flush

public void flush()

Overrides

Writer.flush()

Description

This method does nothing. The CharArrayWriter writes data directly into its internal array;
thus it is never necessary to flush the stream.

reset

public void reset()

Description

This method discards the current contents of the buffer and resets the position of the stream to
zero. Subsequent data is written starting at the beginning of the array.

size

public int size()

Description

This method returns the number of characters currently stored in this object's internal buffer. It is
a count of the number of characters that have been written to the stream.

toCharArray

public char[] toCharArray()

Returns

A copy of the data that has been written to this CharArrayWriter in the form of a char
array.

Description

This method copies the data in the internal array and returns a reference to the copy. The returned
array is as long as the data that has been written to the stream, i.e., the same as size().

toString

public String toString()

Returns

A copy of the data that has been written to this CharArrayWriter in the form of a String.

Overrides

Object.toString()

Description

This method returns a reference to a String object created from the characters stored in this
object's internal buffer.

write

public void write(int c)

Parameters

c

The value to write.

Overrides

Writer.write(int)

Description

This method writes the low-order 16 bits of the given value into the internal array. If the array is
full, a larger array is allocated.

public void write(char[] c, int off, int len)

Parameters

c

An array of characters to write to the stream.

off

An offset into the character array.

len

The number of characters to write.

Overrides

Writer.write(char[], int, int)

Description

This method copies len characters to this object's internal array from c, starting off elements
from the beginning of the array. If the internal array is full, a larger array is allocated.

public void write(String str, int off, int len)

Parameters

str

A String to write to the stream.

off

An offset into the string.

len

The number of characters to write.

Overrides

Writer.write(String, int, int)

Description

This method copies len characters to this object's internal array from str, starting off
characters from the beginning of the given string. If the internal array is full, a larger array is
allocated.

writeTo

public void writeTo(Writer out) throws IOException

Parameters

out

The destination stream.

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes the contents of this object's internal buffer to the given Writer. All the data
that has been written to this CharArrayWriter is written to out.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

write(char[]) Writer write(String) Writer

See Also

IOException, String, Writer

CharArrayReader CharConversionException

Chapter 11
The java.io Package

CharConversionException

Name

CharConversionException

Synopsis

Class Name:

java.io.CharConversionException

Superclass:

java.io.IOException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A CharConversionException object is thrown when a problem occurs in converting a character to a byte.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm

Class Summary

public class java.io.CharConversionException extends java.io.IOException {
 // Constructors
 public CharConversionException();
 public CharConversionException(String s);
}

Constructors

CharConverionException

public CharConversionException()

Description

This constructor creates a CharConversionException with no detail message.

public CharConversionException(String s)

Parameters

s

The detail message.

Description

This constructor creates a CharConversionException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IOException, Throwable

CharArrayWriter DataInput

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm

Chapter 11
The java.io Package

File

Name

File

Synopsis

Class Name:

java.io.File

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_15.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_17.htm

Description

The File class provides methods to obtain information about files and directories. A File object
encapsulates the name of a file or a directory. A File object can list the files in a directory, check the
existence and type of a file, create new directories, and rename and delete files, among other things.
However, the File class does not handle I/O to files. Actual reading and writing is accomplished using
RandomAccessFile, FileReader, FileWriter, FileInputStream, and
FileOutputStream objects.

The File class also defines some constants for the platform-specific directory and path separator
characters. If you want to avoid putting system-dependent path information in your program, you may
want to reference all files relative to the directory in which your program is running (i.e., the current
directory). Alternatively, you can use java.awt.FileDialog to prompt the user for system-
dependent paths.

Many of the methods in File throw a SecurityException if the application does not have
sufficient privileges for the requested operation. This happens in two steps. First,
System.getSecurityManager() is called. If a SecurityManager has been installed, it is
queried for the appropriate permission. For example, File.canRead() calls
SecurityManager.canRead(). If the application does not have permission to read the specified
file, the SecurityManager throws a SecurityException, which in turn is thrown by
File.canRead().

Class Summary

public class java.io.File extends java.lang.Object
 implements java.io.Serializable {
 // Constants
 public final static String pathSeparator;
 public final static char pathSeparatorChar;
 public final static String separator;
 public final static char separatorChar;
 // Constructors
 public File(String path);
 public File(String path, String name);
 public File(File dir, String name);
 // Instance Methods
 public boolean canRead();
 public boolean canWrite();
 public boolean delete();
 public boolean equals(Object obj);

 public boolean exists();
 public String getAbsolutePath();
 public String getCanonicalPath(); // New in 1.1
 public String getName();
 public String getParent();
 public String getPath();
 public int hashCode();
 public native boolean isAbsolute();
 public boolean isDirectory();
 public boolean isFile();
 public long lastModified();
 public long length();
 public String[] list();
 public String[] list(FilenameFilter filter);
 public boolean mkdir();
 public boolean mkdirs();
 public boolean renameTo(File dest);
 public String toString();
}

Constants

pathSeparator

public final static String pathSeparator

Description

This string holds the value of System.getProperty('path.separator'). It contains
the character that separates paths in a path list. Usually it is ":" or ";".

pathSeparatorChar

public final static char pathSeparatorChar

Description

This variable holds the first (and only) character in pathSeparator.

separator

public final static String separator

Description

This string holds the value of System.getProperty('file.separator'). It contains
the character that separates directory and filenames in a path string. Usually it is "/" or "\".

separatorChar

public final static char separatorChar

Description

This variable holds the first (and only) character in separator.

Constructors

File

public File(String path)

Parameters

path

A full pathname (i.e., a directory and filename).

Description

This constructor creates a File object that represents the file specified by path.

public File(String path, String name)

Parameters

path

A directory path.

name

A filename.

Description

This constructor creates a File object that represents the file with the specified name in the
directory described by path. In other words, the full pathname is the directory, followed by the
separator character, followed by the filename.

If path is null, the constructor creates a File that represents the file with the specified name
in the current directory. The current directory is the directory in which the program is running.

public File(File dir, String name)

Parameters

dir

A File object that represents a directory.

name

A filename.

Description

This constructor creates a File object that represents the file with the specified name in the
directory described by the File object dir. In other words, the full pathname is the directory
represented by dir, followed by the separator character, followed by the filename.

If dir is null, the constructor creates a File that represents the file with the specified name in
the current directory. The current directory is the directory in which the program is running.

Instance Methods

canRead

public boolean canRead()

Returns

A boolean value that indicates if the file is readable.

Throws

SecurityException

If the application does not have permission to read the File.

Description

This method returns true if File corresponds to an existing, readable file or directory.
Otherwise it returns false.

canWrite

public boolean canWrite()

Returns

A boolean value that indicates if the file is writable.

Throws

SecurityException

If the application does not have permission to write to the File.

Description

This method returns true if File corresponds to an existing, writable file or directory.
Otherwise it returns false.

delete

public boolean delete()

Returns

true if the file is deleted; otherwise false.

Throws

SecurityException

If the application does not have permission to delete the file.

Description

This method attempts to delete the file or directory associated with this File object. A directory
is only deleted if it is empty.

equals

public boolean equals(Object obj)

Parameters

obj

The Object to be compared.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of File that encapsulates the same pathname as
this object.

exists

public boolean exists()

Returns

true if the file or directory exists; false otherwise.

Throws

SecurityException

If the application does not have permission to read the File.

Description

This method returns true if this File corresponds to an existing file or directory.

getAbsolutePath

public String getAbsolutePath()

Returns

A String that contains the absolute pathname.

Description

This method returns the absolute pathname of the file or directory associated with this File.

getCanonicalPath

public String getCanonicalPath() throws IOException

Availability

New as of JDK 1.1

Returns

A String that contains the canonical, or exact, pathname.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the canonical pathname of the file or directory associated with this File.

getName

public String getName()

Returns

A String that contains the filename.

Description

This method returns the filename associated with this File. The string returned does not include
the name of the directory.

getParent

public String getParent()

Returns

A String that contains the parent directory of the file, or null if it does not exist.

Description

This method returns the name of the parent directory of the file or directory associated with this
File. The algorithm used returns everything in the pathname before the last separator character.

getPath

public String getPath()

Returns

A String that contains the pathname of the file.

Description

This method returns the full pathname associated with this File.

hashCode

public int hashCode()

Returns

A hashcode value for this file.

Overrides

Object.hashCode()

Description

This method returns a hashcode based on the pathname associated with this File.

isAbsolute

public native boolean isAbsolute()

Returns

true if the File represents an absolute path; false otherwise.

Description

This method indicates if the File represents an absolute path; what constitutes an absolute path
is system-dependent.

isDirectory

public boolean isDirectory()

Returns

true if the File represents a directory; false otherwise.

Throws

SecurityException

If the application does not have permission to read the File.

Description

This method returns true if this File corresponds to a directory.

isFile

public boolean isFile()

Returns

true if the File represents a normal file; false otherwise.

Throws

SecurityException

If the application does not have permission to read the File.

Description

This method returns true if this File corresponds to a normal file, as opposed to an alternative,
such as a directory, a named pipe, or a device.

lastModified

public long lastModified()

Returns

The time the file was last modified, or 0L if the file does not exist.

Throws

SecurityException

If the application does not have permission to read the File.

Description

This method returns the modification time of the file or directory that corresponds to this File.
The format of the time returned is useful for comparing modification times; it's not meant to be
used for other purposes.

length

public long length()

Returns

The file length, in bytes, or 0L if the file does not exist.

Throws

SecurityException

If the application does not have permission to read the File.

Description

This method returns the length of the file or directory that corresponds to this File.

list

public String[] list()

Returns

An array of the names of the files and directories contained by this File, or null if this File is
not a directory.

Throws

SecurityException

If the application does not have permission to read the File.

Description

This method returns the contents of a directory. The current directory and the parent directory are
not included in the list.

public String[] list(FilenameFilter filter)

Parameters

filter

A filter to use.

Returns

An array of the names of the files and directories contained by this File and filtered by
filter, or null if this File is not a directory.

Throws

SecurityException

If the application does not have permission to read the File.

Description

This method returns of the contents of a directory as selected by the given FilenameFilter
object. Specifically, a name is included if the FilenameFilter object's accept() method
returns true for that name.

If filter is null, this method is equivalent to, but slower than, list().

mkdir

public boolean mkdir()

Returns

true if the directory is created; false otherwise.

Throws

SecurityException

If the application does not have permission to write to the File.

Description

This method creates a directory with the pathname specified by this File.

mkdirs

public boolean mkdirs()

Returns

true if the directory is created; false otherwise.

Throws

SecurityException

If the application does not have permission to write to the File.

Description

This method creates a directory with the pathname specified by this File. The method also
creates all the parent directories if necessary.

renameTo

public boolean renameTo(File dest)

Parameters

dest

A File that specifies the new name.

Returns

true if the name is changed; false otherwise.

Throws

SecurityException

If the application does not have permission to write to this File or the file represented by
dest.

Description

This method changes the pathname of this File to the pathname specified by dest.

toString

public String toString()

Returns

A String that contains the pathname of this File.

Overrides

Object.toString()

Description

This method returns a string representation of this File object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

FileInputStream, FilenameFilter, FileOutputStream, FileReader, FileWriter,
IOException, SecurityException

Externalizable FileDescriptor

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_15.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_17.htm

Chapter 11
The java.io Package

FileInputStream

Name

FileInputStream

Synopsis

Class Name:

java.io.FileInputStream

Superclass:

java.io.InputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_17.htm

Description

The FileInputStream class represents a byte stream that reads data from a file. The file can be
specified using a FileDescriptor, a File object, or a String that represents a pathname. All of
the constructors can throw a SecurityException if the application does not have permission to read
from the specified file.

FileInputStream provides a low-level interface for reading data from a file. You should wrap a
FileInputStream with a DataInputStream if you need a higher-level interface that can handle
reading strings and binary data. You should also think about wrapping a FileInputStream with a
BufferedInputStream to increase reading efficiency.

Data must be read sequentially from a FileInputStream; you can skip forward, but you cannot
move back. If you need random access to file data, use the RandomAccessFile class instead.

Class Summary

public class java.io.FileInputStream extends java.io.InputStream {
 // Constructors
 public FileInputStream(String name);
 public FileInputStream(File file);
 public FileInputStream(FileDescriptor fdObj);
 // Public Instance Methods
 public native int available();
 public native void close();
 public final FileDescriptor getFD();
 public native int read();
 public int read(byte[] b);
 public int read(byte[] b, int off, int len);
 public native long skip(long n);
 // Protected Instance Methods
 protected void finalize();
}

Constructors

FileInputStream

public FileInputStream(String name) throws FileNotFoundException

Parameters

name

A String that contains the pathname of the file to be accessed. The path must conform to
the requirements of the native operating system.

Throws

FileNotFoundException

If the named file cannot be found.

SecurityException

If the application does not have permission to read the named file.

Description

This constructor creates a FileInputStream that gets its input from the file named by the
specified String.

public FileInputStream(File file) throws FileNotFoundException

Parameters

file

The File to use as input.

Throws

FileNotFoundException

If the named file cannot be found.

SecurityException

If the application does not have permission to read the named file.

Description

This constructor creates a FileInputStream that gets its input from the file represented by
the specified File.

public FileInputStream(FileDescriptor fdObj)

Parameters

fdObj

The FileDescriptor of the file to use as input.

Throws

SecurityException

If the application does not have permission to read the specified file.

NullPointerException

If FileDescriptor is null.

Description

This constructor creates a FileInputStream that gets its input from the file identified by the
given FileDescriptor.

Public Instance Methods

available

public native int available() throws IOException

Returns

The number of bytes that can be read from the file without blocking.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.available()

Description

This method returns the number of available bytes of data. Initially, this is the length of the file.

close

public native void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.close()

Description

This method closes this file input stream and releases any resources used by it.

getFD

public final FileDescriptor getFD() throws IOException

Returns

The file descriptor for the file that supplies data for this stream.

Throws

IOException

If there is no FileDescriptor associated with this object.

Description

This method returns the file descriptor associated with the data source of this
FileInputStream.

read

public native int read() throws IOException

Returns

The next byte of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.read()

Description

This method reads the next byte of data from the file. The method blocks if no input is available.

public int read(byte[] b) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.read(byte[])

Description

This method reads data into the given array. The method fills the array if enough bytes are
available. The method blocks until some input is available.

public int read(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.read(byte[], int, int)

Description

This method reads len bytes of data into the given array, starting at element off. The method
blocks until some input is available.

skip

public native long skip(long n) throws IOException

Parameters

n

The number of bytes to skip.

Returns

The actual number of bytes skipped.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.skip()

Description

This method skips n bytes of input in the stream.

Protected Instance Methods

finalize

protected void finalize() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Object.finalize()

Description

This method is called when the FileInputStream is garbage collected to ensure that
close() is called. If the stream has a valid file descriptor, the close() method is called to
free the system resources used by this stream.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

getClass() Object hashCode() Object

mark(int) InputStream markSupported() InputStream

notify() Object notifyAll() Object

reset() InputStream toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

BufferedInputStream, DataInputStream, File, FileDescriptor,

FileNotFoundException, InputStream, IOException, NullPointerException,
RandomAccessFile, SecurityException

FileDescriptor FilenameFilter

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_17.htm

Chapter 11
The java.io Package

FilenameFilter

Name

FilenameFilter

Synopsis

Interface Name:

java.io.FilenameFilter

Super-interface:

None

Immediate Sub-interfaces:

None

Implemented by:

None

Availability:

JDK 1.0 or later

Description

The FilenameFilter interface is implemented by a class that wants to filter the filenames that
should be included in a list of filenames. For example, the list() method of the File class can take a
FilenameFilter object to filter the filenames that are listed. The java.awt.FileDialog class
also uses a FilenameFilter to limit the choices that are presented to the user.

Interface Declaration

public abstract interface java.io.FilenameFilter {
 // Methods
 public abstract boolean accept(File dir, String name);
}

Methods

accept

public abstract boolean accept(File dir, String name)

Parameters

dir

The directory that contains the file.

name

The name of the file.

Returns

true if the file should be shown; false otherwise.

Description

This method returns a boolean value that indicates whether or not a file should be included in a
list of filenames. The method should return true if a file should be included; otherwise it should
return false. A simple filter might return true for filenames with a certain extension, like

.java. A more complex filter could check the directory name, the file's readability, and last
modification time, for example.

See Also

File

FileInputStream FileNotFoundException

Chapter 11
The java.io Package

FileNotFoundException

Name

FileNotFoundException

Synopsis

Class Name:

java.io.FileNotFoundException

Superclass:

java.io.IOException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A FileNotFoundException is thrown when a specified file cannot be located.

Class Summary

public class java.io.FileNotFoundException extends java.io.IOException {
 // Constructors
 public FileNotFoundException();
 public FileNotFoundException(String s);
}

Constructors

FileNotFoundException

public FileNotFoundException()

Description

This constructor creates a FileNotFoundException with no detail message.

public FileNotFoundException(String s)

Parameters

s

The detail message.

Description

This constructor creates a FileNotFoundException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IOException, Throwable

FilenameFilter FileOutputStream

Chapter 11
The java.io Package

FileOutputStream

Name

FileOutputStream

Synopsis

Class Name:

java.io.FileOutputStream

Superclass:

java.io.OutputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_22.htm

The FileOutputStream class represents a byte stream that writes data to a file. The file can be specified
using a FileDescriptor, a File object, or a String that represents a pathname. All of the
constructors can throw a SecurityException if the application does not have permission to write to the
specified file.

FileOutputStream provides a low-level interface for writing data to a file. Wrap a
FileOutputStream with a DataOutputStream or a PrintStream if you need a higher-level
interface that can handle writing strings and binary data. You should also think about wrapping a
FileOutputStream with a BufferedOutputStream to increase writing efficiency.

Data must be written sequentially to a FileOutputStream; you can either overwrite existing data or
append data to the end of the file. If you need random access to file data, use the RandomAccessFile
class instead.

Class Summary

public class java.io.FileOutputStream extends java.io.OutputStream {
 // Constructors
 public FileOutputStream(String name);
 public FileOutputStream(String name, boolean append); // New in 1.1
 public FileOutputStream(File file);
 public FileOutputStream(FileDescriptor fdObj);
 // Public Instance Methods
 public native void close();
 public final FileDescriptor getFD();
 public native void write(int b);
 public void write(byte[] b);
 public void write(byte[] b, int off, int len);
 // Protected Instance Methods
 protected void finalize();
}

Constructors

FileOutputStream

public FileOutputStream(String name) throws IOException

Parameters

name

A String that contains the pathname of the file to be used for output. The path must conform
to the requirements of the native operating system.

Throws

FileNotFoundException

If the named file cannot be found.

SecurityException

If the application does not have permission to write to the named file.

Description

This constructor creates a FileOutputStream that sends its output to the file named by the
specified String.

 public FileOutputStream(String name, boolean append) throws IOException

Availability

New as of JDK 1.1

Parameters

name

A String that contains the pathname of the file to be used for output. The path must conform
to the requirements of the native operating system.

append

Specifies whether or not data is appended to the output stream.

Throws

FileNotFoundException

If the named file cannot be found.

SecurityException

If the application does not have permission to write to the named file.

Description

This constructor creates a FileOutputStream that sends its output to the named file. If append
is true, the stream is positioned at the end of the file, and data is appended to the end of the file.
Otherwise, if append is false, the stream is positioned at the beginning of the file, and any
previous data is overwritten.

public FileOutputStream(File file) throws IOException

Parameters

file

The File to use as output.

Throws

FileNotFoundException

If the named file cannot be found.

SecurityException

If the application does not have permission to write to the named file.

Description

This constructor creates a FileOutputStream that sends its output to the file represented by the
specified File.

public FileOutputStream(FileDescriptor fdObj)

Parameters

fdObj

The FileDescriptor of the file to use as output.

Throws

SecurityException

If the application does not have permission to write to the specified file.

NullPointerException

If FileDescriptor is null.

Description

This constructor creates a FileOutputStream that sends its output to the file identified by the
given FileDescriptor.

Public Instance Methods

close

public native void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

OutputStream.close()

Description

This method closes this file output stream and releases any resources used by it.

getFD

public final FileDescriptor getFD() throws IOException

Throws

IOException

If there is no FileDescriptor associated with this object.

Description

This method returns the file descriptor associated with the data source of this FileOutputStream.

write

public native void write(int b) throws IOException

Parameters

b

The value to write to the stream.

Throws

IOException

If any kind of I/O error occurs.

Overrides

OutputStream.write(int)

Description

This method writes a byte containing the low-order eight bits of the given value to the output stream.

public void write(byte[] b) throws IOException

Parameters

b

An array of bytes to write to the stream.

Throws

IOException

If any kind of I/O error occurs.

Overrides

OutputStream.write(byte[])

Description

This method writes the entire contents of the given array to the output stream.

public void write(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

OutputStream.write(byte[], int, int)

Description

This method writes len bytes from the given array, starting at element off, to the output stream.

Protected Instance Methods

finalize

protected void finalize() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method is called when the FileOutputStream is garbage-collected to ensure that close()
is called. If the stream has a valid file descriptor, the close() method is called to free the system
resources used by this stream.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

flush() OutputStream getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

BufferedOutputStream, DataOutputStream, File, FileDescriptor,
FileNotFoundException, IOException, NullPointerException, OutputStream,
PrintStream, RandomAccessFile, SecurityException

FileNotFoundException FileReader

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_22.htm

Chapter 11
The java.io Package

FilterInputStream

Name

FilterInputStream

Synopsis

Class Name:

java.io.FilterInputStream

Superclass:

java.io.InputStream

Immediate Subclasses:

java.io.BufferedInputStream,

java.io.DataInputStream,

java.io.LineNumberInputStream,

java.io.PushbackInputStream,

java.util.zip.CheckedInputStream,

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_23.htm

java.util.zip.InflaterInputStream

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The FilterInputStream class is the superclass of all of the input stream classes that filter input.
Each of the subclasses of FilterInputStream works by wrapping an existing input stream, called
the underlying input stream, and providing additional functionality. The methods of
FilterInputStream simply override the methods of InputStream with versions that call the
corresponding methods of the underlying stream.

FilterInputStream cannot be instantiated directly; it must be subclassed. An instance of one of the
subclasses of FilterInputStream is constructed with another InputStream object. The methods
of a subclass of FilterInputStream should override some methods in order to extend their
behavior or provide some sort of filtering.

Class Summary

public class java.io.FilterInputStream extends java.io.InputStream {
 // Variables
 protected InputStream in;
 // Constructors
 protected FilterInputStream(InputStream in);
 // Instance Methods
 public int available();
 public void close();
 public synchronized void mark(int readlimit);
 public boolean markSupported();
 public int read();
 public int read(byte[] b);
 public int read(byte[] b, int off, int len);
 public synchronized void reset();
 public long skip(long n);

}

Variables

in

protected InputStream in

Description

The underlying stream that this FilterInputStream wraps or filters.

Constructors

FilterInputStream

protected FilterInputStream(InputStream in)

Parameters

in

The input stream to filter.

Description

This constructor creates a FilterInputStream that gets its data from in.

Instance Methods

available

public int available() throws IOException

Returns

The number of bytes that can be read without blocking.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.available()

Description

This method calls the available() method of the underlying stream and returns the result.

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.close()

Description

This method calls the close() method of the underlying stream, which releases any system
resources associated with this object.

mark

public synchronized void mark(int readlimit)

Parameters

readlimit

The maximum number of bytes that can be read before the saved position becomes invalid.

Overrides

InputStream.mark()

Description

This method calls the mark() method of the underlying stream. If the underlying stream
supports mark() and reset(), this method causes the FilterInputStream to remember
its current position. A subsequent call to reset() causes the object to return to that saved
position, and thus re-read a portion of the input.

markSupported

public boolean markSupported()

Returns

true if this stream supports mark() and reset(); false otherwise.

Overrides

InputStream.markSupported()

Description

This method calls the markSupported() method of the underlying stream and returns the
result.

read

public int read() throws IOException

Returns

The next byte of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.read()

Description

This method calls the read() method of the underlying stream and returns the result. This
method blocks until some data is available, the end of the stream is detected, or an exception is
thrown.

public int read(byte[] b) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.read(byte[])

Description

This method reads bytes of input to fill the given array. It does this by calling read(b, 0,
b.length), which allows subclasses to only override read(byte[], int, int) and have

read(byte[]) work automatically. The method blocks until some data is available.

public int read(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.read(byte[], int, int)

Description

This method reads up to len bytes of input into the given array starting at index off. It does this
by calling the read(byte[], int, int) method of the underlying stream and returning the
result. The method blocks until some data is available.

reset

public synchronized void reset() throws IOException

Throws

IOException

If there was no previous call to the mark() method or the saved position has been
invalidated.

Overrides

InputStream.reset()

Description

This method calls the reset() method of the underlying stream. If the underlying stream
supports mark() and reset(), this method sets the position of the FilterInputStream to
a position that was saved by a previous call to mark(). Subsequent bytes read from this
FilterInputStream will begin from the saved position and continue normally.

skip

public long skip(long n) throws IOException

Parameters

n

The number of bytes to skip.

Returns

The actual number of bytes skipped.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.skip()

Description

This method skips n bytes of input. It calls the skip() method of the underlying stream.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

BufferedInputStream, CheckedInputStream, DataInputStream,
FilterInputStream, InflaterInputStream, InputStream, IOException,
LineNumberInputStream, PushbackInputStream

FileWriter FilterOutputStream

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_23.htm

Chapter 11
The java.io Package

FilterOutputStream

Name

FilterOutputStream

Synopsis

Class Name:

java.io.FilterOutputStream

Superclass:

java.io.ObjectStream

Immediate Subclasses:

java.io.BufferedOutputStream,

java.io.DataOutputStream,

java.io.PrintStream,

java.util.zip.CheckedOutputStream,

java.util.zip.DeflaterOutputStream

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The FilterOutputStream class is the superclass of all of the output stream classes that filter output.
Each of the subclasses of FilterOutputStream works by wrapping an existing output stream,
called the underlying output stream, and providing additional functionality. The methods of
FilterOutputStream simply override the methods of OutputStream with versions that call the
corresponding methods of the underlying stream.

FilterOutputStream cannot be instantiated directly; it must be subclassed. An instance of one of
the subclasses of FilterOutputStream is constructed with another OutputStream object. The
methods of a subclass of FilterOutputStream should override some methods in order to extend
their behavior or provide some sort of filtering.

Class Summary

public class java.io.FilterOutputStream extends java.io.OutputStream {
 // Variables
 protected OutputStream out;
 // Constructors
 public FilterOutputStream(OutputStream out);
 // Instance Methods
 public void close();
 public void flush();
 public void write(int b);
 public void write(byte[] b);
 public void write(byte[] b, int off, int len);
}

Variables

out

protected OutputStream out

Description

The underlying stream that this FilterOutputStream wraps or filters.

Constructors

FilterOutputStream

public FilterOutputStream(OutputStream out)

Parameters

out

The output stream to filter.

Description

This constructor creates a FilterOutputStream that sends its data to out.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

OutputStream.close()

Description

This method calls the close() method of the underlying stream, which releases any system
resources associated with this object.

flush

public void flush() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

OutputStream.flush()

Description

This method calls the flush() method of the underlying stream, which forces any bytes that
may be buffered by this FilterOutputStream to be written to the underlying device.

write

public void write(int b) throws IOException

Parameters

b

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

OutputStream.write(int)

Description

This method writes a byte containing the low-order eight bits of the given integer value. The
method calls the write(int) method of the underlying stream.

public void write(byte[] b) throws IOException

Parameters

b

An array of bytes to write to the stream.

Throws

IOException

If any kind of I/O error occurs.

Overrides

OutputStream.write(byte[])

Description

This method writes the bytes contained in the given array. To accomplish this, it calls write(b,
0, b.length). Subclasses need override only write(byte[], int, int) for this
method to work automatically.

public void write(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

OutputStream.write(byte[], int, int)

Description

This method writes len bytes contained in the given array, starting at offset off. It does this by
calling write(int) for each element to be written in the array. This is inefficient, so subclasses
should override write(byte[], int, int) with a method that efficiently writes a block of
data.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

BufferedOutputStream, CheckedOutputStream, DataOutputStream,
DeflaterOutputStream, IOException, OutputStream, PrintStream

FilterInputStream FilterReader

Chapter 11
The java.io Package

FilterReader

Name

FilterReader

Synopsis

Class Name:

java.io.FilterReader

Superclass:

java.io.Reader

Immediate Subclasses:

java.io.PushbackReader

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The FilterReader class is the superclass of all of the reader classes that filter input. A subclass of
FilterReader works by wrapping an existing reader, called the underlying reader, and providing
additional functionality. The methods of FilterReader simply override the methods of Reader with
versions that call the corresponding methods of the underlying reader.

FilterReader cannot be instantiated directly; it must be subclassed. An instance of a subclass of
FilterReader is constructed with another Reader object. The methods of a subclass of
FilterReader should override some methods in order to extend their behavior or provide some sort
of filtering.

FilterReader is like FilterInputStream, except that it deals with a character stream instead of
a byte stream.

Class Summary

public abstract class java.io.FilterReader extends java.io.Reader {
 // Variables
 protected Reader in;
 // Constructors
 protected FilterReader(Reader in);
 // Instance Methods
 public void close();
 public void mark(int readAheadLimit);
 public boolean markSupported();
 public int read();
 public int read(char[] cbuf, int off, int len);
 public boolean ready();
 public void reset();
 public long skip(long n);
}

Variables

in

protected Reader in

Description

The underlying reader that this FilterReader wraps or filters.

Constructors

FilterReader

protected FilterReader(Reader in)

Parameters

in

The input reader to filter.

Description

This constructor creates a FilterReader that gets data from in.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.close()

Description

This method calls the close() method of the underlying reader, which releases any system

resources associated with this object.

mark

public void mark(int readAheadLimit) throws IOException

Parameters

readAheadLimit

The maximum number of characters that can be read before the saved position becomes
invalid.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.mark()

Description

This method calls the mark() method of the underlying reader. If the underlying reader supports
mark() and reset(), this method causes the FilterReader to remember its current
position. A subsequent call to reset() causes the object to return to that saved position, and
thus re-read a portion of the input.

markSupported

public boolean markSupported()

Returns

true if this reader supports mark() and reset(); false otherwise.

Overrides

Reader.markSupported()

Description

This method calls the markSupported() method of the underlying reader and returns the
result.

read

public int read() throws IOException

Returns

The next character of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.read()

Description

This method calls the read() method of the underlying reader and returns the result. The
method blocks until data is available, the end of the stream is detected, or an exception is thrown.

public int read(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to be filled from the stream.

off

An offset into the array.

len

The number of characters to read.

Returns

The actual number of characters read or -1 if the end of the stream is encountered immediately.
Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.read(char[], int, int)

Description

This method reads up to len characters of input into the given array starting at index off. It does
this by calling the read(char[], int, int) method of the underlying reader and returning
the result. The method blocks until some data is available.

ready

public boolean ready() throws IOException

Returns

A boolean value that indicates whether the reader is ready to be read.

Throws

IOException

If the stream is closed.

Overrides

Reader.ready()

Description

This method calls the ready() method of the underlying reader and returns the result. If the
underlying stream is ready, this method returns true. The underlying stream is ready if the next
read() is guaranteed not to block.

reset

public void reset() throws IOException

Throws

IOException

If the stream is closed, mark() has not been called, or the saved position has been
invalidated.

Overrides

Reader.reset()

Description

This method calls the reset() method of the underlying reader. If the underlying reader
supports mark() and reset(), this method sets the position of the FilteredReader to a
position that was saved by a previous call to mark(). Subsequent characters read from this
FilteredReader will begin from the saved position and continue normally.

skip

public long skip(long n) throws IOException

Parameters

n

The number of characters to skip.

Returns

The actual number of characters skipped.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.skip()

Description

This method skips n characters of input. It calls the skip() method of the underlying reader.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

FilterInputStream, IOException, PushbackReader, Reader

FilterOutputStream FilterWriter

Chapter 11
The java.io Package

FilterWriter

Name

FilterWriter

Synopsis

Class Name:

java.io.FilterWriter

Superclass:

java.io.Writer

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The FilterWriter class is the superclass of all of the writer classes that filter output. A subclass of
FilterWriter works by wrapping an existing writer, called the underlying writer, and providing
additional functionality. The methods of FilterWriter simply override the methods of Writer with
versions that call the corresponding methods of the underlying writer.

FilterWriter cannot be instantiated directly; it must be subclassed. An instance of a subclass of
FilterWriter is constructed with another Writer object. The methods of a subclass of
FilterWriter should override some methods in order to extend their behavior or provide some sort
of filtering.

FilterWriter is like FilterOutputStream, except that it deals with a character stream instead
of a byte stream.

Class Summary

public abstract class java.io.FilterWriter extends java.io.Writer {
 // Variables
 protected Writer out;
 // Constructors
 protected FilterWriter(Writer out);
 // Instance Methods
 public void close();
 public void flush();
 public void write(int c);
 public void write(char[] cbuf, int off, int len);
 public void write(String str, int off, int len);
}

Variables

out

protected Writer out

Description

The underlying writer that this FilterWriter wraps or filters.

Constructors

FilterWriter

public FilterWriter(Writer out)

Parameters

out

The output writer to filter.

Description

This constructor creates a FilterWriter that sends data to out.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.close()

Description

This method calls the close() method of the underlying writer, which releases any system
resources associated with this object.

flush

public void flush() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.flush()

Description

This method calls the flush() method of the underlying writer, which forces any characters
that may be buffered by this FilterWriter to be written to the underlying device.

write

public void write(int c) throws IOException

Parameters

c

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.write(int)

Description

This method writes a character containing the low-order 16 bits of the given integer value. It calls

the write(int) method of the underlying writer.

 public void write(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to write to the stream.

off

An offset into the array.

len

The number of characters to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.write(char[], int, int)

Description

This method writes len characters contained in the given array, starting at offset off. It does this
by calling the write(char[], int, int) method of the underlying writer.

public void write(String str, int off, int len) throws IOException

Parameters

str

A string to write to the stream.

off

An offset into the string.

len

The number of characters to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.write(String, int, int)

Description

This method writes len characters contained in the given string, starting at offset off. It does
this by calling the write(String, int, int) method of the underlying writer.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

FilterOutputStream, IOException, String, Writer

FilterReader InputStream

Chapter 11
The java.io Package

InputStream

Name

InputStream

Synopsis

Class Name:

java.io.InputStream

Superclass:

java.lang.Object

Immediate Subclasses:

java.io.ByteArrayInputStream,

java.io.FileInputStream,

java.io.FilterInputStream,

java.io.ObjectInputStream,

java.io.PipedInputStream,

java.io.SequenceInputStream,

java.io.StringBufferInputStream

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The InputStream class is an abstract class that is the superclass of all classes that represent input
byte streams. InputStream defines the basic input methods that all input streams provide. A similar
hierarchy of classes, based around Reader, deals with character streams instead of byte streams.

InputStream is designed so that read(byte[]) and read(byte[], int, int) both call
read(). Thus, a subclass can simply override read(), and all the read methods will work. However,
for efficiency sake, read(byte[], int, int) should also be overridden with a method that can read
a block of data more efficiently than reading each byte separately.

InputStream also defines a mechanism for marking a position in the stream and returning to it later,
via the mark() and reset() methods. Another method, markSupported(), indicates whether or
not this mark-and-reset functionality is available in a particular subclass.

Class Summary

public abstract class java.io.InputStream extends java.lang.Object {
 // Instance Methods
 public abstract int available();
 public void close();
 public synchronized void mark(int readlimit);
 public boolean markSupported();
 public abstract int read();
 public int read(byte[] b);
 public int read(byte[] b, int off, int len);
 public synchronized void reset();
 public long skip(long n);
}

Instance Methods

available

public abstract int available() throws IOException

Returns

The number of bytes that can be read without blocking.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the number of bytes that can be read without having to wait for more data to
become available, or in other words, blocking.

A subclass of InputStream must implement this method.

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method closes the input stream and releases any resources associated with it.

The implementation of the close() method in InputStream does nothing; a subclass should
override this method to handle cleanup for the stream.

mark

public synchronized void mark(int readlimit)

Parameters

readlimit

The maximum number of bytes that can be read before the saved position can become
invalid.

Description

This method tells this InputStream object to remember its current position, so that the position
can be restored by a call to the reset() method. The InputStream can read readlimit
bytes beyond the marked position before the mark becomes invalid.

The implementation of the mark() method in InputStream does nothing; a subclass must
override the method to provide the mark-and-reset functionality.

markSupported

public boolean markSupported()

Returns

true if this input stream supports mark() and reset(); false otherwise.

Description

This method returns a boolean value that indicates whether or not this object supports mark-and-
reset functionality.

The markSupported() method in InputStream always returns false. A subclass that
implements the mark-and-reset functionality should override the method to return true.

read

public abstract int read() throws IOException

Returns

The next byte of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads the next byte of input. The byte is returned as an integer in the range 0 to 255.
The method blocks until the byte is read, the end of stream is encountered, or an exception is
thrown.

A subclass of InputStream must implement this method.

public int read(byte[] b) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads bytes of input to fill the given array by calling read(b, 0, b.length). The
method blocks until some data is available.

A subclass does not usually need to override this method as it can override read(byte[],
int, int) and have read(byte[]) work automatically.

public int read(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

off

An offset into the array.

len

The number of bytes to read.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads up to len bytes of input into the given array starting at index off. The method
blocks until some data is available.

The implementation of this method in InputStream uses read() repeatedly to fill the array.
Although it is not strictly necessary, a subclass should override this method to read a block of data
more efficiently.

reset

public synchronized void reset() throws IOException

Throws

IOException

If there was no previous call to the mark() method or the saved position has been
invalidated.

Description

This method restores the position of the stream to the position that was saved by a previous call to
mark().

The implementation of the reset() method in InputStream throws an exception to indicate
that mark-and-reset functionality is not supported by default. A subclass must override the method
to provide the functionality.

skip

public long skip(long n) throws IOException

Parameters

n

The number of bytes to skip.

Returns

The actual number of bytes skipped.

Throws

IOException

If any kind of I/O error occurs.

Description

This method skips n bytes of input. In other words, it moves the position of the stream forward by
n bytes.

The implementation of the skip() method in InputStream simply calls read(b) where b is
a byte array n bytes long. A subclass may want to override this method to implement a more
efficient skipping algorithm.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ByteArrayInputStream, FileInputStream, FilterInputStream, IOException,
ObjectInputStream, PipedInputStream, SequenceInputStream,
StringBufferInputStream

FilterWriter InputStreamReader

Chapter 11
The java.io Package

InputStreamReader

Name

InputStreamReader

Synopsis

Class Name:

java.io.InputStreamReader

Superclass:

java.io.Reader

Immediate Subclasses:

java.io.FileReader

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_30.htm

Description

The InputStreamReader class is a bridge between the byte-oriented world of the InputStream
class and the character-oriented world of the Reader class. The InputStreamReader represents a
character stream, but it gets its input from an underlying byte stream. An encoding scheme is responsible
for translating the bytes to Unicode characters. An InputStreamReader can be created using an
explicit encoding scheme or a default encoding scheme.

For example, to read an ISO-8859-5 byte stream as a Unicode character stream, you can construct an
InputStreamReader with the encoding "8859_5" as follows:

InputStreamReader inr = new InputStreamReader(in, "8859_5");

Each time you read from an InputStreamReader object, bytes may be read from the underlying byte
stream. To improve efficiency, you may want to wrap the InputStreamReader in a
BufferedReader.

Class Summary

public class java.io.InputStreamReader extends java.io.Reader {
 // Constructors
 public InputStreamReader(InputStream in);
 public InputStreamReader(InputStream in, String enc);
 // Instance Methods
 public void close();
 public String getEncoding();
 public int read();
 public int read(char[] cbuf, int off, int len);
 public boolean ready();
}

Constructors

InputStreamReader

public InputStreamReader(InputStream in)

Parameters

in

The input stream to use.

Description

This constructor creates an InputStreamReader that gets its data from in and translates
bytes to characters using the system's default encoding scheme.

 public InputStreamReader(InputStream in, String enc) throws
UnsupportedEncodingException

Parameters

in

The input stream to use.

enc

The name of an encoding scheme.

Throws

UnsupportedEncodingException

If enc is not a supported encoding scheme.

Description

This constructor creates an InputStreamReader that gets its data from in and translates
bytes to characters using the given encoding scheme.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.close()

Description

This method calls the close() method of the underlying input stream, which releases any
system resources associated with this object.

getEncoding

public String getEncoding()

Returns

A String that contains the name of the character encoding scheme of this reader.

Description

This method returns the name of the character encoding scheme this InputStreamReader is
currently using.

read

public int read() throws IOException

Returns

The next character of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.read()

Description

This method reads a character of input. The method returns the next character that has been read
and converted from the underlying byte-oriented InputStream. The InputStreamReader
class uses buffering internally, so this method returns immediately unless the buffer is empty. If
the buffer is empty, a new block of bytes is read from the InputStream and converted to
characters. The method blocks until the character is read, the end of stream is encountered, or an
exception is thrown.

public int read(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to be filled from the stream.

off

An offset into the array.

len

The number of characters to read.

Returns

The actual number of characters read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.read(char[], int, int)

Description

This method reads up to len characters of input into the given array starting at index off. The
InputStreamReader class uses buffering internally, so this method returns immediately if
there is enough data in the buffer. If there is not enough data, a new block of bytes is read from
the InputStream and converted to characters. The method blocks until some data is available.

ready

public boolean ready() throws IOException

Returns

true if the reader is ready to be read; false otherwise.

Throws

IOException

If the reader is closed or any other kind of I/O error occurs.

Overrides

Reader.ready()

Description

This method returns a boolean value that indicates whether or not the reader is ready to be read.
If there is data available in the internal buffer or if there are bytes available to be read from the
underlying byte stream, the method returns true. Otherwise it returns false.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object mark() Reader

markSupported() Reader read(char[]) Reader

reset() Reader skip(long) Reader

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

BufferedReader, FileReader, InputStream, IOException, , Reader,
UnsupportedEncodingException

InputStream InterruptedIOException

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_30.htm

Chapter 11
The java.io Package

InvalidClassException

Name

InvalidClassException

Synopsis

Class Name:

java.io.InvalidClassException

Superclass:

java.io.ObjectStreamException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

An InvalidClassException is thrown during object serialization. It indicates that the run-time

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_30.htm

environment does not support a serialized class for one of the following reasons:

● The version of the class does not match the serial version of the class in the stream.

● The class contains unknown data types.

An InvalidClassException can also indicate one of these problems with the class itself:

● The class implements only one of writeObject() and readObject().

● The class is not public.

● The class does not have an accessible constructor that takes no arguments.

Class Summary

public class java.io.InvalidClassException
 extends java.io.ObjectStreamException {
 // Variables
 public String classname;
 // Constructors
 public InvalidClassException(String reason);
 public InvalidClassException(String cname, String reason);
 // Instance Methods
 public String getMessage();
}

Variables

classname

public String classname

Description

The name of the class that caused the exception.

Constructors

InvalidClassException

public InvalidClassException(String reason)

Parameters

reason

The reason the exception was thrown.

Description

This constructor creates an InvalidClassException with the specified reason string.

public InvalidClassException(String cname, String reason)

Parameters

cname

The name of the class.

reason

The reason the exception was thrown.

Description

This constructor creates an InvalidClassException with the specified class name and reason
string.

Instance Methods

getMessage

public String getMessage()

Returns

The reason string for this exception.

Overrides

Throwable.getMessage()

Description

This method returns the reason string for this exception. If a class name has also been specified, it is
prepended to the reason string with a semicolon.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, ObjectStreamException, Throwable

InterruptedIOException InvalidObjectException

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_30.htm

Chapter 11
The java.io Package

InvalidObjectException

Name

InvalidObjectException

Synopsis

Class Name:

java.io.InvalidObjectException

Superclass:

java.io.ObjectStreamException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

An InvalidObjectException is thrown by an object to indicate that it cannot validate itself during object

deserialization.

Class Summary

public class java.io.InvalidObjectException
 extends java.io.ObjectStreamException {
 // Constructors
 public InvalidObjectException(String reason);
}

Constructors

InvalidObjectException

public InvalidObjectException(String reason)

Parameters

reason

The detail message.

Description

This constructor creates an InvalidObjectException with the specified detail message, which
should be the name of the class.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, ObjectStreamException, Throwable

InvalidClassException IOException

Chapter 11
The java.io Package

IOException

Name

IOException

Synopsis

Class Name:

java.io.IOException

Superclass:

java.lang.Exception

Immediate Subclasses:

java.io.CharConversionException,

java.io.EOFException,

java.io.FileNotFoundException,

java.io.InterruptedIOException,

java.io.ObjectStreamException,

java.io.SyncFailedException,

java.io.UnsupportedEncodingException,

java.io.UTFDataFormatException,

java.net.MalformedURLException,

java.net.ProtocolException,

java.net.SocketException,

java.net.UnknownHostException,

java.net.UnknownServiceException,

java.util.zip.ZipException

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The IOException class is the superclass for all of the exceptions that represent anything that can go wrong
with input or output.

Class Summary

public class java.io.IOException extends java.lang.Exception {
 // Constructors
 public IOException();
 public IOException(String s);
}

Constructors

IOException

public IOException()

Description

This constructor creates an IOException with no detail message.

public IOException(String s)

Parameters

s

The detail message.

Description

This constructor creates an IOException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

CharConversionException, EOFException, Exception, FileNotFoundException,
InterruptedException, MalformedURLException, ObjectStreamException,
ProtocolException, SocketException, SyncFailedException, Throwable,
UnknownHostException, UnknownServiceException, UnsupportedEncodingException,
UTFDataFormatException, ZipException

InvalidObjectException LineNumberInputStream

Chapter 11
The java.io Package

LineNumberInputStream

Name

LineNumberInputStream

Synopsis

Class Name:

java.io.LineNumberInputStream

Superclass:

java.io.FilterInputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

Deprecated as of JDK 1.1

Description

The LineNumberInputStream class is an InputStream that keeps track of line numbers. The
line number starts at 0 and is incremented each time an end-of-line character is encountered.
LineNumberInputStream recognizes "\n", "\r", or "\r\n" as the end of a line. Regardless of
the end-of-line character it reads, LineNumberInputStream returns only "\n". The current line
number is returned by getLineNumber(). The mark() and reset() methods are supported, but
only work if the underlying stream supports mark() and reset().

The LineNumberInputStream class is deprecated as of JDK 1.1 because it does not perform any
byte to character conversions. Incoming bytes are directly compared to end-of-line characters. If you are
developing new code, you should use LineNumberReader instead.

Class Summary

public class java.io.LineNumberInputStream
 extends java.io.FilterInputStream {
 // Constructors
 public LineNumberInputStream(InputStream in);
 // Instance Methods
 public int available();
 public int getLineNumber();
 public void mark(int readlimit);
 public int read();
 public int read(byte[] b, int off, int len);
 public void reset();
 public void setLineNumber(int lineNumber);
 public long skip(long n);
}

Constructors

LineNumberInputStream

public LineNumberInputStream(InputStream in)

Parameters

in

The input stream to use.

Description

This constructor creates a LineNumberInputStream that gets its data from in.

Instance Methods

available

public int available() throws IOException

Returns

The number of bytes that can be read without blocking.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.available()

Description

This method returns the number of bytes of input that can be read without having to wait for more
input to become available.

getLineNumber

public int getLineNumber()

Returns

The current line number.

Description

This method returns the current line number.

mark

public void mark(int readlimit)

Parameters

readlimit

The maximum number of bytes that can be read before the saved position becomes invalid.

Overrides

FilterInputStream.mark()

Description

This method tells the LineNumberInputStream to remember its current position. A
subsequent call to reset() causes the object to return to that saved position and thus reread a
portion of the input. The method calls the mark() method of the underlying stream, so it only
works if the underlying stream supports mark() and reset().

read

public int read() throws IOException

Returns

The next byte of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.read()

Description

This method reads a byte of input from the underlying stream. If "\n", "\r", or "\r\n" is read
from the stream, "\n" is returned. Otherwise, the byte read from the underlying stream is
returned verbatim. The method blocks until the byte is read, the end of stream is encountered, or
an exception is thrown.

public int read(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.read(byte[], int, int)

Description

This method reads up to len bytes of input into the given array starting at index off. If "\n",
"\r", or "\r\n" is read from the stream, "\n" is returned. The method does this by repeatedly
calling read(), which is not efficient, especially if the underlying stream is not buffered. The
method blocks until some data is available.

reset

public void reset() throws IOException

Throws

IOException

If there was no previous call to this FilterInputStream's mark() method or the
saved position has been invalidated.

Overrides

FilterInputStream.reset()

Description

This method calls the reset() method of the underlying stream. If the underlying stream
supports mark() and reset(), this method sets the position of the stream to a position that
was saved by a previous call to mark(). Subsequent bytes read from this stream will begin from
the saved position and continue normally. The method also restores the line number to its correct
value for the mark location. The method only works if the underlying stream supports mark()
and reset().

setLineNumber

public void setLineNumber(int lineNumber)

Parameters

lineNumber

The new line number.

Description

This method sets the current line number of the LineNumberInputStream. The method does
not change the position of the stream.

skip

public long skip(long n) throws IOException

Parameters

n

The number of bytes to skip.

Returns

The actual number of bytes skipped.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.skip()

Description

This method skips n bytes of input. Note that since LineNumberInputStream returns
"\r\n" as a single character, "\n", this method may skip over more bytes than you expect.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object close() FilterInputStream

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

markSupported() FilterInputStream notify() Object

notifyAll() Object read(byte[]) FilterInputStream

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

FilterInputStream, InputStream, IOException, LineNumberReader

IOException LineNumberReader

Chapter 11
The java.io Package

LineNumberReader

Name

LineNumberReader

Synopsis

Class Name:

java.io.LineNumberReader

Superclass:

java.io.BufferedReader

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The LineNumberReader class is a BufferedReader that keeps track of line numbers. The line
number starts at 0 and is incremented each time an end-of-line character is encountered.
LineNumberReader recognizes "\n", "\r", or "\r\n" as the end of a line. Regardless of the end-
of-line character it reads, ReaderInputStream returns only "\n". The current line number is
returned by getLineNumber().

The LineNumberReader class is the JDK 1.1 replacement for LineNumberInputStream. Not
only does it correctly handle byte to character conversions (via Reader), it implements
read(byte[], int, int) and skip() more efficiently than its predecessor.

Class Summary

public class java.io.LineNumberReader extends java.io.BufferedReader {
 // Constructors
 public LineNumberReader(Reader in);
 public LineNumberReader(Reader in, int sz);
 // Instance Methods
 public int getLineNumber();
 public void mark(int readAheadLimit);
 public int read();
 public int read(char[] cbuf, int off, int len);
 public String readLine();
 public void reset();
 public void setLineNumber(int lineNumber);
 public long skip(long n);
}

Constructors

LineNumberReader

public LineNumberReader(Reader in)

Parameters

in

The reader to use.

Description

This constructor creates a LineNumberReader that gets its data from in and uses a default
sized buffer. The default buffer size for BufferedReader is 8192 characters.

public LineNumberReader(Reader in, int sz)

Parameters

in

The reader to use.

sz

The buffer size.

Description

This constructor creates a LineNumberReader that gets its data from in and uses a buffer of
the given size.

Instance Methods

getLineNumber

public int getLineNumber()

Returns

The current line number.

Description

This method returns the current line number.

mark

public void mark(int readAheadLimit) throws IOException

Parameters

readAheadLimit

The maximum number of characters that can be read before the saved position becomes
invalid.

Throws

IOException

If any kind of I/O error occurs.

Overrides

BufferedReader.mark()

Description

This method causes the LineNumberReader to remember its current position. A subsequent
call to reset() causes the object to return to that saved position and thus reread a portion of the
input.

read

public int read() throws IOException

Returns

The next character of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

BufferedReader.read()

Description

This method reads a character of input from the underlying reader. If "\n", "\r", or "\r\n" is
read from the stream, "\n" is returned. Otherwise the character read from the underlying
BufferedReader is returned verbatim. The method blocks until it reads the character, the end
of stream is encountered, or an exception is thrown.

public int read(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to be filled from the stream.

off

An offset into the array.

len

The number of characters to read.

Returns

The actual number of characters read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

BufferedReader.read(char[], int, int)

Description

This method reads up to len characters of input into the given array starting at index off. This
method, unlike read(), returns end-of-line characters exactly as they come from the underlying
BufferedReader. The method blocks until data is available.

readLine

public String readLine() throws IOException

Returns

A String containing the line just read, or null if the end of the stream has been reached.

Throws

IOException

If any kind of I/O error occurs.

Overrides

BufferedReader.readLine()

Description

This method reads a line of text. Lines are terminated by "\n", "\r", or "\r\n". The line
terminators are not returned with the line string.

reset

public void reset() throws IOException

Throws

IOException

If the reader is closed, mark() has not been called, or the saved position has been
invalidated.

Overrides

BufferedReader.reset()

Description

This method sets the position of the reader to a position that was saved by a previous call to
mark(). Subsequent characters read from this reader will begin from the saved position and
continue normally. The method also restores the line number to its correct value for the mark
location.

setLineNumber

public void setLineNumber(int lineNumber)

Parameters

lineNumber

The new line number.

Description

This method sets the current line number of the LineNumberReader. The method does not
change the position of the reader.

skip

public long skip(long n) throws IOException

Parameters

n

The number of characters to skip.

Returns

The actual number of bytes skipped.

Throws

IOException

If any kind of I/O error occurs.

Overrides

BufferedReader.skip()

Description

This method skips n characters of input.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object close() BufferedReader

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

notify() Object notifyAll() Object

markSupported() BufferedReader read(char[]) Reader

ready() BufferedReader toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

BufferedReader, Reader, IOException, LineNumberInputStream

LineNumberInputStream NotActiveException

Chapter 11
The java.io Package

NotActiveException

Name

NotActiveException

Synopsis

Class Name:

java.io.NotActiveException

Superclass:

java.io.ObjectStreamException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A NotActiveException is thrown to indicate that an inappropriate method is being called when serialization

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_37.htm

or deserialization is not in progress.

Class Summary

public class java.io.NotActiveException
 extends java.io.ObjectStreamException {
 // Constructors
 public NotActiveException();
 public NotActiveException(String reason);
}

Constructors

NotActiveException

public NotActiveException()

Description

This constructor creates a NotActiveException with no detail message.

public NotActiveException(String reason)

Parameters

reason

The detail message.

Description

This constructor creates a NotActiveException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, ObjectStreamException, Throwable

LineNumberReader NotSerializableException

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_37.htm

Chapter 11
The java.io Package

ObjectInput

Name

ObjectInput

Synopsis

Interface Name:

java.io.ObjectInput

Super-interface:

java.io.DataInput

Immediate Sub-interfaces:

None

Implemented By:

java.io.ObjectInputStream

Availability:

New as of JDK 1.1

Description

The ObjectInput interface extends the DataInput interface for object serialization. While DataInput defines
methods for reading primitive types from a stream, ObjectInput defines methods for reading objects and arrays of
bytes.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_37.htm

Interface Declaration

public abstract interface java.io.ObjectInput extends java.io.DataInput {
 // Methods
 public abstract int available();
 public abstract void close();
 public abstract int read();
 public abstract int read(byte[] b);
 public abstract int read(byte[] b, int off, int len);
 public abstract Object readObject();
 public abstract long skip(long n);
}

Methods

available

public abstract int available() throws IOException

Returns

The number of bytes that can be read without blocking.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the number of bytes that can be read from the stream without accessing a physical device,
like a disk or a network.

close

public abstract void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method closes the stream and releases any system resources associated with it.

read

public abstract int read() throws IOException

Returns

The next byte of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the next byte of data from the stream. The method blocks until the byte is read, the end of
stream is detected, or an exception is thrown.

public abstract int read(byte[] b) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads bytes from the stream to fill the given array. The method blocks until some data is
available.

 public abstract int read(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

off

An offset into the array.

len

The number of bytes to read.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads up to len bytes of input into the given array starting at index off. The method blocks until
some data is available.

readObject

 public abstract Object readObject() throws ClassNotFoundException, IOException

Returns

An Object that has been deserialized from the stream.

Throws

ClassNotFoundException

If the class of the serialized object cannot be found in the run-time environment.

IOException

If any kind of I/O error occurs.

Description

This method reads and returns an object instance from the stream; in other words, it deserializes an object from
the stream. The class that implements this interface determines exactly how the object is to be read.

skip

public abstract long skip(long n) throws IOException

Parameters

n

The number of bytes to skip.

Returns

The actual number of bytes skipped.

Throws

IOException

If any kind of I/O error occurs.

Description

This method skips n bytes of input.

Inherited Methods

Method Inherited From Method Inherited From

readBoolean() DataInput readByte() DataInput

readChar() DataInput readDouble() DataInput

readFloat(byte[]) DataInput readFully(byte[]) DataInput

readFully(byte[], int, int) DataInput readInt() DataInput

readLine() DataInput readLong() DataInput

readShort() DataInput readUnsignedByte() DataInput

readUnsignedChar() DataInput readUTF() DataInput

skipBytes(int) DataInput

See Also

DataInput, ObjectInputStream

NotSerializableException ObjectInputStream

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_37.htm

Chapter 11
The java.io Package

ObjectInputStream

Name

ObjectInputStream

Synopsis

Class Name:

java.io.ObjectInputStream

Superclass:

java.io.InputStream

Immediate Subclasses:

None

Interfaces Implemented:

java.io.ObjectInput

Availability:

New as of JDK 1.1

Description

The ObjectInputStream class can read both primitive types and object instances from an underlying InputStream.
The objects and other data must have been written by an ObjectOutputStream. These two classes can provide persistent
storage of objects when they are used in conjunction with FileInputStream and FileOutputStream. The classes can
also be used with socket streams to pass objects across the network.

Only objects that are instances of classes that implement the Serializable or Externalizable interfaces can be
deserialized from an input stream. The default deserialization mechanism is implemented by readObject(). When an

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_5F40.htm

object is deserialized, the non-static and non-transient fields of the object are restored to the values they had when the
object was serialized, including any other objects referenced by the object (except for those objects that do not implement the
Serializable interface themselves). Graphs of objects are restored using a reference sharing mechanism. New object
instances are always allocated during the deserialization process, to prevent existing objects from being overwritten.
Deserialized objects are returned as instances of type Object, so they should be cast to the appropriate type. Strings and
arrays are objects in Java, so they are treated as objects during deserialization.

For example, the following code opens a file called color.ser and reads a Color object:

FileInputStream fileIn;
ObjectInputStream in;
Color color;
try {
 fileIn = new FileInputStream("color.ser");
 in = new ObjectInputStream(fileIn);
 color = (Color)in.readObject();
 in.close();
}
catch (Exception e) {
 System.out.println("Error reading: " + e);
}

Classes that have transient instance variables may require special handling to reconstruct the values of these variables
when objects are deserialized. Special handling may also be necessary to correctly deserialize objects that were serialized with
a different version of their class than is in use when they are deserialized. Classes that require special handling during
serialization and deserialization must implement the following methods (with these exact signatures):

private void readObject(ObjectOutputStream stream)
 throws IOException, ClassNotFoundException
private void writeObject(ObjectOutputStream stream) throws IOException

The writeObject() method is responsible for writing the state of the object for the particular class so that it can be
restored by readObject(). The readObject() method registers an object validation callback by calling
registerValidation() as its first action. The readObject() method doesn't need to handle reading the state for the
object's superclass or any of its subclasses except in the case where the superclass doesn't itself implement the
Serializable interface. In this case, the nonserializable class must have a no-argument constructor that can be called to
initialize its fields, and it is the responsibility of the subclass to restore the state of its superclass.

A class that inherits the implementation of Serializable prevents itself from being serialized by defining
readObject() and writeObject() methods that throw NotSerializableException objects.

If a class needs complete control over the contents and formatting of the serialized form of its objects, it should implement the
Externalizable interface.

Class Summary

public class java.io.ObjectInputStream extends java.io.InputStream
 implements java.io.ObjectInput {
 // Constructors
 public ObjectInputStream(InputStream in);
 // Public Instance Methods

 public int available();
 public void close();
 public final void defaultReadObject();
 public int read();
 public int read(byte[] data, int offset, int length);
 public boolean readBoolean();
 public byte readByte();
 public char readChar();
 public double readDouble();
 public float readFloat();
 public void readFully(byte[] data);
 public void readFully(byte[] data, int offset, int size);
 public int readInt();
 public String readLine();
 public long readLong();
 public final Object readObject();
 public short readShort();
 public int readUnsignedByte();
 public int readUnsignedShort();
 public String readUTF();
 public synchronized void
 registerValidation(ObjectInputValidation obj, int prio);
 public int skipBytes(int len);
 // Protected Instance Methods
 protected final boolean enableResolveObject(boolean enable);
 protected void readStreamHeader();
 protected Class resolveClass(ObjectStreamClass v);
 protected Object resolveObject(Object obj);
}

Constructors

ObjectInputStream

 public ObjectInputStream(InputStream in) throws IOException,
StreamCorruptedException

Parameters

in

The underlying input stream.

Throws

IOException

If any kind of I/O error occurs.

StreamCorruptedException

If the stream header is not correct.

Description

This constructor creates an ObjectInputStream that reads from the given input stream. The constructor attempts to
read the stream header, which consists of a magic number and a version number, and if something goes wrong, an
appropriate exception is thrown. If all of the bytes of the stream header are not available, the constructor does not return
until they become available.

Public Instance Methods

available

public int available() throws IOException

Returns

The number of bytes that can be read without blocking.

Throws

IOException

If any kind of I/O error occurs.

Implements

ObjectInput.available()

Overrides

InputStream.available()

Description

This method returns the number of bytes that can be read without having to wait for more data to become available.

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Implements

ObjectInput.close()

Overrides

InputStream.close()

Description

This method closes the stream and releases any system resources that are associated with it.

defaultReadObject

 public final void defaultReadObject() throws IOException, ClassNotFoundException,
NotActiveException

Throws

IOException

If any kind of I/O error occurs.

ClassNotFoundException

If the class of the object being read cannot be found.

NotActiveException

If serialization is not active.

Description

This method reads the fields of the current object that are not static and not transient. The method can only be
called from the private readObject() method of an object that is being deserialized; it throws a
NotActiveException if it is called at any other time. This method implements the default deserialization
mechanism.

read

public int read() throws IOException

Returns

The next byte of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Implements

ObjectInput.read()

Overrides

InputStream.read()

Description

This method reads the next byte from the stream. The method blocks until some data is available, the end of the stream
is detected, or an exception is thrown.

 public int read(byte[] data, int offset, int length) throws IOException

Parameters

data

Array of bytes to be filled from the stream.

offset

An offset into the byte array.

length

The number of bytes to read.

Returns

The number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Implements

ObjectInput.read(byte[], int, int)

Overrides

InputStream.read(byte[], int, int)

Description

This method reads up to length bytes of input into the given array starting at index offset. The method blocks until
there is some input available.

readBoolean

public boolean readBoolean() throws IOException

Returns

The boolean value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readBoolean()

Description

This method reads a byte as a boolean value from the underlying input stream. A byte that contains a zero is read as
false. A byte that contains any other value is read as true. The method blocks until the byte is read, the end of the
stream is encountered, or an exception is thrown.

readByte

public byte readByte() throws IOException

Returns

The byte value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readByte()

Description

This method reads a signed 8-bit value, a byte, from the underlying input stream. The method blocks until the byte is
read, the end of the stream is encountered, or an exception is thrown.

readChar

public char readChar() throws IOException

Returns

The char value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readChar()

Description

This method reads a 16-bit Unicode character from the stream. The method reads two bytes from the underlying input
stream and then creates a char value using the first byte read as the most significant byte. The method blocks until the
two bytes are read, the end of the stream is encountered, or an exception is thrown.

readDouble

public double readDouble() throws IOException

Returns

The double value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readDouble()

Description

This method reads a 64-bit double quantity from the stream. The method reads a long value from the underlying
input stream as if using the readLong() method. The long value is then converted to a double using the
longBitsToDouble() method in Double. The method blocks until the necessary eight bytes are read, the end of
the stream is encountered, or an exception is thrown.

readFloat

public float readFloat() throws IOException

Returns

The float value read from the stream.
Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readFloat()

Description

This method reads a 32-bit float quantity from the stream. The method reads an int value from the underlying input
stream as if using the readInt() method. The int value is then converted to a float using the
intBitsToFloat() method in Float. The method blocks until the necessary four bytes are read, the end of the
stream is encountered, or an exception is thrown.

readFully

public void readFully(byte[] b) throws IOException

Parameters

b

The array to fill.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readFully(byte[])

Description

This method reads bytes into the given array b until the array is full. The method reads repeatedly from the underlying
stream to fill the array. The method blocks until all of the bytes are read, the end of the stream is encountered, or an
exception is thrown.

 public void readFully(byte[] data, int offset, int size) throws IOException

Parameters

data

The array to fill.

offset

An offset into the array.

length

The number of bytes to read.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readFully(byte[], int, int)

Description

This method reads len bytes into the given array, starting at offset off. The method reads repeatedly from the
underlying stream to fill the array. The method blocks until all of the bytes are read, the end of the stream is
encountered, or an exception is thrown.

readInt

public int readInt() throws IOException

Returns

The int value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readInt()

Description

This method reads a signed 32-bit int quantity from the stream. The method reads four bytes from the underlying
input stream and then creates an int quantity, using the first byte read as the most significant byte. The method blocks
until the four bytes are read, the end of the stream is encountered, or an exception is thrown.

readLine

public String readLine() throws IOException

Returns

A String that contains the line read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other I/O error occurs.

Implements

DataInput.readLine()

Description

This method reads the next line of text from the stream. The method reads bytes of data from the underlying input
stream until it encounters a line terminator. A line terminator is a carriage return ("\r"), a newline character ("\n"), a
carriage return immediately followed by a newline character, or the end of the stream. The method blocks until a line
terminator is read, the end of the stream is encountered, or an exception is thrown. Note that this method calls the
readLine() method of DataInputStream, which is deprecated in 1.1.

readLong

public long readLong() throws IOException

Returns

The long value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readLong()

Description

This method reads a signed 64-bit long quantity from the stream. The method reads eight bytes from the underlying
input stream and then creates a long quantity, using the first byte read as the most significant byte. The method blocks

until the eight bytes are read, the end of the stream is encountered, or an exception is thrown.

readObject

 public final Object readObject() throws OptionalDataException,
ClassNotFoundException, IOException

Returns

An Object that has been deserialized from the stream.

Throws

ClassNotFoundException

If the object being deserialized has an unrecognized class.

InvalidClassException

If there is a problem with the class of the deserialized object.

StreamCorruptedException

If the stream serialization information is not correct.

OptionalDataException

If the stream contains primitive data instead of an object.

IOException

If any kind of I/O error occurs.

Implements

ObjectInput.readObject()

Description

This method deserializes an object from the stream and returns a reference to the object. The non-static and non-
transient fields of the object are restored to the values they had when the object was serialized. If the object
contains references to other objects, these objects are also deserialized (as long as they implement the Serializable
interface). Graphs of objects are restored using a reference-sharing mechanism. New object instances are always
allocated during the deserialization process, to prevent existing objects from being overwritten. Deserialized objects are
returned as instances of type Object, so they should be cast to the appropriate type.

Once an object has been completely restored (i.e., all of its fields and any objects it references have been restored), any
object validation callbacks for the object or any of the objects it references are called in an order based on their priority.
An object validation callback is registered by the private readObject() method for an object.

readShort

public short readShort() throws IOException

Returns

The short value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readShort()

Description

This method reads a signed 16-bit short quantity from the stream. The method reads two bytes from the underlying
input stream and then creates a short quantity, using the first byte read as the most significant byte. The method
blocks until the two bytes are read, the end of the stream is encountered, or an exception is thrown.

readUnsignedByte

public int readUnsignedByte() throws IOException

Returns

The unsigned byte value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readUnsignedByte()

Description

This method reads an unsigned 8-bit quantity from the stream. The method reads a byte from the underlying input
stream and returns that byte. The method blocks until the byte is read, the end of the stream is encountered, or an
exception is thrown.

readUnsignedShort

public int readUnsignedShort() throws IOException

Returns

The unsigned short value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readUnsignedShort()

Description

This method reads an unsigned 16-bit quantity from the stream. The method reads two bytes from the underlying input
stream and creates an unsigned short quantity using the first byte read as the most significant byte. The method
blocks until the two bytes are read, the end of the stream is encountered, or an exception is thrown.

readUTF

public String readUTF() throws IOException

Returns

The String read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

UTFDataFormatException

If the bytes do not represent a valid UTF-8 encoding.

Implements

DataInput.readUTF()

Description

This method reads a UTF-8 encoded string from the stream. See the description of
DataInputStream.readUTF(DataInput) for more information.

registerValidation

 public synchronized void registerValidation(ObjectInputValidation obj, int prio)
throws NotActiveException, InvalidObjectException

Parameters

obj

The object requesting validation.

prio

The priority of the validation callback; use zero as a default.

Throws

NotActiveException

If serialization is not active.

InvalidObjectException

If obj is null.

Description

This method may be called from an object's private readObject() method to register a validation callback. An
object performs internal validation by implementing the ObjectInputValidation interface and registering itself
with the ObjectInputStream via this function. When ObjectInputStream has completely deserialized an
object (i.e., restored all of its fields and any objects it references), the stream calls
ObjectInputValidation.validateObject() for every object that has an object validation callback. Objects

that register with higher priority values get validated before objects that register with lower priority values. Within a
priority value, the callbacks are not processed in any particular order.

skipBytes

public int skipBytes(int len) throws IOException

Parameters

len

The number of bytes to skip.

Returns

The actual number of skipped bytes.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind I/O error occurs.

Implements

DataInput.skipBytes()

Description

This method skips over n bytes in the underlying input stream. The method blocks until all of the bytes are skipped, the
end of the stream is encountered, or an exception is thrown.

Protected Instance Methods

enableResolveObject

 protected final boolean enableResolveObject(boolean enable) throws SecurityException

Parameters

enable

A boolean value that specifies whether or not object replacement is enabled.

Returns

true if object replacement was previously enabled; false otherwise.

Throws

SecurityException

If enable is true and getClassLoader() called on the class of the stream does not return null.

Description

This method determines if a trusted subclass of ObjectInputStream is allowed to replace deserialized objects. If
the method is called with true, object replacement is enabled. Each time an object is deserialized,
resolveObject() is called to give the ObjectInputStream a chance to replace the object. A trusted stream is
one whose class has no ClassLoader.

readStreamHeader

 protected void readStreamHeader() throws IOException, StreamCorruptedException

Throws

StreamCorruptedException

If the stream header is not correct.

IOException

If any kind of I/O error occurs.

Description

This method attempts to read the stream header, which consists of a magic number and a version number. If something
goes wrong, an appropriate exception is thrown. This method is called by the constructor for ObjectInputStream
and is the source of the exceptions it throws. If you subclass ObjectInputStream, you can override this method to
provide your own stream header checking.

resolveClass

 protected Class resolveClass(ObjectStreamClass v) throws IOException,
ClassNotFoundException

Parameters

v

The ObjectStreamClass to be resolved.

Returns

The Class that corresponds to the given ObjectStreamClass.

Throws

ClassNotFoundException

If the class of the given ObjectStreamClass cannot be found.

IOException

If any kind of I/O error occurs.

Description

This method attempts to find the Class object that corresponds to the supplied ObjectStreamClass. When a
object is deserialized, its class information is read into an ObjectStreamClass object, which is then resolved to a
Class if possible. Subclasses of ObjectInputStream can override this method to allow classes to be fetched from
alternate sources. The version of the ObjectStreamClass and the Class must match.

resolveObject

protected Object resolveObject(Object obj) throws IOException

Parameters

obj

The object to be replaced.

Returns

A replacement for the given object.

Throws

IOException

If any kind of I/O error occurs.

Description

If object replacement is enabled for this ObjectInputStream (see enableResolveObject()), this method is
called with each deserialized object to give the stream a chance to replace the object. In ObjectInputStream, this
method simply returns the object that was passed to it. Subclasses can override this method to provide more useful
functionality.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object mark() InputStream

markSupported() InputStream notify() Object

notifyAll() Object read(byte[]) InputStream

reset() InputStream skip(long n) InputStream

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Class, ClassNotFoundException, DataInput, Double, EOFException, Externalizable, Float,
InputStream, InvalidClassException, IOException, NotActiveException, ObjectInput,
ObjectInputValidation, ObjectOuputStream, ObjectStreamClass, OptionalDataException,
SecurityException, Serializable, StreamCorruptedException, String, UTFDataFormatException

ObjectInput ObjectInputValidation

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_5F40.htm

Chapter 11
The java.io Package

ObjectOutput

Name

ObjectOutput

Synopsis

Interface Name:

java.io.ObjectOutput

Super-interface:

java.io.DataOutput

Immediate Sub-interfaces:

None

Implemented By:

java.io.ObjectOutputStream

Availability:

New as of JDK 1.1

Description

The ObjectOutput interface extends the DataOutput interface for object serialization. While

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_5F40.htm

DataOutput defines methods for reading primitive types from a stream, ObjectOutput defines methods
for writing objects and arrays of bytes.

Interface Declaration

public abstract interface java.io.ObjectOutput extends java.io.DataOutput {
 // Methods
 public abstract void close();
 public abstract void flush();
 public abstract void write(int b);
 public abstract void write(byte[] b);
 public abstract void write(byte[] b, int off, int len);
 public abstract void writeObject(Object obj);
}

Methods

close

public abstract void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method closes the stream and releases any system resources associated with it.

flush

public abstract void flush() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

If the stream uses a buffer, this method forces any bytes that may be buffered by the output stream to be
written to the underlying physical device.

write

public abstract void write(int b) throws IOException

Parameters

b

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

DataOutput.write(int)

Description

This method writes the lowest eight bits of the given integer b to the stream.

public abstract void write(byte[] b) throws IOException

Parameters

b

An array of bytes to write to the stream.

Throws

IOException

If any kind of I/O error occurs.

Overrides

DataOutput.write(byte[])

Description

This method writes all of the 8-bit bytes in the given array to the stream.

 public abstract void write(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

DataOutput.write(byte[], int, int)

Description

This method writes len bytes from the given array, starting off elements from the beginning of the
array, to the stream.

writeObject

public abstract void writeObject(Object obj) throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes the given object to the stream, or in other words, it serializes an object to the stream.
The class that implements this interface determines how the object is written.

Inherited Methods

Method Inherited From Method Inherited From

writeBoolean(boolean) DataOutput writeByte(int) DataOutput

writeBytes(String) DataOutput writeChar(int) DataOutput

writeChars(String) DataOutput writeDouble(double) DataOutput

writeFloat(float) DataOutput writeInt(int) DataOutput

writeLong(long) DataOutput writeShort(int) DataOutput

writeUTF(String) DataOutput

See Also

DataOutput, ObjectOutputStream

ObjectInputValidation ObjectOutputStream

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_5F40.htm

Chapter 11
The java.io Package

ObjectOutputStream

Name

ObjectOutputStream

Synopsis

Class Name:

java.io.ObjectOutputStream

Superclass:

java.io.OutputStream

Immediate Subclasses:

None

Interfaces Implemented:

java.io.ObjectOutput

Availability:

New as of JDK 1.1

Description

The ObjectOutputStream class can write both primitive types and object instances to an underlying OutputStream.
The objects and other data can then be read by an ObjectInputStream. These two classes provide persistent storage of
objects when they are used in conjunction with FileInputStream and FileOutputStream. The classes can also be
used with socket streams to pass objects across the network.

Only objects that are instances of classes that implement the Serializable or Externalizable interfaces can be
serialized to an output stream. The default serialization mechanism is implemented by writeObject(). When an object is

serialized, the class of the object is encoded, along with the class name, the signature of the class, the values of the non-
static and non-transient fields of the object, including any other objects referenced by the object (except those that do
not implement the Serializable interface themselves). Multiple references to the same object are encoded using a
reference sharing mechanism, so that a graph of the object can be restored appropriately. Strings and arrays are objects in Java,
so they are treated as objects during serialization.

For example, the following code opens a file called color.ser and writes out a Color object:

FileOutputStream fileOut;
ObjectOutputStream out;
try {
 fileOut = new FileOutputStream("color.ser");
 out = new ObjectOutputStream(fileOut);
 out.writeObject(Color.blue);
 out.close();
}
catch (IOException e) {
 System.out.println("Error writing: " + e);
}

Classes that require special handling during serialization and deserialization must implement the following methods (with
these exact signatures):

private void readObject(ObjectOutputStream stream)
 throws IOException, ClassNotFoundException
private void writeObject(ObjectOutputStream stream) throws IOException

The writeObject() method is responsible for writing the state of the object for the particular class so that it can be
restored by readObject(). The writeObject() method does not need to handle writing the state for the object's
superclass or any of its subclasses except in the case where the superclass does not itself implement the Serializable
interface. In this case, the nonserializable class must have a no-argument constructor that can be called to initialize its fields,
and it is the responsibility of the subclass to save the state of its superclass.

A class that inherits the implementation of Serializable prevents itself from being serialized by defining
readObject() and writeObject() methods that throw NotSerializableException objects.

If a class needs complete control over the contents and formatting of the serialized form of its objects, it should implement the
Externalizable interface.

Class Summary

public class java.io.ObjectOutputStream extends java.io.OutputStream
 implements java.io.ObjectOutput {
 // Constructors
 public ObjectOutputStream(OutputStream out);
 // Instance Methods
 public void close();
 public final void defaultWriteObject();
 public void flush();
 public void reset();
 public void write(int data);

 public void write(byte[] b);
 public void write(byte[] b, int off, int len);
 public void writeBoolean(boolean data);
 public void writeByte(int data);
 public void writeBytes(String data);
 public void writeChar(int data);
 public void writeChars(String data);
 public void writeDouble(double data);
 public void writeFloat(float data);
 public void writeInt(int data);
 public void writeLong(long data);
 public final void writeObject(Object obj);
 public void writeShort(int data);
 public void writeUTF(String data);
 // Protected Instance Methods
 protected void annotateClass(Class cl);
 protected void drain();
 protected final boolean enableReplaceObject(boolean enable);
 protected Object replaceObject(Object obj);
 protected void writeStreamHeader();
}

Constructors

ObjectOutputStream

public ObjectOutputStream(OutputStream out) throws IOException

Parameters

out

The underlying output stream.

Throws

IOException

If any kind of I/O error occurs.

Description

This constructor creates an ObjectOutputStream that writes to the given output stream. The constructor writes the
stream header, which consists of a magic number and version number, in preparation for serialization.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Implements

ObjectOutput.close()

Overrides

OutputStream.close()

Description

This method closes the stream and releases any system resources that are associated with it.

defaultWriteObject

public final void defaultWriteObject() throws IOException

Throws

IOException

If any kind of I/O error occurs.

NotActiveException

If serialization is not active.

Description

This method writes the fields of the object that are not static or transient. The method can only be called from
the private writeObject() method of an object that is being serialized; it throws a NotActiveException if
it is called at any other time. This method implements the default serialization mechanism.

flush

public void flush() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Implements

ObjectOutput.flush()

Overrides

OutputStream.flush()

Description

This method takes any buffered output and forces it to be written to the underlying stream.

reset

public void reset() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method sets the state of the ObjectOutputStream to the same state as when it was created. As objects are
serialized to the stream, the ObjectOutputStream remembers which ones are already serialized. If the program
requests that already serialized objects be written again, the ObjectOutputStream just writes out a reference to the
previous object. Calling reset() causes the ObjectOutputStream to forget what it has done before, so all
subsequent objects are fully serialized.

write

public void write(int data) throws IOException

Parameters

data

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

ObjectOutput.write(int)

Overrides

OutputStream.write(int)

Description

This method writes the lowest eight bits of b to the underlying stream as a byte.

public void write(byte[] b) throws IOException

Parameters

b

An array of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

ObjectOutput.write(byte[])

Overrides

OutputStream.write(byte[])

Description

This method writes the given array of bytes to the underlying stream.

public void write(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

ObjectOutput.write(byte[], int, int)

Overrides

OutputStream.write(byte[], int, int)

Description

This method writes len bytes from the given array, starting off elements from the beginning of the array, to the
underlying stream.

writeBoolean

public void writeBoolean(boolean data) throws IOException

Parameters

data

The boolean value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeBoolean()

Description

If data is true, this method writes a byte that contains the value 1 to the underlying stream. If data is false, the
method writes a byte that contains the value 0.

writeByte

public void writeByte(int data) throws IOException

Parameters

data

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeByte()

Description

This method writes an 8-bit byte to the underlying stream, using the lowest eight bits of the given integer data.

writeBytes

public void writeBytes(String data) throws IOException

Parameters

data

The String to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeBytes()

Description

This method writes the characters in the given String to the underlying stream as a sequence of 8-bit bytes. The high-
order bytes of the characters in the string are ignored.

writeChar

public void writeChar(int data) throws IOException

Parameters

data

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeChar()

Description

This method writes a 16-bit char to the underlying stream, using the lowest two bytes of the given integer data.

writeChars

public void writeChars(String data) throws IOException

Parameters

data

The String to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeChars()

Description

This method writes the characters in the given String object to the underlying stream as a sequence of 16-bit
characters.

writeDouble

public void writeDouble(double data) throws IOException

Parameters

data

The double value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeDouble()

Description

This method writes a 64-bit double to the underlying stream. The double value is converted to a long using
doubleToLongBits() of Double; the long value is then written to the underlying stream as eight bytes with the
highest byte first.

writeFloat

public void writeFloat(float data) throws IOException

Parameters

data

The float value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeFloat()

Description

This method writes a 32-bit float to the underlying stream. The float value is converted to a int using
floatToIntBits() of Float; the int value is then written to the underlying stream as four bytes with the highest
byte first.

writeInt

public void writeInt(int data) throws IOException

Parameters

data

The int value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeInt()

Description

This method writes a 32-bit int to the underlying stream. The value is written as four bytes with the highest byte first.

writeLong

public void writeLong(long data) throws IOException

Parameters

data

The long value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeLong()

Description

This method writes a 64-bit long to the underlying stream. The value is written as eight bytes with the highest byte
first.

writeObject

 public final void writeObject(Object obj) throws IOException, InvalidClassException,
NotSerializableException

Parameters

obj

The object to be serialized.

Throws

InvalidClassException

If there is a problem with the class of the object.

NotSerializableException

If the object does not implement Serializable or Externalizable.

IOException

If any kind of I/O error occurs.

Implements

ObjectOutput.writeObject()

Description

This method serializes the given object to the stream. The class of the object is encoded, along with the class name, the
signature of the class, the values of the non-static and non-transient fields of the object, including any other
objects referenced by the object (except those that do not implement the Serializable interface themselves).
Multiple references to the same object are encoded using a reference sharing mechanism, so that a graph of object can
be restored appropriately.

writeShort

public void writeShort(int data) throws IOException

Parameters

data

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeShort()

Description

This method writes a 16-bit short to the underlying stream, using the lowest two bytes of the given integer data.

writeUTF

public void writeUTF(String data) throws IOException

Parameters

data

The String to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeUTF()

Description

This method writes the given String to the underlying stream using the UTF-8 encoding. See the description of
DataOutputStream.writeUTF(String) for more information.

Protected Instance Methods

annotateClass

protected void annotateClass(Class cl) throws IOException

Parameters

cl

The class to be serialized.

Throws

IOException

If any kind of I/O error occurs.

Description

This method is called once for each unique class during serialization. The implementation in ObjectOutputStream
does nothing; subclasses can override this method to write out more information about a class. A corresponding
subclass of ObjectInputStream should override the resolveClass() method to read the extra class
information.

drain

protected void drain() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method is a helper method for flush(). It forces a write of any buffered data in the ObjectOutputStream,
but does not call flush() on the underlying stream.

enableReplaceObject

 protected final boolean enableReplaceObject(boolean enable) throws SecurityException

Parameters

enable

A boolean value that specifies whether or not object replacement is enabled.

Returns

true if object replacement was previously enabled; false otherwise.

Throws

SecurityException

If enable is true and getClassLoader()called on the class of the stream does not return null.

Description

This method determines if a trusted subclass of ObjectOutputStream is allowed to replace serialized objects. If
the method is called with true, replacement is enabled. Each time an object is serialized, replaceObject() is
called to give the ObjectOutputStream a chance to replace the object. A trusted stream is one whose class has no
ClassLoader.

replaceObject

protected Object replaceObject(Object obj) throws IOException

Parameters

obj

The object to be replaced.

Returns

A replacement for the given object.

Throws

IOException

If any kind of I/O error occurs.

Description

If object replacement is enabled for this ObjectOutputStream (see enableReplaceObject()), this method is
called with each object to be serialized to give the stream a chance to replace the object. In ObjectOutputStream,
this method simply returns the object that was passed to it. Subclasses can override this method to provide more useful
functionality.

writeStreamHeader

protected void writeStreamHeader() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes the serialization stream header, which consists of a magic number and a version number. This
method is called by the constructor for ObjectOutputStream. If you subclass ObjectOutputStream, you can
override this method to provide your own stream header.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Class, DataOutput, Double, Externalizable, Float, InvalidClassException, IOException,
NotActiveException, NotSerializableException, ObjectInputStream, ObjectOutput,
OutputStream, SecurityException, Serializable, String

ObjectOutput ObjectStreamClass

Chapter 11
The java.io Package

ObjectStreamClass

Name

ObjectStreamClass

Synopsis

Class Name:

java.io.ObjectStreamClass

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_44.htm

Description

The ObjectStreamClass class represents a Java class during object serialization. When an object is
deserialized, its class information is read into an ObjectStreamClass, which is then resolved to a
Class if possible. An ObjectStreamClass instance contains the name and version information for
a class.

Class Summary

public class java.io.ObjectStreamClass extends java.lang.Object
 implements java.io.Serializable {
 // Class Methods
 public static ObjectStreamClass lookup(Class cl);
 // Instance Methods
 public Class forClass();
 public String getName();
 public long getSerialVersionUID();
 public String toString();
}

Class Methods

lookup

public static ObjectStreamClass lookup(Class cl)

Parameters

cl

The Class to find.

Returns

An ObjectStreamClass that corresponds to the given Class.

Description

This method finds an ObjectStreamClass for the given Class. If the appropriate

ObjectStreamClass does not already exist, this method creates an ObjectStreamClass
for the given Class. The method returns null if cl is not serializable.

Instance Methods

forClass

public Class forClass()

Returns

The Class that corresponds to this ObjectStreamClass.

Description

This method returns the Class in the run-time system that corresponds to this
ObjectStreamClass. If there is no corresponding class, null is returned.

getName

public String getName()

Returns

The class name.

Description

This method returns the name of the class this ObjectStreamClass represents.

getSerialVersionUID

public long getSerialVersionUID()

Returns

The class version.

Description

This method returns the version of the class this ObjectStreamClass represents.

toString

public String toString()

Returns

A string representation of this object.

Overrides

Object.toString()

Description

This method returns a string that contains the class name and version information for this
ObjectStreamClass.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Class, ObjectInputStream, ObjectOutputStream, Serializable

ObjectOutputStream ObjectStreamException

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_44.htm

Chapter 11
The java.io Package

OutputStream

Name

OutputStream

Synopsis

Class Name:

java.io.OutputStream

Superclass:

java.lang.Object

Immediate Subclasses:

java.io.ByteArrayOutputStream,

java.io.FileOutputStream,

java.io.FilterOutputStream,

java.io.ObjectOutputStream,

java.io.PipedOutputStream

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_45.htm

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The OutputStream class is an abstract class that is the superclass of all classes that represent
output byte streams. OutputStream defines the basic output methods that all output streams provide.
A similar hierarchy of classes, based around Writer, deals with character streams instead of byte
streams.

OutputStream is designed so that write(byte[]) and write(byte[], int, int) call
write(int b). Thus, a subclass can simply override write(), and all the write methods will
work. However, for efficiency's sake, write(byte[], int, int) should also be overridden with a
method that can write a block of data more efficiently than writing each byte separately.

Some OutputStream subclasses may implement buffering to increase efficiency. OutputStream
provides a method, flush(), that tells the OutputStream to write any buffered output to the
underlying device, which may be a disk drive or a network.

Class Summary

public abstract class java.io.OutputStream extends java.lang.Object {
 // Instance Methods
 public void close();
 public void flush();
 public abstract void write(int b);
 public void write(byte[] b);
 public void write(byte[] b, int off, int len);
}

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method closes the output stream and releases any resources associated with it.

The implementation of the close() method in OutputStream does nothing; a subclass
should override this method to handle cleanup for the stream.

flush

public void flush() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method forces any bytes that may be buffered by the output stream to be written.

The implementation of flush() in OutputStream does nothing; a subclass should override
this method as needed.

write

public abstract void write(int b) throws IOException

Parameters

b

The value to write to the stream.

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes a byte of output. The method blocks until the byte is actually written.

A subclass of OutputStream must implement this method.

public void write(byte[] b) throws IOException

Parameters

b

An array of bytes to write to the stream.

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes the bytes from the given array by calling write(b, 0, b.length). The
method blocks until the bytes are actually written.

A subclass does not usually need to override this method, as it can override write(byte[],
int, int) and have write(byte[]) work automatically.

public void write(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes len bytes of output from the given array, starting at offset off. The method
blocks until the bytes are actually written.

The implementation of this method in OutputStream uses write(int) repeatedly to write
the bytes. Although it is not strictly necessary, a subclass should override this method to write a
block of data more efficiently.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ByteArrayOutputStream, FileOutputStream, FilterOutputStream, IOException,
ObjectOutputStream, PipedOutputStream

OptionalDataException OutputStreamWriter

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_45.htm

Chapter 11
The java.io Package

OutputStreamWriter

Name

OutputStreamWriter

Synopsis

Class Name:

java.io.OutputStreamWriter

Superclass:

java.io.Writer

Immediate Subclasses:

java.io.FileWriter

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The OutputStreamWriter class is a bridge between the byte-oriented world of the
OutputStream class and the character-oriented world of the Writer class. The
OutputStreamWriter represents a character stream, but it sends its output to an underlying byte
stream. A character encoding scheme is responsible for translating the Unicode characters to bytes. An
OutputStreamWriter can be created using an explicit encoding scheme or a default encoding
scheme.

For example, to write a Unicode character stream as an ISO-8859-5 byte stream, you can construct an
OutputStreamWriter with the encoding 8859_5 as follows:

OutputStreamWriter outr = new OutputStreamWriter(out, "8859_5");

Each time you write to an OutputStreamWriter object, bytes may be written to the underlying byte
stream. To improve efficiency, you may want to wrap the OutputStreamWriter in a
BufferedWriter.

Class Summary

public class java.io.OutputStreamWriter extends java.io.Writer {
 // Constructors
 public OutputStreamWriter(OutputStream out);
 public OutputStreamWriter(OutputStream out, String enc);
 // Instance Methods
 public void close();
 public void flush();
 public String getEncoding();
 public void write(int c);
 public void write(char[] cbuf, int off, int len);
 public void write(String str, int off, int len);
}

Constructors

OutputStreamWriter

public OutputStreamWriter(OutputStream out)

Parameters

out

The output stream to use.

Description

This constructor creates an OutputStreamWriter that writes its data to out and translates
characters to bytes using the system's default encoding scheme.

 public OutputStreamWriter(OutputStream out, String enc) throws
UnsupportedEncodingException

Parameters

out

The output stream to use.

enc

The name of an encoding scheme.

Throws

UnsupportedEncodingException

If enc is not a supported encoding scheme.

Description

This constructor creates an OutputStreamWriter that writes its data to out and translates
characters to bytes using the given encoding scheme.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.close()

Description

This method calls the close() method of the underlying output stream, which releases any
system resources associated with this object.

flush

public void flush() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.flush()

Description

This method writes out any buffered data in the internal buffer and calls the flush() method of
the underlying output stream, which forces any bytes that may be buffered to be written to the
underlying device.

getEncoding

public String getEncoding()

Returns

A String that contains the name of the character encoding scheme of this writer.

Description

This method returns the name of the character encoding scheme this OutputStreamWriter is
currently using.

write

public void write(int c) throws IOException

Parameters

c

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.write(int)

Description

This method converts the given character to bytes using the current encoding scheme and places
the converted bytes into an internal buffer. When the buffer fills up, it is written to the underlying
byte stream.

 public void write(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to write.

off

An offset into the character array.

len

The number of characters to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.write(char[], int, int)

Description

This method converts len characters from the array cbuf to bytes, starting at offset off, using
the current encoding scheme. The method places the converted bytes into an internal buffer.
When the buffer fills up, it is written to the underlying byte stream.

public void write(String str, int off, int len) throws IOException

Parameters

str

The string to be written.

off

An offset into start in the string.

len

The number of characters to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.write(String, int, int)

Description

This method converts len characters from the string str to bytes, starting at offset off, using
the current encoding scheme. The method places the converted bytes into an internal buffer.
When the buffer fills up, it is written to the underlying byte stream.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object write(char[]) Writer

write(String) Writer

See Also

BufferedWriter, FileWriter, IOException, OutputStream,
UnsupportedEncodingException, Writer

OutputStream PipedInputStream

Chapter 11
The java.io Package

PipedInputStream

Name

PipedInputStream

Synopsis

Class Name:

java.io.PipedInputStream

Superclass:

java.io.InputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The PipedInputStream class represents half of a communication pipe; a PipedInputStream must be

connected to a PipedOutputStream. When the two halves of a communication pipe are connected, data
written to the PipedOutputStream can be read from the PipedInputStream. The communication pipe
formed by a PipedInputStream and a PipedOutputStream should be used to communicate between
threads. If both ends of a pipe are used by the same thread, the thread can hang.

Class Summary

public class java.io.PipedInputStream extends java.io.InputStream {
 // Variables
 protected byte[] buffer; // New in 1.1
 protected int in; // New in 1.1
 protected int out; // New in 1.1
 protected final static int PIPE_SIZE; // New in 1.1
 // Constructors
 public PipedInputStream();
 public PipedInputStream(PipedOutputStream src);
 // Public Instance Methods
 public synchronized int available(); // New in 1.1
 public void close();
 public void connect(PipedOutputStream src);
 public synchronized int read();
 public synchronized int read(byte[] b, int off, int len);

 // Protected Instance Methods
 protected synchronized void receive(int b); // New in 1.1
}

Variables

buffer

protected byte[] buffer

Availability

New as of JDK 1.1

Description

The internal data buffer. The buffer receives data from the connected PipedOutputStream and
supplies data for the calls to read().

in

protected int in

Availability

New as of JDK 1.1

Description

An index into the buffer that points to the byte after the last byte of valid data. A value of -1 indicates that
the buffer is empty.

out

protected int out

Availability

New as of JDK 1.1

Description

An index into the buffer that points to the next byte that will be returned by read().

PIPE_SIZE

public final static int PIPE_SIZE = 1024

Availability

New as of JDK 1.1

Description

The size of the internal data buffer. The buffer receives data from the connected PipedOutputStream
and supplies data for the calls to read().

Constructors

PipedInputStream

public PipedInputStream()

Description

This constructor creates a PipedInputStream that is not connected to a PipedOutputStream.
The created object must be connected to a PipedOutputStream before it can be used.

public PipedInputStream(PipedOutputStream src) throws IOException

Parameters

src

The PipedOutputStream to connect.

Throws

IOException

If any kind of I/O error occurs.

Description

This constructor creates a PipedInputStream that receives data from the given
PipedOutputStream.

Public Instance Methods

available

public synchronized int available() throws IOException

Availability

New as of JDK 1.1

Returns

The number of bytes that can be read without blocking.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.available()

Description

This method returns the number of bytes that can be read without having to wait for more data to become
available. More data becomes available in the PipedInputStream when data is written to the
connected PipedOutputStream.

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.close()

Description

This method closes the stream and releases the system resources that are associated with it.

connect

public void connect(PipedOutputStream src) throws IOException

Parameters

src

The PipedOutputStream to connect.

Throws

IOException

If another PipedOutputStream is already connected to this PipedInputStream.

Description

This method connects the given PipedOutputStream to this PipedInputStream object. If there
is already a connected PipedOutputStream, an exception is thrown.

read

public synchronized int read() throws IOException

Returns

The next byte of data or -1 if the end of the stream is encountered.
Throws

IOException

If the pipe is broken. In other words, if this PipedInputStream is closed or if the connected
PipedOutputStream is dead.

InterruptedIOException

While this method is waiting for input, if the interrupted() method of the thread that invoked
this method is called.

Overrides

InputStream.read()

Description

This method returns the next byte from the pipe buffer. If the buffer is empty, the method waits until data
is written to the connected PipedOutputStream. The method blocks until the byte is read, the end of
the stream is encountered, or an exception is thrown.

 public synchronized int read(byte b[], int off, int len) throws IOException

Parameters

b

An array of bytes to be filled.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If the pipe is broken. In other words, if this PipedInputStream is closed or if the connected
PipedOutputStream is dead.

InterruptedIOException

While this method is waiting for buffer space to become available, if the interrupted()
method of the thread that invoked this method is called.

Overrides

InputStream.read(byte[], int, int)

Description

This method copies bytes from the pipe buffer into the given array b, starting at index off and continuing
for len bytes. If there is at least one byte in the buffer, the method returns as many bytes as are in the
buffer (up to len). If the buffer is empty, the method blocks until data is written to the connected
PipedOutputStream.

Protected Instance Methods

receive

protected synchronized void receive(int b) throws IOException

Availability

New as of JDK 1.1

Parameters

b

The byte being received.

Throws

IOException

If the pipe is broken. In other words, if this PipedInputStream is closed.

Description

This method is called by the connected PipedOutputStream object to provide the given value as a
byte of input to this PipedInputStream object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object mark(int) InputStream

markSupported() InputStream notify() Object

notifyAll() Object read(byte[]) InputStream

reset() InputStream skip(long) InputStream

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

InputStream, IOException, PipedOutputStream

OutputStreamWriter PipedOutputStream

Chapter 11
The java.io Package

PipedOutputStream

Name

PipedOutputStream

Synopsis

Class Name:

java.io.PipedOutputStream

Superclass:

java.io.OutputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The PipedOutputStream class represents half of a communication pipe; a PipedOutputStream
must be connected to a PipedOutputStream. When the two halves of a communication pipe are
connected, data written to the PipedOutputStream can be read from the PipedInputStream.
The communication pipe formed by a PipedOutputStream and a PipedInputStream should be
used to communicate between threads. If both ends of a pipe are used by the same thread, the thread can
hang.

Class Summary

public class java.io.PipedOutputStream extends java.io.OutputStream {
 // Constructors
 public PipedOutputStream();
 public PipedOutputStream(PipedInputStream snk);
 // Instance Methods
 public void close();
 public void connect(PipedInputStream snk);
 public synchronized void flush(); // New in 1.1
 public void write(int b);
 public void write(byte[] b, int off, int len);
}

Constructors

PipedOutputStream

public PipedOutputStream()

Description

This constructor creates a PipedOutputStream that is not connected to a
PipedInputStream. The created object must be connected to a PipedInputStream
before it can be used.

public PipedOutputStream(PipedInputStream snk)

Parameters

snk

The PipedInputStream to connect.

Throws

IOException

If any kind of I/O error occurs.

Description

This constructor creates a PipedOutputStream that sends data to the given
PipedInputStream.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

OutputStream.close()

Description

This method closes the stream and releases the system resources that are associated with it.

connect

public void connect(PipedInputStream snk) throws IOException

Parameters

snk

The PipedInputStream to connect.

Throws

IOException

If another PipedInputStream is already connected to this PipedOutputStream or
this PipedOutputStream is already connected.

Description

This method connects this PipedOutputStream object to the given PipedInputStream.
If this PipedOutputStream or snk is already connected, an exception is thrown.

flush

public synchronized void flush() throws IOException

Availability

New as of JDK 1.1

Throws

IOException

If any kind of I/O error occurs.

InterruptedIOException

While this method is waiting for buffer space to become available, if the
interrupted() method of the thread that invoked this method is called.

Overrides

OutputStream.flush()

Description

This method flushes the stream, which tells the connected PipedInputStream to notify its
readers to read any available data.

write

public void write(int b) throws IOException

Parameters

b

The value to write.

Throws

IOException

If any kind of I/O error occurs.

InterruptedIOException

While this method is waiting for buffer space to become available, if the
interrupted() method of the thread that invoked this method is called.

Overrides

OutputStream.write(int)

Description

This method writes a byte of output. The method passes the given value directly to the connected
PipedInputStream.

public void write(byte b[], int off, int len) throws IOException

Parameters

b

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.
Throws

IOException

If any kind of I/O error occurs.

InterruptedIOException

While this method is waiting for buffer space to become available, if the
interrupted() method of the thread that invoked this method is called.

Overrides

OutputStream.write(byte[], int, int)

Description

This method writes len bytes of output from the given array, starting at offset off. The method
passes the given data to the connected PipedInputStream.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object write(byte[]) OutputStream

See Also

IOException, OutputStream, PipedInputStream

PipedInputStream PipedReader

Chapter 11
The java.io Package

PipedReader

Name

PipedReader

Synopsis

Class Name:

java.io.PipedReader

Superclass:

java.io.Reader

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The PipedReader class represents half of a communication pipe; a PipedReader must be
connected to a PipedWriter. When the two halves of a communication pipe are connected, data
written to the PipedWriter can be read from the PipedReader. The communication pipe formed
by a PipedReader and a PipedWriter should be used to communicate between threads. If both
ends of a pipe are used by the same thread, the thread can hang.

The PipedReader class is the character-based equivalent of the byte-based PipedInputStream.

Class Summary

public class java.io.PipedReader extends java.io.Reader {
 // Constructors
 public PipedReader();
 public PipedReader(PipedWriter src);
 // Instance Methods
 public void close();
 public void connect(PipedWriter src);
 public int read(char[] cbuf, int off, int len);
}

Constructors

PipedReader

public PipedReader ()

Description

This constructor creates a PipedReader that is not connected to a PipedWriter. The created
object must be connected to a PipedWriter before it can be used.

public PipedReader(PipedWriter src) throws IOException

Parameters

src

The PipedWriter to connect.

Throws

IOException

If any kind of I/O error occurs.

Description

This constructor creates a PipedReader that receives data from the given PipedWriter.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Reader.close()

Description

This method closes the reader and releases the system resources that are associated with it.

connect

public void connect(PipedWriter src) throws IOException

Parameters

src

The PipedWriter to connect.

Throws

IOException

If another PipedWriter is already connected to this PipedReader.

Description

This method connects the given PipedWriter to this PipedReader object. If there is already
a connected PipedWriter, an exception is thrown.

read

public int read(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to be filled.

off

An offset into the array.

len

The number of characters to read.

Returns

The actual number of characters read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If the pipe is broken. In other words, if this PipedReader is closed or if the connected

PipedWriter is dead.

InterruptedIOException

While this method is waiting for input, if the interrupted() method of the thread that
invoked this method is called.

Overrides

Reader.read(char[], int, int)

Description

This method copies characters from the pipe buffer into the given array cbuf, starting at index
off and continuing for len characters. If there is at least one character in the buffer, the method
returns as many characters as are in the buffer (up to len). If the buffer is empty, the method
blocks until data is written to the connected PipedWriter.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object mark(int) Reader

markSupported() Reader notify() Object

notifyAll() Object read() Reader

read(char[]) Reader reset() Reader

skip(long) Reader toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

IOException, PipedInputStream, PipedWriter, Reader

PipedOutputStream PipedWriter

Chapter 11
The java.io Package

PipedWriter

Name

PipedWriter

Synopsis

Class Name:

java.io.PipedWriter

Superclass:

java.io.Writer

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The PipedWriter class represents half of a communication pipe; a PipedReader must be
connected to a PipedWriter. When the two halves of a communication pipe are connected, data
written to the PipedWriter can be read from the PipedReader. The communication pipe formed
by a PipedWriter and a PipedReader should be used to communicate between threads. If both
ends of a pipe are used by the same thread, the thread can hang.

The PipedWriter class is the character-based equivalent of the byte-based PipedOutputStream.

Class Summary

public class java.io.PipedWriter extends java.io.Writer {
 // Constructors
 public PipedWriter();
 public PipedWriter(PipedReader sink);
 // Instance Methods
 public void close();
 public void connect(PipedReader sink);
 public void flush();
 public void write(char[] cbuf, int off, int len;
}

Constructors

PipedWriter

public PipedWriter()

Description

This constructor creates a PipedWriter that is not connected to a PipedReader. The created
object must be connected to a PipedReader before it can be used.

public PipedWriter(PipedReader sink)

Parameters

sink

The PipedReader to connect.

Throws

IOException

If any kind of I/O error occurs.

Description

This constructor creates a PipedWriter that sends data to the given PipedReader.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.close()

Description

This method closes the writer and releases the system resources that are associated with it.

connect

public void connect(PipedReader sink) throws IOException

Parameters

sink

The PipedReader to connect.

Throws

IOException

If another PipedReader is already connected to this PipedWriter or this
PipedWriter is already connected.

Description

This method connects this PipedWriter object to the given PipedReader. If this
PipedWriter or sink is already connected, an exception is thrown.

flush

public void flush() throws IOException

Throws

IOException

If any kind of I/O error occurs.

InterruptedIOException

While this method is waiting for buffer space to become available, if the
interrupted() method of the thread that invoked this method is called.

Overrides

Writer.flush()

Description

This method flushes the writer, which tells the connected PipedReader to notify its readers to
read any available data.

write

 public void write(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to write to the stream.

off

An offset into the character array.

len

The number of characters to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

Writer.write(char[], int, int)

Description

This method writes len characters of output from the given array, starting at offset off. The
method passes the given data to the connected PipedReader.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object write(int) Writer

write(char[]) Writer write(String) Writer

write(String, int, int) Writer

See Also

IOException, PipedOutputStream, PipedReader, Writer

PipedReader PrintStream

Chapter 11
The java.io Package

PrintStream

Name

PrintStream

Synopsis

Class Name:

java.io.PrintStream

Superclass:

java.io.FilterOutputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The PrintStream class provides support for writing string representations of primitive data types and
objects to an underlying output stream. As of JDK 1.1, PrintStream uses the system's default
encoding scheme to convert characters to bytes and uses the system's own specific line separator, rather
than the newline character, for separating lines of text. Although this class is not officially deprecated, its
constructors are, and you should use PrintWriter instead of PrintStream in new code.

Prior to JDK 1.1, PrintStream did not handle Unicode characters. Any PrintStream methods that
wrote characters only wrote the low eight bits of each character. In addition, prior to JDK 1.1,
PrintStream used the newline character to separate lines of text, regardless of the platform. These
problems have been corrected as of JDK 1.1.

All of the methods of PrintStream that write multiple times to the underlying output stream handle
synchronization internally, so that PrintStream objects are thread-safe.

A PrintStream object is often used to write to a BufferedOutputStream object. Note that you
can specify that the PrintStream be flushed every time it writes the line separator or the newline
character by using the constructor that takes a boolean argument.

PrintStream objects are often used to report errors. For this reason, the methods of this class do not
throw exceptions. Instead, the methods catch any exceptions thrown by any downstream
OutputStream objects and set an internal flag, so that the object can remember that a problem
occurred. You can query the internal flag by calling the checkError() method.

Class Summary

public class java.io.PrintStream extends java.io.FilterOutputStream {
 // Constructors
 public PrintStream(OutputStream out); // Deprecated in 1.1
 public PrintStream(OutputStream out,
 boolean autoFlush); // Deprecated in 1.1
 // Public Instance Methods
 public boolean checkError();
 public void close();
 public void flush();
 public void print(boolean b);
 public void print(char c);
 public void print(char[] s);
 public void print(double d);
 public void print(float f);

 public void print(int i);
 public void print(long l);
 public void print(String s);
 public void print(Object obj);
 public void println();
 public void println(boolean b);
 public void println(char c);
 public void println(char[] s);
 public void println(double d);
 public void println(float f);
 public void println(int i);
 public void println(long l);
 public void println(Object obj);
 public void println(String s);
 public void write(int b);
 public void write(byte[] buf, int off, int len);
 // Protected Instance Methods
 protected void setError(); // New in 1.1
}

Constructors

PrintStream

public PrintStream(OutputStream out)

Availability

Deprecated as of JDK 1.1

Parameters

out

The output stream to use.

Description

This constructor creates a PrintStream object that sends output to the given
OutputStream.

public PrintStream(OutputStream out, boolean autoflush)

Availability

Deprecated as of JDK 1.1

Parameters

out

The output stream to use.

autoflush

A boolean value that indicates whether or not the print stream is flushed every time a
newline is output.

Description

This constructor creates a PrintStream object that sends output to the given
OutputStream. If autoflush is true, every time the PrintStream object writes a
newline character or line separator, it calls its flush() method. Note that this is different than
with a PrintWriter object, which only calls its flush() method when a println()
method is called.

Public Instance Methods

checkError

public boolean checkError()

Returns

true if any error has occurred; false otherwise.

Description

This method flushes any buffered output and returns true if any error has occurred. Once the
error flag for a PrintStream object has been set, it is never cleared.

close

public void close()

Overrides

FilterOutputStream.close()

Description

This method closes this print stream and releases any resources associated with the object. The
method does this by calling the close() method of the underlying output stream and catching
any exceptions that are thrown.

flush

public void flush()

Overrides

FilterOutputStream.flush()

Description

This method flushes this print stream, forcing any bytes that may be buffered to be written to the
underlying output stream. The method does this by calling the flush() method of the
underlying output stream and catching any exceptions that are thrown.

print

public void print(boolean b)

Parameters

b

The boolean value to print.

Description

This method writes "true" to the underlying output stream if b is true; otherwise it writes
"false".

public void print(char c)

Parameters

c

The char value to print.

Description

This method writes the given character to the underlying output stream.

public void print(char[] s)

Parameters

s

The char array to print.

Description

This method writes the characters in the given array to the underlying output stream.

public void print(double d)

Parameters

d

The double value to print.

Description

This method writes a string representation of the given double value to the underlying output
stream. The string representation is identical to the one returned by calling
Double.toString(d).

public void print(float f)

Parameters

f

The float value to print.

Description

This method writes a string representation of the given float value to the underlying output
stream. The string representation is identical to the one returned by calling
Float.toString(f).

public void print(int i)

Parameters

i

The int value to print.

Description

This method writes a string representation of the given int value to the underlying output stream.
The string representation is identical to the one returned by calling Integer.toString(i).

public void print(long l)

Parameters

l

The long value to print.

Description

This method writes a string representation of the given long value to the underlying output
stream. The string representation is identical to the one returned by calling
Long.toString(l).

public void print(Object obj)

Parameters

obj

The Object to print.

Description

This method writes the string representation of the given Object to the underlying output
stream. The string representation is that returned by calling the toString() method of
Object.

public void print(String s)

Parameters

s

The String to print.

Description

This method writes the given String to the underlying output stream. If String is null, the
method writes "null".

println

public void println()

Description

This method writes a line separator to the underlying output stream.

public void println(boolean b)

Parameters

b

The boolean value to print.

Description

This method writes "true" to the underlying output stream if b is true, otherwise it writes
"false". In either case, the string is followed by a line separator.

public void println(char c)

Parameters

c

The char value to print.

Description

This method writes the given character, followed by a line separator, to the underlying output
stream.

public void println(char[] s)

Parameters

s

The char array to print.

Description

This method writes the characters in the given array, followed by a line separator, to the
underlying output stream.

public void println(double d)

Parameters

d

The double value to print.

Description

This method writes a string representation of the given double value, followed by a line
separator, to the underlying output stream. The string representation is identical to the one
returned by calling Double.toString(d).

public void println(float f)

Parameters

f

The float value to print.

Description

This method writes a string representation of the given float value, followed by a line
separator, to the underlying output stream. The string representation is identical to the one
returned by calling Float.toString(f).

public void println(int i)

Parameters

i

The int value to print.

Description

This method writes a string representation of the given int value, followed by a line separator, to
the underlying output stream. The string representation is identical to the one returned by calling
Integer.toString(i).

public void println(long l)

Parameters

l

The long value to print.

Description

This method writes a string representation of the given long value, followed by a line separator,
to the underlying output stream. The string representation is identical to the one returned by
calling Long.toString(l).

public void println(Object obj)

Parameters

obj

The Object to print.

Description

This method writes the string representation of the given Object, followed by a line separator,
to the underlying output stream. The string representation is that returned by calling the
toString() method of Object.

public void println(String s)

Parameters

s

The String to print.

Description

This method writes the given String, followed by a line separator, to the underlying output
stream. If String is null, the method writes "null" followed by a line separator.

write

public void write(int b)

Parameters

b

The value to write to the stream.

Overrides

FilterOutputStream.write(int)

Description

This method writes the lowest eight bits of b to the underlying stream as a byte. The method does
this by calling the write() method of the underlying output stream and catching any exceptions
that are thrown. If necessary, the method blocks until the byte is written.

public void write(byte b[], int off, int len)

Parameters

b

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.

Overrides

FilterOutputStream.write(byte[], int, int)

Description

This method writes the lowest eight bits of each of len bytes from the given array, starting off
elements from the beginning of the array, to the underlying output stream. The method does this
by calling write(b, off, len) for the underlying output stream and catching any exceptions
that are thrown. If necessary, the method blocks until the bytes are written.

Protected Instance Methods

setError

protected void setError()

Availability

New as of JDK 1.1

Description

This method sets the error state of the PrintStream object to true. Any subsequent calls to
getError() return true.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object write(byte[]) FilterOutputStream

See Also

Double, FilterOutputStream, Float, Integer, Long, OutputStream

PipedWriter PrintWriter

Chapter 11
The java.io Package

PrintWriter

Name

PrintWriter

Synopsis

Class Name:

java.io.PrintWriter

Superclass:

java.io.Writer

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The PrintWriter class provides support for writing string representations of primitive data types and
objects to an underlying output stream. PrintWriter uses the system's default encoding scheme to
convert characters to bytes. PrintWriter also uses the system's own specific line separator, rather
than the newline character, for separating lines of text. This line separator is equivalent to the value
returned by:

System.getProperty("line.separator")

A PrintWriter object can be created using a Writer object or an OutputStream object as its
underlying stream. When a PrintWriter is created using an OutputStream, the constructor
creates the intermediate OutputStreamWriter that handles the conversion of characters to bytes
using the default character encoding.

All of the methods of PrintWriter that write multiple times to the underlying output stream handle
synchronization internally, so that PrintWriter objects are thread-safe.

A PrintWriter object is often used to write to a BufferedWriter object. Note that you can
specify that the PrintWriter should be flushed every time a println() method is called by using a
constructor that takes a boolean argument.

PrintWriter objects are often used to report errors. For this reason, the methods of this class do not
throw exceptions. Instead, the methods catch any exceptions thrown by any downstream
OutputStream or Writer objects and set an internal flag, so that the object can remember that a
problem occurred. You can query the internal flag by calling the checkError() method.

Class Summary

public class java.io.PrintWriter extends java.io.Writer {
 // Constructors
 public PrintWriter(OutputStream out);
 public PrintWriter(OutputStream out, boolean autoFlush);
 public PrintWriter(Writer out);
 public PrintWriter(Writer out, boolean autoFlush);
 // Public Instance Methods
 public boolean checkError();
 public void close();
 public void flush();
 public void print(boolean b);
 public void print(char c);

 public void print(char[] s);
 public void print(double d);
 public void print(float f);
 public void print(int i);
 public void print(long l);
 public void print(Object obj);
 public void print(String s);
 public void println();
 public void println(boolean b);
 public void println(char c);
 public void println(char[] s);
 public void println(double d);
 public void println(float f);
 public void println(int i);
 public void println(long l);
 public void println(Object obj);
 public void println(String s);
 public void write(int c);
 public void write(char[] buf);
 public void write(char[] buf, int off, int len);
 public void write(String s);
 public void write(String s, int off, int len);

 // Protected Instance Methods
 protected void setError();
}

Constructors

PrintWriter

public PrintWriter(OutputStream out)

Parameters

out

The output stream to use.

Description

This constructor creates a PrintWriter object that sends output to the given
OutputStream. The constructor creates the intermediate OutputStreamWriter that
converts characters to bytes using the default character encoding.

public PrintWriter(OutputStream out, boolean autoFlush)

Parameters

out

The output stream to use.

autoFlush

A boolean value that indicates whether or not the print stream is flushed every time a
println() method is called.

Description

This constructor creates a PrintWriter object that sends output to the given
OutputStream. The constructor creates the intermediate OutputStreamWriter that
converts characters to bytes using the default character encoding. If autoFlush is true, every
time a println() method is called, the PrintWriter object calls its flush() method.
This behavior is different from that of a PrintStream object, which calls its flush() method
each time a line separator or newline character is written.

public PrintWriter(Writer out)

Parameters

out

The output stream to use.

Description

This constructor creates a PrintWriter object that sends output to the given Writer.

public PrintStream(Writer out, boolean autoFlush)

Parameters

out

The output stream to use.

autoFlush

A boolean value that indicates whether or not the print stream is flushed every time a
println() method is called.

Description

This constructor creates a PrintWriter object that sends output to the given Writer. If
autoFlush is true, every time a println() method is called, the PrintWriter object
calls its flush() method. Note that this behavior is different from that of a PrintStream
object, which calls its flush() method every time a newline character or line separator is
written.

Public Instance Methods

checkError

public boolean checkError()

Returns

true if any error has occurred; false otherwise.

Description

This method flushes any buffered output and returns true if an error occurs. Once the error flag
for a PrintWriter object is set, it's never cleared.

close

public void close()

Overrides

Writer.close()

Description

This method closes this print stream and releases any resources associated with the object. The
method does this by calling the close() method of the underlying output stream and catching
any exceptions that are thrown.

flush

public void flush()

Overrides

Writer.flush()

Description

This method flushes this print stream, forcing any bytes that may be buffered to be written to the
underlying output stream. The method does this by calling the flush() method of the
underlying output stream and catching any exceptions that are thrown.

print

public void print(boolean b)

Parameters

b

The boolean value to print.

Description

This method writes "true" to the underlying output stream if b is true; otherwise it writes
"false".

public void print(char c)

Parameters

c

The char value to print.

Description

This method writes the given character to the underlying output stream.

public void print(char[] s)

Parameters

s

The char array to print.

Description

This method writes the characters in the given array to the underlying output stream.

public void print(double d)

Parameters

d

The double value to print.

Description

This method writes a string representation of the given double value to the underlying output
stream. The string representation is identical to the one returned by calling
Double.toString(d).

public void print(float f)

Parameters

f

The float value to print.

Description

This method writes a string representation of the given float value to the underlying output
stream. The string representation is identical to the one returned by calling
Float.toString(f).

public void print(int i)

Parameters

i

The int value to print.

Description

This method writes a string representation of the given int value to the underlying output stream.
The string representation is identical to the one returned by calling Integer.toString(i).

public void print(long l)

Parameters

l

The long value to print.

Description

This method writes a string representation of the given long value to the underlying output
stream. The string representation is identical to the one returned by calling
Long.toString(l).

public void print(Object obj)

Parameters

obj

The Object to print.

Description

This method writes the string representation of the given Object to the underlying output
stream. The string representation is that returned by calling the toString() method of
Object.

public void print(String s)

Parameters

s

The String to print.

Description

This method writes the given String to the underlying output stream. If String is null, the
method writes "null".

println

public void println()

Description

This method writes a line separator to the underlying output stream.

public void println(boolean b)

Parameters

b

The boolean value to print.

Description

This method writes "true" to the underlying output stream if b is true, otherwise it writes
"false". In either case, the string is followed by a line separator.

public void println(char c)

Parameters

c

The char value to print.

Description

This method writes the given character, followed by a line separator, to the underlying output
stream.

public void println(char[] s)

Parameters

s

The char array to print.

Description

This method writes the characters in the given array, followed by a line separator, to the
underlying output stream.

public void println(double d)

Parameters

d

The double value to print.

Description

This method writes a string representation of the given double value, followed by a line
separator, to the underlying output stream. The string representation is identical to the one
returned by calling Double.toString(d).

public void println(float f)

Parameters

f

The float value to print.

Description

This method writes a string representation of the given float value, followed by a line
separator, to the underlying output stream. The string representation is identical to the one
returned by calling Float.toString(f).

public void println(int i)

Parameters

i

The int value to print.

Description

This method writes a string representation of the given int value, followed by a line separator, to
the underlying output stream. The string representation is identical to the one returned by calling
Integer.toString(i).

public void println(long l)

Parameters

l

The long value to print.

Description

This method writes a string representation of the given long value, followed by a line separator,
to the underlying output stream. The string representation is identical to the one returned by
calling Long.toString(l).

public void println(Object obj)

Parameters

obj

The Object to print.

Description

This method writes the string representation of the given Object, followed by a line separator,
to the underlying output stream. The string representation is that returned by calling the
toString() method of Object.

public void println(String s)

Parameters

s

The String to print.

Description

This method writes the given String, followed by a line separator, to the underlying output
stream. If String is null, the method writes "null" followed by a line separator.

write

public void write(int c)

Parameters

c

The value to write to the stream.

Overrides

Writer.write(int)

Description

This method writes the character specified by the lowest two bytes of the given integer c to the
underlying stream. The method does this by calling the write() method of the underlying
output stream and catching any exceptions that are thrown. If necessary, the method blocks until
the character is written.

public void write(char[] buf)

Parameters

buf

An array of characters to write to the stream.

Overrides

Writer.write(char[])

Description

This method writes the given array of characters to the underlying output stream. The method
does this by calling write(buf, 0, buf.length) for the underlying output stream and
catching any exceptions that are thrown. If necessary, the method blocks until the characters are
written.

public void write(char[] buf, int off, int len)

Parameters

buf

An array of characters to write to the stream.

off

An offset into the array.

len

The number of characters to write.

Overrides

Writer.write(char[], int, int)

Description

This method writes len characters from the given array, starting off elements from the
beginning of the array, to the underlying output stream. The method does this by calling
write(buf, off, len) for the underlying output stream and catching any exceptions that are
thrown. If necessary, the method blocks until the characters are written.

public void write(String s)

Parameters

s

A String to write to the stream.

Overrides

Writer.write(String)

Description

This method writes the given String to the underlying output stream. The method does this by
calling write(s, 0, s.length) for the underlying output stream and catching any
exceptions that are thrown. If necessary, the method blocks until the String is written.

public void write(String s, int off, int len)

Parameters

s

A String to write to the stream.

off

An offset into the string.

len

The number of characters to write.

Overrides

Writer.write(String, int, int)

Description

This method writes len characters from the given String, starting off elements from the
beginning of the string, to the underlying output stream. The method does this by calling
write(s, off, len) for the underlying output stream and catching any exceptions that are
thrown. If necessary, the method blocks until the characters of the String are written.

Protected Instance Methods

setError

protected void setError()

Description

This method sets the error state of the PrintWriter object to true. Any subsequent calls to
getError() will return true.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Double, Float, Integer, Long, OutputStream, OutputStreamWriter, Writer

PrintStream PushbackInputStream

Chapter 11
The java.io Package

PushbackInputStream

Name

PushbackInputStream

Synopsis

Class Name:

java.io.PushbackInputStream

Superclass:

java.io.FilterInputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The PushbackInputStream class represents a byte stream that allows data to be pushed back into the

stream. In other words, after data has been read from a PushbackInputStream, it can be pushed back into
the stream so that it can be reread. This functionality is useful for implementing things like parsers that need to
read data and then return it to the input stream.

The PushbackInputStream has been enhanced as of JDK 1.1 to support a pushback buffer that is larger
than one byte. Prior to JDK 1.1, the class supported only a one-byte buffer using the protected variable
pushBack. As of 1.1, that variable has been replaced by the buf and pos variables.

Class Summary

public class java.io.PushbackInputStream extends java.io.FilterInputStream {
 // Variables
 protected byte[] buf; // New in 1.1
 protected int pos; // New in 1.1
 // Constructors
 public PushbackInputStream(InputStream in);
 public PushbackInputStream(InputStream in,
 int size); // New in 1.1
 // Instance Methods
 public int available();
 public boolean markSupported();
 public int read();
 public int read(byte[] b, int off, int len);
 public void unread(int b);
 public void unread(byte[] b); // New in 1.1
 public void unread(byte[] b, int off, int len); // New in 1.1
}

Variables

buf

protected byte[] buf

Availability

New as of JDK 1.1

Description

The buffer that holds data that has been pushed back.

pos

protected int pos

Availability

New as of JDK 1.1

Description

The position of pushed-back data in the buffer. When there is no pushed-back data, pos is
buf.length. As data is pushed back, pos decreases. As pushed-back data is read, pos increases.
When the pushback buffer is full, pos is 0.

Constructors

PushbackInputStream

public PushbackInputStream(InputStream in)

Parameters

in

The input stream to wrap.

Description

This constructor creates a PushbackInputStream that reads from the given InputStream, using a
pushback buffer with the default size of one byte.

public PushBackInputStream(InputStream in, int size)

Availability

New as of JDK 1.1

Parameters

in

The input stream to wrap.

size

The size of the pushback buffer.

Description

This constructor creates a PushbackInputStream that reads from the given InputStream, using a
pushback buffer of the given size.

Instance Methods

available

public int available() throws IOException

Returns

The number of bytes that can be read without blocking.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.available()

Description

This method returns the number of bytes that can be read without having to wait for more data to become
available. This is b + u, where b is the number of bytes in the pushback buffer and u is the number of
available bytes in the underlying stream.

markSupported

public boolean markSupported()

Returns

The boolean value false.

Overrides

FilterInputStream.markSupported()

Description

This method returns false to indicate that this class does not support mark() and reset().

read

public int read() throws IOException

Returns

The next byte of data, or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.read()

Description

This method reads a byte of data. If there is any data in the pushback buffer, the method returns the next
byte in the pushback buffer. Otherwise, it calls the read() method of the underlying stream. The method
blocks until the byte is read, the end of the stream is encountered, or an exception is thrown.

public int read(byte b[], int off, int len) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The actual number of bytes read, or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.read(byte[], int, int)

Description

This method copies bytes from the stream into the given array b, starting at index off and continuing for
len bytes. If the array can be populated solely from the pushback buffer, the method returns immediately.
Otherwise, the read(byte[], int, int) method of the underlying stream is called to make up the
difference. The method blocks until some data is available.

unread

public void unread(int b) throws IOException

Parameters

b

The value to push back.

Throws

IOException

If the pushback buffer is full.

Description

This method puts the given byte into the pushback buffer.

public void unread(byte[] b) throws IOException

Availability

New as of JDK 1.1

Parameters

b

An array of bytes to push back.

Throws

IOException

If the pushback buffer is full.

Description

This method puts all of the bytes in the given array into the pushback buffer.

public void unread(byte[] b, int off, int len) throws IOException

Availability

New as of JDK 1.1

Parameters

b

An array of bytes to push back.

off

An offset into the array.

len

The number of bytes to push back.

Throws

IOException

If the pushback buffer is full.

Description

This method puts len bytes from the given array, starting at offset off, into the pushback buffer.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object close() FilterInputStream

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

mark(int) FilterInputStream notify() Object

notifyAll() Object read(byte[]) FilterInputStream

reset() FilterInputStream skip(long) FilterInputStream

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

FilterInputStream, InputStream, IOException

PrintWriter PushbackReader

Chapter 11
The java.io Package

PushbackReader

Name

PushbackReader

Synopsis

Class Name:

java.io.PushbackReader

Superclass:

java.io.FilterReader

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The PushbackReader class represents a character stream that allows data to be pushed back into the
stream. In other words, after data has been read from a PushbackReader, it can be pushed back into
the stream so that it can be reread. This functionality is useful for implementing things like parsers that
need to read data and then return it to the input stream. PushbackReader is the character-oriented
equivalent of PushbackInputStream.

Class Summary

public class java.io.PushbackReader extends java.io.FilterReader {
 // Constructors
 public PushbackReader(Reader in);
 public PushbackReader(Reader in, int size);
 // Instance Methods
 public void close();
 public boolean markSupported();
 public int read();
 public int read(char[] cbuf, int off, int len);
 public boolean ready();
 public void unread(int c);
 public void unread(char[] cbuf);
 public void unread(char[] cbuf, int off, int len);
}

Constructors

PushbackReader

public PushbackReader(Reader in)

Parameters

in

The reader to wrap.

Description

This constructor creates a PushbackReader that reads from the given Reader, using a
pushback buffer with the default size of one byte.

public PushbackReader(Reader in, int size)

Parameters

in

The reader to wrap.

size

The size of the pushback buffer.

Description

This constructor creates a PushbackReader that reads from the given Reader, using a
pushback buffer of the given size.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterReader.close()

Description

This method closes the reader and releases the system resources that are associated with it.

markSupported

public boolean markSupported()

Returns

The boolean value false.

Overrides

FilterReader.markSupported()

Description

This method returns false to indicate that this class does not support mark() and reset().

read

public int read() throws IOException

Returns

The next character of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterReader.read()

Description

This method reads a character of data. If there is any data in the pushback buffer, the method
returns the next character in the pushback buffer. Otherwise, it calls the read() method of the
underlying stream. The method blocks until the character is read, the end of the stream is
encountered, or an exception is thrown.

public int read(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to be filled from the stream.

off

An offset into the array.

len

The number of characters to read.

Returns

The actual number of characters read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterReader.read(char[], int, int)

Description

This method copies characters from the stream into the given array cbuf, starting at index off
and continuing for len characters. If the array can be populated solely from the pushback buffer,
the method returns immediately. Otherwise, the read(char[], int, int) method of the
underlying stream is called to make up the difference. The method blocks until some data is
available.

ready

public boolean ready() throws IOException

Returns

A boolean value that indicates whether the stream is ready to be read.

Throws

IOException

If the stream is closed.

Overrides

FilterReader.ready()

Description

If there is data in the pushback buffer, or if the underlying stream is ready, this method returns
true. The underlying stream is ready if the next read() is guaranteed not to block.

unread

public void unread(int c) throws IOException

Parameters

c

The value to push back.

Throws

IOException

If the pushback buffer is full.

Description

This method puts the given character into the pushback buffer.

public void unread(char[] cbuf) throws IOException

Parameters

cbuf

An array of characters to push back.

Throws

IOException

If the pushback buffer is full.

Description

This method puts all of the characters in the given array into the pushback buffer.

public void unread(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to push back.

off

An offset into the array.

len

The number of characters to push back.

Throws

IOException

If the pushback buffer is full.

Description

This method puts len characters from the given array, starting at offset off, into the pushback
buffer.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object mark(int) FilterReader

notify() Object notifyAll() Object

read(char[]) FilterReader reset() FilterReader

skip(long) FilterReader toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

FilterReader, IOException, Reader

PushbackInputStream RandomAccessFile

Chapter 11
The java.io Package

RandomAccessFile

Name

RandomAccessFile

Synopsis

Class Name:

java.io.RandomAccessFile

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.DataInput, java.io.DataOutput

Availability:

JDK 1.0 or later

Description

The RandomAccessFile class reads data from and writes data to a file. The file is specified using a
File object or a String that represents a pathname. Both constructors take a mode parameter that
specifies whether the file is being opened solely for reading, or for reading and writing. Each of the
constructors can throw a SecurityException if the application does not have permission to access
the specified file using the given mode.

Unlike FileInputStream and FileOutputStream, RandomAccessFile supports random
access to the data in the file; the seek() method allows you to alter the current position of the file
pointer to any location in the file. RandomAccessFile implements both the DataInput and
DataOutput interfaces, so it supports reading and writing of all the primitive data types.

Class Summary

public class java.io.RandomAccessFile extends java.lang.Object
 implements java.io.DataInput, java.io.DataOutput {
 // Constructors
 public RandomAccessFile(File file, String mode);
 public RandomAccessFile(String name, String mode);
 // Instance Methods
 public native void close();
 public final FileDescriptor getFD();
 public native long getFilePointer();
 public native long length();
 public native int read();
 public int read(byte[] b);
 public int read(byte[] b, int off, int len);
 public final boolean readBoolean();
 public final byte readByte();
 public final char readChar();
 public final double readDouble();
 public final float readFloat();
 public final void readFully(byte[] b);
 public final void readFully(byte[] b, int off, int len);
 public final int readInt();
 public final String readLine();
 public final long readLong();
 public final short readShort();
 public final String readUTF();
 public final int readUnsignedByte();

 public final int readUnsignedShort();
 public native void seek(long pos);
 public int skipBytes(int n);
 public native void write(int b);
 public void write(byte[] b);
 public void write(byte[] b, int off, int len);
 public final void writeBoolean(boolean v);
 public final void writeByte(int v);
 public final void writeBytes(String s);
 public final void writeChar(int v);
 public final void writeChars(String s);
 public final void writeDouble(double v);
 public final void writeFloat(float v);
 public final void writeInt(int v);
 public final void writeLong(long v);
 public final void writeShort(int v);
 public final void writeUTF(String str);
}

Constructors

RandomAccessFile

public RandomAccessFile(File file, String mode) throws IOException

Parameters

file

The file to be accessed.

mode

The mode of access to the file: either "r" for read access or "rw" for read/write access.

Throws

IOException

If any kind of I/O error occurs.

IllegalArgumentException

If mode is not "r" or "rw".

SecurityException

If the application does not have permission to read the named file, or if mode is "rw" and
the application does not have permission to write to the named file.

Description

This constructor creates a RandomAccessFile to access the specified File in the specified
mode.

public RandomAccessFile(String name, String mode) throws IOException

Parameters

name

A String that contains the pathname of the file to be accessed. The path must conform to
the requirements of the native operating system.

mode

The mode of access to the file: either "r" for read access or "rw" for read/write access.

Throws

IOException

If any kind of I/O error occurs.

IllegalArgumentException

If mode is not "r" or "rw".

SecurityException

If the application does not have permission to read the named file, or if mode is "rw"
and the application does not have permission to write to the named file.

Description

This constructor creates a RandomAccessFile to access the file with the specified name in
the specified mode.

Instance Methods

close

public native void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method closes the file and releases the system resources that are associated with it.

getFD

public final FileDescriptor getFD() throws IOException

Returns

The file descriptor for the file that supplies data for this object.

Throws

IOException

If there is no FileDescriptor associated with this object.

Description

This method returns the file descriptor associated with this RandomAccessFile.

getFilePointer

public native long getFilePointer() throws IOException

Returns

The current position in the file.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the current position in the file. The position is the offset, in bytes, from the
beginning of the file where the next read or write operation occurs.

length

public native long length() throws IOException

Returns

The length of the file.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the length of the file in bytes.

read

public native int read() throws IOException

Returns

The next byte or -1 if the end of file is encountered.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads the next byte from the file. The method blocks until the byte is read, the end of
the file is encountered, or an exception is thrown.

public int read(byte b[]) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

Returns

The number of bytes read or -1 if the end of file is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads bytes from the file into the given array. The method reads up to b.length
bytes of data from the stream. The method blocks until there is some data available.

public int read(byte b[], int off, int len) throws IOException

Parameters

b

An array of bytes to be filled.

off

An offset into the array.

len

The number of bytes to read.

Returns

The number of bytes read or -1 if the end of file is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads up to len bytes from the file into the given array, starting at index off. The
method blocks until there is some input available.

readBoolean

public final boolean readBoolean() throws IOException

Returns

The boolean value read from the file.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readBoolean()

Description

This method reads a byte as a boolean value from the file. A byte that contains a zero is read as
false. A byte that contains any other value is read as true. The method blocks until the byte is
read, the end of the file is encountered, or an exception is thrown.

readByte

public final byte readByte() throws IOException

Returns

The byte value read from the file.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readByte()

Description

This method reads a signed 8-bit value, a byte, from the file. The method blocks until the byte is
read, the end of the file is encountered, or an exception is thrown.

readChar

public final char readChar() throws IOException

Returns

The char value read from the file.
Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readChar()

Description

This method reads a 16-bit Unicode character from the file. The method reads two bytes from the
file and then creates a char value using the first byte read as the most significant byte. The
method blocks until the two bytes are read, the end of the file is encountered, or an exception is
thrown.

readDouble

public final double readDouble() throws IOException

Returns

The double value read from the file.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readDouble()

Description

This method reads a 64-bit double quantity from the file. The method reads a long value from
the file as if using the readLong() method. The long value is then converted to a double
using the longBitsToDouble() method in Double. The method blocks until the necessary
eight bytes are read, the end of the file is encountered, or an exception is thrown.

readFloat

public final float readFloat() throws IOException

Returns

The float value read from the file.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readFloat()

Description

This method reads a 32-bit float quantity from the file. The method reads an int value from
the file as if using the readInt() method. The int value is then converted to a float using
the intBitsToFloat() method in Float. The method blocks until the necessary four bytes
are read, the end of the file is encountered, or an exception is thrown.

readFully

public final void readFully(byte b[]) throws IOException

Parameters

b

The array to fill.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readFully(byte[])

Description

This method reads bytes into the given array b until the array is full. The method reads repeatedly
from the file to fill the array. The method blocks until all of the bytes are read, the end of the file
is encountered, or an exception is thrown.

public final void readFully(byte b[], int off, int len) throws IOException

Parameters

b

The array to fill.

off

An offset into the array.

len

The number of bytes to read.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readFully(byte[], int, int)

Description

This method reads len bytes into the given array, starting at offset off. The method reads
repeatedly from the file to fill the array. The method blocks until all of the bytes are read, the end
of the file is encountered, or an exception is thrown.

readInt

public final int readInt() throws IOException

Returns

The int value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readInt()

Description

This method reads a signed 32-bit int quantity from the file. The method reads four bytes from
the file and then creates an int quantity, using the first byte read as the most significant byte.
The method blocks until the four bytes are read, the end of the file is encountered, or an exception
is thrown.

readLine

public final String readLine() throws IOException

Returns

A String that contains the line read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other I/O error occurs.

Implements

DataInput.readLine()

Description

This method reads the next line of text from the file. The method reads bytes of data from the file
until it encounters a line terminator. A line terminator is a carriage return ('\r'), a newline
character ('\n'), a carriage return immediately followed by a newline character, or the end of the
file. The method blocks until a line terminator is read, the end of the file is encountered, or an
exception is thrown.

The method does not convert bytes to characters correctly.

readLong

public final long readLong() throws IOException

Returns

The long value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readLong()

Description

This method reads a signed 64-bit long quantity from the file. The method reads eight bytes
from the file and then creates a long quantity, using the first byte read as the most significant

byte. The method blocks until the eight bytes are read, the end of the file is encountered, or an
exception is thrown.

readShort

public final short readShort() throws IOException

Returns

The short value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readShort()

Description

This method reads a signed 16-bit short quantity from the file. The method reads two bytes
from the file and then creates a short quantity, using the first byte read as the most significant
byte. The method blocks until the two bytes are read, the end of the file is encountered, or an
exception is thrown.

readUnsignedByte

public final int readUnsignedByte() throws IOException

Returns

The unsigned byte value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Returns

Implements

DataInput.readUnsignedByte()

Description

This method reads an unsigned 8-bit quantity from the file. The method reads a byte from the file
and returns that byte. The method blocks until the byte is read, the end of the file is encountered,
or an exception is thrown.

readUnsignedShort

public final int readUnsignedShort() throws IOException

Returns

The unsigned short value read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

Implements

DataInput.readUnsignedShort()

Description

This method reads an unsigned 16-bit quantity from the file. The method reads two bytes from the
file and creates an unsigned short quantity using the first byte read as the most significant byte.
The method blocks until the two bytes are read, the end of the file is encountered, or an exception
is thrown.

readUTF

public final String readUTF() throws IOException

Returns

The String read from the stream.

Throws

EOFException

If the end of the file is encountered.

IOException

If any other kind of I/O error occurs.

UTFDataFormatException

If the bytes do not represent a valid UTF-8 encoding.

Implements

DataInput.readUTF()

Description

This method reads a UTF-8 encoded string from the file. The method reads the first two bytes

from the file as unsigned short values, to get the number of bytes in the encoded string. Then
the following bytes are read and interpreted UTF-8 encoded bytes; these bytes are converted into
characters for the resulting String. This method blocks until all of the bytes in the encoded
string have been read, the end of the file is encountered, or an exception is thrown. See Appendix
B, The UTF-8 Encoding for information about the UTF-8 encoding.

seek

public native void seek(long pos) throws IOException

Parameters

pos

The new position in the file.

Throws

IOException

If any kind of I/O error occurs.

Description

This method sets the current file position to the specified position. The position is the offset, in
bytes, from the beginning of the file where the next read or write operation occurs.

skipBytes

public int skipBytes(int n) throws IOException

Parameters

n

The number of bytes to skip.

Returns

The actual number of skipped bytes.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/appb_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/appb_01.htm

Throws

EOFException

If EOF is encountered.

IOException

If any I/O error occurs.

Implements

DataInput.skipBytes()

Description

This method skips over n bytes.

write

public native void write(int b) throws IOException

Parameters

b

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.write(int)

Description

This method writes the low-order eight bits of b to the file as a byte.

public void write(byte b[]) throws IOException

Parameters

b

An array of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.write(byte[])

Description

This method writes the bytes in the given array to the file.

public void write(byte b[], int off, int len) throws IOException

Parameters

b

An array of bytes to write.

off

An offset into the byte array.

len

The number of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.write(byte[], int, int)

Description

This method writes len bytes from the given array, starting off elements from the beginning of
the array, to the file.

writeBoolean

public final void writeBoolean(boolean v) throws IOException

Parameters

v

The boolean value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeBoolean()

Description

If v is true, this method writes a byte that contains the value 1 to the file. If v is false, the
method writes a byte that contains the value 0.

writeByte

public final void writeByte(int v) throws IOException

Parameters

v

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeByte()

Description

This method writes an 8-bit byte to the file, using the low-order eight bits of the given integer v.

writeBytes

public final void writeBytes(String s) throws IOException

Parameters

s

The String to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeBytes()

Description

This method writes the characters in the given String to the file as a sequence of 8-bit bytes.
The high-order bytes of the characters in the string are ignored.

writeChar

public final void writeChar(int v) throws IOException

Parameters

v

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeChar()

Description

This method writes a 16-bit char to the file, using the low-order 16 bits of the given integer v.

writeChars

public final void writeChars(String s) throws IOException

Parameters

s

The String to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeChars()

Description

This method writes the characters in the given String object to the file as a sequence of 16-bit
characters.

writeDouble

public final void writeDouble(double v) throws IOException

Parameters

v

The double value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeDouble()

Description

This method writes a 64-bit double to the file. The double value is converted to a long using

doubleToLongBits() of Double; the long value is then written to the file as eight bytes
with the high-order byte first.

writeFloat

public final void writeFloat(float v) throws IOException

Parameters

v

The float value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeFloat()

Description

This method writes a 32-bit float to the file. The float value is converted to a int using
floatToIntBits() of Float; the int value is then written to the file as four bytes with the
high-order byte first.

writeInt

public final void writeInt(int v) throws IOException

Parameters

v

The int value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeInt()

Description

This method writes a 32-bit int to the file. The value is written as four bytes with the high-order
byte first.

writeLong

public final void writeLong(long v) throws IOException

Parameters

v

The long value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeLong()

Description

This method writes a 64-bit long to the file. The value is written as eight bytes with the high-
order byte first.

writeShort

public final void writeShort(int v) throws IOException

Parameters

v

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeShort()

Description

This method writes a 16-bit short to the file, using the low-order 16 bits of the given integer v.

writeUTF

public final void writeUTF(String str) throws IOException

Parameters

str

The String to write.

Throws

IOException

If any kind of I/O error occurs.

Implements

DataOutput.writeUTF()

Description

This method writes the given String to the file using the UTF-8 encoding. See Appendix B,
The UTF-8 Encoding for information about the UTF-8 encoding.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

DataInput, DataOutput, File, FileInputStream, FileOutputStream, Double, Float,
Integer, IllegalArgumentException, IOException, Long

PushbackReader Reader

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/appb_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/appb_01.htm

Chapter 11
The java.io Package

Reader

Name

Reader

Synopsis

Class Name:

java.io.Reader

Superclass:

java.lang.Object

Immediate Subclasses:

java.io.BufferedReader, java.io.CharArrayReader,

java.io.FilterReader, java.io.InputStreamReader,

java.io.PipedReader, java.io.StringReader

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The Reader class is an abstract class that is the superclass of all classes that represent input character
streams. Reader defines the basic input methods that all character streams provide. A similar hierarchy of
classes, based around InputStream, deals with byte streams instead of character streams.

Reader is designed so that read() and read(char[]) both call read(char[], int, int). Thus, a
subclass can simply override read(char[], int, int), and all of the read methods will work. Note that
this is different from the design of InputStream, where the read() method is the catch-all method. The
design of Reader is cleaner and more efficient.

Reader also defines a mechanism for marking a position in the stream and returning to it later, via the
mark() and reset() methods. Another method, markSupported(), tells whether or not this mark-and-
reset functionality is available in a particular subclass.

Class Summary

public abstract class java.io.Reader extends java.lang.Object {
 // Variables
 protected Object lock;
 // Constructors
 protected Reader();
 protected Reader(Object lock);
 // Instance Methods
 public abstract void close();
 public void mark(int readAheadLimit);
 public boolean markSupported();
 public int read();
 public int read(char[] cbuf);
 public abstract int read(char[] cbuf, int off, int len);
 public boolean ready();
 public void reset();
 public long skip(long n) throws IOException;
}

Variables

lock

protected Object lock

Description

The object used to synchronize operations on this Reader object. For efficiency's sake, a particular
implementation of a character stream can choose to synchronize its operations on something other than
instances of itself. Thus, any subclass should synchronize on the lock object, instead of using a
synchronized method or the this object.

Constructors

Reader

protected Reader()

Description

This constructor creates a Reader that synchronizes on the Reader itself, or in other words, on the
this object.

protected Reader(Object lock)

Parameters

lock

The object to use for synchronization.

Description

This constructor creates a Reader that synchronizes on the given object.

Instance Methods

close

public abstract void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method closes the reader and releases any system resources associated with it.

A subclass of Reader must implement this method.

mark

public void mark(int readheadLimit) throws IOException

Parameters

readAheadLimit

The maximum number of characters that can be read before the saved position becomes invalid.

Throws

IOException

If any kind of I/O error occurs.

Description

This method tells this Reader object to remember its current position, so that the position can be
restored by a call to the reset() method. The Reader can read readAheadLimit characters
beyond the marked position before the mark becomes invalid.

The implementation of the mark() method in Reader simply throws an exception to indicate that the
mark-and-reset functionality is not implemented. A subclass must override the method to provide the
functionality.

markSupported

public boolean markSupported()

Returns

true if this reader supports mark() and reset(); false otherwise.

Description

This method returns a boolean value that indicates whether or not this object supports mark-and-reset
functionality.

The markSupported() method in Reader always returns false. A subclass that implements the
mark-and-reset functionality should override the method to return true.

read

public int read() throws IOException

Returns

The next character of data or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads the next character of input. The character is returned as an integer in the range
0x0000 to 0xFFFF. The method blocks until the character is read, the end of stream is encountered, or
an exception is thrown.

The implementation of this method in Reader reads the character by calling read(cb, 0, 1), where
cb is a character array, and returning cb[0]. Although it is not strictly necessary, a subclass that wants
to provide efficient single-character reads should override this method.

public int read(char[] cbuf) throws IOException

Parameters

cbuf

An array of characters to be filled from the stream.

Returns

The actual number of characters read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads characters of input to fill the given array by calling read(cbuf, 0,
cbuf.length). The method blocks until some data is available.

A subclass does not usually need to override this method, as it can override read(char[], int,
int) and have read(char[]) work automatically.

 public abstract int read(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to be filled from the stream.

off

An offset into the array.

len

The number of characters to read.

Returns

The actual number of characters read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads up to len characters of input into the given array starting at index off. The method
blocks until some data is available.

A subclass of Reader must implement this method.

ready

public boolean ready() throws IOException

Returns

A boolean value that indicates whether the reader is ready to be read.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns true if the next read() is guaranteed to not block.

The implementation of the ready() method in Reader always returns false. A subclass should
override this method as appropriate.

reset

public void reset() throws IOException

Throws

IOException

If there was no previous call to the mark() method or the saved position has been invalidated.

Description

This method restores the position of the stream to the position that was saved by a previous call to
mark().

The implementation of the reset() method in Reader throws an exception to indicate that mark-and-
reset functionality is not supported by default. A subclass must override the method to provide the
functionality.

skip

public long skip(long n) throws IOException

Parameters

n

The number of characters to skip.

Returns

The actual number of characters skipped.

Throws

IOException

If any kind of I/O error occurs.

Description

This method skips n characters of input. In other words, it moves the position of the stream forward by n
characters.

The implementation of the skip() method in Reader simply calls read(cb, 0, n) where cb is a
character array that is at least n bytes long. A subclass may want to override this method to implement a
more efficient skipping algorithm.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

BufferedReader, CharArrayReader, FilterReader, InputStreamReader, IOException,
PipedReader, StringReader

RandomAccessFile SequenceInputStream

Chapter 11
The java.io Package

SequenceInputStream

Name

SequenceInputStream

Synopsis

Class Name:

java.io.SequenceInputStream

Superclass:

java.io.InputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_59.htm

Description

The SequenceInputStream class allows a series of InputStream objects to be seamlessly
concatenated into one stream. In other words, a SequenceInputStream appears and functions as a
single InputStream. Internally, however, the SequenceInputStream reads data from each
InputStream in the specified order. When the end of a stream is encountered, data is automatically
read from the next stream.

Class Summary

public class java.io.SequenceInputStream extends java.io.InputStream {
 // Constructors
 public SequenceInputStream(Enumeration e);
 public SequenceInputStream(InputStream s1, InputStream s2);
 // Instance Methods
 public int available(); // New in 1.1
 public void close();
 public int read();
 public int read(byte[] buf, int pos, int len);
}

Constructors

SequenceInputStream

public SequenceInputStream(Enumeration e)

Parameters

e

An Enumeration of input streams.

Description

This constructor creates a SequenceInputStream that reads from each of the
InputStream objects in the given Enumeration. Each object in the Enumeration must
be an InputStream.

public SequenceInputStream(InputStream s1, InputStream s2)

Parameters

s1

An input stream.

s2

Another input stream.

Description

This constructor creates a SequenceInputStream that reads first from s1 and then from s2.

Instance Methods

available

public int available() throws IOException

Availability

New as of JDK 1.1

Returns

The number of bytes that can be read without blocking, or 0 if the end of the final stream is
encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.available()

Description

This method returns the number of bytes that can be read without having to wait for more data to
become available. The method returns the result of calling available() on the current stream.
If the end of the final stream is encountered, the method returns 0.

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.close()

Description

This method closes the stream and releases the system resources that are associated with it. The
method closes all the InputStream objects attached to this object.

read

public int read() throws IOException

Returns

The next byte of data or -1 if the end of the final stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.read()

Description

This method reads the next byte of data from the current stream. When the end of the current
stream is encountered, that stream is closed, and the first byte of the next InputStream is read.
If there are no more InputStream objects in the SequenceInputStream, -1 is returned to
signify the end of the SequenceInputStream. The method blocks until the byte is read, the
end of the final stream is encountered, or an exception is thrown.

public int read(byte[] buf, int off, int len) throws IOException

Parameters

buf

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The actual number of bytes read or -1 if the end of the final stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

InputStream.read(byte[], int, int)

Description

This method reads up to len bytes of input from the current stream into the given array starting at
index off. When the end of the current stream is encountered, that stream is closed, and bytes are
read from the next InputStream. If there are no more InputStream objects in the
SequenceInputStream, -1 is returned to signify the end of the SequenceInputStream.
The method blocks until there is some data available.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object mark(int) InputStream

markSupported() InputStream notify() Object

notifyAll() Object reset() InputStream

skip(long) InputStream toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

InputStream, IOException

Reader Serializable

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_59.htm

Chapter 11
The java.io Package

StreamTokenizer

Name

StreamTokenizer

Synopsis

Class Name:

java.io.StreamTokenizer

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_60.htm

The StreamTokenizer class performs a lexical analysis on an InputStream object and breaks the
stream into tokens. Although StreamTokenizer is not a general-purpose parser, it recognizes tokens
that are similar to those used in the Java language. A StreamTokenizer recognizes identifiers,
numbers, quoted strings, and various comment styles.

A StreamTokenizer object can be wrapped around an InputStream. In this case, when the
StreamTokenizer reads bytes from the stream, the bytes are converted to Unicode characters by
simply zero-extending the byte values to 16 bits. As of Java 1.1, a StreamTokenizer can be wrapped
around a Reader to eliminate this problem.

The nextToken() method returns the next token from the stream. The rest of the methods in
StreamTokenizer control how the object interprets the characters that it reads and tokenizes them.

The parsing functionality of StreamTokenizer is controlled by a table and a number of flags. Each
character that is read from the InputStream is in the range '\u0000' to '\uFFFF'. The character
value looks up attributes of the character in the table. A character can have zero or more of the following
attributes: whitespace, alphabetic, numeric, string quote, and comment character.

By default, a StreamTokenizer recognizes the following:

● Whitespace characters between '\u0000' and '\u0020'

● Alphabetic characters from 'a' through 'z', 'A' through 'Z', and '\u00A0' and '\u00FF'.

● Numeric characters '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '.', and '-'

● String quote characters "'" and "'"

● Comment character "/"

Class Summary

public class java.io.StreamTokenizer extends java.lang.Object {
 // Variables
 public double nval;
 public String sval;
 public int ttype;
 public final static int TT_EOF;
 public final static int TT_EOL;
 public final static int TT_NUMBER;
 public final static int TT_WORD;

 // Constructors
 public StreamTokenizer(InputStream in); // Deprecated in 1.1
 public StreamTokenizer(Reader in); // New in 1.1
 // Instance Methods
 public void commentChar(int ch);
 public void eolIsSignificant(boolean flag);
 public int lineno();
 public void lowerCaseMode(boolean flag);
 public int nextToken();
 public void ordinaryChar(int ch);
 public void ordinaryChars(int low, int hi);
 public void parseNumbers();
 public void pushBack();
 public void quoteChar(int ch);
 public void resetSyntax();
 public void slashSlashComments(boolean flag);
 public void slashStarComments(boolean flag);
 public String toString();
 public void whitespaceChars(int low, int hi);
 public void wordChars(int low, int hi);
}

Variables

nval

public double nval

Description

This variable contains the value of a TT_NUMBER token.

sval

public String sval

Description

This variable contains the value of a TT_WORD token.

ttype

public int ttype

Description

This variable indicates the token type. The value is either one of the TT_ constants defined below or
the character that has just been parsed from the input stream.

TT_EOF

public final static int TT_EOF = -1

Description

This token type indicates that the end of the stream has been reached.

TT_EOL

public final static int TT_EOL = '\n'

Description

This token type indicates that the end of a line has been reached. The value is not returned by
nextToken() unless eolIsSignificant(true) has been called.

TT_NUMBER

public final static int TT_NUMBER = -2

Description

This token type indicates that a number has been parsed. The number is placed in nval.

TT_WORD

public final static int TT_WORD = -3

Description

This token type indicates that a word has been parsed. The word is placed in sval.

Constructors

StreamTokenizer

public StreamTokenizer(InputStream in)

Availability

Deprecated as of JDK 1.1

Parameters

in

The input stream to tokenize.

Description

This constructor creates a StreamTokenizer that reads from the given InputStream. As of
JDK 1.1, this method is deprecated and StreamTokenizer(Reader) should be used instead.

public StreamTokenizer(Reader in)

Availability

New as of JDK 1.1

Parameters

in

The reader to tokenize.

Description

This constructor creates a StreamTokenizer that reads from the given Reader.

Instance Methods

commentChar

public void commentChar(int ch)

Parameters

ch

The character to use to indicate comments.

Description

This method tells this StreamTokenizer to treat the given character as the beginning of a
comment that ends at the end of the line. The StreamTokenizer ignores all of the characters
from the comment character to the end of the line. By default, a StreamTokenizer treats the
'/' character as a comment character. This method may be called multiple times if there are
multiple characters that begin comment lines.

To specify that a character is not a comment character, use ordinaryChar().

eolIsSignificant

public void eolIsSignificant(boolean flag)

Parameters

flag

A boolean value that specifies whether or not this StreamTokenizer returns TT_EOL
tokens.

Description

A StreamTokenizer recognizes "\n", "\r", and "\r\n" as the end of a line. By default, end-
of-line characters are treated as whitespace and thus, the StreamTokenizer does not return
TT_EOL tokens from nextToken(). Call eolIsSignificant(true) to tell the
StreamTokenizer to return TT_EOL tokens.

lineo

public int lineno()

Returns

The current line number.

Description

This method returns the current line number. Line numbers begin at 1.

lowerCaseMode

public void lowerCaseMode(boolean flag)

Parameters

flag

A boolean value that specifies whether or not this StreamTokenizer returns
TT_WORD tokens in lowercase.

Description

By default, a StreamTokenizer does not change the case of the words that it parses. However if
you call lowerCaseMode(true), whenever nextToken() returns a TT_WORD token, the
word in sval is converted to lowercase.

nextToken

public int nextToken() throws IOException

Returns

One of the token types (TT_EOF, TT_EOL, TT_NUMBER, or TT_WORD) or a character code.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads the next token from the stream. The value returned is the same as the value of the
variable ttype. The nextToken() method parses the following tokens:

TT_EOF

The end of the input stream has been reached.

TT_EOL

The end of a line has been reached. The eolIsSignificant() method controls whether
end-of-line characters are treated as whitespace or returned as TT_EOL tokens.

TT_NUMBER

A number has been parsed. The value can be found in the variable nval. The
parseNumbers() method tells the StreamTokenizer to recognize numbers distinct
from words.

TT_WORD

A word has been parsed. The word can be found in the variable sval.

Quoted string

A quoted string has been parsed. The variable ttype is set to the quote character, and sval
contains the string itself. You can tell the StreamTokenizer what characters to use as
quote characters using quoteChar().

Character

A single character has been parsed. The variable ttype is set to the character value.

ordinaryChar

public void ordinaryChar(int ch)

Parameters

ch

The character to treat normally.

Description

This method causes this StreamTokenizer to treat the given character as an ordinary character.
This means that the character has no special significance as a comment, string quote, alphabetic,
numeric, or whitespace character. For example, to tell the StreamTokenizer that the slash does
not start a single-line comment, use ordinaryChar('/').

ordinaryChars

public void ordinaryChars(int low, int hi)

Parameters

low

The beginning of a range of character values.

hi

The end of a range of character values.

Description

This method tells this StreamTokenizer to treat all of the characters in the given range as
ordinary characters. See the description of ordinaryChar() above for more information.

parseNumbers

public void parseNumbers()

Description

This method tells this StreamTokenizer to recognize numbers. The StreamTokenizer
constructor calls this method, so the default behavior of a StreamTokenizer is to recognize
numbers. This method modifies the syntax table of the StreamTokenizer so that the following
characters have the numeric attribute: '1', '2', '3', '4', '5', '6', '7', '8', '9', '0',
'.', and '-'

When the parser encounters a token that has the format of a double-precision floating-point number,
the token is treated as a number rather than a word. The ttype variable is set to TT_NUMBER, and
nval is set to the value of the number.

To use a StreamTokenizer that does not parse numbers, make the above characters ordinary
using ordinaryChar() or ordinaryChars():

pushBack

public void pushBack()

Description

This method has the effect of pushing the current token back onto the stream. In other words, after a
call to this method, the next call to the nextToken() method returns the same result as the
previous call to the nextToken()method without reading any input.

quoteChar

public void quoteChar(int ch)

Parameters

ch

The character to use as a delimiter for quoted strings.

Description

This method tells this StreamTokenizer to treat the given character as the beginning or end of a
quoted string. By default, the single-quote character and the double-quote character are string-quote
characters. When the parser encounters a string-quote character, the ttype variable is set to the
quote character, and sval is set to the actual string. The string consists of all the characters after
(but not including) the string-quote character up to (but not including) the next occurrence of the
same string-quote character, a line terminator, or the end of the stream.

To specify that a character is not a string-quote character, use ordinaryChar().

resetSyntax

public void resetSyntax()

Description

This method resets this StreamTokenizer, which causes it to treat all characters as ordinary

characters. See the description of ordinaryChar() above for more information.

slashSlashComments

public void slashSlashComments(boolean flag)

Parameters

flag

A boolean value that specifies whether or not this StreamTokenizer recognizes
double-slash comments (//).

Description

By default, a StreamTokenizer does not recognize double-slash comments. However, if you
call slashSlashComments(true), the nextToken() method recognizes and ignores double-
slash comments.

slashStarComments

public void slashStarComments(boolean flag)

Parameters

flag

A boolean value that specifies whether or not this StreamTokenizer recognizes slash-
star (/* ... */) comments.

Description

By default, a StreamTokenizer does not recognize slash-star comments. However, if you call
slashStarComments(true), the nextToken() method recognizes and ignores slash-star
comments.

toString

public String toString()

Returns

A String representation of the current token.

Overrides

Object.toString()

Description

This method returns a string representation of the current token recognized by the nextToken()
method. This string representation consists of the value of ttype, the value of sval if the token is
a word or the value of nval if the token is a number, and the current line number.

whitespaceChars

public void whitespaceChars(int low, int hi)

Parameters

low

The beginning of a range of character values.

hi

The end of a range of character values.

Description

This method causes this StreamTokenizer to treat characters in the specified range as
whitespace. The only function of whitespace characters is to separate tokens in the stream.

wordChars

public void wordChars(int low, int hi)

Parameters

low

The beginning of a range of character values.

hi

The end of a range of character values.

Description

This method causes this StreamTokenizer to treat characters in the specified range as
characters that are part of a word token, or, in other words, consider the characters to be alphabetic.
A word token consists of a sequence of characters that begins with an alphabetic character and is
followed by zero or more numeric or alphabetic characters.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

InputStream, IOException, Reader, StringTokenizer

StreamCorruptedException StringBufferInputStream

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_60.htm

Chapter 11
The java.io Package

StringBufferInputStream

Name

StringBufferInputStream

Synopsis

Class Name:

java.io.StringBufferInputStream

Superclass:

java.io.InputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

Deprecated as of JDK 1.1

Description

The StringBufferInputStream class represents a byte stream whose data source is a String. This
class is similar to the ByteArrayInputStream class, which uses a byte array as its data source.

StringBufferInputStream is deprecated as of JDK 1.1 because it does not correctly convert characters
to bytes. The StringReader class should now be used to create a character stream from a String.

Class Summary

public class java.io.StringBufferInputStream extends java.io.InputStream {
 // Variables
 protected String buffer;
 protected int count;
 protected int pos;
 // Constructor
 public StringBufferInputStream(String s);
 // Instance Methods
 public synchronized int available();
 public synchronized int read();
 public synchronized int read(byte[] b, int off, int len);
 public synchronized void reset();
 public synchronized long skip(long n);
}

Variables

buffer

protected String buffer

Description

The buffer that stores the data for the input stream.

count

protected int count

Description

The size of the buffer, or in other words, the length of the string.

pos

protected int pos

Description

The current stream position.

Constructors

StringBufferInputStream

public StringBufferInputStream(String s)

Parameters

s

The String to use.

Description

This constructor creates a StringBufferInputStream that uses the given String as its data
source. Note that the data is not copied, so changes made to the String affect the data that the
StringBufferInputStream returns.

Instance Methods

available

public synchronized int available()

Returns

The number of bytes remaining in the string.

Overrides

InputStream.available()

Description

This method returns the number of bytes that are left in the string. This is the length of the string,
count, minus the current stream position, pos.

read

public synchronized int read()

Returns

The next byte of data or -1 if the end of the string is encountered.

Overrides

InputStream.read()

Description

This method returns the next byte from the string. The method takes the next character from the string
and returns the low eight bits of that character as a byte, which is not the correct way to convert
characters into bytes. The method cannot block.

public synchronized int read(byte b[], int off, int len)

Parameters

b

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The actual number of bytes read or -1 if the end of the string is encountered immediately.

Overrides

InputStream.read(byte[], int, int)

Description

This method copies bytes from the internal buffer into the given array b, starting at index off and
continuing for len bytes. The method takes each character from the string and returns the low eight
bits of that character as a byte, which is not the correct way to convert characters into bytes.

reset

public synchronized void reset()

Overrides

InputStream.reset()

Description

This method sets the position of the StringBufferInputStream back to the beginning of the
internal buffer.

skip

public synchronized long skip(long n)

Parameters

n

The number of bytes to skip.

Returns

The actual number of bytes skipped.

Overrides

InputStream.skip()

Description

This method skips n bytes of the string. If you try to skip past the end of the string, the stream is
positioned at the end of the string.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object close() InputStream

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

mark(int) InputStream markSupported() InputStream

notify() Object notifyAll() Object

read(byte[]) InputStream toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ByteArrayInputStream, InputStream, IOException, String, StringReader

StreamTokenizer StringReader

Chapter 11
The java.io Package

StringReader

Name

StringReader

Synopsis

Class Name:

java.io.StringReader

Superclass:

java.io.Reader

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The StringReader class represents a character stream whose data source is a String. This class is
similar to the CharArrayReader class, which uses a char array as its data source.

StringReader is meant to replace the StringBufferInputStream class as of JDK 1.1. Unlike
StringBufferInputStream, StringReader handles Unicode characters and supports mark()
and reset().

Class Summary

public class java.io.StringReader extends java.io.Reader {
 // Constructors
 public StringReader(String s);
 // Instance Methods
 public void close();
 public void mark(int readAheadLimit);
 public boolean markSupported();
 public int read();
 public int read(char[] cbuf, int off, int len);
 public boolean ready();
 public void reset();
 public long skip(long ns);
}

Constructors

StringReader

public StringReader(String s)

Parameters

s

The String to use.

Description

This constructor creates a StringReader that uses the given String as its data source. The
data is not copied, so changes made to the String affect the data that the StringReader
returns.

Instance Methods

close

public void close()

Overrides

Reader.close()

Description

This method closes the reader by removing the link between this StringReader and the
String it was created with.

mark

public void mark(int readAheadLimit) throws IOException

Parameters

readAheadLimit

The maximum number of characters that can be read before the saved position becomes
invalid.

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.mark()

Description

This method causes the StringReader to remember its current position. A subsequent call to
reset() causes the object to return to that saved position, and thus re-read a portion of the
string. Because the data for this stream comes from a String, there is no limit on reading ahead,
so readAheadLimit is ignored.

markSupported

public boolean markSupported()

Returns

The boolean value true.

Overrides

Reader.markSupported()

Description

This method returns true to indicate that this class supports mark() and reset().

read

public int read() throws IOException

Returns

The next character or -1 if the end of the string is encountered.

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.read()

Description

This method returns the next character from the string. The method cannot block.

public int read(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to be filled from the stream.

off

An offset into the character array.

len

The number of characters to read.

Returns

The actual number of characters read or -1 if the end of the string is encountered immediately.

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.read(char[], int, int)

Description

This method copies up to len characters from the internal buffer into the given array cbuf,
starting at index off.

ready

public boolean ready() throws IOException

Returns

A boolean value that indicates whether the stream is ready to be read.

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.ready()

Description

If there is any data left to be read from the string, this method returns true.

reset

public void reset() throws IOException

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.reset()

Description

This method resets the position of the StringReader to the position that was saved by calling
the mark() method. If mark() has not been called, the StringReader is reset to read from
the beginning of the string.

skip

public long skip(long ns) throws IOException

Parameters

ns

The number of bytes to skip.

Returns

The actual number of bytes skipped.

Throws

IOException

If the stream is closed or any other kind of I/O error occurs.

Overrides

Reader.skip()

Description

This method skips ns characters of input. If you try to skip past the end of the string, the stream is
positioned at the end of the string.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals (Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object read(char[]) Reader

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

CharArrayReader, IOException, Reader, String, StringBufferInputStream

StringBufferInputStream StringWriter

Chapter 11
The java.io Package

StringWriter

Name

StringWriter

Synopsis

Class Name:

java.io.StringWriter

Superclass:

java.io.Writer

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_65.htm

Description

The StringWriter class represents a stream whose data is written to a string. This class is similar to
the CharArrayWriter class, which writes its data to a char array. The StringWriter class uses
a StringBuffer to store its data; a String can be retrieved with the toString() method.

Class Summary

public class java.io.StringWriter extends java.io.Writer {
 // Constructors
 public StringWriter();
 protected StringWriter(int initialSize);
 // Instance Methods
 public void close();
 public void flush();
 public StringBuffer getBuffer();
 public String toString();
 public void write(int c);
 public void write(char[] cbuf, int off, int len);
 public void write(String str);
 public void write(String str, int off, int len);
}

Constructors

StringWriter

public StringWriter()

Description

This constructor creates a StringWriter with an internal buffer that has a default size of 16
characters. The buffer grows automatically as data is written to the stream.

protected StringWriter (int initialSize)

Parameters

initialSize

The initial buffer size.

Description

This constructor creates a StringWriter with an internal buffer that has a size of
initialSize characters. The buffer grows automatically as data is written to the stream.

Instance Methods

close

public void close()

Overrides

Writer.close()

Description

This method does nothing. For most subclassesof Writer, this method releases any system
resources that are associated with the Writer object. However, the StringWriter's internal
buffer may be needed for subsequent calls to toString(). For this reason, close() does
nothing, and the internal buffer is not released until the StringWriter is garbage collected.

flush

public void flush()

Overrides

Writer.flush()

Description

This method does nothing. The StringWriter writes data directly into its internal buffer; thus
it is never necessary to flush the stream.

getBuffer

public StringBuffer getBuffer()

Returns

A reference to the internal data buffer.

Description

This method returns a reference to the StringBuffer object that is used in this
StringWriter.

toString

public String toString()

Returns

A String constructed from the internal data buffer.

Overrides

Object.toString()

Description

This method returns a reference to a String object created from the characters stored in this
object's internal buffer.

write

public void write(int c)

Parameters

c

The value to write.

Overrides

Writer.write(int)

Description

This method writes the given value into the internal buffer. If the buffer is full, it is expanded.

public void write(char[] cbuf, int off, int len)

Parameters

cbuf

An array of characters to write to the stream.

off

An offset into the character array.

len

The number of characters to write.

Overrides

Writer.write(char[], int, int)

Description

This method copies len characters to this object's internal buffer from cbuf, starting off
elements from the beginning of the array. If the internal buffer is full, it is expanded.

public void write(String str)

Parameters

str

A String to write to the stream.

Overrides

Writer.write(String)

Description

This method copies the characters of str into this object's internal buffer. If the internal buffer is
full, it is expanded.

public void write(String str, int off, int len)

Parameters

str

A String to write to the stream.

off

An offset into the string.

len

The number of characters to write.

Overrides

Writer.write(String, int, int)

Description

This method copies len characters to this object's internal buffer from str, starting off
characters from the beginning of the given string. If the internal buffer is full, it is expanded.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

write(char[]) Writer

See Also

CharArrayWriter, String, StringBuffer, Writer

StringReader SyncFailedException

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_65.htm

Chapter 11
The java.io Package

Writer

Name

Writer

Synopsis

Class Name:

java.io.Writer

Superclass:

java.lang.Object

Immediate Subclasses:

java.io.BufferedWriter, java.io.CharArrayWriter,

java.io.FilterWriter, java.io.OutputStreamWriter,

java.io.PipedWriter, java.io.PrintWriter,

java.io.StringWriter

Interfaces Implemented:

None

Availability:

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_68.htm

New as of JDK 1.1

Description

The Writer class is an abstract class that is the superclass of all classes that represent output character
streams. Writer defines the basic output methods that all character streams provide. A similar hierarchy of
classes, based around OutputStream, deals with byte streams instead of character streams.

Writer is designed so that write(int b) and write(char[]) both call write(char[], int, int).
Thus, a subclass can simply override write(char[], int, int) and all of the write methods will work.
Note that this is different from the design of OutputStream, where the write(int b) method is the catch-all
method. The design of Writer is cleaner and more efficient.

Some Writer subclasses may implement buffering to increase efficiency. Writer provides a method--
flush()--that tells the Writer to write any buffered output to the underlying device, which may be a disk drive
or a network.

Class Summary

public abstract class java.io.Writer extends java.lang.Object {
 // Variables
 protected Object lock;
 // Constructors
 protected Writer();
 protected Writer(Object lock);
 // Instance Methods
 public abstract void close();
 public abstract void flush();
 public void write(int c);
 public void write(char[] cbuf);
 public abstract void write(char[] cbuf, int off, int len);
 public void write(String str);
 public void write(String str, int off, int len);
}

Variables

lock

protected Object lock

Description

The object used to synchronize operations on this Writer object. For efficiency's sake, a particular
implementation of a character stream can choose to synchronize its operations on something other than
instances of itself. Thus, any subclass should synchronize on the lock object, instead of using a
synchronized method or the this object.

Constructors

Writer

protected Writer()

Description

This constructor creates a Writer that synchronizes on the Writer itself, or in other words, on the this
object.

protected Writer(Object lock)

Parameters

lock

The object to use for synchronization.

Description

This constructor creates a Writer that synchronizes on the given object.

Instance Methods

close

public abstract void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method flushes the writer and then closes it, releasing any system resources associated with it.

A subclass of Writer must implement this method.

flush

public void flush() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method forces any characters that may be buffered by this Writer to be written to the underlying
device.

A subclass of Writer must implement this method.

write

public void write(int c) throws IOException

Parameters

c

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes a character containing the lowest sixteen bits of the given integer value.

The implementation of this method in Writer writes the character by calling write(cb, 1) where cb
is a character array that contains the given value in cb[0]. Although it is not strictly necessary, a subclass
that wants to provide efficient single-character writes should override this method.

public void write(char[] cbuf) throws IOException

Parameters

cbuf

An array of characters to write to the stream.

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes the given array of characters to the stream by calling write(cbuf, 0,
cbuf.length).

A subclass does not usually need to override this method, as it can override write(char[], int,
int) and have write(char[]) work automatically.

 public abstract void write(char[] cbuf, int off, int len) throws IOException

Parameters

cbuf

An array of characters to write to the stream.

off

An offset into the array.

len

The number of characters to write.

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes len characters contained in the given array starting at index off.

A subclass of Writer must implement this method.

public void write(String str) throws IOException

Parameters

str

A string to write to the stream.

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes the given string to the stream by calling write(str,str.length).

A subclass does not usually need to override this method, as it can override write(char[], int,
int) and have it work automatically.

public void write(String str, int off, int len) throws IOException

Parameters

str

A string to write to the stream.

off

An offset into the string.

len

The number of characters to write.

Throws

IOException

If any kind of I/O error occurs.

Description

This method writes len characters contained in the given string starting at index off. The method does
this by creating an array of characters for the specified portion of the string and then calling write(cb,
0, cb.length) on the character array cb.

A subclass does not usually need to override this method, as it can override write(char[], int,
int) and have it work automatically.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

BufferedWriter, CharArrayWriter, FilterWriter, IOException, OutputStreamWriter,
PipedWriter, PrintWriter, StringWriter

WriteAbortedException AbstractMethodError

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_68.htm

Chapter 12
The java.lang Package

ArithmeticException

Name

ArithmeticException

Synopsis

Class Name:

java.lang.ArithmeticException

Superclass:

java.lang.RuntimeException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An ArithmeticException is thrown to indicate an exceptional arithmetic condition, such as integer division

by zero.

Class Summary

public class java.lang.ArithmeticException
 extends java.lang.RuntimeException {
 // Constructors
 public ArithmeticException();
 public ArithmeticException(String s);
}

Constructors

ArithmeticException

public ArithmeticException()

Description

This constructor creates an ArithmeticException with no associated detail message.

public ArithmeticException(String s)

Parameters

s

The detail message.

Description

This constructor creates ArithmeticException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, RuntimeException, Throwable

AbstractMethodError ArrayIndexOutOfBoundsException

Chapter 12
The java.lang Package

ArrayIndexOutOfBoundsException

Name

ArrayIndexOutOfBoundsException

Synopsis

Class Name:

java.lang.ArrayIndexOutOfBoundsException

Superclass:

java.lang.IndexOutOfBoundsException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An ArrayIndexOutOfBoundsException is thrown when an out-of-range index is detected by an array

object. An out-of-range index occurs when the index is less than zero or greater than or equal to the size of the
array.

Class Summary

public class java.lang.ArrayIndexOutOfBoundsException
 extends java.lang.IndexOutOfBoundsException {
 // Constructors
 public ArrayIndexOutOfBoundsException();
 public ArrayIndexOutOfBoundsException(int index);
 public ArrayIndexOutOfBoundsException(String s);
}

Constructors

ArrayIndexOutOfBoundsException

public ArrayIndexOutOfBoundsException()

Description

This constructor creates an ArrayIndexOutOfBoundsException with no associated detail
message.

public ArrayIndexOutOfBoundsException(int index)

Parameters

index

The index value that was out-of-bounds

Description

This constructor creates an ArrayIndexOutOfBoundsException with an associated message that
mentions the specified index.

public ArrayIndexOutOfBoundsException(String s)

Parameters

s

The detail message.

Description

This constructor creates an ArrayIndexOutOfBoundsException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IndexOutOfBoundsException, RuntimeException, Throwable

ArithmeticException ArrayStoreException

Chapter 12
The java.lang Package

ArrayStoreException

Name

ArrayStoreException

Synopsis

Class Name:

java.lang.ArrayStoreException

Superclass:

java.lang.RuntimeException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An ArrayStoreException is thrown when there is an attempt to store a value in an array element that is

incompatible with the type of the array.

Class Summary

public class java.lang.ArrayStoreException
 extends java.lang.RuntimeException {
 // Constructors
 public ArrayStoreException();
 public ArrayStoreException(String s);
}

Constructors

ArrayStoreException

public ArrayStoreException()

Description

This constructor creates an ArrayStoreException with no associated detail message.

public ArrayStoreException(String s)

Parameters

s

The detail message.

Description

This constructor creates an ArrayStoreException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, RuntimeException, Throwable

ArrayIndexOutOfBoundsException Boolean

Chapter 12
The java.lang Package

Boolean

Name

Boolean

Synopsis

Class Name:

java.lang.Boolean

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The Boolean class provides an object wrapper for a boolean value. This is useful when you need to
treat a boolean value as an object. For example, there are a number of utility methods that take a
reference to an Object as one of their arguments. You cannot specify a boolean value for one of
these arguments, but you can provide a reference to a Boolean object that encapsulates the boolean
value. Furthermore, as of JDK 1.1, the Boolean class is necessary to support the Reflection API and
class literals.

Class Summary

public final class java.lang.Boolean {
 // Constants
 public final static Boolean FALSE;
 public final static Boolean TRUE;
 public final static Class TYPE; // New in 1.1
 // Constructors
 public Boolean(boolean value);
 public Boolean(String s);
 // Class Methods
 public static boolean getBoolean(String name);
 public static Boolean valueOf(String s);
 // Instance Methods
 public boolean booleanValue();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Constants

TRUE

public static final Boolean TRUE

Description

A constant Boolean object that has the value true.

FALSE

public static final Boolean FALSE

Description

A constant Boolean object that has the value false.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type boolean. It is always true that Boolean.TYPE ==
boolean.class.

Constructors

Boolean

public Boolean(boolean value)

Parameters

value

The boolean value to be made into a Boolean object.

Description

Constructs a Boolean object with the given value.

public Boolean(String s)

Parameters

s

The string to be made into a Boolean object.

Description

Constructs a Boolean object with the value specified by the given string. If the string equals
'true' (ignoring case), the value of the object is true; otherwise it is false.

Class Methods

getBoolean

public static boolean getBoolean(String name)

Parameters

name

The name of a system property.

Returns

The boolean value of the system property.

Description

This methods retrieves the boolean value of a named system property.

valueOf

public static Boolean valueOf(String s)

Parameters

s

The string to be made into a Boolean object.

Returns

A Boolean object with the value specified by the given string.

Description

This method returns a Boolean object with the value true if the string equals "true"
(ignoring case); otherwise the value of the object is false.

Instance Methods

booleanValue

public boolean booleanValue()

Returns

The boolean value contained by the object.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Boolean, and it contains the same value as
the object this method is associated with.

hashCode

public int hashCode()

Returns

A hashcode based on the boolean value of the object.

Overrides

Object.hashCode()

toString

public String toString()

Returns

"true" if the value of the object is true; "false" otherwise.

Overrides

Object.toString()

Description

This method returns a string representation of the Boolean object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Class, Object, Serializable, System

ArrayStoreException Byte

Chapter 12
The java.lang Package

Byte

Name

Byte

Synopsis

Class Name:

java.lang.Byte

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The Byte class provides an object wrapper for a byte value. This is useful when you need to treat a byte value as
an object. For example, there are a number of utility methods that take a reference to an Object as one of their
arguments. You cannot specify a byte value for one of these arguments, but you can provide a reference to a Byte

object that encapsulates the byte value. Furthermore, the Byte class is necessary as of JDK 1.1 to support the
Reflection API and class literals.

The Byte class also provides a number of utility methods for converting byte values to other primitive types and
for converting byte values to strings and vice versa.

Class Summary

public final class java.lang.Byte extends java.lang.Number {
 // Constants
 public static final byte MAX_VALUE;
 public static final byte MIN_VALUE;
 public static final Class TYPE;
 // Constructors
 public Byte(byte value);
 public Byte(String s);
 // Class Methods
 public static Byte decode(String nm);
 public static byte parseByte(String s);
 public static byte parseByte(String s, int radix);
 public static String toString(byte b);
 public static Byte valueOf(String s, int radix);
 public static Byte valueOf(String s);
 // Instance Methods
 public byte byteValue();
 public double doubleValue;
 public boolean equals(Object obj);
 public float floatValue
 public int hashCode();
 public int intValue();
 public long longValue();
 public short shortValue();
 public String toString();
}

Constants

MAX_VALUE

public static final byte MAX_VALUE= 127

The largest value that can be represented by a byte.

MIN_VALUE

public static final byte MIN_VALUE= -128

The smallest value that can be represented by a byte.

TYPE

public static final Class TYPE

The Class object that represents the primitive type byte. It is always true that Byte.TYPE == byte.class.

Constructors

Byte

public Byte(byte value)

Parameters

value

The byte value to be encapsulated by this object.

Description

Creates a Byte object with the specified byte value.

public Byte(String s) throws NumberFormatException

Parameters

s

The string to be made into a Byte object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid byte literal.

Description

Constructs a Byte object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the constructor throws a NumberFormatException.

Class Methods

decode

public static Byte decode(String nm) throws NumberFormatException

Parameters

nm

A String representation of the value to be encapsulated by a Byte object. If the string begins with #
or 0x, it is a radix 16 representation of the value. If the string begins with 0, it is a radix 8
representation of the value. Otherwise, it is assumed to be a radix 10 representation of the value.

Returns

A Byte object that encapsulates the given value.

Throws

NumberFormatException

If the String contains any non-digit characters other than a leading minus sign or the value
represented by the String is less than Byte.MIN_VALUE or greater than Byte.MAX_VALUE.

Description

This method returns a Byte object that encapsulates the given value.

parseByte

public static byte parseByte(String s) throws NumberFormatException

Parameters

s

The String to be converted to a byte value.

Returns

The numeric value of the byte represented by the String object.

Throws

NumberFormatException

If the String does not contain a valid representation of a byte or the value represented by the
String is less than Byte.MIN_VALUE or greater than Byte.MAX_VALUE.

Description

This method returns the numeric value of the byte represented by the contents of the given String object.
The String must contain only decimal digits, except that the first character may be a minus sign.

 public static byte parseByte(String s, int radix) throws NumberFormatException

Parameters

s

The String to be converted to a byte value.

radix

The radix used in interpreting the characters in the String as digits. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX. If radix is in the range 2 through 10,
only characters for which the Character.isDigit() method returns true are considered to be
valid digits. If radix is in the range 11 through 36, characters in the ranges `A' through `Z' and `a'
through `z' may be considered valid digits.

Returns

The numeric value of the byte represented by the String object in the specified radix.

Throws

NumberFormatException

If the String does not contain a valid representation of a byte, radix is not in the appropriate
range, or the value represented by the String is less than Byte.MIN_VALUE or greater than
Byte.MAX_VALUE.

Description

This method returns the numeric value of the byte represented by the contents of the given String object in
the specified radix. The String must contain only valid digits of the specified radix, except that the first
character may be a minus sign. The digits are parsed in the specified radix to produce the numeric value.

toString

public String toString(byte b)

Parameters

b

The byte value to be converted to a string.

Returns

The string representation of the given value.

Description

This method returns a String object that contains the decimal representation of the given value.

This method returns a string that begins with `-' if the given value is negative. The rest of the string is a
sequence of one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if
its argument is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

valueOf

public static Byte valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into a Byte object.

Returns

The Byte object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a byte or the value represented by the
String is less than Byte.MIN_VALUE or greater than Byte.MAX_VALUE.

Description

Constructs a Byte object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the method throws a NumberFormatException.

 public static Byte valueOf(String s, int radix) throws NumberFormatException

Parameters

s

The string to be made into a Byte object.

radix

The radix used in converting the string to a value. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The Byte object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a byte, radix is not in the appropriate range,
or the value represented by the String is less than Byte.MIN_VALUE or greater than
Byte.MAX_VALUE.

Description

Constructs a Byte object with the value specified by the given string in the specified radix. The string should
consist of one or more digit characters or characters in the range `A' to `Z' or `a' to `z' that are considered digits
in the given radix. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the method throws a NumberFormatException.

Instance Methods

byteValue

public byte byteValue()

Returns

The value of this object as a byte.

Overrides

Number.byteValue()

Description

This method returns the value of this object as a byte.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Byte and it contains the same value as the object this

method is associated with.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this object as a float.

hashCode

public int hashCode()

Returns

A hashcode based on the byte value of the object.

Overrides

Object.hashCode()

Description

This method returns a hashcode computed from the value of this object.

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the value of this object as an int.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the value of this object as a long.

shortValue

public short shortValue()

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the value of this object as a short.

toString

public String toString()

Returns

The string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains the decimal representation of the value of this object.

This method returns a string that begins with `-` if the given value is negative. The rest of the string is a
sequence of one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if
its argument is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Character, Class, Double, Float, Integer, Long, Number, Short, String

Boolean Character

Chapter 12
The java.lang Package

Character

Name

Character

Synopsis

Class Name:

java.lang.Character

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The Character class provides an object wrapper for a char value. This is useful when you need to treat a

char value as an object. For example, there are a number of utility methods that take a reference to an Object
as one of their arguments. You cannot specify a char value for one of these arguments, but you can provide a
reference to a Character object that encapsulates the char value. Furthermore, as of JDK 1.1, the
Character class is necessary to support the Reflection API and class literals.

In Java, Character objects represent values defined by the Unicode standard. Unicode is defined by an
organization called the Unicode Consortium. The defining document for Unicode is The Unicode Standard,
Version 2.0 (ISBN 0-201-48345-9). More recent information about Unicode is available at http://unicode.org.
Appendix A, The Unicode 2.0 Character Set, contains a table that lists the characters defined by the Unicode 2.0
standard.

The Character class provides some utility methods, such as methods for determining the type (e.g., uppercase
or lowercase, digit or letter) of a character and for converting from uppercase to lowercase. The logic for these
utility methods is based on a Unicode attribute table that is part of the Unicode standard. That table is available at
ftp://unicode.org/pub/2.0-Update/UnicodeData-2.0.14.txt.

Some of the methods in the Character class are concerned with characters that are digits; these characters are
used by a number of other classes to convert strings that contain numbers into actual numeric values. The digit-
related methods all use a radix value to interpret characters. The radix is the numeric base used to represent
numbers as characters or strings. Octal is a radix 8 representation, while hexadecimal is a radix 16 representation.
The methods that require a radix parameter use it to determine which characters should be treated as valid
digits. In radix 2, only the characters `0' and `1' are valid digits. In radix 16, the characters `0' through `9', `a'
through `z', and `A' through `Z' are considerd valid digits.

Class Summary

public final class java.lang.Character extends java.lang.Object
 implements java.io.Serializable {
 // Constants
 public final static byte COMBINING_SPACING_MARK; // New in 1.1
 public final static byte CONNECTOR_PUNCTUATION; // New in 1.1
 public final static byte CONTROL; // New in 1.1
 public final static byte CURRENCY_SYMBOL; // New in 1.1
 public final static byte DASH_PUNCTUATION; // New in 1.1
 public final static byte DECIMAL_DIGIT_NUMBER; // New in 1.1
 public final static byte ENCLOSING_MARK; // New in 1.1
 public final static byte END_PUNCTUATION; // New in 1.1
 public final static byte FORMAT; // New in 1.1
 public final static byte LETTER_NUMBER; // New in 1.1
 public final static byte LINE_SEPARATOR; // New in 1.1
 public final static byte LOWERCASE_LETTER; // New in 1.1
 public final static byte MATH_SYMBOL; // New in 1.1
 public final static int MAX_RADIX;
 public final static char MAX_VALUE;
 public final static int MIN_RADIX;

 public final static char MIN_VALUE;
 public final static byte MODIFIER_LETTER; // New in 1.1
 public final static byte MODIFIER_SYMBOL; // New in 1.1
 public final static byte NON_SPACING_MARK; // New in 1.1
 public final static byte OTHER_LETTER; // New in 1.1
 public final static byte OTHER_NUMBER; // New in 1.1
 public final static byte OTHER_PUNCTUATION; // New in 1.1
 public final static byte OTHER_SYMBOL; // New in 1.1
 public final static byte PARAGRAPH_SEPARATOR; // New in 1.1
 public final static byte PRIVATE_USE; // New in 1.1
 public final static byte SPACE_SEPARATOR; // New in 1.1
 public final static byte START_PUNCTUATION; // New in 1.1
 public final static byte SURROGATE; // New in 1.1
 public final static byte TITLECASE_LETTER; // New in 1.1
 public final static Class TYPE; // New in 1.1
 public final static byte UNASSIGNED; // New in 1.1
 public final static byte UPPERCASE_LETTER; // New in 1.1
 // Constructors
 public Character(char value);
 // Class Methods
 public static int digit(char ch, int radix);
 public static char forDigit(int digit, int radix);
 public static int getNumericValue(char ch); // New in 1.1
 public static int getType(char ch); // New in 1.1
 public static boolean isDefined(char ch);
 public static boolean isDigit(char ch);
 public static boolean isIdentifierIgnorable(char ch); // New in 1.1
 public static boolean isISOControl(char ch); // New in 1.1
 public static boolean isJavaIdentifierPart(char ch); // New in 1.1
 public static boolean isJavaIdentifierStart(char ch); // New in 1.1
 public static boolean isJavaLetter(char ch); // Deprecated in 1.1
 public static boolean isJavaLetterOrDigit(char ch); // Deprecated in 1.1
 public static boolean isLetter(char ch);
 public static boolean isLetterOrDigit(char ch);
 public static boolean isLowerCase(char ch);
 public static boolean isSpace(char ch); // Deprecated in 1.1
 public static boolean isSpaceChar(char ch); // New in 1.1
 public static boolean isTitleCase(char ch);
 public static boolean isUnicodeIdentifierPart(char ch); // New in 1.1
 public static boolean isUnicodeIdentifierStart(char ch);// New in 1.1
 public static boolean isUpperCase(char ch);
 public static boolean isWhitespace(char ch); // New in 1.1
 public static char toLowerCase(char ch);
 public static char toTitleCase(char ch);
 public static char toUpperCase(char ch);
 // Instance Methods
 public char charValue();

 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Constants

COMBINING_SPACING_MARK

public final static byte COMBINING_SPACING_MARK

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

CONNECTOR_PUNCTUATION

public final static byte CONNECTOR_PUNCTUATION

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

CONTROL

public final static byte CONTROL

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

CURRENCY_SYMBOL

public final static byte CURRENCY_SYMBOL

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

DASH_PUNCTUATION

public final static byte DASH_PUNCTUATION

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

DECIMAL_DIGIT_NUMBER

public final static byte DECIMAL_DIGIT_NUMBER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

ENCLOSING_MARK

public final static byte ENCLOSING_MARK

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

END_PUNCTUATION

public final static byte END_PUNCTUATION

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

FORMAT

public final static byte FORMAT

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

LETTER_NUMBER

public final static byte LETTER_NUMBER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

LINE_SEPARATOR

public final static byte LINE_SEPARATOR

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

LOWERCASE_LETTER

public final static byte LOWERCASE_LETTER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

MATH_SYMBOL

public final static byte MATH_SYMBOL

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

MAX_RADIX

public static final int MAX_RADIX = 36

Description

The maximum value that can be specified for a radix.

MAX_VALUE

public final static char MAX_VALUE = '\ufff'f

Description

The largest value that can be represented by a char.

MIN_RADIX

public static final int MIN_RADIX = 2

Description

The minimum value that can be specified for a radix.

MIN_VALUE

public final static char MIN_VALUE = '\u0000'

Description

The smallest value that can be represented by a char.

MODIFIER_LETTER

public final static byte MODIFIER_LETTER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

MODIFIER_SYMBOL

public final static byte MODIFIER_SYMBOL

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

NON_SPACING_MARK

public final static byte NON_SPACING_MARK

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

OTHER_LETTER

public final static byte OTHER_LETTER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

OTHER_NUMBER

public final static byte OTHER_NUMBER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

OTHER_PUNCTUATION

public final static byte OTHER_PUNCTUATION

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

OTHER_SYMBOL

public final static byte OTHER_SYMBOL

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

PARAGRAPH_SEPARATOR

public final static byte PARAGRAPH_SEPARATOR

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

PRIVATE_USE

public final static byte PRIVATE_USE

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

SPACE_SEPARATOR

public final static byte SPACE_SEPARATOR

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

START_PUNCTUATION

public final static byte START_PUNCTUATION

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

SURROGATE

public final static byte SURROGATE

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

TITLECASE_LETTER

public final static byte TITLECASE_LETTER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type char. It is always true that Character.TYPE ==
char.class.

UNASSIGNED

public final static byte UNASSIGNED

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

UPPERCASE_LETTER

public final static byte UPPERCASE_LETTER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

Constructors

Character

public Character(char value)

Parameters

value

The char value to be encapsulated by this object.

Description

Creates a Character object with the given char value.

Class Methods

digit

public static int digit(char ch, int radix)

Parameters

ch

A char value that is a legal digit in the given radix.

radix

The radix used in interpreting the specified character as a digit. If radix is in the range 2 through
10, only characters for which the isDigit() method returns true are considered to be valid
digits. If radix is in the range 11 through 36, characters in the ranges `A' through `Z' and `a'
through `z' may be considered valid digits.

Returns

The numeric value of the digit. This method returns -1 if the value of ch is not considered a valid digit, if
radix is less than MIN_RADIX, or if radix is greater than MAX_RADIX.

Description

Returns the numeric value represented by a digit character. For example, digit('7',10) returns 7. If
the value of ch is not a valid digit, the method returns -1. For example, digit('7',2) returns -1
because '7' is not a valid digit in radix 2. A number of methods in other classes use this method to
convert strings that contain numbers to actual numeric values. The forDigit() method is an
approximate inverse of this method.

If radix is greater than 10, characters in the range `A' to `A'+radix-11 are treated as valid digits. Such
a character has the numeric value ch-`A'+10. By the same token, if radix is greater than 10, characters
in the range `a' to `a'+radix-11 are treated as valid digits. Such a character has the numeric value ch-
`a'+10.

forDigit

public static char forDigit(int digit, int radix)

Parameters

digit

The numeric value represented as a digit character.

radix

The radix used to represent the specified value.

Returns

The character that represents the digit corresponding to the specified numeric value. The method returns `\
0' if digit is less than 0, if digit is equal to or greater than radix, if radix is less than
MIN_RADIX, or if radix is greater than MAX_RADIX.

Description

This method returns the character that represents the digit corresponding to the specified numeric value. If
digit is in the range 0 through 9, the method returns `0'+digit. If digit is in the range 10 through
MAX_RADIX-1, the method returns `a'+digit-10. The method returns `\ 0' if digit is less than 0, if
digit is equal to or greater than radix, if radix is less than MIN_RADIX, or if radix is greater than
MAX_RADIX.

getNumericValue

public static int getNumericValue(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value.

Returns

The Unicode numeric value of the character as a nonnegative integer. This method returns -1 if the
character has no numeric value; it returns -2 if the character has a numeric value that is not a nonnegative
integer, such as 1/2.

Description

This method returns the Unicode numeric value of the specified character as a nonnegative integer.

getType

public static int getType(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value.

Returns

An int value that represents the Unicode general category type of the character.

Description

This method returns the Unicode general category type of the specified character. The value corresponds
to one of the general category constants defined by Character.

isDefined

public static boolean isDefined(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character has an assigned meaning in the Unicode character set; otherwise false.

Description

This method returns true if the specified character value has an assigned meaning in the Unicode
character set.

isDigit

public static boolean isDigit(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as a digit in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is a digit, based on the definition of the
character in Unicode.

isIdentifierIgnorable

public static boolean isIdentifierIgnorable(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character is ignorable in a Java or Unicode identifier; otherwise false.

Description

This method determines whether or not the specified character is ignorable in a Java or Unicode identifier.
The following characters are ignorable in a Java or Unicode identifier:

\u0000 - \u0008 \u000E - \u001B \u007F -
\u009F

ISO control characters that aren't whitespace

\u200C - \u200F Join controls

\u200A - \u200E Bidirectional controls

\u206A - \u206F Format controls

\uFEFF Zero-width no-break space

isISOControl

public static boolean isISOControl(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character is an ISO control character; otherwise false.

Description

This method determines whether or not the specified character is an ISO control character. A character is
an ISO control character if it falls in the range \u0000 through \u001F or \u007F through \u009F.

isJavaIdentifierPart

public static boolean isJavaIdentifierPart(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear after the first character in a Java identifier; otherwise false.

Description

This method returns true if the specified character can appear in a Java identifier after the first character.
A character is considered part of a Java identifier if and only if it is a letter, a digit, a currency symbol
(e.g., $), a connecting punctuation character (e.g., _), a numeric letter (e.g., a Roman numeral), a
combining mark, a nonspacing mark, or an ignorable control character.

isJavaIdentifierStart

public static boolean isJavaIdentifierStart(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear as the first character in a Java identifier; otherwise false.

Description

This method returns true if the specified character can appear in a Java identifier as the first character. A
character is considered a start of a Java identifier if and only if it is a letter, a currency symbol (e.g., $), or
a connecting punctuation character (e.g., _).

isJavaLetter

public static boolean isJavaLetter(char ch)

Availability

Deprecated as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear as the first character in a Java identifier; otherwise false.

Description

This method returns true if the specified character can appear as the first character in a Java identifier. A
character is considered a Java letter if and only if it is a letter, the character $, or the character _ . This
method returns false for digits because digits are not allowed as the first character of an identifier.

This method is deprecated as of JDK 1.1. You should use isJavaIdentifierStart() instead.

isJavaLetterOrDigit

public static boolean isJavaLetterOrDigit(char ch)

Availability

Deprecated as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear after the first character in a Java identifier; otherwise false.

Description

This method returns true if the specified character can appear in a Java identifier after the first character.
A character is considered a Java letter or digit if and only if it is a letter, a digit, the character $, or the
character _.

This method is deprecated as of JDK 1.1. You should use isJavaIdentifierPart() instead.

isLetter

public static boolean isLetter(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as a letter in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is a letter, based on the definition of the
character in Unicode. This method does not consider character values in ranges that have not been
assigned meanings by Unicode to be letters.

isLetterOrDigit

public static boolean isLetterOrDigit(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as a letter in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is a letter or a digit, based on the definition
of the character in Unicode. There are some ranges that have not been assigned meanings by Unicode. If a
character value is in one of these ranges, this method does not consider the character to be a letter.

isLowerCase

public static boolean isLowerCase (char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as lowercase in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is lowercase. Unicode defines a number of
characters that do not have case mappings; if the specified character is one of these characters, the method
returns false.

isSpace

public static boolean isSpace(char ch)

Availability

Deprecated as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as whitespace in the ISO-Latin-1 character set; otherwise
false.

Description

This method determines whether or not the specified character is whitespace. This method recognizes the
whitespace characters shown in the following table.

\u0009 Horizontal tab

\u000A Newline

\u000C Formfeed

\u000D Carriage return

\u0020 ` ` Space

This method is deprecated as of JDK 1.1. You should use isWhitespace() instead.

isSpaceChar

public static boolean isSpaceChar(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character is a Unicode 2.0 space characters; otherwise false.

Description

This method determines if the specified character is a space character according to the Unicode 2.0
specification. A character is considered to be a Unicode space character if and only if it has the general

category "Zs", "Zl", or "Zp" in the Unicode specification.

isTitleCase

public static boolean isTitleCase(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as titlecase in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is a titlecase character. Unicode defines a
number of characters that do not have case mappings; if the specified character is one of these characters,
the method returns false.

Many characters are defined by the Unicode standard as having upper- and lowercase forms. There are
some characters defined by the Unicode standard that also have a titlecase form. The glyphs for these
characters look like a combination of two Latin letters. The titlecase form of these characters has a glyph
that looks like a combination of an uppercase Latin character and a lowercase Latin character; this case
should be used when the character appears as the first character of a word in a title. For example, one of
the Unicode characters that has a titlecase form looks like the letter `D' followed by the letter `Z'. Here is
what the three forms of this letter look like:

Uppercase `DZ'

Titlecase `Dz'

Lowercase `dz'

isUnicodeIdentifierPart

public static boolean isUnicodeIdentifierPart(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear after the first character in a Unicode identifier; otherwise
false.

Description

This method returns true if the specified character can appear in a Unicode identifier after the first
character. A character is considered part of a Unicode identifier if and only if it is a letter, a digit, a
connecting punctuation character (e.g., _), a numeric letter (e.g., a Roman numeral), a combining mark, a
nonspacing mark, or an ignorable control character.

isUnicodeIdentifierStart

public static boolean isUnicodeIdentifierStart(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear as the first character in a Unicode identifier; otherwise false.

Description

This method returns true if the specified character can appear in a Unicode identifier as the first
character. A character is considered a start of a Unicode identifier if and only if it is a letter.

isUpperCase

public static boolean isUpperCase(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as uppercase in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is uppercase. Unicode defines a number of
characters that do not have case mappings; if the specified character is one of these characters, the method
returns false.

isWhitespace

public static boolean isWhitespace(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as whitespace according to Java; otherwise false.
Description

This method determines whether or not the specified character is whitespace. This method recognizes the
following as whitespace:

Unicode category "Zs" except \u00A0 and \uFEFF Unicode space separators except no-break spaces

Unicode category "Zl" Unicode line separators

Unicode category "Zp" Unicode paragraph separators

\u0009 Horizontal tab

\u000A Linefeed

\u000B Vertical tab

\u000C Formfeed

\u000D Carriage return

\u001C File separator

\u001D Group separator

\u001E Record separator

\u001F Unit separator

toLowerCase

public static char toLowerCase(char ch)

Parameters

ch

A char value to be converted to lowercase.

Returns

The lowercase equivalent of the specified character, or the character itself if it cannot be converted to
lowercase.

Description

This method returns the lowercase equivalent of the specified character value. If the specified character is
not uppercase or if it has no lowercase equivalent, the character is returned unmodified. The Unicode
attribute table determines if a character has a mapping to a lowercase equivalent.

Some Unicode characters in the range \u2000 through \u2FFF have lowercase mappings. For example,
\u2160 (Roman numeral one) has a lowercase mapping to \u2170 (small Roman numeral one). The
toLowerCase() method maps such characters to their lowercase equivalents even though the method
isUpperCase() does not return true for such characters.

toTitleCase

public static char toTitleCase(char ch)

Parameters

ch

A char value to be converted to titlecase.

Returns

The titlecase equivalent of the specified character, or the character itself if it cannot be converted to
titlecase.

Description

This method returns the titlecase equivalent of the specified character value. If the specified character has
no titlecase equivalent, the character is returned unmodified. The Unicode attribute table is used to
determine the character's titlecase equivalent.

Many characters are defined by the Unicode standard as having upper- and lowercase forms. There are
some characters defined by the Unicode standard that also have a titlecase form. The glyphs for these
characters look like a combination of two Latin letters. The titlecase form of these characters has a glyph
that looks like a combination of an uppercase Latin character and a lowercase Latin character; this case
should be used when the character appears as the first character of a word in a title. For example, one of
the Unicode characters that has a titlecase form looks like the letter `D' followed by the letter `Z'. Here is
what the three forms of this letter look like:

Uppercase `DZ'

Titlecase `Dz'

Lowercase `dz'

toUpperCase

public static char toUpperCase(char ch)

Parameters

ch

A char value to be converted to lowercase.

Returns

The uppercase equivalent of the specified character, or the character itself if it cannot be converted to
uppercase.

Description

This method returns the uppercase equivalent of the specified character value. If the specified character is
not lowercase or if it has no uppercase equivalent, the character is returned unmodified. The Unicode

attribute table determines if a character has a mapping to an uppercase equivalent.

Some Unicode characters in the range \u2000 through \u2FFF have uppercase mappings. For example,
\u2170 (small Roman numeral one) has a lowercase mapping to \u2160 (Roman numeral one). The
toUpperCase() method maps such characters to their uppercase equivalents even though the method
isLowerCase() does not return true for such characters.

Instance Methods

charValue

public char charValue()

Returns

The char value contained by the object.

equals

public boolean equals(Object obj)

Parameters

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Character, and it contains the same value as the
object this method is associated with.

hashCode

public int hashCode()

Returns

A hashcode based on the char value of the object.

Overrides

Object.hashCode()

toString

public String toString()

Returns

A String of length one that contains the character value of the object.

Overrides

Object.toString()

Description

This method returns a string representation of the Character object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Class, Object, Serializable

Byte Class

Chapter 12
The java.lang Package

Class

Name

Class

Synopsis

Class Name:

java.lang.Class

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Seriablizable

Availability:

JDK 1.0 or later

Description

As of Java 1.1, instances of the Class class are used as run-time descriptions of all Java data types, both reference types
and primitive types. The Class class has also been greatly expanded in 1.1 to provide support for the Reflection API.
Prior to 1.1, Class just provided run-time descriptions of reference types.

A Class object provides considerable information about the data type. You can use the isPrimitive() method to

find out if a Class object describes a primitive type, while isArray() indicates if the object describes an array type. If
a Class object describes a class or interface type, there are numerous methods that return information about the fields,
methods, and constructors of the type. This information is returned as java.lang.reflect.Field,
java.lang.reflect.Method, and java.lang.reflect.Constructor objects.

There are a number of ways that you can get a Class object for a particular data type:

● If you have an object, you can get the Class object that describes the class of that object by calling the object's
getClass()method. Every class inherits this method from the Object class.

● As of Java 1.1, you can get the Class object that describes any Java type using the new class literal syntax. A
class literal is simply the name of a type (a class name or a primitive type name) followed by a period and the
class keyword. For example:

Class s = String.class;
Class i = int.class;
Class v = java.util.Vector.class;

● In Java 1.0, you can get the Class object from the name of a data type using the forName() class method of
Class. For example:

Class v = Class.forName("java.util.Vector");

This technique still works in Java 1.1, but it is more cumbersome (and less efficient) than using a class literal.

You can create an instance of a class using the newInstance() method of a Class object, if the class has a
constructor that takes no arguments.

The Class class has no public constructors; it cannot be explicitly instantiated. Class objects are normally created
by the ClassLoader class or a ClassLoader object.

Class Summary

public final class java.lang.Class extends java.lang.Object
 implements java.io.Serializable {
 // Class Methods
 public static native Class forName(String className);
 // Instance Methods
 public Class[] getClasses(); // New in 1.1
 public native ClassLoader getClassLoader();
 public native Class getComponentType(); // New in 1.1
 public Constructor
 getConstructor(Class[] parameterTypes); // New in 1.1
 public Constructor[] getConstructors(); // New in 1.1
 public Class[] getDeclaredClasses(); // New in 1.1
 public Constructor
 getDeclaredConstructor(Class[] parameterTypes); // New in 1.1
 public Constructor[] getDeclaredConstructors(); // New in 1.1

 public Field getDeclaredField(String name); // New in 1.1
 public Field[] getDeclaredFields(); // New in 1.1
 public Method getDeclaredMethod(String name,
 Class[] parameterTypes) // New in 1.1
 public Method[] getDeclaredMethods() // New in 1.1
 public Class getDeclaringClass(); // New in 1.1
 public Field getField(String name); // New in 1.1
 public Field[] getFields(); // New in 1.1
 public native Class[] getInterfaces();
 public Method getMethod(String name,
 Class[] parameterTypes); // New in 1.1
 public Method[] getMethods(); // New in 1.1
 public native int getModifiers(); // New in 1.1
 public native String getName();
 public URL getResource(String name); // New in 1.1
 public InputStream getResourceAsStream(String name); // New in 1.1
 public native Object[] getSigners(); // New in 1.1
 public native Class getSuperclass();
 public native boolean isArray(); // New in 1.1
 public native boolean isAssignableFrom(Class cls); // New in 1.1
 public native boolean isInstance(Object obj); // New in 1.1
 public native boolean isInterface();
 public native boolean isPrimitive(); // New in 1.1
 public native Object newInstance();
 public String toString();
}

Class Methods

forName

 public static Class forName(String className) throws ClassNotFoundException

Parameters

className

Name of a class qualified by the name of its package. If the class is defined inside of another class, all dots
(.) that separate the top-level class name from the class to load must be changed to dollar signs ($) for the
name to be recognized.

Returns

A Class object that describes the named class.

Throws

ClassNotFoundException

If the class cannot be loaded because it cannot be found.

Description

This method dynamically loads a class if it has not already been loaded. The method returns a Class object that
describes the named class.

The most common use of forName() is for loading classes on the fly when an application wants to use classes it
wasn't built with. For example, a web browser uses this technique. When a browser needs to load an applet, the
browser calls Class.forName() for the applet. The method loads the class if it has not already been loaded and
returns the Class object that encapsulates the class. The browser then creates an instance of the applet by calling
the Class object's newInstance() method.

When a class is loaded using a ClassLoader object, any classes loaded at the instigation of that class are also
loaded using the same ClassLoader object. This method implements that security policy by trying to find a
ClassLoader object to load the named class. The method searches the stack for the most recently invoked
method associated with a class that was loaded using a ClassLoader object. If such a class is found, the
ClassLoader object associated with that class is used.

Instance Methods

getClasses

public Class[] getClasses()

Availability

New as of JDK 1.1

Returns

An array of Class objects that contains the public classes and interfaces that are members of this class.

Description

If this Class object represents a reference type, this method returns an array of Class objects that lists all of the
public classes and interfaces that are members of this class or interface. The list includes public classes and
interfaces that are inherited from superclasses and that are defined by this class or interface. If there are no
public member classes or interfaces, or if this Class represents a primitive type, the method returns an array of
length 0.

As of Java 1.1.1, this method always returns an array of length 0, no matter how many public member classes
this class or interface actually declares.

getClassLoader

public native ClassLoader getClassLoader()

Returns

The ClassLoader object used to load this class or null if this class was not loaded with a ClassLoader.

Description

This method returns the ClassLoader object that was used to load this class. If this class was not loaded with a
ClassLoader, null is returned.

This method is useful for making sure that a class gets loaded with the same class loader as was used for loading
this Class object.

getComponentType

public native Class getComponentType()

Availability

New as of JDK 1.1

Returns

A Class object that describes the component type of this class if it is an array type.

Description

If this Class object represents an array type, this method returns a Class object that describes the component
type of the array. If this Class does not represent an array type, the method returns null.

getConstructor

 public Constructor getConstructor(Class[] parameterTypes) throws
NoSuchMethodException, SecurityException

Availability

New as of JDK 1.1

Parameters

parameterTypes

An array of Class objects that describes the parameter types, in declared order, of the constructor.

Returns

A Constructor object that reflects the specified public constructor of this class.

Throws

NoSuchMethodException

If the specified constructor does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class, this method returns a Constructor object that reflects the specified
public constructor of this class. The constructor is located by searching all of the constructors of the class for a
public constructor that has exactly the same formal parameters as specified. If this Class does not represent a
class, the method returns null.

getConstructors

 public Constructor[] getConstructors() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Constructor objects that reflect the public constructors of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class, this method returns an array of Constructor objects that reflect the
public constructors of this class. If there are no public constructors, or if this Class does not represent a
class, the method returns an array of length 0.

getDeclaredClasses

public Class[] getDeclaredClasses() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Class objects that contains all of the declared classes and interfaces that are members of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a reference type, this method returns an array of Class objects that lists all of the
classes and interfaces that are members of this class or interface. The list includes public, protected, default
access, and private classes and interfaces that are defined by this class or interface, but it excludes classes and
interfaces inherited from superclasses. If there are no such member classes or interfaces, or if this Class
represents a primitive type, the method returns an array of length 0.

As of Java 1.1.1, this method always returns an array of length 0, no matter how many member classes this class or
interface declares.

getDeclaredConstructor

 public Constructor getDeclaredConstructor(Class[] parameterTypes) throws
NoSuchMethodException, SecurityException

Availability

New as of JDK 1.1

Parameters

parameterTypes

An array of Class objects that describes the parameter types, in declared order, of the constructor.

Returns

A Constructor object that reflects the specified declared constructor of this class.

Throws

NoSuchMethodException

If the specified constructor does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class, this method returns a Constructor object that reflects the specified
declared constructor of this class. The constructor is located by searching all of the constructors of the class for a
public, protected, default access, or private constructor that has exactly the same formal parameters as
specified. If this Class does not represent a class, the method returns null.

getDeclaredConstructors

 public Constructor[] getDeclaredConstructors() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Constructor objects that reflect the declared constructors of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class, this method returns an array of Constructor objects that reflect the
public, protected, default access, and private constructors of this class. If there are no declared
constructors, or if this Class does not represent a class, the method returns an array of length 0.

getDeclaredField

 public Field getDeclaredField(String name) throws NoSuchFieldException,
SecurityException

Availability

New as of JDK 1.1

Parameters

name

The simple name of the field.

Returns

A Field object that reflects the specified declared field of this class.

Throws

NoSuchFieldException

If the specified field does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns a Field object that reflects the specified
declared field of this class. The field is located by searching all of the fields of the class (but not inherited fields)
for a public, protected, default access, or private field that has the specified simple name. If this Class
does not represent a class or interface, the method returns null.

getDeclaredFields

public Field[] getDeclaredFields() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Field objects that reflect the declared fields of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns an array of Field objects that reflect the
public, protected, default access, and private fields declared by this class, but excludes inherited fields. If

there are no declared fields, or if this Class does not represent a class or interface, the method returns an array of
length 0.

This method does not reflect the implicit length field for array types. The methods of the class Array should be
used to manipulate array types.

getDeclaredMethod

 public Method getDeclaredMethod(String name, Class[] parameterTypes) throws
NoSuchMethodException, SecurityException

Availability

New as of JDK 1.1

Parameters

name

The simple name of the method.

parameterTypes

An array of Class objects that describes the parameter types, in declared order, of the method.

Returns

A Method object that reflects the specified declared method of this class.

Throws

NoSuchMethodException

If the specified method does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns a Method object that reflects the specified
declared method of this class. The method is located by searching all of the methods of the class (but not inherited
methods) for a public, protected, default access, or private method that has the specified simple name
and exactly the same formal parameters as specified. If this Class does not represent a class or interface, the
method returns null.

getDeclaredMethods

public Method[] getDeclaredMethods() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Method objects that reflect the declared methods of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns an array of Method objects that reflect the
public, protected, default access, and private methods declared by this class, but excludes inherited
methods. If there are no declared methods, or if this Class does not represent a class or interface, the method
returns an array of length 0.

getDeclaringClass

public Class getDeclaringClass()

Availability

New as of JDK 1.1

Returns

A Class object that represents the declaring class if this class is a member of another class.

Description

If this Class object represents a class or interface that is a member of another class or interface, this method
returns a Class object that describes the declaring class or interface. If this class or interface is not a member of
another class or interface, or if it represents a primitive type, the method returns null.

getField

 public Field getField(String name) throws NoSuchFieldException, SecurityException

Availability

New as of JDK 1.1

Parameters

name

The simple name of the field.

Returns

A Field object that reflects the specified public field of this class.

Throws

NoSuchFieldException

If the specified field does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns a Field object that reflects the specified
public field of this class. The field is located by searching all of the fields of the class, including any inherited
fields, for a public field that has the specified simple name. If this Class does not represent a class or interface,
the method returns null.

getFields

public Field[] getFields() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Field objects that reflect the public fields of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns an array of Field objects that reflect the
public fields declared by this class and any inherited public fields. If there are no public fields, or if this
Class does not represent a class or interface, the method returns an array of length 0.

This method does not reflect the implicit length field for array types. The methods of the class Array should be
used to manipulate array types.

getInterfaces

public native Class[] getInterfaces()

Returns

An array of the interfaces implemented by this class or extended by this interface.

Description

If the Class object represents a class, this method returns an array that refers to all of the interfaces that the class
implements. The order of the interfaces referred to in the array is the same as the order in the class declaration's
implements clause. If the class does not implement any interfaces, the length of the returned array is 0.

If the object represents an interface, this method returns an array that refers to all of the interfaces that this interface
extends. The interfaces occur in the order they appear in the interface declaration's extends clause. If the
interface does not extend any interfaces, the length of the returned array is 0.

If the object represents a primitive or array type, the method returns an array of length 0.

getMethod

 public Method getMethod(String name, Class[] parameterTypes) throws
NoSuchMethodException, SecurityException

Availability

New as of JDK 1.1

Parameters

name

The simple name of the method.

parameterTypes

An array of Class objects that describes the parameter types, in declared order, of the method.

Returns

A Method object that reflects the specified public method of this class.

Throws

NoSuchMethodException

If the specified method does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns a Method object that reflects the specified
public method of this class. The method is located by searching all of the methods of the class, including any
inherited methods, for a public method that has the specified simple name and exactly the same formal
parameters as specified. If this Class does not represent a class or interface, the method returns null.

getMethods

public Method[] getMethods() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Method objects that reflect the public methods of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns an array of Method objects that reflect the
public methods declared by this class and any inherited public methods. If there are no public methods or if
this Class doesn't represent a class or interface, the method returns an array of length 0.

getModifiers

public native int getModifiers()

Availability

New as of JDK 1.1

Returns

An integer that represents the modifier keywords used to declare this class.

Description

If this Class object represents a class or interface, this method returns an integer value that represents the
modifiers used to declare the class or interface. The Modifier class should be used to decode the returned value.

getName

public native String getName()

Returns

The fully qualified name of this class or interface.

Description

This method returns the fully qualified name of the type represented by this Class object.

If the object represents the class of an array, the method returns a String that contains as many left square
brackets as there are dimensions in the array, followed by a code that indicates the type of element contained in the
base array. Consider the following:

(new int [3][4][5]).getClass().getName()

This code returns "[[[I". The codes used to indicate the element type are as follows:

Code Type

[array

B byte

C char

d double

F float

I int

J long

L fully_qualified_class_name class or interface

S short

Z boolean

getResource

public URL getResource(String name)

Availability

New as of JDK 1.1

Parameters

name

A resource name.

Returns

A URL object that is connected to the specified resource or null if the resource cannot be found.

Description

This method finds a resource with the given name for this Class object and returns a URL object that is connected
to the resource. The rules for searching for a resource associated with a class are implemented by the
ClassLoader for the class; this method simply calls the getResource() method of the ClassLoader. If
this class does not have a ClassLoader (i.e., it is a system class), the method calls the
ClassLoader.getSystemResource() method.

getResourceAsStream

public InputStream getResourceAsStream(String name)

Availability

New as of JDK 1.1

Parameters

name

A resource name.

Returns

An InputStream object that is connected to the specified resource or null if the resource cannot be found.

Description

This method finds a resource with the given name for this Class object and returns an InputStream object that
is connected to the resource. The rules for searching for a resource associated with a class are implemented by the
ClassLoader for the class; this method simply calls the getResourceAsStream() method of the
ClassLoader. If this class does not have a ClassLoader (i.e., it is a system class), the method calls the
ClassLoader.getSystemResourceAsStream() method.

getSigners

public native Object[] getSigners()

Availability

New as of JDK 1.1

Returns

An array of Objects that represents the signers of this class.

Description

This method returns an array of objects that represents the digital signatures for this class.

getSuperclass

public native Class getSuperclass()

Returns

The superclass of this class or null if there is no superclass.

Description

If the Class object represents a class other than Object, this method returns the Class object that represents its
superclass. If the object represents an interface, the Object class, or a primitive type, the method returns null.

isArray

public native boolean isArray()

Availability

New as of JDK 1.1

Returns

true if this object describes an array type; otherwise false.

isAssignableFrom

public native boolean isAssignableFrom(Class cls)

Availability

New as of JDK 1.1

Parameters

cls

A Class object to be tested.

Returns

true if the type represented by cls is assignable to the type of this class: otherwise false.

Throws

NullPointerException

If cls is null.

Description

This method determines whether or not the type represented by cls is assignable to the type of this class. If this
class represents a class, this class must be the same as cls or a superclass of cls. If this class represents an
interface, this class must be the same as cls or a superinterface of cls. If this class represents a primitive type,
this class must be the same as cls.

isInstance

public native boolean isInstance(Object obj)

Availability

New as of JDK 1.1

Parameters

obj

An Object to be tested.

Returns

true if obj can be cast to the reference type specified by this class; otherwise false.

Throws

NullPointerException

If obj is null.

Description

This method determines whether or not the object represented by obj can be cast to the type of this class object
without causing a ClassCastException. This method is the dynamic equivalent of the instanceof
operator.

isInterface

public native boolean isInterface()

Returns

true if this object describes an interface; otherwise false.

isPrimitive

public native boolean isPrimitive()

Availability

New as of JDK 1.1

Returns

true if this object describes a primitive type; otherwise false.

newInstance

 public native Object newInstance () throws InstantiationException,
IllegalAccessException

Returns

A reference to a new instance of this class.

Throws

InstantiationException

If the Class object represents an interface or an abstract class.

IllegalAccessException

If the class or an initializer is not accessible.

Description

This method creates a new instance of this class by performing these steps:

1. It creates a new object of the class represented by the Class object.

2. It calls the constructor for the class that takes no arguments.

3. It returns a reference to the initialized object.

The newInstance() method is useful for creating an instance of a class that has been dynamically loaded using
the forName() method.

The reference returned by this method is usually cast to the type of object that is instantiated.

The newInstance() method can throw objects that are not instances of the classes it is declared to throw. If the
constructor invoked by newInstance() throws an exception, the exception is thrown by newInstance()
regardless of the class of the object.

toString

public String toString()

Returns

A String that contains the name of the class with either 'class' or 'interface' prepended as appropriate.

Overrides

Object.toString()

Description

This method returns a string representation of the Class object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals() Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Array, ClassLoader, ClassNotFoundException, Constructor, Field, IllegalAccessException,
InputStream InstantiationException, Method, Modifier, NoSuchFieldException,
NoSuchMethodException, Object, SecurityException, SecurityManager, URL

Character ClassCastException

Chapter 12
The java.lang Package

ClassCastException

Name

ClassCastException

Synopsis

Class Name:

java.lang.ClassCastException

Superclass:

java.lang.RuntimeException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A ClassCastException is thrown when there is an attempt to cast a reference to an object to an

inappropriate type.

Class Summary

public class java.lang.ClassCastException
 extends java.lang.RuntimeException {
 // Constructors
 public ClassCastException();
 public ClassCastException(String s);
}

Constructors

ClassCastException

public ClassCastException()

Description

This constructor creates a ClassCastException with no associated detail message.

public ClassCastException(String s)

Parameters

s

The detail message.

Description

This constructor creates a ClassCastException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, RuntimeException, Throwable

Class ClassCircularityError

Chapter 12
The java.lang Package

ClassCircularityError

Name

ClassCircularityError

Synopsis

Class Name:

java.lang.ClassCircularityError

Superclass:

java.lang.LinkageError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A ClassCircularityError is thrown when a circular reference among classes is detected during class

initialization.

Class Summary

public class java.lang.ClassCircularityError
 extends java.lang.LinkageError {
 // Constructors
 public ClassCircularityError();
 public ClassCircularityError(String s);
}

Constructors

ClassCircularityError

public ClassCircularityError()

Description

This constructor creates a ClassCircularityError with no associated detail message.

public ClassCircularityError(String s)

Parameters

s

The detail message.

Description

This constructor creates a ClassCircularityError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, LinkageError, Throwable

ClassCastException ClassFormatError

Chapter 12
The java.lang Package

ClassFormatError

Name

ClassFormatError

Synopsis

Class Name:

java.lang.ClassFormatError

Superclass:

java.lang.LinkageError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A ClassFormatError is thrown when an error is detected in the format of a file that contains a class

definition.

Class Summary

public class java.lang.ClassFormatError extends java.lang.LinkageError {
 // Constructors
 public ClassFormatError();
 public ClassFormatError(String s);
}

Constructors

ClassFormatError

public ClassFormatError()

Description

This constructor creates a ClassFormatError with no associated detail message.

public ClassFormatError(String s)

Parameters

s

The detail message.

Description

This constructor creates a ClassFormatError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, LinkageError, Throwable

ClassCircularityError ClassLoader

Chapter 12
The java.lang Package

ClassLoader

Name

ClassLoader

Synopsis

Class Name:

java.lang.ClassLoader

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The ClassLoader class provides a mechanism for Java to load classes over a network or from any source other than the
local filesystem. The default class-loading mechanism loads classes from files found relative to directories specified by the
CLASSPATH environment variable. This default mechanism does not use an instance of the ClassLoader class.

An application can implement another mechanism for loading classes by declaring a subclass of the abstract
ClassLoader class. A subclass of ClassLoader must override the loadClass() to define a class-loading policy.

This method implements any sort of security that is necessary for the class-loading mechanism. The other methods of
ClassLoader are final, so they cannot be overridden.

A ClassLoader object is typically used by calling its loadClass() method to explicitly load a top-level class, such as a
subclass of Applet. The ClassLoader that loads the class becomes associated with the class; it can be obtained by
calling the getClassLoader() method of the Class object that represents the class.

Once a class is loaded, it must be resolved before it can be used. Resolving a class means ensuring that all of the other classes
it references are loaded. In addition, all of the classes that they reference must be loaded, and so on, until all of the needed
classes have been loaded. Classes are resolved using the resolveClass() method of the ClassLoader object that
loaded the initial class. This means that when a ClassLoader object is explicitly used to load a class, the same
ClassLoader is used to load all of the classes that it references, directly or indirectly.

Classes loaded using a ClassLoader object may attempt to load additional classes without explicitly using a
ClassLoader object. They can do this by calling the Class class' forName() method. However, in such a situation, a
ClassLoader object is implicitly used. See the description of Class.forName() for more information.

Java identifies a class by a combination of its fully qualified name and the class loader that was used to load the class. If you
write a subclass of ClassLoader, it should not attempt to directly load local classes. Instead, it should call
findSystemClass(). A local class that is loaded directly by a ClassLoader is considered to be a different class than
the same class loaded by findSystemClass(). This can lead to having two copies of the same class loaded, which can
cause a number of inconsistencies. For example, the class' equals() method may decide that the same object is not equal
to itself.

Class Summary

public abstract class java.lang.ClassLoader extends java.lang.Object {
 // Constructors
 protected ClassLoader();
 // Class Methods
 public static final URL
 getSystemResource(String name); // New in 1.1
 public static final InputStream
 getSystemResourceAsStream(String name); // New in 1.1
 // Public Instance Methods
 public URL getResource(String name); // New in 1.1
 public InputStream getResourceAsStream(String name); // New in 1.1
 public Class loadClass(String name); // New in 1.1

 // Protected Instance Methods
 protected final Class defineClass(byte data[],
 int offset, int length); // Deprecated in 1.1
 protected final Class defineClass(String name,
 byte[] data, int offset, int length); // New in 1.1
 protected final Class findLoadedClass(String name); // New in 1.1
 protected final Class findSystemClass(String name);
 protected abstract Class loadClass(String name, boolean resolve);
 protected final void resolveClass(Class c);
 protected final void setSigners(Class cl,
 Object[] signers); // New in 1.1

}

Constructors

ClassLoader

protected ClassLoader()

Throws

SecurityException

If there is a SecurityManager object installed and its checkCreateClassLoader() method throws a
SecurityException when called by this constructor.

Description

Initializes a ClassLoader object. Because ClassLoader is an abstract class, only subclasses of the class can
access this constructor.

Class Methods

getSystemResource

public static final URL getSystemResource(String name)

Availability

New as of JDK 1.1

Parameters

name

A system resource name.

Returns

A URL object that is connected to the specified system resource or null if the resource cannot be found.

Description

This method finds a system resource with the given name and returns a URL object that is connected to the resource.
The resource name can be any system resource.

getSystemResourceAsStream

public static final InputStream getSystemResourceAsStream(String name)

Availability

New as of JDK 1.1

Parameters

name

A system resource name.

Returns

An InputStream object that is connected to the specified system resource or null if the resource cannot be found.

Description

This method finds a system resource with the given name and returns an InputStream object that is connected to
the resource. The resource name can be any system resource.

Public Instance Methods

getResource

public URL getResource(String name)

Availability

New as of JDK 1.1

Parameters

name

A resource name.

Returns

A URL object that is connected to the specified resource or null if the resource cannot be found.

Description

This method finds a resource with the given name and returns a URL object that is connected to the resource.

A resource is a file that contains data (e.g., sound, images, text) and it can be part of a package. The name of a
resource is a sequence of identifiers separated by "/". For example, a resource might have the name
help/american/logon.html . System resources are found on the host machine using the conventions of the host

implementation. For example, the "/" in the resource name may be treated as a path separator, with the entire resource
name treated as a relative path to be found under a directory in CLASSPATH.

The implementation of getResource() in ClassLoader simply returns null. A subclass can override this
method to provide more useful functionality.

getResourceAsStream

public InputStream getResourceAsStream(String name)

Availability

New as of JDK 1.1

Parameters

name

A resource name.

Returns

An InputStream object that is connected to the specified resource or null if the resource cannot be found.

Description

This method finds a resource with the given name and returns an InputStream object that is connected to the
resource.

A resource is a file that contains data (e.g., sound, images, text) and it can be part of a package. The name of a
resource is a sequence of identifiers separated by `/'. For example, a resource might have the name
help/american/logon.html. System resources are found on the host machine using the conventions of the host
implementation. For example, the `/' in the resource name may be treated as a path separator, with the entire resource
name treated as a relative path to be found under a directory in CLASSPATH.

The implementation of getResourceAsStream() in ClassLoader simply returns null. A subclass can
override this method to provide more useful functionality.

loadClass

public Class loadClass(String name) throws ClassNotFoundException

Availability

New as of JDK 1.1

Parameters

name

The name of the class to be returned. The class name should be qualified by its package name. The lack of an
explicit package name specifies that the class is part of the default package.

Returns

The Class object for the specified class.

Throws

ClassNotFoundException

If it cannot find a definition for the named class.

Description

This method loads the named class by calling loadClass(name, true).

Protected Instance Methods

defineClass

 protected final Class defineClass(byte data[], int offset, int length)

Availability

Deprecated as of JDK 1.1

Parameters

data

An array that contains the byte codes that define a class.

offset

The offset in the array of byte codes.

length

The number of byte codes in the array.

Returns

The newly created Class object.

Throws

ClassFormatError

If the data array does not constitute a valid class definition.

Description

This method creates a Class object from the byte codes that define the class. Before the class can be used, it must be
resolved. The method is intended to be called from an implementation of the loadClass() method.

Note that this method is deprecated as of Java 1.1. You should use the version of defineClass() that takes a
name parameter and is therefore more secure.

 protected final Class defineClass(String name, byte data[], int offset, int length)

Availability

New as of JDK 1.1

Parameters

name

The expected name of the class to be defined or null if it is not known. The class name should be qualified by
its package name. The lack of an explicit package name specifies that the class is part of the default package.

data

An array that contains the byte codes that define a class.

offset

The offset in the array of byte codes.

length

The number of byte codes in the array.

Returns

The newly created Class object.

Throws

ClassFormatError

If the data array does not constitute a valid class definition.

Description

This method creates a Class object from the byte codes that define the class. Before the class can be used, it must be
resolved. The method is intended to be called from an implementation of the loadClass() method.

findLoadedClass

 protected final Class findLoadedClass(String name)

Availability

New as of JDK 1.1

Parameters

name

The name of the class to be returned. The class name should be qualified by its package name. The lack of an
explicit package name specifies that the class is part of the default package.

Returns

The Class object for the specified loaded class or null if the class cannot be found.

Description

This method finds the specified class that has already been loaded.

findSystemClass

 protected final Class findSystemClass(String name) throws ClassNotFoundException

Parameters

name

The name of the class to be returned. The class name should be qualified by its package name. The lack of an
explicit package name specifies that the class is part of the default package.

Returns

The Class object for the specified system class.

Throws

ClassNotFoundException

If the default class-loading mechanism cannot find a definition for the class.

NoClassDefFoundError

If the default class-loading mechanism cannot find the class.

Description

This method finds and loads a system class if it has not already been loaded. A system class is a class that is loaded by
the default class-loading mechanism from the local filesystem. An implementation of the loadClass() method
typically calls this method to attempt to load a class from the locations specified by the CLASSPATH environment
variable.

loadClass

 protected abstract Class loadClass(String name, boolean resolve) throws
ClassNotFoundException

Parameters

name

The name of the class to be returned. The class name should be qualified by its package name. The lack of an
explicit package name specifies that the class is part of the default package.

resolve

Specifies whether or not the class should be resolved by calling the resolveClass() method.

Returns

The Class object for the specified class.

Throws

ClassNotFoundException

If it cannot find a definition for the named class.

Description

An implementation of this abstract method loads the named class and returns its Class object. It is permitted and
encouraged for an implementation to cache the classes it loads, rather than load one each time the method is called.
An implementation of this method should do at least the following:

1. Load the byte codes that comprise the class definition into a byte[].

2. Call the defineClass() method to create a Class object to represent the class definition.

3. If the resolve parameter is true, call the resolveClass() method to resolve the class.

If an implementation of this method caches the classes that it loads, it is recommended that it use an instance of the
java.util.Hashtable to implement the cache.

resolveClass

protected final void resolveClass(Class c)

Parameters

c

The Class object for the class to be resolved.

Description

This method resolves the given Class object. Resolving a class means ensuring that all of the other classes that the
Class object references are loaded. In addition, all of the classes that they reference must be loaded, and so on, until
all of the needed classes have been loaded.

The resolveClass() method should be called by an implementation of the loadClass() method when the
value of the loadClass() method's resolve parameter is true.

setSigners

 protected final void setSigners(Class cl, Object[] signers)

Availability

New as of JDK 1.1

Parameters

cl

The Class object for the class to be signed.

signers

An array of Objects that represents the signers of this class.

Description

This method specifies the objects that represent the digital signatures for this class.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Class, ClassNotFoundException, InputStream, NoClassDefFoundError, Object,
SecurityException, SecurityManager, URL

ClassFormatError ClassNotFoundException

Chapter 12
The java.lang Package

ClassNotFoundException

Name

ClassNotFoundException

Synopsis

Class Name:

java.lang.ClassNotFoundException

Superclass:

java.lang.Exception

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A ClassNotFoundException is thrown to indicate that a class to be loaded cannot be found.

Class Summary

public class java.lang.ClassNotFoundException extends java.lang.Exception {
 // Constructors
 public ClassNotFoundException();
 public ClassNotFoundException(String s);
}

Constructors

ClassNotFoundException

public ClassNotFoundException()

Description

This constructor creates a ClassNotFoundException with no associated detail message.

public ClassNotFoundException(String s)

Parameters

s

The detail message.

Description

This constructor creates a ClassNotFoundException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, Throwable

ClassLoader Cloneable

Chapter 12
The java.lang Package

Cloneable

Name

Cloneable

Synopsis

Interface Name:

java.lang.Cloneable

Super-interface:

None

Immediate Sub-interfaces:

java.text.CharacterIterator

Implemented by:

java.awt.GridBagConstraints, java.awt.Insets,

java.awt.image.ImageFilter,

java.text.BreakIterator,

java.text.Collator, java.text.DateFormat,

java.text.DateFormatSymbols,

java.text.DecimalFormatSymbols,

java.text.Format, java.text.NumberFormat,

java.util.BitSet, java.util.Calendar,

java.util.Date, java.util.Hashtable,

java.util.Locale, java.util.TimeZone,

java.util.Vector

Availability:

JDK 1.0 or later

Description

The Cloneable interface provides no functionality; it declares no methods or variables. This interface
is simply provided as a way of indicating that an object can be cloned (that is, copied). A class that is
declared as implementing this interface is assumed to have overridden the Object class'
implementation of clone() with an implementation that can successfully clone instances of the class.
The implementation of clone() that is provided by the Object class simply throws a
CloneNotSupportedException.

Interface Declaration

public interface java.lang.Cloneable {
}

See Also

BitSet, BreakIterator, Calendar, CloneNoSupportedException, Collator, Date,
DateFormat, DateFormatSymbols, DecimalFormatSymbols, Format, Hashtable,
Locale, NumberFormat, TimeZone, Vector

ClassNotFoundException CloneNotSupportedException

Chapter 12
The java.lang Package

CloneNotSupportedException

Name

CloneNotSupportedException

Synopsis

Class Name:

java.lang.CloneNotSupportedException

Superclass:

java.lang.Exception

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A CloneNotSupportedException is thrown when the clone() method has been called for an object that

does not implement the Cloneable interface and thus cannot be cloned.

Class Summary

public class java.lang.CloneNotSupportedException
 extends java.lang.Exception {
 // Constructors
 public CloneNotSupportedException();
 public CloneNotSupportedException(String s);
}

Constructors

CloneNotSupportedException

public CloneNotSupportedException()

Description

This constructor creates a CloneNotSupportedException with no associated detail message.

public CloneNotSupportedException(String s)

Parameters

s

The detail message.

Description

This constructor creates a CloneNotSupportedException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, Throwable

Cloneable Compiler

Chapter 12
The java.lang Package

Compiler

Name

Compiler

Synopsis

Class Name:

java.lang.Compiler

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Compiler class encapsulates a facility for compiling Java classes to native code. As provided by
Sun, the methods of this class do not actually do anything. However, if the system property
java.compiler has been defined and if the method System.loadLibrary() is able to load the
library named by the property, the methods of this class use the implementations provided in the library.

The Compiler class has no public constructors, so it cannot be instantiated.

Class Summary

public final class java.lang.Compiler extends java.lang.Object {
 // Class Methods
 public static native Object command(Object any);
 public static native boolean compileClass(Class clazz);
 public static native boolean compileClasses(String string);
 public static native void disable();
 public static native void enable();
}

Class Methods

command

public static native Object command(Object any)

Parameters

any

The permissible value and its meaning is determined by the compiler library.

Returns

A value determined by the compiler library, or null if no compiler library is loaded.

Description

This method directs the compiler to perform an operation specified by the given argument. The

available operations, if any, are determined by the compiler library.

compileClass

public static native boolean compileClass(Class clazz)

Parameters

clazz

The class to be compiled to native code.

Returns

true if the compilation succeeds, or false if the compilation fails or no compiler library is
loaded.

Description

This method requests the compiler to compile the specified class to native code.

compileClasses

public static native boolean compileClasses(String string)

Parameters

string

A string that specifies the names of the classes to be compiled.

Returns

true if the compilation succeeds or false if the compilation fails or no compiler library is
loaded.

Description

This method requests the compiler to compile all of the classes named in the string.

disable

public static native void disable()

Description

This method disables the compiler if one is loaded.

enable

public static native void enable()

Description

This method enables the compiler if one is loaded.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Object, System

CloneNotSupportedException Double

Chapter 12
The java.lang Package

Double

Name

Double

Synopsis

Class Name:

java.lang.Double

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Double class provides an object wrapper for a double value. This is useful when you need to
treat a double value as an object. For example, there are a number of utility methods that take a
reference to an Object as one of their arguments. You cannot specify a double value for one of these
arguments, but you can provide a reference to a Double object that encapsulates the double value.
Furthermore, as of JDK 1.1, the Double class is necessary to support the Reflection API and class
literals.

In Java, double values are represented using the IEEE 754 format. The Double class provides
constants for the three special values that are mandated by this format: POSITIVE_INFINITY,
NEGATIVE_INFINITY, and NaN (not-a-number).

The Double class also provides some utility methods, such as methods for determining whether a
double value is an infinity value or NaN, for converting double values to other primitive types, and
for converting a double to a String and vice versa.

Class Summary

public final class java.lang.Double extends java.lang.Number {
 // Constants
 public final static double MAX_VALUE;
 public final static double MIN_VALUE;
 public final static double NaN;
 public final static double NEGATIVE_INFINITY;
 public final static double POSITIVE_INFINITY;
 public final static Class TYPE; // New in 1.1
 // Constructors
 public Double(double value);
 public Double(String s);
 // Class Methods
 public static native long doubleToLongBits(double value);
 public static boolean isInfinite(double v);
 public static boolean isNaN(double v);
 public static native double longBitsToDouble(long bits);
 public static String toString(double d);
 public static Double valueOf(String s);
 // Instance Methods
 public byte byteValue(); // New in 1.1
 public double doubleValue();
 public boolean equals(Object obj);

 public float floatValue();
 public int hashCode();
 public int intValue();
 public boolean isInfinite();
 public boolean isNaN();
 public long longValue();
 public short shortValue(); // New in 1.1
 public String toString();
}

Constants

MAX_VALUE

 public static final double MAX_VALUE = 1.79769313486231570e+308

Description

The largest value that can be represented by a double.

MIN_VALUE

 public static final double MIN_VALUE = 4.94065645841246544e-324

Description

The smallest value that can be represented by a double.

NaN

public static final double NaN = 0.0 / 0.0

Description

This variable represents the value not-a-number (NaN), which is a special value produced by
double operations such as division of zero by zero. When NaN is one of the operands, most
arithmetic operations return NaN as the result.

Most comparison operators (<, <=, ==, >=, >) return false when one of their arguments is
NaN. The exception is !=, which returns true when one of its arguments is NaN.

NEGATIVE_INFINITY

public static final double NEGATIVE_INFINITY = -1.0 / 0.0

Description

This variable represents the value negative infinity, which is produced when a double operation
underflows or a negative double value is divided by zero. Negative infinity is by definition less
than any other double value.

POSITIVE_INFINITY

public static final double POSITIVE_INFINITY = 1.0 / 0.0

Description

This variable represents the value positive infinity, which is produced when a double operation
overflows or a positive double value is divided by zero. Positive infinity is by definition greater
than any other double value.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type double. It is always true that Double.TYPE ==
double.class.

Constructors

Double

public Double(double value)

Parameters

value

The double value to be encapsulated by this object.

Description

Creates a Double object with the specified double value.

public Double(String s) throws NumberFormatException

Parameters

s

The string to be made into a Double object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid double literal.

Description

Constructs a Double object with the value specified by the given string. The string must contain
a sequence of characters that forms a legal double literal.

Class Methods

doubleToLongBits

public static native long doubleToLongBits(double value)

Parameters

value

The double value to be converted.

Returns

The long value that contains the same sequence of bits as the representation of the given
double value.

Description

This method returns the long value that contains the same sequence of bits as the representation
of the given double value. The meaning of the bits in the result is defined by the IEEE 754
floating-point format: bit 63 is the sign bit, bits 62-52 are the exponent, and bits 51-0 are the
mantissa.

An argument of POSITIVE_INFINITY produces the result 0x7ff0000000000000L, an
argument of NEGATIVE_INFINITY produces the result 0xfff0000000000000L, and an
argument of NaN produces the result 0x7ff8000000000000L.

The value returned by this method can be converted back to the original double value by the
longBitsToDouble() method.

isInfinite

static public boolean isInfinite(double v)

Parameters

v

The double value to be tested.

Returns

true if the specified value is equal to POSITIVE_INFINITY or NEGATIVE_INFINITY;
otherwise false.

Description

This method determines whether or not the specified value is an infinity value.

isNaN

public static boolean isNaN(double v)

Parameters

v

The double value to be tested.

Returns

true if the specified value is equal to NaN; otherwise false.

Description

This method determines whether or not the specified value is NaN.

longBitsToDouble

public static native double longBitsToDouble(long bits)

Parameters

bits

The long value to be converted.

Returns

The double value whose representation is the same as the bits in the given long value.

Description

This method returns the double value whose representation is the same as the bits in the given
double value. The meaning of the bits in the long value is defined by the IEEE 754 floating-
point format: bit 63 is the sign bit, bits 62-52 are the exponent, and bits 51-0 are the mantissa. The
argument 0x7f80000000000000L produces the result POSITIVE_INFINITY and the
argument 0xff80000000000000L produces the result NEGATIVE_INFINITY. Arguments
in the ranges 0x7ff0000000000001L through 0x7fffffffffffffffL and

0xfff0000000000001L through 0xffffffffffffffffL all produce the result NaN.

Except for NaN values not normally used by Java, this method is the inverse of the
doubleToLongBits() method.

toString

public static String toString(double d)

Parameters

d

The double value to be converted.

Returns

A string representation of the given value.

Description

This method returns a String object that contains a representation of the given double value.

The values NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY, -0.0, and +0.0 are
represented by the strings "NaN", "--Infinity", "Infinity", "--0.0", and "0.0",
respectively.

For other values, the exact string representation depends on the value being converted. If the
absolute value of d is greater than or equal to 10^-3 or less than or equal to 10^7, it is converted to
a string with an optional minus sign (if the value is negative) followed by up to eight digits before
the decimal point, a decimal point, and the necessary number of digits after the decimal point (but
no trailing zero if there is more than one significant digit). There is always a minimum of one
digit after the decimal point.

Otherwise, the value is converted to a string with an optional minus sign (if the value is negative),
followed by a single digit, a decimal point, the necessary number of digits after the decimal point
(but no trailing zero if there is more than one significant digit), and the letter E followed by a plus
or a minus sign and a base 10 exponent of at least one digit. Again, there is always a minimum of
one digit after the decimal point.

Note that the definition of this method has changed as of JDK 1.1. Prior to that release, the

method provided a string representation that was equivalent to the %g format of the printf
function in C.

valueOf

 public static Double valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into a Double object.

Returns

The Double object constructed from the string.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid double literal.

Description

Constructs a Double object with the value specified by the given string. The string must contain
a sequence of characters that forms a legal double literal. This method ignores leading and
trailing white space in the string.

Instance Methods

byteValue

public byte byteValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a byte.

Overrides

Number.byteValue()

Description

This method returns the truncated value of this object as a byte. More specifically, if the value of
the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an byte, the method returns Byte.MAX_VALUE. If
the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by an
byte, the method returns Byte.MIN_VALUE. Otherwise, the value is rounded toward zero and
returned.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Double and it contains the same value as the
object this method is associated with. More specifically, the method returns true if the
doubleToLongBits() method returns the same result for the values of both objects.

This method produces a different result than the == operator when both values are NaN. In this
case, the == operator produces false, while this method returns true. By the same token, the
method also produces a different result when the two values are +0.0 and -0.0. In this case, the
== operator produces true, while this method returns false.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns this object value as a float. Rounding may occur.

hashCode

public int hashCode()

Returns

A hashcode based on the double value of the object.

Overrides

Object.hashCode()

Description

This method returns a hashcode computed from the value of this object. More specifically, if d is
the value of the object, and bitValue is defined as:

long bitValue = Double.doubleToLongBits(d)

then the hashcode returned by this method is computed as follows:

(int)(bitValue ^ (bitValue>>>32))

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the truncated value of this object as an int. More specifically, if the value of
the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an int, the method returns Integer.MAX_VALUE.
If the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by
an int, the method returns Integer.MIN_VALUE. Otherwise, the value is rounded toward
zero and returned.

isInfinite

public boolean isInfinite()

Returns

true if the value of this object is equal to POSITIVE_INFINITY or NEGATIVE_INFINITY;
otherwise false.

Description

This method determines whether or not the value of this object is an infinity value.

isNaN

public boolean isNaN()

Returns

true if the value of this object is equal to NaN; otherwise false.

Description

This method determines whether or not the value of this object is NaN.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the truncated value of this object as a long. More specifically, if the value of

the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value too large to be represented by a long, the method returns Long.MAX_VALUE. If the value
is NEGATIVE_INFINITY, or any other value too small to be represented by a long, the
method returns Long.MIN_VALUE. Otherwise, the value is rounded toward zero and returned.

shortValue

public short shortValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the truncated value of this object as a short. More specifically, if the value
of the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an short, the method returns Short.MAX_VALUE.
If the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by
an short, the method returns Short.MIN_VALUE. Otherwise, the value is rounded toward
zero and returned.

toString

public String toString()

Returns

A string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains a representation of the value of this object.

The values NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY, -0.0, and +0.0 are
represented by the strings "NaN", "--Infinity", "Infinity", "--0.0", and "0.0",
respectively.

For other values, the exact string representation depends on the value being converted. If the
absolute value of this object is greater than or equal to 10^-3 or less than or equal to 10^7, it is
converted to a string with an optional minus sign (if the value is negative) followed by up to eight
digits before the decimal point, a decimal point, and the necessary number of digits after the
decimal point (but no trailing zero if there is more than one significant digit). There is always a
minimum of one digit after the decimal point.

Otherwise, the value is converted to a string with an optional minus sign (if the value is negative),
followed by a single digit, a decimal point, the necessary number of digits after the decimal point
(but no trailing zero if there is more than one significant digit), and the letter E followed by a plus
or a minus sign and a base 10 exponent of at least one digit. Again, there is always a minimum of
one digit after the decimal point.

Note that the definition of this method has changed as of JDK 1.1. Prior to that release, the
method provided a string representation that was equivalent to the %g format of the printf
function in C.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Class, Float, Number, NumberFormatException, String

Compiler Error

Chapter 12
The java.lang Package

Error

Name

Error

Synopsis

Class Name:

java.lang.Error

Superclass:

java.lang.Throwable

Immediate Subclasses:

java.awt.AWTError, java.lang.LinkageError,

java.lang.ThreadDeath,

java.lang.VirtualMachineError

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Error class is the superclass of all of the standard error classes that can be thrown in Java. The subclasses
of Error are normally thrown by the class loader, the virtual machine, or other support code. Application-
specific code should not normally throw any of the standard error classes.

An Error or one of its subclasses is typically thrown when an unpredictable run-time error, such as running out
of memory, occurs. Because of the unpredictable nature of the events that cause errors to be thrown, a method
does not have to declare the Error class or any of its subclasses in the throws clause of its method declaration.

A Java program should not try to handle the standard error classes. Most of these error classes represent
nonrecoverable errors and as such, they cause the Java run-time system to print an error message and terminate
program execution.

Class Summary

public class java.lang.Error extends java.lang.Throwable {
 // Constructors
 public Error();
 public Error(String s);
}

Constructors

Error

public Error()

Description

This constructor creates an Error with no associated detail message.

public Error(String s)

Parameters

s

The detail message.

Description

This constructor creates an Error with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

LinkageError, ThreadDeath, Throwable, VirtualMachineError

Double Exception

Chapter 12
The java.lang Package

Exception

Name

Exception

Synopsis

Class Name:

java.lang.Exception

Superclass:

java.lang.Throwable

Immediate Subclasses:

java.awt.AWTException,

java.awt.datatransfer.UnsupportedFlavorException,

java.io.IOException,

java.lang.ClassNotFoundException,

java.lang.CloneNotSupportedException,

java.lang.IllegalAccessException,

java.lang.InstantiationException,

java.lang.InterruptedException,

java.lang.NoSuchMethodException,

java.lang.RuntimeException,

java.lang.reflect.InvocationTargetException,

java.text.FormatException,

java.util.TooManyListenersException,

java.util.zip.DataFormatException

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Exception class is the superclass of all of the standard exception classes that can be thrown in Java. The
subclasses of Exception represent exceptional conditions a normal Java program may want to handle. Any
explicitly thrown object in a Java program should be an instance of a subclass of Exception.

Many of the standard exceptions are also subclasses of RuntimeException. Run-time exceptions represent
run-time conditions that can occur generally in any Java method, so a method is not required to declare that it
throws any of the run-time exceptions. However, if a method can throw any of the other standard exceptions, it
must declare them in its throws clause.

A Java program should try to handle all of the standard exception classes, since they represent routine abnormal
conditions that should be anticipated and caught to prevent program termination.

Class Summary

public class java.lang.Exception extends java.lang.Throwable {
 // Constructors
 public Exception();
 public Exception(String s);
}

Constructors

Exception

public Exception()

Description

This constructor creates an Exception with no associated detail message.

public Exception(String s)

Parameters

s

The detail message.

Description

This constructor creates an Exception with the specified message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ClassNotFoundException, CloneNotSupportedException, DataFormatException,
FormatException, IllegalAccessException, InstantiationException,
InvocationTargetException, InterruptedException, NoSuchMethodException,
RuntimeException, Throwable, TooManyListenersException

Error ExceptionInInitializerError

Chapter 12
The java.lang Package

ExceptionInInitializerError

Name

ExceptionInInitializerError

Synopsis

Class Name:

java.lang.ExceptionInInitializerError

Superclass:

java.lang.LinkageError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A ExceptionInInitializerError is thrown when an unexpected exception has been thrown in a static

initializer.

Class Summary

public class java.lang.ExceptionInInitializer
 extends java.lang.LinkageError {
 // Constructors
 public ExceptionInInitializerError();
 public ExceptionInInitializerError(Throwable thrown);
 public ExceptionInInitializerError(String s);
 // Instance Methods
 public Throwable getException();
}

Constructors

ExceptionInInitializerError

public ExceptionInInitializerError()

Description

This constructor creates an ExceptionInInitializerError with no associated detail message.

public ExceptionInInitializerError(Throwable thrown)

Parameters

thrown

The exception that was thrown in the static initializer.

Description

This constructor creates an ExceptionInInitializerError that refers to the specified exception.

public ExceptionInInitializerError(String s)

Parameters

s

The detail message.

Description

This constructor creates an ExceptionInInitializerError with the specified detail message.

Instance Methods

getException

public Throwable getException()

Returns

The exception object that was thrown in the static initializer.

Description

This methods returns the exception that caused this error to be thrown.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, LinkageError, Throwable

Exception Float

Chapter 12
The java.lang Package

Float

Name

Float

Synopsis

Class Name:

java.lang.Float

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Float class provides an object wrapper for a float value. This is useful when you need to treat a
float value as an object. For example, there are a number of utility methods that take a reference to an
Object as one of their arguments. You cannot specify a float value for one of these arguments, but
you can provide a reference to a Float object that encapsulates the float value. Furthermore, as of
JDK 1.1, the Float class is necessary to support the Reflection API and class literals.

In Java, float values are represented using the IEEE 754 format. The Float class provides constants
for the three special values that are mandated by this format: POSITIVE_INFINITY,
NEGATIVE_INFINITY, and NaN (not-a-number).

The Float class also provides some utility methods, such as methods for determining whether a
floatx value is an infinity value or NaN, for converting float values to other primitive types, and for
converting a float to a String and vice versa.

Class Summary

public final class java.lang.Float extends java.lang.Number {
 // Constants
 public static final float MIN_VALUE;
 public static final float MAX_VALUE;
 public static final float NaN;
 public static final float NEGATIVE_INFINITY;
 public static final float POSITIVE_INFINITY;
 public final static Class TYPE; // New in 1.1
 // Constructors
 public Float(double value);
 public Float(float value);
 public Float(String s);
 // Class Methods
 public static native int floatToIntBits(float value);
 public static native float intBitsToFloat(int bits);
 public static boolean isInfinite(float v);
 public static boolean isNaN(float v);
 public static String toString(float f);
 public static Float valueOf(String s);
 // Instance Methods
 public byte byteValue(); // New in 1.1
 public double doubleValue();
 public boolean equals(Object obj);

 public float floatValue();
 public int hashCode();
 public int intValue();
 public boolean isInfinite();
 public boolean isNaN();
 public long longValue();
 public short shortValue(); // New in 1.1
 public String toString();
}

Constants

MAX_VALUE

public static final float MAX_VALUE = 3.40282346638528860e+38f

Description

The largest value that can be represented by a float.

MIN_VALUE

public static final float MIN_VALUE = 1.40129846432481707e-45f

Description

The smallest value that can be represented by a float.

NaN

public static final float NaN = 0.0f / 0.0f

Description

This variable represents the value NaN, a special value produced by float operations such as
division of zero by zero. When NaN is one of the operands, most arithmetic operations return
NaN as the result. Most comparison operators (<, <=, ==, >=, >) return false when one of their
arguments is NaN. The exception is !=, which returns true when one of its arguments is NaN.

NEGATIVE_INFINITY

public static final float NEGATIVE_INFINITY = -1.0f / 0.0f

Description

This variable represents the value negative infinity, which is produced when a float operation
underflows or a negative float value is divided by zero. Negative infinity is by definition less
than any other float value.

POSITIVE_INFINITY

public static final float POSITIVE_INFINITY = 1.0f / 0.0f

Description

This variable represents the value positive infinity, which is produced when a float operation
overflows or a positive float value is divided by zero. Positive infinity is by definition greater
than any other float value.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type float. It is always true that Float.TYPE ==
float.class.

Constructors

Float

public Float(double value)

Parameters

value

The double value to be encapsulated by this object.

Description

Creates a Float object with the specified double value. The value is rounded to float
precision.

public Float(float value)

Parameters

value

The float value to be encapsulated by this object.

Description

Creates a Float object with the specified float value.

public Float(String s) throws NumberFormatException

Parameters

s

The string to be made into a Float object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid float literal.

Description

Constructs a Float object with the value specified by the given string. The string must contain a
sequence of characters that forms a legal float literal.

Class Methods

floatToIntBits

public static native int floatToIntBits(float value)

Parameters

value

The float value to be converted.

Returns

The int value that contains the same sequence of bits as the representation of the given float
value.

Description

This method returns the int value that contains the same sequence of bits as the representation of
the given float value. The meaning of the bits in the result is defined by the IEEE 754 floating-
point format: bit 31 is the sign bit, bits 30-23 are the exponent, and bits 22-0 are the mantissa. An
argument of POSITIVE_INFINITY produces the result 0x7f800000, an argument of
NEGATIVE_INFINITY produces the result 0xff800000, and an argument of NaN produces
the result 0x7fc00000.

The value returned by this method can be converted back to the original float value by the
intBitsToFloat() method.

intBitsToFloat

public static native float intBitsToFloat(int bits)

Parameters

bits

The int value to be converted.

Returns

The float value whose representation is the same as the bits in the given int value.

Description

This method returns the float value whose representation is the same as the bits in the given
int value. The meaning of the bits in the int value is defined by the IEEE 754 floating-point
format: bit 31 is the sign bit, bits 30-23 are the exponent, and bits 22-0 are the mantissa. The
argument 0x7f800000 produces the result POSITIVE_INFINITY, and the argument
0xff800000 produces the result NEGATIVE_INFINITY. Arguments in the ranges
0x7f800001 through 0x7f8fffff and 0xff800001 through 0xff8fffffL all produce
the result NaN.

Except for NaN values not normally used by Java, this method is the inverse of the
floatToIntBits() method.

isInfinite

public static boolean isInfinite(float v)

Parameters

v

The float value to be tested.

Returns

true if the specified value is equal to POSITIVE_INFINITY or NEGATIVE_INFINITY;
otherwise false.

Description

This method determines whether or not the specified value is an infinity value.

isNaN

public static boolean isNaN(float v)

Parameters

v

The float value to be tested.

Returns

true if the specified value is equal to NaN; otherwise false.

Description

This method determines whether or not the specified value is NaN.

toString

public static String toString(float f)

Parameters

f

The float value to be converted.

Returns

A string representation of the given value.

Description

This method returns a String object that contains a representation of the given float value.

The values NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY, -0.0, and +0.0 are
represented by the strings "NaN", "--Infinity", "Infinity", "--0.0", and "0.0",
respectively.

For other values, the exact string representation depends on the value being converted. If the
absolute value of f is greater than or equal to 10^-3 or less than or equal to 10^7, it is converted to
a string with an optional minus sign (if the value is negative) followed by up to eight digits before
the decimal point, a decimal point, and the necessary number of digits after the decimal point (but
no trailing zero if there is more than one significant digit). There is always a minimum of one

digit after the decimal point.

Otherwise, the value is converted to a string with an optional minus sign (if the value is negative),
followed by a single digit, a decimal point, the necessary number of digits after the decimal point
(but no trailing zero if there is more than one significant digit), and the letter E followed by a plus
or a minus sign and a base 10 exponent of at least one digit. Again, there is always a minimum of
one digit after the decimal point.

Note that the definition of this method has changed as of JDK 1.1. Prior to that release, the
method provided a string representation that was equivalent to the %g format of the printf
function in C.

valueOf

 public static Float valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into a Float object.

Returns

The Float object constructed from the string.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid float literal.

Description

Constructs a Float object with the value specified by the given string. The string must contain a
sequence of characters that forms a legal float literal. This method ignores leading and trailing
whitespace in the string.

Instance Methods

byteValue

public byte byteValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a byte.

Overrides

Number.byteValue()

Description

This method returns the truncated value of this object as a byte. More specifically, if the value of
the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an byte, the method returns Byte.MAX_VALUE. If
the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by an
byte, the method returns Byte.MIN_VALUE. Otherwise, the value is rounded toward zero and
returned.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Float and it contains the same value as the
object this method is associated with. More specifically, the method returns true if the
floatToIntBits() method returns the same result for the values of both objects.

This method produces a different result than the == operator when both values are NaN. In this
case, the == operator produces false, while this method returns true. By the same token, the
method also produces a different result when the two values are +0.0 and -0.0. In this case, the
== operator produces true, while this method returns false.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this object as a float.

hashCode

public int hashCode()

Returns

A hashcode based on the float value of the object.

Overrides

Object.hashCode()

Description

This method returns a hashcode computed from the value of this object. More specifically, if f is
the value of the object, this method returns Float.floatToIntBits(f).

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the truncated value of this object as an int. More specifically, if the value of
the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an int, the method returns Integer.MAX_VALUE.
If the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by

an int, the method returns Integer.MIN_VALUE. Otherwise, the value is rounded toward
zero and returned.

isInfinite

public boolean isInfinite(float v)

Returns

true if the value of this object is equal to POSITIVE_INFINITY or NEGATIVE_INFINITY;
otherwise false.

Description

This method determines whether or not the value of this object is an infinity value.

isNaN

public boolean isNaN()

Returns

true if the value of this object is equal to NaN; otherwise false.

Description

This method determines whether or not the value of this object is NaN.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the truncated value of this object as a long. More specifically, if the value of
the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by a long, the method returns Long.MAX_VALUE. If
the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by a
long, the method returns Long.MIN_VALUE. Otherwise, the value is rounded toward zero and
returned.

shortValue

public short shortValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the truncated value of this object as a short. More specifically, if the value
of the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an short, the method returns Short.MAX_VALUE.
If the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by
an short, the method returns Short.MIN_VALUE. Otherwise, the value is rounded toward
zero and returned.

toString

public String toString()

Returns

A string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains a representation of the value of this object.

The values NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY, -0.0, and +0.0 are
represented by the strings "NaN", "--Infinity", "Infinity", "--0.0", and "0.0",
respectively.

For other values, the exact string representation depends on the value being converted. If the
absolute value of this object is greater than or equal to 10^-3 or less than or equal to 10^7, it is
converted to a string with an optional minus sign (if the value is negative) followed by up to eight
digits before the decimal point, a decimal point, and the necessary number of digits after the
decimal point (but no trailing zero if there is more than one significant digit). There is always a
minimum of one digit after the decimal point.

Otherwise, the value is converted to a string with an optional minus sign (if the value is negative),
followed by a single digit, a decimal point, the necessary number of digits after the decimal point
(but no trailing zero if there is more than one significant digit), and the letter E followed by a plus
or a minus sign and a base 10 exponent of at least one digit. Again, there is always a minimum of
one digit after the decimal point.

Note that the definition of this method has changed as of JDK 1.1. Prior to that release, the
method provided a string representation that was equivalent to the %g format of the printf
function in C.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Class, Double, Number, NumberFormatException, String

ExceptionInInitializerError IllegalAccessError

Chapter 12
The java.lang Package

IllegalAccessError

Name

IllegalAccessError

Synopsis

Class Name:

java.lang.IllegalAccessError

Superclass:

java.lang.IncompatibleClassChangeError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An IllegalAccessError is thrown when a class attempts to access a field or call a method it does not have

access to. Usually this error is caught by the compiler; this error can occur at run-time if the definition of a class
changes after the class that references it was last compiled.

Class Summary

public class java.lang.IllegalAccessError
 extends java.lang.IncompatibleClassChangeError {
 // Constructors
 public IllegalAccessError();
 public IllegalAccessError(String s);
}

Constructors

IllegalAccessError

public IllegalAccessError()

Description

This constructor creates an IllegalAccessError with no associated detail message.

public IllegalAccessError(String s)

Parameters

s

The detail message.

Description

This constructor creates an IllegalAccessError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, IncompatibleClassChangeError, Throwable

Float IllegalAccessException

Chapter 12
The java.lang Package

IllegalAccessException

Name

IllegalAccessException

Synopsis

Class Name:

java.lang.IllegalAccessException

Superclass:

java.lang.Exception

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An IllegalAccessException is thrown when a program tries to dynamically load a class (i.e., uses the

forName() method of the Class class, or the findSystemClass() or the loadClass() method of the
ClassLoader class) and the currently executing method does not have access to the specified class because it
is in another package and not public. This exception is also thrown when a program tries to create an instance
of a class (i.e., uses the newInstance() method of the Class class) that does not have a zero-argument
constructor accessible to the caller.

Class Summary

public class java.lang.IllegalAccessException extends java.lang.Exception {
 // Constructors
 public IllegalAccessException();
 public IllegalAccessException(String s);
}

Constructors

IllegalAccessException

public IllegalAccessException()

Description

This constructor creates an IllegalAccessException with no associated detail message.

public IllegalAccessException(String s)

Parameters

s

The detail message.

Description

This constructor creates an IllegalAccessException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Class, ClassLoader, Exception, Throwable

IllegalAccessError IllegalArgumentException

Chapter 12
The java.lang Package

IllegalArgumentException

Name

IllegalArgumentException

Synopsis

Class Name:

java.lang.IllegalArgumentException

Superclass:

java.lang.RuntimeException

Immediate Subclasses:

java.lang.IllegalThreadStateException, java.lang.NumberFormatException

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An IllegalArgumentException is thrown to indicate that an illegal argument has been passed to a

method.

Class Summary

public class java.lang.IllegalArgumentException
 extends java.lang.RuntimeException {
 // Constructors
 public IllegalArgumentException();
 public IllegalArgumentException(String s);
}

Constructors

IllegalArgumentException

public IllegalArgumentException()

Description

This constructor creates an IllegalArgumentException with no associated detail message.

public IllegalArgumentException(String s)

Parameters

s

The detail message.

Description

This constructor creates an IllegalArgumentException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IllegalThreadStateException, NumberFormatException, RuntimeException,
Throwable

IllegalAccessException IllegalMonitorStateException

Chapter 12
The java.lang Package

IllegalMonitorStateException

Name

IllegalMonitorStateException

Synopsis

Class Name:

java.lang.IllegalMonitorStateException

Superclass:

java.lang.RuntimeException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An IllegalMonitorStateException is thrown when an object's wait(), notify(), or

notifyAll() method is called from a thread that does not own the object's monitor.

Class Summary

public class java.lang.IllegalMonitorStateException
 extends java.lang.RuntimeException {
 // Constructors
 public IllegalMonitorStateException();
 public IllegalMonitorStateException(String s);
}

Constructors

IllegalMonitorStateException

public IllegalMonitorStateException()

Description

This constructor creates an IllegalMonitorStateException with no associated detail message.

public IllegalMonitorStateException(String s)

Parameters

s

The detail message.

Description

This constructor creates an IllegalMonitorStateException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, Object, RuntimeException, Throwable

IllegalArgumentException IllegalStateException

Chapter 12
The java.lang Package

IllegalStateException

Name

IllegalStateException

Synopsis

Class Name:

java.lang.IllegalStateException

Superclass:

java.lang.RuntimeException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

An IllegalStateException is thrown to indicate that a method has been invoked when the run-time

environment is in an inappropriate state for the requested operation.

Class Summary

public class java.lang.IllegalStateException
 extends java.lang.RuntimeException {
 // Constructors
 public IllegalStateException();
 public IllegalStateException(String s);
}

Constructors

IllegalStateException

public IllegalStateException()

Description

This constructor creates an IllegalStateException with no associated detail message.

public IllegalStateException(String s)

Parameters

s

The detail message.

Description

This constructor creates an IllegalStateException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, Object, RuntimeException, Throwable

IllegalMonitorStateException IllegalThreadStateException

Chapter 12
The java.lang Package

IllegalThreadStateException

Name

IllegalThreadStateException

Synopsis

Class Name:

java.lang.IllegalThreadStateException

Superclass:

java.lang.IllegalArgumentException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An IllegalThreadStateException is thrown to indicate an attempt to perform an operation on a thread

that is not legal for the thread's current state, such as attempting to resume a dead thread.

Class Summary

public class java.lang.IllegalThreadStateException
 extends java.lang.IllegalArgumentException {
 // Constructors
 public IllegalThreadStateException();
 public IllegalThreadStateException(String s);
}

Constructors

IllegalThreadStateException

public IllegalThreadStateException()

Description

This constructor creates an IllegalThreadStateException with no associated detail message.

public IllegalThreadStateException(String s)

Parameters

s

The detail message.

Description

This constructor creates an IllegalThreadStateException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IllegalArgumentException, RuntimeException, Thread, Throwable

IllegalStateException IncompatibleClassChangeError

Chapter 12
The java.lang Package

IncompatibleClassChangeError

Name

IncompatibleClassChangeError

Synopsis

Class Name:

java.lang.IncompatibleClassChangeError

Superclass:

java.lang.LinkageError

Immediate Subclasses:

java.lang.AbstractMethodError,

java.lang.IllegalAccessError,

java.lang.InstantiationError,

java.lang.NoSuchFieldError,

java.lang.NoSuchMethodError

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An IncompatibleClassChangeError or one of its subclasses is thrown when a class refers to another
class in an incompatible way. This situation occurs when the current definition of the referenced class is
incompatible with the definition of the class that was found when the referring class was compiled. For example,
say class A refers to a method in class B. Then, after class A is compiled, the method is removed from class B.
When class A is loaded, the run-time system discovers that the method in class B no longer exists and throws an
error.

Class Summary

public class java.lang.IncompatibleClassChangeError
 extends java.lang.LinkageError {
 // Constructors
 public IncompatibleClassChangeError();
 public IncompatibleClassChangeError(String s);
}

Constructors

IncompatibleClassChangeError

public IncompatibleClassChangeError()

Description

This constructor creates an IncompatibleClassChangeError with no associated detail message.

public IncompatibleClassChangeError(String s)

Parameters

s

The detail message.

Description

This constructor creates an IncompatibleClassChangeError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

AbstractMethodError, Error, IllegalAccessError, InstantiationError, LinkageError,
NoSuchFieldError, NoSuchMethodError, Throwable

IllegalThreadStateException IndexOutOfBoundsException

Chapter 12
The java.lang Package

IndexOutOfBoundsException

Name

IndexOutOfBoundsException

Synopsis

Class Name:

java.lang.IndexOutOfBoundsException

Superclass:

java.lang.RuntimeException

Immediate Subclasses:

java.lang.ArrayIndexOutOfBoundsException,
java.lang.StringIndexOutOfBoundsException

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The appropriate subclass of IndexOutOfBoundsException is thrown when an array or string index is out
of bounds.

Class Summary

public class java.lang.IndexOutOfBoundsException
 extends java.lang.RuntimeException {
 // Constructors
 public IndexOutOfBoundsException();
 public IndexOutOfBoundsException(String s);
}

Constructors

IndexOutOfBoundsException

public IndexOutOfBoundsException()

Description

This constructor creates an IndexOutOfBoundsException with no associated detail message.

public IndexOutOfBoundsException(String s)

Parameters

s

The detail message.

Description

This constructor creates an IndexOutOfBoundsException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ArrayIndexOutOfBoundsException, Exception, RuntimeException,
StringIndexOutOfBoundsException, Throwable

IncompatibleClassChangeError Integer

Chapter 12
The java.lang Package

Integer

Name

Integer

Synopsis

Class Name:

java.lang.Integer

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Integer class provides an object wrapper for an int value. This is useful when you need to treat an int value
as an object. For example, there are a number of utility methods that take a reference to an Object as one of their
arguments. You cannot specify an int value for one of these arguments, but you can provide a reference to an
Integer object that encapsulates the int value. Also, as of JDK 1.1, the Integer class is necessary to support the

Reflection API and class literals.

The Integer class also provides a number of utility methods for converting int values to other primitive types and
for converting int values to strings and vice versa.

Class Summary

public final class java.lang.Integer extends java.lang.Number {
 // Constants
 public static final int MAX_VALUE;
 public static final int MIN_VALUE;
 public final static Class TYPE; // New in 1.1
 // Constructors
 public Integer(int value);
 public Integer(String s);
 // Class Methods
 public static Integer decode(String nm) // New in 1.1
 public static Integer getInteger(String nm);
 public static Integer getInteger(String nm, int val);
 public static Integer getInteger(String nm, Integer val);
 public static int parseInt(String s);
 public static int parseInt(String s, int radix;
 public static String toBinaryString(long i);
 public static String toHexString(long i);
 public static String toOctalString(long i);
 public static String toString(int i);
 public static String toString(int i, int radix);
 public static Integer valueOf(String s);
 public static Integer valueOf(String s, int radix);
 // Instance Methods
 public byte byteValue(); // New in 1.1
 public double doubleValue();
 public boolean equals(Object obj);
 public float floatValue();
 public int hashCode();
 public int intValue();
 public long longValue();
 public short shortValue(); // New in 1.1
 public String toString();
}

Constants

MAX_VALUE

public static final int MAX_VALUE = 0x7fffffff // 2147483647

Description

The largest value that can be represented by an int.

MIN_VALUE

public static final int MIN_VALUE = 0x80000000 // -2147483648

Description

The smallest value that can be represented by an int.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type int. It is always true that Integer.TYPE == int.class.

Constructors

Integer

public Integer(int value)

Parameters

value

The int value to be encapsulated by this object.

Description

Creates an Integer object with the specified int value.

public Integer(String s) throws NumberFormatException

Parameters

s

The string to be made into an Integer object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid int literal.

Description

Constructs an Integer object with the value specified by the given string. The string should consist of one or
more digit characters. The digit characters can be preceded by a single `-' character. If the string contains any
other characters, the constructor throws a NumberFormatException.

Class Methods

decode

public static Integer decode(String nm)

Availability

New as of JDK 1.1

Parameters

nm

A String representation of the value to be encapsulated by an Integer object. If the string begins
with # or 0x, it is a radix 16 representation of the value. If the string begins with 0, it is a radix 8
representation of the value. Otherwise, it is assumed to be a radix 10 representation of the value.

Returns

An Integer object that encapsulates the given value.

Throws

NumberFormatException

If the String contains any nondigit characters other than a leading minus sign or the value represented
by the String is less than Integer.MIN_VALUE or greater than Integer.MAX_VALUE.

Description

This method returns an Integer object that encapsulates the given value.

getInteger

public static Integer getInteger(String nm)

Parameters

nm

The name of a system property.

Returns

The value of the system property as an Integer object, or an Integer object with the value 0 if the named
property does not exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as an Integer object. The method
obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is
parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's parsed
as a decimal integer.

public static Integer getInteger(String nm, int val)

Parameters

nm

The name of a system property.

val

A default int value for the property.

Returns

The value of the system property as an Integer object, or an Integer object with the value val if the
named property does not exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as an Integer object. The method

obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is
parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's parsed
as a decimal integer.

public static Integer getInteger(String nm, Integer val)

Parameters

nm

The name of a system property.

val

A default Integer value for the property.

Returns

The value of the system property as an Integer object, or the Integer object val if the named property
does not exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as an Integer object. The method
obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is
parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's as a
decimal integer.

parseInt

 public static int parseInt(String s) throws NumberFormatException

Parameters

s

The String to be converted to an int value.

Returns

The numeric value of the integer represented by the String object.

Throws

NumberFormatException

If the String does not contain a valid representation of an integer.

Description

This method returns the numeric value of the integer represented by the contents of the given String object.
The String must contain only decimal digits, except that the first character may be a minus sign.

 public static int parseInt(String s, int radix) throws NumberFormatException

Parameters

s

The String to be converted to an int value.

radix

The radix used in interpreting the characters in the String as digits. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX. If radix is in the range 2 through 10, only
characters for which the Character.isDigit() method returns true are considered to be valid
digits. If radix is in the range 11 through 36, characters in the ranges `A' through `Z' and `a' through `z'
may be considered valid digits.

Returns

The numeric value of the integer represented by the String object in the specified radix.

Throws

NumberFormatException

If the String does not contain a valid representation of an integer, or radix is not in the appropriate
range.

Description

This method returns the numeric value of the integer represented by the contents of the given String object in
the specified radix. The String must contain only valid digits of the specified radix, except that the first
character may be a minus sign. The digits are parsed in the specified radix to produce the numeric value.

toBinaryString

public static String toBinaryString(int value)

Parameters

value

The int value to be converted to a string.

Returns

A string that contains the binary representation of the given value.

Description

This method returns a String object that contains the representation of the given value as an unsigned binary
number. To convert the given value to an unsigned quantity, the method simply uses the value as if it were not
negative. In other words, if the given value is negative, the method adds 2^32 to it. Otherwise the value is used
as it is.

The string returned by this method contains a sequence of one or more `0' and `1' characters. The method returns
"0" if its argument is 0. Otherwise, the string returned by this method begins with `1'.

toHexString

public static String toHexString(int value)

Parameters

value

The int value to be converted to a string.

Returns

A string that contains the hexadecimal representation of the given value.

Description

This method returns a String object that contains the representation of the given value as an unsigned
hexadecimal number. To convert the given value to an unsigned quantity, the method simply uses the value as if
it were not negative. In other words, if the given value is negative, the method adds 2^32 to it. Otherwise the
value is used as it is.

The string returned by this method contains a sequence of one or more of the characters `0', `1', `2', `3', `4', `5',
`6', `7', `8', `9', `a', `b', `c', `d', `e', and `f'. The method returns "0" if its argument is 0. Otherwise, the string
returned by this method does not begin with `0'.

To produce a string that contains upper- instead of lowercase letters, use the String.toUpperCase()
method.

toOctalString

public static String toOctalString(int value)

Parameters

value

The int value to be converted to a string.

Returns

A string that contains the octal representation of the given value.

Description

This method returns a String object that contains a representation of the given value as an unsigned octal
number. To convert the given value to an unsigned quantity, the method simply uses the value as if it were not
negative. In other words, if the given value is negative, the method adds 2^32 to it. Otherwise the value is used
as it is.

The string returned by this method contains a sequence of one or more of the characters `0', `1', `2', `3', `4', `5',
`6', and `7'. The method returns "0" if its argument is 0. Otherwise, the string returned by this method does not
begin with `0'.

toString

public static String toString(int i)

Parameters

i

The int value to be converted to a string.

Returns

The string representation of the given value.

Description

This method returns a String object that contains the decimal representation of the given value.

This method returns a string that begins with `-' if the given value is negative. The rest of the string is a
sequence of one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if
its argument is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

public static String toString(int i, int radix)

Parameters

i

The int value to be converted to a string.

radix

The radix used in converting the value to a string. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The string representation of the given value in the specified radix.

Description

This method returns a String object that contains the representation of the given value in the specified radix.

This method returns a string that begins with `-' if the given value is negative. The rest of the string is a
sequence of one or more characters that represent the magnitude of the given value. The characters that can
appear in the sequence are determined by the value of radix. If N is the value of radix, the first N characters
on the following line can appear in the sequence:

0123456789abcdefghijklmnopqrstuvwxyz

The method does not verify that radix is in the proper range. If radix is less than
Character.MIN_RADIX or greater than Character.MAX_RADIX, the value 10 is used instead of the
given value.

This method returns "0" if its argument is 0. Otherwise, the string returned by this method does not begin with
"0" or "-0".

valueOf

 public static Integer valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into an Integer object.

Returns

The Integer object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of an integer.

Description

Constructs an Integer object with the value specified by the given string. The string should consist of one or
more digit characters. The digit characters can be preceded by a single `-' character. If the string contains any
other characters, the method throws a NumberFormatException.

 public static Integer valueOf(String s, int radix) throws NumberFormatException

Parameters

s

The string to be made into an Integer object.

radix

The radix used in converting the string to a value. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The Integer object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of an integer or radix is not in the appropriate
range.

Description

Constructs an Integer object with the value specified by the given string in the specified radix. The string
should consist of one or more digit characters or characters in the range `A' to `Z' or `a' to `z' that are considered

digits in the given radix. The digit characters can be preceded by a single `-' character. If the string contains any
other characters, the method throws a NumberFormatException.

Instance Methods

byteValue

public byte byteValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a byte.

Overrides

Number.byteValue()

Description

This method returns the value of this object as a byte. The high order bits of the value are discarded.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Integer and it contains the same value as the object this
method is associated with.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this object as a float. Rounding may occur.

hashCode

public int hashCode()

Returns

A hashcode based on the int value of the object.

Overrides

Object.hashCode()

Description

This method returns a hashcode computed from the value of this object.

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the value of this object as an int.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the value of this object as a long.

shortValue

public short shortValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the value of this object as a short. The high order bits of the value are discarded.

toString

public String toString()

Returns

The string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains the decimal representation of the value of this object.

This method returns a string that begins with `-' if the value is negative. The rest of the string is a sequence of
one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if the value of
the object is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Character, Class, Long, Number, NumberFormatException, String, System

IndexOutOfBoundsException InstantiationError

Chapter 12
The java.lang Package

InstantiationError

Name

InstantiationError

Synopsis

Class Name:

java.lang.InstantiationError

Superclass:

java.lang.IncompatibleClassChangeError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An InstantiationError is thrown in response to an attempt to instantiate an abstract class or interface.

Usually this error is caught by the compiler; this error can occur at run-time if the definition of a class is changed
after the class that references it was last compiled.

Class Summary

public class java.lang.InstantiationError
 extends java.lang.IncompatibleClassChangeError {
 // Constructors
 public InstantiationError();
 public InstantiationError(String s);
}

Constructors

InstantiationError

public InstantiationError()

Description

This constructor creates an InstantiationError with no associated detail message.

public InstantiationError(String s)

Parameters

s

The detail message.

Description

This constructor creates an InstantiationError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, IncompatibleClassChangeError, Throwable

Integer InstantiationException

Chapter 12
The java.lang Package

InstantiationException

Name

InstantiationException

Synopsis

Class Name:

java.lang.InstantiationException

Superclass:

java.lang.Exception

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An InstantiationException is thrown in response to an attempt to instantiate an abstract class or an

interface using the newInstance() method of the Class class.

Class Summary

public class java.lang.InstantiationException extends java.lang.Exception {
 // Constructors
 public InstantiationException();
 public InstantiationException(String s);
}

Constructors

InstantiationException

public InstantiationException()

Description

This constructor creates an InstantiationException with no associated detail message.

public InstantiationException(String s)

Parameters

s

The detail message.

Description

This constructor creates an InstantiationException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Class, Exception, Throwable

InstantiationError InternalError

Chapter 12
The java.lang Package

InternalError

Name

InternalError

Synopsis

Class Name:

java.lang.InternalError

Superclass:

java.lang.VirtualMachineError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An InternalError is thrown to signal an internal error within the virtual machine.

Class Summary

public class java.lang.InternalError extends java.lang.VirtualMachineError {
 // Constructors
 public InternalError();
 public InternalError(String s);
}

Constructors

InternalError

public InternalError()

Description

This constructor creates an InternalError with no associated detail message.

public InternalError(String s)

Parameters

s

The detail message.

Description

This constructor creates an InternalError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, Throwable, VirtualMachineError

InstantiationException InterruptedException

Chapter 12
The java.lang Package

InterruptedException

Name

InterruptedException

Synopsis

Class Name:

java.lang.InterruptedException

Superclass:

java.lang.Exception

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An InterruptedException is thrown to signal that a thread that is sleeping, waiting, or otherwise paused,

has been interrupted by another thread.

Class Summary

public class java.lang.InterruptedException extends java.lang.Exception {
 // Constructors
 public InterruptedException();
 public InterruptedException(String s);
}

Constructors

InterruptedException

public InterruptedException()

Description

This constructor creates an InterruptedException with no associated detail message.

public InterruptedException(String s)

Parameters

s

The detail message.

Description

This constructor creates an InterruptedException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, Thread, Throwable

InternalError LinkageError

Chapter 12
The java.lang Package

LinkageError

Name

LinkageError

Synopsis

Class Name:

java.lang.LinkageError

Superclass:

java.lang.Error

Immediate Subclasses:

java.lang.ClassCircularityError,

java.lang.ClassFormatError,

java.lang.ExceptionInInitializerError,

java.lang.IncompatibleClassChangeError,

java.lang.NoClassDefFoundError,

java.lang.UnsatisfiedLinkError,

java.lang.VerifyError

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The appropriate subclass of LinkageError is thrown when there is a problem resolving a reference to a class.
Reasons for this may include a difficulty in finding the definition of the class or an incompatibility between the
current definition and the expected definition of the class.

Class Summary

public class java.lang.LinkageError extends java.lang.Error {
 // Constructors
 public LinkageError();
 public LinkageError(String s);
}

Constructors

LinkageError

public LinkageError()

Description

This constructor creates a LinkageError with no associated detail message.

public LinkageError(String s)

Parameters

s

The detail message.

Description

This constructor create a LinkageError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ClassCircularityError, ClassFormatError, Error, ExceptionInInitializerError,
IncompatibleClassChangeError, NoClassDefFoundError, Throwable,
UnsatisfiedLinkError, VerifyError

InterruptedException Long

Chapter 12
The java.lang Package

Long

Name

Long

Synopsis

Class Name:

java.lang.Long

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Long class provides an object wrapper for a long value. This is useful when you need to treat a long value as
an object. For example, there are a number of utility methods that take a reference to an Object as one of their
arguments. You cannot specify a long value for one of these arguments, but you can provide a reference to a Long

object that encapsulates the long value. Furthermore, as of JDK 1.1, the Long class is necessary to support the
Reflection API and class literals.

The Long class also provides a number of utility methods for converting long values to other primitive types and
for converting long values to strings and vice versa.

Class Summary

public final class java.lang.Long extends java.lang.Number {
 // Constants
 public static final long MIN_VALUE;
 public static final long MAX_VALUE;
 public final static Class TYPE; // New in 1.1
 // Constructors
 public Long(long value);
 public Long(String s);
 // Class Methods
 public static Long getLong(String nm);
 public static Long getLong(String nm, long val);
 public static Long getLong(String nm, Long val);
 public static long parseLong(String s);
 public static long parseLong(String s, int radix);
 public static String toBinaryString(long i);
 public static String toHexString(long i);
 public static String toOctalString(long i);
 public static String toString(long i);
 public static String toString(long i, int radix);
 public static Long valueOf(String s);
 public static Long valueOf(String s, int radix);
 // Instance Methods
 public byte byteValue(); // New in 1.1
 public double doubleValue();
 public boolean equals(Object obj);
 public float floatValue();
 public int hashCode();
 public int intValue();
 public long longValue();
 public short shortValue(); // New in 1.1
 public String toString();
}

Constants

MAX_VALUE

public static final long MAX_VALUE = 0x7fffffffffffffffL

Description

The largest value that can be represented by a long.

MIN_VALUE

public static final long MIN_VALUE = 0x8000000000000000L

Description

The smallest value that can be represented by a long.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type long. It is always true that Long.TYPE == long.class.

Constructors

Long

public Long(long value)

Parameters

value

The long value to be encapsulated by this object.

Description

Creates a Long object with the specified long value.

public Long(String s) throws NumberFormatException

Parameters

s

The string to be made into a Long object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid long literal.

Description

Constructs a Long object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the constructor throws a NumberFormatException.

Class Methods

getLong

public static Integer getLong(String nm)

Parameters

nm

The name of a system property.

Returns

The value of the system property as a Long object or a Long object with the value 0 if the named property
does not exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as a Long object. The method
obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is
parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's parsed
as a decimal integer.

public static Long getLong(String nm, long val)

Parameters

nm

The name of a system property.

val

A default value for the property.

Returns

The value of the system property as a Long object or a Long object with the value val if the named property
does not exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as a Long object. The method
obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is
parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's parsed
as a decimal integer.

public static Long getLong(String nm, Long val)

Parameters

nm

The name of a system property.

val

A default value for the property.

Returns

The value of the system property as a Long object, or the Long object val if the named property does not
exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as a Long object. The method
obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is

parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's parsed
as a decimal integer.

parseLong

 public static long parseLong(String s) throws NumberFormatException

Parameters

s

The String to be converted to a long value.

Returns

The numeric value of the long represented by the String object.

Throws

NumberFormatException

If the String does not contain a valid representation of a long value.

Description

This method returns the numeric value of the long represented by the contents of the given String object.
The String must contain only decimal digits, except that the first character may be a minus sign.

 public static long parseLong(String s, int radix) throws NumberFormatException

Parameters

s

The String to be converted to a long value.

radix

The radix used in interpreting the characters in the String as digits. It must be in the range
Character.MIN_RADIX to Character.MAX_RADIX. If radix is in the range 2 through 10,
only characters for which the Character.isDigit() method returns true are considered valid
digits. If radix is in the range 11 through 36, characters in the ranges `A' through `Z' and `a' through
`z' may be considered valid digits.

Returns

The numeric value of the long represented by the String object in the specified radix.

Throws

NumberFormatException

If the String does not contain a valid representation of a long or radix is not in the appropriate
range.

Description

This method returns the numeric value of the long represented by the contents of the given String object in
the specified radix. The String must contain only valid digits of the specified radix, except that the first
character may be a minus sign. The digits are parsed in the specified radix to produce the numeric value.

toBinaryString

public static String toBinaryString(long value)

Parameters

value

The long value to be converted to a string.

Returns

A string that contains the binary representation of the given value.

Description

This method returns a String object that contains the representation of the given value as an unsigned binary
number. To convert the given value to an unsigned quantity, the method simply uses the value as if it were not
negative. In other words, if the given value is negative, the method adds 2^64 to it. Otherwise the value is used
as it is.

The string returned by this method contains a sequence of one or more `0' and `1' characters. The method
returns "0" if its argument is 0. Otherwise, the string returned by this method begins with `1'.

toHexString

public static String toHexString(long value)

Parameters

value

The long value to be converted to a string.

Returns

A string that contains the hexadecimal representation of the given value.

Description

This method returns a String object that contains the representation of the given value as an unsigned
hexadecimal number. To convert the given value to an unsigned quantity, the method simply uses the value as
if it were not negative. In other words, if the given value is negative, the method adds 2^64 to it. Otherwise the
value is used as it is.

The string returned by this method contains a sequence of one or more of the characters `0', `1', `2', `3', `4', `5',
`6', `7', `8', `9', `a', `b', `c', `d', `e', and `f'. The method returns "0" if its argument is 0. Otherwise, the string
returned by this method does not begin with `0'.

To produce a string that contains upper- instead of lowercase letters, use the String.toUpperCase()
method.

toOctalString

public static String toOctalString(long value)

Parameters

value

The long value to be converted to a string.

Returns

A string that contains the octal representation of the given value.

Description

This method returns a String object that contains a representation of the given value as an unsigned octal
number. To convert the given value to an unsigned quantity, the method simply uses the value as if it were not
negative. In other words, if the given value is negative, the method adds 2^64 to it. Otherwise the value is used
as it is.

The string returned by this method contains a sequence of one or more of the characters `0', `1', `2', `3', `4', `5',
`6', and `7'. The method returns "0" if its argument is 0. Otherwise, the string returned by this method does not
begin with `0'.

toString

public static String toString(long i)

Parameters

i

The long value to be converted to a string.

Returns

The string representation of the given value.

Description

This method returns a String object that contains the decimal representation of the given value.

This method returns a string that begins with `-' if the given value is negative. The rest of the string is a
sequence of one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if
its argument is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

public static String toString(long i, int radix)

Parameters

i

The long value to be converted to a string.

radix

The radix used in converting the value to a string. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The string representation of the given value in the specified radix.

Description

This method returns a String object that contains the representation of the given value in the specified radix.

This method returns a string that begins with`-' if the given value is negative. The rest of the string is a
sequence of one or more characters that represent the magnitude of the given value. The characters that can
appear in the sequence are determined by the value of radix. If N is the value of radix, the first N

characters on the following line can appear in the sequence:

0123456789abcdefghijklmnopqrstuvwxyz

The method does not verify that radix is in the proper range. If radix is less than
Character.MIN_RADIX or greater than Character.MAX_RADIX, the value 10 is used instead of the
given value.

This method returns "0" if its argument is 0. Otherwise, the string returned by this method does not begin with
"0" or "-0".

valueOf

 public static Long valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into a Long object.

Returns

The Long object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a long.

Description

Constructs a Long object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single - character. If the string contains any other
characters, the method throws a NumberFormatException.

 public static Long valueOf(String s, int radix) throws NumberFormatException

Parameters

s

The string to be made into a Long object.

radix

The radix used in converting the string to a value. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The Long object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a long.

Description

Constructs a Long object with the value specified by the given string in the specified radix. The string should
consist of one or more digit characters or characters in the range `A' to `Z' or `a' to `z' that are considered digits
in the given radix. The digit characters can be preceded by a single `-' character. If the string contains any
other characters, the method throws a NumberFormatException.

The method does not verify that radix is in the proper range. If radix is less than
Character.MIN_RADIX or greater than Character.MAX_RADIX, the value 10 is used instead of the
given value.

Instance Methods

byteValue

public byte byteValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a byte.

Overrides

Number.byteValue()

Description

This method returns the value of this object as a byte. The high order bits of the value are discarded.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double. Rounding may occur.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Long and it contains the same value as the object this
method is associated with.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this object as a float. Rounding may occur.

hashCode

public int hashCode()

Returns

A hashcode based on the long value of the object.

Overrides

Object.hashCode()

Description

This method returns a hashcode computed from the value of this object. More specifically, the result is the
exclusive OR of the two halves of the long value represented by the object. If value is the value of the
object, the method returns a result equivalent to the following expression:

(int)(value^(value>>>32))

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the value of this object as an int. The high-order bits of the value are discarded.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the value of this object as a long.

shortValue

public short shortValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the value of this object as a short. The high-order bits of the value are discarded.

toString

public String toString()

Returns

The string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains the decimal representation of the value of this object.

This method returns a string that begins with `-' if the value is negative. The rest of the string is a sequence of
one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if the value of
the object is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Character, Class, Integer, Number, NumberFormatException, String, System

LinkageError Math

Chapter 12
The java.lang Package

Math

Name

Math

Synopsis

Class Name:

java.lang.Math

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Math class contains constants for the mathematical values pi and e. The class also defines methods
that compute various mathematical functions, such as trigonometric and exponential functions. All of
these constants and methods are static. In other words, it is not necessary to create an instance of the
Math class in order to use its constants and methods. In fact, the Math class does not define any
public constructors, so it cannot be instantiated.

To ensure that the methods in this class return consistent results under different implementations of Java,
all of the methods use the algorithms from the well-known Freely-Distributable Math Library package,
fdlibm. This package is part of the network library netlib. The library can be obtained through the URL
http://netlib.att.com. The algorithms used in this class are from the version of fdlibm dated January 4,
1995. fdlibm provides more than one definition for some functions. In those cases, the "IEEE 754 core
function" version is used.

Class Summary

public final class java.lang.Math extends java.lang.Object {
 // Constants
 public static final double E;
 public static final double PI;
 // Class Methods
 public static int abs(int a);
 public static long abs(long a);
 public static float abs(float a);
 public static double abs(double a);
 public static native double acos(double a);
 public static native double asin(double a);
 public static native double atan(double a);
 public static native double atan2(double a, double b);
 public static native double ceil(double a);
 public static native double cos(double a);
 public static native double exp(double a);
 public static native double floor(double a);
 public static native double IEEEremainder(double f1, double f2);
 public static native double log(double a);
 public static int max(int a, int b);
 public static long max(long a, long b);
 public static float max(float a, float b);
 public static double max(double a, double b);
 public static int min(int a, int b);

 public static long min(long a, long b);
 public static float min(float a, float b);
 public static double min(double a, double b);
 public static native double pow(double a, double b);
 public static synchronized double random();
 public static native double rint(double a);
 public static int round(float a);
 public static long round(double a);
 public static native double sin(double a);
 public static native double sqrt(double a);
 public static native double tan(double a);
}

Constants

E

public static final double E = 2.7182818284590452354

Description

The value of this constant is e, the base for natural logarithms.

PI

public static final double PI = 3.14159265358979323846

Description

The value for this constant is pi.

Class Methods

abs

public static double abs(double a)

Parameters

a

A double value.

Returns

The absolute value of its argument.

Description

This method returns the absolute value of its argument.

If the argument to this method is negative or positive zero, the method should return positive zero.
If the argument is positive or negative infinity, the method returns positive infinity. If the
argument is NaN, the method returns NaN.

public static float abs(float a)

Parameters

a

A float value.

Returns

The absolute value of its argument.

Description

This method returns the absolute value of its argument.

If the argument to this method is negative or positive zero, the method should return positive zero.
If the argument is positive or negative infinity, the method returns positive infinity. If the
argument is NaN, the method returns NaN.

public static int abs(int a)

Parameters

a

An int value.

Returns

The absolute value of its argument.

Description

This method returns the absolute value of its argument.

If the argument is Integer.MIN_VALUE, the method actually returns Integer.MIN_VALUE
because the true absolute value of Integer.MIN_VALUE is one greater than the largest positive
value that can be represented by an int.

public static long abs(long a)

Parameters

a

A long value.

Returns

The absolute value of its argument.

Description

This method returns the absolute value of its argument.

If the argument is Long.MIN_VALUE, the method actually returns Long.MIN_VALUE because
the true absolute value of Long.MIN_VALUE is one greater than the largest positive value
represented by a long.

acos

public static native double acos(double a)

Parameters

a

A double value greater than or equal to -1.0 and less than or equal to 1.0.

Returns

The arc cosine measured in radians; the result is greater than or equal to 0.0 and less than or
equal to pi.

Description

This method returns the arc cosine of the given value.

If the value is NaN or its absolute value is greater than 1.0, the method returns NaN.

asin

public static native double asin(double a)

Parameters

a

A double value greater than or equal to -1.0 and less than or equal to 1.0.

Returns

The arc sine measured in radians; the result is greater than or equal to -pi/2 and less than or equal
to pi/2.

Description

This method returns the arc sine of the given value.

If the value is NaN or its absolute value is greater than 1.0, the method returns NaN. If the value
is positive zero, the method returns positive zero. If the value is negative zero, the method returns
negative zero.

atan

public static native double atan(double a)

Parameters

a

A double value greater than or equal to -1.0 and less than or equal to 1.0.

Returns

The arc tangent measured in radians; the result is greater than or equal to -pi/2 and less than or
equal to pi/2.

Description

This method returns the principle value of the arc tangent of the given value.

If the value is NaN, the method returns NaN. If the value is positive zero, the method returns
positive zero. If the value is negative zero, the method returns negative zero.

atan2

public static native double atan2(double a, double b)

Parameters

a

A double value.

b

A double value.

Returns

The theta component of the polar coordinate (r,theta) that corresponds to the cartesian coordinate
(a,b); the result is measured in radians and is greater than or equal to -pi and less than or equal to
pi.

Description

This method returns the theta component of the polar coordinate (r,theta) that corresponds to the
cartesian coordinate (a,b). It computes theta as the principle value of the arc tangent of b/a, using
the signs of both arguments to determine the quadrant (and sign) of the return value.

If either argument is NaN, the method returns NaN.

If the first argument is positive zero and the second argument is positive, then the method returns
positive zero. If the first argument is positive zero and the second argument is negative, then the
method returns the double value closest to pi.

If the first argument is negative zero and the second argument is positive, the method returns
negative zero. If the first argument is negative zero and the second argument is negative, the
method returns the double value closest to -pi.

If the first argument is positive and finite and the second argument is positive infinity, the method
returns positive zero. If the first argument is positive and finite and the second argument is
negative infinity, the method returns the double value closest to pi.

If the first argument is negative and finite and the second argument is positive infinity, the method
returns negative zero. If the first argument is negative and finite and the second argument is
negative infinity, the method returns the double value closest to -pi.

If the first argument is positive and the second argument is positive zero or negative zero, the
method returns the double value closest to pi/2. If the first argument is negative and the second
argument is positive or negative zero, the method returns the double value closest to -pi/2.

If the first argument is positive infinity and the second argument is finite, the method returns the
double value closest to pi/2. If the first argument is negative infinity and the second argument is
finite, the method returns the double value closest to -pi/2.

If both arguments are positive infinity, the method returns the double value closest to pi/4. If the
first argument is positive infinity and the second argument is negative infinity, the method returns
the double value closest to 3pi/4. If the first argument is negative infinity and the second
argument is positive infinity, the method returns the double value closest to -pi/4. If both
arguments are negative infinity, the method returns the double value closest to -3pi/4.

ceil

public static native double ceil(double a)

Parameters

a

A double value.

Returns

The smallest integer greater than or equal to the given value.

Description

This method performs the ceiling operation. It returns the smallest integer that is greater than or
equal to its argument.

If the argument is NaN, an infinity value, or a zero value, the method returns that same value. If
the argument is less than zero but greater than -1.0, the method returns negative zero.

cos

public static native double cos(double a)

Parameters

a

A double value that's an angle measured in radians.

Returns

The cosine of the given angle.

Description

This method returns the cosine of the given angle measured in radians.

If the angle is NaN or an infinity value, the method returns NaN.

exp

public static native double exp(double a)

Parameters

a

A double value.

Returns

e^a

Description

This method returns the exponential function of a. In other words, e is raised to the value
specified by the parameter a, where e is the base of the natural logarithms.

If the value is NaN, the method returns NaN. If the value is positive infinity, the method returns
positive infinity. If the value is negative infinity, the method returns positive zero.

floor

public static native double floor(double a)

Parameters

a

A double value.

Returns

The greatest integer less than or equal to the given value.

Description

This method performs the floor operation. It returns the largest integer that is less than or equal to
its argument.

If the argument is NaN, an infinity value, or a zero value, the method returns that same value.

IEEEremainder

public static native double IEEEremainder(double a, double b)

Parameters

a

A double value.

b

A double value.

Returns

The remainder of a divided by b as defined by the IEEE 754 standard.

Description

This method returns the remainder of a divided by b as defined by the IEEE 754 standard. This
operation involves first determining the mathematical quotient of a/b rounded to the nearest
integer. If the quotient is equally close to two integers, it is rounded to the even integer. The
method then returns a-(b x Q), where Q is the rounded quotient.

If either argument is NaN, the method returns NaN. If the first argument is positive or negative
infinity and the second argument is positive or negative zero, the method also returns NaN. If the
first argument is a finite value and the second argument is positive or negative infinity, the
method returns its first argument.

log

public static native double log(double a)

Parameters

a

A double value that is greater than 0.0.

Returns

The natural logarithm of a.

Description

This method returns the natural logarithm (base e) of its argument.

In particular, if the argument is positive infinity, the method returns positive infinity. If the
argument is positive or negative zero, the method returns negative infinity. If the argument is less
than zero, the method returns NaN. If the argument is NaN, the method returns NaN.

max

public static double max(double a, double b)

Parameters

a

A double value.

b

A double value.

Returns

The greater of a and b.

Description

This method returns the greater of its two arguments. In other words, it returns the one that is
closer to positive infinity.

If one argument is positive zero and the other is negative zero, the method returns positive zero. If
either argument is NaN, the method returns NaN.

public static float max(float a, float b)

Parameters

a

A float value.

b

A float value.

Returns

The greater of a and b.

Description

This method returns the greater of its two arguments. In other words, it returns the one that is
closer to positive infinity.

If one argument is positive zero and the other is negative zero, the method returns positive zero. If
either argument is NaN, the method returns NaN.

public static int max(int a, int b)

Parameters

a

An int value.

b

An int value.

Returns

The greater of a and b.

Description

This method returns the greater of its two arguments. In other words, it returns the one that is

closer to Integer.MAX_VALUE.

public static long max(long a, long b)

Parameters

a

A long value.

b

A long value.

Returns

The greater of a and b.

Description

This method returns the greater of its two arguments. In other words, it returns the one that is
closer to Long.MAX_VALUE.

min

public static double min(double a, double b)

Parameters

a

A double value.

b

A double value.

Returns

The lesser of a and b.

Description

This method returns the lesser of its two arguments. In other words, it returns the one that is closer
to negative infinity.

If one argument is positive zero and the other is negative zero, the method returns negative zero.
If either argument is NaN, the method returns NaN.

public static float min(float a, float b)

Parameters

a

A float value.

b

A float value.

Returns

The lesser of a and b.

Description

This method returns the lesser of its two arguments. In other words, it returns the one that is closer
to negative infinity.

If one argument is positive zero and the other is negative zero, the method returns negative zero.
If either argument is NaN, the method returns NaN.

public static int min(int a, int b)

Parameters

a

An int value.

b

An int value.

Returns

The lesser of a and b.

Description

This method returns the lesser of its two arguments. In other words, it returns the one that is closer
to Integer.MIN_VALUE.

public static long min(long a, long b)

Parameters

a

A long value.

b

A long value.

Returns

The lesser of a and b.

Description

This method returns the lesser of its two arguments. In other words, it returns the one that is closer
to Long.MIN_VALUE.

pow

public static native double pow(double a, double b)

Parameters

a

A double value.

b

A double value.

Returns

a^b

Description

This method computes the value of raising a to the power of b.

If the second argument is positive or negative zero, the method returns 1.0. If the second
argument is 1.0, the method returns its first argument. If the second argument is NaN, the
method returns NaN. If the first argument is NaN and the second argument is nonzero, the method
returns NaN.

If the first argument is positive zero and the second argument is greater than zero, the method
returns positive zero. If the first argument is positive zero and the second argument is less than
zero, the method returns positive infinity.

If the first argument is positive infinity and the second argument is less than zero, the method
returns positive zero. If the first argument is positive infinity and the second argument is greater
than zero, the method returns positive infinity.

If the absolute value of the first argument is greater than 1 and the second argument is positive
infinity, the method returns positive infinity. If the absolute value of the first argument is greater
than 1 and the second argument is negative infinity, the method returns positive zero. If the
absolute value of the first argument is less than 1 and the second argument is negative infinity, the
method returns positive infinity. If the absolute value of the first argument is less than 1 and the
second argument is positive infinity, the method returns positive zero. If the absolute value of the
first argument is 1 and the second argument is positive or negative infinity, the method returns
NaN.

If the first argument is negative zero and the second argument is greater than zero but not a finite
odd integer, the method returns positive zero. If the first argument is negative zero and the second
argument is a positive finite odd integer, the method returns negative zero. If the first argument is
negative zero and the second argument is less than zero but not a finite odd integer, the method

returns positive infinity. If the first argument is negative zero and the second argument is a
negative finite odd integer, the method returns negative infinity.

If the first argument is negative infinity and the second argument is less than zero but not a finite
odd integer, the method returns positive zero. If the first argument is negative infinity and the
second argument is a negative finite odd integer, the method returns negative zero. If the first
argument is negative infinity and the second argument is greater than zero but not a finite odd
integer, the method returns positive infinity. If the first argument is negative infinity and the
second argument is a positive finite odd integer, the method returns negative infinity.

If the first argument is less than zero and the second argument is a finite even integer, the method
returns the result of the absolute value of the first argument raised to the power of the second
argument. If the first argument is less than zero and the second argument is a finite odd integer,
the method returns the negative of the result of the absolute value of the first argument raised to
the power of the second argument. If the first argument is finite and less than zero and the second
argument is finite and not an integer, the method returns NaN.

If both arguments are integer values, the method returns the first argument raised to the power of
the second argument.

random

public static synchronized double random()

Returns

A random number between 0.0 and 1.0.

Description

This method returns a random number greater than or equal to 0.0 and less than 1.0. The
implementation of this method uses the java.util.Random class. You may prefer to use the
Random class directly, in order to gain more control over the distribution, type, and repeatability
of the random numbers you are generating.

rint

public static native double rint(double a)

Parameters

a

A double value.

Returns

The value of its argument rounded to the nearest integer.

Description

This method returns its argument rounded to the nearest integer; the result is returned as a
double value. If the argument is equidistant from two integers (e.g., 1.5), the method returns
the even integer.

If the argument is an infinity value, a zero value, or NaN, the method returns that same value.

round

public static long round(double a)

Parameters

a

A double value.

Returns

The value of its argument rounded to the nearest long.

Description

This method returns its double argument rounded to the nearest integral value and converted to
a long. If the argument is equidistant from two integers, the method returns the greater of the
two integers.

If the argument is positive infinity or any other value greater than Long.MAX_VALUE, the
method returns Long.MAX_VALUE. If the argument is negative infinity or any other value less
than Long.MIN_VALUE, the method returns Long.MIN_VALUE. If the argument is NaN, the
method returns 0.

public static int round(float a)

Parameters

a

A float value.

Returns

The value of its argument rounded to the nearest int.

Description

This method returns its float argument rounded to the nearest integral value and converted to
an int. If the argument is equidistant from two integers, the method returns the greater of the two
integers.

If the argument is positive infinity or any other value greater than the Integer.MAX_VALUE,
the method returns Integer.MAX_VALUE. If the argument is negative infinity or any other
value less than Integer.MIN_VALUE, the method returns Integer.MIN_VALUE. If the
argument is NaN, the method returns 0.

sin

public static native double sin(double a)

Parameters

a

A double value that's an angle measured in radians.

Returns

The sine of the given angle.

Description

This method returns the sine of the given angle measured in radians.

If the angle is NaN or an infinity value, the method returns NaN. If the angle is positive zero, the
method returns positive zero. If the angle is negative zero, the method returns negative zero.

sqrt

public static native double sqrt(double a)

Parameters

a

A double value.

Returns

The square root of its argument.

Description

This method returns the square root of its argument.

If the argument is negative or NaN, the method returns NaN. If the argument is positive infinity,
the method returns positive infinity. If the argument is positive or negative zero, the method
returns that same value.

tan

public static native double tan(double a)

Parameters

a

A double value that is an angle measured in radians.

Returns

The tangent of the given angle.

Description

This method returns the tangent of the given angle measured in radians.

If the angle is NaN or an infinity value, the method returns NaN. If the angle is positive zero, the
method returns positive zero. If the angle is negative zero, the method returns negative zero.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Double, Float, Integer, Long, Object

Long NegativeArraySizeException

Chapter 12
The java.lang Package

NegativeArraySizeException

Name

NegativeArraySizeException

Synopsis

Class Name:

java.lang.NegativeArraySizeException

Superclass:

java.lang.RuntimeException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A NegativeArraySizeException is thrown in response to an attempt to create an array with a negative

size.

Class Summary

public class java.lang.NegativeArraySizeException
 extends java.lang.RuntimeException {
 // Constructors
 public NegativeArraySizeException();
 public NegativeArraySizeException(String s);
}

Constructors

NegativeArraySizeException

public NegativeArraySizeException()

Description

This constructor creates a NegativeArraySizeException with no associated detail message.

public NegativeArraySizeException(String s)

Parameters

s

The detail message.

Description

This constructor creates a NegativeArraySizeException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, RuntimeException, Throwable

Math NoClassDefFoundError

Chapter 12
The java.lang Package

NoClassDefFoundError

Name

NoClassDefFoundError

Synopsis

Class Name:

java.lang.NoClassDefFoundError

Superclass:

java.lang.LinkageError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A NoClassDefFoundError is thrown when the definition of a class cannot be found.

Class Summary

public class java.lang.NoClassDefFoundError extends java.lang.LinkageError {
 // Constructors
 public NoClassDefFoundError();
 public NoClassDefFoundError(String s);
}

Constructors

NoClassDefFoundError

public NoClassDefFoundError()

Description

This constructor creates a NoClassDefFoundError with no associated detail message.

public NoClassDefFoundError(String s)

Parameters

s

The detail message.

Description

This constructor creates a NoClassDefFoundError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, LinkageError, Throwable

NegativeArraySizeException NoSuchFieldError

Chapter 12
The java.lang Package

NoSuchFieldError

Name

NoSuchFieldError

Synopsis

Class Name:

java.lang.NoSuchFieldError

Superclass:

java.lang.IncompatibleClassChangeError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A NoSuchFieldError is thrown in response to an attempt to reference an instance or class variable that is not

defined in the current definition of a class. Usually this error is caught by the compiler; it can occur at run-time if
the definition of a class is changed after the class that references it was last compiled.

Class Summary

public class java.lang.NoSuchFieldError
 extends java.lang.IncompatibleClassChangeError {
 // Constructors
 public NoSuchFieldError();
 public NoSuchFieldError(String s);
}

Constructors

NoSuchFieldError

public NoSuchFieldError()

Description

This constructor creates a NoSuchFieldError with no associated detail message.

public NoSuchFieldError(String s)

Parameters

s

The detail message.

Description

This constructor creates a NoSuchFieldError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, IncompatibleClassChangeError, Throwable

NoClassDefFoundError NoSuchFieldException

Chapter 12
The java.lang Package

NoSuchFieldException

Name

NoSuchFieldException

Synopsis

Class Name:

java.lang.NoSuchFieldException

Superclass:

java.lang.Exception

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A NoSuchFieldException is thrown when a specified variable cannot be found.

Class Summary

public class java.lang.NoSuchFieldException extends java.lang.Exception {
 // Constructors
 public NoSuchFieldException();
 public NoSuchFieldException(String s);
}

Constructors

NoSuchFieldException

public NoSuchFieldException()

Description

This constructor creates a NoSuchFieldException with no associated detail message.

public NoSuchFieldException(String s)

Parameters

s

The detail message.

Description

This constructor creates a NoSuchFieldException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, Throwable

NoSuchFieldError NoSuchMethodError

Chapter 12
The java.lang Package

NoSuchMethodError

Name

NoSuchMethodError

Synopsis

Class Name:

java.lang.NoSuchMethodError

Superclass:

java.lang.IncompatibleClassChangeError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A NoSuchMethodError is thrown in response to an attempt to reference a method that is not defined in the

current definition of a class. Usually this error is caught by the compiler; it can occur at run-time if the definition
of a class is changed after the class that references it was last compiled.

Class Summary

public class java.lang.NoSuchMethodError
 extends java.lang.IncompatibleClassChangeError {
 // Constructors
 public NoSuchMethodError();
 public NoSuchMethodError(String s);
}

Constructors

NoSuchMethodError

public NoSuchMethodError()

Description

This constructor creates a NoSuchMethodError with no associated detail message.

public NoSuchMethodError(String s)

Parameters

s

The detail message.

Description

This constructor creates a NoSuchMethodError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, IncompatibleClassChangeError, Throwable

NoSuchFieldException NoSuchMethodException

Chapter 12
The java.lang Package

NoSuchMethodException

Name

NoSuchMethodException

Synopsis

Class Name:

java.lang.NoSuchMethodException

Superclass:

java.lang.Exception

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A NoSuchMethodException is thrown when a specified method cannot be found.

Class Summary

public class java.lang.NoSuchMethodException extends java.lang.Exception {
 // Constructors
 public NoSuchMethodException();
 public NoSuchMethodException(String s);
}

Constructors

NoSuchMethodException

public NoSuchMethodException()

Description

This constructor creates a NoSuchMethodException with no associated detail message.

public NoSuchMethodException(String s)

Parameters

s

The detail message.

Description

This constructor creates a NoSuchMethodException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, Throwable

NoSuchMethodError NullPointerException

Chapter 12
The java.lang Package

NullPointerException

Name

NullPointerException

Synopsis

Class Name:

java.lang.NullPointerException

Superclass:

java.lang.RuntimeException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A NullPointerException is thrown when there is an attempt to access an object through a null object

reference. This can occur when there is an attempt to access an instance variable or call a method through a null
object or when there is an attempt to subscript an array with a null object.

Class Summary

public class java.lang.NullPointerException
 extends java.lang.RuntimeException {
 // Constructors
 public NullPointerException();
 public NullPointerException(String s);
}

Constructors

NullPointerException

public NullPointerException()

Description

This constructor creates a NullPointerException with no associated detail message.

public NullPointerException(String s)

Parameters

s

The detail message.

Description

This constructor creates a NullPointerException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, RuntimeException, Throwable

NoSuchMethodException Number

Chapter 12
The java.lang Package

Number

Name

Number

Synopsis

Class Name:

java.lang.Number

Superclass:

java.lang.Object

Immediate Subclasses:

java.lang.Byte, java.lang.Double,

java.lang.Float, java.lang.Integer,

java.lang.Long, java.lang.Short,

java.math.BigDecimal,

java.math.BigInteger

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The Number class is an abstract class that serves as the superclass for all of the classes that provide
object wrappers for primitive numeric values: byte, short, int, long, float, and double.
Wrapping a primitive value is useful when you need to treat such a value as an object. For example, there
are a number of utility methods that take a reference to an Object as one of their arguments. You cannot
specify a primitive value for one of these arguments, but you can provide a reference to an object that
encapsulates the primitive value. Furthermore, as of JDK 1.1, these wrapper classes are necessary to
support the Reflection API and class literals.

The Number class defines six methods that must be implemented by its subclasses: byteValue(),
shortValue(), intValue(), longValue(), floatValue(), and doubleValue(). This
means that a Number object can be fetched as an byte, short, int, long, float, or double value,
without regard for its actual class.

Class Summary

public abstract class java.lang.Number extends java.lang.Number
 implements java.io.Serializable {
 // Instance Methods
 public abstract byte byteValue(); // New in 1.1
 public abstract double doubleValue();
 public abstract float floatValue();
 public abstract int intValue();
 public abstract long longValue();
 public abstract short shortValue(); // New in 1.1
}

Instance Methods

byteValue

public abstract byte byteValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a byte.

Description

This method returns the value of this object as a byte. If the data type of the value is not byte,
rounding may occur.

doubleValue

public abstract double doubleValue()

Returns

The value of this object as a double.

Description

This method returns the value of this object as a double. If the data type of the value is not
double, rounding may occur.

floatValue

public abstract float floatValue()

Returns

The value of this object as a float.

Description

This method returns the value of this object as a float. If the data type of the value is not float,
rounding may occur.

intValue

public abstract int intValue()

Returns

The value of this object as an int.

Description

This method returns the value of this object as an int. If the type of value is not an int, rounding
may occur.

longValue

public abstract long longValue()

Returns

The value of this object as a long.

Description

This method returns the value of this object as a long. If the type of value is not a long, rounding
may occur.

shortValue

public abstract short shortValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a short.

Description

This method returns the value of this object as a short. If the type of value is not a short,
rounding may occur.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Byte, Double, Float, Integer, Long, Object, Short

NullPointerException NumberFormatException

Chapter 12
The java.lang Package

NumberFormatException

Name

NumberFormatException

Synopsis

Class Name:

java.lang.NumberFormatException

Superclass:

java.lang.IllegalArgumentException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A NumberFormatException is thrown to indicate that an attempt to parse numeric information in a string

has failed.

Class Summary

public class java.lang.NumberFormatException
 extends java.lang.IllegalArgumentException {
 // Constructors
 public NumberFormatException();
 public NumberFormatException(String s);
}

Constructors

NumberFormatException

public NumberFormatException()

Description

This constructor creates a NumberFormatException with no associated detail message.

public NumberFormatException(String s)

Parameters

s

The detail message.

Description

This constructor creates a NumberFormatException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IllegalArgumentException, RuntimeException, Throwable

Number Object

Chapter 12
The java.lang Package

Object

Name

Object

Synopsis

Class Name:

java.lang.Object

Superclass:

None

Immediate Subclasses:

Too many to be listed here

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Object class is the ultimate superclass of all other classes in Java. Because every other class is a subclass of Object,
all of the methods accessible from Object are inherited by every other class. In other words, all objects in Java, including
arrays, have access to implementations of the methods in Object.

The methods of Object provide some basic object functionality. The equals() method compares two objects for
equality, while the hashCode() method returns a hashcode for an object. The getClass() method returns the Class

object associated with an object. The wait(), notify(), and notifyAll() methods support thread synchronization
for an object. The toString() method provides a string representation of an object.

Some of these methods should be overridden by subclasses of Object. For example, every class should provide its own
implementation of the toString() method, so that it can provide an appropriate string representation.

Although it is possible to create an instance of the Object class, this is rarely done because it is more useful to create
specialized objects. However, it is often useful to declare a variable that contains a reference to an Object because such a
variable can contain a reference to an object of any other class.

Class Summary

public class java.lang.Object {
 // Constructors
 public Object();
 // Public Instance Methods
 public boolean equals(Object obj);
 public final native Class getClass();
 public native int hashCode();
 public final native void notify();
 public final native void notifyAll();
 public String toString();
 public final native void wait();
 public final native void wait(long millis);
 public final native void wait(long millis, int nanos);
 // Protected Instance Methods
 protected native Object clone();
 protected void finalize() throws Throwable;
}

Constructors

Object

public Object()

Description

Creates an instance of the Object class.

Public Instance Methods

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Description

The equals() method of Object returns true if the obj parameter refers to the same object as the object this
method is associated with. This is equivalent to using the == operator to compare two objects.

Some classes, such as String, override the equals() method to provide a comparison based on the contents of
the two objects, rather than on the strict equality of the references. Any subclass can override the equals()
method to implement an appropriate comparison, as long as the overriding method satisfies the following rules for an
equivalence relation:

❍ The method is reflexive : given a reference x, x.equals(x) returns true.

❍ The method is symmetric : given references x and y, x.equals(y) returns true if and only if
y.equals(x) returns true.

❍ The method is transitive : given references x, y, and z, if x.equals(y) returns true and y.equals(z)
returns true, then x.equals(z) returns true.

❍ The method is consistent : given references x and y, multiple invocations of x.equals(y) consistently
return true or consistently return false, provided that no information contained by the objects referenced
by x or y changes.

❍ A comparison with null returns false: given a reference x that is non-null, x.equals(null) returns
false.

getClass

public final native Class getClass()

Returns

A reference to the Class object that describes the class of this object.

Description

The getClass() method of Object returns the Class object that describes the class of this object. This method
is final, so it cannot be overridden by subclasses.

hashCode

public native int hashCode()

Returns

A relatively unique value that should be the same for all objects that are considered equal.

Description

The hashCode() method of Object calculates a hashcode value for this object. The method returns an integer
value that should be relatively unique to the object. If the equals() method for the object bases its result on the
contents of the object, the hashcode() method should also base its result on the contents. The hashCode()
method is provided for the benefit of hashtables, which store and retrieve elements using key values called
hashcodes. The internal placement of a particular piece of data is determined by its hashcode; hashtables are
designed to use hashcodes to provide efficient retrieval.

The java.util.Hashtable class provides an implementation of a hashtable that stores values of type Object.
Each object is stored in the hashtable based on the hash code of its key object. It is important that each object have
the most unique hash code possible. If two objects have the same hash code but they are not equal (as determined by
equals()), a Hashtable that stores these two objects may need to spend additional time searching when it is
trying to retrieve objects. The implementation of hashCode() in Object tries to make sure that every object has
a distinct hash code by basing its result on the internal representation of a reference to the object.

Some classes, such as String, override the hashCode() method to produce values based on the contents of
individual objects, instead of the objects themselves. In other words, two String objects that contain the exact
same strings have the same hash code. If String did not override the hashCode() method inherited from
Object, these two String objects would have different hash code values and it would be impossible to use
String objects as keys for hashtables.

Any subclass can override the hashCode() method to implement an appropriate way of producing hash code
values, as long as the overriding method satisfies the following rules:

❍ If the hashCode() method is called on the same object more than once during the execution of a Java
application, it must consistently return the same integer value. The integer does not, however, need to be
consistent between Java applications, or from one execution of an application to another execution of the
same application.

❍ If two objects compare as equal according to their equals() methods, calls to the hashCode() methods
for the objects must produce the same result.

❍ If two objects compare as not equal according to their equals() methods, calls to the hashCode()
methods for the two objects are not required to produce distinct results. However, implementations of
hashCode() that produce distinct results for unequal objects may improve the performance of hashtables.

In general, if a subclass overrides the equals() method of Object, it should also override the hashCode()
method.

notify

public final native void notify()

Throws

IllegalMonitorStateException

If the method is called from a thread that does not hold this object's lock.

Description

The notify() method wakes up a thread that is waiting to return from a call to this object's wait() method. The
awakened thread can resume executing as soon as it regains this object's lock. If more than one thread is waiting, the
notify() method arbitrarily awakens just one of the threads.

The notify() method can be called only by a thread that is the current owner of this object's lock. A thread holds
the lock on this object while it is executing a synchronized instance method of the object or executing the body
of a synchronized statement that synchronizes on the object. A thread can also hold the lock for a Class object
if it is executing a synchronized static method of that class.

This method is final, so it cannot be overridden by subclasses.

notifyAll

public final native void notifyAll()

Throws

IllegalMonitorStateException

If the method is called from a thread that does not hold this object's lock.

Description

The notifyAll() method wakes up all the threads that are waiting to return from a call to this object's wait()
method. Each awakened thread can resume executing as soon as it regains this object's lock.

The notifyAll() method can be called only by a thread that is the current owner of this object's lock. A thread
holds the lock on this object while it is executing a synchronized instance method of the object or executing the
body of a synchronized statement that synchronizes on the object. A thread can also hold the lock for a Class
object if it is executing a synchronized static method of that class.

This method is final, so it cannot be overridden by subclasses.

toString

public String toString()

Returns

The string representation of this object.

Description

The toString() method of Object returns a generic string representation of this object. The method returns a
String that consists of the object's class name, an "at" sign, and the unsigned hexadecimal representation of the
value returned by the object's hashCode() method.

Many classes override the toString() method to provide a string representation that is specific to that type of
object. Any subclass can override the toString() method; the overriding method should simply return a String
that represents the contents of the object with which it is associated.

wait

public final native void wait() throws InterruptedException

Throws

IllegalMonitorStateException

If the method is called from a thread that does not hold this object's lock.

InterruptedException

If another thread interrupted this thread.

Description

The wait() method causes a thread to wait until it is notified by another thread to stop waiting. When wait() is
called, the thread releases its lock on this object and waits until another thread notifies it to wake up through a call to
either notify() or notifyAll(). After the thread is awakened, it has to regain the lock on this object before it
can resume executing.

The wait() method can be called only by a thread that is the current owner of this object's lock. A thread holds the
lock on this object while it is executing a synchronized instance method of the object or executing the body of a
synchronized statement that synchronizes on the object. A thread can also hold the lock for a Class object if it
is executing a synchronized static method of that class.

This method is final, so it cannot be overridden by subclasses.

 public final native void wait(long timeout) throws InterruptedException

Parameters

timeout

The maximum number of milliseconds to wait.

Throws

IllegalMonitorStateException

If the method is called from a thread that does not hold this object's lock.

InterruptedException

If another thread interrupted this thread.

Description

The wait() method causes a thread to wait until it is notified by another thread to stop waiting or until the
specified amount of time has elapsed, whichever comes first. When wait() is called, the thread releases its lock on
this object and waits until another thread notifies it to wake up through a call to either notify() or
notifyAll(). If the thread is not notified within the specified timeout period, it is automatically awakened
when that amount of time has elapsed. If timeout is zero, the thread waits indefinitely, just as if wait() had been
called without a timeout argument. After the thread is awakened, it has to regain the lock on this object before it
can resume executing.

The wait() method can be called only by a thread that is the current owner of this object's lock. A thread holds the
lock on this object while it is executing a synchronized instance method of the object or executing the body of a
synchronized statement that synchronizes on the object. A thread can also hold the lock for a Class object if it
is executing a synchronized static method of that class.

This method is final, so it cannot be overridden by subclasses.

 public final native void wait(long timeout, int nanos) throws InterruptedException

Parameters

timeout

The maximum number of milliseconds to wait.

nanos

An additional number of nanoseconds to wait.

Throws

IllegalMonitorStateException

If the method is called from a thread that does not hold this object's lock.

InterruptedException

If another thread interrupted this thread.

Description

The wait() method causes a thread to wait until it is notified by another thread to stop waiting or until the
specified amount of time has elapsed, whichever comes first. When wait() is called, the thread releases its lock on
this object and waits until another thread notifies it to wake up through a call to either notify() or
notifyAll(). If the thread is not notified within the specified time period, it is automatically awakened when that
amount of time has elapsed. If timeout and nanos are zero, the thread waits indefinitely, just as if wait() had
been called without any arguments. After the thread is awakened, it has to regain the lock on this object before it can
resume executing.

The wait() method can be called only by a thread that is the current owner of this object's lock. A thread holds the
lock on this object while it is executing a synchronized instance method of the object or executing the body of a
synchronized statement that synchronizes on the object. A thread can also hold the lock for a Class object if it
is executing a synchronized static method of that class.

Note that Sun's reference implementation of Java does not attempt to implement the precision implied by this
method. Instead, it rounds to the nearest millisecond (unless timeout is 0, in which case it rounds up to 1
millisecond) and calls wait(long).

This method is final, so it cannot be overridden by subclasses.

Protected Instance Methods

clone

protected native Object clone() throws CloneNotSupportedException

Returns

A clone of this object.

Throws

OutOfMemoryError

If there is not enough memory to create the new object.

CloneNotSupportedException

If the object is of a class that does not support clone().

Description

A clone of an object is another object of the same type that has all of its instance variables set to the same values as
the object being cloned. In other words, a clone is an exact copy of the original object.

The clone() method of Object creates a new object that is a clone of this object. No constructor is used in
creating the clone. The clone() method only clones an object if the class of that object indicates that its instances

can be cloned. A class indicates that its objects can be cloned by implementing the Cloneable interface.

Although array objects do not implement the Cloneable interface, the clone() method works for arrays. The
clone of an array is an array that has the same number of elements as the original array, and each element in the
clone array has the same value as the corresponding element in the original array. Note that if an array element
contains an object reference, the clone array contains a reference to the same object, not a copy of the object.

A subclass of Object can override the clone() method in Object to provide any additional functionality that is
needed. For example, if an object contains references to other objects, the clone() method should recursively call
the clone() methods of all the referenced objects. An overriding clone() method can throw a
CloneNotSupportedException to indicate that particular objects cannot be cloned.

finalize

protected void finalize() throws Throwable

Throws

Throwable

For any reason that suits an overriding implementation of this method.

Description

The finalize() method is called by the garbage collector when it decides that an object can never be referenced
again. The method gives an object a chance to perform any cleanup operations that are necessary before it is
destroyed by the garbage collector.

The finalize() method of Object does nothing. A subclass overrides the finalize() method to perform
any necessary cleanup operations. The overriding method should call super.finalize() as the very last thing it
does, so that any finalize() method in the superclass is called.

When the garbage collector calls an object's finalize() method, the garbage collector does not immediately
destroy the object because the finalize() method might do something that results in a reference to the object.
Thus the garbage collector waits to destroy the object until it can again prove it is safe to do so. The next time the
garbage collector decides it is safe to destroy the object, it does so without calling finalize() again. In other
words, the garbage collector never calls the finalize() method more than once for a particular object.

A finalize() method can throw any kind of exception. An exception causes the finalize() method to stop
running. The garbage collector then catches and ignores the exception, so it has no further effect on a program.

See Also

CloneNotSupportedException, IllegalMonitorStateException, InterruptedException,
OutOfMemoryError, Throwable

NumberFormatException OutOfMemoryError

Chapter 12
The java.lang Package

OutOfMemoryError

Name

OutOfMemoryError

Synopsis

Class Name:

java.lang.OutOfMemoryError

Superclass:

java.lang.VirtualMachineError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An OutOfMemoryError is thrown when an attempt to allocate memory fails.

Class Summary

public class java.lang.OutOfMemoryError
 extends java.lang.VirtualMachineError {
 // Constructors
 public OutOfMemoryError();
 public OutOfMemoryError(String s);
}

Constructors

OutOfMemoryError

public OutOfMemoryError()

Description

This constructor creates an OutOfMemoryError with no associated detail message.

public OutOfMemoryError(String s)

Parameters

s

The detail message.

Description

This constructor creates an OutOfMemoryError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, Throwable, VirtualMachineError

Object Process

Chapter 12
The java.lang Package

Process

Name

Process

Synopsis

Class Name:

java.lang.Process

Superclass:

java.lang.Object

Immediate Subclasses:

None that are provided on all platforms. However, a platform-specific version of Java should
include at least one operating-system-specific subclass.

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Process class describes processes that are started by the exec() method in the Runtime class.
A Process object controls a process and gets information about it.

The Process class is an abstract class; therefore, it cannot be instantiated. The actual Process
objects created by the exec() method belong to operating-system-specific subclasses of Process that
implement the Process methods in platform-dependent ways.

Note that losing all references to a Process object, thereby making it garbage collectable, does not
result in the underlying Process object dying. It merely means that there is no longer a Java object to
control the process. The process itself continues to run asynchronously. In addition, no guarantees are
made as to whether a controlled process will be able to continue after its parent process dies.

Class Summary

public abstract class java.lang.Process extends java.lang.Object {
 // Constructors
 public Process();
 // Instance Methods
 public abstract void destroy();
 public abstract int exitValue();
 public abstract InputStream getErrorStream();
 public abstract InputStream getInputStream();
 public abstract OutputStream getOutputStream();
 public abstract int waitFor();
}

Constructors

Process

public Process()

Description

Creates a Process object.

Instance Methods

destroy

abstract public void destroy()

Description

This method kills the process controlled by this object.

exitValue

abstract public int exitValue()

Returns

The exit value of the process controlled by this object.

Throws

IllegalThreadStateException

If the process is still running and the exit value is not yet available.

Description

This method returns the exit value of the process that this object is controlling.

The waitFor() method is a similar method that waits for the controlled process to terminate
and then returns its exit value.

getErrorStream

abstract public InputStream getErrorStream()

Returns

An InputStream object connected to the error stream of the process.

Description

This method returns an InputStream object that can read from the error stream of the process.

Although it is suggested that this InputStream not be buffered, the Java specification does not
forbid such an implementation. In other words, although error output from programs is
traditionally unbuffered, there is no guarantee that it won't be buffered. This means that error
output written by the process may not be received immediately.

getInputStream

abstract public InputStream getInputStream()

Returns

An InputStream object that is connected to the standard output stream of the process.

Description

This method returns an InputStream object that can read from the standard output stream of
the process.

This InputStream is likely to be buffered, which means that output written by the process may
not be received immediately.

getOutputStream

abstract public OutputStream getOutputStream()

Returns

An OutputStream object that is connected to the standard input stream of the process.

Description

This method returns an OutputStream object that can write to the standard input stream of the
process.

This OutputStream is likely to be buffered, which means that input sent to the process may
not be received until the buffer fills up or a new line or carriage-return character is sent.

waitFor

abstract public int waitFor()

Returns

The exit value of the process controlled by this object.

Throws

InterruptedException

If another thread interrupts this thread while it is waiting for the process to exit.

Description

This method returns the exit value of the process that this object is controlling. If the process is
still running, the method waits until the process terminates and its exit value is available.

The exitValue() method is a similar method that does not wait for the controlled process to
terminate.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

InterruptedException, Object, Runtime

OutOfMemoryError Runnable

Chapter 12
The java.lang Package

Runnable

Name

Runnable

Synopsis

Interface Name:

java.lang.Runnable

Super-interface:

None

Immediate Sub-interfaces:

None

Implemented By:

java.lang.Thread

Availability:

JDK 1.0 or later

Description

The Runnable interface declares the run() method that is required for use with the Thread class.
Any class that implements the Runnable interface must define a run() method. This method is the
top-level code that is run by a thread.

Interface Declaration

public interface java.lang.Runnable {
 // Methods
 public abstract void run();
}

Methods

run

public abstract void run()

Description

When a Thread object starts running a thread, it associates executable code with the thread by
calling a Runnable object's run() method. The subsequent behavior of the thread is controlled
by the run() method. Thus, a class that wants to perform certain operations in a separate thread
should implement the Runnable interface and define an appropriate run() method. When the
run() method called by a Thread object returns or throws an exception, the thread dies.

See Also

Thread, ThreadGroup

Process Runtime

Chapter 12
The java.lang Package

Runtime

Name

Runtime

Synopsis

Class Name:

java.lang.Runtime

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Runtime class provides access to various information about the environment in which a program is running.
The Java run-time environment creates a single instance of this class that is associated with a program. The

Runtime class does not have any public constructors, so a program cannot create its own instances of the class. A
program must call the getRuntime() method to get a reference to the current Runtime object.

Information about operating system features is accessible through the System class.

Class Summary

public class java.lang.Runtime extends java.lang.Object {
 // Class Methods
 public static Runtime getRuntime();
 public static void runFinalizersOnExit(boolean value); // New in 1.1
 // Instance Methods
 public Process exec(String command);
 public Process exec(String command, String envp[]);
 public Process exec(String cmdarray[]);
 public Process exec(String cmdarray[], String envp[]);
 public void exit(int status);
 public native long freeMemory();
 public native void gc();
 public InputStream
 getLocalizedInputStream(InputStream in); // Deprecated in 1.1
 public OutputStream
 getLocalizedOutputStream(OutputStream out); // Deprecated in 1.1
 public synchronized void load(String filename);
 public synchronized void loadLibrary(String libname);
 public native void runFinalization();
 public native long totalMemory();
 public native void traceInstructions(boolean on);
 public native void traceMethodCalls(boolean on);
}

Class Methods

getRuntime

public static Runtime getRuntime()

Returns

A reference to the current Runtime object.

Description

This method returns a reference to the current Runtime object. Because the other methods of the

Runtime class are not static, a program must call this method first in order to get a reference to a
Runtime object that can be used in calling the other methods.

runFinalizersOnExit

public static void runFinalizersOnExit(boolean value)

Availability

New as of JDK 1.1

Parameters

value

A boolean value that specifies whether or not finalization occurs on exit.

Throws

SecurityException

If the checkExit() method of the SecurityManager throws a SecurityException.

Description

This method specifies whether or not the finalize() methods of all objects that have finalize()
methods are run before the Java virtual machine exits. By default, the finalizers are not run on exit.

Instance Methods

exec

public Process exec(String command) throws IOException

Parameters

command

A string that contains the name of an external command and any arguments to be passed to it.

Returns

A Process object that controls the process started by this method.

Throws

IOException

If there is a problem finding or accessing the specified external command.

SecurityException

If the checkExec() method of the SecurityManager throws a SecurityException.

Description

This method starts a new process to execute the given external command. The standard input, standard
output, and standard error streams from the process are redirected to OutputStream and InputStream
objects that are accessible through the Process object returned by this method.

Calling this method is equivalent to:

exec(command, null)

 public Process exec(String command, String[] envp) throws IOException

Parameters

command

A string that contains the name of an external command and any arguments to be passed to it.

envp

An array of strings that specifies the values for the environment variables of the new process. Each
String in the array should be of the form variableName =value. If envp is null, the values of
the environment variables in the current process are copied to the new process.

Returns

A Process object that controls the process started by this method.

Throws

IOException

If there is a problem finding or accessing the specified external command.

SecurityException

If the checkExec() method of the SecurityManager throws a SecurityException.

Description

This method starts a new process to execute the given external command. The standard input, standard
output, and standard error streams from the process are redirected to OutputStream and InputStream
objects that are accessible through the Process object returned by this method.

The method parses the command string into words that are separated by whitespace. It creates a String
object for each word and places word String objects into an array. If that array is called
commandArray, calling this method is equivalent to:

exec(commmandArray, envp)

 public Process exec(String[] commandArray) throws IOException

Parameters

commandArray

An array of strings that contains separate strings for the name of an external command and any
arguments to be passed to it. The first string in the array must be the command name.

Returns

A Process object that controls the process started by this method.

Throws

IOException

If there is a problem finding or accessing the specified external command.

SecurityException

If the checkExec() method of the SecurityManager throws a SecurityException.

Description

This method starts a new process to execute the given external command. The standard input, standard
output, and standard error streams from the process are redirected to OutputStream and InputStream
objects that are accessible through the Process object returned by this method.

Calling this method is equivalent to:

exec(commandArray, null)

 public Process exec(String[] commandArray, String[] envp) throws IOException

Parameters

commandArray

An array of strings that contains separate strings for the name of an external command and any
arguments to be passed to it. The first string in the array must be the command name.

envp

An array of strings that specifies the values for the environment variables of the new process. Each
String in the array should be of the form variableName =value. If envp is null, the values of
the environment variables in the current process are copied to the new process.

Returns

A Process object that controls the process started by this method.

Throws

IOException

If there is a problem finding or accessing the specified external command.

SecurityException

If the checkExec() method of the SecurityManager throws a SecurityException.

Description

This method starts a new process to execute the given external command. The standard input, standard
output, and standard error streams from the process are redirected to OutputStream and InputStream
objects that are accessible through the Process object returned by this method.

exit

public void exit(int status)

Parameters

status

The exit status code to use.

Throws

SecurityException

If the checkExit() method of the SecurityManager throws a SecurityException.

Description

This method causes the Java virtual machine to exit with the given status code. By convention, a nonzero
status code indicates abnormal termination. This method never returns.

freeMemory

public native long freeMemory()

Returns

An estimate of the number of free bytes in system memory.

Description

This method returns an estimate of the number of free bytes in system memory. The value returned by this
method is always less than the value returned by totalMemory(). Additional memory may be freed by
calling the gc() method.

gc

public native void gc()

Description

This method causes the Java virtual machine to run the garbage collector in the current thread.

The garbage collector finds objects that will never be used again because there are no live references to
them. After it finds these objects, the garbage collector frees the storage occupied by these objects.

The garbage collector is normally run continuously in a thread with the lowest possible priority, so that it
works intermittently to reclaim storage. The gc() method allows a program to invoke the garbage collector
explicitly when necessary.

getLocalizedInputStream

public InputStream getLocalizedInputStream(InputStream in)

Availability

Deprecated as of JDK 1.1

Parameters

in

An InputStream object that is to be localized.

Returns

The localized InputStream.

Description

This method returns an InputStream object that converts characters from the local character set to
Unicode. For example, if the InputStream uses an 8-bit character set with values less than 128
representing Cyrillic letters, this method maps those characters to the corresponding Unicode characters in
the range '\u0400' to '\u04FF'.

This method is deprecated as of JDK 1.1. You should instead use the new InputStreamReader and
BufferedReader classes to convert characters from the local character set to Unicode.

getLocalizedOutputStream

public OutputStream getLocalizedOutputStream(OutputStream out)

Availability

Deprecated as of JDK 1.1

Parameters

out

An OutputStream object that is to be localized.

Returns

The localized OutputStream.

Description

This method returns an OutputStream object that converts characters from Unicode to the local
character set. For example, if the local character set is an 8-bit character set with values less than 128
representing Cyrillic letters, this method maps Unicode characters in the range '\u0400' to '\u04FF'
to the appropriate characters in the local character set.

This method is deprecated as of JDK 1.1. You should instead use the new OutputStreamWriter and
BufferedWriter classes to convert characters from Unicode to the local character set.

load

public synchronized void load(String filename)

Parameters

filename

A string that specifies the complete path of the file to be loaded.

Throws

SecurityException

If the checkLink() method of the SecurityManager throws a SecurityException.

UnsatisfiedLinkError

If the method is unsuccessful in loading the specified dynamically linked library.

Description

This method loads the specified dynamically linked library.

It is often more convenient to call the load() method of the System class because it does not require
getting a Runtime object.

loadLibrary

public synchronized void loadLibrary(String libname)

Parameters

libname

A string that specifies the name of a dynamically linked library.

Throws

SecurityException

If the checkLink() method of the SecurityManager throws a SecurityException.

UnsatisfiedLinkError

If the method is unsuccessful in loading the specified dynamically linked library.

Description

This method loads the specified dynamically linked library. It looks for the specified library in a platform-
specific way.

It is often more convenient to call the loadLibrary() method of the System class because it does not
require getting a Runtime object.

runFinalization

public native void runFinalization()

Description

This method causes the Java virtual machine to run the finalize() methods of any objects in the
finalization queue in the current thread.

When the garbage collector discovers that there are no references to an object, it checks to see if the object
has a finalize() method that has never been called. If the object has such a finalize() method, the
object is placed in the finalization queue. While there is a reference to the object in the finalization queue,
the object is no longer considered garbage-collectable.

Normally, the objects in the finalization queue are handled by a separate finalization thread that runs
continuously at a very low priority. The finalization thread removes an object from the queue and calls its
finalize() method. As long as the finalize() method does not generate a reference to the object,
the object again becomes available for garbage collection.

Because the finalization thread runs at a very low priority, there may be a long delay from the time that an
object is put on the finalization queue until the time that its finalize() method is called. The
runFinalization() method allows a program to run the finalize() methods explicitly. This can

be useful when there is a shortage of some resource that is released by a finalize() method.

totalMemory

public native long totalMemory()

Returns

The total number of bytes in system memory.

Description

This method returns the total number of bytes in system memory in the Java virtual machine. The total
includes the number of bytes of memory being used by allocated objects, as well as the number of free
bytes available for allocating additional objects. An estimate of the number of free bytes in system memory
is available through the freeMemory() method.

traceInstructions

public native void traceInstructions(boolean on)

Parameters

on

A boolean value that specifies if instructions are to be traced. true if instructions are to be
traced; otherwise false.

Description

This method controls whether or not the Java virtual machine outputs a detailed trace of each instruction
that is executed. The boolean parameter causes tracing to be turned on or off. The tracing of instructions
is only possible in a Java virtual machine that was compiled with the tracing option enabled. Production
releases of the Java virtual machine are generally not compiled with tracing enabled.

traceMethodCalls

public native void traceMethodCalls(boolean on)

Parameters

on

A boolean value that specifies if method calls are to be traced. true if instructions are to be

traced; otherwise false.

Description

This method controls whether or not the Java virtual machine outputs a detailed trace of each method that is
invoked. The boolean parameter causes tracing to be turned on or off. The tracing of instructions is only
possible in a Java virtual machine that was compiled with the tracing option enabled. Production releases of
the Java virtual machine are generally not compiled with tracing enabled.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

IOException, Object, Process, SecurityException, SecurityManager, System,
UnsatisfiedLinkError

Runnable RuntimeException

Chapter 12
The java.lang Package

RuntimeException

Name

RuntimeException

Synopsis

Class Name:

java.lang.RuntimeException

Superclass:

java.lang.Exception

Immediate Subclasses:

java.lang.ArithmeticException,

java.lang.ArrayStoreException,

java.lang.ClassCastException,

java.lang.IllegalArgumentException,

java.lang.IllegalMonitorStateException,

java.lang.IllegalStateException,

java.lang.IndexOutOfBoundsException,

java.lang.NegativeArraySizeException,

java.lang.NullPointerException,

java.lang.SecurityException,

java.util.EmptyStackException,

java.util.MissingResourceException,

java.util.NoSuchElementException

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The RuntimeException class is the superclass of the standard run-time exceptions that can be thrown in
Java. The appropriate subclass of RuntimeException is thrown in response to a run-time error detected at the
virtual machine level. A run-time exception represents a run-time condition that can occur generally in any Java
method, so a method is not required to declare that it throws any of the run-time exceptions.

A Java program should try to handle all of the standard run-time exception classes, since they represent routine
abnormal conditions that should be anticipated and caught to prevent program termination.

Class Summary

public class java.lang.RuntimeException extends java.lang.Exception {
 // Constructors
 public RuntimeException();
 public RuntimeException(String s);
}

Constructors

RuntimeException

public RuntimeException()

Description

This constructor creates a RuntimeException with no associated detail message.

public RuntimeException(String s)

Parameters

s

The detail message.

Description

This constructor creates a RuntimeException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ArithmeticException, ArrayStoreException, ClassCastException,
EmptyStackException, IllegalArgumentException, IllegalMonitorStateException,
IllegalStateException, IndexOutOfBoundsException, MissingResourceException,
NegativeArraySizeException, NoSuchElementException, NullPointerException,
SecurityException, Throwable

Runtime SecurityException

Chapter 12
The java.lang Package

SecurityException

Name

SecurityException

Synopsis

Class Name:

java.lang.SecurityException

Superclass:

java.lang.RuntimeException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A SecurityException is thrown in response to an attempt to perform an operation that violates the security

policy implemented by the installed SecurityManager object.

Class Summary

public class java.lang.SecurityException
 extends java.lang.RuntimeException {
 // Constructors
 public SecurityException();
 public SecurityException(String s);
}

Constructors

SecurityException

public SecurityException()

Description

This constructor creates a SecurityException with no associated detail message.

public SecurityException(String s)

Parameters

s

The detail message.

Description

This constructor creates a SecurityException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, RuntimeException, SecurityManager, Throwable

RuntimeException SecurityManager

Chapter 12
The java.lang Package

SecurityManager

Name

SecurityManager

Synopsis

Class Name:

java.lang.SecurityManager

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The SecurityManager class provides a way of implementing a comprehensive security policy for a Java
program. As of this writing, SecurityManager objects are used primarily by Web browsers to establish
security policies for applets. However, the use of a SecurityManager object is appropriate in any situation
where a hosting environment wants to limit the actions of hosted programs.

The SecurityManager class contains methods that are called by methods in other classes to ask for
permission to do something that can affect the security of the system. These permission methods all have
names that begin with check. If a check method does not permit an action, it throws a
SecurityException or returns a value that indicates the lack of permission. The SecurityManager
class provides default implementations of all of the check methods. These default implementations are the
most restrictive possible implementations; they simply deny permission to do anything that can affect the
security of the system.

The SecurityManager class is an abstract class. A hosting environment should define a subclass of
SecurityManager that implements an appropriate security policy. To give the subclass of
SecurityManager control over security, the hosting environment creates an instance of the class and
installs it by passing it to the setSecurityManager() method of the System class. Once a
SecurityManager object is installed, it cannot be changed. If the setSecurityManager() method is
called any additional times, it throws a SecurityException.

The methods in other classes that want to ask the SecurityManager for permission to do something are
able to access the SecurityManager object by calling the getSecurityManager() method of the
System class. This method returns the SecurityManager object, or null to indicate that there is no
SecurityManager installed.

Class Summary

public abstract class java.lang.SecurityManager extends java.lang.Object {
 // Constructors
 protected SecurityManager();
 // Variables
 protected boolean inCheck;
 // Instance Methods
 public void checkAccept(String host, int port);
 public void checkAccess(Thread t);
 public void checkAccess(ThreadGroup g);
 public void checkAwtEventQueueAccess(); // New in 1.1
 public void checkConnect(String host, int port);
 public void checkConnect(String host, int port, Object context);
 public void checkCreateClassLoader();
 public void checkDelete(String file);
 public void checkExec(String cmd);
 public void checkExit(int status);
 public void checkLink(String libname);

 public void checkListen(int port);
 public void checkMemberAccess(Class clazz, int which); // New in 1.1
 public void checkMulticast(InetAddress maddr); // New in 1.1
 public void checkMulticast(InetAddress maddr, byte ttl); // New in 1.1
 public void checkPackageAccess();
 public void checkPackageDefinition();
 public void checkPrintJobAccess(); // New in 1.1
 public void checkPropertiesAccess();
 public void checkPropertyAccess(String key);
 public void checkRead(int fd);
 public void checkRead(String file);
 public void checkRead(String file, Object context);
 public void checkSecurityAccess(String action); // New in 1.1
 public void checkSetFactory();
 public void checkSystemClipboardAccess(); // New in 1.1
 public boolean checkTopLevelWindow();
 public void checkWrite(int fd);
 public void checkWrite(String file);
 public boolean getInCheck();
 public Object getSecurityContext();
 public ThreadGroup getThreadGroup(); // New in 1.1
 // Protected Instance Methods
 protected int classDepth(String name);
 protected int classLoaderDepth();
 protected ClassLoader currentClassLoader();
 protected Class currentLoadedClass(); // New in 1.1
 protected Class[] getClassContext();
 protected boolean inClass(String name);
 protected boolean inClassLoader();
}

Variables

inCheck

protected boolean inCheck = false

Description

This variable indicates whether or not a security check is in progress. A subclass of
SecurityManager should set this variable to true while a security check is in progress.

This variable can be useful for security checks that require access to resources that a hosted program
may not be permitted to access. For example, a security policy might be based on the contents of a

permissions file. This means that the various check methods need to read information from a file to
decide what to do. Even though a hosted program may not be allowed to read files, the check
methods can allow such reads when inCheck is true to support this style of security policy.

Constructors

SecurityManager

protected SecurityManager()

Throws

SecurityException

If a SecurityManager object already exists. In other words, if
System.getSecurityManager() returns a value other than null.

Description

Creates a new SecurityManager object. This constructor cannot be called if there is already a
current SecurityManager installed for the program.

Public Instance Methods

checkAccept

public void checkAccept(String host, int port)

Parameters

host

The name of the host machine.

port

A port number.

Throws

SecurityException

If the caller does not have permission to accept the connection.

Description

This method decides whether or not to allow a connection from the given host on the given port to be
accepted. An implementation of the method should throw a SecurityException to deny
permission to accept the connection. The method is called by the accept() method of the
java.net.ServerSocket class.

The checkAccept() method of SecurityManager always throws a SecurityException.

checkAccess

public void checkAccess(Thread g)

Parameters

g

A reference to a Thread object.

Throws

SecurityException

If the current thread does not have permission to modify the specified thread.

Description

This method decides whether or not to allow the current thread to modify the specified Thread. An
implementation of the method should throw a SecurityException to deny permission to modify
the thread. Methods of the Thread class that call this method include stop(), suspend(),
resume(), setPriority(), setName(), and setDaemon().

The checkAccess() method of SecurityManager always throws a SecurityException.

public void checkAccess(ThreadGroup g)

Parameters

g

A reference to a ThreadGroup object.

Throws

SecurityException

If the current thread does not have permission to modify the specified thread group.

Description

This method decides whether or not to allow the current thread to modify the specified
ThreadGroup. An implementation of the method should throw a SecurityException to deny
permission to modify the thread group. Methods of the ThreadGroup class that call this method
include setDaemon(), setMaxPriority(), stop(), suspend(), resume(), and
destroy().

The checkAccess() method of SecurityManager always throws a SecurityException.

checkAwtEventQueueAccess

public void checkAwtEventQueueAccess()

Availability

New as of JDK 1.1

Throws

SecurityException

If the caller does not have permission to access the AWT event queue.

Description

This method decides whether or not to allow access to the AWT event queue. An implementation of
the method should throw a SecurityException to deny permission to access the event queue. The
method is called by the getSystemEventQueue() method of the java.awt.Toolkit class.

The checkAwtEventQueueAccess() method of SecurityManager always throws a
SecurityException.

checkConnect

public void checkConnect(String host, int port)

Parameters

host

The name of the host.

port

A port number. A value of -1 indicates an attempt to determine the IP address of given
hostname.

Throws

SecurityException

If the caller does not have permission to open the socket connection.

Description

This method decides whether or not to allow a socket connection to the given host on the given port to
be opened. An implementation of the method should throw a SecurityException to deny
permission to open the connection. The method is called by the constructors of the
java.net.Socket class, the send() and receive() methods of the
java.net.DatagramSocket class, and the getByName() and getAllByName() methods of
the java.net.InetAddress class.

The checkConnect() method of SecurityManager always throws a SecurityException.

 public void checkConnect(String host, int port, Object context)

Parameters

host

The name of the host.

port

A port number. A value of -1 indicates an attempt to determine the IP address of given host
name.

context

A security context object returned by this object's getSecurityContext() method.

Throws

SecurityException

If the specified security context does not have permission to open the socket connection.

Description

This method decides whether or not to allow a socket connection to the given host on the given port to
be opened for the specified security context. An implementation of the method should throw a
SecurityException to deny permission to open the connection.

The checkConnect() method of SecurityManager always throws a SecurityException.

checkCreateClassLoader

public void checkCreateClassLoader()

Throws

SecurityException

If the caller does not have permission to create a ClassLoader object.

Description

This method decides whether or not to allow a ClassLoader object to be created. An
implementation of the method should throw a SecurityException to deny permission to create a
ClassLoader. The method is called by the constructor of the ClassLoader class.

The checkCreateClassLoader() method of SecurityManager always throws a
SecurityException.

checkDelete

public void checkDelete(String file)

Parameters

file

The name of a file.

Throws

SecurityException

If the caller does not have permission to delete the specified file.

Description

This method decides whether or not to allow a file to be deleted. An implementation of the method
should throw a SecurityException to deny permission to delete the specified file. The method is
called by the delete() method of the java.io.File class.

The checkDelete() method of SecurityManager always throws a SecurityException.

checkExec

public void checkExec(String cmd)

Parameters

cmd

The name of an external command.

Throws

SecurityException

If the caller does not have permission to execute the specified command.

Description

This method decides whether or not to allow an external command to be executed. An implementation
of the method should throw a SecurityException to deny permission to execute the specified
command. The method is called by the exec() methods of the Runtime and System classes.

The checkExec() method of SecurityManager always throws a SecurityException.

checkExit

public void checkExit(int status)

Parameters

status

An exit status code.

Throws

SecurityException

If the caller does not have permission to exit the Java virtual machine with the given status code.

Description

This method decides whether or not to allow the Java virtual machine to exit with the given status code.
An implementation of the method should throw a SecurityException to deny permission to exit
with the specified status code. The method is called by the exit() methods of the Runtime and
System classes.

The checkExit() method of SecurityManager always throws a SecurityException.

checkLink

public void checkLink(String lib)

Parameters

lib

The name of a library.

Throws

SecurityException

If the caller does not have permission to load the specified library.

Description

This method decides whether to allow the specified library to be loaded. An implementation of the
method should throw a SecurityException to deny permission to load the specified library. The
method is called by the load() and loadLibrary() methods of the Runtime and System
classes.

The checkLink() method of SecurityManager always throws a SecurityException.

checkListen

public void checkListen(int port)

Parameters

port

A port number.

Throws

SecurityException

If the caller does not have permission to listen on the specified port.

Description

This method decides whether or not to allow the caller to listen on the specified port. An
implementation of the method should throw a SecurityException to deny permission to listen on
the specified port. The method is called by the constructors of the java.net.ServerSocket class
and by the constructor of the java.net.DatagramSocket class that takes one argument.

The checkListen() method of SecurityManager always throws a SecurityException.

checkMemberAccess

public void checkMemberAccess(Class clazz, int which)

Availability

New as of JDK 1.1

Parameters

clazz

A Class object.

which

The value Member.PUBLIC for the set of all public members including inherited members
or the value Member.DECLARED for the set of all declared members of the specified class or
interface.

Throws

SecurityException

If the caller does not have permission to access the members of the specified class or interface.

Description

This method decides whether or not to allow access to the members of the specified Class object. An
implementation of the method should throw a SecurityException to deny permission to access
the members. Methods of the Class class that call this method include getField(),
getFields(), getDeclaredField(), getDeclaredFields(), getMethod(),
getMethods(), getDeclaredMethod(), getDeclaredMethods(),
getConstructor(), getConstructors(), getDeclaredConstructor(),
getDeclaredConstructors(), and getDeclaredClasses().

The checkMemberAccess() method of SecurityManager always throws a
SecurityException.

checkMulticast

public void checkMulticast(InetAddress maddr)

Availability

New as of JDK 1.1

Parameters

maddr

An InetAddress object that represents a multicast address.

Throws

SecurityException

If the current thread does not have permission to use the specified multicast address.

Description

This method decides whether or not to allow the current thread to use the specified multicast
InetAddress. An implementation of the method should throw a SecurityException to deny
permission to use the multicast address. The method is called by the send() method of
java.net.DatagramSocket if the packet is being sent to a multicast address. The method is also
called by the joinGroup() and leaveGroup() methods of java.net.MulticastSocket.

The checkMulticast() method of SecurityManager always throws a
SecurityException.

public void checkMulticast(InetAddress maddr, byte ttl)

Availability

New as of JDK 1.1

Parameters

maddr

An InetAddress object that represents a multicast address.

ttl

The time-to-live (TTL) value.

Throws

SecurityException

If the current thread does not have permission to use the specified multicast address and TTL
value.

Description

This method decides whether or not to allow the current thread to use the specified multicast

InetAddress and TTL value. An implementation of the method should throw a
SecurityException to deny permission to use the multicast address. The method is called by the
send() method of java.net.MulticastSocket.

The checkMulticast() method of SecurityManager always throws a
SecurityException.

checkPackageAccess

public void checkPackageAccess(String pkg)

Parameters

pkg

The name of a package.

Throws

SecurityException

If the caller does not have permission to access the specified package.

Description

This method decides whether or not to allow the specified package to be accessed. An implementation
of the method should throw a SecurityException to deny permission to access the specified
package. The method is intended to be called by implementations of the loadClass() method in
subclasses of the ClassLoader class.

The checkPackageAccess() method of SecurityManager always throws a
SecurityException.

checkPackageDefinition

public void checkPackageDefinition(String pkg)

Parameters

pkg

The name of a package.

Throws

SecurityException

If the caller does not have permission to define classes in the specified package.

Description

This method decides whether or not to allow the caller to define classes in the specified package. An
implementation of the method should throw a SecurityException to deny permission to create
classes in the specified package. The method is intended to be called by implementations of the
loadClass() method in subclasses of the ClassLoader class.

The checkPackageDefinition() method of SecurityManager always throws a
SecurityException.

checkPrintJobAccess

public void checkPrintJobAccess()

Availability

New as of JDK 1.1

Throws

SecurityException

If the caller does not have permission to initiate a print job request.

Description

This method decides whether or not to allow the caller to initiate a print job request. An
implementation of the method should throw a SecurityException to deny permission to initiate
the request.

The checkPrintJobAccess() method of SecurityManager always throws a
SecurityException.

checkPropertiesAccess

public void checkPropertiesAccess()

Throws

SecurityException

If the caller does not have permission to access the system properties.

Description

This method decides whether or not to allow the caller to access and modify the system properties. An
implementation of the method should throw a SecurityException to deny permission to access
and modify the properties. Methods of the System class that call this method include
getProperties() and setProperties().

The checkPropertiesAccess() method of SecurityManager always throws a
SecurityException.

checkPropertyAccess

public void checkPropertyAccess(String key)

Parameters

key

The name of an individual system property.

Throws

SecurityException

If the caller does not have permission to access the specified system property.

Description

This method decides whether or not to allow the caller to access the specified system property. An
implementation of the method should throw a SecurityException to deny permission to access
the property. The method is called by the getProperty() method of the System class.

The checkPropertyAccess() method of SecurityManager always throws a
SecurityException.

checkRead

public void checkRead(FileDescriptor fd)

Parameters

fd

A reference to a FileDescriptor object.

Throws

SecurityException

If the caller does not have permission to read from the given file descriptor.

Description

This method decides whether or not to allow the caller to read from the specified file descriptor. An
implementation of the method should throw a SecurityException to deny permission to read
from the file descriptor. The method is called by the constructor of the
java.io.FileInputStream class that takes a FileDescriptor argument.

The checkRead() method of SecurityManager always throws a SecurityException.

public void checkRead(String file)

Parameters

file

The name of a file.

Throws

SecurityException

If the caller does not have permission to read from the named file.

Description

This method decides whether or not to allow the caller to read from the named file. An implementation
of the method should throw a SecurityException to deny permission to read from the file. The
method is called by constructors of the java.io.FileInputStream and

java.io.RandomAccessFile classes, as well as by the canRead(), exists(),
isDirectory(), isFile(), lastModified(), length(), and list() methods of the
java.io.File class.

The checkRead() method of SecurityManager always throws a SecurityException.

public void checkRead(String file, Object context)

Parameters

file

The name of a file.

context

A security context object returned by this object's getSecurityContext() method.

Throws

SecurityException

If the specified security context does not have permission to read from the named file.

Description

This method decides whether or not to allow the specified security context to read from the named file.
An implementation of the method should throw a SecurityException to deny permission to read
from the file.

The checkRead() method of SecurityManager always throws a SecurityException.

checkSecurityAccess

public void checkSecurityAccess(String action)

Availability

New as of JDK 1.1

Parameters

action

A string that specifies a security action.

Throws

SecurityException

If the caller does not have permission to perform the specified security action.

Description

This method decides whether to allow the caller to perform the specified security action. An
implementation of the method should throw a SecurityException to deny permission to perform
the action. The method is called by many of the methods in the java.security.Identity and
java.security.Security classes.

The checkSecurityAccess() method of SecurityManager always throws a
SecurityException.

checkSetFactory

public void checkSetFactory()

Throws

SecurityException

If the caller does not have permission to set the factory class to be used by another class.

Description

This method decides whether to allow the caller to set the factory class to be used by another class. An
implementation of the method should throw a SecurityException to deny permission to set the
factory class. The method is called by the setSocketFactory() method of the
java.net.ServerSocket class, the setSocketImplFactory() method of the
java.net.Socket class, the setURLStreamHandlerFactory() method of the
java.net.URL class, and the setContentHandlerFactory() method of the
java.net.URLConnection class.

The checkSetFactory() method of SecurityManager always throws a
SecurityException.

checkSystemClipboardAccess

public void checkSystemClipboardAccess()

Availability

New as of JDK 1.1

Throws

SecurityException

If the caller does not have permission to access the system clipboard.

Description

This method decides whether or not to allow the caller to access the system clipboard. An
implementation of the method should throw a SecurityException to deny permission to access
the system clipboard.

The checkSystemClipboardAccess() method of SecurityManager always throws a
SecurityException.

checkTopLevelWindow

public boolean checkTopLevelWindow(Object window)

Parameters

window

A window object.

Returns

true if the caller is trusted to put up the specified top-level window; otherwise false.

Description

This method decides whether or not to trust the caller to put up the specified top-level window. An
implementation of the method should return false to indicate that the caller is not trusted. In this
case, the hosting environment can still decide to display the window, but the window should include a
visual indication that it is not trusted. If the caller is trusted, the method should return true, and the
window can be displayed without any special indication.

The checkTopLevelWindow() method of SecurityManager always returns false.

checkWrite

public void checkWrite(FileDescriptor fd)

Parameters

fd

A FileDescriptor object.

Throws

SecurityException

If the caller does not have permission to write to the given file descriptor.

Description

This method decides whether or not to allow the caller to write to the specified file descriptor. An
implementation of the method should throw a SecurityException to deny permission to write to
the file descriptor. The method is called by the constructor of the java.io.FileOutputStream
class that takes a FileDescriptor argument.

The checkWrite() method of SecurityManager always throws a SecurityException.

public void checkWrite(String file)

Parameters

file

The name of a file.

Throws

SecurityException

If the caller does not have permission to read from the named file.

Description

This method decides whether or not to allow the caller to write to the named file. An implementation of
the method should throw a SecurityException to deny permission to write to the file. The
method is called by constructors of the java.io.FileOutputStream and
java.io.RandomAccessFile classes, as well as by the canWrite(), mkdir(), and
renameTo() methods of the java.io.File class.

The checkWrite() method of SecurityManager always throws a SecurityException.

getInCheck

public boolean getInCheck()

Returns

true if a security check is in progress; otherwise false.

Description

This method returns the value of the SecurityManager object's inCheck variable, which is true
if a security check is in progress and false otherwise.

getSecurityContext

public Object getSecurityContext()

Returns

An implementation-dependent object that contains enough information about the current execution
environment to perform security checks at a later time.

Description

This method is meant to create an object that encapsulates information about the current execution
environment. The resulting security context object is used by specific versions of the
checkConnect() and checkRead() methods. The intent is that such a security context object
can be used by a trusted method to determine whether or not another, untrusted method can perform a
particular operation.

The getSecurityContext() method of SecurityManager simply returns null. This
method should be overridden to return an appropriate security context object for the security policy that
is being implemented.

getThreadGroup

public ThreadGroup getThreadGroup()

Availability

New as of JDK 1.1

Returns

A ThreadGroup in which to place any threads that are created when this method is called.

Description

This method returns the appropriate parent ThreadGroup for any threads that are created when the
method is called. The getThreadGroup() method of SecurityManager simply returns the
ThreadGroup of the current thread. This method should be overridden to return an appropriate
ThreadGroup.

Protected Instance Methods

classDepth

protected native int classDepth(String name)

Parameters

name

The fully qualified name of a class.

Returns

The number of pending method invocations from the top of the stack to a call to a method of the given
class; -1 if no stack frame in the current thread is associated with a call to a method in the given class.

Description

This method returns the number of pending method invocations between this method invocation and an
invocation of a method associated with the named class.

classLoaderDepth

protected native int classLoaderDepth()

Returns

The number of pending method invocations from the top of the stack to a call to a method that is
associated with a class that was loaded by a ClassLoader object; -1 if no stack frame in the current
thread is associated with a call to such a method.

Description

This method returns the number of pending method invocations between this method invocation and an
invocation of a method associated with a class that was loaded by a ClassLoader object.

currentClassLoader

protected native ClassLoader currentClassLoader()

Returns

The most recent ClassLoader object executing on the stack.

Description

This method finds the most recent pending invocation of a method associated with a class that was
loaded by a ClassLoader object. The method then returns the ClassLoader object that loaded
that class.

currentLoadedClass

protected Class currentLoadedClass()

Availability

New as of JDK 1.1

Returns

The most recent Class object loaded by a ClassLoader.

Description

This method finds the most recent pending invocation of a method associated with a class that was
loaded by a ClassLoader object. The method then returns the Class object for that class.

getClassContext

protected native Class[] getClassContext()

Returns

An array of Class objects that represents the current execution stack.

Description

This method returns an array of Class objects that represents the current execution stack. The length
of the array is the number of pending method calls on the current thread's stack, not including the call
to getClassContext(). Each element of the array references a Class object that describes the
class associated with the corresponding method call. The first element of the array corresponds to the
most recently called method, the second element is that method's caller, and so on.

inClass

protected boolean inClass(String name)

Parameters

name

The fully qualified name of a class.

Returns

true if there is a pending method invocation on the stack for a method of the given class; otherwise
false.

Description

This method determines whether or not there is a pending method invocation that is associated with the
named class.

inClassLoader

protected boolean inClassLoader()

Returns

true if there is a pending method invocation on the stack for a method of a class that was loaded by a
ClassLoader object; otherwise false.

Description

This method determines whether or not there is a pending method invocation that is associated with a
class that was loaded by a ClassLoader object. The method returns true only if the
currentClassLoader() method does not return null.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Class, ClassLoader, DatagramSocket, File, FileDescriptor, FileInputStream,
FileOutputStream, InetAddress, MulticastSocket, Object, RandomAccessFile,
Runtime, SecurityException, ServerSocket, Socket, System, Thread, ThreadGroup,
Toolkit, URL, URLConnection

SecurityException Short

Chapter 12
The java.lang Package

Short

Name

Short

Synopsis

Class Name:

java.lang.Short

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The Short class provides an object wrapper for a short value. This is useful when you need to treat a short value as
an object. For example, there are a number of utility methods that take a reference to an Object as one of their
arguments. You cannot specify a short value for one of these arguments, but you can provide a reference to a Short
object that encapsulates the byte value. Furthermore, the Short class is necessary as of JDK 1.1 to support the

Reflection API and class literals.

The Short class also provides a number of utility methods for converting short values to other primitive types and
for converting short values to strings and vice-versa.

Class Summary

public final class java.lang.Short extends java.lang.Number {
 // Constants
 public static final short MAX_VALUE;
 public static final short MIN_VALUE;
 public static final Class TYPE;
 // Constructors
 public Short(short value);
 public Short(String s);
 // Class Methods
 public static Short decode(String nm);
 public static short parseShort(String s);
 public static short parseShort(String s, int radix);
 public static String toString(short s);
 public static Short valueOf(String s, int radix);
 public static Short valueOf(String s);
 // Instance Methods
 public byte byteValue();
 public double doubleValue();
 public boolean equals(Object obj);
 public float floatValue();
 public int hashCode();
 public int intValue();
 public long longValue();
 public short shortValue();
 public String toString();
}

Constants

MAX_VALUE

public static final short MAX_VALUE= 32767

The largest value that can be represented by a short.

MIN_VALUE

public static final byte MIN_VALUE= -32768

The smallest value that can be represented by a short.

TYPE

public static final Class TYPE

The Class object that represents the primitive type short. It is always true that Short.TYPE == short.class.

Constructors

Short

public Short(short value)

Parameters

value

The short value to be encapsulated by this object.

Description

Creates a Short object with the specified short value.

public Short(String s) throws NumberFormatException

Parameters

s

The string to be made into a Short object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid short literal.

Description

Constructs a Short object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the constructor throws a NumberFormatException.

Class Methods

decode

public static Short decode(String nm) throws NumberFormatException

Parameters

nm

A String representation of the value to be encapsulated by a Short object. If the string begins with #
or 0x, it is a radix 16 representation of the value. If the string begins with 0, it is a radix 8 representation
of the value. Otherwise, it is assumed to be a radix 10 representation of the value.

Returns

A Short object that encapsulates the given value.

Throws

NumberFormatException

If the String contains any non-digit characters other than a leading minus sign or the value represented
by the String is less than Short.MIN_VALUE or greater than Short.MAX_VALUE.

Description

This method returns a Short object that encapsulates the given value.

parseByte

 public static short parseShort(String s) throws NumberFormatException

Parameters

s

The String to be converted to a short value.

Returns

The numeric value of the short represented by the String object.

Throws

NumberFormatException

If the String does not contain a valid representation of a short or the value represented by the
String is less than Short.MIN_VALUE or greater than Short.MAX_VALUE.

Description

This method returns the numeric value of the short represented by the contents of the given String object.
The String must contain only decimal digits, except that the first character may be a minus sign.

 public static short parseShort(String s, int radix) throws NumberFormatException

Parameters

s

The String to be converted to a short value.

radix

The radix used in interpreting the characters in the String as digits. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX. If radix is in the range 2 through 10, only
characters for which the Character.isDigit() method returns true are considered to be valid
digits. If radix is in the range 11 through 36, characters in the ranges `A' through `Z' and `a' through `z'
are considered valid digits.

Returns

The numeric value of the short represented by the String object in the specified radix.

Throws

NumberFormatException

If the String does not contain a valid representation of a short, radix is not in the appropriate range, or
the value represented by the String is less than Short.MIN_VALUE or greater than
Short.MAX_VALUE.

Description

This method returns the numeric value of the short represented by the contents of the given String object in
the specified radix. The String must contain only valid digits of the specified radix, except that the first
character may be a minus sign. The digits are parsed in the specified radix to produce the numeric value.

toString

public String toString(short s)

Parameters

s

The short value to be converted to a string.

Returns

The string representation of the given value.

Description

This method returns a String object that contains the decimal representation of the given value.

This method returns a string that begins with `-' if the given value is negative. The rest of the string is a sequence
of one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if its argument
is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

valueOf

public static Short valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into a Short object.

Returns

The Short object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a short or the value represented by the
String is less than Short.MIN_VALUE or greater than Short.MAX_VALUE.

Description

Constructs a Short object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single `-'. If the string contains any other characters,
the method throws a NumberFormatException.

 public static Short valueOf(String s, int radix) throws NumberFormatException

Parameters

s

The string to be made into a Short object.

radix

The radix used in converting the string to a value. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The Short object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a short, radix is not in the appropriate range,
or the value represented by the String is less than Short.MIN_VALUE or greater than
Short.MAX_VALUE.

Description

Constructs a Short object with the value specified by the given string in the specified radix. The string should
consist of one or more digit characters or characters in the range `A' to `Z' or `a' to `z' that are considered digits in
the given radix. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the method throws a NumberFormatException.

Instance Methods

byteValue

public byte byteValue()

Returns

The value of this object as a byte. The high order bits of the value are discarded.

Overrides

Number.byteValue()

Description

This method returns the value of this object as a byte.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Short and it contains the same value as the object this
method is associated with.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this object as a float.

hashCode

public int hashCode()

Returns

A hashcode based on the short value of the object.

Overrides

Object.hashCode()

Description

This method returns a hash code computed from the value of this object.

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the value of this object as an int.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the value of this object as a long.

shortValue

public short shortValue()

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the value of this object as a short.

toString

public String toString()

Returns

The string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains the decimal representation of the value of this object.

This method returns a string that begins with `-' if the value is negative. The rest of the string is a sequence of one
or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if the value of the
object is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Byte, Character, Class, Double, Float, Integer, Long, Number, String

SecurityManager StackOverflowError

Chapter 12
The java.lang Package

StackOverflowError

Name

StackOverflowError

Synopsis

Class Name:

java.lang.StackOverflowError

Superclass:

java.lang.VirtualMachineError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A StackOverflowError is thrown when a stack overflow error occurs within the virtual machine.

Class Summary

public class java.lang.StackOverflowError
 extends java.lang.VirtualMachineError {
 // Constructors
 public StackOverflowError();
 public StackOverflowError(String s);
}

Constructors

StackOverflowError

public StackOverflowError()

Description

This constructor creates a StackOverflowError with no associated detail message.

public StackOverflowError(String s)<

Parameters

s

The detail message.

Description

This constructor creates a StackOverflowError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, Throwable, VirtualMachineError

Short String

Chapter 12
The java.lang Package

String

Name

String

Synopsis

Class Name:

java.lang.String

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The String class represents sequences of characters. Once a String object is created, it is immutable. In other
words, the sequence of characters that a String represents cannot be changed after it is created. The
StringBuffer class, on the other hand, represents a sequence of characters that can be changed. StringBuffer
objects are used to perform computations on String objects.

The String class includes a number of utility methods, such as methods for fetching individual characters or ranges
of contiguous characters, for translating characters to upper- or lowercase, for searching strings, and for parsing
numeric values in strings.

String literals are compiled into String objects. Where a String literal appears in an expression, the compiled
code contains a String object. If s is declared as String, the following two expressions are identical:

s.equals("ABC")
"ABC".equals(s)

The string concatenation operator implicitly creates String objects.

Class Summary

public final class java.lang.String extends java.lang.Object {
 // Constructors
 public String();
 public String(byte[] bytes); // New in 1.1
 public String(byte[] bytes, String enc); // New in 1.1
 public String(byte[] bytes, int offset, int length); // New in 1.1
 public String(byte[] bytes, int offset,
 int length, String enc); // New in 1.1
 public String(byte[] lowbytes, int hibyte); // Deprecated in 1.1
 public String(byte[] lowbytes, int hibyte,
 int offset, int count); // Deprecated in 1.1
 public String(char[] value);
 public String(char[] value, int offset, int;
 public String(String value);
 public String(StringBuffer buffer);
 // Class Methods
 public static String copyValueOf(char data[]);
 public static String copyValueOf(char data[], int offset, int count);
 public static String valueOf(boolean b);
 public static String valueOf(char c);
 public static String valueOf(char[] data);
 public static String valueOf(char[] data, int offset, int count);
 public static String valueOf(double d);
 public static String valueOf(float f);
 public static String valueOf(int i);
 public static String valueOf(long l);
 public static String valueOf(Object obj);
 // Instance Methods
 public char charAt(int index);
 public int compareTo(String anotherString);
 public String concat(String str);
 public boolean endsWith(String suffix);
 public boolean equals(Object anObject);

 public boolean equalsIgnoreCase(String anotherString);
 public byte[] getBytes(); // New in 1.1
 public byte[] getBytes(String enc); // New in 1.1
 public void getBytes(int srcBegin, int srcEnd,
 byte[] dst, int dstBegin); // Deprecated in 1.1
 public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
 public int hashCode();
 public int indexOf(int ch);
 public int indexOf(int ch, int fromIndex);
 public int indexOf(String str);
 public int indexOf(String str, int fromIndex);
 public native String intern();
 public int lastIndexOf(int ch);
 public int lastIndexOf(int ch, int fromIndex);
 public int lastIndexOf(String str);
 public int lastIndexOf(String str, int fromIndex;
 public int length();
 public boolean regionMatches(boolean ignoreCase, int toffset,
 String other, int ooffset, int len);
 public boolean regionMatches(int toffset, String other,
 int ooffset, int len);
 public String replace(char oldChar, char newChar);
 public boolean startsWith(String prefix);
 public boolean startsWith(String prefix, int toffset);
 public String substring(int beginIndex);
 public String substring(int beginIndex, int endIndex);
 public char[] toCharArray();
 public String toLowerCase();
 public String toLowerCase(Locale locale); // New in 1.1
 public String toString();
 public String toUpperCase();
 public String toUpperCase(Locale locale); // New in 1.1
 public String trim();
}

Constructors

String

public String()

Description

Creates a new String object that represents the empty string (i.e., a string with zero characters).

public String(byte[] bytes)

Availability

New as of JDK 1.1

Parameters

bytes

An array of byte values.

Description

Creates a new String object that represents the sequence of characters stored in the given bytes array. The
bytes in the array are converted to characters using the system's default character encoding scheme.

public String(byte[] bytes, String enc)

Availability

New as of JDK 1.1

Parameters

bytes

An array of byte values.

enc

The name of an encoding scheme.

Throws

UnsupportedEncodingException

If enc is not a supported encoding scheme.

Description

Creates a new String object that represents the sequence of characters stored in the given bytes array. The
bytes in the array are converted to characters using the specified character encoding scheme.

public String(byte[] bytes, int offset, int length)

Availability

New as of JDK 1.1

Parameters

bytes

An array of byte values.

offset

An offset into the array.

length

The number of bytes to be included.

Throws

StringIndexOutOfBoundsException

If offset or length indexes an element that is outside the bounds of the bytes array.

Description

Creates a new String object that represents the sequence of characters stored in the specified portion of the
given bytes array. The bytes in the array are converted to characters using the system's default character
encoding scheme.

 public String(byte[] bytes, int offset, int length, String enc)

Availability

New as of JDK 1.1

Parameters

bytes

An array of byte values.

offset

An offset into the array.

length

The number of bytes to be included.

enc

The name of an encoding scheme.

Throws

StringIndexOutOfBoundsException

If offset or length indexes an element that is outside the bounds of the bytes array.

UnsupportedEncodingException

If enc is not a supported encoding scheme.

Description

Creates a new String object that represents the sequence of characters stored in the specified portion of the
given bytes array. The bytes in the array are converted to characters using the specified character encoding
scheme.

public String(byte[] lowbytes, int hibyte)

Availability

Deprecated as of JDK 1.1

Parameters

lowbytes

An array of byte values.

hibyte

The value to be put in the high-order byte of each 16-bit character.

Description

Creates a new String object that represents the sequence of characters stored in the given lowbytes array.
The type of the array elements is byte, which is an 8-bit data type, so each element must be converted to a
char, which is a 16-bit data type. The value of the hibyte argument is used to provide the value of the high-
order byte when the byte values in the array are converted to char values.

More specifically, for each element i in the array lowbytes, the character at position i in the created
String object is:

((hibyte & 0xff)<<8) | lowbytes[i]

This method is deprecated as of JDK 1.1 because it does not convert bytes into characters properly. You should
instead use one of the constructors that takes a specific character encoding argument or that uses the default
encoding.

 public String(byte[] lowbytes, int hibyte, int offset, int count)

Availability

Deprecated as of JDK 1.1

Parameters

lowbytes

An array of byte values.

hibyte

The value to be put in the high-order byte of each 16-bit character.

offset

An offset into the array.

count

The number of bytes from the array to be included in the string.

Throws

StringIndexOutOfBoundsException

If offset or count indexes an element that is outside the bounds of the lowbytes array.

Description

Creates a new String object that represents the sequence of characters stored in the specified portion of the
lowbytes array. That is, the portion of the array that starts at offset elements from the beginning of the
array and is count elements long.

The type of the array elements is byte, which is an 8-bit data type, so each element must be converted to a
char, which is a 16-bit data type. The value of the hibyte argument is used to provide the value of the high-
order byte when the byte values in the array are converted to char values.

More specifically, for each element i in the array lowbytes that is included in the String object, the
character at position i in the created String is:

 ((hibyte & 0xff)<<8) | lowbytes[I]

This method is deprecated as of JDK 1.1 because it does not convert bytes into characters properly. You should
instead use one of the constructors that takes a specific character encoding argument or that uses the default
encoding.

public String(char[] value)

Parameters

value

An array of char values.

Description

Creates a new String object that represents the sequence of characters stored in the given array.

public String(char[] value, int offset, int count)

Parameters

value

An array of char values.

offset

An offset into the array.

count

The number of characters from the array to be included in the string.

Throws

StringIndexOutOfBoundsException

If offset or count indexes an element that is outside the bounds of the value array.

Description

Creates a new String object that represents the sequence of characters stored in the specified portion of the

given array. That is, the portion of the given array that starts at offset elements from the beginning of the
array and is count elements long.

public String(String value)

Parameters

value

A String object.

Description

Creates a new String object that represents the same sequence of characters as the given String object.

public String(StringBuffer value)

Parameters

value

A StringBuffer object.

Description

Creates a new String object that represents the same sequence of characters as the given object.

Class Methods

copyValueOf

public static String copyValueOf(char data[])

Parameters

data

An array of char values.

Returns

A new String object that represents the sequence of characters stored in the given array.

Description

This method returns a new String object that represents the character sequence contained in the given array.
The String object produced by this method is guaranteed not to refer to the given array, but instead to use a
copy. Because the String object uses a copy of the array, subsequent changes to the array do not change the
contents of this String object.

This method is now obsolete. The same result can be obtained using the valueOf() method that takes an
array of char values.

 public static String copyValueOf(char data[], int offset, int count)

Parameters

data

An array of char values.

offset

An offset into the array.

count

The number of characters from the array to be included in the string.

Returns

A new String object that represents the sequence of characters stored in the specified portion of the given
array.

Throws

StringIndexOutOfBoundsException

If offset or count indexes an element that is outside the bounds of the data array.

Description

This method returns a new String object that represents the character sequence contained in the specified
portion of the given array. That is, the portion of the given array that starts at offset elements from the
beginning of the array and is count elements long. The String object produced by this method is guaranteed
not to refer to the given array, but instead to use a copy. Because the String object uses a copy of the array,
subsequent changes to the array do not change the contents of this String object.

This method is obsolete. The same result can be obtained by using the valueOf() method that takes an array
of char values, an offset, and a count.

valueOf

public static String valueOf(boolean b)

Parameters

b

A boolean value.

Returns

A new String object that contains 'true' if b is true or 'false' if b is false.

Description

This method returns a string representation of a boolean value. In other words, it returns 'true' if b is
true or 'false' if b is false.

public static String valueOf(char c)

Parameters

c

A char value.

Returns

A new String object that contains just the given character.

Description

This method returns a string representation of a char value. In other words, it returns a String object that
contains just the given character.

public static String valueOf(char[] data)

Parameters

data

An array of char values.

Returns

A new String object that contains the sequence of characters stored in the given array.

Description

This method returns a string representation of an array of char values. In other words, it returns a String
object that contains the sequence of characters stored in the given array.

 public static String valueOf(char[] data, int offset, int count)

Parameters

data

An array of char values.

offset

An offset into the array.

count

The number of characters from the array to be included in the string.

Returns

A new String object that contains the sequence of characters stored in the specified portion of the given array.

Throws

StringIndexOutOfBoundsException

If offset or count indexes an element that is outside the bounds of the data array.

Description

This method returns a string representation of the specified portion of an array of char values. In other words, it
returns a String object that contains the sequence of characters in the given array that starts offset
elements from the beginning of the array and is count elements long.

public static String valueOf(double d)

Parameters

d

A double value.

Returns

A new String object that contains a string representation of the given double value.

Description

This method returns a string representation of a double value. In other words, it returns the String object
returned by Double.toString(d).

public static String valueOf(float f)

Parameters

f

A float value.

Returns

A new String object that contains a string representation of the given float value.

Description

This method returns a string representation of a float value. In other words, it returns the String object
returned by Float.toString(f).

public static String valueOf(int i)

Parameters

i

An int value.

Returns

A new String object that contains a string representation of the given int value.

Description

This method returns a string representation of an int value. In other words, it returns the String object
returned by Integer.toString(i).

public static String valueOf(long l)

Parameters

l

A long value.

Returns

A new String object that contains a string representation of the given long value.

Description

This method returns a string representation of a long value. In other words, it returns the String object
returned by Long.toString(l).

public static String valueOf (Object obj)

Parameters

obj

A reference to an object.

Returns

A new String that contains a string representation of the given object.

Description

This method returns a string representation of the given object. If obj is null, the method returns'null'.
Otherwise, the method returns the String object returned by the toString() method of the object.

Instance Methods

charAt

public char charAt(int index)

Parameters

index

An index into the string.

Returns

The character at the specified position in this string.

Throws

StringIndexOutOfBoundsException

If index is less than zero or greater than or equal to the length of the string.

Description

This method returns the character at the specified position in the String object; the first character in the string
is at position 0.

compareTo

public int compareTo(String anotherString)

Parameters

anotherString

The String object to be compared.

Returns

A positive value if this string is greater than anotherString, 0 if the two strings are the same, or a negative
value if this string is less than anotherString.

Description

This method lexicographically compares this String object to anotherString.

Here is how the comparison works: the two String objects are compared character-by-character, starting at
index 0 and continuing until a position is found in which the two strings contain different characters or until all
of the characters in the shorter string have been compared. If the characters at k are different, the method
returns:

this.charAt(k)-anotherString.charAt(k)

Otherwise, the comparison is based on the lengths of the strings and the method returns:

this.length()-anotherString.length()

concat

public String concat(String str)

Parameters

str

The String object to be concatenated.

Returns

A new String object that contains the character sequences of this string and str concatenated together.

Description

This method returns a new String object that concatenates the characters from the argument string str onto
the characters from this String object. Although this is a good way to concatenate two strings, concatenating
more than two strings can be done more efficiently using a StringBuffer object.

endsWith

public boolean endsWith(String suffix)

Parameters

suffix

The String object suffix to be tested.

Returns

true if this string ends with the sequence of characters specified by suffix; otherwise false.

Description

This method determines whether or not this String object ends with the specified suffix.

equals

public boolean equals(Object anObject)

Parameters

anObject

The Object to be compared.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if anObject is an instance of String and it contains the same sequence of
characters as this String object.

Note the difference between this method and the == operator, which only returns true if both of its arguments
are references to the same object.

equalsIgnoreCase

public boolean equalsIgnoreCase(String anotherString)

Parameters

anotherString

The String object to be compared.

Returns

true if the strings are equal, ignoring case; otherwise false.

Description

This method determines whether or not this String object contains the same sequence of characters, ignoring
case, as anotherString. More specifically, corresponding characters in the two strings are considered equal
if any of the following conditions are true:

❍ The two characters compare as equal using the == operator.

❍ The Character.toUppercase() method returns the same result for both characters.

❍ The Character.toLowercase() method returns the same result for both characters.

getBytes

 public byte[] getBytes()

Availability

New as of JDK 1.1

Returns

A byte array that contains the characters of this String.

Description

This method converts the characters in this String object to an array of byte values. The characters in the
string are converted to bytes using the system's default character encoding scheme.

 public byte[] getBytes(String enc)

Availability

New as of JDK 1.1

Parameters

enc

The name of an encoding scheme.

Returns

A byte array that contains the characters of this String.

Throws

UnsupportedEncodingException

If enc is not a supported encoding scheme.

Description

This method converts the characters in this String object to an array of byte values. The characters in the
string are converted to bytes using the specified character encoding scheme.

 public void getBytes(int srcBegin, int srcEnd, byte[] dst, int dstBegin)

Availability

Deprecated as of JDK 1.1

Parameters

srcBegin

The index of the first character to be copied.

srcEnd

The index after the last character to be copied.

dst

The destination byte array.

dstBegin

An offset into the destination array.

Throws

StringIndexOutOfBoundsException

If srcBegin, srcEnd, or dstBegin is out of range.

Description

This method copies the low-order byte of each character in the specified range of this String object to the
given array of byte values. More specifically, the first character to be copied is at index srcBegin; the last
character to be copied is at index srcEnd-1. The low-order bytes of these characters are copied into dst,
starting at index dstBegin and ending at index:

dstBegin + (srcEnd-srcBegin) - 1

This method is deprecated as of JDK 1.1 because it does not convert characters into bytes properly. You should
instead use the getBytes() method that takes a specific character encoding argument or the one that uses the
default encoding.

getChars

 public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

Parameters

srcBegin

The index of the first character to be copied.

srcEnd

The index after the last character to be copied.

dst

The destination char array.

dstBegin

An offset into the destination array.

Throws

StringIndexOutOfBoundsException

If srcBegin, srcEnd, or dstBegin is out of range.

Description

This method copies each character in the specified range of this String object to the given array of char
values. More specifically, the first character to be copied is at index srcBegin; the last character to be copied
is at index srcEnd-1. These characters are copied into dst, starting at index dstBegin and ending at index:

dstBegin + (srcEnd-srcBegin) - 1

hashCode

public int hashCode()

Returns

A hashcode based on the sequence of characters in this string.

Overrides

Object.hashCode()

Description

This method returns a hashcode based on the sequence of characters this String object represents.

More specifically, one of two algorithms is used to compute a hash code for the string, depending on its length.
If n is the length of the string and S_i is the character at position i in the string, then if n = 15 the method returns:

Mathematical Equation

If n > 15, the method returns:

Mathematical Equation

indexOf

public int indexOf(int ch)

Parameters

ch

A char value.

Returns

The index of the first occurrence of the given character in this string or -1 if the character does not occur.

Description

This method returns the index of the first occurrence of the given character in this String object. If there is no
such occurrence, the method returns the value -1.

public int indexOf(int ch, int fromIndex)

Parameters

ch

A char value.

fromIndex

The index where the search is to begin.

Returns

The index of the first occurrence of the given character in this string after fromIndex or -1 if the character
does not occur.

Description

This method returns the index of the first occurrence of the given character in this String object after ignoring
the first fromIndex characters. If there is no such occurrence, the method returns the value -1.

public int indexOf(String str)

Parameters

str

A String object.

Returns

The index of the first occurrence of str in this string or -1 if the substring does not occur.

Description

This method returns the index of the first character of the first occurrence of the substring str in this String
object. If there is no such occurrence, the method returns the value -1.

public int indexOf(String str, int fromIndex)

Parameters

str

A String object.

fromIndex

The index where the search is to begin.
Returns

The index of the first occurrence of str in this string after fromIndex or -1 if the substring does not occur.

Description

This method returns the index of the first character of the first occurrence of the substring str in this String
object after ignoring the first fromIndex characters. If there is no such occurrence, the method returns the
value -1.

intern

public native String intern()

Returns

A String object that is guaranteed to be the same object for every String that contains the same character
sequence.

Description

This method returns a canonical representation for this String object. The returned String object is
guaranteed to be the same String object for every String object that contains the same character sequence.
In other words, if:

s1.equals(s2)

then:

s1.intern() == s2.intern()

The intern() method is used by the Java environment to ensure that String literals and constant-value
String expressions that contain the same sequence of characters are all represented by a single String
object.

lastIndexOf

public int lastIndexOf(int ch)

Parameters

ch

A char value.

Returns

The index of the last occurrence of the given character in this string or -1 if the character does not occur.

Description

This method returns the index of the last occurrence of the given character in this String object. If there is no
such occurrence, the method returns the value -1.

public int lastIndexOf(int ch, int fromIndex)

Parameters

ch

A char value.

fromIndex

The index where the search is to begin.

Returns

The index of the last occurrence of the given character in this string after fromIndex or -1 if the character
does not occur.

Description

This method returns the index of the last occurrence of the given character in this String object after ignoring
the first fromIndex characters. If there is no such occurrence, the method returns the value -1.

public int lastIndexOf(String str)

Parameters

str

A String object.

Returns

The index of the last occurrence of str in this string or -1 if the substring does not occur.

Description

This method returns the index of the first character of the last occurrence of the substring str in this String
object. If there is no such occurrence, the method returns the value -1.

public int lastIndexOf(String str, int fromIndex)

Parameters

str

A String object.

fromIndex

The index where the search is to begin.

Returns

The index of the last occurrence of str in this string after fromIndex or -1 if the substring does not occur.

Description

This method returns the index of the first character of the last occurrence of the substring str in this String
object after ignoring the first fromIndex characters. If there is no such occurrence, the method returns the
value -1.

length

public int length()

Returns

The length of the character sequence represented by this string.

Description

This method returns the number of characters in the character sequence represented by this String object.

regionMatches

 public boolean regionMatches(int toffset, String other, int ooffset, int len)

Parameters

toffset

The index of the first character in this string.

other

The String object to be used in the comparison.

ooffset

The index of the first character in other.

len

The length of the sub-sequences to be compared.

Returns

true if the sub-sequences are identical; otherwise false.

Description

This method determines whether or not the specified sub-sequences in this String object and other are
identical. The method returns false if toffset is negative, if ooffset is negative, if toffset+len is
greater than the length of this string, or if ooffset+len is greater than the length of other. Otherwise, the
method returns true if for all nonnegative integers k less than len it is true that:

this.charAt(toffset+k) == other.charAt(ooffset+k)

 public boolean regionMatches(boolean ignoreCase, int toffset, String other, int
ooffset, int len)

Parameters

ignoreCase

A boolean value that indicates whether case should be ignored.

toffset

The index of the first character in this string.

other

The String object to be used in the comparison.

ooffset

The index of the first character in other.

len

The length of the sub-sequences to be compared.

Returns

true if the sub-sequences are identical; otherwise false. The ignoreCase argument controls whether or
not case is ignored in the comparison.

Description

This method determines whether or not the specified sub-sequences in this String object and other are
identical. The method returns false if toffset is negative, if ooffset is negative, if toffset+len is
greater than the length of this string, or if ooffset+len is greater than the length of other. Otherwise, if
ignoreCase is false, the method returns true if for all nonnegative integers k less than len it is true that:

this.charAt(toffset+k) == other.charAt(ooffset+k)

If ignoreCase is true, the method returns true if for all nonnegative integers k less than len it is true
that:

Character.toLowerCase(this.charAt(toffset+k))
== Character.toLowerCase(other.charAt(ooffset+k))

or:

Character.toUpperCase(this.charAt(toffset+k))
== Character.toUpperCase(other.charAt(ooffset+k))

replace

public String replace(char oldChar, char newChar)

Parameters

oldChar

The character to be replaced.

newChar

The replacement character.

Returns

A new String object that results from replacing every occurrence of oldChar in the string with newChar.

Description

This method returns a new String object that results from replacing every occurrence of oldChar in this
String object with newChar. If there are no occurrences of oldChar, the method simply returns this
String object.

startsWith

public boolean startsWith(String prefix)

Parameters

prefix

The String object prefix to be tested.

Returns

true if this string begins with the sequence of characters specified by prefix; otherwise false.

Description

This method determines whether or not this String object begins with the specified prefix.

public boolean startsWith(String prefix, int toffset)

Parameters

prefix

The String object prefix to be tested.

toffset

The index where the search is to begin.

Returns

true if this string contains the sequence of characters specified by prefix starting at the index toffset;
otherwise false.

Description

This method determines whether or not this String object contains the specified prefix at the index
specified by toffset.

substring

public String substring(int beginIndex)

Parameters

beginIndex

The index of the first character in the substring.

Returns

A new String object that contains the sub-sequence of this string that starts at beginIndex and extends to
the end of the string.

Throws

StringIndexOutOfBoundsException

If beginIndex is less than zero or greater than or equal to the length of the string.

Description

This method returns a new String object that represents a sub-sequence of this String object. The sub-
sequence consists of the characters starting at beginIndex and extending through the end of this String
object.

public String substring(int beginIndex, int endIndex)

Parameters

beginIndex

The index of the first character in the substring.

endIndex

The index after the last character in the substring.

Returns

A new String object that contains the sub-sequence of this string that starts at beginIndex and extends to
the character at endindex-1.

Throws

StringIndexOutOfBoundsException

If beginIndex or endIndex is less than zero or greater than or equal to the length of the string.

Description

This method returns a new String object that represents a sub-sequence of this String object. The sub-
sequence consists of the characters starting at beginIndex and extending through endIndex-1 of this
String object.

toCharArray

public char[] toCharArray()

Returns

A new char array that contains the same sequence of characters as this string.

Description

This method returns a new char array that contains the same sequence of characters as this Stringobject.
The length of the array is the same as the length of this String object.

toLowerCase

public String toLowerCase()

Returns

A new String object that contains the characters of this string converted to lowercase.

Description

This method returns a new String that represents a character sequence of the same length as this String
object, but with each character replaced by its lowercase equivalent if it has one. If no character in the string has
a lowercase equivalent, the method returns this String object.

public String toLowerCase(Locale locale)

Availability

New as of JDK 1.1

Parameters

locale

The Locale to use.

Returns

A new String object that contains the characters of this string converted to lowercase using the rules of the
specified locale.

Description

This method returns a new String that represents a character sequence of the same length as this String
object, but with each character replaced by its lowercase equivalent if it has one according to the rules of the
specified locale. If no character in the string has a lowercase equivalent, the method returns this String object.

toString

public String toString()

Returns

This String object.

Overrides

Object.toString()

Description

This method returns this String object.

toUpperCase

public String toUpperCase()

Returns

A new String object that contains the characters of this string converted to uppercase.

Description

This method returns a new String that represents a character sequence of the same length as this String
object, but with each character replaced by its uppercase equivalent if it has one. If no character in the string has
an uppercase equivalent, the method returns this String object.

public String toUpperCase(Locale locale)

Availability

New as of JDK 1.1

Parameters

locale

The Locale to use.

Returns

A new String object that contains the characters of this string converted to uppercase using the rules of the
specified locale.

Description

This method returns a new String that represents a character sequence of the same length as this String
object, but with each character replaced by its uppercase equivalent if it has one according to the rules of the
specified locale. If no character in the string has an uppercase equivalent, the method returns this String
object.

trim

public String trim()

Returns

A new String object that represents the same character sequence as this string, but with leading and trailing
whitespace and control characters removed.

Description

If the first and last character in this String object are greater than '\u0020' (the space character), the
method returns this String object. Otherwise, the method returns a new String object that contains the same
character sequence as this String object, but with leading and trailing characters that are less than
'\u0020'' removed.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Class, Character, Double, Float, Integer, Locale, Long, Object, StringBuffer,
StringIndexOutOfBoundsException, UnsupportedEncodingException

StackOverflowError StringBuffer

Chapter 12
The java.lang Package

StringBuffer

Name

StringBuffer

Synopsis

Class Name:

java.lang.StringBuffer

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The StringBuffer class represents a variable-length sequence of characters. StringBuffer objects are used
in computations that involve creating new String objects. The StringBuffer class provides a number of

utility methods for working with StringBuffer objects, including append() and insert() methods that
add characters to a StringBuffer and methods that fetch the contents of StringBuffer objects.

When a StringBuffer object is created, the constructor determines the initial contents and capacity of the
StringBuffer. The capacity of a StringBuffer is the number of characters that its internal data structure
can hold. This is distinct from the length of the contents of a StringBuffer, which is the number of characters
that are actually stored in the StringBuffer object. The capacity of a StringBuffer can vary. When a
StringBuffer object is asked to hold more characters than its current capacity allows, the StringBuffer
enlarges its internal data structure. However, it is more costly in terms of execution time and memory when a
StringBuffer has to repeatedly increase its capacity than when a StringBuffer object is created with
sufficient capacity.

Because the intended use of StringBuffer objects involves modifying their contents, all methods of the
StringBuffer class that modify StringBuffer objects are synchronized. This means that is it safe for
multiple threads to try to modify a StringBuffer object at the same time.

StringBuffer objects are used implicitly by the string concatenation operator. Consider the following code:

String s, s1, s2;
s = s1 + s2;

To compute the string concatenation, the Java compiler generates code like:

s = new StringBuffer().append(s1).append(s2).toString();

Class Summary

public class java.lang.StringBuffer extends java.lang.Object {
 // Constructors
 public StringBuffer();
 public StringBuffer(int length);
 public StringBuffer(String str);
 // Instance Methods
 public StringBuffer append(boolean b);
 public synchronized StringBuffer append(char c);
 public synchronized StringBuffer append(char[] str);
 public synchronized StringBuffer append(char[] str, int offset, int len);
 public StringBuffer append(double d);
 public StringBuffer append(float f);
 public StringBuffer append(int i);
 public StringBuffer append(long l);
 public synchronized StringBuffer append(Object obj);
 public synchronized StringBuffer append(String str);
 public int capacity();
 public synchronized char charAt(int index);
 public synchronized void ensureCapacity(int minimumCapacity);

 public synchronized void getChars(int srcBegin, int srcEnd,
 char[] dst, int dstBegin);
 public StringBuffer insert(int offset, boolean b);
 public synchronized StringBuffer insert(int offset, char c);
 public synchronized StringBuffer insert(int offset, char[] str);
 public StringBuffer insert(int offset, double d);
 public StringBuffer insert(int offset, float f);
 public StringBuffer insert(int offset, int i);
 public StringBuffer insert(int offset, long l);
 public synchronized StringBuffer insert(int offset, Object obj);
 public synchronized StringBuffer insert(int offset, String str);
 public int length();
 public synchronized StringBuffer reverse();
 public synchronized void setCharAt(int index, char ch);
 public synchronized void setLength(int newLength);
 public String toString();
}

Constructors

StringBuffer

public StringBuffer()

Description

Creates a StringBuffer object that does not contain any characters and has a capacity of 16 characters.

public StringBuffer(int capacity)

Parameters

capacity

The initial capacity of this StringBufffer object.

Throws

NegativeArraySizeException

If capacity is negative.

Description

Creates a StringBuffer object that does not contain any characters and has the specified capacity.

public StringBuffer(String str)

Parameters

str

A String object.

Description

Creates a StringBuffer object that contains the same sequence of characters as the given String
object and has a capacity 16 greater than the length of the String.

Instance Methods

append

public StringBuffer append(boolean b)

Parameters

b

A boolean value.

Returns

This StringBuffer object.

Description

This method appends either "true" or "false" to the end of the sequence of characters stored in ths
StringBuffer object, depending on the value of b.

public synchronized StringBuffer append(char c)

Parameters

c

A char value.

Returns

This StringBuffer object.

Description

This method appends the given character to the end of the sequence of characters stored in this
StringBuffer object.

public synchronized StringBuffer append(char str[])

Parameters

str

An array of char values.

Returns

This StringBuffer object.

Description

This method appends the characters in the given array to the end of the sequence of characters stored in this
StringBuffer object.

 public synchronized StringBuffer append(char str[], int offset, int len)

Parameters

str

An array of char values.

offset

An offset into the array.

len

The number of characters from the array to be appended.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset or len are out of range.

Description

This method appends the specified portion of the given array to the end of the character sequence stored in
this StringBuffer object. The portion of the array that is appended starts offset elements from the
beginning of the array and is len elements long.

public StringBuffer append(double d)

Parameters

d

A double value.

Returns

This StringBuffer object.

Description

This method converts the given double value to a string using Double.toString(d) and appends the
resulting string to the end of the sequence of characters stored in this StringBuffer object.

public StringBuffer append(float f)

Parameters

f

A float value.

Returns

This StringBuffer object.

Description

This method converts the given float value to a string using Float.toString(f) and appends the
resulting string to the end of the sequence of characters stored in this StringBuffer object.

public StringBuffer append(int i)

Parameters

i

An int value.

Returns

This StringBuffer object.

Description

This method converts the given int value to a string using Integer.toString(i) and appends the
resulting string to the end of the sequence of characters stored in this StringBuffer object.

public StringBuffer append(long l)

Parameters

l

A long value.

Returns

This StringBuffer object.

Description

This method converts the given long value to a string using Long.toString(l) and appends the
resulting string to the end of the sequence of characters stored in this StringBuffer object.

public synchronized StringBuffer append(Object obj)

Parameters

obj

A reference to an object.

Returns

This StringBuffer object.

Description

This method gets the string representation of the given object by calling String.valueOf(obj) and
appends the resulting string to the end of the character sequence stored in this StringBuffer object.

public synchronized StringBuffer append(String str)

Parameters

str

A String object.

Returns

This StringBuffer object.

Description

This method appends the sequence of characters represented by the given String to the characters in this
StringBuffer object. If str is null, the string "null" is appended.

capacity

public int capacity()

Returns

The capacity of this StringBuffer object.

Description

This method returns the current capacity of this object. The capacity of a StringBuffer object is the
number of characters that its internal data structure can hold. A StringBuffer object automatically
increases its capacity when it is asked to hold more characters than its current capacity allows.

charAt

public synchronized char charAt(int index)

Parameters

index

An index into the StringBuffer.

Returns

The character stored at the specified position in this StringBuffer object.

Throws

StringIndexOutOfBoundsException

If index is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method returns the character at the specified position in the StringBuffer object. The first
character in the StringBuffer is at index 0.

ensureCapacity

public synchronized void ensureCapacity(int minimumCapacity)

Parameters

minimumCapacity

The minimum desired capacity.

Description

This method ensures that the capacity of this StringBuffer object is at least the specified number of
characters. If necessary, the capacity of this object is increased to the greater of minimumCapacity or
double its current capacity plus two.

It is more efficient to ensure that the capacity of a StringBuffer object is sufficient to hold all of the
additions that will be made to its contents, rather than let the StringBuffer increase its capacity in
multiple increments.

getChars

 public synchronized void getChars(int srcBegin, int srcEnd, char dst[], int

dstBegin)

Parameters

srcBegin

The index of the first character to be copied.

srcEnd

The index after the last character to be copied.

dst

The destination char array.

dstBegin

An offset into the destination array.

Throws

StringIndexOutOfBoundsException

If srcBegin, srcEnd, or dstBegin is out of range.

Description

This method copies each character in the specified range of this StringBuffer object to the given array
of char values. More specifically, the first character to be copied is at index srcBegin; the last character
to be copied is at index srcEnd-1.

These characters are copied into dst, starting at index dstBegin and ending at index:

dstBegin + (srcEnd-srcBegin) - 1

insert

public StringBuffer insert(int offset, boolean b)

Parameters

offset

An offset into the StringBuffer.

b

A boolean value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is out of range.

Description

This method inserts either "true" or "false" into the sequence of characters stored in this
StringBuffer object, depending on the value of b. The string is inserted at a position offset
characters from the beginning of the sequence. If offset is 0, the string is inserted before the first
character in the StringBuffer.

public synchronized StringBuffer insert(int offset, char c)

Parameters

offset

An offset into the StringBuffer.

c

A char value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method inserts the given character into the sequence of characters stored in this StringBuffer
object. The character is inserted at a position offset characters from the beginning of the sequence. If
offset is 0, the character is inserted before the first character in the StringBuffer.

public synchronized StringBuffer insert(int offset, char str[])

Parameters

offset

An offset into the StringBuffer.

str

An array of char values.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method inserts the characters in the given array into the sequence of characters stored in this
StringBuffer object. The characters are inserted at a position offset characters from the beginning
of the sequence. If offset is 0, the characters are inserted before the first character in the
StringBuffer.

public StringBuffer insert(int offset, double d)

Parameters

offset

An offset into the StringBuffer.

d

A double value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method converts the given double value to a string using Double.toString(d) and inserts the
resulting string into the sequence of characters stored in this StringBuffer object. The string is inserted
at a position offset characters from the beginning of the sequence. If offset is 0, the string is inserted
before the first character in the StringBuffer.

public StringBuffer insert(int offset, float f)

Parameters

offset

An offset into the StringBuffer.

f

A float value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method converts the given float value to a string using Float.toString(f) and inserts the
resulting string into the sequence of characters stored in this StringBuffer object. The string is inserted

at a position offset characters from the beginning of the sequence. If offset is 0, the string is inserted
before the first character in the StringBuffer.

public StringBuffer insert(int offset, int i)

Parameters

offset

An offset into the StringBuffer.

i

An int value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method converts the given int value to a string using Integer.toString(i) and inserts the
resulting string into the sequence of characters stored in this StringBuffer object. The string is inserted
at a position offset characters from the beginning of the sequence. If offset is 0, the string is inserted
before the first character in the StringBuffer.

public StringBuffer insert(int offset, long l)

Parameters

offset

An offset into the StringBuffer.

l

A long value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method converts the given long value to a string using Long.toString(l) and inserts the
resulting string into the sequence of characters stored in this StringBuffer object. The string is inserted
at a position offset characters from the beginning of the sequence. If offset is 0, the string is inserted
before the first character in the StringBuffer.

public synchronized StringBuffer insert(int offset, Object obj)

Parameters

offset

An offset into the StringBuffer.

obj

A reference to an object.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method gets the string representation of the given object by calling String.valueOf(obj) and
inserts the resulting string into the sequence of characters stored in this StringBuffer object. The string
is inserted at a position offset characters from the beginning of the sequence. If offset is 0, the string
is inserted before the first character in the StringBuffer.

public synchronized StringBuffer insert(int offset, String str)

Parameters

offset

An offset into the StringBuffer.

str

A String object.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method inserts the sequence of characters represented by the given String into the sequence of
characters stored in this StringBuffer object. If str is null, the string "null" is inserted. The
string is inserted at a position offset characters from the beginning of the sequence. If offset is 0, the
string is inserted before the first character in the StringBuffer.

length

public int length()

Returns

The number of characters stored in this StringBuffer object.

Description

This method returns the number of characters stored in this StringBuffer object. The length is distinct
from the capacity of a StringBuffer, which is the number of characters that its internal data structure
can hold.

reverse

public synchronized StringBuffer reverse()

Returns

This StringBuffer object.

Description

This method reverses the sequence of characters stored in this StringBuffer object.

setCharAt

public synchronized void setCharAt(int index, char ch)

Parameters

index

The index of the character to be set.

ch

A char value.

Throws

StringIndexOutOfBoundsException

If index is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method modifies the character located index characters from the beginning of the sequence of
characters stored in this StringBuffer object. The current character at this position is replaced by the
character ch.

setLength

public synchronized void setLength(int newLength)

Parameters

newLength

The new length for this StringBuffer.

Throws

StringIndexOutOfBoundsException

If index is less than zero.

Description

This method sets the length of the sequence of characters stored in this StringBuffer object. If the
length is set to be less than the current length, characters are lost from the end of the character sequence. If
the length is set to be more than the current length, NUL characters (\u0000) are added to the end of the
character sequence.

toString

public String toString()

Returns

A new String object that represents the same sequence of characters as the sequence of characters stored
in this StringBuffer object.

Overrides

Object.toString()

Description

This method returns a new String object that represents the same sequence of characters as the sequence
of characters stored in this StringBuffer object. Note that any subsequent changes to the contents of
this StringBuffer object do not affect the contents of the String object created by this method.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Class, Double, Float, Integer, Long, Object, String, StringIndexOutOfBoundsException

String StringIndexOutOfBoundsException

Chapter 12
The java.lang Package

StringIndexOutOfBoundsException

Name

StringIndexOutOfBoundsException

Synopsis

Class Name:

java.lang.StringIndexOutOfBoundsException

Superclass:

java.lang.IndexOutOfBoundsException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A StringIndexOutOfBoundsException is thrown when a String or StringBuffer object detects

an out-of-range index. An out-of-range index occurs when the index is less than zero, or greater than or equal to
the length of the string.

Class Summary

public class java.lang.StringIndexOutOfBoundsException
 extends java.lang.IndexOutOfBoundsException {
 // Constructors
 public StringIndexOutOfBoundsException();
 public StringIndexOutOfBoundsException(int index);
 public StringIndexOutOfBoundsException(String s);
}

Constructors

StringIndexOutOfBoundsException

public StringIndexOutOfBoundsException()

Description

This constructor creates a StringIndexOutOfBoundsException with no associated detail
message.

public StringIndexOutOfBoundsException(int index)

Parameters

index

The index value that was out of bounds

Description

This constructor creates an StringIndexOutOfBoundsException with an associated message that
mentions the specified index.

public StringIndexOutOfBoundsException(String s)

Parameters

s

The detail message.

Description

This constructor creates a StringIndexOutOfBoundsException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IndexOutOfBoundsException, RuntimeException, Throwable

StringBuffer System

Chapter 12
The java.lang Package

System

Name

System

Synopsis

Class Name:

java.lang.System

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The System class provides access to various information about the operating system environment in which a

program is running. For example, the System class defines variables that allow access to the standard I/O
streams and methods that allow a program to run the garbage collector and stop the Java virtual machine.

All of the variables and methods in the System class are static. In other words, it is not necessary to create
an instance of the System class in order to use its variables and methods. In fact, the System class does not
define any public constructors, so it cannot be instantiated.

The System class supports the concept of system properties that can be queried and set. The following
properties are guaranteed always to be defined:

Property Name Description

file.encoding The character encoding for the default locale (Java 1.1 only)

file.encoding.pkg
The package that contains converters between local encodings and Unicode (Java
1.1 only)

file.separator File separator ('/' on UNIX, ' \' on Windows)

java.class.path The class path

java.class.version Java class version number

java.compiler The just-in-time compiler to use, if any (Java 1.1 only)

java.home Java installation directory

java.vendor Java vendor-specific string

java.vendor.url Java vendor URL

java.version Java version number

line.separator Line separator(' \n' on UNIX, ' \r\n' on Windows)

os.arch Operating system architecture

os.name Operating system name

os.version Operating system version

path.separator Path separator (':' on UNIX, ',' on Windows)

user.dir User's current working directory when the properties were initialized

user.home User's home directory

user.language The two-letter language code of the default locale (Java 1.1 only)

user.name User's account name

user.region The two-letter country code of the default locale (Java 1.1 only)

user.timezone The default time zone (Java 1.1 only)

Additional properties may be defined by the run-time environment. The -D command-line option can be used to
define system properties when a program is run.

The Runtime class is related to the System class; it provides access to information about the environment in
which a program is running.

Class Summary

public final class java.lang.System extends java.lang.Object {
 // Constants
 public static final PrintStream err;
 public static final InputStream in;
 public static final PrintStream out;
 // Class Methods
 public static void arraycopy(Object src, int srcOffset,
 Object dst, int dstOffset, int length);
 public static long currentTimeMillis();
 public static void exit(int status);
 public static void gc();
 public static Properties getProperties();
 public static String getProperty(String key);
 public static String getProperty(String key, String default);
 public static SecurityManager getSecurityManager();
 public static String getenv(String name); // Deprecated in 1.1
 public static native int identityHashCode(Object x); // New in 1.1
 public static void load(String filename);
 public static void loadLibrary(String libname);
 public static void runFinalization();
 public static void runFinalizersOnExit(boolean value); // New in 1.1
 public static void setErr(PrintStream err); // New in 1.1
 public static void setIn(InputStream in); // New in 1.1
 public static void setOut(PrintStream out); // New in 1.1
 public static void setProperties(Properties props);
 public static void setSecurityManager(SecurityManager s);
}

Variables

err

public static final PrintStream err

Description

The standard error stream. In an application environment, this variable refers to a
java.io.PrintStream object that is associated with the standard error output for the process
running the Java virtual machine. In an applet environment, the PrintStream is likely to be associated
with a separate window, although this is not guaranteed.

The value of err can be set using the setErr() method. The value of err can only be set if the

currenly installed SecurityManager does not throw a SecurityException when the request is
made.

Prior to to Java 1.1, err was not final. It has been made final as of Java 1.1 because the unchecked
ability to set err is a security hole.

in

public static final InputStream in

Description

The standard input stream. In an application environment, this variable refers to a
java.io.InputStream object that is associated with the standard input for the process running the
Java virtual machine.

The value of in can be set using the setIn() method. The value of in can only be set if the currenly
installed SecurityManager does not throw a SecurityException when the request is made.

Prior to to Java 1.1, in was not final. It has been made final as of Java 1.1 because the unchecked
ability to set in is a security hole.

out

public static final PrintStream out

Description

The standard output stream. In an application environment, this variable refers to a
java.io.PrintStream object that is associated with the standard output for the process running the
Java virtual machine. In an applet environment, the PrintStream is likely to be associated with a
separate window, although this is not guaranteed.

out is the most commonly used of the three I/O streams provided by the System class. Even in GUI-
based applications, sending output to this stream can be useful for debugging. The usual idiom for sending
output to this stream is:

System.out.println("Some text");

The value of out can be set using the setOut() method. The value of out can only be set if the
currenly installed SecurityManager does not throw a SecurityException when the request is
made.

Prior to to Java 1.1, out was not final. It has been made final as of Java 1.1 because the unchecked

ability to set out is a security hole.

Class Methods

arraycopy

 public static void arraycopy(Object src, int src_position, Object dst, int
dst_position, int length)

Parameters

src

The source array.

src_position

An index into the source array.

dst

The destination array.

dst_position

An index into the destination array.

length

The number of elements to be copied.

Throws

ArrayIndexOutOfBoundsException

If the values of the src_position, dst_position, and length arguments imply accessing
either array with an index that is less than zero or an index greater than or equal to the number of
elements in the array.

ArrayStoreException

If the type of value stored in the src array cannot be stored in the dst array.

NullPointerException

If src or dst is null.

Description

This method copies a range of array elements from the src array to the dst array. The number of
elements that are copied is specified by length. The elements at positions src_position through
src_position+length-1 in src are copied to the positions dst_position through
dst_position+length-1 in dst, respectively.

If src and dst refer to the same array, the copying is done as if the array elements were first copied to a
temporary array and then copied to the destination array.

Before this method does any copying, it performs a number of checks. If either src or dst are null, the
method throws a NullPointerException and dst is not modified.

If any of the following conditions are true, the method throws an ArrayStoreException, and dst is
not modified:

❍ Either src or dst refers to an object that is not an array.

❍ src and dst refer to arrays whose element types are different primitive types.

❍ src refers to an array that has elements that contain a primitive type, while dst refers to an array
that has elements that contain a reference type, or vice versa.

If any of the following conditions are true, the method throws an
ArrayIndexOutOfBoundsException, and dst is not modified:

❍ srcOffset, dstOffset, or length is negative.

❍ srcOffset+length is greater than src.length().

❍ dstOffset+length is greater than dst.length().

Otherwise, if an element in the source array being copied cannot be converted to the type of the
destination array using the rules of the assignment operator, the method throws an
ArrayStoreException when the problem occurs. Since the problem is discovered during the copy
operation, the state of the dst array reflects the incomplete copy operation.

currentTimeMillis

public static native long currentTimeMillis()

Returns

The current time as the number of milliseconds since 00:00:00 UTC, January 1, 1970.

Description

This method returns the current time as the number of milliseconds since 00:00:00 UTC, January 1, 1970.
It will not overflow until the year 292280995.

The java.util.Date class provides more extensive facilities for dealing with times and dates.

exit

public static void exit(int status)

Parameters

status

The exit status code to use.

Throws

SecurityException

If the checkExit() method of the SecurityManager throws a SecurityException.

Description

This method causes the Java virtual machine to exit with the given status code. This method works by
calling the exit() method of the current Runtime object. By convention, a nonzero status code
indicates abnormal termination. This method never returns.

gc

public static void gc()

Description

This method causes the Java virtual machine to run the garbage collector in the current thread. This
method works by calling the gc() method of the current Runtime object.

The garbage collector finds objects that will never be used again because there are no live references to

them. After it finds these objects, the garbage collector frees the storage occupied by these objects.

The garbage collector is normally run continuously in a thread with the lowest possible priority, so that it
works intermittently to reclaim storage. The gc() method allows a program to invoke the garbage
collector explicitly when necessary.

getProperties

public static Properties getProperties()

Returns

A Properties object that contains the values of all the system properies.

Throws

SecurityException

If the checkPropertiesAccess() method of the SecurityManager throws a
SecurityException.

Description

This method returns all of the defined system properties encapsulated in a java.util.Properties
object. If there are no system properties currently defined, a set of default system properties is created and
initialized. As discussed in the description of the System class, some system properties are guaranteed
always to be defined.

getProperty

public static String getProperty(String key)

Parameters

key

The name of a system property.

Returns

The value of the named system property or null if the named property is not defined.

Throws

SecurityException

If the checkPropertyAccess() method of the SecurityManager throws a
SecurityException.

Description

This method returns the value of the named system property. If there is no definition for the named
property, the method returns null. If there are no system properties currently defined, a set of default
system properties is created and initialized. As discussed in the description of the System class, some
system properties are guaranteed always to be defined.

public static String getProperty(String key, String def)

Parameters

key

The name of a system property.

def

A default value for the property.

Returns

The value of the named system property, or the default value if the named property is not defined.

Throws

SecurityException

If the checkPropertyAccess() method of the SecurityManager throws a
SecurityException.

Description

This method returns the value of the named system property. If there is no definition for the named
property, the method returns the default value as specified by the def parameter. If there are no system
properties currently defined, a set of default system properties is created and initialized. As discussed
earlier in the description of the System class, some system properties are guaranteed to always be
defined.

getSecurityManager

public static SecurityManager getSecurityManager()

Returns

A reference to the installed SecurityManager object or null if there is no SecurityManager
object installed.

Description

This method returns a reference to the installed SecurityManager object. If there is no
SecurityManager object installed, the method returns null.

getenv

public static String getenv(String name)

Availability

Deprecated as of JDK 1.1

Parameters

name

The name of a system-dependent environment variable.

Returns

The value of the environment variable or null if the variable is not defined.

Description

This method is obsolete; it always throws an error. Use getProperties() and the -D option instead.

identityHashCode

public static native int identityHashCode(Object x)

Availability

New as of JDK 1.1

Parameters

x

An object.

Returns

The identity hashcode value for the specified object.

Description

This method returns the same hashcode value for the specified object as would be returned by the default
hashCode() method of Object, regardless of whether or not the object's class overrides
hashCode().

load

public void load(String filename)

Parameters

filename

A string that specifies the complete path of the file to be loaded.

Throws

SecurityException

If the checkLink() method of the SecurityManager throws a SecurityException.

UnsatisfiedLinkError

If the method is unsuccessful in loading the specified dynamically linked library.

Description

This method loads the specified dynamically linked library. This method works by calling the load()
method of the current Runtime object.

loadLibrary

public void loadLibrary(String libname)

Parameters

libname

A string that specifies the name of a dynamically linked library.

Throws

SecurityException

If the checkLink() method of the SecurityManager throws a SecurityException.

UnsatisfiedLinkError

If the method is unsuccessful in loading the specified dynamically linked library.

Description

This method loads the specified dynamically linked library. It looks for the specified library in a platform-
specific way. This method works by calling the loadLibrary() method of the current Runtime
object.

runFinalization

public static void runFinalization()

Description

This method causes the Java virtual machine to run the finalize() methods of any objects in the
finalization queue in the current thread. This method works by calling the runFinalization()
method of the current Runtime object.

When the garbage collector discovers that there are no references to an object, it checks to see if the object
has a finalize() method that has never been called. If the object has such a finalize() method,
the object is placed in the finalization queue. While there is a reference to the object in the finalization
queue, the object is no longer considered garbage collectable.

Normally, the objects in the finalization queue are handled by a separate finalization thread that runs
continuously at a very low priority. The finalization thread removes an object from the queue and calls its
finalize() method. As long as the finalize() method does not generate a reference to the object,
the object again becomes available for garbage collection.

Because the finalization thread runs at a very low priority, there may be a long delay from the time that an
object is put on the finalization queue until the time that its finalize() method is called. The

runFinalization() method allows a program to run the finalize() methods explicitly. This can
be useful when there is a shortage of some resource that is released by a finalize() method.

runFinalizersOnExit

public static void runFinalizersOnExit(boolean value)

Availability

New as of JDK 1.1

Parameters

value

A boolean value that specifies whether or not finalization occurs on exit.

Throws

SecurityException

If the checkExit() method of the SecurityManager throws a SecurityException.

Description

This method specifies whether or not the finalize() methods of all objects that have finalize()
methods are run before the Java virtual machine exits. By default, the finalizers are not run on exit. This
method works by calling the runFinalizersOnExit() method of the current Runtime object.

setErr

public static void setErr(PrintStream err)

Availability

New as of JDK 1.1

Parameters

err

A PrintStream object to use for the standard error stream.

Throws

SecurityException

If the checkExec() method of the SecurityManager throws a SecurityException.

Description

This method sets the standard error stream to be this PrintStream object.

setIn

public static void setIn(InputStream in)

Availability

New as of JDK 1.1

Parameters

in

A InputStream object to use for the standard input stream.

Throws

SecurityException

If the checkExec() method of the SecurityManager throws a SecurityException.

Description

This method sets the standard input stream to be this InputStream object.

setOut

public static void setOut(PrintStream out)

Availability

New as of JDK 1.1

Parameters

out

A PrintStream object to use for the standard output stream.

Throws

SecurityException

If the checkExec() method of the SecurityManager throws a SecurityException.

Description

This method sets the standard output stream to be this PrintStream object.

setProperties

public static void setProperties(Properties props)

Parameters

props

A reference to a Properties object.

Throws

SecurityException

If the checkPropertiesAccess() method of the SecurityManager throws a
SecurityException.

Description

This method replaces the current set of system property definitions with a new set of system property
definitions that are encapsulated by the given Properties object. As discussed in the description of the
System class, some system properties are guaranteed to always be defined.

setSecurityManager

public static void setSecurityManager(SecurityManager s)

Parameters

s

A reference to a SecurityManager object.

Throws

SecurityException

If a SecurityManager object has already been installed.

Description

This method installs the given SecurityManager object. If s is null, then no SecurityManager
object is installed. Once a SecurityManager object is installed, any subsequent calls to this method
throw a SecurityException.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ArrayIndexOutOfBoundsException, ArrayStoreException, InputStream,
NullPointerException, Object, PrintStream, Process, Runtime, SecurityException,
SecurityManager, UnsatisfiedLinkError

StringIndexOutOfBoundsException Thread

Chapter 12
The java.lang Package

Thread

Name

Thread

Synopsis

Class Name:

java.lang.Thread

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Runnable

Availability:

JDK 1.0 or later

Description

The Thread class encapsulates all of the information about a single thread of control running in a Java
environment. Thread objects are used to control threads in a multithreaded program.

The execution of Java code is always under the control of a Thread object. The Thread class provides
a static method called currentThread() that can be used to get a reference to the Thread
object that controls the current thread of execution.

In order for a Thread object to be useful, it must be associated with a method that it is supposed to run.
Java provides two ways of associating a Thread object with a method:

● Declare a subclass of Thread that defines a run() method. When such a class is instantiated
and the object's start() method is called, the thread invokes this run() method.

● Pass a reference to an object that implements the Runnable interface to a Thread constructor.
When the start() method of such a Thread object is called, the thread invokes the run()
method of the Runnable object.

After a thread is started, it dies when one of the following things happens:

● The run() method called by the Thread returns.

● An exception is thrown that causes the run() method to be exited.

● The stop() method of the Thread is called.

Class Summary

public class java.lang.Thread extends java.lang.Object
 implements java.lang.Runnable {
 // Constants
 public final static int MAX_PRIORITY;
 public final static int MIN_PRIORITY;
 public final static int NORM_PRIORITY;
 // Constructors
 public Thread();
 public Thread(Runnable target);
 public Thread(Runnable target, String name);
 public Thread(String name);

 public Thread(ThreadGroup group, Runnable target);
 public Thread(ThreadGroup group, Runnable target, String name);
 public Thread(ThreadGroup group, String name);
 // Class Methods
 public static int activeCount();
 public static native Thread currentThread();
 public static void dumpStack();
 public static int enumerate(Thread tarray[]);
 public static boolean interrupted();
 public static native void sleep(long millis);
 public static void sleep(long millis, int nanos);
 public static native void yield();
 // Instance Methods
 public void checkAccess();
 public native int countStackFrames();
 public void destroy();
 public final String getName();
 public final int getPriority();
 public final ThreadGroup getThreadGroup();
 public void interrupt();
 public final native boolean isAlive();
 public final boolean isDaemon();
 public boolean isInterrupted();
 public final void join();
 public final synchronized void join(long millis);
 public final synchronized void join(long millis, int nanos);
 public final void resume();
 public void run();
 public final void setDaemon(boolean on);
 public final void setName(String name);
 public final void setPriority(int newPriority);
 public synchronized native void start();
 public final void stop();
 public final synchronized void stop(Throwable o);
 public final void suspend();
 public String toString();
}

Constants

MAX_PRIORITY

public final static int MAX_PRIORITY = 10

Description

The highest priority a thread can have.

MIN_PRIORITY

public final static int MIN_PRIORITY = 1

Description

The lowest priority a thread can have.

NORM_PRIORITY

public final static int NORM_PRIORITY = 5

Description

The default priority assigned to a thread.

Constructors

Thread

public Thread()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a Thread object that belongs to the same ThreadGroup object as the current thread,
has the same daemon attribute as the current thread, has the same priority as the current thread,

and has a default name.

A Thread object created with this constructor invokes its own run() method when the
Thread object's start() method is called. This is not useful unless the object belongs to a
subclass of the Thread class that overrides the run() method.

Calling this constructor is equivalent to:

Thread(null, null, genName)

genName is an automatically generated name of the form "Thread-"+n, where n is an
integer incremented each time a Thread object is created.

public Thread(String name)

Parameters

name

The name of this Thread object.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a Thread object that belongs to the same ThreadGroup object as the current thread,
has the same daemon attribute as the current thread, has the same priority as the current thread,
and has the specified name.

A Thread object created with this constructor invokes its own run() method when the
Thread object's start() method is called. This is not useful unless the object belongs to a
subclass of the Thread class that overrides the run() method.

Calling this constructor is equivalent to:

Thread(null, null, name)

The uniqueness of the specified Thread object's name is not checked, which may be a problem
for programs that attempt to identify Thread objects by their name.

public Thread(ThreadGroup group, Runnable target)

Parameters

group

The ThreadGroup object that this Thread object is to be added to.

target

A reference to an object that implements the Runnable interface.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a Thread object that belongs to the specified ThreadGroup object, has the same
daemon attribute as the current thread, has the same priority as the current thread, and has a
default name.

A Thread object created with this constructor invokes the run() method of the specified
Runnable object when the Thread object's start() method is called.

Calling this constructor is equivalent to:

Thread(group, target, genName)

genName is an automatically generated name of the form "Thread-"+n, where n is an
integer that is incremented each time a Thread object is created.

public Thread(ThreadGroup group, Runnable target, String name)

Parameters

group

The ThreadGroup object that this Thread object is to be added to.

target

A reference to an object that implements the Runnable interface.

name

The name of this Thread object.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a Thread object that belongs to the specified ThreadGroup object, has the same
daemon attribute as the current thread, has the same priority as the current thread, and has the
specified name.

A Thread object created with this constructor invokes the run() method of the specified
Runnable object when the Thread object's start() method is called.

The uniqueness of the specified Thread object's name is not checked, which may be a problem
for programs that attempt to identify Thread objects by their names.

public Thread(ThreadGroup group, String name)

Parameters

group

The ThreadGroup object that this Thread object is to be added to.

name

The name of this Thread object.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a Thread object that belongs to the specified ThreadGroup object, has the same
daemon attribute as the current thread, has the same priority as the current thread, and has the
specified name.

A Thread object created with this constructor invokes its own run() method when the
Thread object's start() method is called. This is not useful unless the object belongs to a
subclass of the Thread class that overrides the run() method. Calling this constructor is
equivalent to:

Thread(group, null, name)

The uniqueness of the specified Thread object's name is not checked, which may be a problem
for programs that attempt to identify Thread objects by their name.

Class Methods

activeCount

public static int activeCount()

Returns

The current number of threads in the ThreadGroup of the currently running thread.

Description

This method returns the number of threads in the ThreadGroup of the currently running thread

for which the isAlive() method returns true.

currentThread

public static native Thread currentThread()

Returns

A reference to the Thread object that controls the currently executing thread.

Description

This method returns a reference to the Thread object that controls the currently executing
thread.

dumpStack

public static void dumpStack()

Description

This method outputs a stack trace of the currently running thread.

enumerate

public static int enumerate(Thread tarray[])

Parameters

tarray

A reference to an array of Thread objects.

Returns

The number of Thread objects stored in the array.

Description

This method stores a reference in the array for each of the Thread objects in the ThreadGroup

of the currently running thread for which the isAlive() method returns true.

Calling this method is equivalent to:

currentThread().getThreadGroup().enumerate(tarray)

If the array is not big enough to contain references to all the Thread objects, only as many
references as will fit are put into the array. No indication is given that some Thread objects were
left out, so it is a good idea to call activeCount() before calling this method, to get an idea of
how large to make the array.

interrupted

public static boolean interrupted()

Returns

true if the currently running thread has been interrupted; otherwise false.

Description

This method determines whether or not the currently running thread has been interrupted.

sleep

public static native void sleep(long millis)

Parameters

millis

The number of milliseconds that the currently running thread should sleep.

Throws

InterruptedException

If another thread interrupts the currently running thread.

Description

This method causes the currently running thread to sleep. The method does not return until at least
the specified number of milliseconds have elapsed.

While a thread is sleeping, it retains ownership of all locks. The Object class defines a method
called wait() that is similar to sleep() but causes the currently running thread to temporarily
relinquish its locks.

public static void sleep(long millis, int nanos)

Parameters

millis

The number of milliseconds that the currently running thread should sleep.

nanos

An additional number of nanoseconds to sleep.

Throws

InterruptedException

If another thread interrupts the currently running thread.

Description

This method causes the currently running thread to sleep. The method does not return until at least
the specified number of milliseconds have elapsed.

While a thread is sleeping, it retains ownership of all locks. The Object class defines a method
called wait() that is similar to sleep() but causes the currently running thread to temporarily
relinquish its locks.

Note that Sun's reference implementation of Java does not attempt to implement the precision
implied by this method. Instead, it rounds to the nearest millisecond (unless millis is 0, in
which case it rounds up to 1 millisecond) and calls sleep(long).

yield

public static native void yield()

Description

This method causes the currently running thread to yield control of the processor so that another
thread can be scheduled.

Instance Methods

checkAccess

public void checkAccess()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method determines if the currently running thread has permission to modify this Thread
object.

countStackFrames

public native int countStackFrames()

Returns

The number of pending method invocations on this thread's stack.

Description

This method returns the number of pending method invocations on this thread's stack.

destroy

public void destroy()

Description

This method is meant to terminate this thread without any of the usual cleanup (i.e., any locks
held by the thread are not released). This method provides a last-resort way to terminate a thread.
While a thread can defeat its stop() method by catching objects thrown from it, there is nothing
that a thread can do to stop itself from being destroyed.

Note that Sun's reference implementation of Java does not implement the documented
functionality of this method. Instead, the implementation of this method just throws a
NoSuchMethodError.

getName

public final String getName()

Returns

The name of this thread.

Description

This method returns the name of this Thread object.

getPriority

public final int getPriority()

Returns

The priority of this thread.

Description

This method returns the priority of this Thread object.

getThreadGroup

public final ThreadGroup getThreadGroup()

Returns

The ThreadGroup of this thread.

Description

This method returns a reference to the ThreadGroup that this Thread object belongs to.

interrupt

public void interrupt()

Description

This method interrupts this Thread object.

Note that prior to version 1.1, Sun's reference implementation of Java does not implement the
documented functionality of this method. Instead, the method just sets a private flag that
indicates that an interrupt has been requested. None of the methods that should throw an
InterruptedException currently do. However, the interrupted() and
isInterrupted() methods do return true after this method has been called.

isAlive

public final native boolean isAlive()

Returns

true if this thread is alive; otherwise false.

Description

This method determines whether or not this Thread object is alive. A Thread object is alive if
it has been started and has not yet died. In other words, it has been scheduled to run before and
can still be scheduled to run again. A thread is generally alive after its start() method is called
and until its stop() method is called.

isDaemon

public final boolean isDaemon()

Returns

true if the thread is a daemon thread; otherwise false.

Description

This method determines whether or not this thread is a daemon thread, based on the value of the
daemon attribute of this Thread object.

isInterrupted

public boolean isInterrupted()

Returns

true if this thread has been interrupted; otherwise false.

Description

This method determines whether or not this Thread object has been interrupted.

join

public final void join()

Throws

InterruptedException

If another thread interrupts this thread.

Description

This method allows the thread that calls it to wait for the Thread associated with this method to
die. The method returns when the Thread dies. If this thread is already dead, then this method
returns immediately.

public final synchronized void join(long millis)

Parameters

millis

The maximum number of milliseconds to wait for this thread to die.

Throws

InterruptedException

If another thread interrupts this thread.

Description

This method causes a thread to wait to die. The method returns when this Thread object dies or
after the specified number of milliseconds has elapsed, whichever comes first. However, if the
specified number of milliseconds is zero, the method will wait forever for this thread to die. If this
thread is already dead, the method returns immediately.

public final synchronized void join(long millis, int nanos)

Parameters

millis

The maximum number of milliseconds to wait for this thread to die.

nanos

An additional number of nanoseconds to wait.

Throws

InterruptedException

If another thread interrupts this thread.

Description

This method causes a thread to wait to die. The method returns when this Thread object dies or

after the specified amount of time has elapsed, whichever comes first. However, if millis and
nanos are zero, the method will wait forever for this thread to die. If this thread is already dead,
the method returns immediately.

Note that Sun's reference implementation of Java does not attempt to implement the precision
implied by this method. Instead, it rounds to the nearest millisecond (unless millis is 0, in
which case it rounds up to 1 millisecond) and calls join(long).

resume

public final void resume()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method resumes a suspended thread. The method causes this Thread object to once again
be eligible to be run. Calling this method for a thread that is not suspended has no effect.

run

public void run()

Implements

Runnable.run()

Description

A Thread object's start() method causes the thread to invoke a run() method. If this
Thread object was created without a specified Runnable object, the Thread object's own
run() method is executed. This behavior is only useful in a subclass of Thread that overrides
this run() method, since the run() method of the Thread class does not do anything.

setDaemon

public final void setDaemon(boolean on)

Parameters

on

The new value for this thread's daemon attribute.

Throws

IllegalThreadStateException

If this method is called after this thread has been started and while it is still alive.

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method sets the daemon attribute of this Thread object to the given value. This method
must be called before the thread is started. If a thread dies and there are no other threads except
daemon threads alive, the Java virtual machine stops.

setName

public final void setName(String name)

Parameters

name

The new name for this thread.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a

SecurityException.

Description

This method sets the name of this Thread object to the given value. The uniqueness of the
specified Thread object's name is not checked, which may be a problem for programs that
attempt to identify Thread objects by their name.

setPriority

public final void setPriority(int newPriority)

Parameters

newPriority

The new priority for this thread.

Throws

IllegalArgumentException

If the given priority is less than MIN_PRIORITY or greater than MAX_PRIORITY.

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method sets the priority of this Thread to the given value.

start

public synchronized native void start()

Throws

IllegalThreadStateException

If this Thread object's start() method has been called before.

Description

This method starts this Thread object, allowing it to be scheduled for execution. The top-level
code that is executed by the thread is the run() method of the Runnable object specified in the
constructor that was used to create this object. If no such object was specified, the top-level code
executed by the thread is this object's run() method.

It is not permitted to start a thread more than once.

stop

public final void stop()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method causes this Thread object to stop executing by throwing a ThreadDeath object.
The object is thrown in this thread, even if the method is called from a different thread. This
thread is forced to stop whatever it is doing and throw a newly created ThreadDeath object. If
this thread was suspended, it is resumed; if it was sleeping, it is awakened. Normally, you should
not catch ThreadDeath objects in a try statement. If you need to catch ThreadDeath
objects to detect a Thread is about to die, the try statement that catches ThreadDeath
objects should rethrow them.

When an object is thrown out of the run() method associated with a Thread, the
uncaughtException() method of the ThreadGroup for that Thread is called. The
uncaughtException() method normally outputs a stack trace. However,
uncaughtException() treats a ThreadDeath object as a special case by not outputting a
stack trace. When the uncaughtException() method returns, the thread is dead. The thread
is never scheduled to run again.

If this Thread object's stop() method is called before this thread is started, the
ThreadDeath object is thrown as soon as the thread is started.

public final synchronized void stop(Throwable o)

Parameters

o

The object to be thrown.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method causes this Thread object to stop executing by throwing the given object.
Normally, the stop() method that takes no arguments and throws a ThreadDeath object
should be called instead of this method. However, if it is necessary to stop a thread by throwing
some other type of object, this method can be used.

The object is thrown in this thread, even if the method is called from a different thread. This
thread is forced to stop whatever it is doing and throw the Throwable object o. If this thread
was suspended, it is resumed; if it was sleeping, it is awakened.

When an object is thrown out of the run() method associated with a Thread, the
uncaughtException() method of the ThreadGroup for that Thread is called. If the
thrown object is not an instance of the ThreadDeath class, uncaughtException() calls
the thrown object's printStackTrace() method and then the thread dies. The thread is never
scheduled to run again.

If this Thread object's stop() method is called before this thread is started, the
ThreadDeath object is thrown as soon as the thread is started.

suspend

public final void suspend()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method suspends a thread. The method causes this Thread object to temporarily be
ineligible to be run. The thread becomes eligible to be run again after its resume() method is
called. Calling this method for a thread that is already suspended has no effect.

toString

public String toString()

Returns

A string representation of this Thread object.

Overrides

Object.toString()

Description

This method returns a string representation of this Thread object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

IllegalThreadStateException, InterruptedException, Object, Runnable,
SecurityException, SecurityManager, ThreadGroup

System ThreadDeath

Chapter 12
The java.lang Package

ThreadDeath

Name

ThreadDeath

Synopsis

Class Name:

java.lang.ThreadDeath

Superclass:

java.lang.Error

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A ThreadDeath object is thown by the stop() method of a Thread object to kill the thread. Catching

ThreadDeath objects is not recommended. If it is necessary to catch a ThreadDeath object, it is important
to rethrow the object so that it is possible to cleanly stop the catching thread.

Class Summary

public class java.lang.ThreadDeath extends java.lang.Error {
 // Constructors
 public ThreadDeath();
}

Constructors

ThreadDeath

public ThreadDeath()

Description

This constructor creates a ThreadDeath object with no associated detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, Thread, Throwable

Thread ThreadGroup

Chapter 12
The java.lang Package

ThreadGroup

Name

ThreadGroup

Synopsis

Class Name:

java.lang.ThreadGroup

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The ThreadGroup class implements a grouping scheme for threads. A ThreadGroup object can own
Thread objects and other ThreadGroup objects. The ThreadGroup class provides methods that
allow a ThreadGroup object to control its Thread and ThreadGroup objects as a group. For
example, suspend() and resume() methods of a ThreadGroup object call the suspend() and
resume() methods of each of the Thread and ThreadGroup objects that belong to the particular
ThreadGroup.

When a Java program starts, a ThreadGroup object is created to own the first Thread. Any additional
ThreadGroup objects are explicitly created by the program.

Class Summary

public class java.lang.ThreadGroup extends java.lang.Object {
 // Constructors
 public ThreadGroup(String name);
 public ThreadGroup(ThreadGroup parent, String name;
 // Instance Methods
 public int activeCount();
 public int activeGroupCount();
 public boolean allowThreadSuspension(boolean b); // New in 1.1
 public final void checkAccess();
 public final void destroy();
 public int enumerate(Thread list[]);
 public int enumerate(Thread list[], boolean recurse);
 public int enumerate(ThreadGroup list[]);
 public int enumerate(ThreadGroup list[], boolean recurse);
 public final int getMaxPriority();
 public final String getName();
 public final ThreadGroup getParent();
 public final boolean isDaemon();
 public synchronized boolean isDestroyed(); // New in 1.1
 public void list();
 public final boolean parentOf(ThreadGroup g);
 public final void resume();
 public final void setDaemon(boolean daemon);
 public final void setMaxPriority(int pri);
 public final void stop();
 public final void suspend();
 public String toString();
 public void uncaughtException(Thread t, Throwable e);
}

Constructors

ThreadGroup

public ThreadGroup(String name)

Parameters

name

The name of this ThreadGroup object.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a ThreadGroup object that has the specified name and the same parent ThreadGroup
as the current thread.

public ThreadGroup(ThreadGroup parent, String name)

Parameters

parent

The ThreadGroup object that this ThreadGroup object is to be added to.

name

The name of this ThreadGroup object.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a

SecurityException.

Description

Creates a ThreadGroup object with the specified name and parent ThreadGroup object.

Instance Methods

activeCount

public int activeCount()

Returns

An approximation of the current number of threads in this ThreadGroup object and any child
ThreadGroup objects.

Description

This method returns an approximation of the number of threads that belong to this ThreadGroup
object and any child ThreadGroup objects. The count is approximate because a thread can die
after it is counted, but before the complete count is returned. Also, after a child ThreadGroup is
counted but before the total count is returned, additional Thread and ThreadGroup objects can
be added to a child ThreadGroup.

activeGroupCount

public int activeGroupCount()

Returns

An approximation of the current number of child ThreadGroup objects in this ThreadGroup
object.

Description

This method returns an approximation of the number of child ThreadGroup objects that belong to
this ThreadGroup object. The count is approximate because after a child ThreadGroup is
counted but before the total count is returned, additional ThreadGroup objects can be added to a
child ThreadGroup.

allowThreadSuspension

public boolean allowThreadSuspension(boolean b)

Availability

New as of JDK 1.1

Parameters

b

A boolean value that specifies whether or not the run-time system is allowed to suspend
threads due to low memory.

Returns

The boolean value true.

Description

This method specifies whether or not the Java virtual machine is allowed to suspend threads due to
low memory.

checkAccess

public final void checkAccess()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method determines if the currently running thread has permission to modify this
ThreadGroup object.

destroy

public final void destroy()

Throws

IllegalThreadStateException

If this ThreadGroup object is not empty, or if it has already been destroyed.

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method destroys this ThreadGroup object and any child ThreadGroup objects. The
ThreadGroup must not contain any Thread objects. This method also removes the
ThreadGroup object from its parent ThreadGroup object.

enumerate

public int enumerate(Thread list[])

Parameters

list

A reference to an array of Thread objects.

Returns

The number of Thread objects stored in the array.

Description

This method stores a reference in the array for each of the Thread objects that belongs to this
ThreadGroup or any of its child ThreadGroup objects.

If the array is not big enough to contain references to all the Thread objects, only as many
references as will fit are put into the array. No indication is given that some Thread objects were
left out, so it is a good idea to call activeCount() before calling this method, to get an idea of

how large to make the array.

public int enumerate(Thread list[], boolean recurse)

Parameters

list

A reference to an array of Thread objects.

recurse

A boolean value that specifies whether or not to include Thread objects that belong to
child ThreadGroup objects of this ThreadGroup object.

Returns

The number of Thread objects stored in the array.

Description

This method stores a reference in the array for each of the Thread objects that belongs to this
ThreadGroup object. If recurse is true, the method also stores a reference for each of the
Thread objects that belongs to a child ThreadGroup object of this ThreadGroup.

If the array is not big enough to contain references to all the Thread objects, only as many
references as will fit are put into the array. No indication is given that some Thread objects were
left out, so it is a good idea to call activeCount() before calling this method, to get an idea of
how large to make the array.

public int enumerate(ThreadGroup list[])

Parameters

list

A reference to an array of ThreadGroup objects.

Returns

The number of ThreadGroup objects stored in the array.

Description

This method stores a reference in the array for each ThreadGroup object that belongs to this
ThreadGroup or any of its child ThreadGroup objects.

If the array is not big enough to contain references to all the ThreadGroup objects, only as many
references as will fit are put into the array. No indication is given that some ThreadGroup objects
were left out, so it is a good idea to call activeGroupCount() before calling this method, to get
an idea of how large to make the array.

public int enumerate(Thread list[], boolean recurse)

Parameters

list

A reference to an array of ThreadGroup objects.

recurse

A boolean value that specifies whether or not to include ThreadGroup objects that
belong to child ThreadGroup objects of this ThreadGroup object.

Returns

The number of ThreadGroup objects stored in the array.

Description

This method stores a reference in the array for each of the ThreadGroup objects that belongs to
this ThreadGroup object. If recurse is true, the method also stores a reference for each of the
ThreadGroup objects that belongs to a child ThreadGroup object of this ThreadGroup.

If the array is not big enough to contain references to all the ThreadGroup objects, only as many
references as will fit are put into the array. No indication is given that some ThreadGroup objects
were left out, so it is a good idea to call activeGroupCount() before calling this method, to get
an idea of how large to make the array.

getMaxPriority

public final int getMaxPriority()

Returns

The maximum priority that can be assigned to Thread objects that belong to this ThreadGroup
object.

Description

This method returns the maximum priority that can be assigned to Thread objects that belong to
this ThreadGroup object.

It is possible for a ThreadGroup to contain Thread objects that have higher priorities than this
maximum, if they were given that higher priority before the maximum was set to a lower value.

getName

public final String getName()

Returns

The name of this ThreadGroup object.

Description

This method returns the name of this ThreadGroup object.

getParent

public final ThreadGroup getParent()

Returns

The parent ThreadGroup object of this ThreadGroup, or null if this ThreadGroup is the
root of the thread group hierarchy.

Description

This method returns the parent ThreadGroup object of this ThreadGroup object. If this
ThreadGroup is at the root of the thread group hierarchy and has no parent, the method returns
null.

isDaemon

public final boolean isDaemon()

Returns

true if this ThreadGroup is a daemon thread group; otherwise false.

Description

This method determines whether or not this ThreadGroup is a daemon thread group, based on the
value of daemon attribute of this ThreadGroup object. A daemon thread group is destroyed when
the last Thread in it is stopped, or the last ThreadGroup in it is destroyed.

isDestroyed

public synchronized boolean isDestroyed()

Availability

New as of JDK 1.1

Returns

true if this ThreadGroup has been destroyed; otherwise false.

Description

This method determines whether or not this ThreadGroup has been destroyed.

list

public void list()

Description

This method outputs a listing of the contents of this ThreadGroup object to System.out.

parentOf

public final boolean parentOf(ThreadGroup g)

Parameters

g

A ThreadGroup object.

Returns

true if this ThreadGroup object is the same ThreadGroup, or a direct or indirect parent of the
specified ThreadGroup; otherwise false.

Description

This method determines if this ThreadGroup object is the same as the specified ThreadGroup
or one of its ancestors in the thread-group hierarchy.

resume

public final void resume()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method resumes each Thread object that directly or indirectly belongs to this ThreadGroup
object by calling its resume() method.

setDaemon

public final void setDaemon(boolean daemon)

Parameters

daemon

The new value for this ThreadGroup object's daemon attribute.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method sets the daemon attribute of this ThreadGroup object to the given value. A daemon
thread group is destroyed when the last Thread in it is stopped, or the last ThreadGroup in it is
destroyed.

setMaxPriority

public final void setMaxPriority(int pri)

Parameters

pri

The new maximum priority for Thread objects that belong to this ThreadGroup object.

Description

This method sets the maximum priority that can be assigned to Thread objects that belong to this
ThreadGroup object.

It is possible for a ThreadGroup to contain Thread objects that have higher priorities than this
maximum, if they were given that higher priority before the maximum was set to a lower value.

stop

public final void stop()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method stops each Thread object that directly or indirectly belongs to this ThreadGroup
object by calling its stop() method.

suspend

public final void suspend()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method suspends each Thread object that directly or indirectly belongs to this
ThreadGroup object by calling its suspend() method.

toString

public String toString()

Returns

A string representation of this ThreadGroup object.

Overrides

Object.toString()

Description

This method returns a string representation of this ThreadGroup object.

uncaughtException

public void uncaughtException(Thread t, Throwable e)

Parameters

t

A reference to a Thread that just died because of an uncaught exception.

e

The uncaught exception.

Description

This method is called when a Thread object that belongs to this ThreadGroup object dies
because of an uncaught exception. If this ThreadGroup object has a parent ThreadGroup
object, this method just calls the parent's uncaughtException() method. Otherwise, this
method must determine whether the uncaught exception is an instance of ThreadDeath. If it is,
nothing is done. If it is not, the method calls the printStackTrace() method of the exception
object.

If this method is overridden, the overriding method should end with a call to
super.uncaughtException().

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

IllegalThreadStateException, Object, Runnable, SecurityException,
SecurityManager, Thread, Throwable

ThreadDeath Throwable

Chapter 12
The java.lang Package

Throwable

Name

Throwable

Synopsis

Class Name:

java.lang.Throwable

Superclass:

java.lang.Object

Immediate Subclasses:

java.lang.Error, java.lang.Exception

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The Throwable class is the superclass of all objects that can be thrown by the throw statement in
Java. This is a requirement of the throw statement.

A Throwable object can have an associated message that provides more detail about the particular
error or exception that is being thrown.

The Throwable class provides a method that outputs information about the state of the system when an
exception object is created. This method can be useful in debugging Java programs.

The subclasses of Throwable that are provided with Java do not add functionality to Throwable.
Instead, they offer more specific classifications of errors and exceptions.

Class Summary

public class java.lang.Throwable extends java.lang.Object
 implements java.lang.Serializable {
 // Constructors
 public Throwable();
 public Throwable(String message);
 // Instance Methods
 public native Throwable fillInStackTrace();
 public String getLocalizedMessage(); // New in 1.1
 public String getMessage();
 public void printStackTrace();
 public void printStackTrace(PrintStream s);
 public void printStackTrace(PrintWriter s); // New in 1.1
 public String toString();
}

Constructors

Throwable

public Throwable()

Description

Creates a Throwable object with no associated message. This constructor calls
fillInStackTrace() so that information is available for printStackTrace().

public Throwable(String message)

Parameters

message

A message string to be associated with the object.

Description

Create a Throwable object with an associated message. This constructor calls
fillInStackTrace() so that information is available for printStackTrace().

Instance Methods

fillInStackTrace

public native Throwable fillInStackTrace()

Returns

A reference to this object.

Description

This method puts stack trace information in this Throwable object. It is not usually necessary to
explicitly call this method, since it is called by the constructors of the class. However, this method
can be useful when rethrowing an object. If the stack trace information in the object needs to
reflect the location that the object is rethrows from, fillInStackTrace() should be called.

getLocalizedMessage

public String getLocalizedMessage()

Availability

New as of JDK 1.1

Returns

A localized version of the String object associated with this Throwable object, or null if
there is no message associated with this object.

Description

This method creates a localized version of the message that was associated with this object by its
constructor.

The getLocalizedMessage() method in Throwable always returns the same result as
getMessage(). A subclass must override this method to produce a locale-specific message.

getMessage

public String getMessage()

Returns

The String object associated with this Throwable object, or null if there is no message
associated with this object.

Description

This method returns any string message that was associated with this object by its constructor.

printStackTrace

public void printStackTrace()

Description

This method outputs the string representation of this Throwable object and a stack trace to
System.err.

public void printStackTrace(PrintStream s)

Parameters

s

A java.io.PrintStream object.

Description

This method outputs the string representation of this Throwable object and a stack trace to the
specified PrintStream object.

public void printStackTrace(PrintStream w)

Availability

New as of JDK 1.1

Parameters

s

A java.io.PrintWriter object.

Description

This method outputs the string representation of this Throwable object and a stack trace to the
specified PrintWriter object.

toString

public String toString()

Returns

A string representation of this object.

Overrides

Object.toString()

Description

This method returns a string representation of this Throwable object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Error, Exception, Object

ThreadGroup UnknownError

Chapter 12
The java.lang Package

UnknownError

Name

UnknownError

Synopsis

Class Name:

java.lang.UnknownError

Superclass:

java.lang.VirtualMachineError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An UnknownError is thrown when an error of unknown origins is detected in the run-time system.

Class Summary

public class java.lang.UnknownError
 extends java.lang.VirtualMachineError {
 // Constructors
 public UnknownError();
 public UnknownError(String s);
}

Constructors

UnknownError

public UnknownError()

Description

This constructor creates an UnknownError with no associated detail message.

public UnknownError(String s)

Parameters

s

The detail message.

Description

This constructor creates an UnknownError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, Throwable, VirtualMachineError

Throwable UnsatisfiedLinkError

Chapter 12
The java.lang Package

UnsatisfiedLinkError

Name

UnsatisfiedLinkError

Synopsis

Class Name:

java.lang.UnsatisfiedLinkError

Superclass:

java.lang.LinkageError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

An UnsatisfiedLinkError is thrown when the implementation of a native method cannot be found.

Class Summary

public class java.lang.UnsatisfiedLinkError
 extends java.lang.LinkageError {
 // Constructors
 public UnsatisfiedLinkError();
 public UnsatisfiedLinkError(String s);
}

Constructors

UnsatisfiedLinkError

public UnsatisfiedLinkError()

Description

This constructor creates an UnsatisfiedLinkError with no associated detail message.

public UnsatisfiedLinkError(String s)

Parameters

s

The detail message.

Description

This constructor creates an UnsatisfiedLinkError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, LinkageError, Throwable

UnknownError VerifyError

Chapter 12
The java.lang Package

VerifyError

Name

VerifyError

Synopsis

Class Name:

java.lang.VerifyError

Superclass:

java.lang.LinkageError

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A VerifyError is thrown when the byte-code verifier detects that a class file, though well-formed, contains

some sort of internal inconsistency or security problem.

As part of loading the byte-codes for a class, the Java virtual machine may run the .class file through the byte-
code verifier. The default mode of the virtual machine causes it not to verify classes that are found locally,
however. Thus, after compiling an applet and running it locally, you may still get a VerifyError when you
put it on a web server.

Class Summary

public class java.lang.VerifyError extends java.lang.LinkageError {
 // Constructors
 public VerifyError();
 public VerifyError(String s);
}

Constructors

VerifyError

public VerifyError()

Description

This constructor creates a VerifyError with no associated detail message.

public VerifyError(String s)

Parameters

s

The detail message.

Description

This constructor creates a VerifyError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, LinkageError, Throwable

UnsatisfiedLinkError VirtualMachineError

Chapter 12
The java.lang Package

VirtualMachineError

Name

VirtualMachineError

Synopsis

Class Name:

java.lang.VirtualMachineError

Superclass:

java.lang.Error

Immediate Subclasses:

java.lang.InternalError,

java.lang.OutOfMemoryError,

java.lang.StackOverflowError,

java.lang.UnknownError

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The appropriate subclass of VirtualMachineError is thrown to indicate that the Java virtual machine has
encountered an error.

Class Summary

public class java.lang.VirtualMachineError extends java.lang.Error {
 // Constructors
 public VirtualMachineError();
 public VirtualMachineError(String s);
}

Constructors

VirtualMachineError

public VirtualMachineError()

Description

This constructor creates a VirtualMachineError with no associated detail message.

public VirtualMachineError(String s)

Parameters

s

The detail message.

Description

This constructor creates a VirtualMachineError with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, InternalError, OutOfMemoryError, StackOverflowError, Throwable,
UnknownError

VerifyError Void

Chapter 12
The java.lang Package

Void

Name

Void

Synopsis

Class Name:

java.lang.Void

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability

New as of JDK 1.1

Description

The Void class is an uninstantiable wrapper for the primitive type void. The class contains simply a
reference to the Class object that represents the primitive type void. The Void class is necessary as
of JDK 1.1 to support the Reflection API and class literals.

Class Summary

public final class java.lang.Void extends java.lang.Object {
 // Constants
 public static final Class TYPE;
}

Constants

TYPE

public static final Class TYPE

The Class object that represents the primitive type void. It is always true that Void.TYPE ==
void.class.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Byte, Character, Class, Double, Float, Integer, Long, Short

VirtualMachineError Array

Chapter 13
The java.lang.reflect Package

Constructor

Name

Constructor

Synopsis

Class Name:

java.lang.reflect.Constructor

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.reflect.Member

Availability:

New as of JDK 1.1

Description

The Constructor class represents a constructor of a class. A Constructor object can be obtained by calling the
getConstructor() method of a Class object. Constructor provides methods for getting the name, modifiers,
parameters, exceptions, and declaring class of a constructor. The newInstance() method can create a new instance of
the class that declares a constructor.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm

Class Summary

public final class java.lang.reflect.Constructor extends java.lang.Object
 implements java.lang.reflect.Member {
 // Instance Methods
 public boolean equals(Object obj);
 public Class getDeclaringClass();
 public Class[] getExceptionTypes();
 public native int getModifiers();
 public String getName();
 public Class[] getParameterTypes();
 public int hashCode();
 public native Object newInstance(Object[] initargs);
 public String toString();
}

Instance Methods

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Constructor, and it is equivalent to this Constructor.

getDeclaringClass

public Class getDeclaringClass()

Returns

The Class object that represents the class that declared this constructor.

Implements

Member.getDeclaringClass()

Description

This method returns the Class object for the class in which this constructor is declared.

getExceptionTypes

public Class[] getExceptionTypes()

Returns

An array that contains the Class objects that describe the exceptions that can be thrown by this constructor.

Description

This method returns an array of Class objects that represents the throws clause of this constructor. If the
constructor does not throw any exceptions, an array of length 0 is returned. As of Java 1.1.2, this method is not
properly supported: it always returns an empty array.

getModifiers

public native int getModifiers()

Returns

An integer that represents the modifier keywords used to declare this constructor.

Implements

Member.getModifiers()

Description

This method returns an integer value that represents the modifiers of this constructor. The Modifier class should
decode the returned value.

getName

public String getName()

Returns

The name of this constructor as a String.

Implements

Member.getName()

Description

This method returns the name of this constructor, which is always the same as the name of the declaring class.

getParameterTypes

public Class[] getParameterTypes()

Returns

An array that contains the Class objects that describe the parameter types that this constructor accepts.

Description

This method returns an array of Class objects that represents the parameter types this constructor accepts. The
parameter types are listed in the order in which they are declared. If the constructor does not take any parameters, an
array of length 0 is returned.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this Constructor.

newInstance

 public native Object newInstance(Object[] initargs) throws InstantiationException,
IllegalAccessException, IllegalArgumentException, InvocationTargetException

Parameters

initargs

An array of arguments to be passed to this constructor.

Returns

The newly created object.

Throws

InstantiationException

If the declaring class of this constructor is abstract.

IllegalAccessException

If the constructor is inaccessible.

IllegalArgumentException

If initargs is the wrong length or contains any value of the wrong type.

InvocationTargetException

If the constructor itself throws an exception.

Description

This method executes the constructor represented by this object using the given array of arguments. Thus, it creates
and initializes a new instance of the declaring class of the constructor. If a particular parameter is of a primitive type,
the corresponding argument is automatically unwrapped and converted to the appropriate type, if possible. If that is
not possible, an IllegalArgumentException is thrown. If the constructor itself throws an exception, the
exception is placed in an InvocationTargetException, which is then thrown to the caller of
newInstance(). If the constructor completes normally, the newly created instance is returned.

toString

public String toString()

Returns

A string representation of this object.

Overrides

Object.toString()

Description

This method returns a string representation of this Constructor. This string contains the access modifiers of the

constructor, if any, followed by the fully qualified name of the declaring class and a list of the parameters of the
constructor, if any. The list is enclosed by parentheses, and the individual parameters are separated by commas. If
the constructor does not have any parameters, just the parentheses are included in the string.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Class, Field, InstantiationException, IllegalAccessException, IllegalArgumentException,
InvocationTargetException, Member, Method, Modifier, Object

Array Field

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm

Chapter 14
The java.math Package

BigInteger

Name

BigInteger

Synopsis

Class Name:

java.math.BigInteger

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The BigInteger class represents an arbitrary-precision integer value. You should use this class if a long is not big
enough for your purposes. The number in a BigInteger is represented by a sign value and a magnitude, which is an
arbitrarily large array of bytes. A BigInteger cannot overflow.

Most of the methods in BigInteger perform mathematical operations or make comparisons with other BigInteger

objects. BigInteger also defines some methods for handling modular arithmetic and determining primality that are
needed for cryptographic purposes.

Class Summary

public class java.math.BigInteger extends java.lang.Number {
 // Constructors
 public BigInteger(byte[] val);
 public BigInteger(int signum, byte[] magnitude);
 public BigInteger(String val);
 public BigInteger(String val, int radix);
 public BigInteger(int numBits, Random rndSrc);
 public BigInteger(int bitLength, int certainty, Random rnd);
 // Class Methods
 public static BigInteger valueOf(long val);
 // Instance Methods
 public BigInteger abs();
 public BigInteger add(BigInteger val);
 public BigInteger and(BigInteger val);
 public BigInteger andNot(BigInteger val);
 public int bitCount();
 public int bitLength();
 public BigInteger clearBit(int n);
 public int compareTo(BigInteger val);
 public BigInteger divide(BigInteger val);
 public BigInteger[] divideAndRemainder(BigInteger val);
 public double doubleValue();
 public boolean equals(Object x);
 public BigInteger flipBit(int n);
 public float floatValue();
 public BigInteger gcd(BigInteger val);
 public int getLowestSetBit();
 public int hashCode();
 public int intValue();
 public boolean isProbablePrime(int certainty);
 public long longValue();
 public BigInteger max(BigInteger val);
 public BigInteger min(BigInteger val);
 public BigInteger mod(BigInteger m);
 public BigInteger modInverse(BigInteger m);
 public BigInteger modPow(BigInteger exponent, BigInteger m);
 public BigInteger multiply(BigInteger val);
 public BigInteger negate();
 public BigInteger not();
 public BigInteger or(BigInteger val);
 public BigInteger pow(int exponent);
 public BigInteger remainder(BigInteger val);
 public BigInteger setBit(int n);
 public BigInteger shiftLeft(int n);
 public BigInteger shiftRight(int n);

 public int signum();
 public BigInteger subtract(BigInteger val);
 public boolean testBit(int n);
 public byte[] toByteArray();
 public String toString();
 public String toString(int radix);
 public BigInteger xor(BigInteger val);
}

Constructors

BigInteger

public BigInteger(byte[] val) throws NumberFormatException

Parameters

val

The initial value.

Throws

NumberFormatException

If the array does not contain any bytes.

Description

This constructor creates a BigInteger with the given initial value. The value is expressed as a two's complement
signed integer, with the most significant byte in the first position (val[0]) of the array (big-endian). The most
significant bit of the most significant byte is the sign bit.

 public BigInteger(int signum, byte[] magnitude) throws NumberFormatException

Parameters

signum

The sign of the value: -1 indicates negative, 0 indicates zero, and 1 indicates positive.

magnitude

The initial magnitude of the value.

Throws

NumberFormatException

If signum is invalid or if signum is 0 but magnitude is not 0.

Description

This constructor creates a BigInteger with the given initial value and sign. The magnitude is expressed as a big-
endian byte array.

public BigInteger(String val) throws NumberFormatException

Parameters

val

The initial value.

Throws

NumberFormatException

If the string cannot be parsed into a valid BigInteger.

Description

This constructor creates a BigInteger with the initial value specified by the String. The string can contain an
optional minus sign followed by zero or more decimal digits. The mapping from characters to digits is provided by
the Character.digit() method.

 public BigInteger(String val, int radix) throws NumberFormatException

Parameters

val

The initial value.

radix

The radix to use to parse the given string.

Throws

NumberFormatException

If the string cannot be parsed, or if the radix is not in the allowed range (Character.MIN_RADIX
through Character.MAX_RADIX).

Description

This constructor creates a BigInteger with the initial value specified by the String using the given radix. The
string can contain an optional minus sign followed by zero or more digits in the specified radix. The mapping from
characters to digits is provided by the Character.digit() method.

 public BigInteger(int numBits, Random rndSrc) throws IllegalArgumentException

Parameters

numBits

The maximum number of bits in the returned number.

rndSrc

The source of the random bits.

Throws

IllegalArgumentException

If numBits is less than zero.

Description

This constructor creates a random BigInteger in the range 0 to 2^numBits -1.

public BigInteger(int bitLength, int certainty, Random rnd)

Parameters

bitLength

The maximum number of bits in the returned number.

certainty

The certainty that the returned value is a prime number.

rnd

The source of the random bits.

Throws

ArithmeticException

If numBits is less than 2.

Description

This constructor creates a random BigInteger in the range 0 to 2^numBits-1 that is probably a prime
number. The probability that the returned number is prime is greater than 1-.5^certainty. In other words, the
higher the value of certainty, the more likely the BigInteger is to be prime, and also the longer it takes for
the constructor to create the BigInteger.

Class Methods

valueOf

public static BigInteger valueOf(long val)

Parameters

val

The initial value.

Returns

A BigInteger that represents the given value.

Description

This method creates a BigInteger from the given long value.

Instance Methods

abs

public BigInteger abs()

Returns

A BigInteger that contains the absolute value of this number.

Description

This method returns the absolute value of this BigInteger. If this BigInteger is nonnegative, it is returned.
Otherwise, a new BigInteger that contains the absolute value of this BigInteger is returned.

add

public BigInteger add(BigInteger val) throws ArithmeticException

Parameters

val

The number to be added.

Returns

A new BigInteger that contains the sum of this number and the given value.

Throws

ArithmeticException

If any kind of arithmetic error occurs.

Description

This method returns the sum of this BigInteger and the given BigInteger as a new BigInteger.

and

public BigInteger and(BigInteger val)

Parameters

val

The number to be ANDed.

Returns

A new BigInteger that contains the bitwise AND of this number and the given value.

Description

This method returns the bitwise AND of this BigInteger and the supplied BigInteger as a new
BigInteger.

andNot

public BigInteger andNot(BigInteger val)

Parameters

val

The number to be combined with this BigInteger.

Returns

A new BigInteger that contains the bitwise AND of this number and the bitwise negation of the given value.

Description

This method returns the bitwise AND of this BigInteger and the bitwise negation of the given BigInteger
as a new BigInteger. Calling this method is equivalent to calling and(val.not()).

bitCount

public int bitCount()

Returns

The number of bits that differ from this BigInteger's sign bit.

Description

This method returns the number of bits in the two's complement representation of this BigInteger that differ
from the sign bit of this BigInteger.

bitLength

public int bitLength()

Returns

The number of bits needed to represent this number, excluding a sign bit.

Description

This method returns the minimum number of bits needed to represent this number, not counting a sign bit.

clearBit

public BigInteger clearBit(int n) throws ArithmeticException

Parameters

n

The bit to clear.

Returns

A new BigInteger that contains the value of this BigInteger with the given bit cleared.

Throws

ArithmeticException

If n is less than 0.

Description

This method returns a new BigInteger that is equal to this BigInteger, except that the given bit is cleared,
or set to zero.

compareTo

public int compareTo(BigInteger val)

Parameters

val

The value to be compared.

Returns

-1 if this number is less than val, 0 if this number is equal to val, or 1 if this number is greater than val.

Description

This method compares this BigInteger to the given BigInteger and returns a value that indicates the result
of the comparison. This method can be used to implement all six of the standard boolean comparison operators:
==, !=, <=, <, >=, and >.

divide

public BigInteger divide(BigInteger val) throws ArithmeticException

Parameters

val

The divisor.

Returns

A new BigInteger that contains the result (quotient) of dividing this number by the given value.

Throws

ArithmeticException

If val is zero.

Description

This method returns the quotient that results from dividing this BigInteger by the given BigInteger as a
new BigInteger. Any fractional remainder is discarded.

divideAndRemainder

 public BigInteger[] divideAndRemainder(BigInteger val) throws ArithmeticException

Parameters

val

The divisor.

Returns

An array of BigInteger objects that contains the quotient and remainder (in that order) that result from dividing
this number by the given value.

Throws

ArithmeticException

If val is zero.

Description

This method returns the quotient and remainder that results from dividing this BigInteger by the given
BigInteger as an array of new BigInteger objects. The first element of the array is equal to
divide(val); the second element is equal to remainder(val).

doubleValue

public double doubleValue()

Returns

The value of this BigInteger as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this BigInteger as a double. If the value exceeds the limits of a double,
Double.POSITIVE_INFINITY or Double.NEGATIVE_INFINITY is returned.

equals

public boolean equals(Object x)

Parameters

x

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if x is an instance of BigInteger, and it represents the same value as this
BigInteger.

flipBit

public BigInteger flipBit(int n)

Parameters

n

The bit to toggle.

Returns

A new BigInteger that contains the value of this BigInteger with the given bit toggled.

Throws

ArithmeticException

If n is less than 0.

Description

This method returns a new BigInteger that is equal to this BigInteger, except that the given bit is toggled.
In other words, if the given bit is 0, it is set to one, or if it is 1, it is set to zero.

floatValue

public float floatValue()

Returns

The value of this BigInteger as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this BigInteger as a float. If the value exceeds the limits of a float,
Float.POSITIVE_INFINITY or Float.NEGATIVE_INFINITY is returned.

gcd

public BigInteger gcd(BigInteger val)

Parameters

val

The number to be compared.

Returns

A new BigInteger that contains the greatest common denominator of this number and the given number.

Description

This method calculates the greatest common denominator of the absolute value of this BigInteger and the
absolute value of the given BigInteger, and returns it as a new BigInteger. If both values are 0, the method
returns a BigInteger that contains the value 0.

getLowestSetBit

public int getLowestSetBit()

Returns

The index of the lowest-order bit with a value of 1, or -1 if there are no bits that are 1.

Description

This method returns the index of the lowest-order, or rightmost, bit with a value of 1.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this BigInteger.

intValue

public int intValue()

Returns

The value of this BigInteger as an int.

Overrides

Number.intValue()

Description

This method returns the value of this BigInteger as an int. If the value exceeds the limits of an int, the
excessive high-order bits are discarded.

isProbablePrime

public boolean isProbablePrime(int certainty)

Parameters

certainty

The "certainty" that this number is prime, where a higher value indicates more certainty.

Returns

true if this number is probably prime; false if it is definitely not prime.

Description

This method returns true if this number has a probability of being prime that is greater than 1-.5^certainty.
If the number is definitely not prime, false is returned.

longValue

public long longValue()

Returns

The value of this BigInteger as a long.

Overrides

Number.longValue()

Description

This method returns the value of this BigInteger as a long. If the value exceeds the limits of a long, the
excessive high-order bits are discarded.

max

public BigInteger max(BigInteger val)

Parameters

val

The number to be compared.

Returns

The BigInteger that represents the greater of this number and the given value.

Description

This method returns the greater of this BigInteger and the given BigInteger.

min

public BigInteger min(BigInteger val)

Parameters

val

The number to be compared.

Returns

The BigInteger that represents the lesser of this number and the given value.

Description

This method returns the lesser of this BigInteger and the given BigInteger.

mod

public BigInteger mod(BigInteger m)

Parameters

m

The number to use.

Returns

A new BigInteger that contains the modulus of this number and the given number.

Throws

ArithmeticException

If m is less than or equal to zero.

Description

This method returns a new BigInteger that contains the value of this BigInteger mod m.

modInverse

 public BigInteger modInverse(BigInteger m) throws ArithmeticException

Parameters

m

The number to use.

Returns

A new BigInteger that contains the multiplicative inverse of the modulus of this number and the given number.

Throws

ArithmeticException

If m is less than or equal to zero, or if the result cannot be calculated.

Description

This method returns a new BigInteger that contains the multiplicative inverse of the value of this
BigInteger mod m.

modPow

public BigInteger modInverse(BigInteger exponent, BigInteger m)

Parameters

exponent

The exponent.

m

The number to use.

Returns

A new BigInteger that contains the modulus of this number raised to the given power and the given number.

Throws

ArithmeticException

If m is less than or equal to zero.

Description

This method returns a new BigInteger that contains the value of this BigInteger raised to the given power
mod m.

multiply

public BigInteger multiply(BigInteger val)

Parameters

val

The number to be multiplied.

Returns

A new BigInteger that contains the product of this number and the given number.

Description

This method multiplies this BigInteger by the given BigInteger and returns the product as a new
BigInteger.

negate

public BigInteger negate()

Returns

A new BigInteger that contains the negative of this number.

Description

This method returns a new BigInteger that is identical to this BigInteger except that its sign is reversed.

not

public BigInteger not()

Returns

A new BigInteger that contains the bitwise negation of this number.

Description

This method returns a new BigInteger that is calculated by inverting every bit of this BigInteger.

or

public BigInteger or(BigInteger val)

Parameters

val

The value to be ORed.

Returns

A new BigInteger that contains the bitwise OR of this number and the given value.

Description

This method returns the bitwise OR of this BigInteger and the given BigInteger as a new BigInteger.

pow

public BigInteger pow(int exponent) throws ArithmeticException

Parameters

exponent

The exponent.

Returns

A new BigInteger that contains the result of raising this number to the given power.

Throws

ArithmeticException

If exponent is less than zero.

Description

This method raises this BigInteger to the given power and returns the result as a new BigInteger.

remainder

 public BigInteger remainder(BigInteger val) throws ArithmeticException

Parameters

val

The divisor.

Returns

A new BigInteger that contains the remainder that results from dividing this number by the given value.

Throws

ArithmeticException

If val is zero.

Description

This method returns the remainder that results from dividing this BigInteger by the given BigInteger as a
new BigInteger.

setBit

public BigInteger setBit(int n) throws ArithmeticException

Parameters

n

The bit to set.

Returns

A new BigInteger that contains the value of this BigInteger with the given bit set.

Throws

ArithmeticException

If n is less than zero.

Description

This method returns a new BigInteger that is equal to this BigInteger, except that the given bit is set to 1.

shiftLeft

public BigInteger shiftLeft(int n)

Parameters

n

The number of bits to shift.

Returns

A new BigInteger that contains the result of shifting the bits of this number left by the given number of bits.

Description

This method returns a new BigInteger that contains the value of this BigInteger left-shifted by the given
number of bits.

shiftRight

public BigInteger shiftRight(int n)

Parameters

n

The number of bits to shift.

Returns

A new BigInteger that contains the result of shifting the bits of this number right by the given number of bits
with sign extension.

Description

This method returns a new BigInteger that contains the value of this BigInteger right-shifted by the given
number of bits with sign extension.

signum

public int signum()

Returns

-1 is this number is negative, 0 if this number is zero, or 1 if this number is positive.

Description

This method returns a value that indicates the sign of this BigInteger.

subtract

public BigInteger subtract(BigInteger val)

Parameters

val

The number to be subtracted.

Returns

A new BigDecimal that contains the result of subtracting the given number from this number.

Description

This method subtracts the given BigInteger from this BigInteger and returns the result as a new
BigInteger.

testBit

public boolean testBit(int n) throws ArithmeticException

Parameters

n

The bit to test.

Returns

true if the specified bit is 1; false if the specified bit is 0.

Throws

ArithmeticException

If n is less than zero.

Description

This method returns true if the specified bit in this BigInteger is 1. Otherwise the method returns false.

toByteArray

public byte[] toByteArray()

Returns

An array of bytes that represents this object.

Description

This method returns an array of bytes that contains the two's complement representation of this BigInteger. The
most significant byte is in the first position (val[0]) of the array. The array can be used with the
BigInteger(byte[]) constructor to reconstruct the number.

toString

public String toString()

Returns

A string representation of this object in decimal form.

Overrides

Object.toString()

Description

This method returns a string representation of this BigInteger in decimal form. A minus sign represents the
sign if necessary. The mapping from digits to characters is provided by the Character.forDigit() method.

public String toString(int radix)

Parameters

radix

The radix to use.

Returns

A string representation of this object in the given radix.

Overrides

Object.toString()

Description

This method returns a string representation of this BigInteger for the given radix. A minus sign is used to
represent the sign if necessary. The mapping from digits to characters is provided by the
Character.forDigit() method.

xor

public BigInteger xor(BigInteger val)

Parameters

val

The value to be XORed.

Returns

A new BigInteger that contains the bitwise XOR of this number and the given value.

Description

This method returns the bitwise XOR of this BigInteger and the given BigInteger as a new BigInteger.

Inherited Methods

Method Inherited From Method Inherited From

byteValue() Number clone() Object

getClass() Object finalize() Object

notify() Object notifyAll() Object

shortValue() Number wait() Object

wait(long) Object wait(long, int) Object

See Also

ArithmeticException, BigDecimal, Character, Double, Float, IllegalArgumentException,
Integer, Long, Number, NumberFormatException

BigDecimal BindException

Chapter 15
The java.net Package

ConnectException

Name

ConnectException

Synopsis

Class Name:

java.net.ConnectException

Superclass:

java.net.SocketException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A ConnectException is thrown when a socket connection cannot be established with a remote machine. This

type of exception usually indicates that there is no listening process on the remote machine.

Class Summary

public class java.net.ConnectException extends java.net.SocketException {
 // Constructors
 public ConnectException();
 public ConnectException(String msg);
}

Constructors

ConnectException

public ConnectException()

Description

This constructor creates a ConnectException with no associated detail message.

public ConnectException(String msg)

Parameters

msg

The detail message.

Description

This constructor create a ConnectException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Throwable

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IOException, SocketException

BindException ContentHandler

Chapter 15
The java.net Package

ContentHandler

Name

ContentHandler

Synopsis

Class Name:

java.net.ContentHandler

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The ContentHandler class is an abstract class that defines a method to read data from a

URLConnection and then create an Object appropriate for the type of content it has read. Each subclass of
ContentHandler handles a specific type of content (i.e., MIME type).

You do not create ContentHandler objects directly; they are created by an object that implements the
ContentHandlerFactory interface. A ContentHandlerFactory object selects and creates an
appropriate ContentHandler for the content type. If you write your own ContentHandler subclasses,
you should also write your own ContentHandlerFactory. The content handler factory for an application
is set by a call to URLConnection.setContentHandlerFactory().

An application does not normally call the getContent() method of a ContentHandler directly; it should
call URL.getContent() or URLConnection.getContent() instead.

A ContentHandler works in conjunction with a URLStreamHandler, but their roles do not overlap. The
URLStreamHandler deals with the specifics of a protocol, such as negotiating with a server to retrieve a
resource, while the ContentHandler expects a data stream from which it can construct an object.

Class Summary

public abstract class java.net.ContentHandler extends java.lang.Object {
 // Instance Methods
 public abstract Object getContent(URLConnection urlc) throws IOException;
}

Instance Methods

getContent

 public abstract Object getContent(URLConnection urlc) throws IOException

Parameters

urlc

A URLConnection that is the data source.

Returns

The Object created from the data source.

Throws

IOException

If any kind of I/O error occurs.

Description

This method reads data from the given URLConnection and returns the object that is represented by
the data.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

int hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ContentHandlerFactory, IOException, URL, URLConnection, URLStreamHandler

ConnectException ContentHandlerFactory

Chapter 15
The java.net Package

ContentHandlerFactory

Name

ContentHandlerFactory

Synopsis

Interface Name:

java.net.ContentHandlerFactory

Super-interface:

None

Immediate Sub-interfaces:

None

Implemented By:

None

Availability:

JDK 1.0 or later

Description

The ContentHandlerFactory interface defines a method that creates and returns an appropriate
ContentHandler object for a given MIME type. The interface is implemented by classes that select
ContentHandler subclasses to process content.

The URLStreamHandler class uses a ContentHandlerFactory to create ContentHandler
objects. The content type is usually implied by the portion of the URL following the last period. For
example, given the following URL:

http://www.tolstoi.org/anna.html

the MIME content type is text/html. A ContentHandlerFactory that recognizes text/html
returns a ContentHandler object that can process that kind of content.

Interface Declaration

public abstract interface java.net.ContentHandlerFactory {
 // Methods
 public abstract ContentHandler createContentHandler(String mimetype);
}

Methods

createContentHandler

 public abstract ContentHandler createContentHandler(String mimetype)

Parameters

mimetype

A String that represents a MIME type.

Returns

A ContentHandler object that can read the specified type of content.

Description

This method creates an object of the appropriate subclass of ContentHandler that can read and
process data for the given MIME type.

See Also

ContentHandler, URLStreamHandler

ContentHandler DatagramPacket

Chapter 15
The java.net Package

DatagramPacket

Name

DatagramPacket

Synopsis

Class Name:

java.net.DatagramPacket

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The DatagramPacket class represents a packet of data that can be sent and received over the network using a
DatagramSocket. The class is used to implement connectionless data communication.

Class Summary

public final class java.net.DatagramPacket extends java.lang.Object {
 // Constructors
 public DatagramPacket(byte[] ibuf, int ilength);
 public DatagramPacket(byte[] ibuf, int ilength,
 InetAddress iaddr, int iport);
 // Instance Methods
 public synchronized InetAddress getAddress();
 public synchronized byte[] getData();
 public synchronized int getLength();
 public synchronized int getPort();
 public synchronized void setAddress(InetAddress iaddr); // New in 1.1
 public synchronized void setData(byte[] ibuf); // New in 1.1
 public synchronized void setLength(int ilength); // New in 1.1
 public synchronized void setPort(int iport); // New in 1.1
}

Constructors

DatagramPacket

public DatagramPacket(byte ibuf[], int ilength)

Parameters

ibuf

The data buffer for receiving incoming bytes.

ilength

The number of bytes to read.

Description

This constructor creates a DatagramPacket that receives data. The value of ilength must be less than
or equal to ibuf.length. This DatagramPacket can be passed to DatagramSocket.receive().

 public DatagramPacket(byte ibuf[], int ilength, InetAddress iaddr, int iport)

Parameters

ibuf

The data buffer for the packet.

ilength

The number of bytes to send.

iaddr

The destination address.

iport

The destination port number.

Description

This constructor creates a DatagramPacket that sends packets of length ilength to the given port of
the specified address. The value of ilength must be less than or equal to ibuf.length. The packets are
sent using DatagramSocket.send().

Instance Methods

getAddress

public synchronized InetAddress getAddress()

Returns

The IP address of the packet.

Description

If this packet has been received, the method returns the address of the machine that sent it. If the packet is
being sent, the method returns the destination address.

getData

public synchronized byte[] getData()

Returns

The packet data.

Description

This method returns the data buffer associated with this DatagramPacket object. This data is either the
data being sent or the data that has been received.

getLength

public synchronized int getLength()

Returns

The packet length.

Description

This method returns the length of the message in the buffer associated with this DatagramPacket. This
length is either the length of the data being sent or the length of the data that has been received.

getPort

public synchronized int getPort()

Returns

The port number of the packet.

Description

If this packet has been received, the method returns the port number of the machine that sent it. If the packet
is being sent, the method returns the destination port number.

setAddress

public synchronized void setAddress(InetAddress iaddr)

Availability

New as of JDK 1.1

Parameters

iaddr

The destination address for the packet.

Description

This method sets the destination address for this packet. When the packet is sent using
DatagramSocket.send(), it is sent to the specified address.

setData

public synchronized void setData(byte[] ibuf)

Availability

New as of JDK 1.1

Parameters

ibuf

The data buffer for the packet.

Description

This method sets the data for this packet. When the packet is sent using DatagramSocket.send(), the
specified data is sent.

setLength

public synchronized void setLength(int ilength)

Availability

New as of JDK 1.1

Parameters

ilength

The number of bytes to send.

Description

This method sets the length of the data to be sent for this packet. When the packet is sent using
DatagramSocket.send(), the specified amount of data is sent.

setPort

public synchronized void setPort(int iport)

Availability

New as of JDK 1.1

Parameters

iport

The port number for the packet.

Description

This method sets the destination port number for this packet. When the packet is sent using
DatagramSocket.send(), it is sent to the specified port.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

DatagramSocket, InetAddress

ContentHandlerFactory DatagramSocket

Chapter 15
The java.net Package

DatagramSocket

Name

DatagramSocket

Synopsis

Class Name:

java.net.DatagramSocket

Superclass:

java.lang.Object

Immediate Subclasses:

java.net.MulticastSocket

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The DatagramSocket class implements packet-oriented, connectionless data communication. In Internet
parlance, this is the User Datagram Protocol, commonly known as UDP (see RFC 768). Each packet wanders
through the network, routed by its destination address. Different packets can take different paths through the
network and may arrive in a different order than they were sent. Furthermore, packets are not even guaranteed
to reach their destination. It is up to an application that uses DatagramSocket to determine if data is out of
order or missing. While these features may seem like disadvantages of DatagramSocket, there is also
some advantage to using this class. Primarily, communication using DatagramSocket is faster than
Socket stream communication because of the lack of overhead involved.

Class Summary

public class java.net.DatagramSocket extends java.lang.Object {
 // Constructors
 public DatagramSocket();
 public DatagramSocket(int port);
 public DatagramSocket(int port, InetAddress laddr); // New in 1.1
 // Instance Methods
 public void close();
 public InetAddress getLocalAddress(); // New in 1.1
 public int getLocalPort();
 public synchronized int getSoTimeout(); // New in 1.1
 public synchronized void receive(DatagramPacket p);
 public void send(DatagramPacket p);
 public synchronized void setSoTimeout(int timeout); // New in 1.1
}

Constructors

DatagramSocket

public DatagramSocket() throws SocketException

Throws

SocketException

If any kind of socket error occurs.

SecurityException

If the application is not allowed to listen on the port.

Description

This constructor creates a DatagramSocket that is bound to any available port on the local host
machine.

public DatagramSocket(int port) throws SocketException

Parameters

port

A port number.

Throws

SocketException

If any kind of socket error occurs.

SecurityException

If the application is not allowed to listen on the given port.

Description

This constructor creates a DatagramSocket that is bound to the given port on the local host
machine.

 public DatagramSocket(int port, InetAddress laddr) throws SocketException

Availability

New as of JDK 1.1

Parameters

port

A port number.

laddr

A local address.

Throws

SocketException

If any kind of socket error occurs.

SecurityException

If the application is not allowed to listen on the given port on the specified host.

Description

This constructor creates a DatagramSocket that is bound to the given port on the specified local
host machine.

Instance Methods

close

public void close()

Description

This method closes the socket, releasing any system resources it holds.

getLocalAddress

public InetAddress getLocalAddress()

Availability

New as of JDK 1.1

Returns

The local address of the socket.

Throws

SecurityException

If the application is not allowed to retrieve the address.

Description

This method returns the local address to which this DatagramSocket is bound.

getLocalPort

public int getLocalPort()

Returns

The port number of the socket.

Description

This method returns the local port to which this DatagramSocket is bound.

getSoTimeout

public synchronized int getSoTimeout() throws SocketException

Availability

New as of JDK 1.1

Returns

The receive time-out value for the socket.

Throws

SocketException

If any kind of socket error occurs.

Description

This method returns the receive time-out value for this socket. A value of zero indicates that the socket
waits indefinitely for an incoming packet, while a non-zero value indicates the number of milliseconds
it waits.

receive

 public synchronized void receive(DatagramPacket p) throws IOException

Parameters

p

The DatagramPacket that receives incoming data.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to receive data from the packet's source.

InterruptedIOException

If a packet does not arrive before the time-out period expires.

Description

This method receives a datagram packet on this socket. After this method returns, the given
DatagramPacket contains the packet's data and length, and the sender's address and port number. If
the data that was sent is longer that the given packet's data buffer, the data is truncated.

If a time-out value is specified using the setSoTimeout() method, the method either returns with
the received packet or times out, throwing an InterruptedIOException. If no time-out value is
specified, the method blocks until it receives a packet.

send

public void send(DatagramPacket p) throws IOException

Parameters

p

The DatagramPacket to be sent.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to send data to the packet's destination.

Description

This method sends a packet from this socket. The packet data, packet length, destination address, and
destination port number are specified by the given DatagramPacket.

setSoTimeout

 public synchronized void setSoTimeout(int timeout) throws SocketException

Availability

New as of JDK 1.1

Parameters

timeout

The new time-out value, in milliseconds, for this socket.

Throws

SocketException

If any kind of socket error occurs.

Description

This method is used to set the time-out value that is used for receive(). A non-zero value specifies
the length of time, in milliseconds, that the DatagramSocket should wait for an incoming packet. A
value of zero indicates that the DatagramSocket should wait indefinitely for an incoming packet. If
a time-out value is needed, this method must be called before receive().

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

DatagramPacket, DatagramSocketImpl, InetAddress, InterruptedIOException,
IOException, MulticastSocket, SecurityException, Socket, SocketException

DatagramPacket DatagramSocketImpl

Chapter 15
The java.net Package

DatagramSocketImpl

Name

DatagramSocketImpl

Synopsis

Class Name:

java.net.DatagramSocketImpl

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The DatagramSocketImpl class is an abstract class that defines the bulk of the methods that make the
DatagramSocket and MulticastSocket classes work. Non-public subclasses of DatagramSocketImpl
provide platform-specific implementations of datagram socket communication.

Class Summary

public abstract class java.net.DatagramSocketImpl
 extends java.lang.Object {
 // Variables
 protected FileDescriptor fd;
 protected int localPort;
 // Protected Instance Methods
 protected abstract void bind(int lport, InetAddress laddr);
 protected abstract void close();
 protected abstract void create();
 protected FileDescriptor getFileDescriptor();
 protected int getLocalPort();
 protected abstract byte getTTL();
 protected abstract void join(InetAddress inetaddr);
 protected abstract void leave(InetAddress inetaddr);
 protected abstract int peek(InetAddress i);
 protected abstract void receive(DatagramPacket p);
 protected abstract void send(DatagramPacket p);
 protected abstract void setTTL(byte ttl);
}

Variables

fd

protected FileDescriptor fd

Description

The file descriptor that represents this socket.

localPort

protected int localPort

Description

The local port number of this socket.

Protected Instance Methods

bind

 protected abstract void bind(int lport, InetAddress laddr) throws SocketException

Parameters

lport

A port number.

laddr

A local address.

Throws

SocketException

If any kind of socket error occurs.

Description

This method binds the socket to the given address and port. If the address or the port is unavailable, an exception is
thrown.

close

protected void close()

Description

This method closes the socket, releasing any system resources it holds.

create

protected abstract void create() throws SocketException

Throws

SocketException

If a socket error occurs.

Description

This method creates a socket that is not bound to an address and port.

getFileDescriptor

protected FileDescriptor getFileDescriptor()

Returns

The file descriptor for this socket.

Description

This method returns the file descriptor associated with this DatagramSocketImpl.

getLocalPort

protected int getLocalPort()

Returns

The port number for this socket.

Description

This method returns the local port to which this DatagramSocketImpl is bound.

getTTL

protected abstract byte getTTL() throws IOException

Returns

The time-to-live (TTL) value for this socket.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the TTL value for this socket. This value is the number of hops that an outgoing packet can
traverse before it is discarded.

join

 protected abstract void join(InetAddress inetaddr) throws IOException

Parameters

inetaddr

The IP address of the group to join.

Throws

IOException

If any kind of I/O error occurs.

Description

This method is used by MulticastSocket to join a multicast group. An exception is thrown if the given
address is not a multicast address. While the socket is part of a group, it receives all packets that are sent to the
group.

leave

 protected abstract void leave(InetAddress inetaddr) throws IOException

Parameters

inetaddr

The IP address of the group to leave.

Throws

IOException

If any kind of I/O error occurs.

Description

This method is used by MulticastSocket to leave a multicast group. An exception is thrown if the given
address is not a multicast address.

peek

protected abstract int peek(InetAddress i) throws IOException

Parameters

i

A reference to an InetAddress object.

Returns

The port number of the next incoming packet.

Throws

IOException

If any kind of I/O error occurs.

Description

This method places the address of the next incoming packet in the given InetAddress object. The method also
returns the port number of the next incoming packet. The method looks at the address of an incoming packet to
determine if it should be accepted.

receive

 protected abstract void receive(DatagramPacket p) throws IOException

Parameters

p

The DatagramPacket that receives incoming data.

Throws

IOException

If any kind of I/O error occurs.

Description

This method receives a datagram packet on this socket. After this method returns, the given DatagramPacket
contains the packet's data and length, and the sender's address and port number. If the data that was sent is longer
that the given packet's data buffer, the data is truncated.

send

protected abstract void send(DatagramPacket p) throws IOException

Parameters

p

The DatagramPacket to be sent.

Throws

IOException

If any kind of I/O error occurs.

Description

This method sends a packet from this socket. The packet data, packet length, destination address, and destination
port number are specified by the given DatagramPacket.

setTTL

protected abstract void setTTL(byte ttl) throws IOException

Parameters

ttl

The new TTL value for this socket.

Throws

IOException

If any kind of I/O error occurs.

Description

This method is used to set the TTL value of the socket. The TTL value is the number of hops that an outgoing
packet can traverse before it is discarded.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

DatagramPacket, DatagramSocket, FileDescriptor, InetAddress, IOException,

MulticastSocket

DatagramSocket FileNameMap

Chapter 15
The java.net Package

FileNameMap

Name

FileNameMap

Synopsis

Interface Name:

java.net.FileNameMap

Super-interface:

None

Immediate Sub-interfaces:

None

Implemented By:

None

Availability:

New as of JDK 1.1

Description

The FileNameMap interface defines a method that maps filenames to MIME types. The interface is
implemented by classes that provide this mapping. The mapping is typically done by examining the file
extension of the filename, or in other words, the part of the filename that follows the final period.

Interface Declaration

public abstract interface java.net.FileNameMap {
 // Methods
 public abstract String getContentTypeFor(String fileName);
}

Methods

getContentTypeFor

public abstract String getContentTypeFor(String fileName)

Parameters

fileName

A String that contains a filename.

Returns

The String that contains the MIME type that corresponds to the filename.

Description

This method attempts to determine the MIME type of a file by examining its filename.

See Also

ContentHandler, ContentHandlerFactory

DatagramSocketImpl HttpURLConnection

Chapter 15
The java.net Package

HttpURLConnection

Name

HttpURLConnection

Synopsis

Class Name:

java.net.HttpURLConnection

Superclass:

java.net.URLConnection

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The HttpURLConnection class is an abstract class that is a subclass of URLConnection. HttpURLConnection
defines many of the HTTP server response codes as constants and provides methods for parsing server responses.

An HttpURLConnection object defines a network connection to a resource specified by a URL. Essentially, the
HttpURLConnection object represents the HTTP request for that resource.

Class Summary

public abstract class java.net.HttpURLConnection
 extends java.net.URLConnection {
 // Constants
 public final static int HTTP_ACCEPTED;
 public final static int HTTP_BAD_GATEWAY;
 public final static int HTTP_BAD_METHOD;
 public final static int HTTP_BAD_REQUEST;
 public final static int HTTP_CLIENT_TIMEOUT;
 public final static int HTTP_CONFLICT;
 public final static int HTTP_CREATED;
 public final static int HTTP_ENTITY_TOO_LARGE;
 public final static int HTTP_FORBIDDEN;
 public final static int HTTP_GATEWAY_TIMEOUT;
 public final static int HTTP_GONE;
 public final static int HTTP_INTERNAL_ERROR;
 public final static int HTTP_LENGTH_REQUIRED;
 public final static int HTTP_MOVED_PERM;
 public final static int HTTP_MOVED_TEMP;
 public final static int HTTP_MULT_CHOICE;
 public final static int HTTP_NOT_ACCEPTABLE;
 public final static int HTTP_NOT_AUTHORITATIVE;
 public final static int HTTP_NOT_FOUND;
 public final static int HTTP_NOT_MODIFIED;
 public final static int HTTP_NO_CONTENT;
 public final static int HTTP_OK;
 public final static int HTTP_PARTIAL;
 public final static int HTTP_PAYMENT_REQUIRED;
 public final static int HTTP_PRECON_FAILED;
 public final static int HTTP_PROXY_AUTH;
 public final static int HTTP_REQ_TOO_LONG;
 public final static int HTTP_RESET;
 public final static int HTTP_SEE_OTHER;
 public final static int HTTP_SERVER_ERROR;
 public final static int HTTP_UNAUTHORIZED;
 public final static int HTTP_UNAVAILABLE;
 public final static int HTTP_UNSUPPORTED_TYPE;
 public final static int HTTP_USE_PROXY;
 public final static int HTTP_VERSION;
 // Variables
 protected String method;
 protected int responseCode;
 protected String responseMessage;
 // Constructors
 protected HttpURLConnection(URL u);
 // Class Methods
 public static boolean getFollowRedirects();
 public static void setFollowRedirects(boolean set);
 // Instance Methods
 public abstract void disconnect();
 public String getRequestMethod();
 public int getResponseCode();
 public String getResponseMessage();
 public void setRequestMethod(String method);
 public abstract boolean usingProxy();
}

Constants

HTTP_ACCEPTED

public final static int HTTP_ACCEPTED = 202

Description

The HTTP response code that means the request has been accepted by the server.

HTTP_BAD_GATEWAY

public final static int HTTP_BAD_GATEWAY = 502

Description

The HTTP response code that means the server, acting as a gateway, has received a bad response from another server.

HTTP_BAD_METHOD

public final static int HTTP_BAD_METHOD = 405

Description

The HTTP response code that means the requested method is not allowed for the requested resource.

HTTP_BAD_REQUEST

public final static int HTTP_BAD_REQUEST = 400

Description

The HTTP response code that means the request was syntactically incorrect.

HTTP_CLIENT_TIMEOUT

public final static int HTTP_CLIENT_TIMEOUT = 408

Description

The HTTP response code that means the server has not received a request from the client in the time it expected.

HTTP_CONFLICT

public final static int HTTP_CONFLICT = 409

Description

The HTTP response code that means there is a conflict with the state of the requested resource.

HTTP_CREATED

public final static int HTTP_CREATED = 201

Description

The HTTP response code that means a new resource has been created as the result of the request.

HTTP_ENTITY_TOO_LARGE

public final static int HTTP_ENTITY_TOO_LARGE = 413

Description

The HTTP response code that means the request contains an entity that is too large for the server.

HTTP_FORBIDDEN

public final static int HTTP_FORBIDDEN = 403

Description

The HTTP response code that means the client does not have permission to access the requested resource.

HTTP_GATEWAY_TIMEOUT

public final static int HTTP_GATEWAY_TIMEOUT = 504

Description

The HTTP response code that means the server, acting as a gateway, has not received a response from an upstream server in
the time it expected.

HTTP_GONE

public final static int HTTP_GONE = 410

Description

The HTTP response code that means the requested resource is no longer available.

HTTP_INTERNAL_ERROR

public final static int HTTP_INTERNAL_ERROR = 501

Description

The HTTP response code that means the server does not or cannot support the client's request.

HTTP_LENGTH_REQUIRED

public final static int HTTP_LENGTH_REQUIRED = 411

Description

The HTTP response code that means the server won't accept the request without a length indication.

HTTP_MOVED_PERM

public final static int HTTP_MOVED_PERM = 301

Description

The HTTP response code that means the requested resource has moved permanently.

HTTP_MOVED_TEMP

public final static int HTTP_MOVED_TEMP = 302

Description

The HTTP response code that means the requested resource has moved temporarily.

HTTP_MULT_CHOICE

public final static int HTTP_MULT_CHOICE = 300

Description

The HTTP response code that means the requested resource is available in multiple representations.

HTTP_NOT_ACCEPTABLE

public final static int HTTP_NOT_ACCEPTABLE = 406

Description

The HTTP response code that means the requested resource is not available in a representation that is acceptable to the
client.

HTTP_NOT_AUTHORITATIVE

public final static int HTTP_NOT_AUTHORITATIVE = 203

Description

The HTTP response code that means the information returned may be a copy.

HTTP_NOT_FOUND

public final static int HTTP_NOT_FOUND = 404

Description

The HTTP response code that means the server could not find the requested resource.

HTTP_NOT_MODIFIED

public final static int HTTP_NOT_MODIFIED = 304

Description

The HTTP response code that means the requested resource has not been modified.

HTTP_NO_CONTENT

public final static int HTTP_NO_CONTENT = 204

Description

The HTTP response code that means the request has been processed, but there is no new information.

HTTP_OK

public final static int HTTP_OK = 200

Description

The HTTP response code that means the request succeeded.

HTTP_PARTIAL

public final static int HTTP_PARTIAL = 206

Description

The HTTP response code that means the partial request has been fulfilled.

HTTP_PAYMENT_REQUIRED

public final static int HTTP_PAYMENT_REQUIRED = 402

Description

An HTTP response code that is reserved for future use.

HTTP_PRECON_FAILED

public final static int HTTP_PRECON_FAILED = 412

Description

The HTTP response code that means the precondition in the request has failed.

HTTP_PROXY_AUTH

public final static int HTTP_PROXY_AUTH = 407

Description

The HTTP response code that means the client needs to authenticate itself with the proxy.

HTTP_REQ_TOO_LONG

public final static int HTTP_REQ_TOO_LONG = 414

Description

The HTTP response code that means the client request is too long.

HTTP_RESET

public final static int HTTP_RESET = 205

Description

The HTTP response code that means the request has been fulfilled, and the client should reset its view.

HTTP_SEE_OTHER

public final static int HTTP_SEE_OTHER = 303

Description

The HTTP response code that means the requested resource is available at another URL.

HTTP_SERVER_ERROR

public final static int HTTP_SERVER_ERROR = 500

Description

The HTTP response code that means the server encountered a problem and could not fulfill the request.

HTTP_UNAUTHORIZED

public final static int HTTP_UNAUTHORIZED = 401

Description

The HTTP response code that means the client is not authenticated for the requested resource.

HTTP_UNAVAILABLE

public final static int HTTP_UNAVAILABLE = 503

Description

The HTTP response code that means the server is temporarily unable to fulfill the request.

HTTP_UNSUPPORTED_TYPE

public final static int HTTP_UNSUPPORTED_TYPE = 415

Description

The HTTP response code that means the server cannot process the type of the request.

HTTP_USE_PROXY

public final static int HTTP_USE_PROXY = 305

Description

The HTTP response code that means a proxy must be used to access the requested resource.

HTTP_VERSION

public final static int HTTP_VERSION = 505

Description

The HTTP response code that means the server does not support the HTTP version used in the request.

Variables

method

protected String method = "GET"

Description

The method of this request. Valid values are: "DELETE", "GET", "HEAD", "OPTIONS", "POST", "PUT", and
"TRACE".

responseCode

protected int responseCode = -1

Description

The response code from the server, which may be one of the HTTP_ constants.

responseMessage

protected String responseMessage = null

Description

The response message from the server that corresponds to responseCode.

Constructors

HttpURLConnection

protected HttpURLConnection(URL u)

Parameters

u

A URL object that represents a resource.

Description

This constructor creates an HttpURLConnection for the given URL object.

Class Methods

getFollowRedirects

public static boolean getFollowRedirects()

Returns

A boolean value that indicates whether or not HTTP redirect codes are automatically followed.

Description

This method indicates whether or not this HttpURLConnection follows HTTP redirects. The default value is false.

setFollowRedirects

public static void setFollowRedirects(boolean set)

Parameters

set

A boolean value that specifies whether or not HTTP redirects should be followed.

Throws

SecurityException

If there is a SecurityManager installed and its checkSetFactory() method throws a
SecurityException.

Description

This method specifies whether or not this HttpURLConnection follows HTTP redirects.

Instance Methods

disconnect

public abstract void disconnect()

Description

This method closes the connection to the server.

getRequestMethod

public String getRequestMethod()

Returns

The method of this request.

Description

This method returns the method of this request.

getResponseCode

public int getResponseCode() throws IOException

Returns

The response code from the server.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the code the server sent in response to this request. For example, suppose the server response is:

HTTP/1.0 404 Not Found

In this case, the method returns integer value 404.

getResponseMessage

public int getResponseMessage() throws IOException

Returns

The response message from the server.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the message the server sent in response to this request. For example, suppose the server response is:

HTTP/1.0 404 Not Found

In this case, the method returns the string "Not Found".

setRequestMethod

 public void setRequestMethod(String method) throws ProtocolException

Parameters

method

The new method for this request.

Throws

ProtocolException

If the connection has already been made or if method is invalid.

Description

This method sets the method of this request. Valid values are: "DELETE", "GET", "HEAD", "OPTIONS", "POST",

"PUT", and "TRACE".

usingProxy

public abstract boolean usingProxy()

Returns

A boolean value that indicates whether or not this HttpURLConnection is using a proxy.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns a flag that indicates if this connection is going through a proxy or not.

Inherited Variables

Variable Inherited From Variable Inherited From

allowUserInteraction URLConnection connected URLConnection

doInput URLConnection doOutput URLConnection

ifModifiedSince URLConnection url URLConnection

useCaches URLConnection

Inherited Methods

Method Inherited From Method Inherited From

clone() Object connect() URLConnection

equals(Object) Object finalize() Object

getAllowUserInteraction() URLConnection getClass() Object

getContent() URLConnection getContentEncoding() URLConnection

getContentLength() URLConnection getContentType() URLConnection

getDate() URLConnection getDefaultUseCaches() URLConnection

getDoInput() URLConnection getDoOutput() URLConnection

getExpiration() URLConnection getHeaderField(String) URLConnection

getHeaderField(int) URLConnection
getHeaderFieldDate(String,
long)

URLConnection

getHeaderFieldInt(String, int) URLConnection getHeaderFieldKey(int) URLConnection

getIfModifiedSince() URLConnection getInputStream() URLConnection

getLastModified() URLConnection getOutputStream() URLConnection

getRequestProperty(String) URLConnection getURL() URLConnection

getUseCaches() URLConnection hashCode() Object

notify() Object notifyAll() Object

setAllowUserInteraction(boolean) URLConnection setDefaultUseCaches(boolean) URLConnection

setDoInput(boolean) URLConnection setDoOutput(boolean) URLConnection

setIfModifiedSince(long) URLConnection
setRequestProperty(String,
String)

URLConnection

setUseCaches(boolean) URLConnection toString() URLConnection

wait() Object wait(long) Object

wait(long, int) Object

See Also

IOException, ProtocolException, SecurityException, SecurityManager, URL, URLConnection

FileNameMap InetAddress

Chapter 15
The java.net Package

InetAddress

Name

InetAddress

Synopsis

Class Name:

java.net.InetAddress

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The InetAddress class encapsulates an Internet Protocol (IP) address. InetAddress objects are used by the various
classes that are responsible for specifying the destination addresses of outbound network packets, such as
DatagramSocket, MulticastSocket, and Socket. InetAddress does not provide any public constructors.
Instead, you must use the static methods getAllByName(), getByName(), and getLocalHost() to create
InetAddress objects.

Class Summary

public final class java.net.InetAddress extends java.lang.Object
 implements java.io.Serializable {
 // Class Methods
 public static InetAddress[] getAllByName(String host);
 public static InetAddress getByName(String host);
 public static InetAddress getLocalHost();
 // Instance Methods
 public boolean equals(Object obj);
 public byte[] getAddress();
 public String getHostAddress(); // New in 1.1
 public String getHostName();
 public int hashCode();
 public boolean isMulticastAddress(); // New in 1.1
 public String toString();
}

Class Methods

getAllByName

 public static InetAddress[] getAllByName(String host) throws UnknownHostException

Parameters

host

A String that contains a hostname.

Returns

An array of InetAddress objects that corresponds to the given name.

Throws

SecurityException

If the application is not allowed to connect to host.

UnknownHostException

If host cannot be resolved.

Description

This method finds all of the IP addresses that correspond to the given hostname. The hostname can be a machine
name, such as "almond.nuts.com", or a string representation of an IP address, such as "208.25.146.1".

getByName

 public static InetAddress getByName(String host) throws UnknownHostException

Parameters

host

A String that contains a host name.

Returns

An InetAddress that corresponds to the given name.

Throws

SecurityException

If the application is not allowed to connect to host.

UnknownHostException

If host cannot be resolved.

Description

This method returns the primary IP address that correspond to the given hostname. The hostname can be a machine
name, such as "almond.nuts.com", or a string representation of an IP address, such as "208.25.146.1".

getLocalHost

 public static InetAddress getLocalHost() throws UnknownHostException

Returns

An InetAddress that corresponds to the name of the local machine.

Throws

SecurityException

If the application is not allowed to connect to host.

UnknownHostException

If host cannot be resolved.

Description

This method finds the IP address of the local machine.

Instance Methods

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equivalent; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of InetAddress that specifies the same IP address as the object
this method is associated with.

getAddress

public byte[] getAddress()

Returns

A byte array with elements that correspond to the bytes of the IP address that this object represents.

Description

This method returns the IP address associated with this object as an array of bytes in network order. That means
that the first element of the array contains the highest order byte, and the last element of the array contains the
lowest order byte.

getHostAddress

public String getHostAddress()

Availability

New as of JDK 1.1

Returns

A String that contains the IP address of this object.

Description

This method returns a string representation of the IP address associated with this object. For example:
"206.175.64.78".

getHostName

public String getHostName()

Returns

The hostname associated with this object.

Description

In most cases, this method returns the hostname that corresponds to the IP address associated with this object.
However, there are a few special cases:

❍ If the address associated with this object is address of the local machine, the method may return null.

❍ If the method cannot determine a home name to go with the address associated with this object, the method
returns a string representation of the address.

❍ If the application is not allowed to know the hostname, the method returns a string representation of the
address.

hashCode

public int hashCode()

Returns

The hashcode based on the IP address of the object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this object, based on the IP address associated with this object.

isMulticastAddress

public boolean isMulticastAddress()

Availability

New as of JDK 1.1

Returns

true if this object represents a multicast address; false otherwise.

Description

This method returns a flag that indicates if this object represents an IP multicast address. A multicast address is a
Class D address, which means that its four highest-order bits are set to 1110. In other words, multicast addresses
are in the range 224.0.0.1 through 239.255.255.255 inclusive.

toString

public String toString()

Returns

The string representation of this InetAddress.

Overrides

Object.toString()

Description

This method returns a String that contains both the hostname and IP address of this object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

DatagramSocket, MulticastSocket, SecurityException, Serializable, Socket,
UnknownHostException

HttpURLConnection MalformedURLException

Chapter 15
The java.net Package

MalformedURLException

Name

MalformedURLException

Synopsis

Class Name:

java.net.MalformedURLException

Superclass:

java.io.IOException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A MalformedURLException is thrown when a malformed URL is encountered, which can occur if a URL

does not contain a valid protocol or if the string is unparsable.

Class Summary

public class java.net.MalformedURLException extends java.io.IOException {
 // Constructors
 public MalformedURLException();
 public MalformedURLException(String msg);
}

Constructors

MalformedURLException

public MalformedURLException()

Description

This constructor creates a MalformedURLException with no associated detail message.

public MalformedURLException(String msg)

Parameters

msg

The detail message.

Description

This constructor creates a MalformedURLException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Throwable

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IOException, RuntimeException

InetAddress MulticastSocket

Chapter 15
The java.net Package

MulticastSocket

Name

MulticastSocket

Synopsis

Class Name:

java.net.MulticastSocket

Superclass:

java.net.DatagramSocket

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The MulticastSocket class implements packet-oriented, connectionless, multicast data communication. In
Internet parlance, this is the User Datagram Protocol (UDP) with additional functionality for joining and leaving

groups of other multicast hosts on the Internet. A multicast group is specified by a Class D address, which means
that the four highest-order bits are set to 1110. In other words, multicast addresses are in the range 224.0.0.1
through 239.255.255.255 inclusive.

MulticastSocket inherits most of its functionality from DatagramSocket; it adds the ability to join and
leave multicast groups. When a MulticastSocket joins a group, it receives all of the packets destined for the
group. Any DatagramSocket or MulticastSocket can send packets to a multicast group.

Class Summary

public final class java.net.MulticastSocket
 extends java.net.DatagramSocket {
 // Constructors
 public MulticastSocket();
 public MulticastSocket(int port);
 // Instance Methods
 public InetAddress getInterface();
 public byte getTTL();
 public void joinGroup(InetAddress mcastaddr);
 public void leaveGroup(InetAddress mcastaddr)
 public synchronized void send(DatagramPacket p, byte ttl);
 public void setInterface(InetAddress inf);
 public void setTTL(byte ttl);
}

Constructors

MulticastSocket

public MulticastSocket() throws IOException

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to listen on the port.

Description

This constructor creates a MulticastSocket that is bound to any available port on the local host

machine.

public MulticastSocket(int port) throws IOException

Parameters

port

A port number.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to listen on the given port.

Description

This constructor creates a MulticastSocket that is bound to the given port on the local host machine.

Instance Methods

getInterface

public InetAddress getInterface() throws SocketException

Returns

The address of the network interface used for outgoing multicast packets.

Throws

SocketException

If any kind of socket error occurs.

Description

This method returns the IP address that this MulticastSocket uses to send out packets to multicast
destinations.

getTTL

public byte getTTL() throws IOException

Returns

The time-to-live (TTL) value for this socket.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the TTL value for this socket. This value is the number of hops an outgoing packet can
traverse before it is discarded.

joinGroup

public void joinGroup(InetAddress mcastaddr) throws IOException

Parameters

mcastaddr

The IP address of the group to join.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to access the given multicast address.

Description

This method is used to join a multicast group. An exception is thrown if the given address is not a multicast
address. While the socket is part of a group, it receives all the packets that are sent to the group.

leaveGroup

public void leaveGroup(InetAddress mcastaddr) throws IOException

Parameters

mcastaddr

The IP address of the group to leave.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to access the given multicast address.

Description

This method is used to leave a multicast group. An exception is thrown if the given address is not a
multicast address.

send

 public synchronized void send(DatagramPacket p, byte ttl) throws IOException

Parameters

p

The DatagramPacket to be sent.

ttl

The time-to-live (TTL) value for this packet.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to send data to the packet's destination.

Description

This method sends a packet from this socket using the given TTL value. The packet data, packet length,
destination address, and destination port number are specified by the given DatagramPacket.

Generally, it is easier to use setTTL() to set the TTL value for the socket, then use
send(DatagramPacket) to send data. This method is provided for special cases.

setInterface

public void setInterface(InetAddress inf) throws SocketException

Parameters

inf

The new address of the network interface for multicast packets.

Throws

SocketException

If any kind of socket error occurs.

Description

This method is used to set the address that is used for outgoing multicast packets.

setTTL

public void setTTL(byte ttl) throws IOException

Parameters

ttl

The new time-to-live (TTL) value for this socket.

Throws

IOException

If any kind of I/O error occurs.

Description

This method is used to set the TTL value of the socket. The TTL value is the number of hops an outgoing
packet can traverse before it is discarded.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object close() DatagramSocket

equals(Object) Object finalize() Object

getClass() Object getLocalAddress() DatagramSocket

getLocalPort() DatagramSocket getSoTimeout() DatagramSocket

hashCode() Object notify() Object

notifyAll() Object receive(DatagramPacket) DatagramSocket

send(DatagramPacket) DatagramSocket setSoTimeout(int) DatagramSocket

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

DatagramPacket, DatagramSocket, DatagramSocketImpl, InetAddress, IOException,
SecurityException, SocketException

MalformedURLException NoRouteToHostException

Chapter 15
The java.net Package

NoRouteToHostException

Name

NoRouteToHostException

Synopsis

Class Name:

java.net.NoRouteToHostException

Superclass:

java.net.SocketException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A NoRouteToHostException is thrown when a socket connection cannot be established with a remote host.

This type of exception usually indicates that a firewall is blocking access to the host, or that an intermediate
router is down.

Class Summary

public class java.net.NoRouteToHostException
 extends java.net.SocketException {
 // Constructors
 public NoRouteToHostException();
 public NoRouteToHostException(String msg);
}

Constructors

NoRouteToHostException

public NoRouteToHostException()

Description

This constructor creates a NoRouteToHostException with no associated detail message.

public NoRouteToHostException(String msg)

Parameters

msg

The detail message.

Description

This constructor creates a NoRouteToHostException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Throwable

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IOException, RuntimeException, SocketException

MulticastSocket ProtocolException

Chapter 15
The java.net Package

ProtocolException

Name

ProtocolException

Synopsis

Class Name:

java.net.ProtocolException

Superclass:

java.io.IOException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A ProtocolException is thrown to indicate that there has been an error in an underlying protocol, such as

an HTTP or TCP protocol error.

Class Summary

public class java.net.ProtocolException extends java.io.IOException {
 // Constructors
 public ProtocolException();
 public ProtocolException(String host);
}

Constructors

ProtocolException

public ProtocolException()

Description

This constructor creates a ProtocolException with no associated detail message.

public ProtocolException(String host)

Parameters

host

The detail message.

Description

This constructor creates a ProtocolException with the specified detail message, which should be the
host that caused the underlying protocol error.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Throwable

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IOException, RuntimeException

NoRouteToHostException ServerSocket

Chapter 15
The java.net Package

ServerSocket

Name

ServerSocket

Synopsis

Class Name:

java.net.ServerSocket

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The ServerSocket class represents a socket that listens for connection requests from clients on a specified port. When a
connection is requested, a Socket object is created to handle the communication.

The low-level network access in ServerSocket is provided by a subclass of the abstract class SocketImpl. An
application can change the server socket factory that creates the SocketImpl subclass by supplying a
SocketImplFactory using the setSocketFactory() method. This feature allows an application to create sockets

that are appropriate for the local network configuration and accommodate such things as firewalls.

Class Summary

public class java.net.ServerSocket extends java.lang.Object {
 // Constructors
 public ServerSocket(int port);
 public ServerSocket(int port, int backlog);
 public ServerSocket(int port, int backlog,
 InetAddress bindAddr); // New in 1.1
 // Class Methods
 public static synchronized void setSocketFactory(SocketImplFactory fac);
 // Instance Methods
 public Socket accept();
 public void close();
 public InetAddress getInetAddress();
 public int getLocalPort();
 public synchronized int getSoTimeout() // New in 1.1
 public synchronized void setSoTimeout(int timeout); // New in 1.1
 public String toString();
 // Protected Instance Methods
 protected final void implAccept(Socket s); // New in 1.1
}

Constructors

ServerSocket

public ServerSocket(int port) throws IOException

Parameters

port

A port number, or 0 for any available port.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to listen on the given port.

Description

This method creates a server socket that listens for a connection on the given port. A default of 50 pending
connections can be queued by the ServerSocket. Calling accept() removes a pending connections from the
queue. If the queue is full, additional connection requests are refused.

If an application has specified a server socket factory, the createSocketImpl() method of that factory is called
to create the actual socket implementation. Otherwise, the constructor creates a plain socket.

public ServerSocket(int port, int backlog) throws IOException

Parameters

port

A port number, or 0 for any available port.

backlog

The maximum length of the pending connections queue.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to listen on the given port.

Description

This method creates a server socket that listens for a connection on the given port. The backlog parameter specifies
how many pending connections can be queued by the ServerSocket. Calling accept() removes a pending
connection from the queue. If the queue is full, additional connection requests are refused.

If an application has specified a server socket factory, the createSocketImpl() method of that factory is called
to create the actual socket implementation. Otherwise, the constructor creates a plain socket.

 public ServerSocket(int port, int backlog, InetAddress bindAddr) throws IOException

Availability

New as of JDK 1.1

Parameters

port

A port number, or 0 for any available port.

backlog

The maximum length of the pending connections queue.

bindAddr

A local address.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to listen on the given port.

Description

This method creates a server socket that listens for a connection on the given port of bindAddr. On machines with
multiple addresses, bindAddr specifies the address on which this ServerSocket listens. The backlog
parameter specifies how many pending connections can be queued by the ServerSocket. Calling accept()
removes pending connections from the queue. If the queue is full, additional connection requests are refused.

If an application has specified a server socket factory, the createSocketImpl() method of that factory is called
to create the actual socket implementation. Otherwise, the constructor creates a plain socket.

Class Methods

setSocketFactory

 public static synchronized void setSocketFactory(SocketImplFactory fac) throws
IOException

Parameters

fac

An object that implements SocketImplFactory.

Throws

IOException

If the factory has already been defined.

SecurityException

If the application does not have permission to set the factory.

Description

This method is used to set the SocketImplFactory. This factory object produces instances of subclasses of
SocketImpl that do the low-level work of server sockets. When a ServerSocket constructor is called, the
createSocketImpl() method of the factory is called to create the server socket implementation.

Instance Methods

accept

public Socket accept() throws IOException

Returns

A Socket object for the connection.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to accept the connection.

Description

This method accepts a connection and returns a Socket object to handle communication. If there are pending
connections, the method accepts a pending connection from the queue and returns immediately. Otherwise, the
method may block until a connection is requested. If a time-out value has been specified using the
setSoTimeout() method, accept() may time out and throw an InterruptedIOException if no
connection is requested in the time-out period.

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method closes this server socket, releasing any system resources it holds.

getInetAddress

public InetAddress getInetAddress()

Returns

The IP address to which this ServerSocket is listening.

Description

Generally, this method returns the address of the local host. However, a ServerSocket can be constructed with an
alternate address using ServerSocket(int, int, InetAddress). The method returns null if the socket is
not yet connected.

getLocalPort

public int getLocalPort()

Returns

The port number to which this ServerSocket is listening.

Description

This method returns the port number to which this object is connected.

getSoTimeout

public synchronized int getSoTimeout() throws IOException

Availability

New as of JDK 1.1

Returns

The receive timeout value for the socket.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the receive time-out value for this socket. A value of zero indicates that accept() waits
indefinitely for an incoming packet, while a non-zero value indicates the number of milliseconds it waits.

setSoTimeout

 public synchronized void setSoTimeout(int timeout) throws SocketException

Availability

New as of JDK 1.1

Parameters

timeout

The new time-out value, in milliseconds, for this socket.

Throws

SocketException

If any kind of socket error occurs.

Description

This method is used to set the time-out value that is used for accept(). A nonzero value is the length of time, in
milliseconds, the ServerSocket should wait for a connection. A value of zero indicates that the ServerSocket
should wait indefinitely. If a time-out value is needed, this method must be called before accept().

toString

public String toString()

Returns

The string representation of this ServerSocket.

Overrides

Object.toString()

Description

This method returns a String that contains the address and port of this ServerSocket.

Protected Instance Methods

implAccept

protected final void implAccept(Socket s) throws IOException

Availability

New as of JDK 1.1

Parameters

s

The Socket object to be connected.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to accept the connection.

Description

This method is a helper method for accept(). It can be overridden in subclasses of ServerSocket to support
new subclasses of Socket.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

InetAddress, IOException, SecurityException, Socket, SocketException, SocketImpl,
SocketImplFactory

ProtocolException Socket

Chapter 15
The java.net Package

Socket

Name

Socket

Synopsis

Class Name:

java.net.Socket

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Socket class implements stream-based, connection-oriented, reliable data communication. Although Socket objects
are often used with the Transmission Control Protocol, commonly known as TCP, they are independent of the actual protocol
being used. The Socket class encapsulates client logic that is common to connection-oriented protocols. Sockets are two-
way data pipes that are connected on either end to an address and port number. As of JDK 1.1, new constructors allow you to
specify the local address and port as well as the remote address and port.

A Socket object uses an object that belongs to a subclass of the abstract class SocketImpl to access protocol-
specific logic. A program can specify the subclass of SocketImpl that is used by passing an appropriate
SocketImplFactory object to the setSocketImplFactory() method before any Socket objects are created.
This feature allows a program to create sockets that are able to accommodate such things as firewalls or even work with
different protocols.

Class Summary

public class java.net.Socket extends java.lang.Object {
 // Constructors
 public Socket(String host, int port);
 public Socket(InetAddress address, int port);
 public Socket(String host, int port,
 InetAddress localAddr, int localPort); // New in 1.1
 public Socket(InetAddress address, int port,
 InetAddress localAddr, int localPort); // New in 1.1
 public Socket(String host, int port,
 boolean stream); // Deprecated in 1.1
 public Socket(InetAddress host, int port,
 boolean stream); // Deprecated in 1.1
 protected Socket(); // New in 1.1
 protected Socket(SocketImpl impl); // New in 1.1
 // Class Methods
 public static synchronized void setSocketImplFactory(
 SocketImplFactory fac);
 // Instance Methods
 public synchronized void close();
 public InetAddress getInetAddress();
 public InputStream getInputStream();
 public InetAddress getLocalAddress(); // New in 1.1
 public int getLocalPort();
 public OutputStream getOutputStream();
 public int getPort();
 public int getSoLinger(); // New in 1.1
 public synchronized int getSoTimeout(); // New in 1.1
 public boolean getTcpNoDelay(); // New in 1.1
 public void setSoLinger(boolean on, int val); // New in 1.1
 public synchronized void setSoTimeout(int timeout); // New in 1.1
 public void setTcpNoDelay(boolean on); // New in 1.1
 public String toString();
}

Constructors

Socket

 public Socket(String host, int port) throws IOException, UnknownHostException

Parameters

host

The name of a remote machine.

port

A port on a remote machine.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to connect to the given host and port.

UnknownHostException

If the IP address of the given hostname cannot be determined.

Description

This constructor creates a Socket and connects it to the specified port on the given host.

If a program has specified a socket factory, the createSocketImpl() method of that factory is called to create
the actual socket implementation. Otherwise, the constructor creates a plain socket.

public Socket(InetAddress address, int port) throws IOException

Parameters

address

The IP address of a remote machine.

port

A port on a remote machine.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to connect to the given address and port.

Description

This constructor creates a Socket and connects it to the specified port on the host at the given address.

If a program has specified a socket factory, the createSocketImpl() method of that factory is called to create
the actual socket implementation. Otherwise, the constructor creates a plain socket.

 public Socket(String host, int port, InetAddress localAddr, int localPort) throws
IOException

Availability

New as of JDK 1.1

Parameters

host

The name of a remote machine.

port

A port on a remote machine.

localAddr

An IP address on the local host.

localPort

A port on the local host.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to connect to the given host and port.

Description

This constructor creates a Socket and connects it to the specified port on the given host. The constructor also binds
the Socket to the specified local address and port.

If a program has specified a socket factory, the createSocketImpl() method of that factory is called to create
the actual socket implementation. Otherwise, the constructor creates a plain socket.

 public Socket(InetAddress address, int port, InetAddress localAddr, int localPort)
throws IOException

Availability

New as of JDK 1.1

Parameters

address

The IP address of a remote machine.

port

A port on a remote machine.

localAddr

An IP address on the local host.

localPort

A port on the local host.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to connect to the given address and port.

Description

This constructor creates a Socket and connects it to the specified port on the host at the given address. The
constructor also binds the Socket to the specified local address and port.

If a program has specified a socket factory, the createSocketImpl() method of that factory is called to create
the actual socket implementation. Otherwise, the constructor creates a plain socket.

 public Socket(String host, int port, boolean stream) throws IOException

Availability

Deprecated as of JDK 1.1

Parameters

host

The name of a remote machine.

port

A port on a remote machine.

stream

A boolean value that indicates if this socket is a stream socket.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to connect to the given host and port.

Description

This constructor creates a Socket and connects it to the specified port on the given host.

If the stream argument is true, a stream socket is created. Otherwise, a datagram socket is created. This
constructor is deprecated as of JDK 1.1; use DatagramSocket for datagrams.

If a program has specified a socket factory, the createSocketImpl() method of that factory is called to create
the actual socket implementation. Otherwise, the constructor creates a plain socket.

 public Socket(InetAddress address, int port, boolean stream) throws IOException

Availability

Deprecated as of JDK 1.1

Parameters

address

The IP address of a remote machine.

port

A port on a remote machine.

stream

A boolean value that indicates if this socket is a stream socket.

Throws

IOException

If any kind of I/O error occurs.

SecurityException

If the application is not allowed to connect to the given host and port.

Description

This constructor creates a Socket and connects it to the specified port on the host at the given address.

If the stream argument is true, a stream socket is created. Otherwise, a datagram socket is created. This
constructor is deprecated as of JDK 1.1; use DatagramSocket for datagrams.

If a program has specified a socket factory, the createSocketImpl() method of that factory is called to create
the actual socket implementation. Otherwise, the constructor creates a plain socket.

protectedSocket()

Availability

New as of JDK 1.1

Description

This constructor creates a Socket that uses an instance of the system default SocketImpl subclass for its low-
level network access.

protectedSocket(SocketImpl impl) throws SocketException

Availability

New as of JDK 1.1

Parameters

impl

The socket implementation to use.

Throws

SocketException

This exception is never thrown by this constructor.

Description

This constructor creates a Socket that uses the given object for its low-level network access.

Class Methods

setSocketImplFactory

 public static synchronized void setSocketImplFactory(SocketImplFactory fac) throws
IOException

Parameters

fac

An object that implements SocketImplFactory.

Throws

IOException

If the factory has already been defined.

SecurityException

If the application does not have permission to set the factory.

Description

This method sets the SocketImplFactory. This factory produces instances of subclasses of SocketImpl that
do the low-level work of sockets. When a Socket constructor is called, the createSocketImpl() method of the
factory is called to create the socket implementation.

Instance Methods

close

public synchronized void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method closes this socket, releasing any system resources it holds.

getInetAddress

public InetAddress getInetAddress()

Returns

The remote IP address to which this Socket is connected.

Description

This method returns the IP address of the remote host to which this socket is connected.

getInputStream

public InputStream getInputStream() throws IOException

Returns

An InputStream that wraps this socket.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns an InputStream that reads data from the socket.

getLocalAddress

public InetAddress getLocalAddress()

Availability

New as of JDK 1.1

Returns

The local IP address from which this Socket originates.

Description

This method returns the local address that is the origin of the socket.

getLocalPort

public int getLocalPort()

Returns

The local port number from which this Socket originates.

Description

This method returns the local port number that is the origin of the socket.

getOutputStream

public OutputStream getOutputStream() throws IOException

Returns

An OutputStream that wraps this socket.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns an OutputStream that sends data through the socket.

getPort

public int getPort()

Returns

The remote port number to which this Socket is connected.

Description

This method returns the port number of the remote host to which this socket is connected.

getSoLinger

public int getSoLinger() throws SocketException

Availability

New as of JDK 1.1

Returns

The close time-out value for the socket.

Throws

SocketException

If any kind of socket error occurs.

Description

This method returns the close time-out value for this socket. A value of -1 or 0 indicates that close()closes the
socket immediately. A value greater than 0 indicates the amount of time, in seconds, that close() blocks, waiting
for unsent data to be sent.

getSoTimeout

public synchronized int getSoTimeout() throws SocketException

Availability

New as of JDK 1.1

Returns

The read time-out value for the socket.

Throws

SocketException

If any kind of socket error occurs.

Description

This method returns the read time-out value for this socket. A value of zero indicates that the read() method of the
associated InputStream waits indefinitely for an incoming packet, while a non-zero value indicates the number of

milliseconds it waits before throwing an InterruptedIOException.

getTcpNoDelay

public boolean getTcpNoDelay() throws SocketException

Availability

New as of JDK 1.1

Returns

true if Nagle's algorithm is disabled for this connection; false otherwise.

Throws

SocketException

If any kind of socket error occurs.

Description

This method indicates whether Nagle's algorithm is disabled for this socket or not. Said another way, it indicates
whether the TCPNODELAY option is enabled or not.

In essence, Nagle's algorithm takes small outgoing packets that are closely spaced in time and combines them into
larger packets. This improves overall efficiency, since each packet has a certain amount of overhead; however, it does
so at the expense of immediacy.

setSoLinger

 public void setSoLinger(boolean on, int val) throws SocketException

Availability

New as of JDK 1.1

Parameters

on

A boolean value that specifies whether or not close() blocks

val

The new close time-out value, in seconds, for this socket.

Throws

SocketException

If any kind of socket error occurs.

Description

This method sets the close timeout value for this socket. If val is -1 or 0, or if on is false, close() closes the
socket immediately. If on is true and val is greater than 0, val indicates the amount of time, in seconds, that
close() blocks, waiting for unsent data to be sent.

setSoTimeout

 public synchronized void setSoTimeout(int timeout) throws SocketException

Availability

New as of JDK 1.1

Parameters

timeout

The new read time-out value, in milliseconds, for the socket.

Throws

SocketException

If any kind of socket error occurs.

Description

This method is used to set the time-out value that is used for the read() method of the corresponding
InputStream. A non-zero value is the length of time, in milliseconds, that the Socket should wait for data before
throwing an InterruptedIOException. A value of zero indicates that the Socket should wait indefinitely. If a
timeout value is needed, this method must be called before read().

setTcpNoDelay

public void setTcpNoDelay(boolean on) throws SocketException

Availability

New as of JDK 1.1

Parameters

on

A boolean value that specifies whether or not to disable Nagle's algorithm.

Throws

SocketException

If any kind of socket error occurs.

Description

This method specifies whether Nagle's algorithm is disabled for this socket or not. Said another way, it determines
whether the TCPNODELAY option is enabled or not.

In essence, Nagle's algorithm takes small outgoing packets that are closely spaced in time and combines them into
larger packets. This improves overall efficiency, since each packet has a certain amount of overhead; however, it does
so at the expense of immediacy.

toString

public String toString()

Returns

The string representation of this Socket.

Overrides

Object.toString()

Description

This method returns a String that contains the address and port of this Socket.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

DatagramSocket, InetAddress, InputStream, IOException, OutputStream, SecurityException,
SocketException, SocketImpl, SocketImplFactory, UnknownHostException

ServerSocket SocketException

Chapter 15
The java.net Package

SocketException

Name

SocketException

Synopsis

Class Name:

java.net.SocketException

Superclass:

java.io.IOException

Immediate Subclasses:

java.net.BindException,

java.net.ConnectException,

java.net.NoRouteToHostException

Interfaces Implemented:

None

Availability:

JDK 1.0 and later

Description

A SocketException is thrown when an error occurs while a socket is being used. As of JDK 1.1, there are
some more specific subclasses of SocketException, namely BindException, ConnectException,
and NoRouteToHostException.

Class Summary

public class java.net.SocketException extends java.io.IOException {
 // Constructors
 public SocketException();
 public SocketException(String msg);
}

Constructors

SocketException

public SocketException()

Description

This constructor creates a SocketException with no associated detail message.

public SocketException(String msg)

Parameters

msg

The detail message.

Description

This constructor creates a SocketException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Throwable

wait() Object wait(long) Object

wait(long, int) Object

See Also

BindException, ConnectException, Exception, IOException, NoRouteToHostException,
RuntimeException

Socket SocketImpl

Chapter 15
The java.net Package

SocketImpl

Name

SocketImpl

Synopsis

Class Name:

java.net.SocketImpl

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The SocketImpl class is an abstract class that defines the bulk of the methods that make the Socket and
ServerSocket classes work. Thus, SocketImpl is used to create both client and server sockets. Non-public
subclasses of SocketImpl provide platform-specific implementations of stream-based socket communication. A plain
socket implements the methods in SocketImpl as described; other implementations could provide socket
communication through a proxy or firewall.

Class Summary

public abstract class java.net.SocketImpl extends java.lang.Object {
 // Variables
 protected InetAddress address;
 protected FileDescriptor fd;
 protected int localport;
 protected int port;
 // Instance Methods
 public String toString();
 // Protected Instance Methods
 protected abstract void accept(SocketImpl s);
 protected abstract int available();
 protected abstract void bind(InetAddress host, int port);
 protected abstract void close();
 protected abstract void connect(String host, int port);
 protected abstract void connect(InetAddress address, int port);
 protected abstract void create(boolean stream);
 protected FileDescriptor getFileDescriptor();
 protected InetAddress getInetAddress();
 protected abstract InputStream getInputStream();
 protected int getLocalPort();
 protected abstract OutputStream getOutputStream();
 protected int getPort();
 protected abstract void listen(int backlog);
}

Variables

address

protected InetAddress address

Description

The remote IP address to which this socket is connected.

fd

protected FileDescriptor fd

Description

The file descriptor that represents this socket.

localPort

protected int localPort

Description

The local port number of this socket.

port

protected int port

Description

The remote port number of this socket.

Instance Methods

toString

public String toString()

Returns

The string representation of this SocketImpl.

Overrides

Object.toString()

Description

This method returns a String that contains a representation of this object.

Protected Instance Methods

accept

protected abstract void accept(SocketImpl s) throws IOException

Parameters

s

A SocketImpl to connect.

Throws

IOException

If any kind of I/O error occurs.

Description

This method accepts a connection. The method connects the given socket s to a remote host in response to the
remote host's connection request on this SocketImpl.

available

protected abstract int available() throws IOException

Returns

The number of bytes that can be read without blocking.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the number of bytes that can be read from the socket without waiting for more data to arrive.

bind

 protected abstract void bind(InetAddress host, int port) throws IOException

Parameters

host

An IP address.

port

A port number.

Throws

IOException

If any kind of I/O error occurs.

Description

This method binds the socket to the given address and port. If the address or the port is unavailable, an exception is
thrown.

close

protected abstract void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method closes the socket, releasing any system resources it holds.

connect

 protected abstract void connect(String host, int port) throws IOException

Parameters

host

A remote hostname.

port

A port number on the remote host.

Throws

IOException

If any kind of I/O error occurs.

Description

This method connects this socket to the specified port on the given host.

 protected abstract void connect(InetAddress address, int port) throws IOException

Parameters

address

A remote IP address.

port

A port number on the remote host.

Throws

IOException

If any kind of I/O error occurs.

Description

This method connects this socket to the specified port on the host at the given address.

create

protected abstract void create(boolean stream) throws IOException

Parameters

stream

A boolean value that indicates if this socket is a stream socket.

Throws

IOException

If any kind of I/O error occurs.

Description

This method creates a socket that is not bound and not connected. If the stream argument is true, a stream
socket is created. Otherwise, a datagram socket is created.

getFileDescriptor

protected final FileDescriptor getFileDescriptor

Returns

The file descriptor for this socket.

Description

This method returns the file descriptor associated with this SocketImpl.

getInetAddress

protected InetAddress getInetAddress()

Returns

The remote IP address to which this SocketImpl is connected.

Description

This method returns the IP address of the remote host to which this SocketImpl is connected.

getInputStream

protected abstract InputStream getInputStream() throws IOException

Returns

An InputStream that wraps this socket.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns an InputStream that reads data from the socket.

getLocalPort

protected int getLocalPort()

Returns

The local port number from which this SocketImpl originates.

Description

This method returns the local port number that is the origin of the socket.

getOutputStream

 protected abstract OutputStream getOutputStream() throws IOException

Returns

An OutputStream that wraps this socket.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns an OutputStream that sends data through the socket.

getPort

protected int getPort()

Returns

The remote port number to which this SocketImpl is connected.

Description

This method returns the port number of the remote host to which this socket is connected.

listen

protected abstract void listen(int backlog) throws IOException

Parameters

backlog

The maximum length of pending connections queue.

Throws

IOException

If any kind of I/O error occurs.

Description

This object can directly accept a connection if its accept() method has been called and is waiting for a
connection. Otherwise, the local system rejects connections to this socket unless listen() has been called.

This method requests that the local system listen for connections and accept them on behalf of this object. The
accepted connections are placed in a queue of the specified length. When there are connections in the queue, a call
to this object's accept() method removes a connection from the queue and immediately returns. If the queue is
full, additional connection requests are refused.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

FileDescriptor, InetAddress, InputStream, IOException, OutputStream, ServerSocket,
Socket, SocketImplFactory

SocketException SocketImplFactory

Chapter 15
The java.net Package

SocketImplFactory

Name

SocketImplFactory

Synopsis

Interface Name:

java.net.SocketImplFactory

Super-interface:

None

Immediate Sub-interfaces:

None

Implemented By:

None

Availability:

JDK 1.0 or later

Description

The SocketImplFactory interface defines a method that creates a SocketImpl object. The
interface is implemented by classes that select SocketImpl subclasses to support the Socket and
ServerSocket classes.

Interface Declaration

public abstract interface java.net.SocketImplFactory {
 // Methods
 public abstract SocketImpl createSocketImpl();
}

Methods

createSocketImpl

public abstract SocketImpl createSocketImpl()

Returns

A SocketImpl object.

Description

This method creates an instance of a subclass of SocketImpl that is appropriate for the
environment.

See Also

ServerSocket, Socket, SocketImpl

SocketImpl URL

Chapter 15
The java.net Package

URL

Name

URL

Synopsis

Class Name:

java.net.URL

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The URL class represents a Uniform Resource Locator, or URL. The class provides methods for retrieving the various parts
of a URL and also access to the resource itself.

An absolute URL consists of a protocol, a hostname, a port number, a filename, and an optional reference, or anchor. For
example, consider the following URL:

http://www.woolf.net:81/books/Orlando/chapter4.html#p6

This URL consists of the following parts:

Part Value

Protocol http

Hostname www.woolf.net

Port number 81

Filename /books/Orlando/chapter4.html

Reference p6

A relative URL specifies only enough information to locate the resource relative to another URL. The filename component is
the only part that must be specified for a relative URL. If the protocol, hostname, or port number is not specified, the value is
taken from a fully specified URL. For example, the following is a relative URL based on the absolute URL above:

chapter6.html

This relative URL is equivalent to the following absolute URL:

http://www.woolf.net:81/books/Orlando/chapter6.html

The URL class also provides access to the resource itself, through the getContent(), openConnection(), and
openStream() methods. However, these are all convenience functions: other classes do the actual work of accessing the
resource.

A protocol handler is an object that knows how to deal with a specific protocol. For example, an http protocol handler
opens a connection to an http host. In java.net, subclasses of URLStreamHandler deal with different protocols. A
URLStreamHandlerFactory selects a subclass of URLStreamHandler based on a MIME type. Once the
URLStreamHandler has established a connection with a host using a specific protocol, a subclass of ContentHandler
retrieves resource data from the host and creates an object from it.

Class Summary

public final class java.net.URL extends java.lang.Object
 implements java.io.Serializable {
 // Constructors
 public URL(String spec);
 public URL(URL context, String spec);
 public URL(String protocol, String host, String file);
 public URL(String protocol, String host, int port, String file);
 // Class Methods
 public static synchronized void setURLStreamHandlerFactory(
 URLStreamHandlerFactory fac);
 // Instance Methods
 public boolean equals(Object obj);
 public final Object getContent();
 public String getFile();
 public String getHost();

 public int getPort();
 public String getProtocol();
 public String getRef();
 public int hashCode();
 public URLConnection openConnection();
 public final InputStream openStream();
 public boolean sameFile(URL other);
 public String toExternalForm();
 public String toString();
 // Protected Instance Methods
 protected void set(String protocol, String host, int port,
 String file, String ref);
}

Constructors

URL

public URL(String spec) throws MalformedURLException

Parameters

spec

A String that represents a URL.

Throws

MalformedURLException

If the string is incorrectly constructed or specifies an unknown protocol.

Description

This constructor creates a URL by parsing the given string. The string should specify an absolute URL. Calling this
constructor is equivalent to calling URL(null,_3C/tt_3E spec).

public URL(URL context, String spec) throws MalformedURLException

Parameters

context

A base URL that provides the context for parsing spec.

spec

A String that represents a URL.

Throws

MalformedURLException

If the string is incorrectly constructed or specifies an unknown protocol.

Description

This constructor creates a URL relative to the base URL specified by context.
If context is not null, and spec specifies a partial URL, the missing parts of
spec are inherited from context.

The given string is first parsed to see if it specifies a protocol. If the
string contains a colon (:) before the first occurrence of a slash (/), the
characters before the colon comprise the protocol.

If spec does not specify a protocol, and context is not null, the protocol is
inherited from context, as are the hostname, port number, and filename. If
context is null in this situation, the constructor throws a
MalformedURLException.

If spec does specify a protocol, and context is null or specifies a different
protocol, the context argument is ignored and spec should specify an absolute
URL. If context specifies the same protocol as spec, the hostname, port number,
and filename from context are inherited.

Once the constructor has created a fully specified URL object, it searches for
an appropriate protocol handler of type URLStreamHandler, as described for
URL(String,_3C/tt_3E String, int, String). Then the parseURL(default.htm)
method of the URLStreamHandleris called to parse the remainder of the URL so
that the fields in spec can override any values inherited from context.

 public URL(String protocol, String host, String file) throws MalformedURLException

Parameters

protocol

A protocol.

host

A hostname.

file

A filename.

Throws

MalformedURLException

If an unknown protocol is specified.

Description

This constructor creates a URL with the given protocol, hostname, and filename.
The port number is set to the default port for the given protocol. Calling this
constructor is equivalent to calling URL(protocol,_3C/tt_3E host, -1, file).

 public URL(String protocol, String host, int port, String file) throws
MalformedURLException

Parameters

protocol

A protocol.

host

A hostname.

port

A port number or -1 to use the default port for the protocol.

file

A filename.

Throws

MalformedURLException

If an unknown protocol is specified.

Description

This constructor creates a URL with the given protocol, hostname, port number,
and filename.

If this is the first URL object being created with the specified protocol, a
protocol handler of type URLStreamHandler is created for the protocol. Here are
the steps that are taken to create a protocol handler:

1. If an application has set up a URLStreamHandlerFactory by calling
setURLStreamHandlerFactory(), the constructor calls the
createURLStreamHandler() method of that object to create the protocol

handler. The protocol is passed as a String argument to that method.

2. If no URLStreamHandlerFactory has been established, or the
createURLStreamHandler() method returns null, the constructor retrieves
the value of the system property java.protocol.handler.pkgs. If this value
is not null, it is interpreted as a list of packages separated by vertical
bar (|) characters. The constructor then tries to load the class named
package.protocol.Handler, where package is the name of the first package
in the list and protocol is the name of the protocol. If the class exists,
and is a subclass of URLStreamHandler, it is used as the URLStreamHandler
for the protocol. If the class does not exist, or if it exists but is not
a subclass of URLStreamHandler, the constructor tries the next package in
the list.

3. If the previous step fails to find an appropriate protocol handler, the
constructor tries to load the class named
sun.net.www.protocol.protocol.Handler, where protocol is the name of the
protocol. If the class exists and is a subclass of URLStreamHandler, it is
used as the URLStreamHandler for the protocol. If the class does not
exist, or if it exists but is not a subclass of URLStreamHandler, a
MalformedURLException is thrown.

Class Methods

setURLStreamHandlerFactory

 public static synchronized void setURLStreamHandlerFactory(URLStreamHandlerFactory
fac)

Parameters

fac

An object that implements URLStreamHandlerFactory.

Throws

Error

If the factory has already been defined.

SecurityException

If the application does not have permission to set the factory.

Description

This method tells the URL class to use the given URLStreamHandlerFactory object
for handling all URL objects. The purpose of this mechanism is to allow a

program that hosts applets, such as a web browser, control over the creation of
URLStreamHandler objects.

Instance Methods

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true

if the objects are equivalent;

false

if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of URL with the same protocol,
hostname, port number, and filename as this URL. The reference is only compared
if it is not null in this URL.

getContent

public Object getContent() throws IOException

Returns

The Object created from the resource represented by this URL.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns the content of the URL, encapsulated in an object that is
appropriate for the type of the content. The method is shorthand for calling
openConnection().getContent(), which uses a ContentHandler object to retrieve
the content.

getFile

public String getFile()

Returns

The filename of the URL.

Description

This method returns the name of the file of this URL. Note that the file can be
misleading; although the resource represented by this URL may be a file, it can
also be generated on the fly by the server.

getHost

public String getHost()

Returns

The hostname of the URL.

Description

This method returns the hostname from this URL.

getPort

public int getPort()

Returns

The port number of the URL.

Description

This method returns the port number of this URL. If a port number is not
specified for this URL, meaning it uses the default port for the protocol, -1
is returned.

getProtocol

public String getProtocol()

Returns

The protocol of the URL.

Description

This method returns the protocol of this URL. Some examples of protocols are:
http, ftp, and mailto.

getRef

public String getRef()

Returns

The reference of the URL.

Description

This method returns the reference, or anchor, of this URL.

hashCode

public int hashCode()

Returns

The hashcode of the URL.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this object.

openConnection

public URLConnection openConnection() throws IOException

Returns

A URLConnection object for the URL.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns a URLConnection than manages a connection to the resource
represented by this URL. If there is not already an open connection, the method
opens a connection by calling the openConnection() method of the
URLStreamHandler for this URL. A URLStreamHandler for the protocol of the URL
is created by the constructor of the URL.

openStream

public final InputStream openStream() throws IOException

Returns

A InputStream that reads from this URL.

Throws

IOException

If any kind of I/O error occurs.

Description

This method returns an InputStream object that reads the content of the given
URL. The method is shorthand for calling openConnection().getInputStream().

sameFile

public boolean sameFile(URL other)

Parameters

other

The URL to compare.

Returns

A boolean value that indicates if this URL is equivalent to other with the
exception of references.

Description

This method returns true if this object and the given URL object specify the
same protocol, specify hosts that have the same IP address, specify the same
port number, and specify the same filename. The filename comparison is case-
sensitive. References specified by the URLs are not considered by this method.
This method is a helper method for equals().

toExternalForm

public String toExternalForm)

Returns

A string representation of the URL.

Description

This method returns a string representation of this URL. The string
representation is determined by the protocol of the URL. The method calls the
toExternalForm() method of the URLStreamHandler for this URL. A
URLStreamHandler for the protocol of the URL is created by the constructor of
the URL.

toString

public String toString()

Returns

A string representation of the URL.

Overrides

Object.toString()

Description

This method returns a string representation of this URL by calling
toExternalForm().

Protected Instance Methods

set

 protected void set(String protocol, String host, int port, String file, String ref)

Parameters

protocol

A protocol.

host

A hostname.

port

A port number.

file

A filename.

ref

A reference.

Description

This method sets the protocol, hostname, port number, filename, and reference
of this URL. The method is called by a URLStreamHandler to set the parts of the
URL. A URLStreamHandler for the protocol of the URL is created by the
constructor of the URL. It is this URLStreamHandler that parses the URL string.
This method is used after parsing to set the values of the URL.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

ContentHandler, Error, InputStream, IOException, MalformedURLException,
SecurityException, URLConnection, URLStreamHandler, URLStreamHandlerFactory

SocketImplFactory URLConnection

Chapter 15
The java.net Package

URLConnection

Name

URLConnection

Synopsis

Class Name:

java.net.URLConnection

Superclass:

java.lang.Object

Immediate Subclasses:

java.net.HttpURLConnection

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The URLConnection class is an abstract class that represents a connection to a URL. A subclass of URLConnection
supports a protocol-specific connection. A URLConnection can both read from and write to a URL.

A URLConnection object is created when the openConnection() method is called for a URL object. At this point, the
actual connection has not yet been made, so setup parameters and general request properties can be modified for the specific
connection. The various set methods control the setup parameters and request properties. Then the actual connection is

made by calling the connect() method. Finally, the remote object becomes available, and the header fields and the content
are accessed using various get methods.

The URLConnection class defines quite a few methods for setting parameters and retrieving information. Fortunately, for
simple connections, all of the setup parameters and request properties can be left alone, as they all have reasonable default
values. In most cases, you'll only be interested in the getInputStream() and getContent() methods.
getInputStream() provides an InputStream that reads from the URL, while getContent() uses a
ContentHandler to return an Object that represents the content of the resource. These methods are mirrored by the
openStream() and getContent() convenience methods in the URL class.

Class Summary

public abstract class java.net.URLConnection extends java.lang.Object {
 // Variables
 protected boolean allowUserInteraction;
 protected boolean connected;
 protected boolean doInput;
 protected boolean doOutput;
 public static FileNameMap fileNameMap; // New in 1.1
 protected long ifModifiedSince;
 protected URL url;
 protected boolean useCaches;
 // Constructors
 protected URLConnection(URL url);
 // Class Methods
 public static boolean getDefaultAllowUserInteraction();
 public static String getDefaultRequestProperty(String key);
 protected static String guessContentTypeFromName(String fname);
 public static String guessContentTypeFromStream(InputStream is);
 public static synchronized void setContentHandlerFactory(
 ContentHandlerFactory fac);
 public static void setDefaultAllowUserInteraction(
 boolean defaultallowuserinteraction);
 public static void setDefaultRequestProperty(String key,
 String value);
 // Instance Methods
 public abstract void connect();
 public boolean getAllowUserInteraction();
 public Object getContent()
 public String getContentEncoding();
 public int getContentLength();
 public String getContentType();
 public long getDate();
 public boolean getDefaultUseCaches();
 public boolean getDoInput();
 public boolean getDoOutput();
 public long getExpiration();
 public String getHeaderField(int n);
 public String getHeaderField(String name);
 public long getHeaderFieldDate(String name, long default);
 public int getHeaderFieldInt(String name, int default);

 public String getHeaderFieldKey(int n);
 public long getIfModifiedSince();
 public InputStream getInputStream();
 public long getLastModified();
 public OutputStream getOutputStream();
 public String getRequestProperty(String key);
 public URL getURL(default.htm);
 public boolean getUseCaches();
 public void setAllowUserInteraction(boolean allowuserinteraction);
 public void setDefaultUseCaches(boolean defaultusecaches);
 public void setDoInput(boolean doinput);
 public void setDoOutput(boolean dooutput);
 public void setIfModifiedSince(long ifmodifiedsince);
 public void setRequestProperty(String key, String value);
 public void setUseCaches(boolean usecaches);
 public String toString();
}

Variables

allowUserInteraction

protected boolean allowUserInteraction

Description

A flag that indicates whether or not user interaction is enabled for this connection. If this variable is true, it is
possible to allow user interactions such as popping up dialog boxes. If it is false, no user interaction is allowed. The
variable can be set by setAllowUserInteraction() and retrieved by getAllowUserInteraction().
The default value is false, unless the setDefaultAllowUserInteraction() method has been called, in
which case that method call controls the default value.

connected

protected boolean connected

Description

A flag that indicates whether or not this object has established a connection to a remote host.

doInput

protected boolean doInput

Description

A flag that indicates whether or not this connection is enabled for input. Setting this variable to true indicates that
the connection is going to read data. The variable can be set by setDoInput() and retrieved by getDoInput().
The default value is true.

doOutput

protected boolean doOutput

Description

A flag that indicates whether or not this connection is enabled for output. Setting this variable to true indicates that
the connection is going to write data. The variable can be set by setDoOutput() and retrieved by
getDoOutput(). The default value is false.

fileNameMap

public static FileNameMap fileNameMap

Availability

New as of JDK 1.1

Description

A reference to the object that maps filename extensions to MIME type strings. This variable is used in
guessContentTypeFromName().

ifModifiedSince

protected long ifModifiedSince

Description

A time value, specified as the number of seconds since January 1, 1970, that controls whether or not a resource is
fetched based on its last modification time. Some protocols do not bother to retrieve a resource if there is a current
local cached copy. However, if the resource has been modified more recently than ifModifiedSince, it is
retrieved. If ifModifiedSince is 0, the resource is always retrieved. The variable can be set by
setIfModifiedSince() and retrieved by getIfModifiedSince(). The default value is 0, which means
that the resource must always be retrieved.

url

protected URL url

Description

The resource to which this URLConnection connects. This variable is set to the value of the URL argument in the
URLConnection constructor. It can be retrieved by getURL(default.htm).

useCaches

protected boolean useCaches

Description

A flag that indicates whether or not locally cached resources are used. Some protocols cache documents. If this
variable is true, the protocol is allowed to use caching whenever possible. If it is false, the protocol must always
try to retrieve the resource. The variable can be set by setUseCaches() and retrieved by getUseCaches().
The default value is true, unless the setDefaultUseCaches() method has been called, in which case that
method call controls the default value.

Constructors

URLConnection

protected URLConnection(URL url)

Parameters

url

The URL to access.

Description

This constructor creates a URLConnection object to manage a connection to the destination specified by the given
URL. The actual connection is not created, however.

Class Methods

getDefaultAllowUserInteraction

public static boolean getDefaultAllowUserInteraction()

Returns

true if user interaction is allowed by default; false otherwise.

Description

This method returns the default value of the allowUserInteraction variable for all instances of
URLConnection. The default value is false, unless the setDefaultAllowUserInteraction() method
has been called, in which case that method call controls the default value.

getDefaultRequestProperty

public static String getDefaultRequestProperty(String key)

Parameters

key

The name of a request property.

Returns

The default value of the named request property.

Description

This method returns the default value for the request property named by the key parameter.

guessContentTypeFromName

protected static String guessContentTypeFromName(String fname)

Parameters

fname

A String that contains the name of a file.

Returns

A guess at the MIME type of the given file, or null if a guess cannot be made.

Description

This method uses the FileNameMap specified by the variable fileNameMap to return a MIME content type for
the given filename.

guessContentTypeFromStream

 protected static String guessContentTypeFromStream(InputStream is) throws
IOException

Parameters

is

The input stream to inspect

Returns

A guess at the MIME type of the given input stream, or null if a guess cannot be made.

Throws

IOException

If any kind of I/O error occurs.

Description

This method looks at the first few bytes of an InputStream and returns a guess of the MIME content type. Note
that the InputStream must support marks, which usually means that there is a BufferedInputStream at some
level. Here are some strings that are recognized and the inferred content type:

String MIME Type Guess

#def image/x-bitmap

<! text/html

<body text/html

<head> text/html

<html> text/html

! XPM2 image/x-pixmap

GIF8 image/gif

setContentHandlerFactory

 public static synchronized void setContentHandlerFactory(ContentHandlerFactory fac)

Parameters

fac

An object that implements ContentHandlerFactory.

Throws

Error

If the factory has already been defined.

SecurityException

If the application does not have permission to set the factory.

Description

This method tells the URLConnection class to use the given ContentHandlerFactory object for all
URLConnection objects. The purpose of this mechanism is to allow a program that hosts applets, such as a web
browser, control over the creation of ContentHandler objects.

setDefaultAllowUserInteraction

 public static void setDefaultAllowUserInteraction(boolean
defaultallowuserinteraction)

Parameters

defaultallowuserinteraction

The new default value.

Description

This method sets the default value of the allowUserInteraction variable for all new instances of
URLConnection.

setDefaultRequestProperty

 public static void setDefaultRequestProperty(String key, String value)

Parameters

key

The name of a request property.

value

The new default value.

Description

This method sets the default value of the request property named by the key parameter.

Instance Methods

connect

public abstract void connect() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

When a URLConnection object is created, it is not immediately connected to the resource specified by its
associated URL object. This method actually establishes the connection. If this method is called after the connection
has been established, it does nothing.

Before the connection is established, various parameters can be set with the set methods. After the connection has
been established, it is an error to try to set these parameters.

As they retrieve information about the resource specified by the URL object, many of the get methods require that the
connection be established. If the connection has not been established when one of these methods is called, the
connection is established implicitly.

getAllowUserInteraction

public boolean getAllowUserInteraction()

Returns

true if user interaction is allowed for this connection; false otherwise.

Description

This method returns the value of the allowUserInteraction variable for this URLConnection.

getContent

 public Object getContent() throws IOException, UnknownServiceException

Returns

An Object created from this URLConnection.

Throws

IOException

If any kind of I/O error occurs.

UnknownServiceException

If the protocol cannot support the content type.

Description

This method retrieves the content of the resource specified by the URL object associated with this URLConnection.
If the connection for this object has not been established, the method implicitly establishes it.

The method returns an object that encapsulates the content of the connection. For example, for a connection that has
content type image/jpeg, the method might return a object that belongs to subclass of Image, or for content type

text/plain, it might return a String. The instanceof operator should determine the specific type of object
that is returned.

The method first determines the content type of the connection by calling getContentType(). If this is the first
time the content type has been seen, a content handler of type ContentHandler is created for the content type.
Here are the steps that are taken to create a content handler:

1. If an application has set up a ContentHandlerFactory by calling setContentHandlerFactory(),
the method calls the createContentHandler() method of that object to create the content handler. The
content type is passed as a String argument to that method.

2. If no ContentHandlerFactory has been established, or the createContentHandler() method
returns null, the method retrieves the value of the system property java.content.handler.pkgs. If
this value is not null, it is interpreted as a list of packages separated by vertical bar (|) characters. The
method then tries to load the class named package.contentType, where package is the name of the first
package in the list and contentType is formed by taking the content-type string and replacing every slash (/)
character with a period (.) and every other nonalphanumeric character with an underscore (_). If the class
exists and is a subclass of ContentHandler, it is used as the ContentHandler for the content type. If
the class does not exist, or if it exists but is not a subclass of ContentHandler, the method tries the next
package in the list.

3. If the previous step fails to find an appropriate content handler, the method tries to load the class named
sun.net.www.content.contentType, where contentType is formed by taking the content-type string and
replacing every slash (/) character with a period (.) and every other nonalphanumeric character with an
underscore (_). If the class exists and is a subclass of ContentHandler, it is used as the
ContentHandler for the content type. If the class does not exist, or if it exists but is not a subclass of
ContentHandler, a UnknownServiceException is thrown.

getContentEncoding

public String getContentEncoding()

Returns

The content encoding, or null if it is not known.

Description

This method retrieves the content encoding of the resource specified by the URL object associated with this
URLConnection. In other words, the method returns the value of the content-encoding header field. If the
connection for this object has not been established, the method implicitly establishes it.

getContentLength

public int getContentLength()

Returns

The content length or -1 if it is not known.

Description

This method retrieves the content length of the resource specified by the URL object associated with this
URLConnection. In other words, the method returns the value of the content-length header field. If the
connection for this object has not been established, the method implicitly establishes it.

getContentType

public String getContentType()

Returns

The content type, or null if it is not known.

Description

This method retrieves the content type of the resource specified by the URL object associated with this
URLConnection. In other words, the method returns the value of the content-type header field. This string is
generally be a MIME type, such as image/jpeg or text/html. If the connection for this object has not been
established, the method implicitly establishes it.

getDate

public long getDate()

Returns

The content date, or 0 if it is not known.

Description

This method retrieves the date of the resource specified by the URL object associated with this URLConnection. In
other words, the method returns the value of the date header field. The date is returned as the number of seconds
since January 1, 1970. If the connection for this object has not been established, the method implicitly establishes it.

getDefaultUseCaches

public boolean getDefaultUseCaches()

Returns

true if the use of caches is allowed by default; false otherwise.

Description

This method returns the default value of the useCaches variable for all instances of URLConnection. The default
value is true, unless the setDefaultUseCaches() method has been called, in which case that method call
controls the default value.

getDoInput

public boolean getDoInput()

Returns

true if this URLConnection is to be used for input; false otherwise.

Description

This method returns the value of the doInput variable for this URLConnection.

getDoOutput

public boolean getDoOutput()

Returns

true if this URLConnection is to be used for output; false otherwise.

Description

This method returns the value of the doOutput variable for this URLConnection.

getExpiration

public long getExpiration()

Returns

The content expiration date, or if it is not known.

Description

This method retrieves the expiration date of the resource specified by the URL object associated with this
URLConnection. In other words, the method returns the value of the expires header field. The date is returned
as the number of seconds since January 1, 1970. If the connection for this object has not been established, the method
implicitly establishes it.

getHeaderField

public String getHeaderField(int n)

Parameters

n

A header field index.

Returns

The value of the header field with the given index, or null if n is greater than the number of fields in the header.

Description

This method retrieves the value of the header field at index n of the resource specified by the URL object associated
with this URLConnection. If the connection for this object has not been established, the method implicitly
establishes it.

public String getHeaderField(String name)

Parameters

name

A header field name.

Returns

The value of the named header field, or null if the header field is not known or its value cannot be determined.

Description

This method retrieves the value of the named header field of the resource specified by the URL object associated with
this URLConnection. This method is a helper for methods like getContentEncoding() and
getContentType(). If the connection for this object has not been established, the method implicitly establishes it.

getHeaderFieldDate

public long getHeaderFieldDate(String name, long default)

Parameters

name

A header field name.

default

A default date value.

Returns

The value of the named header field parsed as a date value, or default if the field is missing or cannot be parsed.

Description

This method retrieves the value of the named header field of the resource specified by the URL object associated with
this URLConnection and parses it as a date value. The date is returned as the number of seconds since January 1,
1970. If the value of the header field cannot be determined or it is not a properly formed date, the given default value
is returned. If the connection for this object has not been established, the method implicitly establishes it.

getHeaderFieldInt

public int getHeaderFieldInt(String name, int default)

Parameters

name

A header field name.

default

A default value.

Returns

The value of the named header field parsed as a number, or default if the field is missing or cannot be parsed.

Description

This method retrieves the value of the named header field of the resource specified by the URL object associated with
this URLConnection and parses it as a number. If the value of the header field cannot be determined or it is not a
properly formed integer, the given default value is returned. If the connection for this object has not been established,
the method implicitly establishes it.

getHeaderFieldKey

public String getHeaderFieldKey(int n)

Parameters

n

A header field index.

Returns

The name of the header field at the given index, or null if n is greater than the number of fields in the header.

Description

This method retrieves the name of the header field at index n of the resource specified by the URL object associated
with this URLConnection. If the connection for this object has not been established, the method implicitly

establishes it.

getIfModifiedSince

public long getIfModifiedSince()

Returns

The value of the ifModifiedSince variable.

Description

This method returns the value of the ifModifiedSince variable for this URLConnection.

getInputStream

 public InputStream getInputStream() throws IOException, UnknownServiceException

Returns

An InputStream that reads data from this connection.

Throws

IOException

If any kind of I/O error occurs.

UnknownServiceException

If this protocol does not support input.

Description

This method returns an InputStream that reads the contents of the resource specified by the URL object associated
with this URLConnection.

getLastModified

public long getLastModified()

Returns

The content last-modified date, or if it is not known.

Description

This method retrieves the last-modified date of the resource specified by the URL object associated with this

URLConnection. In other words, the method returns the value of the last-modified header field. The date is
returned as the number of seconds since January 1, 1970. If the connection for this object has not been established, the
method implicitly establishes it.

getOutputStream

 public OutputStream getOutputStream() throws IOException, UnknownServiceException

Returns

An OutputStream that writes data to this connection.

Throws

IOException

If any kind of I/O error occurs.

UnknownServiceException

If this protocol does not support output.

Description

This method returns an OutputStream that writes to the resource specified by the URL object associated with this
URLConnection.

getRequestProperty

public String getRequestProperty(String key)

Parameters

key

The name of a request property.

Returns

The value of the named request property.

Description

This method returns the value of the request property named by the key parameter.

getURL

public URL getURL(default.htm)

Returns

The URL that this connection accesses.

Description

This method returns a reference to the URL associated with this object. This is the value of the url variable for this
URLConnection.

getUseCaches

public boolean getUseCaches()

Returns

true if this URLConnection uses caches; false otherwise.

Description

This method returns the value of the useCaches variable for this URLConnection.

setAllowUserInteraction

public void setAllowUserInteraction(boolean allowuserinteraction)

Parameters

allowuserinteraction

A boolean value that indicates whether user interaction is allowed or not.

Throws

IllegalAccessError

If this method is called after the connection has been established.

Description

This method sets the value of the allowUserInteraction variable for this URLConnection. This method
must be called before this object establishes a connection.

setDefaultUseCaches

public void setDefaultUseCaches(boolean defaultusecaches)

Parameters

defaultusecaches

The new default value.

Description

This method sets the default value of the useCaches variable for all new instances of URLConnection.

setDoInput

public void setDoInput(boolean doinput)

Parameters

doinput

A boolean value that indicates if this connection is to be used for input.

Throws

IllegalAccessError

If this method is called after the connection has been established.

Description

This method sets the value of the doInput variable for this URLConnection. This method must be called
before this object establishes a connection.

setDoOutput

public void setDoOutput(boolean dooutput)

Parameters

dooutput

A boolean value that indicates if this connection is to be used for output.

Throws

IllegalAccessError

If this method is called after the connection has been established.

Description

This method sets the value of the doOutput variable for this URLConnection. This method must be called before

this object establishes a connection.

setIfModifiedSince

public void setIfModifiedSince(long ifmodifiedsince)

Parameters

ifmodifiedsince

A time value, specified as the number of seconds since January 1, 1970.

Throws

IllegalAccessError

If this method is called after the connection has been established.

Description

This method sets the value of the ifModifiedSince variable for this URLConnection. This method must be
called before this object establishes a connection.

setRequestProperty

public void setRequestProperty(String key, String value)

Parameters

key

The name of a request property.

value

The new value.

Throws

IllegalAccessError

If this method is called after the connection has been established.

Description

This method sets the value of the request property named by the key parameter.

setUseCaches

public void setUseCaches(boolean defaultusecaches)

Parameters

defaultusecaches

A boolean value that indicates if this connection uses caches.

Throws

IllegalAccessError

If this method is called after the connection has been established.

Description

This method sets the value of the useCaches variable for this URLConnection. This method must be called
before this object establishes a connection.

toString

public String toString()

Returns

A string representation of the URLConnection.

Overrides

Object.toString()

Description

This method returns a string representation of this URLConnection.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

ContentHandler, ContentHandlerFactory, Error, FileNameMap, HttpURLConnection,
IllegalAccessError, InputStream, IOException, OutputStream, SecurityException,
UnknownServiceException, URL, URLStreamHandler, URLStreamHandlerFactory

URL URLEncoder

Chapter 15
The java.net Package

URLEncoder

Name

URLEncoder

Synopsis

Class Name:

java.net.URLEncoder

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The URLEncoder class defines a single static method that converts a String to its URL-encoded
form. More precisely, the String is converted to a MIME type called x-www-form-urlencoded.

This is the format used when posting forms on the Web. The algorithm leaves letters, numbers, and the
dash (-), underscore (_), period (.), and asterisk (*) characters unchanged. Space characters are
converted to plus signs (+). All other characters are encoded with a percent sign (%) followed by the
character code represented as a two-digit hexadecimal number. For example, consider the following
string:

Jean-Louis Gassée

This string gets encoded as:

Jean-Louis+Gas%8ee

The point of the URLEncoder class is to provide a way to canonicalize a string into an extremely
portable subset of ASCII that can be handled properly by computers around the world.

Class Summary

public class java.net.URLEncoder extends java.lang.Object {
 // Class Methods
 public static String encode(String s);
}

Class Methods

encode

public static String encode(String s)

Parameters

s

The string to encode.

Returns

A URL-encoded string.

Description

This method returns the contents of the String in the x-www-form-urlencoded format.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long timeout, int nanos) Object

See Also

String, URL

URLConnection URLStreamHandler

Chapter 15
The java.net Package

URLStreamHandler

Name

URLStreamHandler

Synopsis

Class Name:

java.net.URLStreamHandler

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The URLStreamHandler class is an abstract class that defines methods that encapsulate protocol-specific behavior.
A stream handler protocol knows how to establish a connection for a particular protocol and how to parse the protocol-
specific portion of a URL. An application does not normally create a URLStreamHandler directly; the appropriate
subclass of URLStreamHandler is created by a URLStreamHandlerFactory.

The main purpose of a subclass of URLStreamHandler is to create a URLConnection object for a given URL. The
URLStreamHandler object creates an object of the appropriate subclass of URLConnection for the protocol type
specified by the URL. In order for a URL object to handle a protocol type such as http, ftp, or nntp, it needs an object
of the appropriate subclass of URLStreamHandler to handle the protocol-specific details.

Class Summary

public abstract class java.net.URLStreamHandler extends java.lang.Object {
 // Protected Instance Methods
 protected abstract URLConnection openConnection(URL u)
 protected void parseURL(URL u, String spec, int start, int limit);
 protected void setURL(URL u, String protocol, String host,
 int port, String file, String ref);
 protected String toExternalForm(URL u);
}

Protected Instance Methods

openConnection

 protected abstract URLConnection openConnection(URL u) throws IOException

Parameters

u

The URL being connected to.

Returns

The URLConnection object for the given URL.

Throws

IOException

If any kind of I/O error occurs.

Description

This method handles the protocol-specific details of establishing a connection to a remote resource specified by the
URL. The connection should be handled just up to the point where the resource data can be downloaded. A
ContentHandler then takes care of downloading the data and creating an appropriate object.

A subclass of URLStreamHandler must implement this method.

parseURL

protected void parseURL(URL u, String spec, int start, int limit)

Parameters

u

A reference to a URL object that receives the results of parsing.

spec

The string representation of a URL to be parsed.

start

The offset at which to begin parsing the protocol-specific portion of the URL.

limit

The offset of the last character that is to be parsed.

Description

This method parses the string representation of a URL into a URL object.

Some parts of the URL object may already be specified if spec specifies a relative URL. However, values for
those parts in spec can override the inherited context.

The method only parses the protocol-specific portion of the URL. In other words, start should specify the
character immediately after the first colon (:), which marks the termination of the protocol type, and limit should
either be the last character in the string or the first pound sign (#), which marks the beginning of a protocol-
independent anchor. Rather than return a result, the method calls the set() method of the specified URL object to
set its fields to the appropriate values.

The implementation of the parseURL(default.htm) method in URLStreamHandler parses the string
representation as if it were an http specification. A subclass that implements a protocol stream handler for a
different protocol must override this method to properly parse the URL.

setURL

 protected void setURL(URL u, String protocol, String host, int port, String file,
String ref)

Parameters

u

A reference to a URL object to be modified.

protocol

A protocol.

host

A hostname.

port

A port number.

file

A filename.

ref

A reference.

Description

This method sets the protocol, hostname, port number, filename, and reference of the given URL to the specified
values by calling the set() method of the URL. Only subclasses of URLStreamHandler are allowed to call the
set() method of a URL object.

toExternalForm

protected String toExternalForm(URL u)

Parameters

u

The URL object to convert to a string representation.

Returns

A string representation of the given URL.

Description

This method unparses a URL object and returns a string representation of the URL.

The implementation of the toExternalForm() method in URLStreamHandler returns a string

representation that is appropriate for an http specification. A subclass that implements a protocol stream handler
for a different protocol must override this method to create a correct string representation.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ContentHandler, IOException, URL, URLConnection, URLStreamHandlerFactory

URLEncoder URLStreamHandlerFactory

Chapter 15
The java.net Package

URLStreamHandlerFactory

Name

URLStreamHandlerFactory

Synopsis

Interface Name:

java.net.StreamHandlerFactory

Super-interface:

None

Immediate Sub-interfaces:

None

Implemented By:

None

Availability:

JDK 1.0 or later

Description

The URLStreamHandlerFactory interface defines a method that creates a URLStreamHandler object

for a specific protocol. The interface is implemented by classes that select URLStreamHandler subclasses to
process particular protocol types.

The URL class uses a URLStreamHandlerFactory to create URLStreamHandler objects. The protocol
type is determined by the portion of the URL up to the first colon. For example, given the following URL:

http://www.tolstoi.org/ilych.html

the protocol type is http. A URLStreamHandlerFactory that recognizes http returns a
URLStreamHandler that can process the URL.

Interface Declaration

public abstract interface java.net.URLStreamHandlerFactory {
 // Methods
 public abstract URLStreamHandler createURLStreamHandler(String protocol);
}

Methods

createURLStreamHandler

public abstract URLStreamHandler createURLStreamHandler (String protocol)

Parameters

protocol

A String that represents a protocol.

Description

This method creates an object of the appropriate subclass of URLStreamHandler that can process a
URL using the named protocol.

See Also

URL, URLStreamHandler

URLStreamHandler UnknownHostException

Chapter 15
The java.net Package

UnknownHostException

Name

UnknownHostException

Synopsis

Class Name:

java.net.UnknownHostException

Superclass:

java.io.IOException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A UnknownHostException is thrown when a hostname cannot be resolved to an IP address.

Class Summary

public class java.net.UnknownHostException extends java.io.IOException {
 // Constructors
 public UnknownHostException();
 public UnknownHostException(String host);
}

Constructors

UnknownHostException

public UnknownHostException()

Description

This constructor creates an UnknownHostException with no associated detail message.

public UnknownHostException(String host)

Parameters

host

The detail message.

Description

This constructor creates an UnknownHostException with the specified detail message, which should
be the hostname that cannot be resolved.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Throwable

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IOException, RuntimeException

URLStreamHandlerFactory UnknownServiceException

Chapter 15
The java.net Package

UnknownServiceException

Name

UnknownServiceException

Synopsis

Class Name:

java.net.UnknownServiceException

Superclass:

java.io.IOException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

A UnknownServiceException is thrown when an unrecognized service is requested, which can occur when

the MIME type returned by a URLConnection does not match any recognized types.

Class Summary

public class java.net.UnknownServiceException
 extends java.io.IOException {
 // Constructors
 public UnknownServiceException();
 public UnknownServiceException(String msg);
}

Constructors

UnknownServiceException

public UnknownServiceException()

Description

This constructor creates an UnknownServiceException with no associated detail message.

public UnknownServiceException(String msg)

Parameters

msg

The detail message.

Description

This constructor creates an UnknownServiceException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Throwable

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IOException, RuntimeException

UnknownHostException BreakIterator

Chapter 16
The java.text Package

CharacterIterator

Name

CharacterIterator

Synopsis

Interface Name:

java.text.CharacterIterator

Super-interface:

java.lang.Cloneable

Immediate Sub-interfaces:

None

Implemented By:

java.text.StringCharacterIterator

Availability:

New as of JDK 1.1

Description

The CharacterIterator interface defines methods that support bidirectional movement through a
sequence of text. The interface is implemented by classes that maintain a current position in a sequence
of characters. The interface provides methods for moving to the first, last, next, and previous characters
in the sequence. The BreakIterator classes uses this interface to locate boundaries in textual
sequences.

Class Summary

public abstract interface java.text.CharacterIterator
 extends java.lang.Cloneable {
 // Constants
 public static final char DONE;
 // Methods
 public abstract Object clone();
 public abstract char current();
 public abstract char first();
 public abstract int getBeginIndex();
 public abstract int getEndIndex();
 public abstract int getIndex();
 public abstract char last();
 public abstract char next();
 public abstract char previous();
 public abstract char setIndex(int position);
}

Constants

DONE

public final static char DONE

Description

A constant that indicates that the beginning or end of the text has been reached. It can be returned
by next() or previous().

Methods

clone

public abstract Object clone()

Returns

A copy of this CharacterIterator.

Overrides

Object.clone()

Description

This method creates a copy of this CharacterIterator and returns it.

current

public abstract char current()

Returns

The character at the current position of this CharacterIterator or DONE if the current
position is not within the text sequence.

Description

This method returns the character at the current position of this CharacterIterator. The
current position is returned by getIndex().

first

public abstract char first()

Returns

The first character in this CharacterIterator.

Description

This method returns the character at the first position in this CharacterIterator. The first
position is returned by getBeginIndex(). The current position of the iterator is set to this
position.

getBeginIndex

public abstract int getBeginIndex()

Returns

The index of the first character in this CharacterIterator.

Description

This method returns the index of the beginning of the text for this CharacterIterator.

getEndIndex

public abstract int getEndIndex()

Returns

The index after the last character in this CharacterIterator.

Description

This method returns the index of the character following the end of the text for this
CharacterIterator.

getIndex

public abstract int getIndex()

Returns

The index of the current character in this CharacterIterator.

Description

This method returns the current position, or index, of this CharacterIterator.

last

public abstract char last()

Returns

The last character in this CharacterIterator.

Description

This method returns the character at the ending position of this CharacterIterator. The last
position is the value of getEndIndex()-1. The current position of the iterator is set to this
position.

next

public abstract char next()

Returns

The next character in this CharacterIterator or DONE if the current position is already at
the end of the text.

Description

This method increments the current position of this CharacterIterator by one and returns
the character at the new position. If the current position is already at getEndIndex(), the
position is not changed, and DONE is returned.

previous

public abstract char previous()

Returns

The previous character in this CharacterIterator or DONE if the current position is already
at the beginning of the text.

Description

This method decrements the current position of this CharacterIterator by one and returns
the character at the new position. If the current position is already at getBeginIndex(), the
position is not changed, and DONE is returned.

setIndex

public abstract char setIndex(int position)

Parameters

position

The new position.

Returns

The character at the specified position in this CharacterIterator.

Throws

IllegalArgumentException

If the given position is not between getBeginIndex() and getEndIndex()-1.

Description

This method sets the current position, or index, of this CharacterIterator to the given
position.

See Also

BreakIterator, StringCharacterIterator

BreakIterator ChoiceFormat

Chapter 16
The java.text Package

ChoiceFormat

Name

ChoiceFormat

Synopsis

Class Name:

java.text.ChoiceFormat

Superclass:

java.text.NumberFormat

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The ChoiceFormat class is a concrete subclass of NumberFormat that maps numerical ranges to strings, or formats.
ChoiceFormat objects are used most often by MessageFormat objects to handle plurals, verb agreement, and other
such issues.

The ranges in a ChoiceFormat are specified as an ascending array of double values, where each number is the bottom
end of a range. A value is mapped to a format when it falls within the range for that format. If the value does not fall in any

of the ranges, it is mapped to the first or the last format, depending on whether the value is too low or too high. For
example, consider the following code:

double[] limits = {1, 10, 100};
String[] labels = {"small", "medium", "large"}
ChoiceFormat cf = new ChoiceFormat(limits, labels);

Any number greater than or equal to one and less than 10 is mapped to the format "small". Any number greater than or
equal to 10 and less than 100 is mapped to "medium". Numbers greater than or equal to 100 are mapped to "large".
Furthermore, numbers less than one are also mapped to "small".

The nextDouble() and previousDouble() methods can generate double values that are higher or lower than
other double values. These methods provide another way to specify the limits used by a ChoiceFormat object.

As shown above, you can create a ChoiceFormat object by specifying the limits and formats in two separate arrays. You
can also create a ChoiceFormat object using a pattern string that specifies the limits and formats. The string is of the
form:

[limit1]#[format1]|[limit2]#[format2]|...

A < character can be used in place of the # to indicate that the next higher number, as determined by nextDouble(),
should be used as the limit. The toPattern() method can be used to generate the pattern string for an existing
ChoiceFormat object.

Note that you create ChoiceFormat objects directly, rather than through factory methods. This is because
ChoiceFormat does not implement any locale-specific behavior. To produce properly internationalized output, the
formats for a ChoiceFormat should come from a ResourceBundle instead of being embedded in the code.

Class Summary

public class java.text.ChoiceFormat extends java.text.NumberFormat {
 // Constructors
 public ChoiceFormat(String newPattern);
 public ChoiceFormat(double[] limits, String[] formats);
 // Class Methods
 public static final double nextDouble(double d);
 public static double nextDouble(double d, boolean positive);
 public static final double previousDouble(double d);
 // Instance Methods
 public void applyPattern(String newPattern);
 public Object clone();
 public boolean equals(Object obj);
 public StringBuffer format(double number,
 StringBuffer toAppendTo, FieldPosition status);
 public StringBuffer format(long number,
 StringBuffer toAppendTo, FieldPosition status);
 public Object[] getFormats();
 public double[] getLimits();
 public int hashCode();

 public Number parse(String text, ParsePosition status);
 public void setChoices(double[] limits, String[] formats);
 public String toPattern();
}

Constructors

ChoiceFormat

public ChoiceFormat(String newPattern)

Parameters

newPattern

The pattern string.

Description

This constructor creates a ChoiceFormat that uses the limits and formats represented by the given pattern string.

public ChoiceFormat(double[] limits, String[] formats)

Parameters

limits

An array of limits. Each element is the lower end of a range that runs up through, but not including, the next
element.

formats

An array of format strings that correspond to the limit ranges.

Description

This constructor creates a ChoiceFormat that uses the given limits and format strings

Class Methods

nextDouble

public static final double nextDouble(double d)

Parameters

d

A double value.

Returns

The least double that is greater than d.

Description

This method returns the least double greater than d. Calling this method is equivalent to nextDouble(d,
true).

public static double nextDouble(double d, boolean positive)

Parameters

d

A double value.

positive

A boolean value that specifies whether to return the next higher or next lower value.

Returns

If positive is true, the least double that is greater than d. If positive is false, the greatest double that
is less than d.

Description

This method finds the next higher or next lower double value from d, depending on the value of positive. If
positive is true, the method returns the least double greater than d. Otherwise, the method returns the
greatest double less than d.

previousDouble

public static final double previousDouble(double d)

Parameters

d

A double value.

Returns

The greatest double that is less than d.

Description

This method returns the greatest double less than d. Calling this method is equivalent to nextDouble(d,
false).

Instance Methods

applyPattern

public void applyPattern(String newPattern)

Parameters

newPattern

The pattern string.

Description

This method tells this ChoiceFormat to use the limits and formats represented by the given formatting pattern
string. Pattern strings for ChoiceFormat objects are described above in the class description.

clone

public Object clone()

Returns

A copy of this ChoiceFormat.

Overrides

NumberFormat.clone()

Description

This method creates a copy of this ChoiceFormat and returns it.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Format.equals()

Description

This method returns true if obj is an instance of ChoiceFormat and is equivalent to this ChoiceFormat.

format

 public StringBuffer format(double number, StringBuffer toAppendTo, FieldPosition
status)

Parameters

number

The double value to be formatted.

toAppendTo

A StringBuffer on which to append the formatted information.

status

Ignored.

Returns

The given StringBuffer with the String corresponding to the given number appended to it.

Overrides

NumberFormat.format(double, StringBuffer, FieldPosition)

Description

This method formats the given number and appends the result to the given StringBuffer.

 public StringBuffer format(long number, StringBuffer toAppendTo, FieldPosition
status)

Parameters

number

The long value to be formatted.

toAppendTo

A StringBuffer on which to append the formatted information.

status

Ignored.

Returns

The given StringBuffer with the String corresponding to the given number appended to it.

Overrides

NumberFormat.format(long, StringBuffer, FieldPosition)

Description

This method formats the given number and appends the result to the given StringBuffer.

getFormats

public Object[] getFormats()

Returns

An array that contains the format strings.

Description

This method returns an array containing the current set of format strings.

getLimits

public double[] getLimits()

Returns

An array that contains the limit values.

Description

This method returns an array that contains the current set of limits.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

NumberFormat.hashCode()

Description

This method returns a hashcode for this ChoiceFormat.

parse

public Number parse(String text, ParsePosition status)

Parameters

text

The string to be parsed.

status

A ParsePosition object that can specify a position in the string.

Returns

A Number object that encapsulates the value that corresponds to the longest format string that matches the text that
starts at the given position. If there is no matching format string, the value Double.NaN is returned.

Overrides

NumberFormat.parse(String, ParsePosition)

Description

This method parses a number from the given string, starting from the given position. The method returns a Number
object that encapsulates the value that corresponds to the longest format string that matches the text starting at the
given position. If there is no matching format string, the method returns the value Double.NaN.

If there is a matching format string, the index value of the given ParsePosition object is incremented by the

length of that format string.

setChoices

public void setChoices(double[] limits, String[] formats)

Parameters

limits

An array of limits. Each element is the lower end of a range that runs up through, but not including, the next
element.

formats

An array of format strings that correspond to the limit ranges.

Description

This method sets the limits and format strings that this ChoiceFormat uses.

toPattern

public String toPattern()

Returns

The pattern string of this ChoiceFormat.

Description

This method returns a string that represents the limits and format strings of this ChoiceFormat. Pattern strings for
ChoiceFormat objects are described above in the class description.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object format(double) NumberFormat

format(long number) NumberFormat
format(Object, StringBuffer,
FieldPosition)

NumberFormat

getClass() Object getMaximumFractionDigits() NumberFormat

getMaximumIntegerDigits() NumberFormat getMinimumFractionDigits() NumberFormat

getMinimumIntegerDigits() NumberFormat isGroupingUsed() NumberFormat

isParseIntegerOnly() NumberFormat notify() Object

notifyAll() Object parse(String) NumberFormat

parseObject(String) Format
parseObject(String,
ParsePosition)

NumberFormat

setGroupingUsed(boolean) NumberFormat setMaximumFractionDigits(int) NumberFormat

setMaximumIntegerDigits(int) NumberFormat setMinimumFractionDigits(int) NumberFormat

setMinimumIntegerDigits(int) NumberFormat setParseIntegerOnly(boolean) NumberFormat

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

FieldPosition, MessageFormat, Number, NumberFormat, ParsePosition, ResourceBundle, String,
StringBuffer

CharacterIterator CollationElementIterator

Chapter 16
The java.text Package

CollationElementIterator

Name

CollationElementIterator

Synopsis

Class Name:

java.text.CollationElementIterator

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A RuleBasedCollator object creates an instance of the CollationElementIterator class to
iterate through the characters of a string and determine their relative collation sequence. A
CollationElementIterator object performs callbacks to the RuleBasedCollator that
created it to get the information it needs to recognize groups of characters that are treated as single
collation characters. For example, a RuleBasedCollator for a Spanish language locale would be set
up to treat `ch' as a single letter. A CollationElementIterator object also gets information from
its RuleBasedCollator that is used to determine the collation ordering priority for characters.

A collation-ordering priority of a character is a composite integer value that determines how the
character is collated. This priority is comprised of:

● A primary order that distinguishes between different letters. Characters that are considered to be
different letters, such as `e' and `f', have different primary orders. Different forms of the same
letter, such as `e' and `E', or an accented form of `e', have the same primary order. Primary orders
are short values.

● A secondary order that distinguishes between accented forms of the same letter. An unaccented `e'
has a different secondary order than forms of `e' that have different accents. `E' and `e' have the
same secondary order, as do upper- and lowercase forms of `e' that have the same accent.
Secondary orders are byte values.

● A tertiary order that distinguishes between case differences. `E' and `e' have different tertiary
orders. Tertiary orders are byte values.

The next() method returns the collation-ordering priority of the next logical character. Primary,
secondary, and tertiary orders are extracted from an ordering priority with the primaryOrder(),
secondaryOrder(), and tertiaryOrder() methods.

Class Summary

public final class java.text.CollationElementIterator
 extends java.lang.Object {
 // Constants
 public static final int NULLORDER;

 // Class Methods
 public static final int primaryOrder(int order);
 public static final short secondaryOrder(int order);
 public static final short tertiaryOrder(int order);

 // Instance Methods
 public int next();
 public void reset();
}

Constants

NULLORDER

public final static int NULLORDER

Description

A constant that is returned by next() if the end of the string has been reached.

Class Methods

primaryOrder

public static final int primaryOrder(int order)

Returns

The primary order component of the given order key.

Description

This method extracts the primary order value from the given order key.

secondaryOrder

public static final short secondaryOrder(int order)

Returns

The secondary order component of the given order key.

Description

This method extracts the secondary order value from the given order key.

tertiaryOrder

public static final short tertiaryOrder(int order)

Returns

The tertiary order component of the given order key.

Description

This method extracts the tertiary order value from the given order key.

Instance Methods

next

public int next()

Returns

The order value of the next character in the string.

Description

This method returns the order key for the next character in the string. The returned value can be
broken apart using the primaryOrder(), secondaryOrder(), and tertiaryOrder()
methods.

reset

public void reset()

Description

This method resets the position of this CollationElementIterator to the beginning of the
string.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Collator, RuleBasedCollator, String

ChoiceFormat CollationKey

Chapter 16
The java.text Package

CollationKey

Name

CollationKey

Synopsis

Class Name:

java.text.CollationKey

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The CollationKey class optimizes the sorting of many strings. The easiest way to compare strings is
using Collator.compare(), but this can be inefficient, especially if the same strings are compared
many times. Instead, you can create a CollationKey for each of your strings and compare the
CollationKey objects to each other using the compareTo() method. A CollationKey is
essentially a bit representation of a String object. Two CollationKey objects can be compared
bitwise, which allows for a fast comparison.

You cannot create CollationKey objects directly; you must create them through a specific
Collator object using Collator.getCollationKey(). You can only compare
CollationKey objects that have been generated from the same Collator.

Class Summary

public final class java.text.CollationKey extends java.lang.Object {
 // Instance Methods
 public int compareTo(CollationKey target);
 public boolean equals(Object target);
 public String getSourceString();
 public int hashCode();
 public byte[] toByteArray();
}

Instance Methods

compareTo

public int compareTo(CollationKey target)

Parameters

target

The key to compare with this CollationKey.

Returns

-1 if this CollationKey is less than target, 0 if this CollationKey is equal to target,

or 1 if this CollationKey is greater than target.

Description

This method returns an integer that indicates the ordering of this CollationKey and the given
CollationKey. Only CollationKey objects generated by the same Collator should be
compared.

equals

public boolean equals(Object target)

Parameters

target

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of CollationKey and is equivalent to this
CollationKey.

getSourceString

public String getSourceString()

Returns

The string that generated this CollationKey.

Description

This method returns the string that was passed to Collator.getCollationKey() to create
this CollationKey.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this CollationKey.

toByteArray

public byte[] toByteArray()

Returns

A byte array that represents this CollationKey.

Description

This method returns a byte array that represents the value of this CollationKey, with the most
significant byte first.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Collator, RuleBasedCollator, String

CollationElementIterator Collator

Chapter 16
The java.text Package

Collator

Name

Collator

Synopsis

Class Name:

java.text.Collator

Superclass:

java.lang.Object

Immediate Subclasses:

java.text.RuleBasedCollator

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

New as of JDK 1.1

Description

The Collator class compares strings in a manner that is appropriate for a particular locale. Although
Collator is an abstract class, the getInstance() factory methods can be used to get a usable
instance of a Collator subclass that implements a particular collation strategy. One subclass,
RuleBasedCollator, is provided as part of the JDK.

A Collator object has a strength property that controls the level of difference that is considered
significant for comparison purposes. The Collator class provides four strength values: PRIMARY,
SECONDARY, TERTIARY, and IDENTICAL. Although the interpretation of these strengths is locale-
dependent, they generally have the following meanings:

PRIMARY

The comparison considers letter differences, but ignores case and diacriticals.

SECONDARY

The comparison considers letter differences and diacriticals, but ignores case.

TERTIARY

The comparison considers letter differences, case, and diacriticals.

IDENTICAL

The comparison considers all differences.

The default comparison strength is TERTIARY.

If you only need to compare two String objects once, the compare() method of the Collator class
provides the best performance. However, if you need to compare the same String objects multiple times,
such as when you are sorting, you should use CollationKey objects instead. A CollationKey object
contains a String that has been converted into a series of bits that can be compared in a bitwise fashion
against other CollationKey objects. You use a Collator object to create a CollationKey for a
given String.

Class Summary

public abstract class java.text.Collator extends java.lang.Object
 implements java.io.Serializable,
 java.lang.Cloneable {
 // Constants

 public static final int CANONICAL_DECOMPOSITION;
 public static final int FULL_DECOMPOSITION;
 public static final int IDENTICAL;
 public static final int NO_DECOMPOSITION;
 public static final int PRIMARY;
 public static final int SECONDARY;
 public static final int TERTIARY;
 // Constructors
 protected Collator();
 // Class Methods
 public static synchronized Locale[] getAvailableLocales();
 public static synchronized Collator getInstance();
 public static synchronized Collator getInstance(Locale desiredLocale);
 // Instance Methods
 public Object clone();
 public abstract int compare(String source, String target);
 public boolean equals(Object that);
 public boolean equals(String source, String target);
 public abstract CollationKey getCollationKey(String source);
 public synchronized int getDecomposition();
 public synchronized int getStrength();
 public abstract synchronized int hashCode();
 public synchronized void setDecomposition(int decompositionMode);
 public synchronized void setStrength(int newStrength);
}

Constants

CANONICAL_DECOMPOSITION

public final static int CANONICAL_DECOMPOSITION

Description

A decomposition constant that specifies that Unicode 2.0 characters which are canonical variants are
decomposed for collation. This is the default decomposition setting.

FULL_DECOMPOSITION

public final static int FULL_DECOMPOSITION

Description

A decomposition constant that specifies that Unicode 2.0 canonical variants and compatibility
variants are decomposed for collation. This is the most complete decomposition setting, and thus the
slowest setting.

IDENTICAL

public final static int IDENTICAL

Description

A strength constant that specifies that all differences are considered significant for comparison
purposes.

NO_DECOMPOSITION

public final static int NO_DECOMPOSITION

Description

A decomposition setting that specifies that no Unicode characters are decomposed for collation.
This is the least complete decomposition setting, and thus the fastest setting. It only works correctly
for languages that do not use diacriticals.

PRIMARY

public final static int PRIMARY

Description

A strength constant that specifies that only primary differences are considered significant for
comparison purposes. Primary differences are typically letter differences.

SECONDARY

public final static int SECONDARY

Description

A strength constant that specifies that only secondary differences and above are considered
significant for comparison purposes. Secondary differences are typically differences in diacriticals,

or accents.

TERTIARY

public final static int TERTIARY

Description

A strength constant that specifies that only tertiary differences and above are considered significant
for comparison purposes. Tertiary differences are typically differences in case. This is the default
strength setting.

Constructors

Collator

protected Collator()

Description

This constructor creates a Collator with the default strength of TERTIARY and default
decomposition mode of CANONICAL_DECOMPOSITION.

Class Methods

getAvailableLocales

public static synchronized Locale[] getAvailableLocales()

Returns

An array of Locale objects.

Description

This method returns an array of the Locale objects for which this class can create Collator
objects.

getInstance

public static synchronized Collator getInstance()

Returns

A Collator appropriate for the default Locale.

Description

This method creates a Collator that compares strings in the default Locale.

 public static synchronized Collator getInstance(Locale desiredLocale)

Parameters

desiredLocale

The Locale to use.

Returns

A Collator appropriate for the given Locale.

Description

This method creates a Collator that compares strings in the given Locale.

Instance Methods

clone

public Object clone()

Returns

A copy of this Collator.

Overrides

Object.clone()

Description

This method creates a copy of this Collator and returns it.

compare

public abstract int compare(String source, String target)

Parameters

source

The source string.

target

The target string.

Returns

-1 if source is less than target, 0 if the strings are equal, or 1 if source is greater than
target.

Description

This method compares the given strings according to the collation rules for this Collator and
returns a value that indicates their relationship. If either of the strings are compared more than once,
a CollationKey should be used instead.

equals

public boolean equals(Object that)

Parameters

that

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Collator and is equivalent to this
Collator.

public boolean equals(String source, Source target)

Parameters

source

The source string.

target

The target string.

Returns

true if the given strings are equal; false otherwise.

Description

This method compares the given strings for equality using the collation rules for this Collator.
Note that this method applies locale-specific rules and is thus not the same as
String.equals().

getCollationKey

public abstract CollationKey getCollationKey(String source)

Parameters

source

The string to use when generating the CollationKey.

Returns

A CollationKey for the given string.

Description

This method generates a CollationKey for the given string. The returned object can be
compared with other CollationKey objects using CollationKey.compareTo(). This
comparison is faster than using Collator.compare(), so if the same string is used for many
comparisons, you should use CollationKey objects.

getDecomposition

public synchronized int getDecomposition()

Returns

The decomposition mode for this Collator.

Description

This method returns the current decomposition mode for this Collator. The decomposition mode
specifies how composed Unicode characters are handled during collation. You can adjust the
decomposition mode to choose between faster and more complete collation. The returned value is
one of the following values: NO_DECOMPOSITION, CANONICAL_DECOMPOSITION, or
FULL_DECOMPOSITION.

getStrength

public synchronized int getStrength()

Returns

The strength setting for this Collator.

Description

This method returns the current strength setting for this Collator. The strength specifies the
minimum level of difference that is considered significant during collation. The returned value is

one of the following values: PRIMARY, SECONDARY, TERTIARY, or IDENTICAL.

hashCode

public abstract synchronized int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this Collator.

setDecomposition

public synchronized void setDecomposition(int decompositionMode)

Parameters

decompositionMode

The decomposition mode: NO_DECOMPOSITION, CANONICAL_DECOMPOSITION, or
FULL_DECOMPOSITION.

Description

This method sets the decomposition mode for this Collator. The decomposition mode specifies
how composed Unicode characters are handled during collation. You can adjust the decomposition
mode to choose between faster and more complete collation.

setStrength

public synchronized void setStrength(int newStrength)

Parameters

newStrength

The new strength setting: PRIMARY, SECONDARY, TERTIARY, or IDENTICAL.

Description

This method sets the strength of this Collator. The strength specifies the minimum level of
difference that is considered significant during collation.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object getClass() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

CollationKey, Locale, RuleBasedCollator, String

CollationKey DateFormat

Chapter 16
The java.text Package

DateFormat

Name

DateFormat

Synopsis

Class Name:

java.text.DateFormat

Superclass:

java.text.Format

Immediate Subclasses:

java.text.SimpleDateFormat

Interfaces Implemented:

java.lang.Cloneable

Availability:

New as of JDK 1.1

Description

The DateFormat class formats and parses dates and times in a locale-specific manner. DateFormat is an abstract
class, but it provides factory methods that return useful instances of DateFormat subclasses. These factory methods come
in three groups:

● The getDateInstance() methods return objects that format and parse only dates.

● The getDateTimeInstance() methods return objects that format and parse date and time combinations.

● The getTimeInstance() methods return objects that format only times.

Certain of these factory methods allow you to specify the style, or length, of the resulting date and time strings. The
interpretation of the style parameter is locale-specific. For the locale Locale.US, the styles and their results are as follows:

FULL

Tuesday, March 04, 1997 12:00:00 o'clock AM EST

LONG

March 04, 1997 12:00:00 AM EST

MEDIUM

04-Mar-97 12:00:00 AM

SHORT

3/4/97 12:00 AM

There is also a DEFAULT style, which is equivalent to MEDIUM.

The DateFormat class defines a number of field constants that represent the various fields in formatted date and time
strings. These field constants can create FieldPosition objects.

Class Summary

public abstract class java.text.DateFormat extends java.text.Format
 implements java.lang.Cloneable {
 // Constants
 public static final int AM_PM_FIELD;
 public static final int DATE_FIELD;
 public static final int DAY_OF_WEEK_FIELD;
 public static final int DAY_OF_WEEK_IN_MONTH_FIELD;
 public static final int DAY_OF_YEAR_FIELD;
 public static final int DEFAULT;
 public static final int ERA_FIELD;
 public static final int FULL;
 public static final int HOUR0_FIELD;
 public static final int HOUR1_FIELD;
 public static final int HOUR_OF_DAY0_FIELD;
 public static final int HOUR_OF_DAY1_FIELD;
 public static final int LONG;
 public static final int MEDIUM;
 public static final int MILLISECOND_FIELD;
 public static final int MINUTE_FIELD;

 public static final int MONTH_FIELD;
 public static final int SECOND_FIELD;
 public static final int SHORT;
 public static final int TIMEZONE_FIELD;
 public static final int WEEK_OF_MONTH_FIELD;
 public static final int WEEK_OF_YEAR_FIELD;
 public static final int YEAR_FIELD;
 // Variables
 protected Calendar calendar;
 protected NumberFormat numberFormat;
 // Constructors
 protected DateFormat();
 // Class Methods
 public static Locale[] getAvailableLocales();
 public static final DateFormat getDateInstance();
 public static final DateFormat getDateInstance(int style);
 public static final DateFormat getDateInstance(int style, Locale aLocale);
 public static final DateFormat getDateTimeInstance();
 public static final DateFormat getDateTimeInstance(int dateStyle,
 int timeStyle);
 public static final DateFormat getDateTimeInstance(int dateStyle,
 int timeStyle, Locale aLocale);
 public static final DateFormat getInstance();
 public static final DateFormat getTimeInstance();
 public static final DateFormat getTimeInstance(int style);
 public static final DateFormat getTimeInstance(int style, Locale aLocale);
 // Instance Methods
 public Object clone();
 public boolean equals(Object obj);
 public final String format(Date date);
 public final StringBuffer format(Object obj, StringBuffer toAppendTo,
 FieldPosition fieldPosition);
 public abstract StringBuffer format(Date date, StringBuffer toAppendTo,
 FieldPosition fieldPosition);
 public Calendar getCalendar();
 public NumberFormat getNumberFormat();
 public TimeZone getTimeZone();
 public int hashCode();
 public boolean isLenient();
 public Date parse(String text);
 public abstract Date parse(String text, ParsePosition pos);
 public Object parseObject(String source, ParsePosition pos);
 public void setCalendar(Calendar newCalendar);
 public void setLenient(boolean lenient);
 public void setNumberFormat(NumberFormat newNumberFormat);
 public void setTimeZone(TimeZone zone);
}

Constants

AM_PM_FIELD

public final static int AM_PM_FIELD

Description

A field constant that represents the A.M./P.M. field.

DATE_FIELD

public final static int DATE_FIELD

Description

A field constant that represents the date (day of month) field.

DAY_OF_WEEK_FIELD

public final static int DAY_OF_WEEK_FIELD

Description

A field constant that represents the day-of-the-week field.

DAY_OF_WEEK_IN_MONTH_FIELD

public final static int DAY_OF_WEEK_IN_MONTH_FIELD

Description

A field constant that represents the day of the week in the current month field.

DAY_OF_YEAR_FIELD

public final static int DAY_OF_YEAR_FIELD

Description

A field constant that represents the day-of-the-year field.

DEFAULT

public final static int DEFAULT

Description

A constant that specifies the default style.

ERA_FIELD

public final static int ERA_FIELD

Description

A field constant that represents the era field.

FULL

public final static int FULL

Description

A constant that specifies the most complete style.

HOUR0_FIELD

public final static int HOUR0_FIELD

Description

A field constant that represents the zero-based hour field.

HOUR1_FIELD

public final static int HOUR1_FIELD

Description

A field constant that represents the one-based hour field.

HOUR_OF_DAY0_FIELD

public final static int HOUR_OF_DAY0_FIELD

Description

A field constant that represents the zero-based hour of the day field.

HOUR_OF_DAY1_FIELD

public final static int HOUR_OF_DAY1_FIELD

Description

A field constant that represents the one-based hour of the day field.

LONG

public final static int LONG

Description

A constant that specifies the long style.

MEDIUM

public final static int MEDIUM

Description

A constant that specifies the medium style.

MILLISECOND_FIELD

public final static int MILLISECOND_FIELD

Description

A field constant that represents the millisecond field.

MINUTE_FIELD

public final static int MINUTE_FIELD

Description

A field constant that represents the minute field.

MONTH_FIELD

public final static int MONTH_FIELD

Description

A field constant that represents the month field.

SECOND_FIELD

public final static int SECOND_FIELD

Description

A field constant that represents the second field.

SHORT

public final static int SHORT

Description

A constant that specifies the short style.

TIMEZONE_FIELD

public final static int TIMEZONE_FIELD

Description

A field constant that represents the time-zone field.

WEEK_OF_MONTH_FIELD

public final static int WEEK_OF_MONTH_FIELD

Description

A field constant that represents the week-of-the-month field.

WEEK_OF_YEAR_FIELD

public final static int WEEK_OF_YEAR_FIELD

Description

A field constant that represents the week-of-the-year field.

YEAR_FIELD

public final static int YEAR_FIELD

Description

A field constant that represents the year field.

Variables

calendar

protected Calendar calendar

Description

A Calendar object that internally generates the field values for formatting dates and times.

numberFormat

protected NumberFormat numberFormat

Description

A NumberFormat object that internally formats the numbers in dates and times.

Constructors

DateFormat

protected DateFormat()

Description

This constructor creates a DateFormat.

Class Methods

getAvailableLocales

public static Locale[] getAvailableLocales()

Returns

An array of Locale objects.

Description

This method returns an array of the Locale objects for which this class can create DateFormat objects.

getDateInstance

public static final DateFormat getDateInstance()

Returns

A DateFormat appropriate for the default Locale that uses the default style.

Description

This method creates a DateFormat that formats and parses dates in the default locale with the default style.

public static final DateFormat getDateInstance(int style)

Parameters

style

A style constant.

Returns

A DateFormat appropriate for the default Locale that uses the given style.

Description

This method creates a DateFormat that formats and parses dates in the default locale with the given style.

 public static final DateFormat getDateInstance(int style, Locale aLocale)

Parameters

style

A style constant.

aLocale

The Locale to use.

Returns

A DateFormat appropriate for the given Locale that uses the given style.

Description

This method creates a DateFormat that formats and parses dates in the given locale with the given style.

getDateTimeInstance

public static final DateFormat getDateTimeInstance()

Returns

A DateFormat appropriate for the default Locale that uses the default date and time styles.

Description

This method creates a DateFormat that formats and parses dates and times in the default locale with the default date
and time styles.

 public static final DateFormat getDateTimeInstance(int dateStyle, int timeStyle)

Parameters

dateStyle

A style constant.

timeStyle

A style constant.

Returns

A DateFormat appropriate for the default Locale that uses the given data and time styles.

Description

This method creates a DateFormat that formats and parses dates and times in the default locale with the given date
and time styles.

 public static final DateFormat getDateTimeInstance(int dateStyle, int timeStyle,
Locale aLocale)

Parameters

dateStyle

A style constant.

timeStyle

A style constant.

aLocale

The Locale to use.

Returns

A DateFormat appropriate for the given Locale that uses the given date and time styles.

Description

This method creates a DateFormat that formats and parses dates and times in the given locale with the given date
and time styles.

getInstance

public static final DateFormat getInstance()

Returns

A DateFormat appropriate for the default Locale.

Description

This method creates a general purpose DateFormat by calling
getDateTimeInstance(DateFormat.SHORT, DateFormat.SHORT).

getTimeInstance

public static final DateFormat getTimeInstance()

Returns

A DateFormat appropriate for the default Locale that uses the default style.

Description

This method creates a DateFormat that formats and parses times in the default locale with the default style.

public static final DateFormat getTimeInstance(int style)

Parameters

style

A style constant.

Returns

A DateFormat appropriate for the default Locale that uses the given style.

Description

This method creates a DateFormat that formats and parses times in the default locale with the given style.

 public static final DateFormat getTimeInstance(int style, Locale aLocale)

Parameters

style

A style constant.

aLocale

The Locale to use.

Returns

A DateFormat appropriate for the given Locale that uses the given style.

Description

This method creates a DateFormat that formats and parses times in the given locale with the given style.

Instance Methods

clone

public Object clone()

Returns

A copy of this DateFormat.

Overrides

Format.clone()

Description

This method creates a copy of this DateFormat and returns it.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of DateFormat and is equivalent to this DateFormat.

format

public final String format(Date date)

Parameters

date

The Date object to be formatted.

Returns

A string that contains a formatted representation of the date.

Description

This method formats the given date and returns the result as a string.

 public final StringBuffer format(Object obj, StringBuffer toAppendTo, FieldPosition
fieldPosition)

Parameters

obj

The object to be formatted.

toAppendTo

A StringBuffer on which to append the formatted information.

fieldPosition

A date or time field.

Returns

The given buffer toAppendTo with the formatted representation of the object appended to it.

Overrides

Format.format(Object, StringBuffer, FieldPosition)

Description

This method formats the given object and appends the result to the given StringBuffer. If fieldPosition
refers to one of the time or date fields, its beginning and ending indices are filled with the beginning and ending
positions of the given field in the resulting formatted string.

 public abstract StringBuffer format(Date date, StringBuffer toAppendTo,
FieldPosition fieldPosition)

Parameters

date

The Date object to be formatted.

toAppendTo

A StringBuffer on which to append the formatted information.

fieldPosition

A date or time field.

Returns

The given buffer toAppendTo with the formatted representation of the date appended to it.

Description

This method formats the given date and appends the result to the given StringBuffer. If fieldPosition refers
to one of the time or date fields, its beginning and ending indices are filled with the beginning and ending positions of
the given field in the resulting formatted string.

getCalendar

public Calendar getCalendar()

Returns

The internal Calendar object of this DateFormat.

Description

This method returns the Calendar object that this DateFormat uses internally.

getNumberFormat

public NumberFormat getNumberFormat()

Returns

The internal NumberFormat object of this DateFormat.

Description

This method returns the NumberFormat object that this DateFormat uses internally.

getTimeZone

public TimeZone getTimeZone()

Returns

The internal TimeZone object of this DateFormat.

Description

This method returns the TimeZone object that this DateFormat uses internally.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this DateFormat.

isLenient

public boolean isLenient()

Returns

A boolean value that indicates the leniency of this DateFormat.

Description

This method returns the current leniency of this DateFormat. A value of false indicates that the DateFormat
throws exceptions when it tries to parse questionable data, while a value of true indicates that the DateFormat
makes its best guess to interpret questionable data. For example, if the DateFormat is being lenient, a date such as
March 135, 1997 is interpreted as the 135th day after March 1, 1997.

parse

public Date parse(String text) throws ParseException

Parameters

text

The string to be parsed.

Returns

The Date object represented by the given string.

Throws

ParseException

If the text cannot be parsed as a date.

Description

This method parses a date from the given string, starting from the beginning of the string.

public abstract Date parse(String text, ParsePosition pos)

Parameters

text

The string to be parsed.

pos

A ParsePosition object that can specify a position in the string.

Returns

The Date object represented by the text starting at the given position.

Description

This method parses a date from the given string, starting from the given position. After the string has been parsed, the

given ParsePosition object is updated so that its index is after the parsed text.

parseObject

public Object parseObject(String source, ParsePosition pos)

Parameters

source

The string to be parsed.

pos

A ParsePosition object that can specify a position in the string.

Returns

The object represented by the text starting at the given position.

Overrides

Format.parseObject(String, ParsePosition)

Description

This method parses a date from the given string, starting from the given position. After the string has been parsed, the
given ParsePosition object is updated so that its index is after the parsed text.

setCalendar

public void setCalendar(Calendar newCalendar)

Parameters

newCalendar

The new Calendar to use.

Description

This method sets the Calendar that this DateFormat uses internally.

setLenient

public void setLenient(boolean lenient)

Parameters

lenient

A boolean value that specifies the leniency of this DateFormat.

Description

This method sets the leniency of this DateFormat. A value of false specifies that the DateFormat throws
exceptions when it tries to parse questionable data, while a value of true indicates that the DateFormat makes its
best guess to interpret questionable data. For example, if the Calendar is being lenient, a date such as March 135,
1997 is interpreted as the 135th day after March 1, 1997.

setNumberFormat

public void setNumberFormat(NumberFormat newNumberFormat)

Parameters

newNumberFormat

The new NumberFormat to use.

Description

This method sets the NumberFormat that this DateFormat uses internally.

setTimeZone

public void setTimeZone(TimeZone zone)

Parameters

zone

The new TimeZone to use.

Description

This method sets the TimeZone that this DateFormat uses internally.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object format(Object) Format

getClass() Object notify() Object

notifyAll() Object parseObject(String) Format

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Calendar, Cloneable, Date, FieldPosition, Format, Locale, NumberFormat, ParsePosition,
String, StringBuffer, TimeZone

Collator DateFormatSymbols

Chapter 16
The java.text Package

DateFormatSymbols

Name

DateFormatSymbols

Synopsis

Class Name:

java.text.DateFormatSymbols

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

New as of JDK 1.1

Description

The DateFormatSymbols class encapsulates date and time formatting data that is locale-specific, like
the names of the days of the week and the names of the months. Typically, you do not need to instantiate
DateFormatSymbols yourself. Instead, an instance is automatically created for you, behind the
scenes, when you use one of the factory methods in DateFormat to create a DateFormat object.
You can retrieve a DateFormatSymbols object by calling the getDateFormatSymbols()
method of SimpleDateFormat. Once you have a DateFormatSymbols object, you can modify
the strings it uses if you want to change them.

Class Summary

public class java.text.DateFormatSymbols extends java.lang.Object
 implements java.io.Serializable, java.lang.Cloneable {
 // Constructors
 public DateFormatSymbols();
 public DateFormatSymbols(Locale locale);
 // Instance Methods
 public Object clone();
 public boolean equals(Object obj);
 public String[] getAmPmStrings();
 public String[] getEras();
 public String getLocalPatternChars();
 public String[] getMonths();
 public String[] getShortMonths();
 public String[] getShortWeekdays();
 public String[] getWeekdays();
 public String[][] getZoneStrings();
 public int hashCode();
 public void setAmPmStrings(String[] newAmpms);
 public void setEras(String[] newEras);
 public void setLocalPatternChars(String newLocalPatternChars);
 public void setMonths(String[] newMonths);
 public void setShortMonths(String[] newShortMonths);
 public void setShortWeekdays(String[] newShortWeekdays);
 public void setWeekdays(String[] newWeekdays);
 public void setZoneStrings(String[][] newZoneStrings);
}

Constructors

DateFormatSymbols

public DateFormatSymbols()

Throws

MissingResourceException

If the resources for the default locale cannot be found or loaded.

Description

This constructor creates a DateFormatSymbols object for the default locale.

public DateFormatSymbols(Locale locale)

Parameters

locale

The Locale to use.

Throws

MissingResourceException

If the resources for the given locale cannot be found or loaded.

Description

This constructor creates a DateFormatSymbols object for the given locale.

Instance Methods

clone

public Object clone()

Returns

A copy of this DateFormatSymbols.

Overrides

Object.clone()

Description

This method creates a copy of this DateFormatSymbols and returns it.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of DecimalFormatSymbols and is
equivalent to this DateFormatSymbols.

getAmPmStrings

public String[] getAmPmStrings()

Returns

An array of strings used for the A.M./P.M. field for this DateFormatSymbols.

Description

This method returns the strings that are used for the A.M./P.M. field (e.g., "AM", "PM").

getEras

public String[] getEras()

Returns

An array of strings used for the era field for this DateFormatSymbols.

Description

This method returns the strings that are used for the era field (e.g., "BC", "AD").

getLocalPatternChars

public String getLocalPatternChars()

Returns

A string that contains the data-time pattern characters for this DateFormatSymbols.

Description

This method returns the data-time pattern characters for the locale of this object.

getMonths

public String[] getMonths()

Returns

An array of strings used for the month field for this DateFormatSymbols.

Description

This method returns the strings that are used for the month field (e.g., "January", "February").

getShortMonths

public String[] getShortMonths()

Returns

An array of strings used for the short month field for this DateFormatSymbols.

Description

This method returns the strings that are used for the short (i.e., three-character) month field (e.g.,
"Jan", "Feb").

getShortWeekdays

public String[] getShortWeekdays()

Returns

An array ofstrings used for the short weekday field for this DateFormatSymbols.

Description

This method returns the strings that are used for the short (i.e., three-character) weekday field
(e.g., "Mon", "Tue").

getWeekdays

public String[] getWeekdays()

Returns

An array ofstrings used for the weekday field for this DateFormatSymbols.

Description

This method returns the strings that are used for the weekday field (e.g., "Monday", "Tuesday").

getZoneStrings

public String[][] getZoneStrings()

Returns

An array of arrays of strings used for the time zones for this DateFormatSymbols.

Description

This method returns the time-zone strings. Each subarray is an array of six strings that specify a
time-zone ID, its long name, its short name, its daylight-savings-time name, its short daylight-
savings-time name, and a major city in the time zone. For example, an entry for Mountain
Standard Time is:

{"MST", "Mountain Standard Time", "MST",
 "Mountain Daylight Time", "MDT", "Denver"}

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this DateFormatSymbols object.

setAmPmStrings

public void setAmPmStrings(String[] newAmpms)

Parameters

newAmpms

The new strings.

Description

This method sets the strings that are used for the A.M./P.M. field for this
DateFormatSymbols.

setEras

public void setEras(String[] newEras)

Parameters

newEras

The new strings.

Description

This method sets the strings that are used for the era field for this DateFormatSymbols.

setLocalPatternChars

public void setLocalPatternChars(String newLocalPatternChars)

Parameters

newLocalPatternChars

The new date-time pattern characters.

Description

This method sets the date-time pattern characters of this DateFormatSymbols object.

setMonths

public void setMonths(String[] newMonths)

Parameters

newMonths

The new strings.

Description

This method sets the strings that are used for the month field for this DateFormatSymbols.

setShortMonths

public void setShortMonths(String[] newShortMonths)

Parameters

newShortMonths

The new strings.

Description

This method sets the strings that are used for the short (i.e., three-character) month field for this
DateFormatSymbols.

setShortWeekdays

public void setShortWeekdays(String[] newShortWeekdays)

Parameters

newShortWeekdays

The new strings.

Description

This method sets the strings that are used for the short (i.e., three-character) weekday field for this
DateFormatSymbols.

setWeekdays

public void setWeekdays(String[] newWeekdays)

Parameters

newWeekdays

The new strings.

Description

This method sets the strings that are used for the weekday field for this DateFormatSymbols.

setZones

public void setZones(String[][] newZoneStrings)

Parameters

newZoneStrings

The new strings.

Description

This method sets the strings that are used for the time-zone field for this
DateFormatSymbols.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object getClass() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Calendar, DateFormat, Locale, SimpleDateFormat, TimeZone

DateFormat DecimalFormat

Chapter 16
The java.text Package

DecimalFormat

Name

DecimalFormat

Synopsis

Class Name:

java.text.DecimalFormat

Superclass:

java.text.NumberFormat

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The DecimalFormat class is a concrete subclass of NumberFormat that formats and parses numbers using a
formatting pattern. Typically, you do not need to instantiate DecimalFormat yourself. Instead, the factory methods of
NumberFormat return instances of DecimalFormat that are appropriate for particular locales.

However, if you need a specialized number format, you can instantiate your own DecimalFormat using a pattern string.
You can also modify the formatting pattern of an existing DecimalFormat object using the applyPattern() method.

A pattern string has the following form:

positive-pattern[;negative-pattern]

If the negative pattern is omitted, negative numbers are formatted using the positive pattern with a - character prepended to
the result. Each pattern has the following form:

[prefix]integer[.fraction][suffix]

The following symbols are significant in the pattern string.

Symbol Description

0 A digit

A digit where 0 is not shown

. A placeholder for a decimal separator

, A placeholder for a grouping separator

; The format separator

- The default negative prefix

% Divides value by 100 and shows as a percentage

Any characters other than these special characters can appear in the prefix or the suffix. A single quote can be used to
escape a special character, if you need to use one of these symbols in a prefix or a suffix.

For example, the pattern string for U.S. currency values is:

$#,##0.00;($#,##0.00)

This indicates that a $ character is prepended to all formatted values. The grouping separator character , is inserted every
three digits. Exactly two digits after the decimal place are always shown. Negative values are shown in parentheses. Thus,
the value -1234.56 produces output like:

($1,234.56)

Internally, the DecimalFormat class uses a DecimalFormatSymbols object to get the numerical strings that are
appropriate for a particular locale. If you want to modify these strings, you can get the DecimalFormatSymbols object
by calling getDecimalFormatSymbols().

Class Summary

public class java.text.DecimalFormat extends java.text.NumberFormat {
 // Constructors
 public DecimalFormat();
 public DecimalFormat(String pattern);
 public DecimalFormat(String pattern, DecimalFormatSymbols symbols);
 // Instance Methods
 public void applyLocalizedPattern(String pattern);
 public void applyPattern(String pattern);

 public Object clone();
 public boolean equals(Object obj);
 public StringBuffer format(double number, StringBuffer result,
 FieldPosition fieldPosition);
 public StringBuffer format(long number, StringBuffer result,
 FieldPosition fieldPosition);
 public DecimalFormatSymbols getDecimalFormatSymbols();
 public int getGroupingSize();
 public int getMultiplier();
 public String getNegativePrefix();
 public String getNegativeSuffix();
 public String getPositivePrefix();
 public String getPositiveSuffix();
 public int hashCode();
 public boolean isDecimalSeparatorAlwaysShown();
 public Number parse(String text, ParsePosition status);
 public void setDecimalFormatSymbols(DecimalFormatSymbols newSymbols);
 public void setDecimalSeparatorAlwaysShown(boolean newValue);
 public void setGroupingSize(int newValue);
 public void setMultiplier(int newValue);
 public void setNegativePrefix(String newValue);
 public void setNegativeSuffix(String newValue);
 public void setPositivePrefix(String newValue);
 public void setPositiveSuffix(String newValue);
 public String toLocalizedPattern();
 public String toPattern();
}

Constructors

DecimalFormat

public DecimalFormat()

Description

This constructor creates a DecimalFormat that uses the default formatting pattern and
DecimalFormatSymbols that are appropriate for the default locale.

public DecimalFormat(String pattern)

Parameters

pattern

The pattern string.

Description

This constructor creates a DecimalFormat that uses the given formatting pattern and a
DecimalFormatSymbols that is appropriate for the default locale.

public DecimalFormat(String pattern, DecimalFormatSymbols symbols)

Parameters

pattern

The pattern string.

symbols

The DecimalFormatSymbols to use.

Description

This constructor creates a DecimalFormat that uses the given formatting pattern and
DecimalFormatSymbols object.

Instance Methods

applyLocalizedPattern

public void applyLocalizedPattern(String pattern)

Parameters

pattern

The pattern string.

Description

This method tells this DecimalFormat to use the given formatting pattern to format and parse numbers. The
pattern string is assumed to have been localized to the DecimalFormatSymbols object this DecimalFormat
uses.

applyPattern

public void applyPattern(String pattern)

Parameters

pattern

The pattern string.

Description

This method tells this DecimalFormat to use the given formatting pattern to format and parse numbers. The
pattern string is localized to the DecimalFormatSymbols object this DecimalFormat uses.

clone

public Object clone()

Returns

A copy of this DecimalFormat.

Overrides

NumberFormat.clone()

Description

This method creates a copy of this DecimalFormat and then returns it.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

NumberFormat.equals()

Description

This method returns true if obj is an instance of DecimalFormat and is equivalent to this DecimalFormat.

format

 public StringBuffer format(double number, StringBuffer result, FieldPosition
fieldPosition)

Parameters

number

The double value to be formatted.

result

A StringBuffer on which to append the formatted information.

fieldPosition

A number field.

Returns

The given buffer result with the formatted representation of the number appended to it.

Overrides

NumberFormat.format(double, StringBuffer, FieldPosition)

Description

This method formats the given number and appends the result to the given StringBuffer. If fieldPosition
refers to one of the number fields, its beginning and ending indices are filled with the beginning and ending positions
of the given field in the resulting formatted string.

 public StringBuffer format(long number, StringBuffer result, FieldPosition
fieldPosition)

Parameters

number

The long value to be formatted.

result

A StringBuffer on which to append the formatted information.

fieldPosition

A number field.

Returns

The given buffer result with the formatted representation of the number appended to it.

Overrides

NumberFormat.format(double, StringBuffer, FieldPosition)

Description

This method formats the given number and appends the result to the given StringBuffer. If fieldPosition
refers to one of the number fields, its beginning and ending indices are filled with the beginning and ending positions
of the given field in the resulting formatted string.

getDecimalFormatSymbols

public DecimalFormatSymbols getDecimalFormatSymbols()

Returns

The DecimalFormatSymbols object used by this DecimalFormat.

Description

This method returns the DecimalFormatSymbols object that this DecimalFormat uses internally.

getGroupingSize

public int getGroupingSize()

Returns

The grouping size of this DecimalFormat.

Description

This method returns the grouping size of this DecimalFormat. The grouping size is the number of digits between
grouping separators in the integer portion of a number. For example, in the number 1,234.56, the grouping size is
3 (and the grouping symbol is ",").

getMultiplier

public int getMultiplier()

Returns

The multiplier of this DecimalFormat.

Description

This method returns the multiplier of this DecimalFormat. The multiplier is used to adjust a number before it is
formatted or after it is parsed. For example, a percent format has a multiplier of 100 and a suffix of `%'. Thus, a value
of .42 could be formatted as 42%.

getNegativePrefix

public String getNegativePrefix()

Returns

The string that is prepended to negative values.

Description

This method returns the prefix string for negative numbers.

getNegativeSuffix

public String getNegativeSuffix()

Returns

The string that is appended to negative values.

Description

This method returns the suffix string for negative numbers.

getPositivePrefix

public String getPositivePrefix()

Returns

The string that is prepended to positive values.

Description

This method returns the prefix string for positive numbers.

getPositiveSuffix

public String getPositiveSuffix()

Returns

The string that is appended to positive values.

Description

This method returns the suffix string for positive numbers.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

NumberFormat.hashCode()

Description

This method returns a hashcode for this DecimalFormat.

isDecimalSeparatorAlwaysShown

public boolean isDecimalSeparatorAlwaysShown()

Returns

A boolean value that indicates whether or not the decimal separator symbol is always shown.

Description

This method returns true if this DecimalFormat always shows the decimal separator. The method returns
false if the decimal separator is only shown if there is a fractional portion of the number being formatted.

parse

public Number parse(String text, ParsePosition status)

Parameters

text

The string to be parsed.

status

A ParsePosition object that specifies a position in the string.

Returns

The Number object represented by the text starting at the given position.

Overrides

NumberFormat.parse(String, ParsePosition)

Description

This method parses a number from the given string, starting from the given position. After the string has been parsed,
the given ParsePosition object is updated so that its index is after the parsed text.

setDecimalFormatSymbols

 public void setDecimalFormatSymbols(DecimalFormatSymbols newSymbols)

Parameters

newSymbols

The new DecimalFormatSymbols object to use.

Description

This method sets the DecimalFormatSymbols object that this DecimalFormat uses internally.

setDecimalSeparatorAlwaysShown

public void setDecimalSeparatorAlwaysShown(boolean newValue)

Parameters

newValue

The new decimal separator value.

Description

This method specifies whether or not the decimal separator symbol is always shown in formatted numbers. If
newValue is false, the separator is only shown for numbers that have a fractional part. Otherwise, the separator
is always shown.

setGroupingSize

public void setGroupingSize(int newValue)

Parameters

newValue

The new grouping size.

Description

This method sets the grouping size of this DecimalFormat. The grouping size is the number of digits between
grouping separators in the integer portion of a number. For example, in the number 1,234.56, the grouping size is
3 (and the grouping symbol is ",").

setMultiplier

public void setMultiplier(int newValue)

Parameters

newValue

The new multiplier.

Description

This method sets the multiplier of this DecimalFormat. The multiplier is used to adjust a number before it is
formatted or after it is parsed. For example, a percent format has a multiplier of 100 and a suffix of %. Thus, a value
of .42 could be formatted as 42%.

setNegativePrefix

public void setNegativePrefix(String newValue)

Parameters

newValue

The new prefix.

Description

This method sets the prefix string for negative values.

setNegativeSuffix

public void setNegativeSuffix(String newValue)

Parameters

newValue

The new suffix.

Description

This method sets the suffix string for negative values.

setPositivePrefix

public void setPositivePrefix(String newValue)

Parameters

newValue

The new prefix.

Description

This method sets the prefix string for positive values.

setPositiveSuffix

public void setPositiveSuffix(String newValue)

Parameters

newValue

The new suffix.

Description

This method sets the suffix string for positive values.

toLocalizedPattern

public String toLocalizedPattern()

Returns

The pattern string of this DecimalFormat.

Description

This method returns the pattern string of this DecimalFormat, localized with the DecimalFormatSymbols

object of this DecimalFormat.

toPattern

public String toPattern()

Returns

The pattern string of this DecimalFormat.

Description

This method returns the pattern string of this DecimalFormat.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object format(double) NumberFormat

format(long) NumberFormat
format(Object, StringBuffer,
FieldPosition)

NumberFormat

getClass() Object getMaximumFractionDigits() NumberFormat

getMaximumIntegerDigits() NumberFormat getMinimumFractionDigits() NumberFormat

getMinimumIntegerDigits() NumberFormat isGroupingUsed() NumberFormat

isParseIntegerOnly() NumberFormat notify() Object

notifyAll() Object parse(String) NumberFormat

parseObject(String) Format
parseObject(String,
ParsePosition)

NumberFormat

setGroupingUsed(boolean) NumberFormat setMaximumFractionDigits(int) NumberFormat

setMaximumIntegerDigits(int) NumberFormat setMinimumFractionDigits(int) NumberFormat

setMinimumIntegerDigits(int) NumberFormat setParseIntegerOnly(boolean) NumberFormat

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

DecimalFormatSymbols, FieldPosition, Number, NumberFormat, ParsePosition, String,
StringBuffer

DateFormatSymbols DecimalFormatSymbols

Chapter 16
The java.text Package

DecimalFormatSymbols

Name

DecimalFormatSymbols

Synopsis

Class Name:

java.text.DecimalFormatSymbols

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

New as of JDK 1.1

Description

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_11.htm

The DecimalFormatSymbols class encapsulates number-formatting data that is locale-specific, like
grouping separators and decimal separators. Typically, you do not need to instantiate
DecimalFormatSymbols yourself. Instead, an instance is automatically created for you, behind the
scenes, when you use one of the factory methods in NumberFormat to create a DecimalFormat object.
You can retrieve a DecimalFormatSymbols object by calling the getDecimalFormatSymbols()
method of DecimalFormat. Once you have a DecimalFormatSymbols object, you can modify the
strings it uses if you want to change them.

Class Summary

public final class java.text.DecimalFormatSymbols extends java.lang.Object
 implements java.io.Serializable, java.lang.Cloneable {
 // Constructors
 public DecimalFormatSymbols();
 public DecimalFormatSymbols(Locale locale);
 // Instance Methods
 public Object clone();
 public boolean equals(Object obj);
 public char getDecimalSeparator();
 public char getDigit();
 public char getGroupingSeparator();
 public String getInfinity();
 public char getMinusSign();
 public String getNaN();
 public char getPatternSeparator();
 public char getPerMill();
 public char getPercent();
 public char getZeroDigit();
 public int hashCode();
 public void setDecimalSeparator(char decimalSeparator);
 public void setDigit(char digit);
 public void setGroupingSeparator(char groupingSeparator);
 public void setInfinity(String infinity);
 public void setMinusSign(char minusSign);
 public void setNaN(String NaN);
 public void setPatternSeparator(char patternSeparator);
 public void setPerMill(char perMill);
 public void setPercent(char percent);
 public void setZeroDigit(char zeroDigit);
}

Constructors

DecimalFormatSymbols

public DecimalFormatSymbols()

Description

This constructor creates a DecimalFormatSymbols object for the default locale.

public DecimalFormatSymbols(Locale locale)

Parameters

locale

The Locale to use.

Description

This constructor creates a DecimalFormatSymbols object for the given locale.

Instance Methods

clone

public Object clone()

Returns

A copy of this DecimalFormatSymbols.

Overrides

Object.clone()

Description

This method creates a copy of this DecimalFormatSymbols and returns it.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of DateFormatSymbols and is equivalent to this
DecimalFormatSymbols.

getDecimalSeparator

public char getDecimalSeparator()

Returns

The character used to separate the integer and fractional parts of a number for this
DecimalFormatSymbols.

Description

This method returns the decimal separator character (e.g., ".", ",").

getDigit

public char getDigit()

Returns

The character used to represent a digit in a pattern string for this DecimalFormatSymbols.

Description

This method returns the digit pattern character, which represents a digit that is not shown if it is zero.

getGroupingSeparator

public char getGroupingSeparator()

Returns

The character used to separate long numbers for this DecimalFormatSymbols.

Description

This method returns the grouping separator character (e.g., ",", ".").

getInfinity

public String getInfinity()

Returns

The string used to represent infinity for this DecimalFormatSymbols.

Description

This method returns the string that represents infinity.

getMinusSign

public char getMinusSign()

Returns

The character used to signify negative numbers for this DecimalFormatSymbols.

Description

This method returns the character that signifies negative numbers.

getNaN

public String getNaN()

Returns

The string used to represent the value not-a-number for this DecimalFormatSymbols.

Description

This method returns the string that represents not-a-number.

getPatternSeparator

public char getPatternSeparator()

Returns

The pattern separator character for this DecimalFormatSymbols.

Description

This method returns the character used in pattern strings to separate the positive subpattern and
negative subpattern.

getPerMill

public char getPerMill()

Returns

The character used to represent the per mille sign for this DecimalFormatSymbols.

Description

This method returns the character that represents a per mille value.

getPercent

public char getPercent()

Returns

The character used to represent the percent sign for this DecimalFormatSymbols.

Description

This method returns the character that represents a percent value (e.g., %).

getZeroDigit

public char getZeroDigit()

Returns

The character used to represent a digit in a pattern string for this DecimalFormatSymbols.

Description

This method returns the zero-digit pattern character, which represents a digit that is shown even if it is
zero.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this DecimalFormatSymbols object.

setDecimalSeparator

public void setDecimalSeparator(char decimalSeparator)

Parameters

decimalSeparator

The new decimal separator.

Description

This method sets the decimal separator character for this DecimalFormatSymbols.

setDigit

public void setDigit(char digit)

Parameters

digit

The new digit pattern character.

Description

This method sets the digit pattern character, which represents a digit that is not shown if it is zero, for
this DecimalFormatSymbols.

setGroupingSeparator

public void setGroupingSeparator(char groupingSeparator)

Parameters

groupingSeparator

The new grouping separator.

Description

This method sets the grouping separator character for this DecimalFormatSymbols.

setInfinity

public Void setInfinity(String infinity)

Parameters

infinity

The new infinity string.

Description

This method sets the string that represents infinity for this DecimalFormatSymbols.

setMinusSign

public void setMinusSign(char minusSign)

Parameters

minusSign

The new minus sign.

Description

This method sets the character that signifies negative numbers for this DecimalFormatSymbols.

setNaN

public Void setNaN(String NaN)

Parameters

NaN

The new non-a-number string.

Description

This method sets the string that represents not-a-number for this DecimalFormatSymbols.

setPatternSeparator

public void setPatternSeparator(char patternSeparator)

Parameters

patternSeparator

The new pattern separator.

Description

This method sets the character that is used in pattern strings to separate the positive subpattern and
negative subpattern for this DecimalFormatSymbols.

setPerMill

public void setPerMill(char perMill)

Parameters

perMill

The new per mille sign.

Description

This method sets the character that represents the per mille sign for this DecimalFormatSymbols.

setPercent

public void setPercent(char percent)

Parameters

percent

The new percent sign.

Description

This method sets the character that represents the percent sign for this DecimalFormatSymbols.

setZeroDigit

public void setZeroDigit(char zeroDigit)

Parameters

zeroDigit

The new zero-digit pattern character.

Description

This method sets the zero-digit pattern character, which represents a digit that is shown even if it is
zero, for this DecimalFormatSymbols.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object getClass() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

DecimalFormat, NumberFormat, Locale

DecimalFormat FieldPosition

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_11.htm

Chapter 16
The java.text Package

Format

Name

Format

Synopsis

Class Name:

java.text.Format

Superclass:

java.lang.Object

Immediate Subclasses:

java.text.DateFormat, java.text.MessageFormat,

java.text.NumberFormat

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

New as of JDK 1.1

Description

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_11.htm

The Format class is an abstract class that is the superclass of all classes that handle locale-sensitive parsing
and formatting of dates, numbers, and messages. The two format() methods take the information in a supplied
object and convert it to a string. The two parseObject() methods do the reverse; they take the information
from a string and construct an appropriate object.

Class Summary

public abstract class java.text.Format extends java.lang.Object
 implements java.io.Serializable, java.lang.Cloneable {
 // Instance Methods
 public Object clone();
 public final String format(Object obj);
 public abstract StringBuffer format(Object obj, StringBuffer toAppendTo,
 FieldPosition pos);
 public Object parseObject(String source);
 public abstract Object parseObject(String source, ParsePosition status);
}

Instance Methods

clone

public Object clone()

Returns

A copy of this Format.

Overrides

Object.clone()

Description

This method creates a copy of this Format and returns it.

format

public final String format(Object obj)

Parameters

obj

The object to be formatted.

Returns

A string that contains a formatted representation of the object.

Throws

IllegalArgumentException

If the given object cannot be formatted.

Description

This method formats the given object by calling format(Object, StringBuffer,
FieldPosition) with an empty StringBuffer and a FieldPosition that has a value of 0.

 public abstract StringBuffer format(Object obj, StringBuffer toAppendTo,
FieldPosition pos)

Parameters

obj

The object to be formatted.

toAppendTo

A StringBuffer on which to append the formatted information.

pos

A field.

Returns

The given buffer toAppendTo with the formatted representation of the object appended to it.

Throws

IllegalArgumentException

If the given object cannot be formatted.

Description

This method formats the given object and appends the result to the given StringBuffer. After the
object has been formatted, the beginning and ending indices of the given FieldPosition are updated
to reflect the field's position in the formatted output.

A subclass of Format must implement this method.

parseObject

public Object parseObject(String source) throws ParseException

Parameters

source

The string to be parsed.

Returns

The object represented by the given string.

Throws

ParseException

If the text cannot be parsed by this Format.

Description

This method parses the given text and returns an appropriate object. It does this by calling
parseObject(String, ParsePosition) with a ParsePosition that has an index of 0.

 public abstract Object parseObject(String source, ParsePosition status)

Parameters

source

The string to be parsed.

status

A ParsePosition object that specifies a position in the string.

Returns

The object represented by the text starting at the given position.

Description

This method parses the given text, starting at the specified position, and returns an object created from the
data. After the string has been parsed, the given ParsePosition object is updated so that its index is
after the parsed text.

A subclass of Format must implement this method.

Inherited Methods

Method Inherited From Method Inherited From

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

DateFormat, FieldPosition, MessageFormat, NumberFormat, ParseException,
ParsePosition, String, StringBuffer

FieldPosition MessageFormat

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_11.htm

Chapter 16
The java.text Package

MessageFormat

Name

MessageFormat

Synopsis

Class Name:

java.text.MessageFormat

Superclass:

java.text.Format

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The MessageFormat class constructs textual messages using a formatting pattern string. Conceptually, the class functions
much like printf() in C. Syntactically, however, it is quite different. A MessageFormat object uses a pattern string;
formatted arguments are placed into the pattern string to produce a resulting string. Arguments are delimited by matching sets
of curly braces and may include additional information about how that data should be formatted. For example, consider the
following code:

String message =

 "Boot of server {0}began at {1, time}on {1, date, full}.";
MessageFormat boot = new MessageFormat(message);
Date now = new Date();
Object[] arguments = {"luna3", now};
System.out.println(boot.format(arguments));

This code produces the following output:

Boot of server luna3 began at 11:13:22 AM on Monday, March 03, 1997.

Each of the arguments is numbered and includes an optional type and an optional style. In the example above, {1, date,
full} indicates that the argument at index 1 in the argument array should be formatted using a DateFormat object with the
FULL style. The allowed types and styles are:

Type Object Styles

choice ChoiceFormat pattern

date DateFormat short, medium, long, full, pattern

number NumberFormat integer, percent, currency, pattern

time DateFormat short, medium, long, full, pattern

For the date and time types, the styles correspond to the styles, or lengths, of the resulting date and time strings. You can
also specify a date or time pattern string as you would for creating a SimpleDateFormat object. For the number type, the
styles correspond to formatting normal numbers, percentage values, and currency values. You can also specify a number
pattern string as you would for creating a DecimalFormat object. For the choice type, you can specify a choice pattern as
you would for creating a ChoiceFormat object. If no type is specified, the argument should be a string.

The following example shows how to use a choice format pattern with a MessageFormat:

Object[] arguments = {new Integer(1)};
String grammar = "At last count, {0}server{0, choice, 0#s|1#|1<s}
 {0, choice, 0#were|1#was|1<were}booted.";
MessageFormat booted = new MessageFormat(grammar);
System.out.println(booted.format(arguments));
arguments[0] = new Integer(2);
System.out.println(booted.format(arguments));

This example produces the following output:

At last count, 1 server was booted.
At last count, 2 servers were booted.

As an alternative to specifying all of the formatting in the pattern string, you can use an array of Format objects to format the
arguments. You can specify this array using setFormats().

Note that you create MessageFormat objects directly, rather than through factory methods. This is because
MessageFormat does not implement any locale-specific behavior. To produce properly internationalized output, the pattern
string that is used to construct a MessageFormat should come from a ResourceBundle instead of being embedded in
the code.

Class Summary

public class java.text.MessageFormat extends java.text.Format {
 // Constructors
 public MessageFormat(String pattern);
 // Class Methods
 public static String format(String pattern, Object[] arguments);
 // Instance Methods
 public void applyPattern(String newPattern);
 public Object clone();
 public boolean equals(Object obj);
 public final StringBuffer format(Object source, StringBuffer result,
 FieldPosition ignore);
 public final StringBuffer format(Object[] source, StringBuffer result,
 FieldPosition ignore);
 public Format[] getFormats();
 public Locale getLocale();
 public int hashCode();
 public Object[] parse(String source);
 public Object[] parse(String source, ParsePosition status);
 public Object parseObject(String text, ParsePosition status);
 public void setFormat(int variable, Format newFormat);
 public void setFormats(Format[] newFormats);
 public void setLocale(Locale theLocale);
 public String toPattern();
}

Constructors

MessageFormat

public MessageFormat(String pattern)

Parameters

pattern

The pattern string.

Description

This constructor creates a MessageFormat with the given formatting pattern string.

Class Methods

format

public static String format(String pattern, Object[] arguments)

Parameters

pattern

The pattern string.

arguments

An array of arguments.

Description

Calling this static method is equivalent to constructing a MessageFormat using the given formatting pattern
string and asking it to format the given arguments with the format() method.

Instance Methods

applyPattern

public void applyPattern(String pattern)

Parameters

pattern

The pattern string.

Description

This method tells this MessageFormat to use the given formatting pattern to format and parse arguments.

clone

public Object clone()

Returns

A copy of this MessageFormat.

Overrides

Format.clone()

Description

This method creates a copy of this MessageFormat and then returns it.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Format.equals()

Description

This method returns true if obj is an instance of MessageFormat and is equivalent to this MessageFormat.

format

 public StringBuffer format(Object source, StringBuffer result, FieldPosition ignore)

Parameters

source

The object to be formatted.

result

A StringBuffer on which to append the formatted information.

ignore

Ignored.

Returns

The given buffer result with the formatted representation of the object appended to it.

Overrides

Format.format(Object, StringBuffer, FieldPosition)

Description

This method formats the given object and appends the result to the given StringBuffer. The method assumes that
the given object is an array of arguments.

 public StringBuffer format(Object[] source, StringBuffer result, FieldPosition
ignore)

Parameters

source

The object array to be formatted.

result

A StringBuffer on which to append the formatted information.

ignore

Ignored.

Returns

The given buffer result with the formatted representation of the object array appended to it.

Description

This method formats the given arguments in the object array and appends the result to the given StringBuffer.

getFormats

public Format[] getFormats()

Returns

An array of the formats used by this MessageFormat.

Description

This method returns the format objects that this MessageFormat uses. Note that formats are numbered according to
the order in which they appear in the formatting pattern string, not according to their specified argument numbers.

getLocale

public Locale getLocale()

Returns

The Locale of this MessageFormat.

Description

This method returns the locate for this MessageFormat. This locale is used to get default date, time, and number
formatters.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this MessageFormat.

parse

public Object[] parse(String source) throws ParseException

Parameters

source

The string to be parsed.

Returns

An array of objects represented by the given string.

Throws

ParseException

If the text cannot be parsed.

Description

This method parses arguments from the given string, which should be in the format given by the formatting pattern
string of this MessageFormat. If the string is not correctly formatted, an exception is thrown.

public Object[] parse(String source, ParsePosition status)

Parameters

source

The string to be parsed.

status

A ParsePosition object that specifies a position in the string.

Returns

An array of objects represented by the test starting at the given position.

Description

This method parses arguments from the given string, starting at the specified position. The string should be in the
format given by the formatting pattern string of this MessageFormat.

parseObject

public Object parseObject(String text, ParsePosition status)

Parameters

text

The string to be parsed.

status

A ParsePosition object that specifies a position in the string.

Returns

The object represented by the test starting at the given position.

Overrides

Format.parseObject(String, ParsePosition)

Description

This method parses arguments from the given string, starting at the specified position. The string should be in the
format given by the formatting pattern string of this MessageFormat.

setFormat

public void setFormat(int variable, Format newFormat)

Parameters

variable

The index of an argument in the pattern string.

newFormat

The format object to use.

Description

This method sets the Format object that is used for the given argument in the formatting pattern string.

setFormats

public void setFormats(Format[] newFormats)

Parameters

newFormats

The format objects to use.

Description

This method sets the Format objects that format the arguments of this MessageFormat. Note that formats are
numbered according to the order in which they appear in the formatting pattern string, not according to their specified
argument numbers.

setLocale

public void setLocale(Locale theLocale)

Parameters

theLocale

The new locale.

Description

This method sets the Locale object that generates the default date, time, and number format objects.

toPattern

public String toPattern()

Returns

The pattern string of this MessageFormat.

Description

This method returns the pattern string of this MessageFormat.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object format(Object) Format

getClass() Object notify() Object

notifyAll() Object parseObject(String) Format

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

ChoiceFormat, DateFormat, FieldPosition, Format, Locale, NumberFormat, ParseException,
ParsePosition, ResourceBundle, String, StringBuffer

Format NumberFormat

Chapter 16
The java.text Package

NumberFormat

Name

NumberFormat

Synopsis

Class Name:

java.text.NumberFormat

Superclass:

java.text.Format

Immediate Subclasses:

java.text.ChoiceFormat, java.text.DecimalFormat

Interfaces Implemented:

java.lang.Cloneable

Availability:

New as of JDK 1.1

Description

The NumberFormat class formats and parses numbers in a locale-specific manner. NumberFormat is an

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_15.htm

abstract class, but it provides factory methods that return useful instances of NumberFormat subclasses. These
factory methods come in three groups:

● The getCurrencyInstance() methods return objects that format and parse currency values.

● The getNumberInstance() methods return objects that format and parse normal numbers.

● The getPercentInstance() methods return objects that format percentage values.

For example, to format a number as an Italian currency value, you can use this code:

double salary = 1234.56;
System.out.println
 (NumberFormat.getCurrencyInstance(Locale.ITALY).format(salary));

This produces the following output:

L 1.234,56

The NumberFormat class defines two field constants that represent the integer and fractional fields in a
formatted number. These field constants create FieldPosition objects.

Class Summary

public abstract class java.text.NumberFormat extends java.text.Format
 implements java.lang.Cloneable {
 // Constants
 public static final int FRACTION_FIELD;
 public static final int INTEGER_FIELD;
 // Class Methods
 public static Locale[] getAvailableLocales();
 public static final NumberFormat getCurrencyInstance();
 public static NumberFormat getCurrencyInstance(Locale inLocale);
 public static final NumberFormat getInstance();
 public static NumberFormat getInstance(Locale inLocale);
 public static final NumberFormat getNumberInstance();
 public static NumberFormat getNumberInstance(Locale inLocale);
 public static final NumberFormat getPercentInstance();
 public static NumberFormat getPercentInstance(Locale inLocale);
 // Instance Methods
 public Object clone();
 public boolean equals(Object obj);
 public final String format(double number);
 public final String format(long number);
 public final StringBuffer format(Object number, StringBuffer toAppendTo,

 FieldPosition pos);
 public abstract StringBuffer format(double number,
 StringBuffer toAppendTo, FieldPosition pos);
 public abstract StringBuffer format(long number, StringBuffer toAppendTo,
 FieldPosition pos);
 public int getMaximumFractionDigits();
 public int getMaximumIntegerDigits();
 public int getMinimumFractionDigits();
 public int getMinimumIntegerDigits();
 public int hashCode();
 public boolean isGroupingUsed();
 public boolean isParseIntegerOnly();
 public Number parse(String text);
 public abstract Number parse(String text, ParsePosition parsePosition);
 public final Object parseObject(String source,
 ParsePosition parsePosition);
 public void setGroupingUsed(boolean newValue);
 public void setMaximumFractionDigits(int newValue);
 public void setMaximumIntegerDigits(int newValue);
 public void setMinimumFractionDigits(int newValue);
 public void setMinimumIntegerDigits(int newValue);
 public void setParseIntegerOnly(boolean value);
}

Constants

FRACTION_FIELD

public final static int FRACTION_FIELD

Description

A field constant that represents the fractional part of the number.

INTEGER_FIELD

public final static int INTEGER_FIELD

Description

A field constant that represents the integer part of the number.

Class Methods

getAvailableLocales

public static Locale[] getAvailableLocales()

Returns

An array of Locale objects.

Description

This method returns an array of the Locale objects for which this class can create NumberFormat
objects.

getCurrencyInstance

public static final NumberFormat getCurrencyInstance()

Returns

A NumberFormat appropriate for the default Locale that formats currency values.

Description

This method creates a NumberFormat that formats and parses currency values in the default locale.

public static NumberFormat getCurrencyInstance(Locale inLocale)

Parameters

inLocale

The Locale to use.

Returns

A NumberFormat appropriate for the given Locale that formats currency values.

Description

This method creates a NumberFormat that formats and parses currency values in the given locale.

getInstance

public static final NumberFormat getInstance()

Returns

A default NumberFormat appropriate for the default Locale.

Description

This method creates a default NumberFormat that formats and parses values in the default locale.

public static NumberFormat getInstance(Locale inLocale)

Parameters

inLocale

The Locale to use.

Returns

A default NumberFormat appropriate for the given Locale.

Description

This method creates a NumberFormat that formats and parses values in the given locale.

getNumberInstance

public static final NumberFormat getNumberInstance()

Returns

A NumberFormat appropriate for the default Locale that formats normal numbers.

Description

This method creates a NumberFormat that formats and parses number values in the default locale.

public static NumberFormat getNumberInstance(Locale inLocale)

Parameters

inLocale

The Locale to use.

Returns

A NumberFormat appropriate for the given Locale that formats normal numbers.

Description

This method creates a NumberFormat that formats and parses number values in the given locale.

getPercentInstance

public static final NumberFormat getPercentInstance()

Returns

A NumberFormat appropriate for the default Locale that formats percentage values.

Description

This method creates a NumberFormat that formats and parses percent values in the default locale.

public static NumberFormat getPercentInstance(Locale inLocale)

Parameters

inLocale

The Locale to use.

Returns

A NumberFormat appropriate for the given Locale that formats percentage values.

Description

This method creates a NumberFormat that formats and parses percent values in the given locale.

Instance Methods

clone

public Object clone()

Returns

A copy of this NumberFormat.

Overrides

Format.clone()

Description

This method creates a copy of this NumberFormat and returns it.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of NumberFormat and is equivalent to this
NumberFormat.

format

public final String format(double number)

Parameters

number

The double value to be formatted.

Returns

A string that contains a formatted representation of the value.

Description

This method formats the given number and returns the result as a string.

public final String format(long number)

Parameters

number

The long value to be formatted.

Returns

A string that contains a formatted representation of the value.

Description

This method formats the given number and returns the result as a string.

 public final StringBuffer format(Object number, StringBuffer toAppendTo,
FieldPosition pos)

Parameters

number

The object to be formatted.

toAppendTo

A StringBuffer on which to append the formatted information.

pos

A number field.

Returns

The given buffer toAppendTo with the formatted representation of the object appended to it.

Overrides

Format.format(Object, StringBuffer, FieldPosition)

Description

This method formats the given object and appends the result to the given StringBuffer. If pos refers
to one of the number fields, its beginning and ending indices are filled with the beginning and ending
positions of the given field in the resulting formatted string.

 public abstract StringBuffer format(double number, StringBuffer toAppendTo,
FieldPosition pos)

Parameters

number

The double value to be formatted.

toAppendTo

A StringBuffer on which to append the formatted information.

pos

A number field.

Returns

The given buffer toAppendTo with the formatted representation of the object appended to it.

Description

This method formats the given number and appends the result to the given StringBuffer. If pos
refers to one of the number fields, its beginning and ending indices are filled with the beginning and
ending positions of the given field in the resulting formatted string.

 public abstract StringBuffer format(long number, StringBuffer toAppendTo,
FieldPosition pos)

Parameters

number

The long value to be formatted.

toAppendTo

A StringBuffer on which to append the formatted information.

pos

A number field.

Returns

The given buffer toAppendTo with the formatted representation of the object appended to it.

Description

This method formats the given number and appends the result to the given StringBuffer. If pos
refers to one of the number fields, its beginning and ending indices are filled with the beginning and
ending positions of the given field in the resulting formatted string.

getMaximumFractionDigits

public int getMaximumFractionDigits()

Returns

The maximum number of digits allowed in the fraction portion.

Description

This method returns the maximum number of digits that can be in the fraction part of the number.

getMaximumIntegerDigits

public int getMaximumIntegerDigits()

Returns

The maximum number of digits allowed in the integer portion.

Description

This method returns the maximum number of digits that can be in the integer part of the number.

getMinimumFractionDigits

public int getMinimumFractionDigits()

Returns

The minimum number of digits allowed in the fraction portion.

Description

This method returns the minimum number of digits that can be in the fraction part of the number.

getMinimumIntegerDigits

public int getMinimumIntegerDigits()

Returns

The minimum number of digits allowed in the integer portion.

Description

This method returns the minimum number of digits that can be in the integer part of the number.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this NumberFormat.

isGroupingUsed

public boolean isGroupingUsed()

Returns

A boolean value that indicates whether or not this NumberFormat uses a grouping character to break
up long sequences of digits in the integer part of a number.

Description

This method returns true if this NumberFormat uses a grouping character. For example, it is common
in the United States to use a comma as a grouping character: 1,234.56.

isParseIntegerOnly

public boolean isParseIntegerOnly()

Returns

A boolean value that indicates whether or not this NumberFormat parses only integers.

Description

This method returns true if this NumberFormat parses only integers.

parse

public Number parse(String text) throws ParseException

Parameters

text

The string to be parsed.

Returns

The Number object represented by the given string.

Throws

ParseException

If the text cannot be parsed as a number.

Description

This method parses a number from the given string, starting from the beginning of the string.

 public abstract Number parse(String text, ParsePosition parsePosition)

Parameters

text

The string to be parsed.

parsePosition

A ParsePosition object that specifies a position in the string.

Returns

The Number object represented by the text starting at the given position.

Description

This method parses a number from the given string, starting from the given position. After the string has
been parsed, the given ParsePosition object is updated so that its index is after the parsed text.

parseObject

 public final Object parseObject(String source, ParsePosition parsePosition)

Parameters

source

The string to be parsed.

parsePosition

A ParsePosition object that specifies a position in the string.

Returns

The object represented by the text starting at the given position.

Overrides

Format.parseObject(String, ParsePosition)

Description

This method parses a number from the given string, starting from the given position. After the string has
been parsed, the given ParsePosition object is updated so that its index is after the parsed text.

setGroupingUsed

public void setGroupingUsed(boolean newValue)

Parameters

newValue

The new grouping flag.

Description

This method sets whether or not this NumberFormat uses a grouping character to break up long
sequences of digits in the integer part of a number. For example, it is common in the United States to use a
comma as a grouping character: 1,234.56.

setMaximumFractionDigits

public void setMaximumFractionDigits(int newValue)

Parameters

newValue

The new maximum number of fraction digits.

Description

This method sets the maximum number of digits that may be present in the fraction part of the number.
The maximum value must be greater than the minimum number of fraction digits allowed. If the value is
less than the current minimum, the minimum is also set to this value.

setMaximumIntegerDigits

public void setMaximumIntegerDigits(int newValue)

Parameters

newValue

The new maximum number of integer digits.

Description

This method sets the maximum number of digits that may be present in the integer part of the number. The
maximum value must be greater than the minimum number of integer digits allowed. If the value is less
than the current minimum, the minimum is also set to this value.

setMinimumFractionDigits

public void setMinimumFractionDigits(int newValue)

Parameters

newValue

The new minimum number of fraction digits.

Description

This method sets the minimum number of digits that may be present in the fraction part of the number.
The minimum value must be less than the maximum number of fraction digits allowed. If the value is
greater than the current maximum, the maximum is also set to this value.

setMinimumIntegerDigits

public void setMinimumIntegerDigits(int newValue)

Parameters

newValue

The new minimum number of integer digits.

Description

This method sets the minimum number of digits that may be present in the integer part of the number. The
minimum value must be less than the maximum number of integer digits allowed. If the value is greater
than the current maximum, the maximum is also set to this value.

setParseIntegerOnly

public void setParseIntegerOnly(boolean value)

Parameters

value

The new parsing flag.

Description

This method sets whether or not this NumberFormat parses only integers. If the value is true, this
NumberFormat only parse integers. Otherwise it parses both the integer and fractional parts of numbers.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object format(Object) Format

getClass() Object notify() Object

notifyAll() Object parseObject(String) Format

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

ChoiceFormat, DecimalFormat, FieldPosition, Format, Number, ParseException,
ParsePosition, String, StringBuffer

MessageFormat ParseException

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_15.htm

Chapter 16
The java.text Package

RuleBasedCollator

Name

RuleBasedCollator

Synopsis

Class Name:

java.text.RuleBasedCollator

Superclass:

java.text.Collator

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The RuleBasedCollator class is a concrete subclass of Collator that can compare strings using a table of

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_16.htm

rules. The rules for many locales already exist. To get a useful Collator for a given locale, use the
getInstance(Locale) factory method of Collator.

If you need a special-purpose Collator or a Collator for a new locale, you can create your own
RuleBasedCollator from a string that represents the rules. The rules are expressed in three primary forms:

[relation] [text]
[reset] [text]
[modifier]

The rules can be chained together. The only modifier is the @ character, which specifies that all diacriticals are
sorted backwards, as in French.

The valid relations are:

>

Greater than as a primary difference

;

Greater than as a secondary difference or difference in accent

,

Greater than as a tertiary difference or difference in case

=

Equal

For example "<a<b" is two chained rules that state that 'a' is greater than all ignorable characters, and 'b' is
greater than 'a'. To expand this rule to include capitals, use "<a,A<b,B".

A reset, specified by the & character, is used to insert rules in an existing list of chained rules. For example, we
can add a rule to sort 'e' with an umlaut (Unicode 0308) after plain 'e'. The existing rules might look like
"<a<b<c<d<e<f". We can add the following reset, "&e;e\u0308", so that the complete rule table looks
like "<a<b<c<d<e<f&e;e\u0308".

Class Summary

public class java.text.RuleBasedCollator extends java.text.Collator {
 // Constructors
 public RuleBasedCollator(String rules);

 // Instance Methods
 public Object clone();
 public int compare(String source, String target);
 public boolean equals(Object obj);
 public CollationElementIterator
 getCollationElementIterator(String source);
 public CollationKey getCollationKey(String source);
 public String getRules();
 public int hashCode();
}

Constructors

RuleBasedCollator

public RuleBasedCollator(String rules) throws ParseException

Parameters

rules

A string that contains the rules.

Throws

ParseException

If the given rules are incorrectly formed.

Description

This constructor creates a RuleBasedCollator with the given rules.

Instance Methods

clone

public Object clone()

Returns

A copy of this RuledBasedCollator.

Overrides

Collator.clone()

Description

This method creates a copy of this RuledBasedCollator and returns it.

compare

public int compare(String source, String target)

Parameters

source

The source string.

target

The target string.

Returns

-1 if source is less than target, 0 if the strings are equal, or 1 if source is greater than target.

Overrides

Collator.compare()

Description

This method compares the given strings according to the rules for this RuleBasedCollator and
returns a value that indicates their relationship. If either of the strings are compared more than once, a
CollationKey should be used instead.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Collator.equals()

Description

This method returns true if obj is an instance of RuleBasedCollator and is equivalent to this
RuleBasedCollator.

getCollationElementIterator

 public CollationElementIterator getCollationElementIterator(String source)

Parameters

source

The source string.

Returns

A CollationElementIterator for the given string.

Description

This method generates a CollationElementIterator for the given string.

getCollationKey

public CollationKey getCollationKey(String source)

Parameters

source

The source string.

Returns

A CollationKey for the given string.

Overrides

Collator.getCollationKey()

Description

This method generates a CollationKey for the given string. The returned object can be compared with
other CollationKey objects using CollationKey.compareTo(). This comparison is faster than
using RuleBasedCollator.compare(), so if the same string is used for many comparisons, you
should use CollationKey objects.

getRules

public String getRules()

Returns

The rules string for this RuleBasedCollator.

Description

This method returns a string that contains the rules that this RuleBasedCollator is using.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Collator.hashCode()

Description

This method returns a hashcode for this RuleBasedCollator.

Inherited Methods

Method Inherited From Method Inherited From

equals(String, String) Collator finalize() Object

getClass() Object getDecomposition() Collator

getStrength() Collator notify() Object

notifyAll() Object setDecomposition(int) Collator

setStrength(int) Collator toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

CollationKey, CollationElementIterator, Collator, Locale, ParseException, String

ParsePosition SimpleDateFormat

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_16.htm

Chapter 16
The java.text Package

SimpleDateFormat

Name

SimpleDateFormat

Synopsis

Class Name:

java.text.SimpleDateFormat

Superclass:

java.text.DateFormat

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The SimpleDateFormat class is a concrete subclass of DateFormat that formats and parses dates and times using a
formatting pattern. Typically, you do not need to instantiate SimpleDateFormat yourself. Instead, the factory methods
of DateFormat return instances of SimpleDateFormat that are appropriate for particular locales.

However, if you need a specialized date and time format, you can instantiate your own SimpleDateFormat using a

pattern string. You can also modify the formatting pattern of an existing SimpleDateFormat object using the
applyPattern() method. The following symbols are significant in the pattern string.

Symbol Description Example Type

G Era AD Text

y Year 1997 Numeric

M Month in year 3 or March Text or numeric

d Day in month 4 Numeric

h Hour in A.M./P.M. (1-12) 2 Numeric

H Hour in day (0-23) 14 Numeric

m Minute in hour 33 Numeric

s Second in minute 21 Numeric

S Milliseconds 333 Numeric

E Day of week Thursday Text

D Day in year 63 Numeric

F Day of week of month 1 Numeric

w Week in year 9 Numeric

W Week in month 1 Numeric

a A.M./P.M. P.M. Text

k Hour in day (1-24) 14 Numeric

K Hour in A.M./P.M. (0-11) 2 Numeric

z Time zone EST Text

Symbols that are numeric can be repeated to specify a minimum number of digits. For example, "hh" produces an hour
field that is always at least two digits, like "02". Symbols that are textual can be repeated to specify whether the short
form or the long form of the text string is used, if there are both short and long forms. If four or more symbols are
specified, the long form is used; otherwise the short form is used. For example, "E" produces a short form of the day of
the week, such as "Tue", while "EEEE" produces the long form, such as "Tuesday". For the month of the year, if one
or two "M" symbols are used, the field is numeric. If three or more "M" symbols are used, the field is textual.

Single quotes can be used to specify literal text that should be included in the formatted output, and any unrecognized
symbol is treated as literal text. For example, the following pattern:

hh:mm a 'in the' zzzz 'zone.'

produces output like:

02:33 PM in the Eastern Standard Time zone.

Internally, the SimpleDataFormat class uses a DateFormatSymbols object to get the date and time strings that
are appropriate for a particular locale. If you want to modify these strings, you can get the DateFormatSymbols object
by calling getDateFormatSymbols().

Class Summary

public class java.text.SimpleDateFormat extends java.text.DateFormat {
 // Constructors
 public SimpleDateFormat();
 public SimpleDateFormat(String pattern);
 public SimpleDateFormat(String pattern, Locale loc);
 public SimpleDateFormat(String pattern, DateFormatSymbols formatData);
 // Instance Methods
 public void applyLocalizedPattern(String pattern);
 public void applyPattern(String pattern);
 public Object clone();
 public boolean equals(Object obj);
 public StringBuffer format(Date date, StringBuffer toAppendTo,
 FieldPosition pos);
 public DateFormatSymbols getDateFormatSymbols();
 public int hashCode();
 public Date parse(String text, ParsePosition pos);
 public void setDateFormatSymbols(DateFormatSymbols newFormatSymbols);
 public String toLocalizedPattern();
 public String toPattern();
}

Constructors

SimpleDateFormat

public SimpleDateFormat()

Description

This constructor creates a SimpleDateFormat that uses a default formatting pattern and
DateFormatSymbols that are appropriate for the default locale. It produces the same result as calling
DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.SHORT).

public SimpleDateFormat(String pattern)

Parameters

pattern

The pattern string.

Description

This constructor creates a SimpleDateFormat that uses the given formatting pattern and a
DateFormatSymbols object that is appropriate for the default locale.

public SimpleDateFormat(String pattern, Locale loc)

Parameters

pattern

The pattern string.

loc

The Locale to use.

Description

This constructor creates a SimpleDateFormat that uses the given formatting pattern and a
DateFormatSymbols object that is appropriate for the given locale.

 public SimpleDateFormat(String pattern, DateFormatSymbols formatData)

Parameters

pattern

The pattern string.

formatData

The DateFormatSymbols to use.

Description

This constructor creates a SimpleDateFormat that uses the given formatting pattern and
DateFormatSymbols object.

Instance Methods

applyLocalizedPattern

public void applyLocalizedPattern(String pattern)

Parameters

pattern

The pattern string.

Description

This method tells this SimpleDateFormat to use the given formating pattern to format and parse dates and
times. The pattern string is assumed to have been localized to the DateFormatSymbols object this
SimpleDateFormat uses.

applyPattern

public void applyPattern(String pattern)

Parameters

pattern

The pattern string.

Description

This method tells this SimpleDateFormat to use the given formatting pattern to format and parse dates and
times. The pattern string is localized to the DateFormatSymbols object this SimpleDateFormat uses.

clone

public Object clone()

Returns

A copy of this SimpleDateFormat.

Overrides

DateFormat.clone()

Description

This method creates a copy of this SimpleDateFormat and returns it.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

DateFormat.equals()

Description

This method returns true if obj is an instance of SimpleDateFormat and is equivalent to this
SimpleDateFormat.

format

 public StringBuffer format(Date date, StringBuffer toAppendTo, FieldPosition pos)

Parameters

date

The Date object to be formatted.

toAppendTo

A StringBuffer on which to append the formatted information.

pos

A date or time field.

Returns

The given buffer toAppendTo with the formatted representation of the object appended to it.

Overrides

DateFormat.format(Date, StringBuffer, FieldPosition)

Description

This method formats the given date and appends the result to the given StringBuffer. If pos refers to one of
the time or date fields, its beginning and ending indexes are filled with the beginning and ending positions of the
given field in the resulting formatted string.

getDateFormatSymbols

public DateFormatSymbols getDateFormatSymbols()

Returns

The DateFormatSymbols object used by this SimpleDateFormat.

Description

This method returns the DateFormatSymbols object that this SimpleDateFormat uses internally.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

DateFormat.hashCode()

Description

This method returns a hashcode for this SimpleDateFormat.

parse

public Date parse(String text, ParsePosition pos)

Parameters

text

The string to be parsed.

pos

A ParsePosition object that specifies a position in the string.

Returns

The Date object represented by the text starting at the given position.

Overrides

DateFormat.parse(String, ParsePosition)

Description

This method parses a date from the given string, starting from the given position. After the string has been parsed,
the given ParsePosition object is updated so that its index is after the parsed text.

setDateFormatSymbols

 public void setDateFormatSymbols(DateFormatSymbols newFormatSymbols)

Parameters

newFormatSymbols

The new DateFormatSymbols object to use.

Description

This method sets the DateFormatSymbols object that this SimpleDateFormat uses internally.

toLocalizedPattern

public String toLocalizedPattern()

Returns

The pattern string of this SimpleDateFormat.

Description

This method returns the pattern string of this SimpleDateFormat, localized with the DateFormatSymbols
object of this SimpleDateFormat.

toPattern

public String toPattern()

Returns

The pattern string of this SimpleDateFormat.

Description

This method returns the pattern string of this SimpleDateFormat.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object format(Object) Format

format(Date) DateFormat
format(Object, StringBuffer,
FieldPosition)

DateFormat

getCalendar() DateFormat getClass() Object

getNumberFormat() DateFormat getTimeZone() DateFormat

isLenient() DateFormat notify() Object

notifyAll() Object parse(String) DateFormat

parseObject(String) Format
parseObject(String,
ParsePosition)

DateFormat

setCalendar(Calendar) DateFormat setLenient(boolean) DateFormat

setNumberFormat(NumberFormat) DateFormat setTimeZone(TimeZone) DateFormat

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Calendar, Date, DateFormat, DateFormatSymbols, FieldPosition, Format, Locale,
ParsePosition, String, StringBuffer, TimeZone

RuleBasedCollator StringCharacterIterator

Chapter 16
The java.text Package

StringCharacterIterator

Name

StringCharacterIterator

Synopsis

Class Name:

java.text.StringCharacterIterator

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.text.CharacterIterator

Availability:

New as of JDK 1.1

Description

The StringCharacterIterator class can move bidirectionally through a character string. In other

words, the class iterates through the characters in a String. The class implements the
CharacterIterator interface. The class is used by BreakIterator to find boundaries in text strings.

Class Summary

public final class java.text.StringCharacterIterator
 extends java.lang.Object
 implements java.text.CharacterIterator {
 // Constructors
 public StringCharacterIterator(String text);
 public StringCharacterIterator(String text, int pos);
 public StringCharacterIterator(String text, int begin, int end, int pos);
 // Instance Methods
 public Object clone();
 public char current();
 public boolean equals(Object obj);
 public char first();
 public int getBeginIndex();
 public int getEndIndex();
 public int getIndex();
 public int hashCode();
 public char last();
 public char next();
 public char previous();
 public char setIndex(int p);
}

Constructors

StringCharacterIterator

public StringCharacterIterator(String text)

Parameters

text

The String to use.

Description

This constructor creates a StringCharacterIterator that uses the given string. The initial index
of the iterator is at the beginning of the string, or in other words, at index 0.

public StringCharacterIterator(String text, int pos)

Parameters

text

The String to use.

pos

The initial position.

Description

This constructor creates a StringCharacterIterator that uses the given string. The initial index
of the iterator is set to the given initial position.

 public StringCharacterIterator(String text, int begin, int end, int pos)

Parameters

text

The String to use.

begin

The beginning index.

end

The ending index.

pos

The initial position.

Description

This constructor creates a StringCharacterIterator that uses the specified range of the given
string. In other words, the iterator uses the sequence of text from the specified beginning index to the
specified ending index. The initial index of the iterator is set to the given initial position.

Instance Methods

clone

public Object clone()

Returns

A copy of this StringCharacterIterator.

Implements

CharacterIterator.clone()

Overrides

Object.clone()

Description

This method creates a copy of this StringCharacterIterator and returns it.

current

public char current()

Returns

The character at the current position of this StringCharacterIterator or DONE if the current
position is not within the text sequence.

Implements

CharacterIterator.current()

Description

This method returns the character at the current position of this CharacterIterator. The current
position is returned by getIndex().

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of StringCharacterIterator and is equivalent
to this StringCharacterIterator.

first

public char first()

Returns

The first character in this StringCharacterIterator.

Implements

CharacterIterator.first()

Description

This method returns the character at the first position in this StringCharacterIterator. The first
position is returned by getBeginIndex(). The current position of the iterator is set to this position.

getBeginIndex

public int getBeginIndex()

Returns

The index of the first character in this StringCharacterIterator.

Implements

CharacterIterator.getBeginIndex()

Description

This method returns the index of the beginning of the text for this StringCharacterIterator.

getEndIndex

public int getEndIndex()

Returns

The index after the last character in this StringCharacterIterator.

Implements

CharacterIterator.getEndIndex()

Description

This method returns the index of the character following the end of the text for this
StringCharacterIterator.

getIndex

public int getIndex()

Returns

The index of the current character in this StringCharacterIterator.

Description

This method returns the current position, or index, of this StringCharacterIterator.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this StringCharacterIterator.

last

public char last()

Returns

The last character in this StringCharacterIterator.

Implements

CharacterIterator.last()

Description

This method returns the character at the ending position of this StringCharacterIterator. The
last position is the value of getEndIndex()-1. The current position of the iterator is set to this
position.

next

public char next()

Returns

The next character in this StringCharacterIterator or DONE if the current position is already at
the end of the text.

Implements

CharacterIterator.next()

Description

This method increments the current position of this StringCharacterIterator by 1 and returns
the character at the new position. If the current position is already at getEndIndex(), the position is
not changed and DONE is returned.

previous

public char previous()

Returns

The previous character in this StringCharacterIterator or DONE if the current position is
already at the beginning of the text.

Implements

CharacterIterator.previous()

Description

This method decrements the current position of this StringCharacterIterator by 1 and returns
the character at the new position. If the current position is already at getBeginIndex(), the position
is not changed and DONE is returned.

setIndex

public char setIndex(int p)

Parameters

p

The new position.

Returns

The character at the specified position in this StringCharacterIterator.

Throws

IllegalArgumentException

If the given position is not between getBeginIndex() and getEndIndex()-1.

Implements

CharacterIterator.setIndex()

Description

This method sets the current position, or index, of this StringCharacterIterator to the given
position.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object getClass() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

BreakIterator, CharacterIterator, String

SimpleDateFormat BitSet

Chapter 17
The java.util Package

Calendar

Name

Calendar

Synopsis

Class Name:

java.util.Calendar

Superclass:

java.lang.Object

Immediate Subclasses:

java.util.GregorianCalendar

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

New as of JDK 1.1

Description

The Calendar class is an abstractclass that is used to convert between Date objects, which represent points in
time, and calendar fields, like months or days of the week. The JDK 1.0 Date class included calendar and text-
formatting methods. As of JDK 1.1, both of these functions have been split off from Date in order to support

internationalization. As of JDK 1.1, Date represents only a point in time, measured in milliseconds. A subclass of
Calendar examines the Date in the context of a particular calendar system; a Calendar instance is a locale-
sensitive object. Also as of JDK 1.1, the java.text.DateFormat class generates and parses strings representing
points in time.

Calendar defines a number of symbolic constants. They represent either fields or values. For example, MONTH is a
field constant. It can be passed to get() and set() to retrieve and adjust the month. AUGUST, on the other hand,
represents a particular month value. Calling get(Calendar.MONTH) could return Calendar.AUGUST.

Internally, Calendar keeps track of a point in time in two ways. First, a "raw" value is maintained, which is simply
a count of milliseconds since midnight, January 1, 1970 GMT, or, in other words, a Date object. Second, the
calendar keeps track of a number of fields, which are the values that are specific to the Calendar type. These are
values such as day of the week, day of the month, and month. The raw millisecond value can be calculated from the
field values, or vice versa.

When a Date object is computed from the time fields, there may be insufficient information to compute the raw
millisecond value. For example, the year and the month could be set, but not the day of the month. In this case,
Calendar uses default information to fill in the missing fields. For GregorianCalendar, the default field
values are taken from the date of the epoch, or midnight, January 1, 1970 GMT.

Another problem that can arise when computing a Date object from the time fields is that of inconsistent information
in the fields. For example, the time fields could specify "Sunday, March 8, 1997" when in fact March 8, 1997 is a
Saturday. If the time fields contain inconsistent information, Calendar gives preference to the combinations of
fields in the following order:

1. month and day of the week

2. month, week of the month, and day of the week

3. month, day of the week in the month, and day of the week

4. day of the year

5. day of the week and week of the year

6. hour of the day

7. A.M./P.M. and hour of A.M./P.M.

There is also the possibility of ambiguity for certain points in time, so the following rules apply. The time 24:00:00
belongs to the next day and midnight is an A.M. time, while noon is a P.M. time.

Class Summary

public abstract class java.util.Calendar extends java.lang.Object
 implements java.lang.Cloneable, java.io.Serializable {

 // Constants
 public final static int AM;
 public final static int AM_PM;
 public final static int APRIL;
 public final static int AUGUST;
 public final static int DATE;
 public final static int DAY_OF_MONTH;
 public final static int DAY_OF_WEEK;
 public final static int DAY_OF_WEEK_IN_MONTH;
 public final static int DAY_OF_YEAR;
 public final static int DECEMBER;
 public final static int DST_OFFSET;
 public final static int ERA;
 public final static int FEBRUARY;
 public final static int FIELD_COUNT;
 public final static int FRIDAY;
 public final static int HOUR;
 public final static int HOUR_OF_DAY;
 public final static int JANUARY;
 public final static int JULY;
 public final static int JUNE;
 public final static int MARCH;
 public final static int MAY;
 public final static int MILLISECOND;
 public final static int MINUTE;
 public final static int MONDAY;
 public final static int MONTH;
 public final static int NOVEMBER;
 public final static int OCTOBER;
 public final static int PM;
 public final static int SATURDAY;
 public final static int SECOND;
 public final static int SEPTEMBER;
 public final static int SUNDAY;
 public final static int THURSDAY;
 public final static int TUESDAY;
 public final static int UNDECIMBER;
 public final static int WEDNESDAY;
 public final static int WEEK_OF_MONTH;
 public final static int WEEK_OF_YEAR;
 public final static int YEAR;
 public final static int ZONE_OFFSET;
 // Variables
 protected boolean areFieldsSet;
 protected int[] fields;
 protected boolean[] isSet;
 protected boolean isTimeSet;
 protected long time;
 // Constructors

 protected Calendar();
 protected Calendar(TimeZone zone, Locale aLocale);
 // Class Methods
 public static synchronized Locale[] getAvailableLocales();
 public static synchronized Calendar getInstance();
 public static synchronized Calendar getInstance(TimeZone zone);
 public static synchronized Calendar getInstance(Locale aLocale);
 public static synchronized Calendar getInstance(TimeZone zone,
 Locale aLocale);
 // Instance Methods
 public abstract void add(int field, int amount);
 public abstract boolean after(Object when);
 public abstract boolean before(Object when);
 public final void clear();
 public final void clear(int field);
 public Object clone();
 public abstract boolean equals(Object when);
 public final int get(int field);
 public int getFirstDayOfWeek();
 public abstract int getGreatestMinimum(int field);
 public abstract int getLeastMaximum(int field);
 public abstract int getMaximum(int field);
 public int getMinimalDaysInFirstWeek();
 public abstract int getMinimum(int field);
 public final Date getTime();
 public TimeZone getTimeZone();
 public boolean isLenient();
 public final boolean isSet(int field);
 public abstract void roll(int field, boolean up);
 public final void set(int field, int value);
 public final void set(int year, int month, int date);
 public final void set(int year, int month, int date,
 int hour, int minute);
 public final void set(int year, int month, int date, int hour,
 int minute, int second);
 public void setFirstDayOfWeek(int value);
 public void setLenient(boolean lenient);
 public void setMinimalDaysInFirstWeek(int value);
 public final void setTime(Date date);
 public void setTimeZone(TimeZone value);
 // Protected Instance Methods
 protected void complete();
 protected abstract void computeFields();
 protected abstract void computeTime();
 protected long getTimeInMillis();
 protected final int internalGet(int field);
 protected void setTimeInMillis(long millis);
}

Constants

AM

public final static int AM

Description

A constant value that represents morning times.

AM_PM

public final static int AM_PM

Description

A field constant that represents the A.M./P.M. flag of this object.

APRIL

public final static int APRIL

Description

A constant value that represents the month of April.

AUGUST

public final static int AUGUST

Description

A constant value that represents the month of August.

DATE

public final static int DATE

Description

A field constant that represents the day of the month of this object.

DAY_OF_MONTH

public final static int DAY_OF_MONTH

Description

A field constant that represents the day of the month of this object. This field is synonymous with DATE.

DAY_OF_WEEK

public final static int DAY_OF_WEEK

Description

A field constant that represents the day of the week of this object.

DAY_OF_WEEK_IN_MONTH

public final static int DAY_OF_WEEK_IN_MONTH

Description

A field constant that represents the day of the week in the current month. For example, February 10, 1997, has
a DAY_OF_WEEK_IN_MONTH value of 2 because it is the second Monday in February for that year.

DAY_OF_YEAR

public final static int DAY_OF_YEAR

Description

A field constant that represents the day of the year of this object. January 1 is the first day of the year.

DECEMBER

public final static int DECEMBER

Description

A constant value that represents the month of December.

DST_OFFSET

public final static int DST_OFFSET

Description

A field constant that represents the offset due to daylight savings time, in milliseconds, of this object.

ERA

public final static int ERA

Description

A field constant that represents the era of this object. A Gregorian calendar has two eras, BC and AD.

FEBRUARY

public final static int FEBRUARY

Description

A constant value that represents the month of February.

FIELD_COUNT

public final static int FIELD_COUNT

Description

A constant that represents the number of attribute fields for Calendar objects.

FRIDAY

public final static int FRIDAY

Description

A constant value that represents the day Friday.

HOUR

public final static int HOUR

Description

A field constant that represents the hour of this object.

HOUR_OF_DAY

public final static int HOUR_OF_DAY

Description

A field constant that represents the hour of the day of this object. A time of 1:00 P.M. has an HOUR value of 1,
but an HOUR_OF_DAY value of 13.

JANUARY

public final static int JANUARY

Description

A constant value that represents the month of January.

JULY

public final static int JULY

Description

A constant value that represents the month of July.

JUNE

public final static int JUNE

Description

A constant value that represents the month of June.

MARCH

public final static int MARCH

Description

A constant value that represents the month of March.

MAY

public final static int MAY

Description

A constant value that represents the month of May.

MILLISECOND

public final static int MILLISECOND

Description

A field constant that represents the milliseconds of this object.

MINUTE

public final static int MINUTE

Description

A field constant that represents the minutes of this object.

MONDAY

public final static int MONDAY

Description

A constant value that represents the day Monday.

MONTH

public final static int MONTH

Description

A field constant that represents the month of this object.

NOVEMBER

public final static int NOVEMBER

Description

A constant value that represents the month of November.

OCTOBER

public final static int OCTOBER

Description

A constant value that represents the month of October.

PM

public final static int PM

Description

A constant value that represents afternoon and evening times.

SATURDAY

public final static int SATURDAY

Description

A constant value that represents the day Saturday.

SECOND

public final static int SECOND

Description

A field constant that represents the seconds of this object.

SEPTEMBER

public final static int SEPTEMBER

Description

A constant value that represents the month of September.

SUNDAY

public final static int SUNDAY

Description

A constant value that represents the day Sunday.

THURSDAY

public final static int THURSDAY

Description

A constant value that represents the day Thursday.

TUESDAY

public final static int TUESDAY

Description

A constant value that represents the day Tuesday.

UNDECIMBER

public final static int UNDECIMBER

Description

A constant value that represents the thirteenth month used in lunar calendars.

WEDNESDAY

public final static int WEDNESDAY

Description

A constant value that represents the day Wednesday.

WEEK_OF_MONTH

public final static int WEEK_OF_MONTH

Description

A field constant that represents the week of the month of this object.

WEEK_OF_YEAR

public final static int WEEK_OF_YEAR

Description

A field constant that represents the week of the year of this object.

YEAR

public final static int YEAR

Description

A field constant that represents the year of this object.

ZONE_OFFSET

public final static int ZONE_OFFSET

Description

A field constant that represents the raw time zone offset, in milliseconds, of this object. The value should be
added to GMT to get local time.

Variables

areFieldsSet

protected boolean areFieldsSet

Description

A boolean value that indicates if the time fields of this Calendar have been set. These fields can be
computed from the raw millisecond time value.

fields

protected int[] fields

Description

An array that stores the time field values for this Calendar.

isSet

protected boolean[] isSet

Description

An array that contains a flag for each entry in the fields array. The value of each flag indicates if the
corresponding entry in fields has been set for this Calendar.

isTimeSet

protected boolean isTimeSet

Description

A boolean value that indicates if the raw millisecond time value of this Calendar has been set. The value
can be computed from the time fields.

time

protected long time

Description

The raw time value for this Calendar. The value is the number of milliseconds since midnight, January 1,
1970 GMT.

Constructors

Calendar

protected Calendar()

Description

This constructor creates a Calendar that uses the system's default time zone and locale. The default time
zone is that returned by TimeZone.getDefault(). The default locale is that returned by
Locale.getDefault().

protected Calendar(TimeZone zone, Locale aLocale)

Parameters

zone

The TimeZone to use.

aLocale

The Locale to use.

Description

This constructor creates a Calendar that uses the supplied time zone and locale.

Class Methods

getAvailableLocales

public static synchronized Locale[] getAvailableLocales()

Returns

An array of Locale objects for which Calendar objects are installed.

Description

This method returns an array of locales that have corresponding Calendar objects.

getInstance

public static synchronized Calendar getInstance()

Returns

A Calendar for the default time zone and locale.

Description

This method returns a newly constructed Calendar for the default time zone and locale. Future
implementations of this method may infer the subclass of Calendar to instantiate based on the default
locale. However, the current implementation always returns a GregorianCalendar. The default time zone
is that returned by TimeZone.getDefault(). The default locale is that returned by
Locale.getDefault().

public static synchronized Calendar getInstance(TimeZone zone)

Parameters

zone

The TimeZone to use.

Returns

A Calendar for the given time zone and the default locale.

Description

This method returns a newly constructed Calendar for the given time zone and the default locale. Future
implementations of this method may infer the subclass of Calendar to instantiate based on the default
locale. However, the current implementation always returns a GregorianCalendar. The default locale is
that returned by Locale.getDefault().

public static synchronized Calendar getInstance(Locale aLocale)

Parameters

aLocale

The Locale to use.

Returns

A Calendar for the given locale and the default time zone.

Description

This method returns a newly constructed Calendar for the given locale and the default time zone. Future
implementations of this method may infer the subclass of Calendar to instantiate based on the given locale.
However, the current implementation always returns a GregorianCalendar. The default time zone is that
returned by TimeZone.getDefault().

public static synchronized Calendar getInstance(TimeZone zone, Locale aLocale)

Parameters

zone

The TimeZone to use.

aLocale

The Locale to use.

Returns

A Calendar for the given time zone and locale.

Description

This method returns a newly constructed Calendar for the given time zone and locale. Future
implementations of this method may infer the subclass of Calendar to instantiate based on the given locale.
However, the current implementation always returns a GregorianCalendar.

Instance Methods

add

public abstract void add(int field, int amount)

Parameters

field

The time field to be modified.

amount

The amount to add to the specified field value. This value can be negative.

Description

This method adds the given amount to the specified time field. For example, you can compute a date 90 days
beyond the current date of this Calendar by calling add(Calendar.DATE, 90).

after

public abstract boolean after(Object when)

Parameters

when

The object to compare to this Calendar.

Returns

true if this object is after when; false otherwise.

Description

This method returns true if when is a Calendar object whose value falls before the value of this
Calendar.

before

public abstract boolean before(Object when)

Parameters

when

The object to compare to this Calendar.

Returns

true if this object is before when; false otherwise.

Description

This method returns true if when is a Calendar object whose value falls after the value of this
Calendar.

clear

public final void clear()

Description

This method clears the values of all of the time fields of this Calendar.

public final void clear(int field)

Parameters

field

The time field to be cleared.

Description

This method clears the specified time field by setting its value to 0.

clone

public Object clone()

Returns

A copy of this Calendar.

Overrides

Object.clone()

Description

This method creates a copy of this Calendar and returns it. In other words, the returned Calendar has the
same time field values and raw time value as this Calendar.

equals

public abstract boolean equals(Object when)

Parameters

when

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if when is an instance of Calendar and it contains the same value as the object
this method is associated with.

get

public final int get(int field)

Parameters

field

The time field to be retrieved.

Returns

The value of the given time field.

Description

This method returns the value of the specified time field. If the fields of this Calendar have not been set,
they are set from the raw time value before the requested field is returned.

getFirstDayOfWeek

public int getFirstDayOfWeek()

Returns

The first day of the week for this Calendar.

Description

This method returns the day that is considered the beginning of the week for this Calendar. This value is
determined by the Locale of this Calendar. For example, the first day of the week in the United States is
Sunday, while in France it is Monday.

getGreatestMinimum

public abstract int getGreatestMinimum(int field)

Parameters

field

A time field constant.

Returns

The highest minimum value for the given time field.

Description

This method returns the highest minimum value for the given time field, if the field has a range of minimum
values. If the field does not have a range of minimum values, this method is equivalent to getMinimum().

getLeastMaximum

public abstract int getLeastMaximum(int field)

Parameters

field

A time field constant.

Returns

The lowest maximum value for the given time field.

Description

This method returns the lowest maximum value for the given time field, if the field has a range of maximum
values. If the field does not have a range of maximum values, this method is equivalent to getMaximum().
For example, for a GregorianCalendar, the lowest maximum value of DATE_OF_MONTH is 28.

getMaximum

public abstract int getMaximum(int field)

Parameters

field

A time field constant.

Returns

The maximum value for the given time field.

Description

This method returns the maximum value for the given time field. For example, for a GregorianCalendar,
the maximum value of DATE_OF_MONTH is 31.

getMinimalDaysInFirstWeek

public int getMinimalDaysInFirstWeek()

Returns

The number of days that must be in the first week of the year.

Description

This method returns the number of days that must be in the first week of the year. For example, a value of 7
indicates that the first week of the year must be a full week, while a value of 1 indicates that the first week of
the year can contain a single day. This value is determined by the Locale of this Calendar.

getMinimum

public abstract int getMinimum(int field)

Parameters

field

A time field constant.

Returns

The minimum value for the given time field.

Description

This method returns the minimum value for the given time field. For example, for a GregorianCalendar,
the minimum value of DATE_OF_MONTH is 1.

getTime

public final Date getTime()

Returns

A Date object that represents the point in time represented by this Calendar.

Description

This method returns a newly created Date object that is constructed from the value returned by
getTimeInMillis().

getTimeZone

public TimeZone getTimeZone()

Returns

The TimeZone of this Calendar.

Description

This method returns the TimeZone object for this Calendar.

isLenient

public boolean isLenient()

Returns

A boolean value that indicates the leniency of this Calendar.

Description

This method returns the current leniency of this Calendar. A value of false indicates that the Calendar
throws exceptions when questionable data is passed to it, while a value of true indicates that the Calendar
makes its best guess to interpret questionable data. For example, if the Calendar is being lenient, a date such
as March 135, 1997 is interpreted as the 134th day after March 1, 1997.

isSet

public final boolean isSet(int field)

Parameters

field

A time field constant.

Returns

true if the time field has been set; false otherwise.

Description

This method returns a boolean value that indicates whether or not the specified time field has been set.

roll

public abstract void roll(int field, boolean up)

Parameters

field

The time field to be adjusted.

up

A boolean value that indicates if the given field should be incremented.

Description

This method adds or subtracts one time unit from the given time field. For example, to increase the current
date by one day, you can call roll(Calendar.DATE, true).

The method maintains the field being rolled within its valid range. For example, in a calendar system that uses
hours and minutes to measure time, rolling the minutes up from 59 sets that field to 0. By the same token,
rolling that field down from 0 sets it to 59.

The roll() method does not adjust the value of any other field than the one specified by its field
argument. In particular, for calendar systems that have months with different numbers of days, it may be
necessary to adjust the month and also year when the day of the month is rolled up. It is the responsibility of
the caller of roll() to perform that adjustment.

set

public final void set(int field, int value)

Parameters

field

The time field to be set.

value

The new value.

Description

This method sets the value of the specified time field.

public final void set(int year, int month, int date)

Parameters

year

The value for the year field.

month

The value for the month field, where 0 represents the first month.

date

The value for the day-of-the-month field.

Description

This method sets the values of the year, month, and day-of-the-month fields of this Calendar.

 public final void set(int year, int month, int date, int hour, int minute)

Parameters

year

The value for the year field.

month

The value for the month field, where 0 represents the first month.

date

The value for the day-of-the-month field.

hour

The value for the hour field.

minute

The value for the minute field.

Description

This method sets the values of the year, month, day-of-the-month, hour, and minute fields of this Calendar.

 public final void set(int year, int month, int date, int hour, int minute, int
second)

Parameters

year

The value for the year field.

month

The value for the month field, where 0 represents the first month.

date

The value for the day-of-the-month field.

hour

The value for the hour field.

minute

The value for the minute field.

second

The value for the second field.

Description

This method sets the values of the year, month, day-of-the-month, hour, minute, and second fields of this
Calendar.

setFirstDayOfWeek

public void setFirstDayofWeek(int value)

Parameters

value

The value for the first day of the week.

Description

This method sets the day that is considered the beginning of the week for this Calendar. This value should
be determined by the Locale of this Calendar. For example, the first day of the week in the United States
is Sunday; in France it's Monday.

setLenient

public void setLenient(boolean lenient)

Parameters

lenient

A boolean value that specifies the leniency of this Calendar.

Description

This method sets the leniency of this Calendar. A value of false specifies that the Calendar throws
exceptions when questionable data is passed to it, while a value of true indicates that the Calendar makes
its best guess to interpret questionable data. For example, if the Calendar is being lenient, a date such as
March 135, 1997 is interpreted as the 135th day after March 1, 1997.

setMinimalDaysInFirstWeek

public void setMinimalDaysInFirstWeek(int value)

Parameters

value

The value for the minimum number of days in the first week of the year.

Description

This method sets the minimum number of days in the first week of the year. For example, a value of 7
indicates the first week of the year must be a full week, while a value of 1 indicates the first week of the year
can contain a single day. This value should be determined by the Locale of this Calendar.

setTime

public final void setTime(Date date)

Parameters

date

A Date object that represents the new time value.

Description

This method sets the point in time that is represented by this Calendar.

setTimeZone

public void setTimeZone(TimeZone value)

Parameters

value

A TimeZone object that represents the new time zone.

Description

This method is used to set the time zone of this Calendar.

Protected Instance Methods

complete

protected void complete()

Description

This method fills out the fields of this Calendar as much as possible by calling computeTime() and
computeFields().

computeFields

protected abstract void computeFields()

Description

This method calculates the time fields of this Calendar from its raw time value.

computeTime

protected abstract void computeTime()

Description

This method calculates the raw time value of this Calendar from its time field values.

getTimeInMillis

protected long getTimeInMillis()

Returns

The raw time value of this Calendar.

Description

This method returns the raw time value of this Calendar. The value is measured as the number of
milliseconds since midnight, January 1, 1970 GMT.

internalGet

protected final int internalGet(int field)

Parameters

field

A time field constant.

Returns

The value of the given time field.

Description

This method returns the value of the specified time field without first checking to see if it needs to be
computed from the raw time value.

setTimeInMillis

protected void setTimeInMillis(long millis)

Parameters

millis

The new raw time value for this Calendar.

Description

This method sets the raw time value of this Calendar. The value is measured as the number of milliseconds
since midnight, January 1, 1970 GMT.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Cloneable, Date, DateFormat, GregorianCalendar, Locale, Serializable, TimeZone

BitSet Date

Chapter 17
The java.util Package

Date

Name

Date

Synopsis

Class Name:

java.util.Date

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

JDK 1.0 or later

Description

The Date class encapsulates a point in time with millisecond precision. The value of a Date is represented internally
by a long value that contains the number of milliseconds since midnight, January 1, 1970 GMT.

Prior to JDK 1.1, the Date class was used for two purposes that are now encapsulated by other classes. First, the Date

class included methods for calculating calendar values, like months and days of the week. This functionality is now
embedded in the Calendar class. Second, the Date class included methods for generating and parsing a string
representation of a date. This functionality is now provided by java.text.DateFormat. Thus, as of JDK 1.1, most
of the methods of Date are deprecated; the class is used only to represent a point in time.

The accurate measurement of time is a subject of considerable complexity and multifarious acronyms. There are two
main methods of measuring time, atomic and astronomical. The U.S. Naval Observatory (http://tycho.usno.navy.mil)
maintains a set of atomic clocks that provide the basis for Coordinated Universal Time (UTC). These clocks adhere to
precise definitions of the second based on atomic decay.

Outside of the U.S. Navy, people tend to measure time in terms of Greenwich Mean Time (GMT). In the scientific
community, GMT is called UT, which is a system of time predicated on the assumption that each rotation of the earth is
exactly 24 * 60 * 60 seconds long. Because the earth's rotation is gradually slowing down, the seconds in UT are a little
bit longer than the seconds in UTC. Now and then a "leap second" is added in UTC to keep it close to UT. Because the
Date class simply measures milliseconds since a point in time, without regard for leap seconds, it is a good
representation of UT or GMT.

Class Summary

public class java.util.Date extends java.lang.Object
 implements java.lang.Cloneable, java.io.Serializable {
 // Constructors
 public Date();
 public Date(long date);
 public Date(int year, int month, int date); // Deprecated in 1.1
 public Date(int year, int month, int date,
 int hrs, int min); // Deprecated in 1.1
 public Date(int year, int month, int date,
 int hrs, int min, int sec); // Deprecated in 1.1
 public Date(String s); // Deprecated in 1.1
 // Class Methods
 public static long parse(String s); // Deprecated in 1.1
 public static long UTC(int year, int month,
 int date, int hrs,
 int min, int sec); // Deprecated in 1.1
 // Instance Methods
 public boolean after(Date when);
 public boolean before(Date when);
 public boolean equals(Object obj);
 public int getDate(); // Deprecated in 1.1
 public int getDay(); // Deprecated in 1.1
 public int getHours(); // Deprecated in 1.1
 public int getMinutes(); // Deprecated in 1.1
 public int getMonth(); // Deprecated in 1.1
 public int getSeconds(); // Deprecated in 1.1
 public long getTime();
 public int getTimezoneOffset(); // Deprecated in 1.1
 public int getYear(); // Deprecated in 1.1
 public int hashCode();

 public void setDate(int date); // Deprecated in 1.1
 public void setHours(int hours); // Deprecated in 1.1
 public void setMinutes(int minutes); // Deprecated in 1.1
 public void setMonth(int month); // Deprecated in 1.1
 public void setSeconds(int seconds); // Deprecated in 1.1
 public void setTime(long time);
 public void setYear(int year); // Deprecated in 1.1
 public String toGMTString(); // Deprecated in 1.1
 public String toLocaleString(); // Deprecated in 1.1
 public String toString();
}

Constructors

Date

public Date()

Description

This constructor creates a Date object that is initialized to the current time.

public Date(long date)

Parameters

date

A time value, measured as the number of milliseconds since midnight, January 1, 1970 GMT.

Description

This constructor creates a Date object that represents the given time.

public Date(int year, int month, int day)

Availability

Deprecated as of JDK 1.1

Parameters

year

The year specified as a value that is added to 1900 to get the actual year.

month

The month specified in the range 0 to 11.

day

The day of the month specified in the range 1 to 31.

Description

This constructor creates a Date that represents midnight local time on the specified date.

public Date(int year, int month, int day, int hrs, int min)

Availability

Deprecated as of JDK 1.1

Parameters

year

The year specified as a value that is added to 1900 to get the actual year.

month

The month specified in the range 0 to 11.

day

The day of the month specified in the range 1 to 31.

hrs

The hours specified in the range 0 to 23.

min

The minutes specified in the range 0 to 59.

Description

This constructor creates a Date that represents the given date and time.

 public Date(int year, int month, int day, int hrs, int min, int sec)

Availability

Deprecated as of JDK 1.1

Parameters

year

The year specified as a value that is added to 1900 to get the actual year.

month

The month specified in the range 0 to 11.

day

The day of the month specified in the range 1 to 31.

hrs

The hours specified in the range 0 to 23.

min

The minutes specified in the range 0 to 59.

sec

The seconds specified in the range 0 to 59.

Description

This constructor creates a Date that represents the given date and time.

public Date(String s)

Availability

Deprecated as of JDK 1.1

Parameters

s

The string to parse.

Description

This constructor creates a Date that represents the date and time specified by the given string. The syntax of the

date in the string must satisfy the requirements of the parse() method. The following is an example of a string
that this constructor can understand:

Sat, 8 Feb 1997 13:30:00 GMT

Class Methods

parse

public static long parse(String s)

Availability

Deprecated as of JDK 1.1

Parameters

s

The string to parse.

Returns

A time value represented as the number of milliseconds since midnight, January 1, 1970 GMT.

Throws

IllegalArgumentException

If the string cannot be parsed.

Description

This method returns the raw time value specified by the given string. This method understands a number of
different formats. The following are examples of strings that this method can understand:

Sat, 8 Feb 1997 13:30:00 GMT
4/6/97
4/6/1997
January 5, 1997
2/4/97 11:03 AM
2/4/97 10:25 PM
2/4/97 17:03 GMT-6
2/4/97 17:03:24
March 16, 97 17:03 EST
March (comment)16, 97 (comment) 17:03 EST
16 march 1996 17:03 pdt

Sat 16 march 97 17:03 cst

The JDK 1.0.2 implementation of parse() has a serious bug. It incorrectly interprets date formats that specify
the month as a number by making the month one greater than it should be. So 2/4/97 is incorrectly interpreted
as March 4, 1997.

For the purposes of this method, UTC and GMT are considered equivalent.

UTC

 public static long UTC(int year, int month, int date, int hrs, int min, int sec)

Availability

Deprecated as of JDK 1.1

Parameters

year

The year specified as a value that is added to 1900 to get the actual year.

month

The month specified in the range 0 to 11.

day

The day of the month specified in the range 1 to 31.

hrs

The hours specified in the range 0 to 23.

min

The minutes specified in the range 0 to 59.

sec

The seconds specified in the range 0 to 59.

Returns

A time value represented as the number of milliseconds since midnight, January 1, 1970 GMT.

Description

This method returns a raw time value that corresponds to the given parameters. Computations are based on GMT,
not the local time zone.

Instance Methods

after

public boolean after(Date when)

Parameters

when

The object to compare to this Date.

Returns

true if this object is after when; false otherwise.

Description

This method returns true if the value of when falls before the value of this Date.

before

public boolean before(Date when)

Parameters

when

The object to compare to this Date.

Returns

true if this object is before when; false otherwise.

Description

This method returns true if the value of when falls after the value of this Date.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if when is an instance of Date and it contains the same value as the object this
method is associated with. In other words, the two Date objects are equal only if they both represent the same
point in time, to the millisecond.

getDate

public int getDate()

Availability

Deprecated as of JDK 1.1

Returns

The day of the month of this Date.

Description

This method returns the day of the month represented by this Date object. The value is in the range 1 to 31.

getDay

public int getDay()

Availability

Deprecated as of JDK 1.1

Returns

The day of the week of this Date.

Description

This method returns the day of the week represented by this Date object. The value is in the range 0 to 6, where
0 means Sunday.

getHours

public int getHours()

Availability

Deprecated as of JDK 1.1

Returns

The hour value of this Date.

Description

This method returns the hour represented by this Date object. The value is in the range 0 to 23, where 0 means
midnight.

getMinutes

public int getMinutes()

Availability

Deprecated as of JDK 1.1

Returns

The minute value of this Date.

Description

This method returns the number of minutes after the hour represented by this Date object. The value is in the
range 0 to 59.

getMonth

public int getMonth()

Availability

Deprecated as of JDK 1.1

Returns

The month of this Date.

Description

This method returns the month represented by this Date object. The value is in the range 0 to 11, where 0 means
January.

getSeconds

public int getSeconds()

Availability

Deprecated as of JDK 1.1

Returns

The second value of this Date.

Description

This method returns the number of seconds after the minute represented by this Date object. The value is in the
range 0 to 59.

getTime

public long getTime()

Returns

The raw time value of this Date.

Description

This method returns the date and time of this Date as the number of milliseconds since midnight, January 1,
1970 GMT.

getTimezoneOffset

public int getTimezoneOffset()

Availability

Deprecated as of JDK 1.1

Returns

The time zone offset for this Date.

Description

This method returns the number of minutes between the local time zone and GMT for this Date object.

getYear

public int getYear()

Availability

Deprecated as of JDK 1.1

Returns

The year of this Date.

Description

This method returns the year represented by this Date object. The value is the number of years since 1990.

hashCode

public int hashCode()

Returns

The hashcode for this Date.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this object.

setDate

public void setDate(int date)

Availability

Deprecated as of JDK 1.1

Parameters

date

The day of the month specified in the range 1 to 31.

Description

This method sets the day of the month of this Date object.

setHours

public void setHours(int hours)

Availability

Deprecated as of JDK 1.1

Parameters

hours

The hours specified in the range 0 to 23.

Description

This method sets the hour of this Date object.

setMinutes

public void setMinutes(int minutes)

Availability

Deprecated as of JDK 1.1

Parameters

minutes

The minutes specified in the range 0 to 59.

Description

This method sets the minute value of this Date object.

setMonth

public void setMonth(int month)

Availability

Deprecated as of JDK 1.1

Parameters

month

The month specified in the range 0 to 11.

Description

This method sets the month of this Date object

setSeconds

public void setSeconds(int seconds)

Availability

Deprecated as of JDK 1.1

Parameters

seconds

The seconds specified in the range 0 to 59.

Description

This method sets the second value of this Date object.

setTime

public void setTime(long time)

Parameters

time

A time value specified as the number of milliseconds since midnight, January 1, 1970 GMT.

Description

This method sets the date and time represented by this Date to the given raw time value.

setYear

public void setYear(int year)

Availability

Deprecated as of JDK 1.1

Parameters

year

The year specified as a value that is added to 1900 to get the actual year.

Description

This method sets the year of this Date object.

toGMTString

public String toGMTString()

Availability

Deprecated as of JDK 1.1

Returns

A string that represents this Date.

Description

The method returns a string representation of this Date object based on Internet GMT conventions. The string is
of the form:

Sat, 8 Feb 1997 13:30:00 GMT

The date is the string is either one or two digits; the rest of the fields always have the width shown. The time zone

is always GMT.

toLocaleString

public String toLocaleString()

Availability

Deprecated as of JDK 1.1

Returns

A string that represents this Date.

Description

The method returns a string representation of this Date based on the conventions of the current locale.

toString

public String toString()

Returns

A string that represents this Date.

Overrides

Object.toString()

Description

This method returns a string representation of this Date. The string is of the form:

Sat Feb 8 2:30:00 MST 1997

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Calendar, Cloneable, DateFormat, GregorianCalendar, IllegalArgumentException,
Serializable, TimeZone

Calendar Dictionary

Chapter 17
The java.util Package

Dictionary

Name

Dictionary

Synopsis

Class Name:

java.util.Dictionary

Superclass:

java.lang.Object

Immediate Subclasses:

java.util.Hashtable

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_05.htm

Description

The Dictionary class is an abstract class that associates keys with values. Any non-null object
can be used as a key or as a value. Key/value pairs can be stored in a Dictionary, and values can be
retrieved or removed using their associated keys.

A subclass of Dictionary should use the equals() method to decide if two keys are equivalent.

Class Summary

public abstract class java.util.Dictionary extends java.lang.Object {
 // Instance Methods
 public abstract Enumeration elements();
 public abstract Object get(Object key);
 public abstract boolean isEmpty();
 public abstract Enumeration keys();
 public abstract Object put(Object key, Object value);
 public abstract Object remove(Object key);
 public abstract int size();
}

Instance Methods

elements

public abstract Enumeration elements()

Returns

The values in the dictionary as an Enumeration.

Description

This method returns an Enumeration that iterates through the values in this Dictionary.

get

public abstract Object get(Object key)

Parameters

key

The key of the value to retrieve.

Returns

The value that corresponds to this key.

Description

This method returns the value that is associated with the given key.

isEmpty

public abstract boolean isEmpty()

Returns

true if there are no values in the Dictionary7thinsp;; false otherwise.

Description

This method returns a boolean value that indicates whether or not the Dictionary is empty.

keys

public abstract Enumeration keys()

Returns

The keys in the dictionary as an Enumeration.

Description

This method returns an Enumeration that iterates through the keys in this Dictionary.

put

public abstract Object put(Object key, Object value)

Parameters

key

A key object.

value

A value object.

Returns

The previous value associated with the given key or null if key has not previously been
associated with a value.

Throws

NullPointerException

If either the key or the value is null.

Description

This method associates the given key with the given value in this Dictionary.

remove

public abstract Object remove(Object key)

Parameters

key

The key of the value to remove.

Returns

The value associated with the given key or null if key is not associated with a value.

Description

This method removes a key/value pair from this Dictionary. If the given key is not in the
Dictionary, the method does nothing.

size

public abstract int size()

Returns

The number of keys in the Dictionary.

Description

This method returns the number of key/value pairs in this Dictionary.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Enumeration, Hashtable, NullPointerException

Date EmptyStackException

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_05.htm

Chapter 17
The java.util Package

GregorianCalendar

Name

GregorianCalendar

Synopsis

Class Name:

java.util.GregorianCalendar

Superclass:

java.util.Calendar

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The GregorianCalendar class is a subclass of the abstract Calendar class. GregorianCalendar provides
an implementation of the calendar that much of the world uses. GregorianCalendar has two eras, BC and AD.

GregorianCalendar provides both Gregorian and Julian dates, depending on the date that is represented by the
object. The Gregorian calendar was instituted in October 15, 1582, so any dates before this cut-off time are represented as

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_08.htm

Julian dates. Some countries switched from the Julian and the Gregorian calendar after that date, however. The cutoff date
can be changed using the setGregorianChange() method. When using Julian dates, be aware that this class does not
account for the fact that the Julian calendar used March 25 as the beginning of the year. You will have to adjust the year
on Julian dates that fall between January 1 and March 24.

You can find a fascinating discussion of the history of Western calendars at
http://barroom.visionsystems.com/serendipity/date/jul_greg.html.

Class Summary

public class java.util.GregorianCalendar extends java.util.Calendar {
 // Constants
 public final static int AD;
 public final static int BC;
 // Constructors
 public GregorianCalendar();
 public GregorianCalendar(TimeZone zone);
 public GregorianCalendar(Locale aLocale);
 public GregorianCalendar(TimeZone zone, Locale aLocale);
 public GregorianCalendar(int year, int month, int date);
 public GregorianCalendar(int year, int month, int date,
 int hour, int minute);
 public GregorianCalendar(int year, int month, int date,
 int hour, int minute, int second);
 // Instance Methods
 public void add(int field, int amount);
 public boolean after(Object when);
 public boolean before(Object when);
 public Object clone();
 public boolean equals(Object obj);
 public int getGreatestMinimum(int field);
 public final Date getGregorianChange();
 public int getLeastMaximum(int field);
 public int getMaximum(int field);
 public int getMinimum(int field);
 public synchronized int hashCode();
 public boolean isLeapYear(int year);
 public void roll(int field, boolean up);
 public void setGregorianChange(Date date);
 // Protected Instance Methods
 protected void computeFields();
 protected void computeTime();
}

Constants

AD

public final static int AD

Description

A constant value that represents the AD era, which stands for anno Domini, Latin for "the year of the Lord".
People who do not want to measure years with a Christian connotation call this era CE the Common Era.

BC

public final static int BC

Description

A constant value that represents the BC era, which stands for before Christ, before the birth of Christ. People
who do not want to measure years with a Christian connotation call this era BCE, which stands for Before the
Common Era.

Constructors

GregorianCalendar

public GregorianCalendar()

Description

This constructor creates a GregorianCalendar that represents the current time using the system's default
time zone and locale. The default time zone is that returned by TimeZone.getDefault(). The default locale
is that returned by Locale.getDefault().

public GregorianCalendar(TimeZone zone)

Parameters

zone

The TimeZone to use.

Description

This constructor creates a GregorianCalendar that represents the current time using the supplied time zone
and the default locale. The default locale is that returned by Locale.getDefault().

public GregorianCalendar(Locale aLocale)

Parameters

aLocale

The Locale to use.

Description

This constructor creates a GregorianCalendar that represents the current time using the supplied locale and
the default time zone. The default time zone is that returned by TimeZone.getDefault().

public GregorianCalendar(TimeZone zone, Locale aLocale)

Parameters

zone

The TimeZone to use.

aLocale

The Locale to use.

Description

This constructor creates a GregorianCalendar that represents the current time using the supplied time zone
and locale.

public GregorianCalendar(int year, int month, int date)

Parameters

year

The value for the year field.

month

The value for the month field, where 0 represents the first month.

date

The value for the day-of-the-month field.

Description

This constructor creates a GregorianCalendar that represents the given date in the default time zone and
locale. The default time zone is that returned by TimeZone.getDefault(). The default locale is that returned
by Locale.getDefault().

 public GregorianCalendar(int year, int month, int date, int hour, int minute)

Parameters

year

The value for the year field.

month

The value for the month field, where 0 represents the first month.

date

The value for the day-of-the-month field.

hour

The value for the hour field.

minute

The value for the minute field.

Description

This constructor creates a GregorianCalendar that represents the given date and time in the default time zone
and locale. The default time zone is that returned by TimeZone.getDefault(). The default locale is that
returned by Locale.getDefault().

 public GregorianCalendar(int year, int month, int date, int hour, int minute, int
second)

Parameters

year

The value for the year field.

month

The value for the month field, where 0 represents the first month.

date

The value for the day-of-the-month field.

hour

The value for the hour field.

minute

The value for the minute field.

second

The value for the second field.

Description

This constructor creates a GregorianCalendar that represents the given data and time in the default time zone
and locale. The default time zone is that returned by TimeZone.getDefault(). The default locale is that
returned by Locale.getDefault().

Instance Methods

add

public void add(int field, int amount)

Parameters

field

The time field to be modified.

amount

The amount to add to the specified field value. This value can be negative.

Throws

IllegalArgumentException

If field is not a valid time field.

Overrides

Calendar.add()

Description

This method adds the given amount to the specified time field. For example, you can compute a date 90 days
beyond the current date of this GregorianCalendar by calling add(Calendar.DATE, 90).

after

public boolean after(Object when)

Parameters

when

The object to compare to this GregorianCalendar.

Returns

true if this object is after when; false otherwise.

Overrides

Calendar.after()

Description

This method returns true if when is a GregorianCalendar whose value falls before the value of this
GregorianCalendar.

before

public boolean before(Object when)

Parameters

when

The object to compare to this GregorianCalendar.

Returns

true if this object is before when; false otherwise.

Overrides

Calendar.before()

Description

This method returns true if when is a GregorianCalendar whose value falls after the value of this
GregorianCalendar.

clone

public Object clone()

Returns

A copy of this GregorianCalendar.

Overrides

Calendar.clone()

Description

This method creates a copy of this GregorianCalendar and returns it. In other words, the returned
GregorianCalendar has the same time field values and raw time value as this GregorianCalendar.

equals

public boolean equals(Object when)

Parameters

when

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Calendar.equals()

Description

This method returns true if when is an instance of GregorianCalendar, and it contains the same value as
the object this method is associated with.

getGreatestMinimum

public int getGreatestMinimum(int field)

Parameters

field

A time field constant.

Returns

The highest minimum value for the given time field.

Overrides

Calendar.getGreatestMinimum()

Description

This method returns the highest minimum value for the given time field, if the field has a range of minimum
values. If the field has only one minimum value, this method is equivalent to getMinimum(). All of the fields in
GregorianCalendar have only one minimum value.

getGregorianChange

public final Date getGregorianChange()

Returns

The date this GregorianCalendar uses as the change date between the Julian and Gregorian calendars.

Description

By default, GregorianCalendar considers midnight local time, October 15, 1582, to be the date when the
Gregorian calendar was adopted. This value can be changed using setGregorianChange().

getLeastMaximum

public int getLeastMaximum(int field)

Parameters

field

A time field constant.

Returns

The lowest maximum value for the given time field.

Overrides

Calendar.getLeastMaximum()

Description

This method returns the lowest maximum value for the given time field, if the field has a range of maximum
values. If the field has only one maximum value, this method is equivalent to getMaximum(). For example, for a
GregorianCalendar, the lowest maximum value of DATE_OF_MONTH is 28.

getMaximum

public int getMaximum(int field)

Parameters

field

A time field constant.

Returns

The maximum value for the given time field.

Overrides

Calendar.getMaximum()

Description

This method returns the maximum value for the given time field. For example, for a GregorianCalendar, the
maximum value of DATE_OF_MONTH is 31.

getMinimum

public int getMinimum(int field)

Parameters

field

A time field constant.

Returns

The minimum value for the given time field.

Overrides

Calendar.getMinimum()

Description

This method returns the minimum value for the given time field. For example, for a GregorianCalendar, the
minimum value of DATE_OF_MONTH is 1.

hashCode

public synchronized int hashCode()

Returns

A hashcode for this GregorianCalendar.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this object.

isLeapYear

public boolean isLeapYear(int year)

Parameters

year

The year to test.

Returns

true if the given year is a leap year; false otherwise.

Description

This method returns a boolean value that indicates whether or not the specified year is a leap year. Leap years
are those years that are divisible by 4, except those that are divisible by 100, unless they are divisible by 400. For
example, 1900 is not a leap year because it is divisible by 100 but not by 400. The year 2000 is a leap year.

roll

public void roll(int field, boolean up)

Parameters

field

The time field to be adjusted.

up

A boolean value that indicates if the given field should be incremented.

Throws

IllegalArgumentException

If field is not a valid time field.

Overrides

Calendar.roll()

Description

This method adds or subtracts one time unit from the given time field. For example, to increase the current date by
one day, you can call roll(GregorianCalendar.DATE, true).

The method maintains the field being rolled within its valid range. For example, in a calendar system that uses
hours and minutes to measure time, rolling the minutes up from 59 sets that field to 0. By the same token, rolling
that field down from 0 sets it to 59.

The roll() method does not adjust the value of any other field than the one specified by its field argument. In
particular, for calendar systems that have months with different numbers of days, it may be necessary to adjust the
month and also year when the day of the month is rolled up. For example, calling
roll(GregorianCalendar.DAY_OF_MONTH, true) on a GregorianCalendar that represents
December 31, 1996 changes the date to December 1, 1996. In addition, calling roll() may make the fields
inconsistent. For example, calling roll(GregorianCalendar.MONTH, true) on a
GregorianCalendar that represents January 31, 1997 changes the date to February 31, 1997. It is the
responsibility of the caller of roll() to adjust the other fields.

setGregorianChange

public void setGregorianChange(Date date)

Parameters

date

A Date object that represents the new time value.

Description

This method sets the date that this GregorianCalendar uses as the change date between the Julian and
Gregorian calendars. The default is midnight local time, October 15, 1582. This is the date that Pope Gregory
instituted the calendar in many Catholic countries in Europe. Most Catholic countries followed within a few years.
Protestant England and America did not adopt the new calendar until September 14, 1752.

Protected Instance Methods

computeFields

protected void computeFields()

Overrides

Calendar.computeFields()

Description

This method calculates the time fields of this GregorianCalendar from its raw time value.

computeTime

protected void computeTime()

Overrides

Calendar.computeTime()

Description

This method calculates the raw time value of this GregorianCalendar from its time field values.

Inherited Variables

Variable Inherited From Variable Inherited From

areFieldsSet Calendar fields Calendar

isSet Calendar isTimeSet Calendar

time Calendar

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clear() Calendar clear(int) Calendar

complete() Calendar finalize() Object

get(int) Calendar getClass() Object

getFirstDayOfWeek() Calendar getMinimumDaysInFirstWeek() Calendar

getTime() Calendar getTimeInMillis() Calendar

getTimeZone() Calendar internalGet(int) Calendar

isLenient() Calendar isSet(int) Calendar

notify() Object notifyAll() Object

set(int, int) Calendar set(int, int, int) Calendar

set(int, int, int, int, int) Calendar
set(int, int, int, int, int,
int)

Calendar

setFirstDayOfWeek(int) Calendar setLenient(boolean) Calendar

setMinimalDaysInFirstWeek(int) Calendar setTime(Date) Calendar

setTimeInMillis(long) Calendar setTimeZone(TimeZone) Calendar

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Calendar, Cloneable, Date, IllegalArgumentException, Locale, Serializable, TimeZone

EventObject Hashtable

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_08.htm

Chapter 17
The java.util Package

Hashtable

Name

Hashtable

Synopsis

Class Name:

java.util.Hashtable

Superclass:

java.util.Dictionary

Immediate Subclasses:

java.util.Properties

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

JDK 1.0 or later

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_11.htm

Description

The Hashtable class is a concrete subclass of Dictionary that builds a table of key/value pairs.
Any non-null object can be used as a key or as a value. The objects used as keys must implement the
equals() and hashCode() methods in a way that computes comparisons and hashcodes from the
contents of an object. Once the table is built, a value can be efficiently retrieved by supplying its
associated key.

Hashtable is an excellent example of how a well-written class can hide an arcane algorithm. The
casual user simply instantiates a Hashtable and uses put() and get() to add and retrieve key and
value pairs. However, when performance is an issue, you need to be aware of the considerations
discussed in the following paragraphs.

Internally, a Hashtable keeps an array of key/value pairs. When a new key/value pair is added to a
Hashtable, it is added to the array at an index that is calculated from the hashcode of the key. If a
key/value pair already exists at this index, the new pair is linked to the existing key and value. Thus, a
Hashtable has an overall structure of an array of linked lists.

For a given key, the retrieval of the matching value from a Hashtable is quite fast. The Hashtable
computes the hashcode of the key and uses it as an index into the array. Then it only needs to search the
linked list of key/value pairs at that index to find a match for the given key. If the array is short, but the
Hashtable contains many key/value pairs, however, the linked lists will be lengthy, which adversely
affects performance.

A Hashtable has a capacity, which is the length of its array, and a load factor, which determines when
rehashing is performed. The load factor is a number between 0 and 1. If the number of key/value pairs
added to the Hashtable exceeds the capacity multiplied by the load factor, the capacity of the
Hashtable is increased and the key/value pairs are rehashed into the new array. Obviously, this is an
undesirable performance hit, so if you know approximately how many items you will add to a
Hashtable, you should create one with an appropriate initial capacity.

Class Summary

public class java.util.Hashtable extends java.util.Dictionary
 implements java.lang.Cloneable, java.io.Serializable {
 // Constructors
 public Hashtable();
 public Hashtable(int initialCapacity);
 public Hashtable(int initialCapacity, float loadFactor);
 // Instance Methods
 public synchronized void clear();

 public synchronized Object clone();
 public synchronized boolean contains(Object value);
 public synchronized boolean containsKey(Object key);
 public synchronized Enumeration elements();
 public synchronized Object get(Object key);
 public boolean isEmpty();
 public synchronized Enumeration keys();
 public synchronized Object put(Object key, Object value);
 public synchronized Object remove(Object key);
 public int size();
 public synchronized String toString();
 // Protected Instance Methods
 protected void rehash();
}

Constructors

Hashtable

public Hashtable()

Description

This constructor creates a Hashtable with a default capacity of 101 and a default load factor of
.75.

public Hashtable(int initialCapacity)

Parameters

initialCapacity

The initial capacity.

Throws

IllegalArgumentException

If initialCapacity is less than or equal to zero.

Description

This constructor creates a Hashtable with the given capacity and a default load factor of .75.

public Hashtable(int initialCapacity, float loadFactor)

Parameters

initialCapacity

The initial capacity.

loadFactor

The load factor.

Throws

IllegalArgumentException

If initialCapacity or loadFactor is less than or equal to zero.

Description

This constructor creates a Hashtable with the given capacity and load factor.

Instance Methods

clear

public synchronized void clear()

Description

This method removes all of the key/value pairs from this Hashtable.

clone

public synchronized Object clone()

Returns

A copy of this Hashtable.

Overrides

Object.clone()

Description

This method returns a shallow copy of this Hashtable. This means that the internal array of the
Hashtable is copied, but the keys and values themselves are not copied.

contains

public synchronized boolean contains(Object value)

Parameters

value

The value to find.

Returns

true if this Hashtable contains the given value; false otherwise.

Throws

NullPointerException

If the given value is null.

Description

This method returns true if the given value is contained in this Hashtable object. The entire
table is searched, which can be a time-consuming operation.

containsKey

public synchronized boolean containsKey(Object key)

Parameters

key

The key to find.

Returns

true if this Hashtable contains the given value; false otherwise.

Description

This method returns true if the given key is contained in this Hashtable object. Because the
key is hashed to perform the search, this method runs quite fast, especially in comparison to
contains().

elements

public synchronized Enumeration elements()

Returns

The values in this Hashtable as an Enumeration.

Overrides

Dictionary.elements()

Description

This method returns an Enumeration that iterates through the values in this Hashtable.

get

public synchronized Object get(Object key)

Parameters

key

The key of the value to retrieve.

Returns

The value that corresponds to this key or null if the key is not associated with any value.

Overrides

Dictionary.get()

Description

This method returns the value that is associated with the given key.

isEmpty

public boolean isEmpty()

Returns

true if there are no values in the Hashtable; false otherwise.

Overrides

Dictionary.isEmpty()

Description

This method returns a boolean value that indicates whether or not the Hashtable is empty.

keys

public synchronized Enumeration keys()

Returns

The keys in the Hashtable as an Enumeration.

Overrides

Dictionary.keys()

Description

This method returns an Enumeration that iterates through the keys in this Hashtable.

put

public synchronized Object put(Object key, Object value)

Parameters

key

A key object.

value

A value object.

Returns

The previous value associated with the given key or null if key has not previously been
associated with a value.

Throws

NullPointerException

If either the key or the value is null.

Overrides

Dictionary.put()

Description

This method associates the given key with the given value in this Hashtable.

remove

public synchronized Object remove(Object key)

Parameters

key

A key of the value to remove.

Returns

The value associated with the given key, or null if key is not associated with a value.

Overrides

Dictionary.remove()

Description

This method removes a key/value pair from this Hashtable. If the given key is not in the
Hashtable, the method does nothing.

size

public int size()

Returns

The number of key in the Hashtable.

Overrides

Dictionary.size()

Description

This method returns the number of key/value pairs in the Hashtable.

toString

public String toString()

Returns

A string that represents this Hashtable.

Overrides

Object.toString()

Description

This method returns a string representation of this Hashtable. The string includes every
key/value pair that is contained in the Hashtable, so the string returned by toString() can
be quite long.

Protected Instance Methods

rehash

protected void rehash()

Description

This method increases the capacity of this Hashtable. A larger internal array is created and all
existing key/value pairs are rehashed into the new array.

Inherited Methods

Method Inherited From Method Inherited From

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

notify() Object notifyAll() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Cloneable, Dictionary, Enumeration, IllegalArgumentException,
NullPointerException, Properties, Serializable

GregorianCalendar ListResourceBundle

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_11.htm

Chapter 17
The java.util Package

Locale

Name

Locale

Synopsis

Class Name:

java.util.Locale

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

New as of JDK 1.1

Description

The Locale class is used for internationalization. Instances of Locale specify language and formatting

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_11.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_13.htm

customs by identifying a language and a country. A Locale object may also specify a platform-specific variant.
Other classes throughout the JDK use Locale objects to determine how to represent themselves to the user. The
tasks performed by these classes are called locale-sensitive tasks; the tasks should be done in a way that conforms
with the conventions of a particular country and language.

There are a number of classes provided with Java that have static methods that create instances of locale-
specific subclasses. For example, the NumberFormat class contains static methods named
getInstance() that create and return locale-specific instances of subclasses of NumberFormat. A
particular NumberFormat instance knows how to format numbers, currency values, and percentages
appropriately for a particular locale. Note that it is the responsibiity of a class like NumberFormat to
implement the logic needed to translate locale-identifying information into actual subclass instances.

Classes like NumberFormat that can create locale-specific instances are expected to follow certain
conventions:

● Methods like getInstance() in NumberFormat are expected to have two variants: one that takes a
Locale argument and one that does not. The variant that does not take a locale argument is expected to
use the default locale, which is normally determined by calling Locale.getDefault().

● Classes that can create a variety of locale-specific instances are expected to implement a method that has
the following signature:

public static Locale[] getAvailableLocales()

This requirement is not specified through an interface declaration because interfaces cannot declare
static methods. The purpose of this method is to facilitate presenting the user with a list or menu of
locale choices. The getAvailableLocales() method should return an array of Locale objects that
identifies all of the locales for which the class can create locale-specific instances.

Two additional methods are recommended for helping to display the locale choices:

public static final String getDisplayName(Locale objectLocale)
public static String getDisplayName(Locale objectLocale,
 Locale displayLocale)

The first form of getDisplayName() should return a description of objectLocale that is suitable
for display in the default locale. The second form should return a description of objectLocale that is
suitable for display in the locale specified by displayLocale. Implementations of these methods
generally call the getDisplayName() method of the Locale object.

The language, country and variant information that are encapsulated by a Locale object are specified to a
constructor as strings. The language for a Locale should be specified as one of the two-letter lowercase
language codes defined by ISO-639. Look for a complete list at
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt.

The country for a Locale object should be specified as either "" to indicate that no country is specified, or as
one of the two-letter uppercase country codes defined by ISO-3166. Check the site, http://www.chemie.fu-
berlin.de/diverse/doc/ISO_3166.html, for a complete list

Variant codes are platform-specific.

Although the Locale is constructed from these three types of codes, human-readable names can be obtained by
calling getDisplayLanguage(), getDisplayCountry(), and getDisplayVariant().

The Locale class defines a number of constant Locale objects that represent some of the major languages and
countries of the world.

Class Summary

public abstract class java.util.Locale extends java.lang.Object
 implements java.lang.Cloneable, java.io.Serializable {
 // Constants
 public final static Locale CANADA;
 public final static Locale CANADA_FRENCH;
 public final static Locale CHINA;
 public final static Locale CHINESE;
 public final static Locale ENGLISH;
 public final static Locale FRANCE;
 public final static Locale FRENCH;
 public final static Locale GERMAN;
 public final static Locale GERMANY;
 public final static Locale ITALIAN;
 public final static Locale ITALY;
 public final static Locale JAPAN;
 public final static Locale JAPANESE;
 public final static Locale KOREA;
 public final static Locale KOREAN;
 public final static Locale PRC;
 public final static Locale SIMPLIFIED_CHINESE;
 public final static Locale TAIWAN;
 public final static Locale TRADITIONAL_CHINESE;
 public final static Locale UK;
 public final static Locale US;
 // Constructors
 public Locale(String language, String country);
 public Locale(String language, String country, String variant);
 // Class Methods
 public static synchronized Locale getDefault();
 public static synchronized void setDefault(Locale newLocale);
 // Instance Methods

 public Object clone();
 public boolean equals(Object obj);
 public String getCountry();
 public final String getDisplayCountry();
 public String getDisplayCountry(Locale inLocale);
 public final String getDisplayLanguage();
 public String getDisplayLanguage(Locale inLocale);
 public final String getDisplayName();
 public String getDisplayName(Locale inLocale);
 public final String getDisplayVariant();
 public String getDisplayVariant(Locale inLocale);
 public String getISO3Country();
 public String getISO3Language();
 public String getLanguage();
 public String getVariant();
 public synchronized int hashCode();
 public final String toString();
}

Constants

CANADA

public final static Locale CANADA

Description

A locale that represents English-speaking Canada.

CANADA_FRENCH

public final static Locale CANADA_FRENCH

Description

A locale that represents French-speaking Canada.

CHINA

public final static Locale CHINA

Description

A locale that represents China.

CHINESE

public final static Locale CHINESE

Description

A locale that represents the Chinese language.

ENGLISH

public final static Locale ENGLISH

Description

A locale that represents the English language.

FRANCE

public final static Locale FRANCE

Description

A locale that represents France.

FRENCH

public final static Locale FRENCH

Description

A locale that represents the French language.

GERMAN

public final static Locale GERMAN

Description

A locale that represents the German language.

GERMANY

public final static Locale GERMANY

Description

A locale that represents Germany.

ITALIAN

public final static Locale ITALIAN

Description

A locale that represents the Italian language.

ITALY

public final static Locale ITALY

Description

A locale that represents Italy.

JAPAN

public final static Locale JAPAN

Description

A locale that represents Japan.

JAPANESE

public final static Locale JAPANESE

Description

A locale that represents the Japanese language.

KOREA

public final static Locale KOREA

Description

A locale that represents Korea.

KOREAN

public final static Locale KOREAN

Description

A locale that represents the Korean language.

PRC

public final static Locale PRC

Description

A locale that represents the People's Republic of China. It is equivalent to CHINA.

SIMPLIFIED_CHINESE

public final static Locale SIMPLIFIED_CHINESE

Description

A locale that represents the Chinese language as used in mainland China.

TAIWAN

public final static Locale TAIWAN

Description

A locale that represents Taiwan.

TRADITIONAL_CHINESE

public final static Locale TRADITIONAL_CHINESE

Description

A locale that represents the Chinese language as used in Taiwan.

UK

public final static Locale UK

Description

A locale that represents the United Kingdom.

US

public final static Locale US

Description

A locale that represents the United States.

Constructors

Locale

public Locale(String language, String country)

Parameters

language

A two-letter ISO-639 language code.

country

A two-letter ISO-3166 country code or "" to omit the country specification.

Description

This constructor creates a Locale that represents the given language and country.

public Locale(String language, String country, String variant)

Parameters

language

A two-letter ISO-639 language code.

country

A two-letter ISO-3166 country code or "" to omit the country specification.

variant

A vendor-specific variant code.

Description

This constructor creates a Locale that represents the given language, country, and variant.

Class Methods

getDefault

public static synchronized Locale getDefault()

Returns

The default Locale.

Description

This method returns the current default Locale. An application or applet uses this method to find out
how to present locale-sensitive information, such as textual strings and numbers. The method is generally
called during application initialization to get the default Locale. Once the locale is set, it almost never
changes. If you do change the locale, you should probably reload the GUI for your application, so that any
locale-sensitive information in the interface is changed.

The initial default Locale is set by the host system.

setDefault

public static synchronized void setDefault(Locale newLocale)

Parameters

newLocale

The new default locale.

Description

This method changes the current default locale to newLocale. Note that calling setDefault() does
not change the default locale of the host system.

Instance Methods

clone

public Object clone()

Returns

A copy of this Locale.

Overrides

Object.clone()

Description

This method creates a copy of this Locale and returns it.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Locale, and it contains the same value as the object
this method is associated with.

getCountry

public String getCountry()

Returns

The country of this Locale.

Description

This method returns a String that represents the country of this Locale. This String is the same
String that was passed to the constructor of this Locale object. The String is normally a two-letter
ISO-3166 country code.

getDisplayCountry

public final String getDisplayCountry()

Returns

The country of this Locale.

Description

This method returns the country of this Locale as a country name in a form appropriate for this
Locale. If the country name cannot be found, this method returns the same value as getCountry().

public String getDisplayCountry(Locale inLocale)

Parameters

inLocale

The locale to use when finding the country name.

Returns

The country of this Locale, localized to the given locale.

Description

This method returns the country of this Locale as a country name in a form appropriate for inLocale.
For example, Locale.ITALY.getDisplayCountry(Locale.GERMAN) returns the German
name for Italy, Italien.

getDisplayLanguage

public final String getDisplayLanguage()

Returns

The language of this Locale.

Description

This method returns the language of this Locale as a language name in a form appropriate for this
Locale. If the language name cannot be found, this method returns the same value as
getLanguage().

public String getDisplayLanguage(Locale inLocale)

Parameters

inLocale

The locale to use when finding the language name.

Returns

The language of this Locale, localized to the given locale.

Description

This method returns the language of this Locale as a language name in a form appropriate for
inLocale. For example, Locale.ITALY.getDisplayLanguage(Locale.GERMAN) returns
the German name for the Italian language, Italienisch.

getDisplayName

public final String getDisplayName()

Returns

A string that represents this Locale.

Description

This method constructs a string that represents this Locale by calling getDisplayLanguage(),
getDisplayCountry(), and getDisplayVariant(). In other words, the method returns a string
that contains the country name, language name, and variant in a form appropriate for this Locale. If any
of the names cannot be found, the String that was passed to the constructor of this Locale object is
used instead. These strings are normally two-letter ISO codes.

public String getDisplayName(Locale inLocale)

Parameters

inLocale

The locale to use when constructing the string representation.

Returns

A string that represents this Locale.

Description

This method constructs a string that represents this Locale by calling
getDisplayLanguage(inLocale), getDisplayCountry(inLocale), and
getDisplayVariant(inLocale). In other words, the method returns a string that contains the
country name, language name, and variant in a form appropriate for inLocale. If any of the names
cannot be found, the String that was passed to the constructor of this Locale object is used instead.
These strings are normally two-letter ISO codes.

getDisplayVariant

public final String getDisplayVariant()

Returns

The variant of this Locale.

Description

This method returns the variant of this Locale as a human-readable string in a form appropriate for this

Locale. If the variant name cannot be found, this method returns the same value as getVariant().

public String getDisplayVariant(Locale inLocale)

Parameters

inLocale

The locale to use when finding the variant name.

Returns

The variant of this Locale, localized to the given locale.

Description

This method returns the variant of this Locale as a human-readable string in a form appropriate for
inLocale.

getISO3Country

public String getISO3Country() throws MissingResourceException

Returns

The ISO three-letter country code of this Locale.

Throws

MissingResourceException

If the requested code cannot be found.

Description

This method returns the country of this Locale as a three-letter ISO country code. The country code is
obtained from a ResourceBundle for this Locale.

getISO3Language

public String getISO3Language() throws MissingResourceException

Returns

The ISO three-letter language code of this Locale.

Throws

MissingResourceException

If the requested code cannot be found.

Description

This method returns the language of this Locale as a three-letter ISO language code. The language code
is obtained from a ResourceBundle for this Locale.

getLanguage

public String getLanguage()

Returns

The language of this Locale.

Description

This method returns a String that represents the language of this Locale. This String is the same
String that was passed to the constructor of this Locale object. The String is normally a two-letter
ISO-639 language code.

getVariant

public String getVariant()

Returns

The variant of this Locale.

Description

This method returns the variant code of this Locale. If no variant code is specified for this Locale, an
empty string is returned.

hashCode

public synchronized int hashCode()

Returns

A hashcode for this Locale.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this object.

toString

public final String toString()

Returns

A string representation of this Locale.

Overrides

Object.toString()

Description

This method returns a string representation of this Locale, constructed from the language code, country
code, and variant code. The various codes are separated by underscore characters. If a code is missing, it is
omitted.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object getClass() Object

notify() Object notifyAll() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Cloneable, DateFormat, NumberFormat, ResourceBundle, Serializable

ListResourceBundle MissingResourceException

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_11.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_13.htm

Chapter 17
The java.util Package

Observable

Name

Observable

Synopsis

Class Name:

java.util.Observable

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_14.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_16.htm

Description

Subclasses of the Observable class are used to implement the model portion of the model-view
paradigm. The idea is that an Observable object, the model, represents some data that is being
manipulated through a user interface, while Observer objects provide the user with a view of the data.
When the Observable object is modified, it tells the Observer objects that the model has been
modified by calling notifyObservers(). An Observer object registers with an Observable
object to receive notifications when the Observable is modified. The Observer object is then
notified of changes via the update() method.

Class Summary

public class java.util.Observable extends java.lang.Object {
 // Constructors
 public Observable();
 // Instance Methods
 public synchronized void addObserver(Observer o);
 public synchronized int countObservers();
 public synchronized void deleteObserver(Observer o);
 public synchronized void deleteObservers();
 public synchronized boolean hasChanged();
 public void notifyObservers();
 public void notifyObservers(Object arg);
 // Protected Instance Methods
 protected synchronized void clearChanged();
 protected synchronized void setChanged();
}

Constructors

Observable

public Observable()

Description

This constructor creates an Observable object with no registered Observer objects.

InstanceMethods

addObserver

public synchronized void addObserver(Observer o)

Parameters

o

The Observer to be added.

Description

This method registers the given Observer with this Observable object. The given
Observer is then notified when notifyObservers() is called.

countObservers

public synchronized int countObservers()

Returns

The number of registered Observer objects for this Observable object.

Description

This method returns the number of Observer objects that are registered with this
Observable object.

deleteObserver

public synchronized void deleteObserver(Observer o)

Parameters

o

The Observer to be removed.

Description

This method unregisters the given Observer with this Observable object. The given
Observer is no longer notified when notifyObservers() is called.

deleteObservers

public synchronized void deleteObservers()

Description

This method unregisters all of the Observer objects of this Observable object. Thus, no
objects are notified if notifyObservers() is called.

hasChanged

public synchronized boolean hasChanged()

Returns

true if this object has been flagged as changed; false otherwise.

Description

This method returns the value of an internal "dirty" flag. The flag can be modified using the
protected methods setChanged() and clearChanged().

notifyObservers

public void notifyObservers()

Description

This method calls the update() method of all registered Observer objects. The value passed
as the second argument to each of the update() method calls is null.

public void notifyObservers(Object arg)

Parameters

arg

A "hint" object that describes a change.

Description

This method calls the update() method of all registered Observer objects. The value passed
as the second argument to each of the update() method calls is the given object arg.

This "hint" object can be used to efficiently update the views of a model. For example, an
Observable object could represent satellite image data. A set of Observer objects would
provide different graphical views of the data. If the model data changes, the arg object describes
the part of the data that changed, and the Observer views could use this "hint" to update only
parts of their displays.

Protected Instance Methods

clearChanged

protected synchronized void clearChanged()

Description

This method sets an internal "dirty" flag to false. After this method is called, this object's
hasChanged() method returns false.

setChanged

protected synchronized void setChanged()

Description

This method sets an internal "dirty" flag to true. After this method is called, this object's
hasChanged() method returns true.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Observer

NoSuchElementException Observer

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_14.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_16.htm

Chapter 17
The java.util Package

SimpleTimeZone

Name

SimpleTimeZone

Synopsis

Class Name:

java.util.SimpleTimeZone

Superclass:

java.util.TimeZone

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The SimpleTimeZone class is a concrete subclass of the abstract TimeZone class. SimpleTimeZone represents
a time zone offset for use with GregorianCalendar. SimpleTimeZone does not take into account the historical
vicissitudes of daylight savings time, however. Instead, it assumes that the shifts to and from daylight savings time always
occur at the same time of the year.

Normally, SimpleTimeZone objects are not created directly, but instead obtained by calling

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_20.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_22.htm

TimeZone.getDefault(). This method creates a subclass of TimeZone that is appropriate for the current locale.
You can also call TimeZone.getTimeZone() to obtain a TimeZone object for a specific time zone.

Class Summary

public class java.util.SimpleTimeZone extends java.util.TimeZone {
 // Constructors
 public SimpleTimeZone(int rawOffset, String ID);
 public SimpleTimeZone(int rawOffset, String ID, int startMonth,
 int startDayOfWeekInMonth, int startDayOfWeek,
 int startTime, int endMonth, int endDayOfWeekInMonth,
 int endDayOfWeek, int endTime);
 // Instance Methods
 public Object clone();
 public boolean equals(Object obj);
 public int getOffset(int era, int year, int month, int day,
 int dayOfWeek, int millis);
 public int getRawOffset();
 public synchronized int hashCode();
 public boolean inDaylightTime(Date date);
 public void setEndRule(int month, int dayOfWeekInMonth,
 int dayOfWeek, int time);
 public void setRawOffset(int offsetMillis);
 public void setStartRule(int month, int dayOfWeekInMonth,
 int dayOfWeek, int time);
 public void setStartYear(int year);
 public boolean useDaylightTime();
}

Constructors

SimpleTimeZone

public SimpleTimeZone(int rawOffset, String ID)

Parameters

rawOffset

The raw offset of this time zone from GMT, in milliseconds.

ID

The ID of this time zone.

Description

This constructor creates a SimpleTimeZone that uses the given offset from GMT and has the specified ID. This

constructor creates a SimpleTimeZone that does not use daylight savings time.

 public SimpleTimeZone(int rawOffset, String ID, int startMonth, int
startDayOfWeekInMonth, int startDayOfWeek, int startTime, int endMonth, int
endDayOfWeekInMonth, int endDayOfWeek, int endTime)

Parameters

rawOffset

The raw offset of this time zone from GMT, in milliseconds.

ID

The ID of this time zone.

startMonth

The month when daylight savings time begins.

startDayOfWeekInMonth

The week in the month when daylight savings time begins.

startDayOfWeek

The day of the week when daylight savings time begins.

startTime

The time of day when daylight savings time begins, in milliseconds.

endMonth

The month when daylight savings time ends.

endDayOfWeekInMonth

The week in the month when daylight savings time ends.

endDayOfWeek

The day of the week when daylight savings time ends.

endTime

The time of day when daylight savings time ends, in milliseconds.

Description

This constructor creates a SimpleTimeZone that uses the given offset from GMT, has the specified ID, and uses
daylight savings time. Daylight savings time begins and ends at the specified dates and times.

For example, Brazil Eastern Time (BET) is three hours behind GMT. Daylight savings time for BET starts on the
first Sunday in April at 2:00 AM, and ends on the last Sunday in October, also at 2:00 A.M. To construct a
TimeZone that represents BET, you would use the following:

new SimpleTimeZone(-3 * 60 * 60 * 1000, "BET",
 Calendar.APRIL, 1,
 Calendar.SUNDAY, 2 * 60 * 60 * 1000,
 Calendar.OCTOBER, -1,
 Calendar.SUNDAY, 2 * 60 * 60 * 1000)

Instance Methods

clone

public Object clone()

Returns

A copy of this SimpleTimeZone.

Overrides

TimeZone.clone()

Description

This method creates a copy of this SimpleTimeZone and returns it.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of SimpleTimeZone, and it contains the same value as the object
this method is associated with.

getOffset

 public int getOffset(int era, int year, int month, int day, int dayOfWeek, int
millis)

Parameters

era

The era.

year

The year.

month

The month.

day

The day.

dayOfWeek

The day of the week.

millis

The time of day in milliseconds.

Returns

An offset from GMT, in milliseconds.

Overrides

TimeZone.getOffset()

Description

This method calculates an offset from GMT for the given date for this SimpleTimeZone. In other words, the
offset takes daylight savings time into account. The return value should be added to GMT to get local time.

getRawOffset

public int getRawOffset()

Returns

An offset from GMT, in milliseconds.

Overrides

TimeZone.getRawOffset()

Description

This method returns the raw offset from GMT for this SimpleTimeZone. In other words, the offset does not take
daylight savings time into account.

hashCode

public synchronized int hashCode()

Returns

A hashcode for this SimpleTimeZone.

Overrides

Object.hashCode()

Description

This method returns a hashcode for this object.

inDaylightTime

public boolean inDaylightTime(Date date)

Parameters

date

The date to be tested.

Returns

true if the given date is between the start and end of daylight savings time for this SimpleTimeZone; false
otherwise.

Overrides

TimeZone.inDaylightTime()

Description

This method returns a boolean value that indicates if the given date is in daylight savings time for this
SimpleTimeZone.

setEndRule

 public void setEndRule(int month, int dayOfWeekInMonth, int dayOfWeek, int time)

Parameters

month

The month when daylight savings time ends.

DayOfWeekInMonth

The week of the month when daylight savings time ends.

dayOfWeek

The day of the week when daylight savings time ends.

time

The time of day when daylight savings time ends, in milliseconds.

Description

This method sets the time when daylight savings time ends for this SimpleTimeZone. For example, to set the end
of daylight savings time to 2 A.M. on the last Sunday in October, you would use the following:

setEndRule(Calendar.OCTOBER, -1, Calendar.SUNDAY,
 2 * 60 * 60 * 1000)

setRawOffset

public void setRawOffset(int offsetMillis)

Parameters

offsetMillis

The new raw offset from GMT, in milliseconds.

Overrides

TimeZone.setRawOffset()

Description

This method is used to set the raw offset value for this SimpleTimeZone.

setStartRule

 public void setStartRule(int month, int dayOfWeekInMonth, int dayOfWeek, int time)

Parameters

month

The month when daylight savings time begins.

DayOfWeekInMonth

The week of the month when daylight savings time begins.

dayOfWeek

The day of the week when daylight savings time begins.

time

The time of day when daylight savings time begins, in milliseconds.

Description

This method sets the time when daylight savings time begins for this SimpleTimeZone. For example, to set the
beginning of daylight savings time to 2 A.M. on the first Sunday in April, you would use the following:

setEndRule(Calendar.APRIL, 1, Calendar.SUNDAY,
 2 * 60 * 60 * 1000)

setStartYear

public void setStartYear(int year)

Parameters

year

The year when daylight savings time begins.

Description

This method sets the year after which the start and end rules for daylight savings time are observed.

useDaylightTime

public boolean useDaylightTime()

Returns

true if this SimpleTimeZone uses daylight savings time; false otherwise.

Overrides

TimeZone.useDaylightTime()

Description

This method returns a boolean value that indicates whether or not this SimpleTimeZone uses daylight savings
time.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object getClass() Object

getID() TimeZone notify() Object

notifyAll() Object setID() TimeZone

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Calendar, Cloneable, Date, GregorianCalendar, Locale, TimeZone

ResourceBundle Stack

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_20.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_22.htm

Chapter 17
The java.util Package

StringTokenizer

Name

StringTokenizer

Synopsis

Class Name:

java.util.StringTokenizer

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.util.Enumeration

Availability:

JDK 1.0 or later

Description

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_22.htm

The StringTokenizer class implements a simple, delimiter-based string tokenizer. In other words, a
StringTokenizer is used to break a String into tokens separated by delimiter characters. By default,
the class uses the standard whitespace characters as delimiters, but you can specify any delimiter characters
you want, either when the StringTokenizer is created or on a token-by-token basis. You can also
specify whether the delimiters are returned as tokens or not. A StringTokenizer returns the tokens in its
String in order, either as String objects or as Objects in an Enumeration.

StringTokenizer shouldn't be confused with the more complex java.io.StreamTokenizer,
which parses a stream into tokens that are similar to those used in the Java language.

Class Summary

public class java.util.StringTokenizer extends java.lang.Object
 implements java.util.Enumeration {
 // Constructors
 public StringTokenizer(String str);
 public StringTokenizer(String str, String delim);
 public StringTokenizer(String str, String delim, boolean returnTokens);
 // Instance Methods
 public int countTokens();
 public boolean hasMoreElements();
 public boolean hasMoreTokens();
 public Object nextElement();
 public String nextToken();
 public String nextToken(String delim);
}

Constructors

StringTokenizer

public StringTokenizer(String str)

Parameters

str

The String to be tokenized.

Description

This constructor creates a StringTokenizer that breaks apart the given string using the default
delimiter characters. The default delimiters are the standard whitespace characters: space, tab (\t),
carriage return (\r), and newline (\n).

public StringTokenizer(String str, String delim)

Parameters

str

The String to be tokenized.

delim

The delimiter characters.

Description

This constructor creates a StringTokenizer that breaks apart the given string using the
characters in delim as delimiter characters.

 public StringTokenizer(String str, String delim, boolean returnTokens)

Parameters

str

The String to be tokenized.

delim

The delimiter characters.

returnTokens

A boolean value that indicates whether or not delimiters should be returned as tokens.

Description

This constructor creates a StringTokenizer that breaks apart the given string using the
characters in delim as delimiter characters. If returnTokens is true, the delimiters are returned
as tokens; otherwise they are skipped.

Instance Methods

countTokens

public int countTokens()

Returns

The number of tokens remaining in the string.

Description

This method returns the number of tokens that remain in the string, which is the same as the number
of times nextToken() can be called before an exception is thrown.

hasMoreElements

public boolean hasMoreElements()

Returns

true if there are more tokens to be returned; false otherwise.

Implements

Enumeration.hasMoreElements()

Description

This method returns the result of calling hasMoreTokens().

hasMoreTokens

public boolean hasMoreTokens()

Returns

true if there are more tokens to be returned; false otherwise.

Description

This method returns true if this object has more tokens to return.

nextElement

public Object nextElement()

Returns

The next token as an Object.

Throws

NoSuchElementException

If there are no more tokens in the string.

Implements

Enumeration.nextElement()

Description

This method returns result of calling nextToken().

nextToken

public String nextToken()

Returns

The next token as a String.

Throws

NoSuchElementException

If there are no more tokens in the string.

Description

This method returns the next token.

public String nextToken(String delim)

Parameters

delim

The delimiter characters.

Returns

The next token as a String.

Throws

NoSuchElementException

If there are no more tokens in the string.

Description

This method sets the delimiter characters to the characters in the given string and then returns the next
token. The change in delimiters persists until another call to this method changes them again.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Objxect getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Enumeration, NoSuchElementException, StreamTokenizer, String

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_22.htm

Stack TimeZone

Chapter 17
The java.util Package

TimeZone

Name

TimeZone

Synopsis

Class Name:

java.util.TimeZone

Superclass:

java.lang.Object

Immediate Subclasses:

java.util.SimpleTimeZone

Interfaces Implemented:

java.io.Serializable, java.lang.Cloneable

Availability:

New as of JDK 1.1

Description

The TimeZone class is an abstract class that represents a time zone offset. In addition, the class incorporates knowledge
about daylight savings time. Usually, you get a TimeZone object by calling getDefault(). This method creates a
TimeZone that is appropriate for the current locale. You can also call getTimeZone() to obtain a TimeZone object for
a specific time zone.

Class Summary

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_5F25.htm

public abstract class java.util.TimeZone extends java.lang.Object
 implements java.io.Serializable, java.lang.Cloneable {
 // Class Methods
 public static synchronized String[] getAvailableIDs();
 public static synchronized String[] getAvailableIDs(int rawOffset);
 public static synchronized TimeZone getDefault();
 public static synchronized TimeZone getTimeZone(String ID);
 public static synchronized void setDefault(TimeZone zone);
 // Instance Methods
 public Object clone();
 public String getID();
 public abstract int getOffset(int era, int year, int month,
 int day, int dayOfWeek, int milliseconds);
 public abstract int getRawOffset();
 public abstract boolean inDaylightTime(Date date);
 public void setID(String ID);
 public abstract void setRawOffset(int offsetMillis);
 public abstract boolean useDaylightTime();
}

Class Methods

getAvailiableIDs

public static synchronized String[] getAvailableIDs()

Returns

An array of strings that contains the predefined time zone IDs.

Description

This method returns a list of the predefined time zone IDs. Time zones are defined for the following ID values,
starting from Greenwich, England, and progressing eastward around the world:

GMT Greenwich Mean Time

ECT European Central Time

EET Eastern European Time

ART (Arabic) Egypt Standard Time

EAT Eastern African Time

MET Middle East Time

NET Near East Time

PLT Pakistan Lahore Time

IST India Standard Time

BST Bangladesh Standard Time

VST Vietnam Standard Time

CTT China Taiwan Time

JST Japan Standard Time

ACT Australia Central Time

AET Australia Eastern Time

SST Solomon Standard Time

NST New Zealand Standard Time

MIT Midway Islands Time

HST Hawaii Standard Time

AST Alaska Standard Time

PST Pacific Standard Time

PNT Phoenix Standard Time

MST Mountain Standard Time

CST Central Standard Time

EST Eastern Standard Time

IET Indiana Eastern Standard Time

PRT Puerto Rico and U.S. Virgin Islands Time

CNT Canada Newfoundland Time

AGT Argentina Standard Time

BET Brazil Eastern Time

CAT Central African Time

public static synchronized String[] getAvailableIDs(int rawOffset)

Returns

An array of strings that contains the predefined time zone IDs with the given raw offset value.

Description

This method returns a list of the predefined time zone IDs that have the given raw offset value from GMT. For
example, both PNT and MST have an offset of GMT-07:00.

getDefault

public static synchronized TimeZone getDefault()

Returns

A TimeZone that represents the local time zone.

Description

This method returns the default TimeZone object for the local system.

getTimeZone

public static synchronized TimeZone getTimeZone(String ID)

Parameters

ID

The ID of a time zone.

Returns

A TimeZone that represents the time zone with the given ID.

Description

This method returns the TimeZone object that corresponds to the time zone with the given ID.

setDefault

public static synchronized void setDefault(TimeZone zone)

Parameters

zone

The new default time zone.

Description

This method sets the TimeZone that is returned by getDefault().

Instance Methods

clone

public Object clone()

Returns

A copy of this TimeZone.

Overrides

Object.clone()

Description

This method creates a copy of this TimeZone and returns it.

getID

public String getID()

Returns

The ID of this TimeZone.

Description

This method returns the ID string of this TimeZone.

getOffset

 public abstract int getOffset(int era, int year, int month, int day, int dayOfWeek,
int millis)

Parameters

era

The era.

year

The year.

month

The month.

day

The day.

dayOfWeek

The day of the week.

millis

The time of day in milliseconds.

Returns

An offset from GMT, in milliseconds.

Description

This method calculates an offset from GMT for the given date for this TimeZone. In other words, the offset takes
daylight savings time into account. The return value should be added to GMT to get local time.

getRawOffset

public abstract int getRawOffset()

Returns

An offset from GMT, in milliseconds.

Description

This method returns the raw offset from GMT for this TimeZone. In other words, the offset does not take daylight
savings time into account.

inDaylightTime

public abstract boolean isDaylightTime(Date date)

Parameters

date

The date to be tested.

Returns

true if the given date is between the start and end of daylight savings time for this TimeZone; false otherwise.

Description

This method returns a boolean value that indicates if the given date is in daylight savings time for this TimeZone.

setID

public void setID(String ID)

Parameters

ID

The new time zone ID.

Description

This method sets the ID of this TimeZone.

setRawOffset

public abstract void setRawOffset(int offsetMillis)

Parameters

offsetMillis

The new raw offset from GMT, in milliseconds.

Description

This method is used to set the raw offset value for this TimeZone.

useDaylightTime

public abstract boolean useDaylightTime()

Returns

true if this TimeZone uses daylight savings time; false otherwise.

Description

This method returns a boolean value that indicates whether or not this TimeZone uses daylight savings time.

Inherited Methods

Method Inherited From Method Inherited From

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Calendar, Cloneable, GregorianCalendar, Locale, Serializable, SimpleTimeZone

StringTokenizer TooManyListenersException

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_5F25.htm

Chapter 17
The java.util Package

Vector

Name

Vector

Synopsis

Class Name:

java.util.Vector

Superclass:

java.lang.Object

Immediate Subclasses:

java.util.Stack

Interfaces Implemented:

java.io.Serializable, java.lang.Cloneable

Availability:

JDK 1.0 or later

Description

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_5F25.htm

The Vector class implements a variable-length array that can hold any kind of object. Like an array, the
elements in a Vector are accessed with an integer index. However, unlike an array, the size of a Vector
can grow and shrink as needed to accommodate a changing number of objects. Vector provides methods
to add and remove elements, as well as ways to search for objects in a Vector and iterate through all of
the objects.

The initial capacity of a Vector specifies how many objects it can contain before more space must be
allocated. The capacity increment specifies how much more space is allocated each time the Vector
needs to increase its capacity. You can fine-tune the performance of a Vector by adjusting the initial
capacity and capacity increment.

Class Summary

public class java.util.Vector extends java.lang.Object
 implements java.io.Serializable, java.lang.Cloneable {
 // Variables
 protected int capacityIncrement;
 protected int elementCount;
 protected Object[] elementData;
 // Constructors
 public Vector();
 public Vector(int initialCapacity);
 public Vector(int initialCapacity, int capacityIncrement);
 // Instance Methods
 public final synchronized void addElement(Object obj);
 public final int capacity();
 public synchronized Object clone();
 public final boolean contains(Object elem);
 public final synchronized void copyInto(Object[] anArray);
 public final synchronized Object elementAt(int index);
 public final synchronized Enumeration elements();
 public final synchronized void ensureCapacity(int minCapacity);
 public final synchronized Object firstElement();
 public final int indexOf(Object elem);
 public final synchronized int indexOf(Object elem, int index);
 public final synchronized void insertElementAt(Object obj, int index);
 public final boolean isEmpty();
 public final synchronized Object lastElement();
 public final int lastIndexOf(Object elem);
 public final synchronized int lastIndexOf(Object elem, int index);
 public final synchronized void removeAllElements();
 public final synchronized boolean removeElement(Object obj);

 public final synchronized void removeElementAt(int index);
 public final synchronized void setElementAt(Object obj, int index);
 public final synchronized void setSize(int newSize);
 public final int size();
 public final synchronized String toString();
 public final synchronized void trimToSize();
}

Variables

capacityIncrement

protected int capacityIncrement

Description

The amount by which the internal array grows when more space is needed. If the value is 0, the
internal array doubles in size when more space is needed.

elementCount

protected int elementCount

Description

The count of how many objects are contained in this Vector.

elementData

protected Object[] elementData

Description

The array that holds the contents of this Vector.

Constructors

Vector

public Vector()

Description

This constructor creates an empty Vector with the default capacity of 10 and the default capacity
increment of 0.

public Vector(int initialCapacity)

Parameters

initialCapacity

The initial capacity of the Vector.

Description

This constructor creates an empty Vector with the given capacity and the default capacity
increment of 0.

public Vector(int initialCapacity, int capacityIncrement)

Parameters

initialCapacity

The initial capacity of the Vector.

CapacityIncrement

The amount to increase the capacity when more space is needed.

Description

This constructor creates an empty Vector with the given capacity and capacity increment.

Instance Methods

addElement

public final synchronized void addElement(Object obj)

Parameters

obj

The object to be added.

Description

This method adds the given object to this Vector as its last element and increases its size by 1. The
capacity of the Vector is increased if its size becomes greater than its capacity. Any kind of object
can be added to a Vector.

capacity

public final int capacity()

Returns

The capacity of this Vector.

Description

This method returns the size of the internal array of this Vector.

clone

public synchronized Object clone()

Returns

A copy of this Vector.

Overrides

Object.clone()

Description

This method creates a copy of this Vector and returns it.

contains

public final boolean contains(Object elem)

Parameters

elem

The object to be found.

Returns

true if the given object is contained in this Vector; false otherwise.

Description

This method determines whether or not the given object is contained in this Vector.

copyInto

public final synchronized void copyInto(Object[] anArray)

Parameters

anArray

The array to be filled.

Throws

ArrayIndexOutOfBoundsException

If the given array is too small to hold all of the objects in this Vector.

Description

This method copies the object references in this Vector to the given array.

elementAt

public final synchronized Object elementAt(int index)

Parameters

index

The index of the object to be returned.

Returns

The object at the position given by index.

Throws

ArrayIndexOutOfBoundsException

If index is less than zero or greater than the size of this Vector.

Description

This method returns the object at the given index in this Vector.

elements

public final synchronized Enumeration elements()

Returns

The objects in this Vector as an Enumeration.

Description

This method returns an Enumeration that iterates through the objects in this Vector.

ensureCapacity

public final synchronized void ensureCapacity(int minCapacity)

Parameters

minCapacity

The minimum new capacity.

Description

This method expands the internal array, if necessary, to make the capacity of the Vector at least
minCapacity.

firstElement

public final synchronized Object firstElement()

Returns

The first object in this Vector.

Throws

NoSuchElementException

If the Vector is empty.

Description

This method returns the object at index 0 in this Vector.

indexOf

public final int indexOf(Object elem)

Parameters

elem

The object to be found.

Returns

The index of the given object or -1 if it cannot be found.

Description

This method returns the index of the first occurrence of the given object in this Vector.

public final int indexOf(Object elem, int index)

Parameters

elem

The object to be found.

index

The starting index.

Returns

The index of the next occurrence of the given object after the specified index or -1 if it cannot be
found.

Description

This method returns the index of the next occurrence of the given object in this Vector after the
given index.

insertElementAt

public final synchronized void insertElementAt(Object obj, int index)

Parameters

obj

The object to be inserted.

index

The index at which to insert the object.

Throws

ArrayIndexOutOfBoundsException

If index is less than zero or greater than the size of this Vector.

Description

This method inserts the given object at the given index in this Vector. Each object in the Vector
with an index greater than or equal to index is shifted upward in the Vector, so that it has an
index of one greater than it did previously.

isEmpty

public final boolean isEmpty()

Returns

true if there are no objects in the Vector; false otherwise.

Description

This method returns a boolean value that indicates whether or not the Vector is empty.

lastElement

public final synchronized Object lastElement()

Returns

The last object in this Vector.

Throws

NoSuchElementException

If the Vector is empty.

Description

This method returns the last object in this Vector.

lastIndexOf

public final int lastIndexOf(Object elem)

Parameters

elem

The object to be found.

Returns

The index of the given object or -1 if it cannot be found.

Description

This method returns the index of the last occurrence of the given object in this Vector.

public final synchronized int lastIndexOf(Object elem, int index)

Parameters

elem

The object to be found.

index

The starting index.

Returns

The index of the last occurrence of the given object before the specified index or -1 if it cannot be
found.

Description

This method returns the index of the last occurrence of the given object in this Vector before the
given index. In other words, the method searches backwards from index for the next occurrence.

removeAllElements

public final synchronized void removeAllElements()

Description

This method removes all of the objects from this Vector, but does not change its capacity or
capacity increment.

removeElement

public final synchronized boolean removeElement(Object obj)

Parameters

obj

The object to be removed.

Returns

true if the given object is found and removed; false otherwise.

Description

This method searches for the first occurrence of the given object in this Vector and removes it. If
the object is found, each object in the Vector with an index greater than or equal to the index of
the removed object is shifted downward in the Vector, so that it has an index of one less than it
did previously.

removeElementAt

public final synchronized void removeElementAt(int index)

Parameters

index

The index of the object to be removed.

Throws

ArrayIndexOutOfBoundsException

If index is less than zero or greater than the size of this Vector.

Description

This method removes the object at the given index from this Vector. Each object in the Vector
with an index greater than or equal to index is shifted downward in the Vector, so that it has an
index of one less than it did previously.

setElementAt

public final synchronized void setElementAt(Object obj, int index)

Parameters

obj

The object to be put in the Vector.

index

The index at which to put the object.

Throws

ArrayIndexOutOfBoundsException

If index is less than zero or greater than the size of this Vector.

Description

This method puts the given object at the given index in this Vector, replacing the object that was
previously there.

setSize

public final synchronized void setSize(int newSize)

Parameters

newSize

The new size.

Description

This method sets the size (not the capacity) of this Vector. If the new size is bigger than the
current size, null elements are added to the end of the Vector. If the new size is smaller than the
current size, elements are discarded from index newSize to the end of the Vector.

size

public final int size()

Returns

The size of this Vector.

Description

This method returns the number of objects contained in this Vector.

toString

public final synchronized String toString()

Returns

A string that represents this Vector.

Overrides

Object.toString()

Description

This method returns a string representation of this Vector. The string includes every object that is
contained in the Vector, so the string returned by toString() can be quite long.

trimToSize

public final synchronized void trimToSize()

Description

This method sets the capacity of this Vector equal to its size. You can use this method to
minimize the storage space used by the Vector, but any subsequent calls to addElement() or
insertElement() forces the Vector to allocate more space.

Inherited Methods

Method Inherited From Method Inherited From

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

notify() Object notifyAll() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ArrayIndexOutOfBoundsException, Cloneable, Enumeration,
NoSuchElementException, Serializable, Stack

TooManyListenersException Adler32

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_5F25.htm

Chapter 18
The java.util.zip Package

CheckedInputStream

Name

CheckedInputStream

Synopsis

Class Name:

java.util.zip.CheckedInputStream

Superclass:

java.io.FilterInputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The CheckedInputStream class represents an InputStream with an associated checksum. In
other words, a CheckedInputStream wraps a regular input stream and computes a checksum value
as data is read from the stream. The checksum can verify the integrity of the data. When you create a
CheckedInputStream, you must specify an object that implements the Checksum interface that
computes the checksum.

Class Summary

public class java.util.zip.CheckedInputStream
 extends java.io.FilterInputStream {
 // Constructors
 public CheckedInputStream(InputStream in, Checksum cksum);

 // Instance Methods
 public Checksum getChecksum();
 public int read();
 public int read(byte[] buf, int off, int len);
 public long skip(long n);
}

Constructors

CheckedInputStream

public CheckedInputStream(InputStream in, Checksum cksum)

Parameters

in

The underlying input stream to use as a data source.

cksum

The checksum object.

Description

This constructor creates a CheckedInputStream that reads data from the given
InputStream and updates the given Checksum.

Instance Methods

getChecksum

public Checksum getChecksum()

Returns

The Checksum associated with this input stream.

Description

This method returns the Checksum object associated with this input stream.

read

public int read() throws IOException

Returns

The next byte from the stream or -1 if the end of the stream has been reached.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.read()

Description

This method reads the next byte from the underlying InputStream and then updates the
checksum. The method blocks until some data is available, the end of the stream is detected, or an

exception is thrown.

public int read(byte[] buf, int off, int len) throws IOException

Parameters

buf

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.read(byte[], int, int)

Description

This method reads up to len bytes from the underlying InputStream and places them into the
given array starting at off. The checksum is then updated with the data that has been read. The
method blocks until some data is available.

skip

public long skip(long n) throws IOException

Parameters

n

The number of bytes to skip.

Returns

The actual number of bytes skipped.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.skip()

Description

This method skips over the specified number of bytes in the underlying InputStream. The
skipped bytes are not calculated into the checksum.

Inherited Methods

Method Inherited From Method Inherited From

available() FilterInputStream clone() Object

close() FilterInputStream equals(Object) Object

finalize() Object getClass() Object

hashCode() Object mark(int) FilterInputStream

markSupported() FilterInputStream notify() Object

notifyAll() Object read(byte[]) FilterInputStream

reset() FilterInputStream toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Checksum, FilterInputStream, InputStream, IOException

Adler32 CheckedOutputStream

Chapter 18
The java.util.zip Package

CheckedOutputStream

Name

CheckedOutputStream

Synopsis

Class Name:

java.util.zip.CheckedOutputStream

Superclass:

java.io.FilterOutputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The CheckOutputStream class represents an OutputStream with an associated checksum. In
other words, a CheckedOutputStream wraps a regular output stream and computes a checksum
value as data is written to the stream. The checksum can verify the integrity of the data. When you create
a CheckedOutputStream, you must specify an object that implements the Checksum interface that
computes the checksum.

Class Summary

public class java.util.zip.CheckedOutputStream
 extends java.io.FilterOutputStream {
 // Constructors
 public CheckedOutputStream(OutputStream out, Checksum cksum);

 // Instance Methods
 public Checksum getChecksum();
 public void write(int b);
 public void write(byte[] b, int off, int len);
}

Constructors

CheckedOutputStream

public CheckedOutputStream(OutputStream out, Checksum cksum)

Parameters

out

The underlying output stream.

cksum

The checksum object.

Description

This constructor creates a CheckedOutputStream that writes data to the given
OutputStream and updates the given Checksum.

Instance Methods

getChecksum

public Checksum getChecksum()

Returns

The Checksum associated with this output stream.

Description

This method returns the Checksum object associated with this output stream.

write

public void write(int b) throws IOException

Parameters

b

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterOutputStream.write(int)

Description

This method writes a byte that contains the lowest eight bits of the given integer value to the
underlying OutputStream and then updates the checksum.

public void write(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterOutputStream.write(byte[], int, int)

Description

This method writes len bytes to the underlying OutputStream from the given array, starting
at off. The checksum is then updated with the data that has been written.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object close() FilterOutputStream

equals(Object) Object finalize() Object

flush() FilterOutputStream getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object write(byte[]) FilterOutputStream

See Also

Checksum, FilterOutputStream, IOException, OutputStream

CheckedInputStream Checksum

Chapter 18
The java.util.zip Package

Checksum

Name

Checksum

Synopsis

Interface Name:

java.util.zip.Checksum

Super-interface:

None

Immediate Sub-interfaces:

None

Implemented By:

java.util.zip.Adler32, java.util.zip.CRC32

Availability:

New as of JDK 1.1

Description

The Checksum interface defines the methods that are needed to compute a checksum value for a stream
of data. The checksum value can be used for error checking purposes. Note, however, that the checksum
value must fit into a long value, so this interface is not suitable for cryptographic checksum algorithms.

The Adler32 and CRC32 classes implement the Checksum interface, using the Adler-32 and CRC-32
algorithms, respectively. The CheckedInputStream and CheckedOutputStream classes
provide a higher-level mechanism for computing checksums on data streams.

Class Summary

public abstract interface java.util.zip.Checksum {
 // Methods
 public abstract long getValue();
 public abstract void reset();
 public abstract void update(int b);
 public abstract void update(byte[] b, int off, int len);
}

Methods

getValue

public abstract long getValue()

Returns

The current checksum value.

Description

This method returns the current value of this checksum.

reset

public abstract void reset()

Description

This method resets the checksum to its initial value, making it appear as though it has not been
updated by any data.

update

public abstract void update(int b)

Parameters

b

The value to be added to the data stream for the checksum calculation.

Description

This method adds the specified value to the data stream and updates the checksum value. The
method uses only the lowest eight bits of the given int.

public abstract void update(byte[] b, int off, int len)

Parameters

b

An array of bytes to be added to the data stream for the checksum calculation.

off

An offset into the byte array.

len

The number of bytes to use.

Description

This method adds len bytes from the specified array, starting at off, to the data stream and
updates the checksum value.

See Also

Adler32, CheckedInputStream, CheckedOutputStream, CRC32

CheckedOutputStream CRC32

Chapter 18
The java.util.zip Package

CRC32

Name

CRC32

Synopsis

Class Name:

java.util.zip.CRC32

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.util.zip.Checksum

Availability:

New as of JDK 1.1

Description

The CRC32 class implements the Checksum interface using the CRC-32 algorithm. This algorithm is
significantly slower than Adler-32 and only slightly more reliable.

Class Summary

public class java.util.zip.CRC32 extends java.lang.Object
 implements java.util.zip.Checksum {
 // Constructors
 public CRC32();

 // Instance Methods
 public long getValue();
 public void reset();
 public void update(int b);
 public void update(byte[] b);
 public native void update(byte[] b, int off, int len);
}

Constructors

CRC32

public CRC32()

Description

This constructor creates an CRC32 object.

Instance Methods

getValue

public long getValue()

Returns

The current checksum value.

Implements

Checksum.getValue()

Description

This method returns the current value of this checksum.

reset

public void reset()

Implements

Checksum.reset()

Description

This method resets the checksum to its initial value, making it appear as though it has not been
updated by any data.

update

public void update(int b)

Parameters

b

The value to be added to the data stream for the checksum calculation.

Implements

Checksum.update(int)

Description

This method adds the specified value to the data stream and updates the checksum value. The

method uses only the lowest eight bits of the given int.

public void update(byte[] b)

Parameters

b

An array of bytes to be added to the data stream for the checksum calculation.

Description

This method adds the bytes from the specified array to the data stream and updates the checksum
value.

public native void update(byte[] b, int off, int len)

Parameters

b

An array of bytes to be added to the data stream for the checksum calculation.

off

An offset into the byte array.

len

The number of bytes to use.

Implements

Checksum.update(byte[], int, int)

Description

This method adds len bytes from the specified array, starting at off, to the data stream and
updates the checksum value.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Adler32, Checksum

Checksum DataFormatException

Chapter 18
The java.util.zip Package

DataFormatException

Name

DataFormatException

Synopsis

Class Name:

java.util.zip.DataFormatException

Superclass:

java.lang.Exception

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A DataFormatException is thrown when data is not in the expected format, which can mean that the data is

invalid or corrupt. In particular, the inflate() methods of Inflater throw this exception if they encounter
data in an unexpected format.

Class Summary

public class java.util.zip.DataFormatException
 extends java.lang.Exception {
 // Constructors
 public DataFormatException();
 public DataFormatException(String s);
}

Constructors

DataFormatException

protected DataFormatException()

Description

This constructor creates a DataFormatException with no associated detail message.

public DataFormatException(String s)

Parameters

s

The detail message.

Description

This constructor creates a DataFormatException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Throwable

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, Inflater, Throwable

CRC32 Deflater

Chapter 18
The java.util.zip Package

Deflater

Name

Deflater

Synopsis

Class Name:

java.util.zip.Deflater

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The Deflater class provides support for general-purpose data compression. The class uses the ZLIB

compression algorithms described in RFC 1950, RFC 1951, and RFC 1952. These documents can be found at:

● ftp://ds.internic.net/rfc/rfc1950.txt

● ftp://ds.internic.net/rfc/rfc1951.txt

● ftp://ds.internic.net/rfc/rfc1952.txt

The Inflater class uncompresses data that has been compressed using Deflater.

The DeflaterOutputStream uses an internal Deflater to compress data. Typically, you do not need to
create a Deflater; instead, you can just use an instance of one of the subclasses of
DeflaterOutputStream : GZIPOutputStream or ZipOutputStream.

Class Summary

public class java.util.zip.Deflater extends java.lang.Object {
 // Constants
 public static final int BEST_COMPRESSION;
 public static final int BEST_SPEED;
 public static final int DEFAULT_COMPRESSION;
 public static final int DEFAULT_STRATEGY;
 public static final int DEFLATED;
 public static final int FILTERED;
 public static final int HUFFMAN_ONLY;
 public static final int NO_COMPRESSION;
 // Constructors
 public Deflater();
 public Deflater(int level);
 public Deflater(int level, boolean nowrap);
 // Public Instance Methods
 public int deflate(byte[] b);
 public synchronized native int deflate(byte[] b, int off, int len);
 public synchronized native void end();
 public synchronized void finish();
 public synchronized boolean finished();
 public synchronized native int getAdler();
 public synchronized native int getTotalIn();
 public synchronized native int getTotalOut();
 public boolean needsInput();
 public synchronized native void reset();
 public void setDictionary(byte[] b);
 public synchronized native void setDictionary(byte[] b, int off, int len);
 public void setInput(byte[] b);
 public synchronized void setInput(byte[] b, int off, int len);

 public synchronized void setLevel(int level);
 public synchronized void setStrategy(int strategy);
 // Protected Instance Methods
 protected void finalize();
}

Constants

BEST_COMPRESSION

public static final int BEST_COMPRESSION = 9

Description

A constant that represents a compression level that sacrifices speed for the smallest compressed data size.
The compression level for a Deflater object can be set with setLevel(), where the level ranges
from 0 to 9.

BEST_SPEED

public static final int BEST_SPEED = 1

Description

A constant that represents a compression level that sacrifices compressed data size for speed. The
compression level for a Deflater object can be set with setLevel(), where the level ranges from 0
to 9.

DEFAULT_COMPRESSION

public static final int DEFAULT_COMPRESSION = -1

Description

A constant that represents the default compression level.

DEFAULT_STRATEGY

public static final int DEFAULT_STRATEGY

Description

A constant that represents the default compression strategy.

DEFLATED

public static final int DEFLATED

Description

A constant that represents a compression method that uses the deflate algorithm.

FILTERED

public static final int FILTERED

Description

A constant that represents a compression strategy that works well for small values with a random
distribution.

HUFFMAN_ONLY

public static final int HUFFMAN_ONLY

Description

A constant that represents a compression strategy that uses only Huffman coding.

NO_COMPRESSION

public static final int NO_COMPRESSION = 0

Description

A constant that represents a compression level that does not compress data at all. The compression level
for a Deflater object can be set with setLevel(), where the level ranges from 0 to 9.

Constructors

Deflater

public Deflater()

Description

This constructor creates a Deflater that generates compressed data in the ZLIB format using the
DEFAULT_COMPRESSION level.

public Deflater(int level)

Parameters

level

The compression level, from 0 (NO_COMPRESSION) to 9 (BEST_COMPRESSION).

Description

This constructor creates a Deflater that generates compressed data in the ZLIB format using the given
compression level.

public Deflater(int level, boolean nowrap)

Parameters

level

The compression level, from 0 (NO_COMPRESSION) to 9 (BEST_COMPRESSION).

nowrap

A boolean value that specifies whether or not the ZLIB header and checksum data are omitted
from the compressed data.

Description

This constructor creates a Deflater that generates compressed data using the given compression level.
If nowrap is true, the ZLIB header and checksum fields are not used, which means that the compressed
data is in the format used by GZIP and PKZIP. If the parameter is false, the data is compressed into
ZLIB format.

Public Instance Methods

deflate

public int deflate(byte[] b)

Parameters

b

A byte array to be filled.

Returns

The number of compressed bytes actually written to the array or 0 if more data may be required.

Description

This method compresses the data passed to setInput() and fills the given array with the compressed
data. If this method returns zero, needsInput() should be called to determine whether the Deflater
needs more data in its input buffer.

public synchronized native int deflate(byte[] b, int off, int len)

Parameters

b

A byte array to be filled.

off

An offset into the byte array.

len

The number of bytes to fill.

Returns

The number of compressed bytes actually written to the array or 0 if more data may be required.

Description

This method compresses the data passed to setInput() and writes len bytes of the compressed data
into the given array, starting at off. If this method returns 0, needsInput() should be called to
determine whether the Deflater needs more data in its input buffer.

end

public synchronized native void end()

Description

This method discards any uncompressed input data and frees up internal buffers.

finish

public synchronized void finish()

Description

This method tells the Deflater that the compression should end with the data that currently occupies
the input buffer.

finished

public synchronized boolean finished()

Returns

A boolean value that indicates whether or not the end of the compressed data has been reached.

Description

This method returns true if the last of the compressed data has been read using deflate(). Otherwise
it returns false.

getAdler

public synchronized native int getAdler()

Returns

The Adler-32 checksum value of the uncompressed data.

Description

This method returns an Adler32 checksum value that is calculated on the uncompressed data passed to
setInput().

getTotalIn

public synchronized native int getTotalIn()

Returns

The total number of bytes that have been input so far.

Description

This method returns the number of bytes that have been passed to setInput() since this Deflater
was created or since reset()was last called.

getTotalOut

public synchronized native int getTotalOut()

Returns

The total number of bytes that have been output so far.

Description

This method returns the number of bytes that have been read from deflate() since this Deflater
was created, or since reset() was last called.

needsInput

public boolean needsInput()

Returns

A boolean value that indicates whether or not the input buffer is empty.

Description

This method returns true if the input buffer is empty. Otherwise it returns false.

reset

public synchronized native void reset()

Description

This method resets the Deflater to the state it was in when it was created, which means that a new set

of data can be compressed.

setDictionary

public void setDictionary(byte[] b)

Parameters

b

An array of byte values.

Description

This method sets the preset dictionary for compression using the data in the given array.

 public synchronized native void setDictionary(byte[] b, int off, int len)

Parameters

b

An array of byte values.

off

An offset into the byte array.

len

The number of bytes to use.

Description

This method sets the preset dictionary for compression using len bytes from the given array, starting
from off.

setInput

public void setInput(byte[] b)

Parameters

b

An array of byte values.

Description

This method places the contents of the given array into the input buffer of this Deflater. Use the
deflate() method to compress the data and retrieve it in compressed form.

public synchronized void setInput(byte[] b, int off, int len)

Parameters

b

An array of byte values.

off

An offset into the byte array.

len

The number of bytes to use.

Description

This method places len bytes from the given array, starting at off, into the input buffer of this
Deflater. Use the deflate() method to compress the data and retrieve it in compressed form.

setLevel

public synchronized void setLevel(int level)

Parameters

level

The compression level, from 0 (NO_COMPRESSION) to 9 (BEST_COMPRESSION).

Throws

IllegalArgumentException

If level is not valid.

Description

This method sets the compression level of this Deflater. A value of 0 corresponds to
NO_COMPRESSION. A value of 1 indicates the fastest, least space-efficient compression level
(BEST_SPEED). A value of 9 indicates the slowest, most space-efficient compression level
(BEST_COMPRESSION).

setStrategy

public synchronized void setStrategy(int strategy)

Parameters

strategy

The compression strategy.

Throws

IllegalArgumentException

If strategy is not valid.

Description

This method sets the compression strategy of this Deflater, which should be one of FILTERED,
HUFFMAN_ONLY, or DEFAULT_STRATEGY.

Protected Instance Methods

finalize

protected void finalize()

Overrides

Object.finalize()

Description

This method calls end() when this Deflater is garbage collected.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

getClass() Object hashCode() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

DeflaterOutputStream, Inflater, GZIPOutputStream, ZipOutputStream

DataFormatException DeflaterOutputStream

Chapter 18
The java.util.zip Package

DeflaterOutputStream

Name

DeflaterOutputStream

Synopsis

Class Name:

java.util.zip.DeflaterOutputStream

Superclass:

java.io.FilterOutputStream

Immediate Subclasses:

java.util.zip.GZIPOutputStream, java.util.zip.ZipOutputStream

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The DeflaterOutputStream class represents an OutputStream with an associated Deflater. In
other words, a DeflaterOutputStream wraps a regular output stream, so that data written to the
stream is compressed and written to the underlying stream. Two subclasses, GZIPOutputStream and
ZipOutputStream, write compressed data in widely-recognized formats.

Class Summary

public class java.util.zip.DeflaterOutputStream
 extends java.io.FilterOutputStream {
 // Variables
 protected byte[] buf;
 protected Deflater def;
 // Constructors
 public DeflaterOutputStream(OutputStream out);
 public DeflaterOutputStream(OutputStream out, Deflater def);
 public DeflaterOutputStream(OutputStream out, Deflater def, int size);
 // Public Instance Methods
 public void close();
 public void finish();
 public void write(int b);
 public void write(byte[] b, int off, int len);
 // Protected Instance Methods
 protected void deflate();
}

Variables

buf

protected byte[] buf

Description

A buffer that holds the compressed data that is written to the underlying stream.

def

protected Deflater def

Description

The Deflater object that is used internally.

Constructors

DeflaterOutputStream

public DeflaterOutputStream(OutputStream out)

Parameters

out

The underlying output stream.

Description

This constructor creates a DeflaterOutputStream that writes data to the given
OutputStream. Before being written, the data is compressed by a default Deflater. The
DeflaterOutputStream uses a compression buffer with the default size of 512 bytes.

public DeflaterOutputStream(OutputStream out, Deflater def)

Parameters

out

The underlying output stream.

def

The Deflater object.

Description

This constructor creates a DeflaterOutputStream that writes data to the given
OutputStream. Before being written, the data is compressed by the given Deflater. The
DeflaterOutputStream uses a compression buffer with the default size of 512 bytes.

 public DeflaterOutputStream(OutputStream out, Deflater def, int size)

Parameters

out

The underlying output stream.

def

The Deflater object.

size

The size of the output buffer.

Description

This constructor creates a DeflaterOutputStream that writes data to the given
OutputStream. Before being written, the data is compressed by the given Deflater. The
DeflaterOutputStream uses a compression buffer of the given size.

Public Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterOutputStream.close()

Description

This method closes the stream and releases any system resources that are associated with it.

finish

public void finish() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method finishes writing compressed data to the underlying stream without closing it.

write

public void write(int b) throws IOException

Parameters

b

The value to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterOutputStream.write(int)

Description

This method compresses a byte that contains the lowest eight bits of the given integer value and
writes it to the underlying OutputStream. The method blocks until the byte is written.

public void write(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterOutputStream.write(byte[], int, int)

Description

This method takes len bytes from the given buffer, starting at off, and compresses them. The
method then writes the compressed data to the underlying OutputStream. The method blocks
until all of the bytes have been written.

Protected Instance Methods

deflate

protected void deflate() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method asks the internal Deflater to compress the data in the buffer for this
DeflaterOutputStream. The method then writes the compressed contents of the buffer to the
underlying stream. The method is called by both write() methods.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object flush() FilterOutputStream

getClass() Object hashCode() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

write(byte[]) FilterOutputStream

See Also

Deflater, FilterOutputStream, GZIPOutputStream, IOException, OutputStream,
ZipOutputStream

Deflater GZIPInputStream

Chapter 18
The java.util.zip Package

GZIPInputStream

Name

GZIPInputStream

Synopsis

Class Name:

java.util.zip.GZIPInputStream

Superclass:

java.util.zip.InflaterInputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The GZIPInputStream class decompresses data that has been compressed using the GZIP format. To
use it, simply construct a GZIPInputStream that wraps regular input stream and use the read()
methods to read the compressed data.

Class Summary

public class java.util.zip.GZIPInputStream
 extends java.util.zip.InflaterInputStream {
 // Constants
 public static final int GZIP_MAGIC;
 // Variables
 protected CRC32 crc;
 protected boolean eos;
 // Constructors
 public GZIPInputStream(InputStream in);
 public GZIPInputStream(InputStream in, int size);
 // Instance Methods
 public void close();
 public int read(byte[] buf, int off, int len);
}

Constants

GZIP_MAGIC

public static final int GZIP_MAGIC

Description

A constant that contains the "magic number" that appears in the header of GZIP files.

Variables

crc

protected CRC32 crc

Description

A checksum value of the uncompressed data. When an entire file has been read, this checksum is
compared to a value stored in the GZIP trailer. If the values do not match, an exception is thrown
from read().

eos

protected boolean eos

Description

A flag that indicates whether or not the end of the compressed stream has been reached. It is set to
true when the compressed data and the GZIP trailer have been read.

Constructors

GZIPInputStream

public GZIPInputStream(InputStream in) throws IOException

Parameters

in

The underlying input stream.

Throws

IOException

If an error occurs while reading the GZIP header.

Description

This constructor creates a GZIPInputStream that inflates data from the given
InputStream. The GZIPInputStream uses a decompression buffer with the default size of
512 bytes. The GZIP header is read immediately.

 public GZIPInputStream(InputStream in, int size) throws IOException

Parameters

in

The underlying input stream.

size

The size of the input buffer.

Throws

IOException

If an error occurs while reading the GZIP header.

Description

This constructor creates a GZIPInputStream that inflates data from the given
InputStream. The GZIPInputStream uses a decompression buffer of the given size. The
GZIP header is read immediately.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.close()

Description

This method closes this stream and releases any system resources that are associated with it.

read

public int read(byte[] buf, int off, int len) throws IOException

Parameters

buf

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs or the checksum of the uncompressed data does not match
that in the GZIP trailer.

Overrides

InflaterInputStream.read(byte[], int, int)

Description

This method reads enough data from the underlying InputStream to return len bytes of

uncompressed data. The uncompressed data is placed into the given array starting at off. The
method blocks until some data is available for decompression.

Inherited Methods

Method Inherited From Method Inherited From

available() FilterInputStream clone() Object

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

mark(int) FilterInputStream markSupported() FilterInputStream

notify() Object notifyAll() Object

read() InflaterInputStream read(byte[]) FilterInputStream

reset() FilterInputStream skip(long) InflaterInputStream

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

FilterInputStream, Inflater, InflaterInputStream, InputStream, IOException

DeflaterOutputStream GZIPOutputStream

Chapter 18
The java.util.zip Package

GZIPOutputStream

Name

GZIPOutputStream

Synopsis

Class Name:

java.util.zip.GZIPOutputStream

Superclass:

java.util.zip.DeflaterOutputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The GZIPOutputStream class compresses data using the GZIP format. To use it, simply construct a
GZIPOutputStream that wraps a regular output stream and use the write() methods to write
compressed data.

Class Summary

public class java.util.zip.GZIPOutputStream
 extends java.util.zip.DeflaterOutputStream {
 // Variables
 protected CRC32 crc;
 // Constructors
 public GZIPOutputStream(OutputStream out);
 public GZIPOutputStream(OutputStream out, int size);
 // Instance Methods
 public void close();
 public void finish();
 public synchronized void write(byte[] buf, int off, int len);
}

Variables

crc

protected CRC32 crc

Description

A checksum that is updated with the uncompressed stream data. The checksum value is written
into the GZIP trailer.

Constructors

GZIPOutputStream

public GZIPOutputStream(OutputStream out) throws IOException

Parameters

out

The underlying output stream.

Throws

IOException

If an error occurs while writing the GZIP header.

Description

This constructor creates a GZIPOutputStream that writes compressed data to the given
OutputStream. The GZIPOutputStream uses a compression buffer with the default size of
512 bytes.

 public GZIPOutputStream(OutputStream out, int size) throws IOException

Parameters

out

The underlying output stream.

size

The size of the output buffer.

Throws

IOException

If an error occurs while writing the GZIP header.

Description

This constructor creates a GZIPOutputStream that writes compressed data to the given
OutputStream. The GZIPOutputStream uses a compression buffer of the given size.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

DeflaterOutputStream.close()

Description

This method closes the stream and releases any system resources that are associated with it.

finish

public void finish() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Overrides

DeflaterOutputStream.finish()

Description

This method finishes writing compressed data to the underlying stream without closing it.

write

public void write(byte[] buf, int off, int len) throws IOException

Parameters

buf

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.

Throws

IOException

If any kind of I/O error occurs.

Overrides

DeflaterOutputStream.write(byte[], int, int)

Description

This method takes len bytes from the given buffer, starting at off, and compresses them. The
method then writes the compressed data to the underlying OutputStream. The method blocks
until all of the bytes have been written.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object flush() FilterOutputStream

getClass() Object hashCode() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

write(int) DeflaterOutputStream write(byte[]) FilterOutputStream

See Also

Deflater, DeflaterOutputStream, FilterOutputStream, IOException,
OutputStream

GZIPInputStream Inflater

Chapter 18
The java.util.zip Package

Inflater

Name

Inflater

Synopsis

Class Name:

java.util.zip.Inflater

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The Inflater class provides support for general-purpose data decompression. The class uses the ZLIB

compression algorithms described in RFC 1950, RFC 1951, and RFC 1952. These documents can be found at:

● ftp://ds.internic.net/rfc/rfc1950.txt

● ftp://ds.internic.net/rfc/rfc1951.txt

● ftp://ds.internic.net/rfc/rfc1952.txt

The Deflater class compresses data that can be uncompressed using Inflater.

The InflaterInputStream uses an internal Inflater to decompress data. Typically, you do not need to
create a Inflater; instead, you can just use an instance of one of the subclasses of
InflaterInputStream: GZIPInputStream or ZipInputStream.

Class Summary

public class java.util.zip.Inflater extends java.lang.Object {
 // Constructors
 public Inflater();
 public Inflater(boolean nowrap);
 // Public Instance Methods
 public synchronized native void end();
 public synchronized boolean finished();
 public synchronized native int getAdler();
 public synchronized int getRemaining();
 public synchronized native int getTotalIn();
 public synchronized native int getTotalOut();
 public int inflate(byte[] b);
 public synchronized native int inflate(byte[] b, int off, int len);
 public synchronized boolean needsDictionary();
 public synchronized boolean needsInput();
 public synchronized native void reset();
 public void setDictionary(byte[] b);
 public synchronized native void setDictionary(byte[] b, int off, int len);
 public void setInput(byte[] b);
 public synchronized void setInput(byte[] b, int off, int len);
 // Protected Instance Methods
 protected void finalize();
}

Constructors

Inflater

public Inflater()

Description

This constructor creates an Inflater that decompresses data in the ZLIB format.

public Inflater(boolean nowrap)

Parameters

nowrap

A boolean value that specifies whether or not the ZLIB header and checksum data are expected
in the compressed data.

Description

This constructor creates an Inflater that decompresses data. If nowrap is true, the ZLIB header and
checksum fields are not expected, which means that the compressed data is in the format used by GZIP
and PKZIP. If the parameter is false, the data is decompressed in the ZLIB format.

Public Instance Methods

end

public synchronized native void end()

Description

This method discards any unprocessed input data and frees up internal buffers.

finished

public synchronized boolean finished()

Returns

A boolean value that indicates whether or not the end of the compressed data has been reached.

Description

This method returns true if the last of the compressed data has been read using inflate(). Otherwise
it returns false.

getAdler

public synchronized native int getAdler()

Returns

The Adler32 checksum value of the uncompressed data.

Description

This method returns an Adler32 checksum value that is calculated from the uncompressed data returned
by inflate().

getRemaining

public synchronized int getRemaining()

Returns

The number of bytes remaining in the input buffer.

Description

This method returns the number of bytes that are in the input buffer. It can be called to find out how much
data remains after a call to inflate().

getTotalIn

public synchronized native int getTotalIn()

Returns

The total number of bytes that have been input so far.

Description

This method returns the number of bytes that have been passed to setInput() since this Inflater
was created or since reset() was last called.

getTotalOut

public synchronized native int getTotalOut()

Returns

The total number of bytes that have been output so far.

Description

This method returns the number of bytes that have been read from inflate() since this Inflater
was created or since reset() was last called.

inflate

public int inflate(byte[] b) throws DataFormatException

Parameters

b

A byte array to be filled.

Returns

The number of decompressed bytes actually written to the array or 0 if more data may be required.

Throws

DataFormatException

If the data in the input buffer is not in the correct format.

Description

This method decompresses the data passed to setInput() and fills the given array with decompressed
data. If this method returns 0, needsInput() and needsDictionary() should be called in order to
determine whether the Inflater needs more data in its input buffer or whether it needs a preset
dictionary.

 public synchronized native int inflate(byte[] b, int off, int len) throws
DataFormatException

Parameters

b

A byte array to be filled.

off

An offset into the byte array.

len

The number of bytes to fill.

Returns

The number of decompressed bytes written to the array or 0 if more data may be required.

Throws

DataFormatException

If the data in the input buffer is not in the correct format.

Description

This method decompresses the data passed to setInput() and writes len bytes of the decompressed
data into the given array, starting at off. If this method returns 0, needsInput() and
needsDictionary() should be called in order to determine whether the Inflater needs more data
in its input buffer or whether it needs a preset dictionary.

needsDictionary

public synchronized boolean needsDictionary()

Returns

A boolean value that indicates whether or not a preset dictionary is needed.

Description

This method returns true if a preset dictionary is needed for decompression. Otherwise it returns
false.

needsInput

public synchronized boolean needsInput()

Returns

A boolean value that indicates whether or not the input buffer is empty.

Description

This method returns true if the input buffer is empty. Otherwise it returns false.

reset

public synchronized native void reset()

Description

This method resets the Inflater to the state it was in when it was created, which means that a new set
of data can be decompressed.

setDictionary

public void setDictionary(byte[] b)

Parameters

b

An array of byte values.

Description

This method sets the preset dictionary for decompression using the data in the given array.

 public synchronized native void setDictionary(byte[] b, int off, int len)

Parameters

b

An array of byte values.

off

An offset into the byte array.

len

The number of bytes to use.

Description

This method sets the preset dictionary for decompression using len bytes from the given array, starting
from off.

setInput

public void setInput(byte[] b)

Parameters

b

An array of byte values.

Description

This method places the contents of the given array into the input buffer of this Inflater.

public synchronized void setInput(byte[] b, int off, int len)

Parameters

b

An array of byte values.

off

An offset into the byte array.

len

The number of bytes to use.

Description

This method places len bytes from the given array, starting at off, into the input buffer of this
Inflater. Use the inflate() method to decompress the data and retrieve it in decompressed form.

Protected Instance Methods

finalize

protected void finalize()

Overrides

Object.finalize()

Description

This method calls end() when this Inflater is garbage collected.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

getClass() Object hashCode() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Deflater, GZIPInputStream, InflaterInputStream, ZipInputStream

GZIPOutputStream InflaterInputStream

Chapter 18
The java.util.zip Package

InflaterInputStream

Name

InflaterInputStream

Synopsis

Class Name:

java.util.zip.InflaterInputStream

Superclass:

java.io.FilterInputStream

Immediate Subclasses:

java.util.zip.GZIPInputStream, java.util.zip.ZipInputStream

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The InflaterInputStream class represents an InputStream with an associated Inflater. In
other words, an InflaterInputStream wraps a regular input stream, so that data read from the
stream is read from an underlying stream and decompressed. Two subclasses, GZIPInputStream and
ZipInputStream, read compressed data in widely recognized formats.

Class Summary

public class java.util.zip.InflaterInputStream
 extends java.io.FilterInputStream {
 // Variables
 protected byte[] buf;
 protected Inflater inf;
 protected int len;
 // Constructors
 public InflaterInputStream(InputStream in);
 public InflaterInputStream(InputStream in, Inflater inf);
 public InflaterInputStream(InputStream in, Inflater inf, int size);
 // Public Instance Methods
 public int read();
 public int read(byte[] b, int off, int len);
 public long skip(long n);
 // Protected Instance Methods
 protected void fill();
}

Variables

buf

protected byte[] buf

Description

A buffer that holds the compressed data that is written to the underlying stream.

inf

protected Inflater inf

Description

The Inflater that is used internally.

len

protected int len

Description

The amount of data that is in the input buffer.

Constructors

InflaterInputStream

public InflaterInputStream(InputStream in)

Parameters

in

The underlying input stream.

Description

This constructor creates an InflaterInputStream that reads data from the given
InputStream. Before being read, the data is decompressed by a default Inflater. The
InflaterInputStream uses a decompression buffer with the default size of 512 bytes.

public InflaterInputStream(InputStream in, Inflater inf)

Parameters

in

The underlying input stream.

inf

The Inflater object.

Description

This constructor creates an InflaterInputStream that reads data from the given
InputStream. Before being read, the data is decompressed by the given Inflater. The
InflaterInputStream uses a decompression buffer with the default size of 512 bytes.

public InflaterInputStream(InputStream in, Inflater inf, int size)

Parameters

in

The underlying input stream.

inf

The Inflater object.

size

The size of the input buffer.

Description

This constructor creates an InflaterInputStream that reads data from the given
InputStream. Before being read, the data is decompressed by the given Inflater. The
InflaterInputStream uses a decompression buffer of the given size.

Instance Methods

read

public int read() throws IOException

Returns

The next uncompressed byte or -1 if the end of the stream is encountered.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.read()

Description

This method reads enough data from the underlying InputStream to return a byte of
uncompressed data. The method blocks until enough data is available for decompression, the end
of the stream is detected, or an exception is thrown.

public int read(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.read(byte[], int, int)

Description

This method reads enough data from the underlying InputStream to return len bytes of
uncompressed data. The uncompressed data is placed into the given array starting at off. The
method blocks until some data is available for decompression.

skip

public long skip(long n) throws IOException

Returns

The actual number of bytes skipped.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.skip()

Description

This method skips over the specified number of uncompressed data bytes by reading data from the
underlying InputStream and decompressing it.

Protected Instance Methods

fill

protected void fill() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method fills the input buffer with compressed data from the underlying InputStream.

Inherited Methods

Method Inherited From Method Inherited From

available() FilterInputStream clone() Object

close() FilterInputStream equals(Object) Object

finalize() Object getClass() Object

hashCode() Object mark(int) FilterInputStream

markSupported() FilterInputStream notify() Object

notifyAll() Object read() InflaterInputStream

read(byte[]) FilterInputStream reset() FilterInputStream

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

FilterInputStream, GZIPInputStream, Inflater, InputStream, IOException,
ZipInputStream

Inflater ZipEntry

Chapter 18
The java.util.zip Package

ZipEntry

Name

ZipEntry

Synopsis

Class Name:

java.util.zip.ZipEntry

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The ZipEntry class represents a single entry in a ZIP file, which is either a compressed file or an
uncompressed file. ZipEntry provides methods that set and retrieve various pieces of information
about an entry.

When you are reading a ZIP file, you use ZipInputStream.getNextEntry() to return the next
entry in the file. Then you can retrieve information about that particular entry. You can also read the
entries in a ZIP file in a nonsequential order using the ZipFile class.

When you are writing a ZIP file, you use ZipOutputStream.putNextEntry() to write an entry,
and you must create your own ZipEntry objects. If you are storing compressed (deflated) files, you
need only specify a name for the ZipEntry ; the other fields are filled in automatically. If, however,
you are placing uncompressed entries, you need to specify the size of each entry and provide a CRC-32
checksum value.

Class Summary

public class java.util.zip.ZipEntry extends java.lang.Object {
 // Constants
 public static final int DEFLATED;
 public static final int STORED;
 // Constructors
 public ZipEntry(String name);
 // Instance Methods
 public String getComment();
 public long getCompressedSize();
 public long getCrc();
 public byte[] getExtra();
 public int getMethod();
 public String getName();
 public long getSize();
 public long getTime();
 public boolean isDirectory();
 public void setComment(String comment);
 public void setCrc(long crc);
 public void setExtra(byte[] extra);
 public void setMethod(int method);
 public void setSize(long size);
 public void setTime(long time);
 public String toString();

}

Constants

DEFLATED

public static final int DEFLATED

Description

A constant that represents an entry that is stored using the deflate algorithm.

STORED

public static final int STORED

Description

A constant that represents an entry that is stored verbatim; in other words, with no compression
applied.

Constructors

ZipEntry

public ZipEntry(String name)

Parameters

name

The name of the entry.

Throws

NullPointerException

If name is null.

IllegalArgumentException

If name is longer than 0xFFFF bytes.

Description

This constructor creates a ZipEntry with the given name.

Instance Methods

getComment

public String getComment()

Returns

The comment of this entry or null if one has not been specified.

Description

This method returns the comment string for this ZipEntry.

getCompressedSize

public long getCompressedSize()

Returns

The compressed size of this entry or -1 is the compressed size is not known.

Description

This method returns the compressed size of this ZipEntry.

getCrc

public long getCrc()

Returns

The checksum value for this entry.

Description

This method returns the CRC-32 checksum value for this ZipEntry.

getExtra

public byte[] getExtra()

Returns

The extra field data for this entry or null if there is none.

Description

This method returns the bytes in the extra field data for this ZipEntry.

getMethod

public int getMethod()

Returns

The compression method of this entry or -1 if it has not been specified.

Description

This method returns the compression method of this ZipEntry. Valid values are DEFLATED
and STORED.

getName

public String getName()

Returns

The name of this entry.

Description

This method returns the string name of this ZipEntry.

getSize

public long getSize()

Returns

The uncompressed size of this entry or -1 if the uncompressed size is not known.

Description

This method returns the uncompressed size of this ZipEntry.

getTime

public long getTime()

Returns

The modification date of this entry.

Description

This method returns the modification date of this ZipEntry as the number of milliseconds since
midnight, January 1, 1970 GMT.

isDirectory

public boolean isDirectory()

Returns

A boolean value that indicates whether or not this entry is a directory.

Description

This method returns true if this ZipEntry represents a directory.

setComment

public void setComment(String comment)

Parameters

comment

The new comment string.

Throws

IllegalArgumentException

If comment is longer than 0xFFFF bytes.

Description

This method sets the comment string of this ZipEntry.

setCrc

public void setCrc(long crc)

Parameters

crc

The new checksum value.

Description

This method sets the CRC-32 checksum value for this ZipEntry.

setExtra

public void setExtra(byte[] extra)

Parameters

extra

The extra field data.

Throws

IllegalArgumentException

If extra is longer than 0xFFFF bytes.

Description

This method sets the extra field data for this ZipEntry.

setMethod

public void setMethod(int method)

Parameters

method

The new compression method.

Throws

IllegalArgumentException

If method is not DEFLATED or STORED.

Description

This method sets the compression method of this ZipEntry. This corresponds to the
compression level of Deflater.

setSize

public void setSize(long size)

Parameters

size

The new uncompressed entry size.

Throws

IllegalArgumentException

If size is less than 0 or greater than 0xFFFFFFFF bytes.

Description

This method sets the uncompressed size of this ZipEntry.

setTime

public void setTime(long time)

Parameters

time

The new modification date, expressed as the number of seconds since midnight, January 1,
1970 GMT.

Description

This method sets the modification date of this ZipEntry.

toString

public String toString()

Returns

A string representation of this object.

Overrides

Object.toString()

Description

This method returns the name of this ZipEntry.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Deflater, IllegalArgumentException, Inflater, NullPointerException,
ZipInputStream, ZipOutputStream

InflaterInputStream ZipException

Chapter 18
The java.util.zip Package

ZipException

Name

ZipException

Synopsis

Class Name:

java.util.zip.ZipException

Superclass:

java.io.IOException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A ZipException is thrown when an error occurs when reading or writing a ZIP file. Normally this occurs

when data is read that is not in the correct format.

Class Summary

public class java.util.ZipException extends java.io.IOException {
 // Constructors
 public ZipException();
 public ZipException(String s);
}

Constructors

ZipException

protected ZipException()

Description

This constructor creates a ZipException with no associated detail message.

public ZipException(String s)

Parameters

s

The detail message.

Description

This constructor creates a ZipException with the given detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Throwable

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IOException, RuntimeException, Throwable

ZipEntry ZipFile

Chapter 18
The java.util.zip Package

ZipFile

Name

ZipFile

Synopsis

Class Name:

java.util.zip.ZipFile

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The ZipFile class represents a ZIP file. Unlike with a ZipInputStream, you can read the entries in
a ZipFile nonsequentially. Internally, the class uses a RandomAccessFile so that you can read the
entries from the file in any order. You can obtain a list of the entries in this ZIP file by calling
entries(). Given an entry, you can get an InputStream for that entry using
getInputStream().

Class Summary

public class java.util.zip.ZipFile extends java.lang.Object {
 // Constructors
 public ZipFile(File file);
 public ZipFile(String name);
 // Instance Methods
 public void close();
 public Enumeration entries();
 public ZipEntry getEntry(String name);
 public InputStream getInputStream(ZipEntry ze);
 public String getName();
}

Constructors

ZipFile

public ZipFile(File file) throws ZipException, IOException

Parameters

file

The File to read.

Throws

ZipException

If the ZIP file cannot be read.

IOException

If any other kind of I/O error occurs.

Description

This constructor creates a ZipFile for reading from the given File object.

public ZipFile(String name) throws IOException

Parameters

name

A string that contains the path name of the file.

Throws

ZipException

If the ZIP file cannot be read.

IOException

If any other kind of I/O error occurs.

Description

This constructor creates a ZipFile for reading from the file specified by the given path.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any kind of I/O error occurs.

Description

This method closes the ZipFile and releases its system resources.

entries

public Enumeration entries()

Returns

An Enumeration of ZipEntry objects.

Description

This method returns an enumeration of ZipEntry objects that represents the contents of this
ZipFile.

getEntry

public ZipEntry getEntry(String name)

Parameters

name

The entry name.

Returns

The entry corresponding to the given name or null if there is no such entry.

Description

This method returns the ZipEntry object that corresponds to the given entry name.

getInputStream

public InputStream getInputStream(ZipEntry ze) throws IOException

Parameters

ze

A ZipEntry in this file.

Returns

An InputStream for the given entry.

Throws

ZipException

If a ZIP file format error occurs.

IOException

If any other kind of I/O error occurs.

Description

This method returns an input stream that can read the entry described by the supplied ZipEntry.

getName

public String getName()

Returns

The path of this file.

Description

This method returns the path name of this ZipFile.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Enumeration, File, InputStream, IOException, RandomAccessFile, String,
ZipEntry, ZipException, ZipInputStream

ZipException ZipInputStream

Chapter 18
The java.util.zip Package

ZipInputStream

Name

ZipInputStream

Synopsis

Class Name:

java.util.zip.ZipInputStream

Superclass:

java.util.zip.InflaterInputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The ZipInputStream class reads files that have been compressed using the ZIP format. To read
uncompressed data from a ZIP file, simply construct a ZipInputStream that wraps a regular input
stream. The getNextEntry() method returns each entry in the ZIP file in order. Once you have a
ZipEntry object, you use the read() method to retrieve uncompressed data from it. If you want to
read the entries in a nonsequential order, use a ZipFile instead.

Class Summary

public class java.util.zip.ZipInputStream
 extends java.util.zip.InflaterInputStream {
 // Constructors
 public ZipInputStream(InputStream in);
 // Instance Methods
 public void close();
 public void closeEntry();
 public ZipEntry getNextEntry();
 public int read(byte[] b, int off, int len);
 public long skip(long n);
}

Constructors

ZipInputStream

public ZipInputStream(InputStream in)

Parameters

in

The underlying input stream.

Description

This constructor creates a ZipInputStream that inflates data from the given InputStream.

Instance Methods

close

public void close() throws IOException

Throws

IOException

If any I/O error occurs.

Overrides

FilterInputStream.close()

Description

This method closes this stream and releases any system resources that are associated with it.

closeEntry

public void closeEntry() throws IOException

Throws

ZipException

If a ZIP file format error occurs.

IOException

If any other kind of I/O error occurs.

Description

This method closes the currently open entry in the ZIP file. The stream is then positioned to read
the next entry using getNextEntry().

getNextEntry

public ZipEntry getNextEntry() throws IOException

Returns

The ZipEntry for the next entry or null if there are no more entries.

Throws

ZipException

If a ZIP file format error occurs.

IOException

If any other kind of I/O error occurs.

Description

This method returns a ZipEntry that represents the next entry in the ZIP file and positions the
stream to read that entry.

read

public int read(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The number of bytes read or -1 if the end of the entry is encountered immediately.

Throws

ZipException

If a ZIP file format error occurs.

IOException

If any other kind of I/O error occurs.

Overrides

InflaterInputStream.read(byte[], int, int)

Description

This method reads enough data from the underlying InputStream to return len bytes of
uncompressed data. The uncompressed data is placed into the given array starting at off. The
method blocks until some data is available for decompression.

skip

public long skip(long n) throws IOException

Returns

The actual number of bytes skipped.

Throws

ZipException

If a ZIP file format error occurs.

IOException

If any kind of I/O error occurs.

Overrides

InflaterInputStream.skip()

Description

This method skips over the specified number of uncompressed data bytes by reading data from the
underlying InputStream and decompressing it.

Inherited Methods

Method Inherited From Method Inherited From

available() FilterInputStream clone() Object

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

mark(int) FilterInputStream markSupported() FilterInputStream

notify() Object notifyAll() Object

read() InflaterInputStream read(byte[]) FilterInputStream

reset() FilterInputStream toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Inflater, InflaterInputStream, InputStream, IOException, ZipEntry,
ZipException, ZipFile

ZipFile ZipOutputStream

Chapter 18
The java.util.zip Package

ZipOutputStream

Name

ZipOutputStream

Synopsis

Class Name:

java.util.zip.ZipOutputStream

Superclass:

java.util.zip.DeflaterOutputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The ZipOutputStream class writes compressed files in the ZIP format. To write a ZIP file, construct a
ZipOutputStream that wraps a regular output stream. You have to create a ZipEntry for each entry in the file.
The putNextEntry() method puts the entry in the file, so that you can then use the write() method to write

data for that entry. When you finish writing the data for an entry, call closeEntry() to close that entry and
putNextEntry() to start another entry.

The setMethod() method specifies whether the data is compressed or uncompressed by default; setLevel()
specifies the level of compression that is used by default. These values can be overridden by the method and level
set for a particular entry. If you are storing compressed (deflated) files, you need only specify a name for each
ZipEntry ; the other fields are filled in automatically. If, however, you are placing uncompressed entries, you
need to specify the size of each entry and provide a CRC-32 checksum value.

Class Summary

public class java.util.zip.ZipOutputStream
 extends java.util.zip.DeflaterOutputStream {
 // Constants
 public static final int DEFLATED;
 public static final int STORED;
 // Constructors
 public ZipOutputStream(OutputStream out);
 // Instance Methods
 public void close();
 public void closeEntry();
 public void finish();
 public void putNextEntry(ZipEntry e);
 public void setComment(String comment);
 public void setLevel(int level);
 public void setMethod(int method);
 public synchronized void write(byte[] b, int off, int len);
}

Constants

DEFLATED

public static final int DEFLATED

Description

A constant that represents an entry is stored using the deflate algorithm.

STORED

public static final int STORED

Description

A constant that represents a ZIP file entry is stored verbatim; in other words, with no compression applied.

Constructors

ZipOutputStream

public ZipOutputStream(OutputStream out)

Parameters

out

The underlying output stream.

Description

This constructor creates a ZipOutputStream that writes compressed data to the given OutputStream.

Instance Methods

close

public void close() throws IOException

Throws

ZipException

If a ZIP file format error occurs.

IOException

If any other kind of I/O error occurs.

Overrides

DeflaterOutputStream.close()

Description

This method closes the stream and releases any system resources that are associated with it.

closeEntry

public void closeEntry() throws IOException

Throws

ZipException

If a ZIP file format error occurs.

IOException

If any other kind of I/O error occurs.

Description

This method closes the currently open entry in the ZIP file. A subsequent entry can be started with
putNextEntry().

finish

public void finish() throws IOException

Throws

ZipException

If a ZIP file format error occurs.

IOException

If any other kind of I/O error occurs.

Overrides

DeflaterOutputStream.finish()

Description

This method finishes writing compressed data to the underlying stream without closing it.

putNextEntry

public void putNextEntry(ZipEntry e) throws IOException

Parameters

e

The new entry.

Throws

ZipException

If a ZIP file format error occurs.

IOException

If any other kind of I/O error occurs.

Description

This method writes the information in the given ZipEntry to the stream and positions the stream for the
entry data. The actual entry data can then be written to the stream using write(). The default compression
method and level are used if one is not specified for the entry. When all of the entry data has been written,
use closeEntry() to finish the entry.

If this method is called when there is already an open entry, that entry is closed and this entry is opened.

setComment

public void setComment(String comment)

Parameters

comment

The new comment string.

Throws

IllegalArgumentException

If comment is longer than 0xFFFF bytes.

Description

This method sets the comment string for this ZIP file.

setLevel

public void setLevel(int level)

Parameters

level

A compression level, from 0 (NO_COMPRESSION) to 9 (BEST_COMPRESSION).

Throws

IllegalArgumentException

If level is not valid.

Description

This method sets the default compression level of subsequent DEFLATED entries. The default value is
Deflater.DEFAULT_COMPRESSION.

setMethod

public void setMethod(int method)

Parameters

method

A compression method, either DEFLATED or STORED.

Throws

IllegalArgumentException

If method is not valid.

Description

This method sets the default compression method of this ZipOutputStream for entries that do not specify
a method.

write

 public synchronized void write(byte[] b, int off, int len) throws IOException

Parameters

b

An array of bytes to write to the stream.

off

An offset into the byte array.

len

The number of bytes to write.

Throws

ZipException

If a ZIP file format error occurs.

IOException

If any other kind of I/O error occurs.

Overrides

DeflaterOutputStream.write(byte[], int, int)

Description

This method takes len bytes from the given buffer, starting at off, and compresses them. The method then
writes the compressed data to the underlying OutputStream for the current entry. The method blocks until
all the bytes have been written.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object flush() FilterOutputStream

getClass() Object hashCode() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

write(int) DeflaterOutputStream write(byte[]) FilterOutputStream

See Also

Deflater, DeflaterOutputStream, IllegalArgumentException, IOException,
OutputStream, ZipEntry, ZipException

ZipInputStream The Unicode 2.0 Character
Set

Preface

What This Book Covers

The Java AWT Reference is the definitive resource for programmers working with AWT. It covers all
aspects of the AWT package, in versions 1.0.2 and 1.1. If there are any changes to AWT after 1.1 (at
least two patch releases are expected), we will integrate them as soon as possible. Watch the book's Web
site http://www.ora.com/catalog/javawt/ for details on changes.

Specifically, this book completely covers the following packages:

java.awt (1.0 and 1.1)
java.awt.image (1.0 and 1.1)
java.awt.event (new to 1.1)
java.awt.datatransfer (new to 1.1)
java.awt.peer (1.0 and 1.1)
java.applet (1.0 and 1.1)

The book also covers some aspects of the sun.awt package (some interesting and useful layout
managers) and the sun.audio package (some more flexible ways of working with audio files). It also
gives a brief overview of the behind-the-scenes machinery for rendering images, much of which is in the
sun.awt.image package.

Organization

The Java AWT Reference is divided into two large parts. The first part is a thorough guide to using AWT.
Although this guide is organized by class, it was designed to flow logically, rather than alphabetically. I
know that few people read a book like this from beginning to end, but if you want to, it's possible. With a
few exceptions, you should be able to read the early chapters without knowing the material that's covered
in the later chapters. You'll want to read this section to find out how any chunk of the AWT package
works in detail.

The second part is a set of documentation pages typical of what you find in most reference sets. It is

file:///C|/download/www.ora.com/catalog/javawt/default.htm

organized alphabetically by package, and within each package, alphabetically by class. It is designed to
answer questions like "What are the arguments to the FilteredImageSource constructor?" The
reference section provides brief summaries, rather than detailed discussions and examples. When you use
a typical reference book, you're usually trying to look up some detail, rather than learn how something
works from scratch.

In other words, this book provides two views of AWT: terse summaries designed to help you when you
need to look something up quickly, and much more detailed explanations designed to help you
understand how to use AWT to the fullest. In doing so, it goes well beyond the standard reference
manual. A reference manual alone gives you a great view of hundreds of individual trees; this book gives
you the trees, but also gives you the forest that allows you to put the individual pieces in context. There
are dozens of complete examples, together with background information, overview material, and other
information that doesn't fit into the standard reference manual format.

New Features of AWT in Java
1.1

About the Source Code

Preface

About the Source Code

The source code for the programs presented in this book is available online. See http://www.ora.com/catalog/javawt/ for
downloading instructions.

Obtaining the Example Programs

The example programs in this book are available electronically in a number of ways: by FTP, Ftpmail, BITFTP, and UUCP.
The cheapest, fastest, and easiest ways are listed first. If you read from the top down, the first one that works for you is
probably the best. Use FTP if you are directly on the Internet. Use Ftpmail if you are not on the Internet but can send and
receive electronic mail to Internet sites (this includes CompuServe users). Use BITFTP if you send electronic mail via
BITNET. Use UUCP if none of the above works.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown, with what you should type in
boldface.

% ftp ftp.ora.com
Connected to ftp.ora.com.
220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.ora.com:yourname): anonymous
331 Guest login ok, send domain style e-mail address as password.
Password: yourname@yourhost.com (use your user name and host here)
230 Guest login ok, access restrictions apply.
ftp> cd /published/oreilly/java/awt
250 CWD command successful.
ftp> binary (Very important! You must specify binary transfer for compressed files.)
200 Type set to I.
ftp> get examples.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for examples.tar.gz.
226 Transfer complete.
ftp> quit
221 Goodbye.
%

The file is a compressed tar archive; extract the files from the archive by typing:

% zcat examples.tar.gz | tar xvf -

file:///C|/download/www.ora.com/catalog/javawt/default.htm

System V systems require the following tar command instead:

% zcat examples.tar.gz | tar xof -

If zcat is not available on your system, use separate gunzip and tar commands.

% gunzip examples.tar.gz
% tar xvf examples.tar

Ftpmail

Ftpmail is a mail server available to anyone who can send electronic mail to, and receive it from, Internet sites. This includes
any company or service provider that allows email connections to the Internet. Here's how you do it.

You send mail to ftpmail@online.ora.com. (Be sure to address the message to ftpmail and not to ftp.) In the message body,
give the FTP commands you want to run. The server will run anonymous FTP for you and mail the files back to you. To get a
complete help file, send a message with no subject and the single word "help" in the body. The following is a sample mail
session that should get you the examples. This command sends you a listing of the files in the selected directory and the
requested example files. The listing is useful if there's a later version of the examples you're interested in.

% mail ftpmail@online.ora.com
Subject:
reply-to yourname@yourhost.com Where you want files mailed
open
cd /published/oreilly/java/awt
dir
mode binary
uuencode
get examples.tar.gz
quit
.

A signature at the end of the message is acceptable as long as it appears after "quit."

BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages requesting files, and it sends you back the
files by electronic mail. BITFTP currently serves only users who send it mail from nodes that are directly on BITNET,
EARN, or NetNorth. BITFTP is a public service of Princeton University. Here's how it works.

To use BITFTP, send mail containing your FTP commands to BITFTP@PUCC. For a complete help file, send HELP as the
message body.

The following is the message body you send to BITFTP:

FTP ftp.uu.net NETDATA
USER anonymous
PASS yourname@yourhost.edu Put your Internet email address here (not your BITNET
address)

CD /published/oreilly/java/awt
DIR
BINARY
GET examples.tar.gz
QUIT

Once you've got the desired file, follow the directions under FTP to extract the files from the archive. Since you are probably
not on a UNIX system, you may need to get versions of uudecode, uncompress, atob, and tar for your system. VMS, DOS,
and Mac versions are available. The VMS versions are on gatekeeper.dec.com in /pub/VMS.

UUCP

UUCP is standard on virtually all UNIX systems and is available for IBM-compatible PCs and Apple Macintoshes. The
examples are available by UUCP via modem from UUNET; UUNET's connect-time charges apply.

If you or your company has an account with UUNET, you have a system somewhere with a direct UUCP connection to
UUNET. Find that system, and type:

uucp uunet\!~/published/oreilly/java/awt/examples.tar.gz yourhost\!~/yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The file should appear some time later (up to
a day or more) in the directory /usr/spool/uucppublic/yourname. If you don't have an account, but would like one so that
you can get electronic mail, contact UUNET at 703-204-8000.

Once you've got the desired file, follow the directions under FTP to extract the files from the archive.

What This Book Covers Other Java Books and
Resources

Preface

Other Java Books and Resources

This book is part of a series of Java books from O'Reilly & Associates that covers everything you wanted
to know, and then some. The Java AWT Reference is paired with the Java Fundamental Class Reference
to document the entire Core Java API. Other books in the series provide an introduction (Exploring Java)
and document the virtual machine (Java Virtual Machine), the language (Java Language Reference),
multithreaded programming (Java Threads), and network programming (Java Network
Programming), with more to come. Java in a Nutshell is another popular Java book in the Nutshell series
from O'Reilly. For a complete up-to-date list of the available Java resources, refer to
http://www.ora.com/info/java/.

In addition to the resources from O'Reilly, Sun's online documentation on Java is maintained at
http://www.javasoft.com/nav/download/index.html. Information on specific Java-capable browsers can
be found at their respective Web sites, which are listed in Table 0.1. More are sure to be on the way.
(Some browsers are platform specific, while others are multi-platform.)

Table 0.1: Popular Web Browsers that Support Java

Browser Location

Netscape Navigator http://home.netscape.com/comprod/products/navigator/

Microsoft's Internet Explorer http://www.microsoft.com/ie

Sun's HotJava http://www.javasoft.com/HotJava/

Oracle's PowerBrowser http://www.oracle.com/products/websystem/powerbrowser

Apple's Cyberdog http://cyberdog.apple.com/

Newsgroups also serve as a discussion area for Java-related topics. The comp.lang.java group has
formally split into several others. The new groups are:

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch00_05.htm
file:///C|/download/www.ora.com/info/java/default.htm
file:///C|/download/www.javasoft.com/nav/download/index.html
file:///C|/download/home.netscape.com/comprod/products/navigator/default.htm
file:///C|/download/www.microsoft.com/ie
file:///C|/download/www.javasoft.com/HotJava/default.htm
file:///C|/download/www.oracle.com/products/websystem/powerbrowser
file:///C|/download/cyberdog.apple.com/default.htm

comp.lang.java.advocacy comp.lang.java.machine

comp.lang.java.announce comp.lang.java.programmer

comp.lang.java.beans comp.lang.java.security

comp.lang.java.databases comp.lang.java.setup

comp.lang.java.gui comp.lang.java.softwaretools

comp.lang.java.help comp.lang.java.tech

For folks without time to dig through all the noise, Digital Espresso provides a periodic digest of the
newsfeed at http://www.io.org./~mentor/DigitalEspresso.html. A list of Java FAQs is at http://www-
net.com/java/faq/; one of the most interesting is Cafe Au Lait, at http://sunsite.unc.edu/javafaq/. (Cafe Au
Lait is written by Elliotte Rusty Harold, author of Java Network Programming.)

Local Java user groups are another good resource. (Having founded one myself, I'm biased.) What they
offer varies greatly, but unless you look at one, you are potentially leaving out a vast resource for
knowledge and experience. Lists of area user groups are available from JavaSoft at
http://www.javasoft.com/Mail/usrgrp.html; also check out the Sun User Group's Special Interest Group
for Users of Java at http://www.sug.org/Java/groups.html. In addition to the usual monthly meetings and
forums, some maintain a mailing list for technical exchanges.

Security is a major issue with Java. If you are interested in reading more about Java security issues,
Princeton University's Safe Internet Programming Web site at
http://www.cs.princeton.edu/sip/News.html is an excellent resource.

About the Source Code About Java

file:///C|/download/www.io.org./~mentor/DigitalEspresso.html
file:///C|/download/www-net.com/java/faq/default.htm
file:///C|/download/www-net.com/java/faq/default.htm
file:///C|/download/sunsite.unc.edu/javafaq/default.htm
file:///C|/download/www.javasoft.com/Mail/usrgrp.html
file:///C|/download/www.sug.org/Java/groups.html
file:///C|/download/www.cs.princeton.edu/sip/News.html
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch00_05.htm

Chapter 1
Abstract Window Toolkit

Overview

1.3 Layouts

Layouts allow you to format components on the screen in a platform-independent way. Without layouts,
you would be forced to place components at explicit locations on the screen, creating obvious problems
for programs that need to run on multiple platforms. There's no guarantee that a TextArea or a
Scrollbar or any other component will be the same size on each platform; in fact, you can bet they
won't be. In an effort to make your Java creations portable across multiple platforms, Sun created a
LayoutManager interface that defines methods to reformat the screen based on the current layout and
component sizes. Layout managers try to give programs a consistent and reasonable appearance,
regardless of the platform, the screen size, or actions the user might take.

The standard JDK provides five classes that implement the LayoutManager interface. They are
FlowLayout, GridLayout, BorderLayout, CardLayout, and GridBagLayout. All of these
layouts are covered in much greater detail in Chapter 7, Layouts. This chapter also discusses how to
create complex layouts by combining layout managers and how to write your own LayoutManager.
The Java 1.1 JDK includes the LayoutManager2 interface. This interface extends the
LayoutManager interface for managers that provide constraint-based layouts.

FlowLayout

The FlowLayout is the default layout for the Panel class, which includes its most famous subclass,
Applet. When you add components to the screen, they flow left to right (centered within the applet)
based upon the order added and the width of the applet. When there are too many components to fit, they
"wrap" to a new row, similar to a word processor with word wrap enabled. If you resize an applet, the
components' flow will change based upon the new width and height. Figure 1.11 shows an example both
before and after resizing. FlowLayout contains all the FlowLayout details.

Figure 1.11: A FlowLayout before and after resizing

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_02.htm

[Graphic: Figure 1-11]

GridLayout

The GridLayout is widely used for arranging components in rows and columns. As with
FlowLayout, the order in which you add components is relevant. You start at row one, column one,
move across the row until it's full, then continue on to the next row. However, unlike FlowLayout, the
underlying components are resized to fill the row-column area, if possible. GridLayout can reposition
or resize objects after adding or removing components. Whenever the area is resized, the components
within it are resized. Figure 1.12 shows an example before and after resizing. GridLayout contains all the
details about GridLayout.

Figure 1.12: A GridLayout before and after resizing

[Graphic: Figure 1-12]

BorderLayout

BorderLayout is one of the more unusual layouts provided. It is the default layout for Window, along
with its children, Frame and Dialog. BorderLayout provides five areas to hold components. These
areas are named after the four different borders of the screen, North, South, East, and West, with
any remaining space going into the Center area. When you add a component to the layout, you must

specify which area to place it in. The order in which components are added to the screen is not important,
although you can have only one component in each area. Figure 1.13 shows a BorderLayout that has
one button in each area, before and after resizing. BorderLayout covers the details of the
BorderLayout.

Figure 1.13: A BorderLayout

[Graphic: Figure 1-13]

CardLayout

The CardLayout is a bit on the strange side. A CardLayout usually manages several components,
displaying one of them at a time and hiding the rest. All the components are given the same size. Usually,
the CardLayout manages a group of Panels (or some other container), and each Panel contains
several components of its own. With a little work, you can use the CardLayout to create tabbed dialog
boxes or property sheets, which are not currently part of AWT. CardLayout lets you assign names to
the components it is managing and lets you jump to a component by name. You can also cycle through
components in order. Figure 1.11, Figure 1.12, and Figure 1.13 show multiple cards controlled by a
single CardLayout. Selecting the Choice button displays a different card. CardLayout discusses the
details of CardLayout.

GridBagLayout

GridBagLayout is the most sophisticated and complex of the layouts provided in the development kit.
With the GridBagLayout, you can organize components in multiple rows and columns, stretch
specific rows or columns when space is available, and anchor objects in different corners. You provide
all the details of each component through instances of the GridBagConstraints class. Figure 1.14
shows an example of a GridBagLayout. GridBagLayout and GridBagConstraints are
discussed in GridBagLayout and GridBagConstraints.

Figure 1.14: A GridBagLayout

[Graphic: Figure 1-
14]

Peers Containers

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_02.htm

Chapter 1
Abstract Window Toolkit

Overview

1.4 Containers

A Container is a type of component that provides a rectangular area within which other components
can be organized by a LayoutManager. Because Container is a subclass of Component, a
Container can go inside another Container, which can go inside another Container, and so on,
like Russian nesting dolls. Subclassing Container allows you to encapsulate code for the components
within it. This allows you to create reusable higher-level objects easily. Figure 1.15 shows the
components in a layout built from several nested containers.

Figure 1.15: Components within containers

[Graphic: Figure 1-15]

Panels

A Panel is the basic building block of an applet. It provides a container with no special features. The
default layout for a Panel is FlowLayout. The details of Panel are discussed in Panel. Figure 1.16
shows an applet that contains panels within panels within panels.

Figure 1.16: A multilevel panel

[Graphic: Figure 1-16]

Windows

A Window provides a top-level window on the screen, with no borders or menu bar. It provides a way to
implement pop-up messages, among other things. The default layout for a Window is BorderLayout.
Window explores the Window class in greater detail. Figure 1.17 shows a pop-up message using a
Window in Microsoft Windows and Motif.

Figure 1.17: Pop-up windows

[Graphic: Figure 1-17]

Frames

A Frame is a Window with all the window manager's adornments (window title, borders, window
minimize/maximize/close functionality) added. It may also include a menu bar. Since Frame subclasses
Window, its default layout is BorderLayout. Frame provides the basic building block for screen-
oriented applications. Frame allows you to change the mouse cursor, set an icon image, and have
menus. All the details of Frame are discussed in Frames. Figure 1.18 shows an example Frame.

Figure 1.18: A frame

[Graphic: Figure 1-18]

Dialog and FileDialog

A Dialog is a Window that accepts input from the user. BorderLayout is the default layout of
Dialog because it subclasses Window. A Dialog is a pop-up used for user interaction; it can be
modal to prevent the user from doing anything with the application before responding. A FileDialog
provides a prebuilt Dialog box that interacts with the filesystem. It implements the Open/Save dialog
provided by the native windowing system. You will primarily use FileDialog with applications since
there is no guarantee that an applet can interact with the local filesystem. (Netscape Navigator will throw
an exception if you try to use it.) The details of Dialog are revealed in Dialogs, while FileDialog is
discussed in FileDialog. Figure 1.19 shows sample Dialog and FileDialog boxes.

Figure 1.19: Examples of Dialog and FileDialog boxes

[Graphic: Figure 1-19]

ScrollPane

Java 1.1 introduces the ScrollPane container. In version 1.0, if you want to have a scrolling area (for
example, to display an image that won't fit onto the screen), you create a panel using BorderLayout
that contains scrollbars on the right and bottom, and display part of the image in the rest of the screen.
When the user scrolls, you capture the event, figure out what part of the image to display, and update the
screen accordingly. Although this works, its performance is poor, and it's inconvenient. With version 1.1
of Java, you can tell the ScrollPane what needs to scroll; it creates the scrollbars and handles all the
events automatically. ScrollPane covers the ScrollPane; Figure 1.20 shows a ScrollPane. Chapter
11, Scrolling, covers the Adjustable interface that Scrollbar implements and ScrollPane
utilizes.

Figure 1.20: A ScrollPane

[Graphic: Figure 1-20]

Layouts And the Rest

Chapter 1
Abstract Window Toolkit

Overview

1.5 And the Rest

Several of the remaining classes within java.awt are important to mention here but did not fit well
into a general category. The following sections are a grab bag that summarize the remaining classes.

Drawing and Graphics

Java provides numerous primitives for drawing lines, squares, circles, polygons, and images. Figure 1.21
shows a simple drawing. The drawing components of AWT are discussed in Chapter 2, Simple Graphics.

The Font, FontMetrics, Color, and SystemColor classes provide the ability to alter the
displayed output. With the Font class, you adjust how displayed text will appear. With FontMetrics,
you can find out how large the output will be, for the specific system the user is using. You can use the
Color class to set the color of text and graphics. SystemColor is new to Java 1.1; it lets you take
advantage of desktop color schemes. These classes are discussed in Chapter 3, Fonts and Colors.

Figure 1.21: A simple drawing

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_06.htm

[Graphic: Figure 1-21]

AWT also includes a number of classes that support more complex graphics manipulations: displaying
images, generating images in memory, and transforming images. These classes make up the package
java.awt.image, which is covered in Chapter 12, Image Processing.

Events

Like most windows programming environments, AWT is event driven. When an event occurs (for
example, the user presses a key or moves the mouse), the environment generates an event and passes it
along to a handler to process the event. If nobody wants to handle the event, the system ignores it. Unlike
some windowing environments, you do not have to provide a main loop to catch and process all the
events, or an infinite busy-wait loop. AWT does all the event management and passing for you.

Probably the most significant difference between versions 1.0.2 and 1.1 of AWT is the way events work.
In older versions of Java, an event is distributed to every component that might conceivably be interested
in it, until some component declares that it has handled the event. This event model can still be used in
1.1, but there is also a new event model in which objects listen for particular events. This new model is
arguably a little more work for the programmer but promises to be much more efficient, because events
are distributed only to objects that want to hear about them. It is also how JavaBeans works.

In this book, examples that are using the older (1.0.2) components use the old event model, unless
otherwise indicated. Examples using new components use the new event model. Don't let this mislead
you; all components in Java 1.1 support the new event model. The details of Event for both version
1.0.2 and 1.1 can be found in Chapter 4, Events.

Applets

Although it is not a part of the java.awt package, the Core Java API provides a framework for applet
development. This includes support for getting parameters from HTML files, changing the web page a
browser is displaying, and playing audio files. Chapter 14, And Then There Were Applets, describes all
the details of the java.applet package. Because audio support is part of java.applet, portable
audio playing is limited to applets. Chapter 14, And Then There Were Applets also shows a nonportable
way to play audio in applications. Additional audio capabilities are coming to the Java Core API in the
announced extensions.

Clipboards

In Java 1.1, programs can access the system clipboard. This process makes it easier to transfer (cut, copy,
and paste) data between various other sources and your Java programs and introduces developers to the
concepts involved with JavaBeans. Chapter 16, Data Transfer, describes the
java.awt.datatransfer package.

Printing

Java 1.1 adds the ability to print. Adding printing to an existing program is fairly simple: you don't have
to do much beside adding a Print menu button. Chapter 17, Printing, describes these capabilities.

Containers Summary

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_06.htm

Chapter 5
Components

5.2 Labels

Having covered the features of the Component class, we can now look at some of the simplest
components. The first component introduced here is a Label. A label is a Component that displays a
single line of static text.[3] It is useful for putting a title or message next to another component. The text
can be centered or justified to the left or right. Labels react to all events they receive. However, they do
not get any events from their peers.

[3] Java in A Nutshell (from O'Reilly & Associates) includes a multiline Label
component.

Label Methods

Constants

There are three alignment specifiers for labels. The alignment tells the Label where to position its text
within the space allotted. Setting an alignment for a Label might not do anything noticeable if the
LayoutManager being used does not resize the Label to give it more space. With FlowLayout,
the alignment is barely noticeable. See Chapter 7, Layouts, for more information.

public final static int LEFT

LEFT is the constant for left alignment. If no alignment is specified in the constructor, left
alignment is the default.

public final static int CENTER

CENTER is the constant for center alignment.

public final static int RIGHT

RIGHT is the constant for right alignment.

Constructors

public Label ()

This constructor creates an empty Label. By default, the label's text is left justified.

public Label (String label)

This constructor creates a Label whose initial text is label. By default, the label's text is left
justified.

public Label (String label, int alignment)

This constructor creates a Label whose initial text is label. The alignment of the label is
alignment. If alignment is invalid (not LEFT, RIGHT, or CENTER), the constructor throws
the run-time exception IllegalArgumentException.

Text

public String getText ()

The getText() method returns the current value of Label.

public void setText (String label)

The setText() method changes the text of the Label to label. If the new label is a different
size from the old one, you should revalidate the display to ensure the label's entire contents will be
seen.

Alignment

public int getAlignment ()

The getAlignment() method returns the current alignment of the Label.

public void setAlignment (int alignment)

The setAlignment() method changes the alignment of the Label to alignment. If

alignment is invalid (not LEFT, RIGHT, or CENTER), setAlignment() throws the run-
time exception IllegalArgumentException. Figure 5.2 shows all three alignments.

Figure 5.2: Labels with different alignments

[Graphic: Figure 5-2]

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method creates the Label peer. If you override this method, first call
super.addNotify(), then put in your customizations. Then you will be able to do everything
you need with the information about the newly created peer.

protected String paramString ()

The paramString() method overrides Component's paramString() method. It is a
protected method that calls the overridden paramString() to build a String from the
different parameters of the Component. When the method paramString() is called for a
Label, the alignment and label's text are added. Thus, for the Label created by the constructor
new Label (`ZapfDingbats`, Label.RIGHT), the results displayed from a call to
toString() would be:

java.awt.Label[0,0,0x0,invalid,align=right,label=ZapfDingbats]

Label Events

The Label component can react to any event it receives, though the Label peer normally does not
send any. However, there is nothing to stop you from posting an event yourself.

Component Buttons

Chapter 5
Components

5.3 Buttons

The Button component provides one of the most frequently used objects in graphical applications.
When the user selects a button, it signals the program that something needs to be done by sending an
action event. The program responds in its handleEvent() method (for Java 1.0) or its
actionPerformed() method (defined by Java 1.1's ActionListener interface). Next to Label,
which does nothing, Button is the simplest component to understand. Because it is so simple, we will
use a lot of buttons in our examples for the next few chapters.

Button Methods

Constructors

public Button ()

This constructor creates an empty Button. You can set the label later with setLabel().

public Button (String label)

This constructor creates a Button whose initial text is label.

Button Labels

public String getLabel ()

The getLabel() method retrieves the current text of the label on the Button and returns it as
a String.

public synchronized void setLabel (String label)

The setLabel() method changes the text of the label on the Button to label. If the new
text is a different size from the old, it is necessary to revalidate the screen to ensure that the button
size is correct.

Action Commands

With Java 1.1, every button can have two names. One is what the user sees (the button's label); the other
is what the programmer sees and is called the button's action command. Distinguishing between the label
and the action command is a major help to internationalization. The label can be localized for the user's
environment. However, this means that labels can vary at run-time and are therefore useless for
comparisons within the program. For example, you can't test whether the user pushed the Yes button if
that button might read Oui or Ja, depending on some run-time environment setting. To give the
programmer something reliable for comparisons, Java 1.1 introduces the action command. The action
command for our button might be Yes, regardless of the button's actual label.

By default, the action command is equivalent to the button's label. Java 1.0 code, which only relies on the
label, will continue to work. Furthermore, you can continue to write in the Java 1.0 style as long as you're
sure that your program will never have to account for other languages. These days, that's a bad bet. Even
if you aren't implementing multiple locales now, get in the habit of testing a button's action command
rather than its label; you will have less work to do when internationalization does become an issue.

public String getActionCommand ()

The getActionCommand() method returns the button's current action command. If no action
command was explicitly set, this method returns the label.

public void setActionCommand (String command)

The setActionCommand() method changes the button's action command to command.

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method creates the Button peer. If you override this method, first call
super.addNotify(), then add your customizations. Then you can do everything you need
with the information about the newly created peer.

protected String paramString ()

The paramString() method overrides the component's paramString() method. It is a

protected method that calls the overridden paramString() to build a String from the
different parameters of the Component. When the method paramString() is called for a
Button, the button's label is added. Thus, for the Button created by the constructor new
Button ("ZapfDingbats"), the results displayed from a call to toString() could be:

java.awt.Button[77,5,91x21,label=ZapfDingbats]

Button Events

With the 1.0 event model, Button components generate an ACTION_EVENT when the user selects the
button.

With the version 1.1 event model, you register an ActionListener with the method
addActionListener(). When the user selects the Button, the method
ActionListener.actionPerformed() is called through the protected
Button.processActionEvent() method. Key, mouse, and focus listeners are registered through
the Component methods of addKeyListener(), addMouseListener(), or
addMouseMotionListener(), and addFocusListener(), respectively. Action

public boolean action (Event e, Object o)

The action() method for a Button is called when the user presses and releases the button. e
is the Event instance for the specific event, while o is the button's label. The default
implementation of action() does nothing and returns false, passing the event to the button's
container for processing. For a button to do something useful, you should override either this
method or the container's action() method. Example 5.1 is a simple applet called
ButtonTest that demonstrates the first approach; it creates a Button subclass called
TheButton, which overrides action(). This simple subclass doesn't do much; it just labels
the button and prints a message when the button is pressed. Figure 5.3 shows what ButtonTest
looks like.

Example 5.1: Button Event Handling

import java.awt.*;
import java.applet.*;
class TheButton extends Button {
 TheButton (String s) {
 super (s);
 }
 public boolean action (Event e, Object o) {
 if ("One".equals(o)) {

 System.out.println ("Do something for One");
 } else if ("Two".equals(o)) {
 System.out.println ("Ignore Two");
 } else if ("Three".equals(o)) {
 System.out.println ("Reverse Three");
 } else if ("Four".equals(o)) {
 System.out.println ("Four is the one");
 } else {
 return false;
 }
 return true;
 }
}
public class ButtonTest extends Applet {
 public void init () {
 add (new TheButton ("One"));
 add (new TheButton ("Two"));
 add (new TheButton ("Three"));
 add (new TheButton ("Four"));
 }
}

Figure 5.3: The ButtonTest applet

Keyboard

Buttons are able to capture keyboard-related events once the button has the input focus. In order to give a
Button the input focus without triggering the action event, call requestFocus(). The button also
gets the focus if the user selects it and drags the mouse off of it without releasing the mouse.

public boolean keyDown (Event e, int key)

The keyDown() method is called whenever the user presses a key while the Button has the
input focus. e is the Event instance for the specific event, while key is the integer
representation of the character pressed. The identifier for the event (e.id) could be either
Event.KEY_PRESS for a regular key or Event.KEY_ACTION for an action-oriented key
(i.e., an arrow or a function key). There is no visible indication that the user has pressed a key
over the button.

public boolean keyUp (Event e, int key)

The keyUp() method is called whenever the user releases a key while the Button has the input
focus. e is the Event instance for the specific event, while key is the integer representation of
the character pressed. The identifier for the event (e.id) could be either
Event.KEY_RELEASE for a regular key or Event.KEY_ACTION_RELEASE for an action-
oriented key (i.e., an arrow or a function key). keyUp() may be used to determine how long
key has been pressed.

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners, which are told when the event happens.

public void addActionListener(ActionListener listener)

The addActionListener() method registers listener as an object interested in receiving
notifications when an ActionEvent passes through the EventQueue with this Button as its
target. The listener.actionPerformed() method is called when these events occur.
Multiple listeners can be registered. The following code demonstrates how to use an
ActionListener to handle the events that occur when the user selects a button. This applet
has the same display as the previous one, shown in Figure 5.3.

// Java 1.1 only
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
public class ButtonTest11 extends Applet implements ActionListener {
 Button b;
 public void init () {
 add (b = new Button ("One"));
 b.addActionListener (this);
 add (b = new Button ("Two"));
 b.addActionListener (this);
 add (b = new Button ("Three"));
 b.addActionListener (this);

 add (b = new Button ("Four"));
 b.addActionListener (this);
 }
 public void actionPerformed (ActionEvent e) {
 String s = e.getActionCommand();
 if ("One".equals(s)) {
 System.out.println ("Do something for One");
 } else if ("Two".equals(s)) {
 System.out.println ("Ignore Two");
 } else if ("Three".equals(s)) {
 System.out.println ("Reverse Three");
 } else if ("Four".equals(s)) {
 System.out.println ("Four is the one");
 }
 }
}

public void removeActionListener(ActionListener listener)

The removeActionListener() method removes listener as an interested listener. If
listener is not registered, nothing happens.

protected void processEvent(AWTEvent e)

The processEvent() method receives AWTEvent with this Button as its target.
processEvent() then passes them along to any listeners for processing. When you subclass
Button, overriding processEvent() allows you to process all events yourself, before
sending them to any listeners. In a way, overriding processEvent() is like overriding
handleEvent() using the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last to
ensure that regular event processing can occur. If you want to process your own events, it's a good
idea to call enableEvents() (inherited from Component) to ensure that events are delivered
even in the absence of registered listeners.

protected void processActionEvent(ActionEvent e)

The processActionEvent() method receives ActionEvent with this Button as its
target. processActionEvent() then passes them along to any listeners for processing. When
you subclass Button, overriding processActionEvent() allows you to process all action
events yourself, before sending them to any listeners. In a way, overriding

processActionEvent() is like overriding action() using the 1.0 event model.

If you override the processActionEvent() method, you must remember to call
super.processActionEvent(e) last to ensure that regular event processing can occur. If
you want to process your own events, it's a good idea to call enableEvents() (inherited from
Component) to ensure that events are delivered even in the absence of registered listeners.

Labels A Simple Calculator

Chapter 5
Components

5.5 Canvas

A Canvas is a class just waiting to be subclassed. Through Canvas, you can create additional AWT
objects that are not provided by the base classes. Canvas is also useful as a drawing area, particularly
when additional components are on the screen. It is tempting to draw directly onto a Container, but
this often isn't a good idea. Anything you draw might disappear underneath the components you add to
the container. When you are drawing on a container, you are essentially drawing on the background. The
container's layout manager doesn't know anything about what you have drawn and won't arrange
components with your artwork in mind. To be safe, do your drawing onto a Canvas and place that
Canvas in a Container.

Canvas Methods

Constructors

public Canvas ()

The constructor creates a new Canvas with no default size. If you place the canvas in a
container, the container's layout manager sizes the canvas for you. If you aren't placing the canvas
in a container, call setBounds() to specify the canvas's size.

Java 1.0 used the default constructor for Canvas; there was no explicit constructor.

Miscellaneous methods

public void paint (Graphics g)

The default implementation of the paint() method colors the entire Canvas with the current
background color. When you subclass this method, your paint() method needs to draw
whatever should be shown on the canvas.

public synchronized void addNotify ()

The addNotify() method creates the Canvas peer. If you override this method, first call
super.addNotify(), then add your customizations. Then you can do everything you need
with the information about the newly created peer.

Canvas Events

The Canvas peer passes all events to you, which is why it's well suited to creating your own
components.

A Simple Calculator Creating Your Own
Component

Chapter 2
Simple Graphics

2.2 Point

The Point class encapsulates x and y coordinates within a single object. It is probably one of the most
underused classes within Java. Although there are numerous places within AWT where you would
expect to see a Point, its appearances are surprisingly rare. Java 1.1 is starting to use Point more
heavily. The Point class is most often used when a method needs to return a pair of coordinates; it lets
the method return both x and y as a single object. Unfortunately, Point usually is not used when a
method requires x and y coordinates as arguments; for example, you would expect the Graphics class
to have a version of translate() that takes a point as an argument, but there isn't one.

The Point class does not represent a point on the screen. It is not a visual object; there is no
drawPoint() method.

Point Methods

Variables

The two public variables of Point represent a pair of coordinates. They are accessible directly or use
the getLocation() method. There is no predefined origin for the coordinate space.

public int x

The coordinate that represents the horizontal position.

public int y

The coordinate that represents the vertical position.

Constructors

public Point ()

The first constructor creates an instance of Point with an initial x value of 0 and an initial y
value of 0.

public Point (int x, int y)

The next constructor creates an instance of Point with an initial x value of x and an initial y
value of y.

public Point (Point p)

The last constructor creates an instance of Point from another point, the x value of p.x and an
initial y value of p.y.

Locations

public Point getLocation ()

The getLocation() method retrieves the current location of this point as a new Point.

public void setLocation (int x, int y)

public void move (int x, int y)

The setLocation() method changes the point's location to (x, y).

move() is the Java 1.0 name for this method.

public void setLocation (Point p)

This setLocation() method changes the point's location to (p.x, p.y).

public void translate (int x, int y)

The translate() method moves the point's location by adding the parameters (x, y) to the
corresponding fields of the Point. If the original Point p is (3, 4) and you call
p.translate(4, -5), the new value of p is (7, -1).

Miscellaneous methods

public int hashCode ()

The hashCode() method returns a hash code for the point. The system calls this method when a
Point is used as the key for a hash table.

public boolean equals (Object object)

The equals() method overrides the Object.equals() method to define equality for points.
Two Point objects are equal if their x and y values are equal.

public String toString ()

The toString() method of Point displays the current values of the x and y variables. For
example:

java.awt.Point[x=100,y=200]

Graphics Dimension

Chapter 2
Simple Graphics

2.3 Dimension

The Dimension class is similar to the Point class, except it encapsulates a width and height in a
single object. Like Point, Dimension is somewhat underused; it is used primarily by methods that
need to return a width and a height as a single object; for example, getSize() returns a Dimension
object.

Dimension Methods

Variables

A Dimension instance has two variables, one for width and one for height. They are accessible directly
or through use of the getSize() method.

public int width

The width variable represents the size of an object along the x axis (left to right). Width should
not be negative; however, there is nothing within the class to prevent this from happening.

public int height

The height variable represents the size of an object along the y axis (top to bottom). Height should
not be negative; however, there is nothing within the class to prevent this from happening.

Constructors

public Dimension ()

This constructor creates a Dimension instance with a width and height of 0.

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch02_04.htm

public Dimension (Dimension dim)

This constructor creates a copy of dim. The initial width is dim.width. The initial height is
dim.height.

public Dimension (int width, int height)

This constructor creates a Dimension with an initial width of width and an initial height of
height.

Sizing

public Dimension getSize ()

The getSize() method retrieves the current size as a new Dimension, even though the
instance variables are public.

public void setSize (int width, int height)

The setSize() method changes the dimension's size to width x height.

public void setSize (Dimension d)

The setSize() method changes the dimension's size to d.width x d.height.

Miscellaneous methods

public boolean equals (Object object)

The equals() method overrides the Object.equals() method to define equality for
dimensions. Two Dimension objects are equal if their width and height values are equal.

public String toString ()

The toString() method of Dimension returns a string showing the current width and height
settings. For example:

java.awt.Dimension[width=0,height=0]

Point Shape

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch02_04.htm

Chapter 2
Simple Graphics

2.5 Rectangle

The Rectangle class encapsulates x and y coordinates and width and height (Point and
Dimension information) within a single object. It is often used by methods that return a rectangular
boundary as a single object: for example, Polygon.getBounds(), Component.getBounds(),
and Graphics.getClipBounds(). Like Point, the Rectangle class is not a visual object and
does not represent a rectangle on the screen; ironically, drawRect() and fillRect() don't take
Rectangle as an argument.

Rectangle Methods

Variables

The four public variables available for Rectangle have the same names as the public instance
variables of Point and Dimension. They are all accessible directly or through use of the
getBounds() method.

public int x

The x coordinate of the upper left corner.

public int y

The y coordinate of the upper left corner.

public int width

The width variable represents the size of the Rectangle along the horizontal axis (left to right).
Width should not be negative; however, there is nothing within the class to prevent this from
happening.

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch02_04.htm

public int height

The height variable represents the size of the Rectangle along the vertical axis (top to bottom).
Height should not be negative; however, there is nothing within the class to prevent this from
happening.

Constructors

The following seven constructors create Rectangle objects. When you create a Rectangle, you
provide the location of the top left corner, along with the Rectangle's width and height. A
Rectangle located at (0,0) with a width and height of 100 has its bottom right corner at (99, 99). The
Point (100, 100) lies outside the Rectangle, since that would require a width and height of 101.

public Rectangle ()

This Rectangle constructor creates a Rectangle object in which x, y, width, and height are
all 0.

public Rectangle (int width, int height)

This Rectangle constructor creates a Rectangle with (x, y) coordinates of (0,0) and the
specified width and height. Notice that there is no Rectangle(int x, int y)
constructor because that would have the same method signature as this one, and the compiler
would have no means to differentiate them.

public Rectangle (int x, int y, int width, int height)

The Rectangle constructor creates a Rectangle object with an initial x coordinate of x, y
coordinate of y, width of width, and height of height. Height and width should be positive,
but the constructor does not check for this.

public Rectangle (Rectangle r)

This Rectangle constructor creates a Rectangle matching the original. The (x, y)
coordinates are (r.x, r.y), with a width of r.width and a height of r.height.

public Rectangle (Point p, Dimension d)

This Rectangle constructor creates a Rectangle with (x, y) coordinates of (p.x, p.y), a
width of d.width, and a height of d.height.

public Rectangle (Point p)

This Rectangle constructor creates a Rectangle with (x, y) coordinates of (p.x, p.y). The
width and height are both zero.

public Rectangle (Dimension d)

The last Rectangle constructor creates a Rectangle with (x, y) coordinates of (0, 0). The
initial Rectangle width is d.width and height is d.height.

Shaping and sizing

public Rectangle getBounds()

The getBounds() method returns a copy of the original Rectangle.

public void setBounds (int x, int y, int width, int height)

public void reshape (int x, int y, int width, int height)

The setBounds() method changes the origin of the Rectangle to (x, y) and changes the
dimensions to width by height.

reshape() is the Java 1.0 name for this method.

public void setBounds (Rectangle r)

The setBounds() method changes the origin of the Rectangle to (r.x, r.y) and changes
the dimensions to r.width by r.height.

public Point getLocation()

The getLocation()retrieves the current origin of this rectangle as a Point.

public void setLocation (int x, int y)

public void move (int x, int y)

The setLocation() method changes the origin of the Rectangle to (x, y).

move() is the Java 1.0 name for this method.

public void setLocation (Point p)

The setLocation() method changes the Rectangle's origin to (p.x, p.y).

public void translate (int x, int y)

The translate() method moves the Rectangle's origin by the amount (x, y). If the
original Rectangle's location (r) is (3, 4) and you call r.translate (4, 5), then r's
location becomes (7, 9). x and y may be negative. translate() has no effect on the
Rectangle's width and height.

public Dimension getSize ()

The getSize() method retrieves the current size of the rectangle as a Dimension.

public void setSize() (int width, int height)

public void resize (int width, int height)

The setSize() method changes the Rectangle's dimensions to width x height.

resize() is the Java 1.0 name for this method.

public void setSize() (Dimension d)

The setSize() method changes the Rectangle's dimensions to d.width x d.height.

public void grow (int horizontal, int vertical)

The grow() method increases the Rectangle's dimensions by adding the amount
horizontal on the left and the right and adding the amount vertical on the top and bottom.
Therefore, all four of the rectangle's variables change. If the original location is (x, y), the new
location will be (x-horizontal, y-vertical) (moving left and up if both values are
positive); if the original size is (width, height), the new size will be
(width+2*horizontal, height+2*vertical). Either horizontal or vertical can be
negative to decrease the size of the Rectangle. The following code demonstrates the changes:

import java.awt.Rectangle;
public class rect {
 public static void main (String[] args) {
 Rectangle r = new Rectangle (100, 100, 200, 200);

 System.out.println (r);
 r.grow (50, 75);
 System.out.println (r);
 r.grow (-25, -50);
 System.out.println (r);
 }
}

This program produces the following output:

java.awt.Rectangle[x=100,y=100,width=200,height=200]
java.awt.Rectangle[x=50,y=25,width=300,height=350]
java.awt.Rectangle[x=75,y=75,width=250,height=250]

public void add (int newX, int newY)

The add() method incorporates the point (newX, newY) into the Rectangle. If this point is
already in the Rectangle, there is no change. Otherwise, the size of the Rectangle increases
to include (newX, newY) within itself.

public void add (Point p)

This add() method incorporates the point (p.x, p.y) into the Rectangle. If this point is
already in the Rectangle, there is no change. Otherwise, the size of the Rectangle increases
to include (p.x, p.y) within itself.

public void add (Rectangle r)

This add() method incorporates another Rectangle r into this Rectangle. This transforms
the current rectangle into the union of the two Rectangles. This method might be useful in a
drawing program that lets you select multiple objects on the screen and create a rectangular area
from them.

We will soon encounter a method called union() that is almost identical. add() and
union() differ in that add() modifies the current Rectangle, while union() returns a
new Rectangle. The resulting rectangles are identical.

Intersections

public boolean contains (int x, int y)

public boolean inside (int x, int y)

The contains() method determines if the point (x, y) is within this Rectangle. If so, true
is returned. If not, false is returned.

inside() is the Java 1.0 name for this method.

public boolean contains (Point p)

The contains() method determines if the point (p.x, p.y) is within this Rectangle. If so,
true is returned. If not, false is returned.

public boolean intersects (Rectangle r)

The intersects() method checks whether Rectangle r crosses this Rectangle at any
point. If it does, true is returned. If not, false is returned.

public Rectangle intersection (Rectangle r)

The intersection() method returns a new Rectangle consisting of all points that are in
both the current Rectangle and Rectangle r. For example, if r = new Rectangle
(50, 50, 100, 100) and r1 = new Rectangle (100, 100, 75, 75), then
r.intersection (r1) is the Rectangle (100, 100, 50, 50), as shown in Figure
2.13.

public Rectangle union (Rectangle r)

The union() method combines the current Rectangle and Rectangle r to form a new
Rectangle. For example, if r = new Rectangle (50, 50, 100, 100) and r1 =
new Rectangle (100, 100, 75, 75), then r.union (r1) is the Rectangle
(50, 50, 125, 125). The original rectangle is unchanged. Figure 2.14 demonstrates the
effect of union(). Because fillRect() fills to width-1 and height-1, the rectangle
drawn appears slightly smaller than you would expect. However, that's an artifact of how
rectangles are drawn; the returned rectangle contains all the points within both.

Figure 2.13: Rectangle intersection

[Graphic: Figure 2-13]

Figure 2.14: Rectangle union

[Graphic: Figure 2-14]

Miscellaneous methods

public boolean isEmpty ()

The isEmpty() method checks whether there are any points within the Rectangle. If the
width and height of the Rectangle are both 0 (or less), the Rectangle is empty, and this
method returns true. If either width or height is greater than zero, isEmpty() returns false.
This method could be used to check the results of a call to any method that returns a Rectangle
object.

public int hashCode ()

The hashCode() method returns a hash code for the rectangle. The system calls this method
when a Rectangle is used as the key for a hash table.

public boolean equals (Object object)

The equals() method overrides the Object's equals() method to define what equality
means for Rectangle objects. Two Rectangle objects are equal if their x, y, width, and
height values are equal.

public String toString ()

The toString() method of Rectangle displays the current values of the x, y, width, and
height variables. For example:

java.awt.Rectangle[x=100,y=200,width=300,height=400]

Shape Polygon

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch02_04.htm

Chapter 2
Simple Graphics

2.6 Polygon

A Polygon is a collection of points used to create a series of line segments. Its primary purpose is to
draw arbitrary shapes like triangles or pentagons. If the points are sufficiently close, you can create a
curve. To display the Polygon, call drawPolygon() or fillPolygon().

Polygon Methods

Variables

The collection of points maintained by Polygon are stored in three variables:

public int npoints

The npoints variable stores the number of points.

public int xpoints[]

The xpoints array holds the x component of each point.

public int ypoints[]

The ypoints array holds the y component of each point.

You might expect the Polygon class to use an array of points, rather than separate arrays of integers.
More important, you might expect the instance variables to be private or protected, which would prevent
them from being modified directly. Since the three instance variables are public, there is no guarantee
that the array sizes are in sync with each other or with npoints. To avoid trouble, always use
addPoints() to modify your polygons, and avoid modifying the instance variables directly.
Constructors

public Polygon ()

This constructor creates an empty Polygon.

public Polygon (int xPoints[], int yPoints[], int numPoints)

This constructor creates a Polygon that consists of numPoints points. Those points are
formed from the first numPoints elements of the xPoints and yPoints arrays. If the
xPoints or yPoints arrays are larger than numPoints, the additional entries are ignored. If
the xPoints or yPoints arrays do not contain at least numPoints elements, the constructor
throws the run-time exception ArrayIndexOutOfBoundsException.

Miscellaneous methods

public void addPoint (int x, int y)

The addPoint() method adds the point (x, y) to the Polygon as its last point. If you alter the
xpoints, ypoints, and npoints instance variables directly, addPoint() could add the
new point at a place other than the end, or it could throw the run-time exception
ArrayIndexOutOfBoundsException with a message showing the position at which it
tried to add the point. Again, for safety, don't modify a Polygon's instance variables yourself;
always use addPoint().

public Rectangle getBounds ()

public Rectangle getBoundingBox ()

The getBounds() method returns the Polygon's bounding Rectangle (i.e., the smallest
rectangle that contains all the points within the polygon). Once you have the bounding box, it's
easy to use methods like copyArea() to copy the Polygon.

getBoundingBox() is the Java 1.0 name for this method.

public boolean contains (int x, int y)

public boolean inside (int x, int y)

The contains() method checks to see if the (x, y) point is within an area that would be filled
if the Polygon was drawn with Graphics.fillPolygon(). A point may be within the
bounding rectangle of the polygon, but contains() can still return false if not within a
closed part of the polygon.

inside() is the Java 1.0 name for this method.

public boolean contains (Point p)

The contains() method checks to see if the point p is within an area that would be filled if the
Polygon were drawn with Graphics.fillPolygon().

public void translate (int x, int y)

The translate() method moves all the Polygon's points by the amount (x, y). This allows
you to alter the location of the Polygon by shifting the points.

Rectangle Image

Chapter 2
Simple Graphics

2.7 Image

An Image is a displayable object maintained in memory. AWT has built-in support for reading files in GIF and
JPEG format, including GIF89a animation. Netscape Navigator, Internet Explorer, HotJava, and Sun's JDK also
understand the XBM image format. Images are loaded from the filesystem or network by the getImage()
method of either Component or Toolkit, drawn onto the screen with drawImage() from Graphics, and
manipulated by several objects within the java.awt.image package. Figure 2.15 shows an Image.

Figure 2.15: An Image

Image is an abstract class implemented by many different platform-specific classes. The system that runs your
program will provide an appropriate implementation; you do not need to know anything about the platform-
specific classes, because the Image class completely defines the API for working with images. If you're curious,
the platform-specific packages used by the JDK are:

● sun.awt.win32.Win32Image on Java 1.0 Windows NT/95 platforms

● sun.awt.windows.WImage on Java 1.1 Windows NT/95 platforms

● sun.awt.motif.X11Image on UNIX/Motif platforms

● sun.awt.macos.MacImage on the Macintosh

This section covers only the Image object itself. AWT also includes a package named java.awt.image that
includes more advanced image processing utilities. The classes in java.awt.image are covered in Chapter
12, Image Processing.

Image Methods

Constants

public static final Object UndefinedProperty

In Java 1.0, the sole constant of Image is UndefinedProperty. It is used as a return value from the
getProperty() method to indicate that the requested property is unavailable.

Java 1.1 introduces the getScaledInstance() method. The final parameter to the method is a set of hints to
tell the method how best to scale the image. The following constants provide possible values for this parameter.

public static final int SCALE_DEFAULT

The SCALE_DEFAULT hint should be used alone to tell getScaledInstance() to use the default
scaling algorithm.

public static final int SCALE_FAST

The SCALE_FAST hint tells getScaledInstance() that speed takes priority over smoothness.

public static final int SCALE_SMOOTH

The SCALE_SMOOTH hint tells getScaledInstance() that smoothness takes priority over speed.

public static final int SCALE_REPLICATE

The SCALE_REPLICATE hint tells getScaledInstance() to use ReplicateScaleFilter or
a reasonable alternative provided by the toolkit. ReplicateScaleFilter is discussed in Chapter 12,
Image Processing.

public static final int SCALE_AREA_AVERAGING

The SCALE_AREA_AVERAGING hint tells getScaledInstance() to use
AreaAveragingScaleFilter or a reasonable alternative provided by the toolkit.
AreaAveragingScaleFilter is discussed in Chapter 12, Image Processing.

Constructors

There are no constructors for Image. You get an Image object to work with by using the getImage()
method of Applet (in an applet), Toolkit (in an application), or the createImage() method of
Component or Toolkit. getImage() uses a separate thread to fetch the image. The thread starts when you
call drawImage(), prepareImage(), or any other method that requires image information. getImage()
returns immediately. You can also use the MediaTracker class to force an image to load before it is needed.
MediaTracker is discussed in the next section. Characteristics

public abstract int getWidth (ImageObserver observer)

The getWidth() method returns the width of the image object. The width may not be available if the
image has not started loading; in this case, getWidth() returns -1. An image's size is available long
before loading is complete, so it is often useful to call getWidth() while the image is loading.

public abstract int getHeight (ImageObserver observer)

The getHeight() method returns the height of the image object. The height may not be available if the
image has not started loading; in this case, the getHeight() method returns -1. An image's size is
available long before loading is complete, so it is often useful to call getHeight() while the image is
loading.

Miscellaneous methods

public Image getScaledInstance (int width, int height, int hints)

The getScaledInstance() method enables you to generate scaled versions of images before they
are needed. Prior to Java 1.1, it was necessary to tell the drawImage() method to do the scaling.
However, this meant that scaling didn't take place until you actually tried to draw the image. Since scaling
takes time, drawing the image required more time; the net result was degraded appearance. With Java 1.1,
you can generate scaled copies of images before drawing them; then you can use a version of
drawImage() that does not do scaling, and therefore is much quicker.

The width parameter of getScaledInstance() is the new width of the image. The height
parameter is the new height of the image. If either is -1, the scaling retains the aspect ratio of the original
image. For instance, if the original image size was 241 by 72 pixels, and width and height were 100
and -1, the new image size would be 100 by 29 pixels. If both width and height are -1, the
getScaledInstance() method retains the image's original size. The hints parameter is one of the
Image class constants.

Image i = getImage (getDocumentBase(), "rosey.jpg");
Image j = i.getScaledInstance (100, -1, Image.SCALE_FAST);

public abstract ImageProducer getSource ()

The getSource() method returns the image's producer, which is an object of type ImageProducer.
This object represents the image's source. Once you have the ImageProducer, you can use it to do
additional image processing; for example, you could create a modified version of the original image by
using a FilteredImageSource. Image producers and image filters are covered in Chapter 12, Image
Processing.

public abstract Graphics getGraphics ()

The getGraphics() method returns the image's graphics context. The method getGraphics()
works only for Image objects created in memory with Component.createImage (int, int). If
the image came from a URL or a file (i.e., from getImage()), getGraphics() throws the run-time
exception ClassCastException.

public abstract Object getProperty (String name, ImageObserver observer)

The getProperty() method interacts with the image's property list. An object representing the
requested property name will be returned for observer. observer represents the Component on
which the image is rendered. If the property name exists but is not available yet, getProperty()
returns null. If the property name does not exist, the getProperty() method returns the
Image.UndefinedProperty object.

Each image type has its own property list. A property named comment stores a comment String from
the image's creator. The CropImageFilter adds a property named croprect. If you ask
getProperty() for an image's croprect property, you get a Rectangle that shows how the
original image was cropped.

public abstract void flush()

The flush() method resets an image to its initial state. Assume you acquire an image over the network
with getImage(). The first time you display the image, it will be loaded over the network. If you
redisplay the image, AWT normally reuses the original image. However, if you call flush() before
redisplaying the image, AWT fetches the image again from its source. (Images created with
createImage() aren't affected.) The flush() method is useful if you expect images to change while
your program is running. The following program demonstrates flush(). It reloads and displays the file
flush.gif every time you click the mouse. If you change the file flush.gif and click on the mouse, you will
see the new file.

import java.awt.*;
public class flushMe extends Frame {
 Image im;
 flushMe () {
 super ("Flushing");
 im = Toolkit.getDefaultToolkit().getImage ("flush.gif");
 resize (175, 225);
 }

 public void paint (Graphics g) {
 g.drawImage (im, 0, 0, 175, 225, this);
 }
 public boolean mouseDown (Event e, int x, int y) {
 im.flush();
 repaint();
 return true;
 }
 public static void main (String [] args) {
 Frame f = new flushMe ();
 f.show();
 }
}

Simple Animation

Creating simple animation sequences in Java is easy. Load a series of images, then display the images one at a
time. Example 2.1 is an application that displays a simple animation sequence. Example 2.2 is an applet that uses
a thread to run the application. These programs are far from ideal. If you try them, you'll probably notice some
flickering or missing images. We discuss how to fix these problems shortly.

Example 2.1: Animation Application

import java.awt.*;
public class Animate extends Frame {
 static Image im[];
 static int numImages = 12;
 static int counter=0;
 Animate () {
 super ("Animate");
 }
 public static void main (String[] args) {
 Frame f = new Animate();
 f.resize (225, 225);
 f.show();
 im = new Image[numImages];
 for (int i=0;i<numImages;i++) {
 im[i] = Toolkit.getDefaultToolkit().getImage ("clock"+i+".jpg");
 }
 }
 public synchronized void paint (Graphics g) {
 g.translate (insets().left, insets().top);
 g.drawImage (im[counter], 0, 0, this);
 counter++;
 if (counter == numImages)
 counter = 0;

 repaint (200);
 }
}

This application displays images with the name clockn.jpg, where n is a number between 0 and 11. It fetches the
images using the getImage() method of the Toolkit class--hence, the call to
Toolkit.getDefaultToolkit(), which gets a Toolkit object to work with. The paint() method
displays the images in sequence, using drawImage(). paint() ends with a call to repaint(200), which
schedules another call to paint() in 200 milliseconds.

The AnimateApplet, whose code is shown in Example 2.2, does more or less the same thing. It is able to use
the Applet.getImage() method. A more significant difference is that the applet creates a new thread to
control the animation. This thread calls sleep(200), followed by repaint(), to display a new image every
200 milliseconds.

Example 2.2: Multithreaded Animation Applet

import java.awt.*;
import java.applet.*;
public class AnimateApplet extends Applet implements Runnable {
 static Image im[];
 static int numImages = 12;
 static int counter=0;
 Thread animator;
 public void init () {
 im = new Image[numImages];
 for (int i=0;i<numImages;i++)
 im[i] = getImage (getDocumentBase(), "clock"+i+".jpg");
 }
 public void start() {
 if (animator == null) {
 animator = new Thread (this);
 animator.start ();
 }
 }
 public void stop() {
 if ((animator != null) && (animator.isAlive())) {
 animator.stop();
 animator = null;
 }
 }
 public void run () {
 while (animator != null) {
 try {
 animator.sleep(200);
 repaint ();

 counter++;
 if (counter==numImages)
 counter=0;
 } catch (Exception e) {
 e.printStackTrace ();
 }
 }
 }
 public void paint (Graphics g) {
 g.drawImage (im[counter], 0, 0, this);
 }
}

One quick fix will help the flicker problem in both of these examples. The update() method (which is
inherited from the Component class) normally clears the drawing area and calls paint(). In our examples,
clearing the drawing area is unnecessary and, worse, results in endless flickering; on slow machines, you'll see
update() restore the background color between each image. It's a simple matter to override update() so that
it doesn't clear the drawing area first. Add the following method to both of the previous examples:

public void update (Graphics g) {
 paint (g);
}

Overriding update() helps, but the real solution to our problem is double buffering, which we'll turn to next.

Double Buffering

Double buffering means drawing to an offscreen graphics context and then displaying this graphics context to the
screen in a single operation. So far, we have done all our drawing directly on the screen--that is, to the graphics
context provided by the paint() method. As your programs grow more complex, paint() gets bigger and
bigger, and it takes more time and resources to update the entire drawing area. On a slow machine, the user will
see the individual drawing operations take place, which will make your program look slow and clunky. By using
the double buffering technique, you can take your time drawing to another graphics context that isn't displayed.
When you are ready, you tell the system to display the completely new image at once. Doing so eliminates the
possibility of seeing partial screen updates and flickering.

The first thing you need to do is create an image as your drawing canvas. To get an image object, call the
createImage() method. createImage() is a method of the Component class, which we will discuss in
Chapter 5, Components. Since Applet extends Component, you can call createImage() within an applet.
When creating an application and extending Frame, createImage() returns null until the Frame's peer
exists. To make sure that the peer exists, call addNotify() in the constructor, or make sure you call show()
before calling createImage(). Here's the call to the createImage() method that we'll use to get an
Image object:

Image im = createImage (300, 300); // width and height

Once you have an Image object, you have an area you can draw on. But how do you draw on it? There are no
drawing methods associated with Image; they're all in the Graphics class. So we need to get a Graphics
context from the Image. To do so, call the getGraphics() method of the Image class, and use that
Graphics context for your drawing:

Graphics buf = im.getGraphics();

Now you can do all your drawings with buf. To display the drawing, the paint() method only needs to call
drawImage(im, . . .). Note the hidden connection between the Graphics object, buf, and the Image
you are creating, im. You draw onto buf; then you use drawImage() to render the image on the on-screen
Graphics context within paint().

Another feature of buffering is that you do not have redraw the entire image with each call to paint(). The
buffered image you're working on remains in memory, and you can add to it at will. If you are drawing directly to
the screen, you would have to recreate the entire drawing each time paint() is called; remember, paint()
always hands you a completely new Graphics object. Figure 2.16 shows how double buffering works.

Figure 2.16: Double buffering

Example 2.3 puts it all together for you. It plays a game, with one move drawn to the screen each cycle. We still
do the drawing within paint(), but we draw into an offscreen buffer; that buffer is copied onto the screen by
g.drawImage(im, 0, 0, this). If we were doing a lot of drawing, it would be a good idea to move the
drawing operations into a different thread, but that would be overkill for this simple applet.

Example 2.3: Double Buffering--Who Won?

import java.awt.*;
import java.applet.*;
public class buffering extends Applet {
 Image im;
 Graphics buf;
 int pass=0;

 public void init () {
 // Create buffer
 im = createImage (size().width, size().height);
 // Get its graphics context
 buf = im.getGraphics();
 // Draw Board Once
 buf.setColor (Color.red);
 buf.drawLine (0, 50, 150, 50);
 buf.drawLine (0, 100, 150, 100);
 buf.drawLine (50, 0, 50, 150);
 buf.drawLine (100, 0, 100, 150);
 buf.setColor (Color.black);
 }
 public void paint (Graphics g) {
 // Draw image - changes are written onto buf
 g.drawImage (im, 0, 0, this);
 // Make a move
 switch (pass) {
 case 0:
 buf.drawLine (50, 50, 100, 100);
 buf.drawLine (50, 100, 100, 50);
 break;
 case 1:
 buf.drawOval (0, 0, 50, 50);
 break;
 case 2:
 buf.drawLine (100, 0, 150, 50);
 buf.drawLine (150, 0, 100, 50);
 break;
 case 3:
 buf.drawOval (0, 100, 50, 50);
 break;
 case 4:
 buf.drawLine (0, 50, 50, 100);
 buf.drawLine (0, 100, 50, 50);
 break;
 case 5:
 buf.drawOval (100, 50, 50, 50);
 break;
 case 6:
 buf.drawLine (50, 0, 100, 50);
 buf.drawLine (50, 50, 100, 0);
 break;
 case 7:
 buf.drawOval (50, 100, 50, 50);
 break;
 case 8:

 buf.drawLine (100, 100, 150, 150);
 buf.drawLine (150, 100, 100, 150);
 break;
 }
 pass++;
 if (pass <= 9)
 repaint (500);
 }
}

Polygon MediaTracker

Chapter 2
Simple Graphics

2.8 MediaTracker

The MediaTracker class assists in the loading of multimedia objects across the network. Tracking is
necessary because Java loads images in separate threads. Calls to getImage() return immediately;
image loading starts only when you call the method drawImage(). MediaTracker lets you force
images to start loading before you try to display them; it also gives you information about the loading
process, so you can wait until an image is fully loaded before displaying it.

Currently, MediaTracker can monitor the loading of images, but not audio, movies, or anything else.
Future versions are rumored to be able to monitor other media types.

MediaTracker Methods

Constants

The MediaTracker class defines four constants that are used as return values from the class's
methods. These values serve as status indicators.

public static final int LOADING

The LOADING variable indicates that the particular image being checked is still loading.

public static final int ABORTED

The ABORTED variable indicates that the loading process for the image being checked aborted.
For example, a timeout could have happened during the download. If something ABORTED during
loading, it is possible to flush() the image to force a retry.

public static final int ERRORED

The ERRORED variable indicates that an error occurred during the loading process for the image
being checked. For instance, the image file might not be available from the server (invalid URL)
or the file format could be invalid. If an image has ERRORED, retrying it will fail.

public static final int COMPLETE

The COMPLETE flag means that the image being checked successfully loaded.

If COMPLETE, ABORTED, or ERRORED is set, the image has stopped loading. If you are checking
multiple images, you can OR several of these values together to form a composite. For example, if you
are loading several images and want to find out about any malfunctions, call statusAll() and check
for a return value of ABORTED | ERRORED. Constructors

public MediaTracker (Component component)

The MediaTracker constructor creates a new MediaTracker object to track images to be
rendered onto component.

Adding images

The addImage() methods add objects for the MediaTracker to track. When placing an object
under a MediaTracker's control, you must provide an identifier for grouping purposes. When multiple
images are grouped together, you can perform operations on the entire group with a single request. For
example, you might want to wait until all the images in an animation sequence are loaded before starting
the animation; in this case, assigning the same ID to all the images makes good sense. However, when
multiple images are grouped together, you cannot check on the status of a single image. The moral is: if
you care about the status of individual images, put each into a group by itself.

Folklore has it that the identifier also serves as a loading priority, with a lower ID meaning a higher
priority. This is not completely true. Current implementations start loading lower IDs first, but at most,
this is implementation-specific functionality for the JDK. Furthermore, although an object with a lower
identifier might be told to start loading first, the MediaTracker does nothing to ensure that it finishes
first.

public synchronized void addImage (Image image, int id, int width, int height)

The addImage() method tells the MediaTracker instance that it needs to track the loading
of image. The id is used as a grouping. Someone will eventually render the image at a scaled
size of width x height. If width and height are both -1, the image will be rendered
unscaled. If you forget to notify the MediaTracker that the image will be scaled and ask the
MediaTracker to waitForID (id), it is possible that the image may not be fully ready
when you try to draw it.

public void addImage (Image image, int id)

The addImage() method tells the MediaTracker instance that it needs to track the loading
of image. The id is used as a grouping. The image will be rendered at its actual size, without
scaling.

Removing images

Images that have finished loading are still watched by the MediaTracker. The removeImage()
methods, added in Java 1.1, allow you to remove objects from the MediaTracker. Once you no longer
care about an image (usually after waiting for it to load), you can remove it from the tracker. Getting rid
of loaded images results in better performance because the tracker has fewer objects to check. In Java
1.0, you can't remove an image from MediaTracker.

public void removeImage (Image image)

The removeImage() method tells the MediaTracker to remove all instances of image
from its tracking list.

public void removeImage (Image image, int id)

The removeImage() method tells the MediaTracker to remove all instances of image
from group id of its tracking list.

public void removeImage (Image image, int id, int width, int height)

This removeImage() method tells the MediaTracker to remove all instances of image
from group id and scale width x height of its tracking list.

Waiting

A handful of methods let you wait for a particular image, image group, all images, or a particular time
period. They enable you to be sure that an image has finished trying to load prior to continuing. The fact
that an image has finished loading does not imply it has successfully loaded. It is possible that an error
condition arose, which caused loading to stop. You should check the status of the image (or group) for
actual success.

public void waitForID (int id) throws InterruptedException

The waitForID() method blocks the current thread from running until the images added with

id finish loading. If the wait is interrupted, waitForID() throws an
InterruptedException.

public synchronized boolean waitForID (int id, long ms) throws InterruptedException

The waitForID() method blocks the current thread from running until the images added with
id finish loading or until ms milliseconds have passed. If all the images have loaded,
waitForID() returns true; if the timer has expired, it returns false, and one or more
images in the id set have not finished loading. If ms is 0, it waits until all images added with id
have loaded, with no timeout. If the wait is interrupted, waitForID() throws an
InterruptedException.

public void waitForAll () throws InterruptedException

The waitForAll() method blocks the current thread from running until all images controlled
by this MediaTracker finish loading. If the wait is interrupted, waitForAll() throws an
InterruptedException.

public synchronized boolean waitForAll (long ms) throws InterruptedException

The waitForAll() method blocks the current thread from running until all images controlled
by this MediaTracker finish loading or until ms milliseconds have passed. If all the images
have loaded, waitForAll() returns true; if the timer has expired, it returns false, and one
or more images have not finished loading. If ms is 0, it waits until all images have loaded, with no
timeout. When you interrupt the waiting, waitForAll() throws an
InterruptedException.

Checking status

Several methods are available to check on the status of images loading. None of these methods block, so
you can continue working while images are loading.

public boolean checkID (int id)

The checkID() method determines if all the images added with the id tag have finished
loading. The method returns true if all images have completed loading (successfully or
unsuccessfully). Since this can return true on error, you should also use isErrorID() to
check for errors. If loading has not completed, checkID() returns false. This method does
not force images to start loading.

public synchronized boolean checkID (int id, boolean load)

The checkID() method determines if all the images added with the id tag have finished
loading. If the load flag is true, any images in the id group that have not started loading yet
will start. The method returns true if all images have completed loading (successfully or
unsuccessfully). Since this can return true on error, you should also use isErrorID() to
check for errors. If loading has not completed, checkID() returns false.

public boolean checkAll ()

The checkAll() method determines if all images associated with the MediaTracker have
finished loading. The method returns true if all images have completed loading (successfully or
unsuccessfully). Since this can return true on error, you should also use isErrorAny() to
check for errors. If loading has not completed, checkAll() returns false. This method does
not force images to start loading.

public synchronized boolean checkAll (boolean load)

The checkAll() method determines if all images associated with the MediaTracker have
finished loading. If the load flag is true, any image that has not started loading yet will start.
The method returns true if all images have completed loading (successfully or unsuccessfully).
Since this can return true on error, you should also use isErrorAny() to check for errors. If
loading has not completed, checkAll() returns false.

public int statusID (int id, boolean load)

The statusID() method checks on the load status of the images in the id group. If there are
multiple images in the group, the results are ORed together. If the load flag is true, any image
in the id group that has not started loading yet will start. The return value is some combination of
the class constants LOADING, ABORTED, ERRORED, and COMPLETE.

public int statusAll (boolean load)

The statusAll() method determines the load status of all the images associated with the
MediaTracker. If this MediaTracker is watching multiple images, the results are ORed
together. If the load flag is true, any image that has not started loading yet will start. The
return value is some combination of the class constants LOADING, ABORTED, ERRORED, and
COMPLETE.

public synchronized boolean isErrorID (int id)

The isErrorId() method checks whether any media in the id group encountered an error
while loading. If any image resulted in an error, isErrorId() returns true; if there were no

errors, it returns false.

public synchronized boolean isErrorAny ()

The isErrorAny() method checks to see if any image associated with the MediaTracker
encountered an error. If there was an error, the method returns true; if none, false.

public synchronized Object[] getErrorsID (int id)

The getErrorsID() method returns an array of the objects that encountered errors in the
group ID during loading. If loading caused no errors, the method returns null. The return type is
an Object array instead of an Image array because MediaTracker will eventually support
additional media types.

public synchronized Object[] getErrorsAny ()

The getErrorsAny() method returns an array of all the objects that encountered an error
during loading. If there were no errors, the method returns null. The return type is an Object
array instead of an Image array because MediaTracker will eventually support additional
media types.

Using a MediaTracker

The init() method improves the AnimateApplet from Example 2.2 to ensure that images load
before the animation sequence starts. Waiting for images to load is particularly important if there is a
slow link between the computer on which the applet is running and the server for the image files. Note
that in a few cases, like interlaced GIF files, you might be willing to display an image before it has
completely loaded. However, judicious use of MediaTracker will give you much more control over
your program's behavior.

The new init() method creates a MediaTracker, puts all the images in the animation sequence
under the tracker's control, and then calls waitForAll() to wait until the images are loaded. Once the
images are loaded, it calls isErrorsAny() to make sure that the images loaded successfully.

public void init () {
 MediaTracker mt = new MediaTracker (this);
 im = new Image[numImages];
 for (int i=0;i<numImages;i++) {
 im[i] = getImage (getDocumentBase(), "clock"+i+".jpg");
 mt.addImage (im[i], i);
 }

 try {
 mt.waitForAll();
 if (mt.isErrorAny())
 System.out.println ("Error loading images");
 } catch (Exception e) {
 e.printStackTrace ();
 }
}

Image Fonts and Colors

Chapter 3
Fonts and Colors

3.2 FontMetrics

The abstract FontMetrics class provides the tools for calculating the actual width and height of text when displayed on
the screen. You can use the results to position objects around text or to provide special effects like shadows and underlining.

Like the Graphics class, FontMetrics is abstract. The run-time Java platform provides a concrete implementation of
FontMetrics. You don't have to worry about the actual class; it is guaranteed to implement all the methods of
FontMetrics. In case you're curious, on a Windows 95 platform, either the class
sun.awt.win32.Win32FontMetrics (JDK1.0) or the class sun.awt.windows.WFontMetrics (JDK1.1)
extends FontMetrics. On a UNIX/Motif platform, the class is sun.awt.motif.X11FontMetrics. With the
Macintosh, the class is sun.awt.macos.MacFontMetrics. If you're not using the JDK, the class names may be
different, but the principle still applies: you don't have to worry about the concrete class.

The FontMetrics Class

Variables

protected Font font

The font whose metrics are contained in this FontMetrics object; use the getFont() method to get the value.

Constructors

protected FontMetrics (Font font)

There is no visible constructor for FontMetrics. Since the class is abstract, you cannot create a FontMetrics
object. The way to get the FontMetrics for a font is to ask for it. Through the current graphics context, call the
method getGraphics().getFontMetrics() to retrieve the FontMetrics for the current font. If a
graphics context isn't available, you can get a FontMetrics object from the default Toolkit by calling the
method Toolkit.getDefaultToolkit().getFontMetrics (aFontObject).

Font height

Four variables describe the height of a font: leading (pronounced like the metal), ascent, descent, and height. Leading is the
amount of space required between lines of the same font. Ascent is the space above the baseline required by the tallest
character in the font. Descent is the space required below the baseline by the lowest descender (the "tail" of a character like
"y"). Height is the total of the three: ascent, baseline, and descent. Figure 3.1 shows these values graphically.

Figure 3.1: Font height metrics

[Graphic: Figure 3-1]

If that were the entire story, it would be simple. Unfortunately, it isn't. Some special characters (for example, capitals with
umlauts or accents) are taller than the "tallest" character in the font; so Java defines a value called maxAscent to account
for these. Similarly, some characters descend below the "greatest" descent, so Java defines a maxDescent to handle these
cases.

NOTE:

It seems that on Windows and Macintosh platforms there is no difference between the return values of getMaxAscent()
and getAscent(), or between getMaxDescent() and getDescent(). On UNIX platforms, they sometimes differ.
For developing truly portable applications, the max methods should be used where necessary.

public int getLeading ()

The getLeading()method retrieves the leading required for the FontMetrics of the font. The units for this
measurement are pixels.

public int getAscent ()

The getAscent()method retrieves the space above the baseline required for the tallest character in the font. The
units for this measurement are pixels. You cannot get the ascent value for a specific character.

public int getMaxAscent ()

getMaxAscent() retrieves the height above the baseline for the character that's really the tallest character in the
font, taking into account accents, umlauts, tildes, and other special marks. The units for this measurement are pixels.
If you are using only ordinary ASCII characters below 128 (i.e., the English language character set),
getMaxAscent() is not necessary.

If you're using getMaxAscent(), avoid getHeight(); getHeight() is based on getAscent() and
doesn't account for extra space.

For some fonts and platforms, getAscent() may include the space for the diacritical marks.

public int getDescent ()

The getDescent() method retrieves the space below the baseline required for the deepest character for the font.
The units for this measurement are pixels. You cannot get the descent value for a specific character.

public int getMaxDescent ()
public int getMaxDecent ()

Some fonts may have special characters that extend farther below the baseline than the value returned by
getDescent(). getMaxDescent() returns the real maximum descent for the font, in pixels. In most cases,
you can still use the getDescent() method; visually, it is okay for an occasional character to extend into the
space between lines. However, if it is absolutely, positively necessary that the descent space does not overlap with
the next line's ascent requirements, use getMaxDescent() and avoid getDescent() and getHeight().

An early beta release of the AWT API included the method getMaxDecent(). It is left for compatibility with
early beta code. Avoid using it; it is identical to getMaxDescent() in every way except spelling. Unfortunately,
it is not flagged as deprecated.

public int getHeight ()

The getHeight() method returns the sum of getDescent(), getAscent(), and getLeading(). In most
cases, this will be the distance between successive baselines when you are displaying multiple lines of text. The
height of a font in pixels is not necessarily the size of a font in points.

Don't use getHeight() if you are displaying characters with accents, umlauts, and other marks that increase the
character's height. In this case, compute the height yourself using the getMaxAscent() method. Likewise, you
shouldn't use the method getHeight() if you are using getMaxDescent() instead of getDescent().

Character width

In the horizontal dimension, positioning characters is relatively simple: you don't have to worry about ascenders and
descenders, you only have to worry about how far ahead to draw the next character after you have drawn the current one.
The "how far" is called the advance width of a character. For most cases, the advance width is the actual width plus the
intercharacter space. However, it's not a good idea to think in these terms; in many cases, the intercharacter space is actually
negative (i.e., the bounding boxes for two adjacent characters overlap). For example, consider an italic font. The top right
corner of one character probably extends beyond the character's advance width, overlapping the next character's bounding
box. (To see this, look back at Figure 3.1; in particular, look at the ll in O'Reilly.) If you think purely in terms of the
advance width (the amount to move horizontally after drawing a character), you won't run into trouble. Obviously, the
advance width depends on the character, unless you're using a fixed width font.

public int charWidth (char character)

This version of the charWidth() method returns the advance width of the given character in pixels.

public int charWidth (int character)

The charWidth() method returns the advance width of the given character in pixels. Note that the argument
has type int rather than char. This version is useful when overriding the Component.keyDown() method,
which gets the integer value of the character pressed as a parameter. With the KeyEvent class, you should use the
previous version with its getKeyChar() method.

public int stringWidth (String string)

The stringWidth() method calculates the advance width of the entire string in pixels. Among other things,

you can use the results to underline or center text within an area of the screen. Example 3.1 and Figure 3.2 show an
example that centers several text strings (taken from the command-line arguments) in a Frame.

Example 3.1: Centering Text in a Frame

import java.awt.*;
public class Center extends Frame {
 static String text[];
 private Dimension dim;
 static public void main (String args[]) {
 if (args.length == 0) {
 System.err.println ("Usage: java Center <some text>");
 return;
 }
 text = args;
 Center f = new Center();
 f.show();
 }
 public void addNotify() {
 super.addNotify();
 int maxWidth = 0;
 FontMetrics fm = getToolkit().getFontMetrics(getFont());
 for (int i=0;i<text.length;i++) {
 maxWidth = Math.max (maxWidth, fm.stringWidth(text[i]));
 }
 Insets inset = insets();
 dim = new Dimension (maxWidth + inset.left + inset.right,
 text.length*fm.getHeight() + inset.top + inset.bottom);
 resize (dim);
 }
 public void paint (Graphics g) {
 g.translate(insets().left, insets().top);
 FontMetrics fm = g.getFontMetrics();
 for (int i=0;i<text.length;i++) {
 int x,y;
 x = (size().width - fm.stringWidth(text[i]))/2;
 y = (i+1)*fm.getHeight()-1;
 g.drawString (text[i], x, y);
 }
 }
}

Figure 3.2: Centering text in a frame

[Graphic: Figure 3-2]

This application extends the Frame class. It stores its command-line arguments in the String array text[]. The

addNotify() method sizes the frame appropriately. It computes the size needed to display the arguments and resizes the
Frame accordingly. To compute the width, it takes the longest stringWidth() and adds the left and right insets. To
compute the height, it takes the current font's height, multiplies it by the number of lines to display, and adds insets. Then it
is up to the paint() method to use stringWidth() and getHeight() to figure out where to put each string.

public int charsWidth (char data[], int offset, int length)

The charsWidth() method allows you to calculate the advance width of the char array data, without first
converting data to a String and calling the stringWidth() method. The offset specifies the element of
data to start with; length specifies the number of elements to use. The first element of the array has an offset
of zero. If offset or length is invalid, charsWidth() throws the run-time exception
ArrayIndexOutOfBoundsException.

public int bytesWidth (byte data[], int offset, int length)

The bytesWidth() method allows you to calculate the advance width of the byte array data, without first
converting data to a String and calling the stringWidth()method. The offset specifies the element of
data to start with; length specifies the number of elements to use. The first element of the array has an offset
of zero. If offset or length is invalid, bytesWidth() throws the run-time exception
ArrayIndexOutOfBoundsException.

public int[] getWidths ()

The getWidths() method returns an integer array of the advance widths of the first 255 characters in the
FontMetrics font. getWidths() is very useful if you are continually looking up the widths of ASCII
characters. Obtaining the widths as an array and looking up individual character widths yourself results in less
method invocation overhead than making many calls to charWidth().

public int getMaxAdvance ()

The getMaxAdvance() method returns the advance pixel width of the widest character in the font. This allows
you to reserve enough space for characters before you know what they are. If you know you are going to display
only ASCII characters, you are better off calculating the maximum value returned from getWidths(). When
unable to determine the width in advance, the method getMaxAdvance() returns -1.

Miscellaneous methods

public Font getFont ()

The getFont() method returns the specific font for this FontMetrics instance.

public String toString ()

The toString() method of FontMetrics returns a string displaying the current font, ascent, descent, and
height. For example:

sun.awt.win32.Win32FontMetrics[font=java.awt.Font[family=TimesRoman,
name=TimesRoman,style=bolditalic,size=20]ascent=17, descent=6, height=24]

Because this is an abstract class, the concrete implementation could return something different.

Font Display Example

Example 3.2 displays all the available fonts in the different styles at 12 points. The code uses the FontMetrics methods
to ensure that there is enough space for each line. Figure 3.3 shows the results, using the Java 1.0 font names, on several
platforms.

Example 3.2: Font Display

import java.awt.*;
public class Display extends Frame {
 static String[] fonts;
 private Dimension dim;
 Display () {
 super ("Font Display");
 fonts = Toolkit.getDefaultToolkit().getFontList();
 }
 public void addNotify() {
 Font f;
 super.addNotify();
 int height = 0;
 int maxWidth = 0;
 final int vMargin = 5, hMargin = 5;
 for (int i=0;i<fonts.length;i++) {
 f = new Font (fonts[i], Font.PLAIN, 12);
 height += getHeight (f);
 f = new Font (fonts[i], Font.BOLD, 12);
 height += getHeight (f);
 f = new Font (fonts[i], Font.ITALIC, 12);
 height += getHeight (f);
 f = new Font (fonts[i], Font.BOLD | Font.ITALIC, 12);
 height += getHeight (f);
 maxWidth = Math.max (maxWidth, getWidth (f, fonts[i] + " BOLDITALIC"));
 }
 Insets inset = insets();
 dim = new Dimension (maxWidth + inset.left + inset.right + hMargin,
 height + inset.top + inset.bottom + vMargin);
 resize (dim);
 }
 static public void main (String args[]) {
 Display f = new Display();
 f.show();
 }
 private int getHeight (Font f) {
 FontMetrics fm = Toolkit.getDefaultToolkit().getFontMetrics(f);
 return fm.getHeight();
 }
 private int getWidth (Font f, String s) {
 FontMetrics fm = Toolkit.getDefaultToolkit().getFontMetrics(f);

 return fm.stringWidth(s);
 }
 public void paint (Graphics g) {
 int x = 0;
 int y = 0;
 g.translate(insets().left, insets().top);
 for (int i=0;i<fonts.length;i++) {
 Font plain = new Font (fonts[i], Font.PLAIN, 12);
 Font bold = new Font (fonts[i], Font.BOLD, 12);
 Font italic = new Font (fonts[i], Font.ITALIC, 12);
 Font bolditalic = new Font (fonts[i], Font.BOLD | Font.ITALIC, 12);
 g.setFont (plain);
 y += getHeight (plain);
 g.drawString (fonts[i] + " PLAIN", x, y);
 g.setFont (bold);
 y += getHeight (bold);
 g.drawString (fonts[i] + " BOLD", x, y);
 g.setFont (italic);
 y += getHeight (italic);
 g.drawString (fonts[i] + " ITALIC", x, y);
 g.setFont (bolditalic);
 y += getHeight (bolditalic);
 g.drawString (fonts[i] + " BOLDITALIC", x, y);
 }
 resize (dim);
 }
}

Figure 3.3: Fonts available with the Netscape Navigator 3.0 and Internet Explorer 3.0

[Graphic: Figure 3-3]

Fonts Color

Chapter 3
Fonts and Colors

3.3 Color

Not so long ago, color was a luxury; these days, color is a requirement. A program that uses only black and
white seems hopelessly old fashioned. AWT's Color class lets you define and work with Color objects.
When we discuss the Component class (see Chapter 5, Components), you will see how to use these color
objects, and our discussion of the SystemColor subclass (new to Java 1.1; discussed later in this chapter)
shows you how to control the colors that are painted on the screen.

A few words of warning: while colors give you the opportunity to make visually pleasing applications, they
also let you do things that are incredibly ugly. Resist the urge to go overboard with your use of color; it's easy
to make something hideous when you are trying to use every color in the palette. Also, realize that colors are
fundamentally platform dependent, and in a very messy way. Java lets you use the same Color objects on
any platform, but it can't guarantee that every display will treat the color the same way; the result depends on
everything from your software to the age of your monitor. What looks pink on one monitor may be red on
another. Furthermore, when running in an environment with a limited palette, AWT picks the available color
that is closest to what you requested. If you really care about appearance, there is no substitute for testing.

Color Methods

Constants

The Color class has predefined constants (all of type public static final Color) for frequently
used colors. These constants, their RGB values, and their HSB values (hue, saturation, brightness) are given in
Table 3.1.

Table 3.1: Comparison of RGB and HSB Colors

Color Red Green Blue Hue Saturation Brightness

black 0 0 0 0 0 0

blue 0 0 255 .666667 1 1

cyan 0 255 255 .5 1 1

darkGray 64 64 64 0 0 .25098

gray 128 128 128 0 0 .501961

green 0 255 0 .333333 1 1

lightGray 192 192 192 0 0 .752941

magenta 255 0 255 .833333 1 1

orange 255 200 0 .130719 1 1

pink 255 175 175 0 .313726 1

red 255 0 0 0 1 1

white 255 255 255 0 0 1

yellow 255 255 0 .166667 1 1

These constants are used like any other class variable: for example, Color.red is a constant Color object
representing the color red. Many other color constants are defined in the SystemColor class. Constructors

When you're not using a predefined constant, you create Color objects by specifying the color's red, green,
and blue components. Depending on which constructor you use, you can specify the components as integers
between 0 and 255 (most intense) or as floating point intensities between 0.0 and 1.0 (most intense). The result
is a 24-bit quantity that represents a color. The remaining 8 bits are used to represent transparency: that is, if
the color is painted on top of something, does whatever was underneath show through? The Color class
doesn't let you work with the transparency bits; all Color objects are opaque. However, you can use
transparency when working with images; this topic is covered in Chapter 12, Image Processing.

public Color (int red, int green, int blue)

This constructor is the most commonly used. You provide the specific red, green, and blue values
for the color. Valid values for red, green, and blue are between 0 and 255. The constructor
examines only the low-order byte of the integer and ignores anything outside the range, including the
sign bit.

public Color (int rgb)

This constructor allows you to combine all three variables in one parameter, rgb. Bits 16-23 represent
the red component, and bits 8-15 represent the green component. Bits 0-7 represent the blue
component. Bits 24-31 are ignored. Going from three bytes to one integer is fairly easy:

(((red & 0xFF) << 16) | ((green & 0xFF) << 8) | ((blue & 0xFF) << 0))

public Color (float red, float green, float blue)

This final constructor allows you to provide floating point values between 0.0 and 1.0 for each of red,
green, and blue. Values outside of this range yield unpredictable results.

Settings

public int getRed ()

The getRed() method retrieves the current setting for the red component of the color.

public int getGreen ()

The getGreen() method retrieves the current setting for the green component of the color.

public int getBlue ()

The getBlue() method retrieves the current setting for the blue component of the color.

public int getRGB ()

The getRGB() method retrieves the current settings for red, green, and blue in one combined value.
Bits 16-23 represent the red component. Bits 8-15 represent the green component. Bits 0-7 represent
the blue component. Bits 24-31 are the transparency bits; they are always 0xff (opaque) when using
the default RGB ColorModel.

public Color brighter ()

The brighter() method creates a new Color that is somewhat brighter than the current color. This
method is useful if you want to highlight something on the screen.

NOTE:

Black does not get any brighter.

public Color darker ()

The darker() method returns a new Color that is somewhat darker than the current color. This
method is useful if you are trying to de-emphasize an object on the screen. If you are creating your own
Component, you can use a darker() Color to mark it inactive.

Color properties

Color properties are very similar to Font properties. You can use system properties (or resource files) to
allow users to select colors for your programs. The settings have the form 0xRRGGBB, where RR is the red
component of the color, GG represents the green component, and BB represents the blue component. 0x
indicates that the number is in hexadecimal. If you (or your user) are comfortable using decimal values for
colors (0x112233 is 1122867 in decimal), you can, but then it is harder to see the values of the different

components.

NOTE:

The location of the system properties file depends on the run-time environment and version you are using.
Ordinarily, the file will go into a subdirectory of the installation directory or, for environment's where users
have home directories, in a subdirectory for the user. Sun's HotJava, JDK, and appletviewer tools use the
properties file in the .hotjava directory.

Most browsers do not permit modifying properties, so there is no file.

Java 1.1 adds the idea of "resource files," which are syntactically similar to properties files. Resource files are
then placed on the server or within a directory found in the CLASSPATH. Updating the properties file is no
longer recommended.

For example, consider a screen that uses four colors: one each for the foreground, the background, inactive
components, and highlighted text. In the system properties file, you allow users to select colors by setting the
following properties:

myPackage.myClass.foreground
myPackage.myClass.background
myPackage.myClass.inactive
myPackage.myClass.highlight

One particular user set two:

myPackage.myClass.foreground=0xff00ff #magenta
myPackage.myClass.background=0xe0e0e0 #light gray

These lines tell the program to use magenta as the foreground color and light gray for the background. The
program will use its default colors for inactive components and highlighted text.

public static Color getColor (String name)

The getColor() method gets the color specified by the system property name. If name is not a
valid system property, getColor() returns null. If the property value does not convert to an
integer, getColor() returns null.

For the properties listed above, if you call getColor() with name set to the property
myPackage.myClass.foreground, it returns a magenta Color object. If called with name set
to myPackage.myClass.inactive, getColor() returns null.

public static Color getColor (String name, Color defaultColor)

The getColor() method gets the color specified by the system property name. This version of the
getColor() method returns defaultColor if name is not a valid system property or the
property's value does not convert to an integer.

For the previous example, if getColor() is called with name set to
myPackage.myClass.inactive, the getColor() method returns the value of
defaultColor. This allows you to provide defaults for properties the user doesn't wish to set
explicitly.

public static Color getColor (String name, int defaultColor)

This getColor() method gets the color specified by the system property name. This version of the
getColor() method returns defaultColor if name is not a valid system property or the
property's value does not convert to an integer. The default color is specified as an integer in which bits
16-23 represent the red component, 8-15 represent the green component, and 0-7 represent the blue
component. Bits 24-31 are ignored. If the property value does not convert to an integer,
defaultColor is returned.

public static Color decode (String name)

The decode() method provides an explicit means to decipher color property settings, regardless of
where the setting comes from. (The getColor() method can decipher settings but only if they're in
the system properties file.) In particular, you can use decode() to look up color settings in a resource
file. The format of name is the same as that used by getColor(). If the contents of name do not
translate to a 24-bit integer, the NumberFormatException run-time exception is thrown. To
perform the equivalent of getColor(`myPackage.myClass.foreground`), without using
system properties, see the following example. For a more extensive example using resource files, see
Appendix A.

// Java 1.1 only
InputStream is = instance.getClass().getResourceAsStream("propfile");
Properties p = new Properties();
try {
 p.load (is);
 Color c = Color.decode(p.getProperty("myPackage.myClass.foreground"));
} catch (IOException e) {
 System.out.println ("error loading props...");
}

Hue, saturation, and brightness

So far, the methods we have seen work with a color's red, green, and blue components. There are many other
ways to represent colors. This group of methods allows you to work in terms of the HSB (hue, saturation,
brightness) model. Hue represents the base color to work with: working through the colors of the rainbow, red

is represented by numbers immediately above 0; magenta is represented by numbers below 1; white is 0; and
black is 1. Saturation represents the color's purity, ranging from completely unsaturated (either white or black
depending upon brightness) to totally saturated (just the base color present). Brightness is the desired level of
luminance, ranging from black (0) to the maximum amount determined by the saturation level.

public static float[] RGBtoHSB (int red, int green, int blue, float[] hsbvalues)

The RGBtoHSB() method allows you to convert a specific red, green, blue value to the hue,
saturation, and brightness equivalent. RGBtoHSB() returns the results in two different ways: the
parameter hsbvalues and the method's return value. The values of these are the same. If you do not
want to pass an hsbvalues array parameter, pass null. In both the parameter and the return value,
the three components are placed in the array as follows:

hsbvalues[0] contains hue

hsbvalues[1] contains saturation

hsbvalues[2] contains brightness

public static Color getHSBColor (float hue, float saturation, float brightness)

The getHSBColor() method creates a Color object by using hue, saturation, and
brightness instead of red, green, and blue values.

public static int HSBtoRGB (float hue, float saturation, float brightness)

The HSBtoRGB() method converts a specific hue, saturation, and brightness to a Color
and returns the red, green, and blue values as an integer. As with the constructor, bits 16-23
represent the red component, 8-15 represent the green component, and 0-7 represent the blue
component. Bits 24-31 are ignored.

Miscellaneous methods

public int hashCode ()

The hashCode() method returns a hash code for the color. The hash code is used whenever a color is
used as a key in a Hashtable.

public boolean equals (Object o)

The equals() method overrides the equals() method of the Object to define equality for
Color objects. Two Color objects are equivalent if their red, green, and blue values are equal.

public String toString ()

The toString() method of Color returns a string showing the color's red, green, and blue settings.
For example System.out.println (Color.orange) would result in the following:

java.awt.Color[r=255,g=200,b=0]

FontMetrics SystemColor

Chapter 3
Fonts and Colors

3.4 SystemColor

In Java 1.1, AWT provides access to desktop color schemes, or themes. To give you an idea of how these
themes work, with the Windows Standard scheme for the Windows 95 desktop, buttons have a gray
background with black text. If you use the control panel to change to a High Contrast Black scheme, the
button's background becomes black and the text white. Prior to 1.1, Java didn't know anything about
desktop colors: all color values were hard coded. If you asked for a particular shade of gray, you got that
shade, and that was it; applets and applications had no knowledge of the desktop color scheme in effect,
and therefore, wouldn't change in response to changes in the color scheme.

Starting with Java 1.1, you can write programs that react to changes in the color scheme: for example, a
button's color will change automatically when you use the control panel to change the color scheme. To
do so, you use a large number of constants that are defined in the SystemColor class. Although these
constants are public static final, they actually have a very strange behavior. Your program is not
allowed to modify them (like any other constant). However, their initial values are loaded at run-time,
and their values may change, corresponding to changes in the color scheme. This has one important
consequence for programmers: you should not use equals()to compare a SystemColor with a
"regular" Color; use the getRGB() methods of the colors you are comparing to ensure that you
compare the current color value.[1] Using Desktop Colors contains a usage example.

[1] The omission of an equals() method that can properly compare a SystemColor
with a Color is unfortunate.

Because SystemColor is a subclass of Color, you can use a SystemColor anywhere you can use a
Color object. You will never create your own SystemColor objects; there is no public constructor.
The only objects in this class are the twenty or so SystemColor constants.

SystemColor Methods

Constants

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch03_05.htm

There are two sets of constants within SystemColor. The first set provides names for indices into the
internal system color lookup table; you will probably never need to use these. All of them have
corresponding constants in the second set, except SystemColor.NUM_COLORS, which tells you how
many SystemColor constants are in the second set.

public final static int ACTIVE_CAPTION

public final static int ACTIVE_CAPTION_BORDER

public final static int ACTIVE_CAPTION_TEXT

public final static int CONTROL

public final static int CONTROL_DK_SHADOW

public final static int CONTROL_HIGHLIGHT

public final static int CONTROL_LT_HIGHLIGHT

public final static int CONTROL_SHADOW

public final static int CONTROL_TEXT

public final static int DESKTOP

public final static int INACTIVE_CAPTION

public final static int INACTIVE_CAPTION_BORDER

public final static int INACTIVE_CAPTION_TEXT

public final static int INFO

public final static int INFO_TEXT

public final static int MENU

public final static int MENU_TEXT

public final static int NUM_COLORS

public final static int SCROLLBAR

public final static int TEXT

public final static int TEXT_HIGHLIGHT

public final static int TEXT_HIGHLIGHT_TEXT

public final static int TEXT_INACTIVE_TEXT

public final static int TEXT_TEXT

public final static int WINDOW

public final static int WINDOW_BORDER

public final static int WINDOW_TEXT

The second set of constants is the set of SystemColors you use when creating Component objects,
to ensure they appear similar to other objects in the user's desktop environment. By using these symbolic
constants, you can create new objects that are well integrated into the user's desktop environment,

making it easier for the user to work with your program.

public final static SystemColor activeCaption

The activeCaption color represents the background color for the active window's title area.
This is automatically set for you when you use Frame.

public final static SystemColor activeCaptionBorder

The activeCaptionBorder color represents the border color for the active window.

public final static SystemColor activeCaptionText

The activeCaptionText color represents the text color to use for the active window's title.

public final static SystemColor control

The control color represents the background color for the different components. If you are
creating your own Component by subclassing Canvas, this should be the background color of
the new object.

public final static SystemColor controlDkShadow

The controlDkShadow color represents a dark shadow color to be used with control and
controlShadow to simulate a three-dimensional appearance. Ordinarily, when not depressed,
the controlDkShadow should be used for the object's bottom and right edges. When
depressed, controlDkShadow should be used for the top and left edges.

public final static SystemColor controlHighlight

The controlHighlight color represents an emphasis color for use in an area or an item of a
custom component.

public final static SystemColor controlLtHighlight

The controlLtHighlight color represents a lighter emphasis color for use in an area or an
item of a custom component.

public final static SystemColor controlShadow

The controlShadow color represents a light shadow color to be used with control and
controlDkShadow to simulate a three-dimensional appearance. Ordinarily, when not
depressed, the controlShadow should be used for the top and left edges. When depressed,
controlShadow should be used for the bottom and right edges.

public final static SystemColor controlText

The controlText color represents the text color of a component. Before drawing any text in
your own components, you should change the color to controlText with a statement like this:

g.setColor(SystemColor.controlText);

public final static SystemColor desktop

The desktop color represents the background color of the desktop workspace.

public final static SystemColor inactiveCaption

The inactiveCaption color represents the background color for an inactive window's title
area.

public final static SystemColor inactiveCaptionBorder

The inactiveCaptionBorder color represents the border color for an inactive window.

public final static SystemColor inactiveCaptionText

The inactiveCaptionText color represents the text color to use for each inactive window's
title.

public final static SystemColor info

The info color represents the background color for mouse-over help text. When a mouse dwells
over an object, any pop-up help text should be displayed in an area of this color. In the Microsoft
Windows world, these are also called "tool tips."

public final static SystemColor infoText

The infoText color represents the text color for mouse-over help text.

public final static SystemColor menu

The menu color represents the background color of deselected MenuItem-like objects. When the
menu is selected, the textHighlight color is normally the background color.

public final static SystemColor menuText

The menuText color represents the color of the text on deselected MenuItem-like objects.
When a menu is selected, the textHighlightText color is normally the text color. If the
menu happens to be inactive, textInactiveText would be used.

public final static SystemColor scrollbar

The scrollbar color represents the background color for scrollbars. This color is used by
default with Scrollbar, ScrollPane, TextArea, and List objects.

public final static SystemColor textHighlight

The textHighlight color represents the background color of highlighted text; for example, it
is used for the selected area of a TextField or a selected MenuItem.

public final static SystemColor textHighlightText

The textHighlightText color represents the text color of highlighted text.

public final static SystemColor textInactiveText

The textInactiveText color represents the text color of an inactive component.

public final static SystemColor textText

The textText color represents the color of text in TextComponent objects.

public final static SystemColor window

The window color represents the background color of the window's display area. For an applet,
this would be the display area specified by the WIDTH and HEIGHT values of the <APPLET>
tag (setBackground(SystemColor.window)), although you would probably use it more

for the background of a Frame.

public final static SystemColor windowBorder

The windowBorder color represents the color of the borders around a window. With AWT,
instances of Window do not have borders, but instances of Frame and Dialog do.

public final static SystemColor windowText

The windowText color represents the color of the text drawn within the window.

NOTE:

Every platform does not fully support every system color. However, on platforms that do not provide
natural values for some constants, Java selects reasonable alternate colors.

If you are going to be working only with Java's prefabricated components (Button, List, etc.), you
don't have to worry about system colors; the component's default colors will be set appropriately. You
are most likely to use system colors if you are creating your own components. In this case, you will use
system colors to make your component emulate the behavior of other components; for example, you will
use controlText as the color for drawing text, activeCaption as the background for the caption
of an active window, and so on. Constructors

There are no public constructors for SystemColor. If you need to create a new color, use the Color
class described previously. Miscellaneous methods

public int getRGB ()

The getRGB() method retrieves the current settings for red, green, and blue in one combined
value, like Color. However, since the color value is dynamic, getRGB() needs to look up the
value in an internal table. Therefore, SystemColor overrides Color.getRGB().

public String toString ()

The toString() method of SystemColor returns a string showing the system color's index
into its internal table. For example, the following string is returned by
SystemColor.text.toString():

java.awt.SystemColor[i=12]

Color Displaying Colors

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch03_05.htm

Chapter 3
Fonts and Colors

3.6 Using Desktop Colors

Example 3.4 demonstrates how to use the desktop color constants introduced in Java 1.1. If you run this
example under an earlier release, an uncatchable class verifier error will occur.

NOTE:

Notice that the border lines are drawn from 0 to width-1 or height-1. This is to draw lines of length
width and height, respectively.

Example 3.4: Desktop Color Usage

// Java 1.1 only
import java.awt.*;
public class TextBox3D extends Canvas {
 String text;
 public TextBox3D (String s, int width, int height) {
 super();
 text=s;
 setSize(width, height);
 }
 public synchronized void paint (Graphics g) {
 FontMetrics fm = g.getFontMetrics();
 Dimension size=getSize();
 int x = (size.width - fm.stringWidth(text))/2;
 int y = (size.height - fm.getHeight())/2;
 g.setColor (SystemColor.control);
 g.fillRect (0, 0, size.width, size.height);
 g.setColor (SystemColor.controlShadow);
 g.drawLine (0, 0, 0, size.height-1);
 g.drawLine (0, 0, size.width-1, 0);

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch03_05.htm

 g.setColor (SystemColor.controlDkShadow);
 g.drawLine (0, size.height-1, size.width-1, size.height-1);
 g.drawLine (size.width-1, 0, size.width-1, size.height-1);
 g.setColor (SystemColor.controlText);
 g.drawString (text, x, y);
 }
}

Displaying Colors Events

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch03_05.htm

Chapter 4
Events

4.2 The Event Class

An instance of the Event class is a platform-independent representation that encapsulates the specifics
of an event that happens within the Java 1.0 model. It contains everything you need to know about an
event: who, what, when, where, and why the event happened. Note that the Event class is not used in
the Java 1.1 event model; instead, Java 1.1 has an AWTEvent class, with subclasses for different event
types.

When an event occurs, you decide whether or not to process the event. If you decide against reacting, the
event passes through your program quickly without anything happening. If you decide to handle the
event, you must deal with it quickly so the system can process the next event. If handling the event
requires a lot of work, you should move the event-handling code into its own thread. That way, the
system can process the next event while you go off and process the first. If you do not multithread your
event processing, the system becomes slow and unresponsive and could lose events. A slow and
unresponsive program frustrates users and may convince them to find another solution for their
problems.

Variables

Event contains ten instance variables that offer all the specific information for a particular event.
Instance variables

public Object arg

The arg field contains some data regarding the event, to be interpreted by the recipient. For
example, if the user presses Return within a TextField, an Event with an id of
ACTION_EVENT is generated with the TextField as the target and the string within it as
the arg. See a description of each specific event to find out what its arg means.

public int clickCount

The clickCount field allows you to check for double clicking of the mouse. This field is
relevant only for MOUSE_DOWN events. There is no way to specify the time delta used to
determine how quick a double-click needs to be, nor is there a maximum value for
clickCount. If a user quickly clicks the mouse four times, clickCount is four. Only the
passage of a system-specific time delta will reset the value so that the next MOUSE_DOWN is the
first click. The incrementing of clickCount does not care which mouse button is pressed.

public Event evt

The evt field does not appear to be used anywhere but is available if you wish to pass around a
linked list of events. Then your program can handle this event and tell the system to deal with the
next one (as demonstrated in the following code), or you can process the entire chain yourself.

public boolean mouseDown (Event e, int x, int y) {
 System.out.println ("Coordinates: " + x + "-" + y);
 if (e.evt != null)
 postEvent (e.evt);
 return true;
}

public int id

The id field of Event contains the identifier of the event. The system-generated events are the
following Event constants:

WINDOW_DESTROY MOUSE_ENTER

WINDOW_EXPOSE MOUSE_EXIT

WINDOW_ICONIFY MOUSE_DRAG

WINDOW_DEICONIFY SCROLL_LINE_UP

KEY_PRESS SCROLL_LINE_DOWN

KEY_RELEASE SCROLL_PAGE_UP

KEY_ACTION SCROLL_PAGE_DOWN

KEY_ACTION_RELEASE SCROLL_ABSOLUTE

MOUSE_DOWN LIST_SELECT

MOUSE_UP LIST_DESELECT

MOUSE_MOVE ACTION_EVENT

As a user, you can create your own event types and store your own unique event ID here. In Java
1.0, there is no formal way to prevent conflicts between your events and system events, but using

a negative IO is a good ad-hoc method. It is up to you to check all the user events generated in
your program in order to avoid conflicts among user events.

public int key

For keyboard-related events, the key field contains the integer representation of the keyboard
element that caused the event. Constants are available for the keypad keys. To examine key as a
character, just cast it to a char. For nonkeyboard-related events, the value is zero.

pubic int modifiers

The modifiers field shows the state of the modifier keys when the event happened. A flag is
set for each modifier key pressed by the user when the event happened. Modifier keys are Shift,
Control, Alt, and Meta. Since the middle and right mouse key are indicated in a Java event by a
modifier key, one reason to use the modifiers field is to determine which mouse button
triggered an event. See Working With Mouse Buttons in Java 1.0 for an example.

public Object target

The target field contains a reference to the object that is the cause of the event. For example, if
the user selects a button, the button is the target of the event. If the user moves the mouse into a
Frame, the Frame is the target. The target indicates where the event happened, not the
component that is dealing with it.

public long when

The when field contains the time of the event in milliseconds. The following code converts this
long value to a Date to examine its contents:

Date d = new Date (e.when);

public int x
public int y

The x and y fields show the coordinates where the event happened. The coordinates are always
relative to the top left corner of the target of the event and get translated based on the top left
corner of the container as the event gets passed through the containing components. (See the
previous Identifying the Target for an example of this translation.) It is possible for either or both
of these to be outside the coordinate space of the applet (e.g., if user quickly moves the mouse
outside the applet).

Constants

Numerous constants are provided with the Event class. Several designate which event happened (the
why). Others are available to help in determining the function key a user pressed (the what). And yet
more are available to make your life easier.

When the system generates an event, it calls a handler method for it. To deal with the event, you have to
override the appropriate method. The different event type sections describe which methods you override.
Key constants

These constants are set when a user presses a key. Most of them correspond to function and keypad keys;
since such keys are generally used to invoke an action from the program or the system, Java calls them
action keys and causes them to generate a different Event type (KEY_ACTION) from regular
alphanumeric keys (KEY_PRESS).

Table 4.2 shows the constants used to represent keys and the event type that uses each constant. The
values, which are all declared public static final int, appear in the key variable of the
event instance. A few keys represent ASCII characters that have string equivalents such as \n. Black

stars () mark the constants that are new in Java 1.1; they can be used with the 1.0 event model,
provided that you are running Java 1.1. Java 1.1 events use a different set of key constants defined in the
KeyEvent class.

Table 4.2: Constants for Keys in Java 1.0

Constant Event Type Constant Event Type

HOME KEY_ACTION F9 KEY_ACTION

END KEY_ACTION F10 KEY_ACTION

PGUP KEY_ACTION F11 KEY_ACTION

PGDN KEY_ACTION F12 KEY_ACTION

UP KEY_ACTION PRINT_SCREEN KEY_ACTION

DOWN KEY_ACTION SCROLL_LOCK KEY_ACTION

LEFT KEY_ACTION CAPS_LOCK KEY_ACTION

RIGHT KEY_ACTION NUM_LOCK KEY_ACTION

F1 KEY_ACTION PAUSE KEY_ACTION

F2 KEY_ACTION INSERT KEY_ACTION

F3 KEY_ACTION ENTER (\n) KEY_PRESS

F4 KEY_ACTION BACK_SPACE (\b) KEY_PRESS

F5 KEY_ACTION TAB (\t) KEY_PRESS

F6 KEY_ACTION ESCAPE KEY_PRESS

F7 KEY_ACTION DELETE KEY_PRESS

F8 KEY_ACTION

Modifiers

Modifiers are keys like Shift, Control, Alt, or Meta. When a user presses any key or mouse button that
generates an Event, the modifiers field of the Event instance is set. You can check whether any
modifier key was pressed by ANDing its constant with the modifiers field. If multiple modifier keys
were down at the time the event occurred, the constants for the different modifiers are ORed together in
the field.

public static final int ALT_MASK
public static final int CTRL_MASK
public static final int META_MASK
public static final int SHIFT_MASK

When reporting a mouse event, the system automatically sets the modifiers field. Since Java is
advertised as supporting the single-button mouse model, all buttons generate the same mouse events, and
the system uses the modifiers field to differentiate between mouse buttons. That way, a user with a
one- or two-button mouse can simulate a three-button mouse by clicking on his mouse while holding
down a modifier key. Table 4.3 lists the mouse modifier keys; an applet in Working With Mouse Buttons
in Java 1.0 demonstrates how to differentiate between mouse buttons.

Table 4.3: Mouse Button Modifier
Keys

Mouse Button Modifier Key

Left mouse button None

Middle mouse button ALT_MASK

Right mouse button META_MASK

For example, if you have a three-button mouse, and click the right button, Java generates some kind of
mouse event with the META_MASK set in the modifiers field. If you have a one-button mouse, you
can generate the same event by clicking the mouse while depressing the Meta key.

NOTE:

If you have a multibutton mouse and do an Alt+right mouse or Meta+left mouse, the results are platform
specific. You should get a mouse event with two masks set.

Key events

The component peers deliver separate key events when a user presses and releases nearly any key.
KEY_ACTION and KEY_ACTION_RELEASE are for the function and arrow keys, while KEY_PRESS
and KEY_RELEASE are for the remaining control and alphanumeric keys.

public static final int KEY_ACTION

The peers deliver the KEY_ACTION event when the user presses a function or keypad key. The
default Component.handleEvent() method calls the keyDown() method for this event. If
the user holds down the key, this event is generated multiple times. If you are using the 1.1 event
model, the interface method KeyListener.keyPressed() handles this event.

public static final int KEY_ACTION_RELEASE

The peers deliver the KEY_ACTION_RELEASE event when the user releases a function or
keypad key. The default handleEvent() method for Component calls the keyUp() method
for this event. If you are using the 1.1 event model, the KeyListener.keyReleased()
interface method handles this event.

public static final int KEY_PRESS

The peers deliver the KEY_PRESS event when the user presses an ordinary key. The default
Component.handleEvent() method calls the keyDown() method for this event. Holding
down the key causes multiple KEY_PRESS events to be generated. If you are using the 1.1 event
model, the interface method KeyListener.keyPressed() handles this event.

public static final int KEY_RELEASE

The peers deliver KEY_RELEASE events when the user releases an ordinary key. The default
handleEvent() method for Component calls the keyUp() method for this event. If you are
using the 1.1 event model, the interface method KeyListener.keyReleased() handles this
event.

NOTE:

If you want to capture arrow and keypad keys under the X Window System, make sure the key codes are
set up properly, using the xmodmap command.

NOTE:

Some platforms generate events for the modifier keys by themselves, whereas other platforms require
modifier keys to be pressed with another key. For example, on a Windows 95 platform, if Ctrl+A is
pressed, you would expect one KEY_PRESS and one KEY_RELEASE. However, there is a second
KEY_RELEASE for the Control key. Under Motif, you get only a single KEY_RELEASE.

Window events

Window events happen only for components that are children of Window. Several of these events are
available only on certain platforms. Like other event types, the id variable holds the value of the specific
event instance.

public static final int WINDOW_DESTROY

The peers deliver the WINDOW_DESTROY event whenever the system tells a window to destroy
itself. This is usually done when the user selects the window manager's Close or Quit window
menu option. By default, Frame instances do not deal with this event, and you must remember
to catch it yourself. If you are using the 1.1 event model, the
WindowListener.windowClosing() interface method handles this event.

public static final int WINDOW_EXPOSE

The peers deliver the WINDOW_EXPOSE event whenever all or part of a window becomes visible.
To find out what part of the window has become uncovered, use the getClipRect() method
(or getClipBounds() in Java version 1.1) of the Graphics parameter to the paint()
method. If you are using the 1.1 event model, the WindowListener.windowOpening()
interface method most closely corresponds to the handling of this event.

public static final int WINDOW_ICONIFY

The peers deliver the WINDOW_ICONIFY event when the user iconifies the window. If you are
using the 1.1 event model, the interface method WindowListener.windowIconified()
handles this event.

public static final int WINDOW_DEICONIFY

The peers deliver the WINDOW_DEICONIFY event when the user de-iconifies the window. If you

are using the 1.1 event model, the interface method
WindowListener.windowDeiconified() handles this event.

public static final int WINDOW_MOVED

The WINDOW_MOVED event signifies that the user has moved the window. If you are using the
1.1 event model, the ComponentListener.componentMoved() interface method handles
this event.

Mouse events

The component peers deliver mouse events when a user presses or releases a mouse button. Events are
also delivered whenever the mouse moves. In order to be platform independent, Java pretends that all
mice have a single button. If you press the second or third button, Java generates a regular mouse event
but sets the event's modifers field with a flag that indicates which button was pressed. If you press the
left button, no modifiers flags are set. Pressing the center button sets the ALT_MASK flag; pressing
the right button sets the META_MASK flag. Therefore, you can determine which mouse button was
pressed by looking at the Event.modifiers attribute. Furthermore, users with a one-button or two-
button mouse can generate the same events by pressing a mouse button while holding down the Alt or
Meta keys.

NOTE:

Early releases of Java (1.0.2 and earlier) only propagated mouse events from Canvas and Container
objects. With the 1.1 event model, the events that different components process are better defined.

public static final int MOUSE_DOWN

The peers deliver the MOUSE_DOWN event when the user presses any mouse button. This action
must occur over a component that passes along the MOUSE_DOWN event. The default
Component.handleEvent() method calls the mouseDown() method for this event. If you
are using the 1.1 event model, the MouseListener.mousePressed() interface method
handles this event.

public static final int MOUSE_UP

The peers deliver the MOUSE_UP event when the user releases the mouse button. This action must
occur over a component that passes along the MOUSE_UP event. The default handleEvent()
method for Component calls the mouseUp() method for this event. If you are using the 1.1
event model, the interface method MouseListener.mouseReleased() handles this event.

public static final int MOUSE_MOVE

The peers deliver the MOUSE_MOVE event whenever the user moves the mouse over any part of
the applet. This can happen many, many times more than you want to track, so make sure you
really want to do something with this event before trying to capture it. (You can also capture
MOUSE_MOVE events and without losing much, choose to deal with only every third or fourth
movement.) The default handleEvent() method calls the mouseMove() method for the
event. If you are using the 1.1 event model, the interface method
MouseMotionListener.mouseMoved() handles this event.

public static final int MOUSE_DRAG

The peers deliver the MOUSE_DRAG event whenever the user moves the mouse over any part of
the applet with a mouse button depressed. The default method handleEvent() calls the
mouseDrag() method for the event. If you are using the 1.1 event model, the interface method
MouseMotionListener.mouseDragged() handles this event.

public static final int MOUSE_ENTER

The peers deliver the MOUSE_ENTER event whenever the cursor enters a component. The default
handleEvent() method calls the mouseEnter() method for the event. If you are using the
1.1 event model, the interface method MouseListener.mouseEntered() handles this
event.

public static final int MOUSE_EXIT

The peers deliver the MOUSE_EXIT event whenever the cursor leaves a component. The default
handleEvent() method calls the mouseExit() method for the event. If you are using the
1.1 event model, the interface method MouseListener.mouseExited() handles this event.

Scrolling events

The peers deliver scrolling events for the Scrollbar component. The objects that have a built-in
scrollbar (like List, ScrollPane, and TextArea) do not generate these events. No default methods
are called for any of the scrolling events. They must be dealt with in the handleEvent() method of
the Container or a subclass of the Scrollbar. You can determine which particular event occurred
by checking the id variable of the event, and find out the new position of the thumb by looking at the
arg variable or calling getValue() on the scrollbar. See also the description of the
AdjustmentListener interface later in this chapter.

public static final int SCROLL_LINE_UP

The scrollbar peers deliver the SCROLL_LINE_UP event when the user presses the arrow

pointing up for the vertical scrollbar or the arrow pointing left for the horizontal scrollbar. This
decreases the scrollbar setting by one back toward the minimum value. If you are using the 1.1
event model, the interface method
AdjustmentListener.adjustmentValueChanged() handles this event.

public static final int SCROLL_LINE_DOWN

The peers deliver the SCROLL_LINE_DOWN event when the user presses the arrow pointing
down for the vertical scrollbar or the arrow pointing right for the horizontal scrollbar. This
increases the scrollbar setting by one toward the maximum value. If you are using the 1.1 event
model, the interface method AdjustmentListener.adjustmentValueChanged()
handles this event.

public static final int SCROLL_PAGE_UP

The peers deliver the SCROLL_PAGE_UP event when the user presses the mouse with the cursor
in the area between the slider and the decrease arrow. This decreases the scrollbar setting by the
paging increment, which defaults to 10, back toward the minimum value. If you are using the 1.1
event model, the interface method
AdjustmentListener.adjustmentValueChanged() handles this event.

public static final int SCROLL_PAGE_DOWN

The peers deliver the SCROLL_PAGE_DOWN event when the user presses the mouse with the
cursor in the area between the slider and the increase arrow. This increases the scrollbar setting by
the paging increment, which defaults to 10, toward the maximum value. If you are using the 1.1
event model, the interface method
AdjustmentListener.adjustmentValueChanged() handles this event.

public static final int SCROLL_ABSOLUTE

The peers deliver the SCROLL_ABSOLUTE event when the user drags the slider part of the
scrollbar. There is no set time period or distance between multiple SCROLL_ABSOLUTE events.
If you are using the Java version 1.1 event model, the
AdjustmentListener.adjustmentValueChanged() interface method handles this
event.

public static final int SCROLL_BEGIN

The SCROLL_BEGIN event is not delivered by peers, but you may wish to use it to signify when
a user drags the slider at the beginning of a series of SCROLL_ABSOLUTE events.

SCROLL_END, described next, would then be used to signify the end of the series.

public static final int SCROLL_END

The SCROLL_END event is not delivered by peers, but you may wish to use it to signify when a
user drags the slider at the end of a series of SCROLL_ABSOLUTE events. SCROLL_BEGIN,
described previously, would have been used to signify the beginning of the series.

List events

Two events specific to the List class are passed along by the peers. They signify when the user has
selected or deselected a specific choice in the List. It is not ordinarily necessary to capture these events,
because the peers deliver the ACTION_EVENT when the user double-clicks on a specific item in the
List and it is this ACTION_EVENT that triggers something to happen. However, if there is reason to do
something when the user has just single-clicked on a choice, these events may be useful. An example of
how they would prove useful is if you are displaying a list of filenames with the ability to preview files
before loading. Single selection would preview, double-click would load, and deselect would stop
previewing.

No default methods are called for any of the list events. They must be dealt with in the
handleEvent() method of the Container of the List or a subclass of the List. You can
determine which particular event occurred by checking the id variable of the event.

public static final int LIST_SELECT

The peers deliver the LIST_SELECT event when the user selects an item in a List. If you are
using the 1.1 event model, the interface method ItemListener.itemStateChanged()
handles this event.

public static final int LIST_DESELECT

The peers deliver the LIST_DESELECT event when an item in a List has been deselected. This
is generated only if the List permits multiple selections. If you are using the 1.1 event model,
the ItemListener.itemStateChanged() interface method handles this event.

Focus events

The peers deliver focus events when a component gains (GOT_FOCUS) or loses (LOST_FOCUS) the
input focus. No default methods are called for the focus events. They must be dealt with in the
handleEvent() method of the Container of the component or a subclass of the component. You
can determine which particular event occurred by checking the id variable of the event.

NOTE:

Early releases of Java (1.0.2 and before) did not propagate focus events on all platforms. This is fixed in
release 1.1 of Java. Still, you should avoid capturing focus events if you want to write portable 1.0 code.

public static final int GOT_FOCUS

The peers deliver the GOT_FOCUS event when a component gets the input focus. If you are using
the 1.1 event model, the FocusListener.focusGained() interface method handles this
event.

public static final int LOST_FOCUS

The peers deliver the LOST_FOCUS event when a component loses the input focus. If you are
using the 1.1 event model, the FocusListener.focusLost() interface method handles this
event.

FileDialog events

The FileDialog events are another set of nonportable events. Ordinarily, the FileDialog events
are completely dealt with by the system, and you never see them. Refer to Chapter 6, Containers for
exactly how to work with the FileDialog object. If you decide to create a generic FileDialog
object, you can use these events to indicate file loading and saving. These constants would be used in the
id variable of the specific event instance:

public static final int LOAD_FILE
public static final int SAVE_FILE

Miscellaneous events

ACTION_EVENT is probably the event you deal with most frequently. It is generated when the user
performs the desired action for a specific component type (e.g., when a user selects a button or toggles a
checkbox). This constant would be found in the id variable of the specific event instance.

public static final int ACTION_EVENT

The circumstances that lead to the peers delivering the ACTION_EVENT event depend upon the
component that is the target of the event and the user's platform. Although the event can be passed
along differently on different platforms, users will be accustomed to how the peers work on their
specific platforms and will not care that it is different on the other platforms. For example, a Java
1.0 List component on a Microsoft Windows platform allows the user to select an item by

pressing the first letter of the choice, whereupon the List tries to find an item that starts with the
letter. The X Window System List component does not provide this capability. It works like a
normal X List, where the user must scroll to locate the item and then select it.

When the ACTION_EVENT is generated, the arg variable of the specific Event instance is set
based upon the component type. In Chapters 5-11, which describe Java's GUI components, the
description of each component contains an "Events" subsection that describes the value of the
event's arg field. If you are using the 1.1 event model, the
ActionListener.actionPerformed() and
ItemListener.itemStateChanged() interface methods handle this event, depending
upon the component type.

Event Methods

Constructors

Ordinarily, the peers deliver all your events for you. However, if you are creating your own components
or want to communicate across threads, it may be necessary to create your own events. You can also
create your own events to notify your component's container of application-specific occurrences. For
example, if you were implementing your own tab sequencing for text fields, you could create a "next text
field" event to tell your container to move to the next text field. Once you create the event, you send it
through the system using the Component.postEvent() method.

public Event (Object target, long when, int id, int x, int y, int key, int modifiers, Object arg)

The first version of the constructor is the most complete and is what the other two call. It
initializes all the fields of the Event to the parameters passed and sets clickCount to 0. See
the descriptions of the instance variables Variables for the meanings of the arguments.

public Event (Object target, long when, int id, int x, int y, int key, int modifiers)

The second constructor version calls the first with arg set to null.

public Event (Object target, int id, Object arg)

The final version calls the first constructor with the when, x, y, key, and modifiers
parameters set to 0.

Modifier methods

The modifier methods check to see if the different modifier mask values are set. They report the state of

each modifier key at the moment an event occurred. It is possible for multiple masks to be set if multiple
modifiers are pressed when the event occurs.

There is no altDown() method; to check whether the Alt key is pressed you must directly compare the
event's modifiers against the Event.ALT_MASK constant. The metaDown() method is helpful
when dealing with mouse events to see if the user pressed the right mouse button.

public boolean shiftDown ()

The shiftDown() method returns true if the Shift key was pressed and false otherwise.
There is no way to differentiate left and right shift keys.

public boolean controlDown ()

The controlDown() method returns true if the Control key was pressed and false
otherwise.

public boolean metaDown ()

The metaDown() method returns true if the Meta key was pressed and false otherwise.

Miscellaneous methods

public void translate (int x, int y)

The translate() method translates the x and y coordinates of the Event instance by x and
y. The system does this so that the coordinates of the event are relative to the component
receiving the event, rather than the container of the component. The system takes care of all this
for you when passing the event through the containment hierarchy (not the object hierarchy), so
you do not have to bother with translating them yourself. Figure 4.3 shows how this method
would change the location of an event from a container down to an internal component.

Figure 4.3: Translating an event's location relative to a component

[Graphic: Figure 4-3]

protected String paramString ()

When you call the toString() method of Event, the paramString() method is called in
turn to build the string to display. In the event you subclass Event to add additional information,
instead of having to provide a whole new toString() method, you need only add the new
information to the string already generated by paramString(). Assuming the new information
is foo, this would result in the following method declaration:

protected String paramString() {
 return super.paramString() + ",foo=" + foo;
}

public String toString ()

The toString() method of Event returns a string with numerous components. The only
variables that will always be in the output will be the event ID and the x and y coordinates. The
others will be present if necessary (i.e., non-null): key (as the integer corresponding to a keyboard
event), shift when shiftDown() is true; control, when controlDown() is true; meta, when
metaDown() is true; target (if it was a Component); and arg (the value depends on the target
and ID). toString() does not display all pieces of the Event information. An event when
moving a Scrollbar might result in the following:

java.awt.Event[id=602,x=374,y=110,target=java.awt.Scrollbar[374,
110,15x50,val=1,vis=true,min=0,max=255,vert],arg=1]

Working With Mouse Buttons in Java 1.0

As stated earlier, the modifiers component of Event can be used to differentiate the different mouse
buttons. If the user has a multibutton mouse, the modifiers field is set automatically to indicate which
button was pressed. If the user does not own a multibutton mouse, he or she can press the mouse button
in combination with the Alt or Meta keys to simulate a three-button mouse. Example 4.2 is a sample
program called mouseEvent that displays the mouse button selected.

Example 4.2: Differentiating Mouse Buttons in Java 1.0

import java.awt.*;
import java.applet.*;
public class mouseEvent extends Applet {
 String theString = "Press a Mouse Key";
 public synchronized void setString (String s) {
 theString = s;
 }
 public synchronized String getString () {
 return theString;
 }
 public synchronized void paint (Graphics g) {
 g.drawString (theString, 20, 20);
 }
 public boolean mouseDown (Event e, int x, int y) {
 if (e.modifiers == Event.META_MASK) {
 setString ("Right Button Pressed");
 } else if (e.modifiers == Event.ALT_MASK) {
 setString ("Middle Button Pressed");
 } else {
 setString ("Left Button Pressed");
 }
 repaint ();
 return true;
 }
 public boolean mouseUp (Event e, int x, int y) {
 setString ("Press a Mouse Key");
 repaint ();
 return true;
 }
}

Unfortunately, this technique does not always work. With certain components on some platforms, the

peer captures the mouse event and does not pass it along; for example, on Windows, the display-edit
menu of a TextField appears when you select the right mouse button. Be cautious about relying on
multiple mouse buttons; better yet, if you want to ensure absolute portability, stick to a single button.

Comprehensive Event List

Unfortunately, there are many platform-specific differences in the way event handling works. It's not
clear whether these differences are bugs or whether vendors think they are somehow improving their
product by introducing portability problems. We hope that as Java matures, different platforms will
gradually come into synch. Until that happens, you might want your programs to assume the lowest
common denominator. If you are willing to take the risk, you can program for a specific browser or
platform, but should be aware of the possibility of changes.

Appendix C, Platform-Specific Event Handling, includes a table that shows which components pass
along which events by default in the most popular environments. This table was developed using an
interactive program called compList, which generates a list of supported events for each component.
You can find compList on this book's Web site, http://www.ora.com/catalog/javawt. If you want to
check the behavior of some new platform, or a newer version of one of the platforms in Appendix C,
Platform-Specific Event Handling, feel free to use compList. It does require a little bit of work on your
part. You have to click, toggle, type, and mouse over every object. Hopefully, as Java matures, this
program will become unnecessary.

Java 1.0 Event Model The Java 1.1 Event Model

file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm
file:///C|/download/www.ora.com/catalog/javawt
file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm

Chapter 4
Events

4.3 The Java 1.1 Event Model

Now it's time to discuss the new event model that is implemented by the 1.1 release of the JDK. Although this model
can seem much more complex (it does have many more pieces), it is really much simpler and more efficient. The new
event model does away with the process of searching for components that are interested in an event--
deliverEvent(), postEvent(), handleEvent()--and all that. The new model requires objects be registered
to receive events. Then, only those objects that are registered are told when the event actually happens.

This new model is called "delegation"; it implements the Observer-Observable design pattern with events. It is
important in many respects. In addition to being much more efficient, it allows for a much cleaner separation between
GUI components and event handling. It is important that any object, not just a Component, can receive events.
Therefore, you can separate your event-handling code from your GUI code. One set of classes can implement the user
interface; another set of classes can respond to the events generated by the interface. This means that if you have
designed a good interface, you can reuse it in different applications by changing the event processing. The delegation
model is essential to JavaBeans, which allows interaction between Java and other platforms, like OpenDoc or ActiveX.
To allow such interaction, it was essential to separate the source of an event from the recipient.[1]

[1] For more information about JavaBeans, see http://splash.javasoft.com/beans/.

The delegation model has several other important ramifications. First, event handlers no longer need to worry about
whether or not they have completely dealt with an event; they do what they need to, and return. Second, events can be
broadcast to multiple recipients; any number of classes can be registered to receive an event. In the old model,
broadcasting was possible only in a very limited sense, if at all. An event handler could declare that it hadn't completely
processed an event, thus letting its container receive the event when it was done, or an event handler could generate a
new event and deliver it to some other component. In any case, developers had to plan how to deliver events to other
recipients. In Java 1.1, that's no longer necessary. An event will be delivered to every object that is registered as a
listener for that event, regardless of what other objects do with the event. Any listener can mark an event "consumed,"
so it will be ignored by the peer or (if they care) other listeners.

Finally, the 1.1 event model includes the idea of an event queue. Instead of having to override handleEvent() to
see all events, you can peek into the system's event queue by using the EventQueue class. The details of this class are
discussed at the end of this chapter.

In Java 1.1, each component is an event source that can generate certain types of events, which are all subclasses of
AWTEvent. Objects that are interested in an event are called listeners. Each event type corresponds to a listener
interface that specifies the methods that are called when the event occurs. To receive an event, an object must
implement the appropriate listener interface and must be registered with the event's source, by a call to an "add listener"

file:///C|/download/splash.javasoft.com/beans/default.htm

method of the component that generates the event. Who calls the "add listener" method can vary; it is probably the best
design for the component to register any listeners for the events that it generates, but it is also possible for the event
handler to register itself, or for some third object to handle registration (for example, one object could call the
constructor for a component, then call the constructor for an event handler, then register the event handler as a listener
for the component's events).

This sounds complicated, but it really isn't that bad. It will help to think in concrete terms. A TextField object can
generate action events, which in Java 1.1 are of the class ActionEvent. Let's say we have an object of class
TextActionHandler that is called myHandler that is interested in receiving action events from a text field
named inputBuffer. This means that our object must implement the ActionListener interface, and this in turn,
means that it must include an actionPerformed() method, which is called when an action event occurs. Now, we
have to register our object's interest in action events generated by inputBuffer; to do so, we need a call to
inputBuffer.addActionListener(myHandler). This call would probably be made by the object that is
creating the TextField but could also be made by our event handler itself. The code might be as simple as this:

...
public void init(){
 ...
 inputBuffer = new TextField();
 myHandler = new TextActionHandler();
 inputBuffer.addActionListener(myHandler); // register the handler for the
 // buffer's events
 add (inputBuffer); // add the input buffer to the display
 ...
}

Once our object has been registered, myHandler.actionPerformed() will be called whenever a user does
anything in the text field that generates an action event, like typing a carriage return. In a way,
actionPerformed() is very similar to the action() method of the old event model--except that it is not tied to
the Component hierarchy; it is part of an interface that can be implemented by any object that cares about events.

Of course, there are many other kinds of events. Figure 4.4 shows the event hierarchy for Java 1.1. Figure 4.5 shows
the different listener interfaces, which are all subinterfaces of EventListener, along with the related adapter
classes.

Figure 4.4: AWTEvent class hierarchy

[Graphic: Figure 4-4]

Figure 4.5: AWT EventListener and Adapter class hierarchies

[Graphic: Figure 4-5]

Some of the listener interfaces are constructed to deal with multiple events. For instance, the MouseListener
interface declares five methods to handle different kinds of mouse events: mouse down, mouse up, click (both down
and up), mouse enter, and mouse exit. Strictly speaking, this means that an object interested in mouse events must
implement MouseListener and must therefore implement five methods to deal with all possible mouse actions.
This sounds like a waste of the programmer's effort; most of the time, you're only interested in one or two of these
events. Why should you have to implement all five methods? Fortunately, you don't. The java.awt.event package
also includes a set of adapter classes, which are shorthands that make it easier to write event handlers. The adapter
class for any listener interface provides a null implementation of all the methods in that interface. For example, the
MouseAdapter class provides stub implementations of the methods mouseEntered(), mouseExited(),
mousePressed(), mouseReleased(), and mouseClicked(). If you want to write an event-handling class
that deals with mouse clicks only, you can declare that your class extends MouseAdapter. It then inherits all five of
these methods, and your only programming task is to override the single method you care about: mouseClicked().

A particularly convenient way to use the adapters is to write an anonymous inner class. For example, the following
code deals with the MOUSE_PRESSED event without creating a separate listener class:

addMouseListener (new MouseAdapter() {
 public void mousePressed (MouseEvent e) {
 // do what's needed to handle the event
 System.out.println ("Clicked at: " + e.getPoint());
 }
});

This code creates a MouseAdapter, overrides its mousePressed() method, and registers the resulting unnamed
object as a listener for mouse events. Its mousePressed() method is called when MOUSE_PRESSED events occur.
You can also use the adapter classes to implement something similar to a callback. For example, you could override
mousePressed() to call one of your own methods, which would then be called whenever a MOUSE_PRESSED
event occurs.

There are adapter classes for most of the listener interfaces; the only exceptions are the listener interfaces that contain
only one method (for example, there's no ActionAdapter to go with ActionListener). When the listener
interface contains only one method, an adapter class is superfluous. Event handlers may as well implement the listener
interface directly, because they will have to override the only method in the interface; creating a dummy class with the
interface method stubbed out doesn't accomplish anything. The different adapter classes are discussed with their related

EventListener interfaces.

With all these adapter classes, listener interfaces, and event classes, it's easy to get confused. Here's a quick summary of
the different pieces involved and the roles they play:

● Components generate AWTEvents when something happens. Different subclasses of AWTEvent represent
different kinds of events. For example, mouse events are represented by the MouseEvent class. Each
component can generate certain subclasses of AWTEvent.

● Event handlers are registered to receive events by calls to an "add listener" method in the component that
generates the event. There is a different "add listener" method for every kind of AWTEvent the component can
generate; for example, to declare your interest in a mouse event, you call the component's
addMouseListener() method.

● Every event type has a corresponding listener interface that defines the methods that are called when that event
occurs. To be able to receive events, an event handler must therefore implement the appropriate listener
interface. For example, MouseListener defines the methods that are called when mouse events occur. If you
create a class that calls addMouseListener(), that class had better implement the MouseListener
interface.

● Most event types also have an adapter class. For example, MouseEvents have a MouseAdapter class. The
adapter class implements the corresponding listener interface but provides a stub implementation of each
method (i.e., the method just returns without taking any action). Adapter classes are shorthand for programs that
only need a few of the methods in the listener interface. For example, instead of implementing all five methods
of the MouseListener interface, a class can extend the MouseAdapter class and override the one or two
methods that it is interested in.

Using the 1.1 Event Model

Before jumping in and describing all the different pieces in detail, we will look at a simple applet that uses the Java 1.1
event model. Example 4.3 is equivalent to Example 4.2, except that it uses the new event model; when you press a
mouse button, it just tells you what button you pressed. Notice how the new class, mouseEvent11, separates the user
interface from the actual work. The class mouseEvent11 implements a very simple user interface. The class
UpDownCatcher handles the events, figures out what to do, and calls some methods in mouseEvent11 to
communicate the results. I added a simple interface that is called GetSetString to define the communications
between the user interface and the event handler; strictly speaking, this isn't necessary, but it's a good programming
practice.

Example 4.3: Handling Mouse Events in Java 1.1

// Java 1.1 only
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
interface GetSetString {
 public void setString (String s);
 public String getString ();
}

The UpDownCatcher class is responsible for handling events generated by the user interface. It extends
MouseAdapter so that it needs to implement only the MouseListener methods that we care about (such as
mousePressed() and mouseReleased()).

class UpDownCatcher extends MouseAdapter {
 GetSetString gss;
 public UpDownCatcher (GetSetString s) {
 gss = s;
 }

The constructor simply saves a reference to the class that is using this handler.

 public void mousePressed (MouseEvent e) {
 int mods = e.getModifiers();
 if ((mods & MouseEvent.BUTTON3_MASK) != 0) {
 gss.setString ("Right Button Pressed");
 } else if ((mods & MouseEvent.BUTTON2_MASK) != 0) {
 gss.setString ("Middle Button Pressed");
 } else {
 gss.setString ("Left Button Pressed");
 }
 e.getComponent().repaint();
 }

The mousePressed method overrides one of the methods of the MouseAdapter class. The method
mousePressed() is called whenever a user presses any mouse button. This method figures out which button on a
three-button mouse was pressed and calls the setString() method in the user interface to inform the user of the
result.

 public void mouseReleased (MouseEvent e) {
 gss.setString ("Press a Mouse Key");
 e.getComponent().repaint();
 }
}

The mouseReleased method overrides another of the methods of the MouseAdapter class. When the user
releases the mouse button, it calls setString() to restore the user interface to the original message.

public class mouseEvent11 extends Applet implements GetSetString {
 private String theString = "Press a Mouse Key";
 public synchronized void setString (String s) {
 theString = s;
 }
 public synchronized String getString () {
 return theString;
 }
 public synchronized void paint (Graphics g) {

 g.drawString (theString, 20, 20);
 }
 public void init () {
 addMouseListener (new UpDownCatcher(this));
 }
}

mouseEvent11 is a very simple applet that implements our user interface. All it does is draw the desired string on
the screen; the event handler tells it what string to draw. The init() method creates an instance of the event handler,
which is UpDownCatcher, and registers it as interested in mouse events.

Because the user interface and the event processing are in separate classes, it would be easy to use this user interface
for another purpose. You would have to replace only the UpDownCatcher class with something else--perhaps a more
complex class that reported when the mouse entered and exited the area.

AWTEvent and Its Children

Under the 1.1 delegation event model, all system events are instances of AWTEvent or its subclasses. The model
provides two sets of event types. The first set are fairly raw events, such as those indicating when a component gets
focus, a key is pressed, or the mouse is moved. These events exist in ComponentEvent and its subclasses, along
with some new events previously available only by overriding non-event-related methods. In addition, higher-level
event types (for example, selecting a button) are encapsulated in other subclasses of AWTEvent that are not children of
ComponentEvent.

AWTEvent

Variables

protected int id

The id field of AWTEvent is protected and is accessible through the getID() method. It serves as the
identifier of the event type, such as the ACTION_PERFORMED type of ActionEvent or the MOUSE_MOVE
type of Event. With the delegation event model, it is usually not necessary to look at the event id unless you
are looking in the event queue; just register the appropriate event listener.

Constants

The constants of AWTEvent are used in conjunction with the internal method Component.eventEnabled().
They are used to help the program determine what style of event handling (true/false--containment or listening--
delegation) the program uses and which events a component processes. If you want to process 1.1 events without
providing a listener, you need to set the mask for the type of event you want to receive. Look in Chapter 5,
Components, for more information on the use of these constants:

public final static long ACTION_EVENT_MASK

public final static long ADJUSTMENT_EVENT_MASK

public final static long COMPONENT_EVENT_MASK

public final static long CONTAINER_EVENT_MASK

public final static long FOCUS_EVENT_MASK

public final static long ITEM_EVENT_MASK

public final static long KEY_EVENT_MASK

public final static long MOUSE_EVENT_MASK

public final static long MOUSE_MOTION_EVENT_MASK

public final static long TEXT_EVENT_MASK

public final static long WINDOW_EVENT_MASK

In addition to the mask constants, the constant RESERVED_ID_MAX is the largest event ID reserved for "official"
events. You may use ID numbers greater than this value to create your own events, without risk of conflicting with
standard events.

public final static long RESERVED_ID_MAX

Constructors

Since AWTEvent is an abstract class, you cannot call the constructors directly. They are automatically called when an
instance of a child class is created.

public AWTEvent(Event event)

The first constructor creates an AWTEvent from the parameters of a 1.0 Event. The event.target and
event.id are passed along to the second constructor.

public AWTEvent(Object source, int id)

This constructor creates an AWTEvent with the given source; the source is the object generating the event.
The id field serves as the identifier of the event type. It is protected and is accessible through the getID()
method. With the delegation event model, it is usually not necessary to look at the event id unless you are
looking in the event queue or in the processEvent() method of a component; just register the appropriate
event listener.

Methods

public int getID()

The getID() method returns the id from the constructor, thus identifying the event type.

protected void consume()

The consume() method is called to tell an event that it has been handled. An event that has been marked
"consumed" is still delivered to the source component's peer and to all other registered listeners. However, the
peer will ignore the event; other listeners may also choose to ignore it, but that's up to them. It isn't possible for a

listener to "unconsume" an event that has already been marked "consumed."

Noncomponent events cannot be consumed. Only keyboard and mouse event types can be flagged as consumed.
Marking an event "consumed" is useful if you are capturing keyboard input and need to reject a character; if you
call consume(), the key event never makes it to the peer, and the keystroke isn't displayed. In Java 1.0, you
would achieve the same effect by writing an event handler (e.g., keyDown()) that returns true.

You can assume that an event won't be delivered to the peer until all listeners have had a chance to consume it.
However, you should not make any other assumptions about the order in which listeners are called.

protected boolean isConsumed()

The isConsumed() method returns whether the event has been consumed. If the event has been consumed,
either by default or through consume(), this method returns true; otherwise, it returns false.

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is called in turn to
build the string to display. Since you are most frequently dealing with children of AWTEvent, the children need
only to override paramString() to add their specific information.

public String toString()

The toString() method of AWTEvent returns a string with the name of the event, specific information
about the event, and the source. In the method MouseAdapter.mouseReleased(), printing the parameter
would result in something like the following:

java.awt.event.MouseEvent[MOUSE_RELEASED,(69,107),mods=0,clickCount=1] on panel1

ComponentEvent

Constants

public final static int COMPONENT_FIRST

public final static int COMPONENT_LAST

The COMPONENT_FIRST and COMPONENT_LAST constants hold the endpoints of the range of identifiers for
ComponentEvent types.

public final static int COMPONENT_HIDDEN

The COMPONENT_HIDDEN constant identifies component events that occur because a component was hidden.
The interface method ComponentListener.componentHidden() handles this event.

public final static int COMPONENT_MOVED

The COMPONENT_MOVED constant identifies component events that occur because a component has moved.
The ComponentListener.componentMoved() interface method handles this event.

public final static int COMPONENT_RESIZED

The COMPONENT_RESIZED constant identifies component events that occur because a component has
changed size. The interface method ComponentListener.componentResized() handles this event.

public final static int COMPONENT_SHOWN

The COMPONENT_SHOWN constant identifies component events that occur because a component has been
shown (i.e., made visible). The interface method ComponentListener.componentShown() handles this
event.

Constructors

public ComponentEvent(Component source, int id)

This constructor creates a ComponentEvent with the given source; the source is the object generating the
event. The id field identifies the event type. If system generated, the id will be one of the last four constants
above. However, nothing stops you from creating your own id for your event types.

Methods

public Component getComponent()

The getComponent() method returns the source of the event--that is, the component initiating the event.

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is called in turn to
build the string to display. At the ComponentEvent level, paramString() adds a string containing the
event id (if available) and the bounding rectangle for the source (if appropriate). For example:

java.awt.event.ComponentEvent[COMPONENT_RESIZED (0, 0, 100x100)] on button0

ContainerEvent

The ContainerEvent class includes events that result from specific container operations. Constants

public final static int CONTAINER_FIRST

public final static int CONTAINER_LAST

The CONTAINER_FIRST and CONTAINER_LAST constants hold the endpoints of the range of identifiers for
ContainerEvent types.

public final static int COMPONENT_ADDED

The COMPONENT_ADDED constant identifies container events that occur because a component has been added
to the container. The interface method ContainerListener.componentAdded() handles this event.
Listening for this event is useful if a common listener should be attached to all components added to a container.

public final static int COMPONENT_REMOVED

The COMPONENT_REMOVED constant identifies container events that occur because a component has been
removed from the container. The interface method ContainerListener.componentRemoved()
handles this event.

Constructors

public ContainerEvent(Container source, int id, Component child)

The constructor creates a ContainerEvent with the given source (the container generating the event), to
which the given child has been added or removed. The id field serves as the identifier of the event type. If
system generated, the id will be one of the constants described previously. However, nothing stops you from
creating your own id for your event types.

Methods

public Container getContainer()

The getContainer() method returns the container that generated the event.

public Component getComponent()

The getComponent() method returns the component that was added to or removed from the container.

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is in turn called to
build the string to display. At the ContainerEvent level, paramString() adds a string containing the
event id (if available) along with the name of the child.

FocusEvent

The FocusEvent class contains the events that are generated when a component gets or loses focus. These may be
either temporary or permanent focus changes. A temporary focus change is the result of something else happening, like
a window appearing in front of you. Once the window is removed, focus is restored. A permanent focus change is
usually the result of focus traversal, using the keyboard or the mouse: for example, you clicked in a text field to type in
it, or used Tab to move to the next component. More programmatically, permanent focus changes are the result of calls
to Component.requestFocus(). Constants

public final static int FOCUS_FIRST

public final static int FOCUS_LAST

The FOCUS_FIRST and FOCUS_LAST constants hold the endpoints of the range of identifiers for
FocusEvent types.

public final static int FOCUS_GAINED

The FOCUS_GAINED constant identifies focus events that occur because a component gains input focus. The
FocusListener.focusGained() interface method handles this event.

public final static int FOCUS_LOST

The FOCUS_LOST constant identifies focus events that occur because a component loses input focus. The
FocusListener.focusLost() interface method handles this event.

Constructors

public FocusEvent(Component source, int id, boolean temporary)

This constructor creates a FocusEvent with the given source; the source is the object generating the event.
The id field serves as the identifier of the event type. If system generated, the id will be one of the two
constants described previously. However, nothing stops you from creating your own id for your event types.
The temporary parameter is true if this event represents a temporary focus change.

public FocusEvent(Component source, int id)

This constructor creates a FocusEvent by calling the first constructor with the temporary parameter set to
false; that is, it creates an event for a permanent focus change.

Methods

public boolean isTemporary()

The isTemporary() method returns true if the focus event describes a temporary focus change, false if
the event describes a permanent focus change. Once set by the constructor, the setting is permanent.

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is in turn called to
build the string to display. At the FocusEvent level, paramString() adds a string showing the event id
(if available) and whether or not it is temporary.

WindowEvent

The WindowEvent class encapsulates the window-oriented events. Constants

public final static int WINDOW_FIRST

public final static int WINDOW_LAST

The WINDOW_FIRST and WINDOW_LAST constants hold the endpoints of the range of identifiers for
WindowEvent types.

public final static int WINDOW_ICONIFIED

The WINDOW_ICONIFIED constant identifies window events that occur because the user iconifies a window.
The WindowListener.windowIconified() interface method handles this event.

public final static int WINDOW_DEICONIFIED

The WINDOW_DEICONIFIED constant identifies window events that occur because the user de-iconifies a
window. The interface method WindowListener.windowDeiconified() handles this event.

public final static int WINDOW_OPENED

The WINDOW_OPENED constant identifies window events that occur the first time a Frame or Dialog is
made visible with show(). The interface method WindowListener.windowOpened() handles this
event.

public final static int WINDOW_CLOSING

The WINDOW_CLOSING constant identifies window events that occur because the user wants to close a
window. This is similar to the familiar event Event.WINDOW_DESTROY dealt with under 1.0 with frames.
The WindowListener.windowClosing() interface method handles this event.

public final static int WINDOW_CLOSED

The WINDOW_CLOSED constant identifies window events that occur because a Frame or Dialog has finally
closed, after hide() or destroy(). This comes after WINDOW_CLOSING, which happens when the user
wants the window to close. The WindowListener.windowClosed() interface method handles this event.

NOTE:

If there is a call to System.exit() in the windowClosing() listener, the window will not be around to call
windowClosed(), nor will other listeners know.

public final static int WINDOW_ACTIVATED

The WINDOW_ACTIVATED constant identifies window events that occur because the user brings the window to
the front, either after showing the window, de-iconifying, or removing whatever was in front. The interface

method WindowListener.windowActivated() handles this event.

public final static int WINDOW_DEACTIVATED

The WINDOW_DEACTIVATED constant identifies window events that occur because the user makes another
window the active window. The interface method WindowListener.windowDeactivated() handles
this event.

Constructors

public WindowEvent(Window source, int id)

This constructor creates a WindowEvent with the given source; the source is the object generating the
event. The id field serves as the identifier of the event type. If system generated, the id will be one of the
seven constants described previously. However, nothing stops you from creating your own id for your event
types.

Methods

public Window getWindow()

The getWindow() method returns the Window that generated the event.

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is in turn called to
build the string to display. At the WindowEvent level, paramString() adds a string containing the event
id (if available). In a call to windowClosing(), printing the parameter would yield:

java.awt.event.WindowEvent[WINDOW_CLOSING] on frame0

PaintEvent

The PaintEvent class encapsulates the paint-oriented events. There is no corresponding PaintListener class,
so you cannot listen for these events. To process them, override the paint() and update() routines of
Component. The PaintEvent class exists to ensure that events are serialized properly through the event queue.
Constants

public final static int PAINT_FIRST

public final static int PAINT_LAST

The PAINT_FIRST and PAINT_LAST constants hold the endpoints of the range of identifiers for
PaintEvent types.

public final static int PAINT

The PAINT constant identifies paint events that occur because a component needs to be repainted. Override the
Component.paint() method to handle this event.

public final static int UPDATE

The UPDATE constant identifies paint events that occur because a component needs to be updated before
painting. This usually refreshes the display. Override the Component.update() method to handle this
event.

Constructors

public PaintEvent(Component source, int id, Rectangle updateRect)

This constructor creates a PaintEvent with the given source. The source is the object whose display needs
to be updated. The id field identifies the event type. If system generated, the id will be one of the two
constants described previously. However, nothing stops you from creating your own id for your event types.
updateRect represents the rectangular area of source that needs to be updated.

Methods

public Rectangle getUpdateRect()

The getUpdateRect() method returns the rectangular area within the PaintEvent's source component
that needs repainting. This area is set by either the constructor or the setUpdateRect() method.

public void setUpdateRect(Rectangle updateRect)

The setUpdateRect() method changes the area of the PaintEvent's source component that needs
repainting.

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is called in turn to
build the string to display. At the PaintEvent level, paramString() adds a string containing the event id
(if available) along with the area requiring repainting (a clipping rectangle). If you peek in the event queue, one
possible result may yield:

java.awt.event.PaintEvent[PAINT,updateRect=java.awt.Rectangle[x=0,y=0,
width=192,height=173]] on frame0

InputEvent

The InputEvent class provides the basis for the key and mouse input and movement routines. KeyEvent and
MouseEvent provide the specifics of each. Constants

The constants of InputEvent help identify which modifiers are present when an input event occurs, as shown in

Example 4.3. To examine the event modifiers and test for the presence of these masks, call getModifiers() to get
the current set of modifiers.

public final static int ALT_MASK

public final static int CTRL_MASK

public final static int META_MASK

public final static int SHIFT_MASK

The first set of InputEvent masks are for the different modifier keys on the keyboard. They are often set to
indicate which button on a multibutton mouse has been pressed.

public final static int BUTTON1_MASK

public final static int BUTTON2_MASK

public final static int BUTTON3_MASK

The button mask constants are equivalents for the modifier masks, allowing you to write more intelligible code
for dealing with button events. BUTTON2_MASK is the same as ALT_MASK, and BUTTON3_MASK is the same
as META_MASK; BUTTON1_MASK currently isn't usable and is never set. For example, if you want to check
whether the user pressed the second (middle) mouse button, you can test against BUTTON2_MASK rather than
ALT_MASK. Example 4.3 demonstrates how to use these constants.

Constructors

InputEvent is an abstract class with no public constructors. Methods

Unlike the Event class, InputEvent has an isAltDown() method to check the ALT_MASK setting.

public boolean isAltDown()

The isAltDown() method checks to see if ALT_MASK is set. If so, isAltDown() returns true; otherwise,
it returns false.

public boolean isControlDown()

The isControlDown() method checks to see if CONTROL_MASK is set. If so, isControlDown() returns
true; otherwise, it returns false.

public boolean isMetaDown()

The isMetaDown() method checks to see if META_MASK is set. If so, the method isMetaDown() returns
true; otherwise, it returns false.

public boolean isShiftDown()

The isShiftDown() method checks to see if SHIFT_MASK is set. If so, the method isShiftDown()
returns true; otherwise, it returns false.

public int getModifiers()

The getModifiers() method returns the current state of the modifier keys. For each modifier key pressed, a
different flag is raised in the return argument. To check if a modifier is set, AND the return value with a flag and
check for a nonzero value.

if ((ie.getModifiers() & MouseEvent.META_MASK) != 0) {
 System.out.println ("Meta is set");
}

public long getWhen()

The getWhen() method returns the time at which the event occurred. The return value is in milliseconds.
Convert the long value to a Date to examine the contents. For example:

Date d = new Date (ie.getWhen());

public void consume()

This class overrides the AWTEvent.consume() method to make it public. Anyone, not just a subclass, can
mark an InputEvent as consumed.

public boolean isConsumed()

This class overrides the AWTEvent.isconsumed() method to make it public. Anyone can find out if an
InputEvent has been consumed.

KeyEvent

The KeyEvent class is a subclass of InputEvent for dealing with keyboard events. There are two fundamental key
actions: key presses and key releases. These are represented by KEY_PRESSED and KEY_RELEASED events. Of
course, it's inconvenient to think in terms of all these individual actions, so Java also keeps track of the "logical" keys
you type. These are represented by KEY_TYPED events. For every keyboard key pressed, a
KeyEvent.KEY_PRESSED event occurs; the key that was pressed is identified by one of the virtual keycodes from
Table 4.4 and is available through the getKeyCode() method. For example, if you type an uppercase A, you will get
two KEY_PRESSED events, one for shift (VK_SHIFT) and one for the "a" (VK_A). You will also get two
KeyEvent.KEY_RELEASED events. However, there will only be one KeyEvent.KEY_TYPED event; if you call
getKeyChar() for the KEY_TYPED event, the result will be the Unicode character "A" (type char). KEY_TYPED
events do not happen for action-oriented keys like function keys. Constants

Like the Event class, numerous constants help you identify all the keyboard keys. Table 4.4 shows the constants that
refer to these keyboard keys. The values are all declared public static final int. A few keys represent
ASCII characters that have string equivalents like \n.

Table 4.4: Key Constants in Java 1.1

VK_ENTER VK_0 VK_A VK_F1 VK_ACCEPT

VK_BACK_SPACE VK_1 VK_B VK_F2 VK_CONVERT

VK_TAB VK_2 VK_C VK_F3 VK_FINAL

VK_CANCEL VK_3 VK_D VK_F4 VK_KANA

VK_CLEAR VK_4 VK_E VK_F5 VK_KANJI

VK_SHIFT VK_5 VK_F VK_F6 VK_MODECHANGE

VK_CONTROL VK_6 VK_G VK_F7 VK_NONCONVERT

VK_ALT VK_7 VK_H VK_F8

VK_PAUSE VK_8 VK_I VK_F9

VK_CAPS_LOCK VK_9 VK_J VK_F10

VK_ESCAPE VK_NUMPAD0 VK_K VK_F11

VK_SPACE VK_NUMPAD1 VK_L VK_F12

VK_PAGE_UP VK_NUMPAD2 VK_M VK_DELETE

VK_PAGE_DOWN VK_NUMPAD3 VK_N VK_NUM_LOCK

VK_END VK_NUMPAD4 VK_O VK_SCROLL_LOCK

VK_HOME VK_NUMPAD5 VK_P VK_PRINTSCREEN

VK_LEFT VK_NUMPAD6 VK_Q VK_INSERT

VK_UP VK_NUMPAD7 VK_R VK_HELP

VK_RIGHT VK_NUMPAD8 VK_S VK_META

VK_DOWN VK_NUMPAD9 VK_T VK_BACK_QUOTE

VK_COMMA VK_MULTIPLY VK_U VK_QUOTE

VK_PERIOD VK_ADD VK_V VK_OPEN_BRACKET

VK_SLASH VK_SEPARATER[1] VK_W VK_CLOSE_BRACKET

VK_SEMICOLON VK_SUBTRACT VK_X

VK_EQUALS VK_DECIMAL VK_Y

VK_BACK_SLASH VK_DIVIDE VK_Z

Footnotes:

[1] Expect VK_SEPARATOR to be added at some future point. This constant represents the numeric
separator key on your keyboard.

public final static int VK_UNDEFINED

When a KEY_TYPED event happens, there is no keycode. If you ask for it, the getKeyCode() method returns
VK_UNDEFINED.

public final static char CHAR_UNDEFINED

For KEY_PRESSED and KEY_RELEASED events that do not have a corresponding Unicode character to
display (like Shift), the getKeyChar() method returns CHAR_UNDEFINED.

Other constants identify what the user did with a key.

public final static int KEY_FIRST

public final static int KEY_LAST

The KEY_FIRST and KEY_LAST constants hold the endpoints of the range of identifiers for KeyEvent types.

public final static int KEY_PRESSED

The KEY_PRESSED constant identifies key events that occur because a keyboard key has been pressed. To
differentiate between action and non-action keys, call the isActionKey() method described later. The
KeyListener.keyPressed() interface method handles this event.

public final static int KEY_RELEASED

The KEY_RELEASED constant identifies key events that occur because a keyboard key has been released. The
KeyListener.keyReleased() interface method handles this event.

public final static int KEY_TYPED

The KEY_TYPED constant identifies a combination of a key press followed by a key release for a non-action
oriented key. The KeyListener.keyTyped() interface method handles this event.

Constructors

public KeyEvent(Component source, int id, long when, int modifiers, int keyCode, char keyChar)

This constructor[2] creates a KeyEvent with the given source; the source is the object generating the event.
The id field identifies the event type. If system-generated, the id will be one of the constants above. However,
nothing stops you from creating your own id for your event types. The when parameter represents the time the
event happened. The modifiers parameter holds the state of the various modifier keys; masks to represent
these keys are defined in the InputEvent class. Finally, keyCode is the virtual key that triggered the event,
and keyChar is the character that triggered it.

[2] Beta releases of Java 1.1 have an additional constructor that lacks the keyChar parameter.
Comments in the code indicate that this constructor will be deleted prior to the 1.1.1 release.

The KeyEvent constructor throws the IllegalArgumentException run-time exception in two
situations. First, if the id is KEY_TYPED and keyChar is CHAR_UNDEFINED, it throws an exception
because if a key has been typed, it must be associated with a character. Second, if the id is KEY_TYPED and
keyCode is not VK_UNDEFINED, it throws an exception because typed keys frequently represent

combinations of key codes (for example, Shift struck with "a"). It is legal for a KEY_PRESSED or
KEY_RELEASED event to contain both a keyCode and a keyChar, though it's not clear what such an event
would represent.

Methods

public char getKeyChar()

The getKeyChar() method retrieves the Unicode character associated with the key in this KeyEvent. If
there is no character, CHAR_UNDEFINED is returned.

public void setKeyChar(char KeyChar)

The setKeyChar() method allows you to change the character for the KeyEvent. You could use this
method to convert characters to uppercase.

public int getKeyCode()

The getKeyCode() method retrieves the virtual keycode (i.e., one of the constants in Table 4.4) of this
KeyEvent.

public void setKeyCode(int keyCode)

The setKeyCode() method allows you to change the keycode for the KeyEvent. Changes you make to the
KeyEvent are seen by subsequent listeners and the component's peer.

public void setModifiers(int modifiers)

The setModifiers() method allows you to change the modifier keys associated with a KeyEvent to
modifiers. The parent class InputEvent already has a getModifiers() method that is inherited.
Since this is your own personal copy of the KeyEvent, no other listener can find out about the change.

public boolean isActionKey()

The isActionKey() method allows you to check whether the key associated with the KeyEvent is an
action key (e.g., function, arrow, keypad) or not (e.g., an alphanumeric key). For action keys, this method
returns true; otherwise, it returns false. For action keys, the keyChar field usually has the value
CHAR_UNDEFINED.

public static String getKeyText (int keyCode)

The static getKeyText() method returns the localized textual string for keyCode. For each
nonalphanumeric virtual key, there is a key name (the "key text"); these names can be changed using the AWT
properties. Table 4.5 shows the properties used to redefine the key names and the default name for each key.

Table 4.5: Key Text Properties

Property Default Property Default

AWT.accept Accept AWT.f8 F8

AWT.add NumPad + AWT.f9 F9

AWT.alt Alt AWT.help Help

AWT.backQuote Back Quote AWT.home Home

AWT.backSpace Backspace AWT.insert Insert

AWT.cancel Cancel AWT.kana Kana

AWT.capsLock Caps Lock AWT.kanji Kanji

AWT.clear Clear AWT.left Left

AWT.control Control AWT.meta Meta

AWT.decimal NumPad . AWT.modechange Mode Change

AWT.delete Delete AWT.multiply NumPad *

AWT.divide NumPad / AWT.noconvert No Convert

AWT.down Down AWT.numLock Num Lock

AWT.end End AWT.numpad NumPad

AWT.enter Enter AWT.pause Pause

AWT.escape Escape AWT.pgdn Page Down

AWT.final Final AWT.pgup Page Up

AWT.f1 F1 AWT.printScreen Print Screen

AWT.f10 F10 AWT.quote Quote

AWT.f11 F11 AWT.right Right

AWT.f12 F12 AWT.scrollLock Scroll Lock

AWT.f2 F2 AWT.separator NumPad ,

AWT.f3 F3 AWT.shift Shift

AWT.f4 F4 AWT.space Space

AWT.f5 F5 AWT.subtract NumPad -

AWT.f6 F6 AWT.tab Tab

AWT.f7 F7 AWT.unknown Unknown keyCode

AWT.up Up

public static String getKeyModifiersText (int modifiers)

The static getKeyModifiersText() method returns the localized textual string for modifiers. The
parameter modifiers is a combination of the key masks defined by the InputEvent class. As with the keys
themselves, each modifier is associated with a textual name. If multiple modifiers are set, they are concatenated
with a plus sign (+) separating them. Similar to getKeyText(), the strings are localized because for each
modifier, an awt property is available to redefine the string. Table 4.6 lists the properties and the default

modifier names.

Table 4.6: Key Modifiers
Text Properties

Property Default

AWT.alt Alt

AWT.control Ctrl

AWT.meta Meta

AWT.shift Shift

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is called in turn to
build the string to display. At the KeyEvent level, paramString() adds a textual string for the id (if
available), the text for the key (if available from getKeyText()), and modifiers (from
getKeyModifiersText()). A key press event would result in something like the following:

java.awt.event.KeyEvent[KEY_PRESSED,keyCode=118,
F7,modifiers=Ctrl+Shift] on textfield0

MouseEvent

The MouseEvent class is a subclass of InputEvent for dealing with mouse events. Constants

public final static int MOUSE_FIRST

public final static int MOUSE_LAST

The MOUSE_FIRST and MOUSE_LAST constants hold the endpoints of the range of identifiers for
MouseEvent types.

public final static int MOUSE_CLICKED

The MOUSE_CLICKED constant identifies mouse events that occur when a mouse button is clicked. A mouse
click consists of a mouse press and a mouse release. The MouseListener.mouseClicked() interface
method handles this event.

public final static int MOUSE_DRAGGED

The MOUSE_DRAGGED constant identifies mouse events that occur because the mouse is moved over a
component with a mouse button pressed. The interface method
MouseMotionListener.mouseDragged() handles this event.

public final static int MOUSE_ENTERED

The MOUSE_ENTERED constant identifies mouse events that occur when the mouse first enters a component.
The MouseListener.mouseEntered() interface method handles this event.

public final static int MOUSE_EXITED

The MOUSE_EXISTED constant identifies mouse events that occur because the mouse leaves a component's
space. The MouseListener.mouseExited() interface method handles this event.

public final static int MOUSE_MOVED

The MOUSE_MOVED constant identifies mouse events that occur because the mouse is moved without a mouse
button down. The interface method MouseMotionListener.mouseMoved() handles this event.

public final static int MOUSE_PRESSED

The MOUSE_PRESSED constant identifies mouse events that occur because a mouse button has been pressed.
The MouseListener.mousePressed() interface method handles this event.

public final static int MOUSE_RELEASED

The MOUSE_RELEASED constant identifies mouse events that occur because a mouse button has been released.
The MouseListener.mouseReleased() interface method handles this event.

Constructors

public MouseEvent(Component source, int id, long when, int modifiers, int x, int y, int clickCount, boolean

popupTrigger)

This constructor creates a MouseEvent with the given source; the source is the object generating the event.
The id field serves as the identifier of the event type. If system-generated, the id will be one of the constants
described in the previous section. However, nothing stops you from creating your own id for your event types.
The when parameter represents the time the event happened. The modifiers parameter holds the state of the
various modifier keys, using the masks defined for the InputEvent class, and lets you determine which
button was pressed. (x, y) represents the coordinates of the event relative to the origin of source, while
clickCount designates the number of consecutive times the mouse button was pressed within an
indeterminate time period. Finally, the popupTrigger parameter signifies whether this mouse event should
trigger the display of a PopupMenu, if one is available. (The PopupMenu class is discussed in Chapter 10,
Would You Like to Choose from the Menu?)

Methods

public int getX()

The getX() method returns the current x coordinate of the event relative to the source.

public int getY()

The getY() method returns the current y coordinate of the event relative to the source.

public synchronized Point getPoint()

The getPoint() method returns the current x and y coordinates of the event relative to the event source.

public synchronized void translatePoint(int x, int y)

The translatePoint() method translates the x and y coordinates of the MouseEvent instance by x and
y. This method functions similarly to the Event.translate() method.

public int getClickCount()

The getClickCount() method retrieves the current clickCount setting for the event.

public boolean isPopupTrigger()

The isPopupTrigger() method retrieves the state of the popupTrigger setting for the event. If this
method returns true and the source of the event has an associated PopupMenu, the event should be used to
display the menu, as shown in the following code. Since the action the user performs to raise a pop-up menu is
platform specific, this method lets you raise a pop-up menu without worrying about what kind of event took
place. You only need to call isPopupTrigger() and show the menu if it returns true.

public void processMouseEvent(MouseEvent e) {
 if (e.isPopupTrigger())
 aPopup.show(e.getComponent(), e.getX(), e.getY());
 super.processMouseEvent(e);
}

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is called in turn to
build the string to display. At the MouseEvent level, a textual string for the id (if available) is tacked on to
the coordinates, modifiers, and click count. A mouse down event would result in something like the following:

java.awt.event.MouseEvent[MOUSE_PRESSED,(5,7),mods=0,clickCount=2] on textfield0

ActionEvent

The ActionEvent class is the first higher-level event class. It encapsulates events that signify that the user is doing
something with a component. When the user selects a button, list item, or menu item, or presses the Return key in a text
field, an ActionEvent passes through the event queue looking for listeners. Constants

public final static int ACTION_FIRST

public final static int ACTION_LAST

The ACTION_FIRST and ACTION_LAST constants hold the endpoints of the range of identifiers for
ActionEvent types.

public final static int ACTION_PERFORMED

The ACTION_PERFORMED constant represents when a user activates a component. The
ActionListener.actionPerformed() interface method handles this event.

public static final int ALT_MASK

public static final int CTRL_MASK

public static final int META_MASK

public static final int SHIFT_MASK

Similar to the mouse events, action events have modifiers. However, they are not automatically set by the
system, so they don't help you see what modifiers were pressed when the event occurred. You may be able to
use these constants if you are generating your own action events. To see the value of an action event's modifiers,
call getModifiers().

Constructors

public ActionEvent(Object source, int id, String command)

This constructor creates an ActionEvent with the given source; the source is the object generating the
event. The id field serves as the identifier of the event type. If system-generated, the id will be
ACTION_PERFORMED. However, nothing stops you from creating your own id for your event types. The
command parameter is the event's action command. Ideally, the action command should be some locale-
independent string identifying the user's action. Most components that generate action events set this field to the
selected item's label by default.

public ActionEvent(Object source, int id, String command, int modifiers)

This constructor adds modifiers to the settings for an ActionEvent. This allows you to define action-
oriented events that occur only if certain modifier keys are pressed.

Methods

public String getActionCommand()

The getActionCommand() method retrieves the command field from the event. It represents the command
associated with the object that triggered the event. The idea behind the action command is to differentiate the
command associated with some event from the displayed content of the event source. For example, the action
command for a button may be Help. However, what the user sees on the label of the button could be a string

localized for the environment of the user. Instead of having your event handler look for 20 or 30 possible labels,
you can test whether an event has the action command Help.

public int getModifiers()

The getModifiers() method returns the state of the modifier keys. For each one set, a different flag is
raised in the method's return value. To check if a modifier is set, AND the return value with a flag, and check for
a nonzero value.

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is called in turn to
build the string to display. At the ActionEvent level, paramString() adds a textual string for the event
id (if available), along with the command from the constructor. When the user selects a Button with the
action command Help, printing the resulting event yields:

java.awt.event.ActionEvent[ACTION_PERFORMED,cmd=Help] on button0

AdjustmentEvent

The AdjustmentEvent class is another higher-level event class. It encapsulates events that represent scrollbar
motions. When the user moves the slider of a scrollbar or scroll pane, an AdjustmentEvent passes through the
event queue looking for listeners. Although there is only one type of adjustment event, there are five subtypes
represented by constants UNIT_DECREMENT, UNIT_INCREMENT, and so on. Constants

public final static int ADJUSTMENT_FIRST

public final static int ADJUSTMENT_LAST

The ADJUSTMENT_FIRST and ADJUSTMENT_LAST constants hold the endpoints of the range of identifiers
for AdjustmentEvent types.

public final static int ADJUSTMENT_VALUE_CHANGED

The ADJUSTMENT_VALUE_CHANGED constant identifies adjustment events that occur because a user moves
the slider of a Scrollbar or ScrollPane. The
AdjustmentListener.adjustmentValueChanged() interface method handles this event.

public static final int UNIT_DECREMENT

UNIT_DECREMENT identifies adjustment events that occur because the user selects the increment arrow.

public static final int UNIT_INCREMENT

UNIT_INCREMENT identifies adjustment events that occur because the user selects the decrement arrow.

public static final int BLOCK_DECREMENT

BLOCK_DECREMENT identifies adjustment events that occur because the user selects the block decrement area,
between the decrement arrow and the slider.

public static final int BLOCK_INCREMENT

BLOCK_INCREMENT identifies adjustment events that occur because the user selects the block increment area,
between the increment arrow and the slider.

public static final int TRACK

TRACK identifies adjustment events that occur because the user selects the slider and drags it. Multiple
adjustment events of this subtype usually occur consecutively.

Constructors

public AdjustmentEvent(Adjustable source, int id, int type, int value)

This constructor creates an AdjustmentEvent with the given source; the source is the object generating
the event. The id field serves as the identifier of the event type. If system-generated, the id of the
AdjustmentEvent will be ADJUSTMENT_VALUE_CHANGED. However, nothing stops you from creating
your own id for your event types. The type parameter is normally one of the five subtypes, with value being
the current setting of the slider, but is not restricted to that.

Methods

public Adjustable getAdjustable()

The getAdjustable() method retrieves the Adjustable object associated with this event--that is, the
event's source.

public int getAdjustmentType()

The getAdjustmentType() method retrieves the type parameter from the constructor. It represents the
subtype of the current event and, if system-generated, is one of the following constants: UNIT_DECREMENT,
UNIT_INCREMENT, BLOCK_DECREMENT, BLOCK_INCREMENT, or TRACK.

public int getValue()

The getValue() method retrieves the value parameter from the constructor. It represents the current setting
of the adjustable object.

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is called to help
build the string to display. At the AdjustableEvent level, paramString() adds a textual string for the
event id (if available), along with a textual string of the type (if available), and value. For example:

java.awt.event.AdjustableEvent[ADJUSTMENT_VALUE_CHANGED,
adjType=TRACK,value=27] on scrollbar0

ItemEvent

The ItemEvent class is another higher-level event class. It encapsulates events that occur when the user selects a
component, like ActionEvent. When the user selects a checkbox, choice, list item, or checkbox menu item, an
ItemEvent passes through the event queue looking for listeners. Although there is only one type of ItemEvent,
there are two subtypes represented by the constants SELECTED and DESELECTED. Constants

public final static int ITEM_FIRST

public final static int ITEM_LAST

The ITEM_FIRST and ITEM_LAST constants hold the endpoints of the range of identifiers for ItemEvent
types.

public final static int ITEM_STATE_CHANGED

The ITEM_STATE_CHANGED constant identifies item events that occur because a user selects a component,
thus changing its state. The interface method ItemListener.itemStateChanged() handles this event.

public static final int SELECTED

SELECTED indicates that the user selected the item.

public static final int DESELECTED

DESELECTED indicates that the user deselected the item.

Constructors

public ItemEvent(ItemSelectable source, int id, Object item, int stateChange)

This constructor creates a ItemEvent with the given source; the source is the object generating the event.
The id field serves as the identifier of the event type. If system-generated, the id will be
ITEM_STATE_CHANGE. However, nothing stops you from creating your own id for your event types. The
item parameter represents the text of the item selected: for a Checkbox, this would be its label, for a
Choice the current selection. For your own events, this parameter could be virtually anything, since its type is
Object.

Methods

public ItemSelectable getItemSelectable()

The getItemSelectable() method retrieves the ItemSelectable object associated with this event--
that is, the event's source.

public Object getItem()

The getItem() method returns the item that was selected. This usually represents some text to help identify
the source but could be nearly anything for user-generated events.

public int getStateChange()

The getStateChange() method returns the stateChange parameter from the constructor and, if system
generated, is either SELECTED or DESELECTED.

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is called in turn to
build the string to display. At the ItemEvent level, paramString() adds a textual string for the event id
(if available), along with a textual string indicating the value of stateChange (if available) and item. For
example:

java.awt.event.ItemEvent[ITEM_STATE_CHANGED,item=Help,
stateChange=SELECTED] on checkbox1

TextEvent

The TextEvent class is yet another higher-level event class. It encapsulates events that occur when the contents of a
TextComponent have changed, although is not required to have a TextComponent source. When the contents
change, either programmatically by a call to setText() or because the user typed something, a TextEvent passes
through the event queue looking for listeners. Constants

public final static int TEXT_FIRST

public final static int TEXT_LAST

The TEXT_FIRST and TEXT_LAST constants hold the endpoints of the range of identifiers for TextEvent
types.

public final static int TEXT_VALUE_CHANGED

The TEXT_VALUE_CHANGED constant identifies text events that occur because a user changes the contents of
a text component. The interface method TextListener.textValueChanged() handles this event.

Constructors

public TextEvent(Object source, int id)

This constructor creates a TextEvent with the given source; the source is the object generating the event.
The id field identifies the event type. If system-generated, the id will be TEXT_VALUE_CHANGE. However,
nothing stops you from creating your own id for your event types.

Method

public String paramString()

When you call the toString() method of an AWTEvent, the paramString() method is called in turn to
build the string to display. At the TextEvent level, paramString() adds a textual string for the event id
(if available).

Event Listener Interfaces and Adapters

Java 1.1 has 11 event listener interfaces, which specify the methods a class must implement to receive different kinds
of events. For example, the ActionListener interface defines the single method that is called when an
ActionEvent occurs. These interfaces replace the various event-handling methods of Java 1.0: action() is now
the actionPerformed() method of the ActionListener interface, mouseUp() is now the
mouseReleased() method of the MouseListener interface, and so on. Most of the listener interfaces have a
corresponding adapter class, which is an abstract class that provides a null implementation of all the methods in the
interface. (Although an adapter class has no abstract methods, it is declared abstract to remind you that it must be
subclassed.) Rather than implementing a listener interface directly, you have the option of extending an adapter class
and overriding only the methods you care about. (Much more complex adapters are possible, but the adapters supplied
with AWT are very simple.) The adapters are available for the listener interfaces with multiple methods. (If there is
only one method in the listener interface, there is no need for an adapter.)

This section describes Java 1.1's listener interfaces and adapter classes. It's worth noting here that Java 1.1 does not
allow you to modify the original event when you're writing an event handler.

ActionListener

The ActionListener interface contains the one method that is called when an ActionEvent occurs. It has no
adapter class. For an object to listen for action events, it is necessary to call the addActionListener() method
with the class that implements the ActionListener interface as the parameter. The method
addActionListener() is implemented by Button, List, MenuItem, and TextField components. Other
components don't generate action events.

public abstract void actionPerformed(ActionEvent e)

The actionPerformed() method is called when a component is selected or activated. Every component is
activated differently; for a List, activation means that the user has double-clicked on an entry. See the
appropriate section for a description of each component.

actionPerformed() is the Java 1.1 equivalent of the action() method in the 1.0 event model.

AdjustmentListener

The AdjustmentListener interface contains the one method that is called when an AdjustmentEvent occurs.
It has no adapter class. For an object to listen for adjustment events, it is necessary to call
addAdjustmentListener() with the class that implements the AdjustmentListener interface as the
parameter. The addAdjustmentListener() method is implemented by the Scrollbar component and the
Adjustable interface. Other components don't generate adjustment events.

public abstract void adjustmentValueChanged(AdjustmentEvent e)

The adjustmentValueChanged() method is called when a slider is moved. The Scrollbar and
ScrollPane components have sliders, and generate adjustment events when the sliders are moved. (The
TextArea and List components also have sliders, but do not generate adjustment events.) See the
appropriate section for a description of each component.

There is no real equivalent to adjustmentValueChanged() in Java 1.0; to work with scrolling events, you
had to override the handleEvent() method.

ComponentListener and ComponentAdapter

The ComponentListener interface contains four methods that are called when a ComponentEvent occurs;
component events are used for general actions on components, like moving or resizing a component. The adapter class
corresponding to ComponentListener is ComponentAdapter. If you care only about one or two of the
methods in ComponentListener, you can subclass the adapter and override only the methods that you are
interested in. For an object to listen for component events, it is necessary to call
Component.addComponentListener() with the class that implements the interface as the parameter.

public abstract void componentResized(ComponentEvent e)

The componentResized() method is called when a component is resized (for example, by a call to
Component.setSize()).

public abstract void componentMoved(ComponentEvent e)

The componentMoved() method is called when a component is moved (for example, by a call to
Component.setLocation()).

public abstract void componentShown(ComponentEvent e)

The componentShown() method is called when a component is shown (for example, by a call to
Component.show()).

public abstract void componentHidden(ComponentEvent e)

The componentHidden() method is called when a component is hidden (for example, by a call to
Component.hide()).

ContainerListener and ContainerAdapter

The ContainerListener interface contains two methods that are called when a ContainerEvent occurs;
container events are generated when components are added to or removed from a container. The adapter class for
ContainerListener is ContainerAdapter. If you care only about one of the two methods in
ContainerListener, you can subclass the adapter and override only the method that you are interested in. For a
container to listen for container events, it is necessary to call Container.addContainerListener() with the
class that implements the interface as the parameter.

public abstract void componentAdded(ContainerEvent e)

The componentAdded() method is called when a component is added to a container (for example, by a call
to Container.add()).

public abstract void componentRemoved(ContainerEvent e)

The componentRemoved() method is called when a component is removed from a container (for example,
by a call to Container.remove()).

FocusListener and FocusAdapter

The FocusListener interface has two methods, which are called when a FocusEvent occurs. Its adapter class is
FocusAdapter. If you care only about one of the methods, you can subclass the adapter and override the method
you are interested in. For an object to listen for a FocusEvent, it is necessary to call the
Component.addFocusListener() method with the class that implements the FocusListener interface as
the parameter.

public abstract void focusGained(FocusEvent e)

The focusGained() method is called when a component receives input focus, usually by the user clicking
the mouse in the area of the component.

This method is the Java 1.1 equivalent of Component.gotFocus() in the Java 1.0 event model.

public abstract void focusLost(FocusEvent e)

The focusLost() method is called when a component loses the input focus.

This method is the Java 1.1 equivalent of Component.lostFocus() in the Java 1.0 event model.

ItemListener

The ItemListener interface contains the one method that is called when an ItemEvent occurs. It has no adapter
class. For an object to listen for an ItemEvent, it is necessary to call addItemListener() with the class that
implements the ItemListener interface as the parameter. The addItemListener() method is implemented by
the Checkbox, CheckboxMenuItem, Choice, and List components. Other components don't generate item

events.

public abstract void itemStateChanged(ItemEvent e)

The itemStateChanged() method is called when a component's state is modified. Every component is
modified differently; for a List, modifying the component means single-clicking on an entry. See the
appropriate section for a description of each component.

KeyListener and KeyAdapter

The KeyListener interface contains three methods that are called when a KeyEvent occurs; key events are
generated when the user presses or releases keys. The adapter class for KeyListener is KeyAdapter. If you only
care about one or two of the methods in KeyListener, you can subclass the adapter and only override the methods
that you are interested in. For an object to listen for key events, it is necessary to call
Component.addKeyListener() with the class that implements the interface as the parameter.

public abstract void keyPressed(KeyEvent e)

The keyPressed() method is called when a user presses a key. A key press is, literally, just what it says. A
key press event is called for every key that is pressed, including keys like Shift and Control. Therefore, a
KEY_PRESSED event has a virtual key code identifying the physical key that was pressed; but that's not the
same as a typed character, which usually consists of several key presses (for example, Shift+A to type an
uppercase A). The keyTyped() method reports actual characters.

This method is the Java 1.1 equivalent of Component.keyDown() in the Java 1.0 event model.

public abstract void keyReleased(KeyEvent e)

The keyReleased() method is called when a user releases a key. Like the keyPressed() method, when
dealing with keyReleased(), you must think of virtual key codes, not characters.

This method is the Java 1.1 equivalent of Component.keyUp() in the Java 1.0 event model.

public abstract void keyTyped(KeyEvent e)

The keyTyped() method is called when a user types a key. The method keyTyped() method reports the
actual character typed. Action-oriented keys, like function keys, do not trigger this method being called.

MouseListener and MouseAdapter

The MouseListener interface contains five methods that are called when a nonmotion oriented MouseEvent
occurs; mouse events are generated when the user presses or releases a mouse button. (Separate classes,
MouseMotionListener and MouseMotionAdapter, are used to handle mouse motion events; this means that
you can listen for mouse clicks only, without being bothered by thousands of mouse motion events.) The adapter class
for MouseListener is MouseAdapter. If you care about only one or two of the methods in MouseListener,
you can subclass the adapter and override only the methods that you are interested in. For an object to listen for mouse

events, it is necessary to call the method Window.addWindowListener() with the class that implements the
interface as the parameter.

public abstract void mouseEntered(MouseEvent e)

The mouseEntered() method is called when the mouse first enters the bounding area of the component.

This method is the Java 1.1 equivalent of Component.mouseEnter() in the Java 1.0 event model.

public abstract void mouseExited(MouseEvent e)

The mouseExited() method is called when the mouse leaves the bounding area of the component.

This method is the Java 1.1 equivalent of Component.mouseExit() in the Java 1.0 event model.

public abstract void mousePressed(MouseEvent e)

The mousePressed() method is called each time the user presses a mouse button within the component's
space.

This method is the Java 1.1 equivalent of Component.mouseDown() in the Java 1.0 event model.

public abstract void mouseReleased(MouseEvent e)

The mouseReleased() method is called when the user releases the mouse button after a mouse press. The
user does not have to be over the original component any more; the original component (i.e., the component in
which the mouse was pressed) is the source of the event.

This method is the Java 1.1 equivalent of Component.mouseUp() in the Java 1.0 event model.

public abstract void mouseClicked(MouseEvent e)

The mouseClicked() method is called once each time the user clicks a mouse button; that is, once for each
mouse press/mouse release combination.

MouseMotionListener and MouseMotionAdapter

The MouseMotionListener interface contains two methods that are called when a motion-oriented MouseEvent
occurs; mouse motion events are generated when the user moves the mouse, whether or not a button is pressed.
(Separate classes, MouseListener and MouseAdapter, are used to handle mouse clicks and entering/exiting
components. This makes it easy to ignore mouse motion events, which are very frequent and can hurt performance.
You should listen only for mouse motion events if you specifically need them.) MouseMotionAdapter is the
adapter class for MouseMotionListener. If you care about only one of the methods in
MouseMotionListener, you can subclass the adapter and override only the method that you are interested in. For
an object to listen for mouse motion events, it is necessary to call Component.addMouseMotionListener()
with the class that implements the interface as the parameter.

public abstract void mouseMoved(MouseEvent e)

The mouseMoved() method is called every time the mouse moves within the bounding area of the
component, and no mouse button is pressed.

This method is the Java 1.1 equivalent of Component.mouseMove() in the Java 1.0 event model.

public abstract void mouseDragged(MouseEvent e)

The mouseDragged() method is called every time the mouse moves while a mouse button is pressed. The
source of the MouseEvent is the component that was under the mouse when it was first pressed.

This method is the Java 1.1 equivalent of Component.mouseDrag() in the Java 1.0 event model.

TextListener

The TextListener interface contains the one method that is called when a TextEvent occurs. It has no adapter
class. For an object to listen for a TextEvent, it is necessary to call addTextListener() with the class that
implements the TextListener interface as the parameter. The addTextListener() method is implemented by
the TextComponent class, and thus the TextField and TextArea components. Other components don't generate
text events.

public abstract void textValueChanged(TextEvent e)

The textValueChanged() method is called when a text component's contents are modified, either by the
user (by a keystroke) or programmatically (by the setText() method).

WindowListener and WindowAdapter

The WindowListener interface contains seven methods that are called when a WindowEvent occurs; window
events are generated when something changes the visibility or status of a window. The adapter class for
WindowListener is WindowAdapter. If you care about only one or two of the methods in WindowListener,
you can subclass the adapter and override only the methods that you are interested in. For an object to listen for
window events, it is necessary to call the method Window.addWindowListener() or
Dialog.addWindowListener() with the class that implements the interface as the parameter.

public abstract void windowOpened(WindowEvent e)

The windowOpened() method is called when a Window is first opened.

public abstract void windowClosing(WindowEvent e)

The windowClosing() method is triggered whenever the user tries to close the Window.

public abstract void windowClosed(WindowEvent e)

The windowClosed() method is called after the Window has been closed.

public abstract void windowIconified(WindowEvent e)

The windowIconified() method is called whenever a user iconifies a Window.

public abstract void windowDeiconified(WindowEvent e)

The windowDeiconified() method is called when the user deiconifies the Window.

public abstract void windowActivated(WindowEvent e)

The windowActivated() method is called whenever a Window is brought to the front.

public abstract void windowDeactivated(WindowEvent e)

The windowDeactivated() method is called when the Window is sent away from the front, either through
iconification, closing, or another window becoming active.

AWTEventMulticaster

The AWTEventMulticaster class is used by AWT to manage the listener queues for the different events, and for
sending events to all interested listeners when they occur (multicasting). Ordinarily, you have no need to work with this
class or know about its existence. However, if you wish to create your own components that have their own set of
listeners, you can use the class instead of implementing your own event-delivery system. See "Constructor methods" in
this section for more on how to use the AWTEventMulticaster.

AWTEventMulticaster looks like a strange beast, and to some extent, it is. It contains methods to add and remove
every possible kind of listener and implements all of the listener interfaces (11 as of Java 1.1). Because it implements
all the listener interfaces, you can pass an event multicaster as an argument wherever you expect any kind of listener.
However, unlike a class you might implement to listen for a specific kind of event, the multicaster includes machinery
for maintaining chains of listeners. This explains the rather odd signatures for the add() and remove() methods.
Let's look at one in particular:

public static ActionListener add(ActionListener first, ActionListener second)

This method takes two ActionListeners and returns another ActionListener. The returned listener is actually
an event multicaster that contains the two listeners given as arguments in a linked list. However, because it implements
the ActionListener interface, it is just as much an ActionListener as any class you might write; the fact that
it contains two (or more) listeners inside it is irrelevant. Furthermore, both arguments can also be event multicasters,
containing arbitrarily long chains of action listeners; in this case, the returned listener combines the two chains. Most
often, you will use add to add a single listener to a chain that you're building, like this:

actionListenerChain=AWTEventMulticaster.add(actionListenerChain,
 newActionListener);

actionListenerChain is an ActionListener--but it is also a multicaster holding a chain of action listeners.
To start a chain, use null for the first argument. You rarely need to call the AWTEventMulticaster constructor.
add() is a static method, so you can use it with either argument set to null to start the chain.

Now that you can maintain chains of listeners, how do you use them? Simple; just deliver your event to the appropriate
method in the chain. The multicaster takes care of sending the event to all the listeners it contains:

actionListenerChain.actionPerformed(new ActionEvent(...));

Variables

protected EventListener a;

protected EventListener b;

The a and b event listeners each consist of a chain of EventListeners.

Constructor methods

protected AWTEventMulticaster(EventListener a, EventListener b)

The constructor is protected. It creates an AWTEventMulticaster instance from the two chains of listeners.
An instance is automatically created for you when you add your second listener by calling an add() method.

Listener methods

These methods implement all of the listener interfaces. Rather than repeating all the descriptions, the methods are just
listed.

public void actionPerformed(ActionEvent e)

public void adjustmentValueChanged(AdjustmentEvent e)

public void componentAdded(ContainerEvent e)

public void componentHidden(ComponentEvent e)

public void componentMoved(ComponentEvent e)

public void componentRemoved(ContainerEvent e)

public void componentResized(ComponentEvent e)

public void componentShown(ComponentEvent e)

public void focusGained(FocusEvent e)

public void focusLost(FocusEvent e)

public void itemStateChanged(ItemEvent e)

public void keyPressed(KeyEvent e)

public void keyReleased(KeyEvent e)

public void keyTyped(KeyEvent e)

public void mouseClicked(MouseEvent e)

public void mouseDragged(MouseEvent e)

public void mouseEntered(MouseEvent e)

public void mouseExited(MouseEvent e)

public void mouseMoved(MouseEvent e)

public void mousePressed(MouseEvent e)

public void mouseReleased(MouseEvent e)

public void textValueChanged(TextEvent e)

public void windowActivated(WindowEvent e)

public void windowClosed(WindowEvent e)

public void windowClosing(WindowEvent e)

public void windowDeactivated(WindowEvent e)

public void windowDeiconified(WindowEvent e)

public void windowIconified(WindowEvent e)

public void windowOpened(WindowEvent e)

These methods broadcast the event given as an argument to all the listeners.

Support methods

There is an add() method for every listener interface. Again, I've listed them with a single description.

public static ActionListener add(ActionListener first, ActionListener second)

public static AdjustmentListener add(AdjustmentListener first, AdjustmentListener second)

public static ComponentListener add(ComponentListener first, ComponentListener second)

public static ContainerListener add(ContainerListener first, ContainerListener second)

public static FocusListener add(FocusListener first, FocusListener second)

public static ItemListener add(ItemListener first, ItemListener second)
public static KeyListener add(KeyListener first, KeyListener second)

public static MouseListener add(MouseListener first, MouseListener second)

public static MouseMotionListener add(MouseMotionListener first, MouseMotionListener second)

public static TextListener add(TextListener first, TextListener second)

public static WindowListener add(WindowListener first, WindowListener second)

These methods combine the listener sets together; they are called by the "add listener" methods of the various
components. Usually, the first parameter is the initial listener chain, and the second parameter is the
listener to add. However, nothing forces that. The combined set of listeners is returned.

protected static EventListener addInternal(EventListener first, EventListener second)

The addInternal() method is a support routine for the various add() methods. The combined set of
listeners is returned.

Again, there are remove() methods for every listener type, and I've economized on the descriptions.

public static ComponentListener remove(ComponentListener list, ComponentListener oldListener)

public static ContainerListener remove(ContainerListener list, ContainerListener oldListener)

public static FocusListener remove(FocusListener list, FocusListener oldListener)

public static KeyListener remove(KeyListener list, KeyListener oldListener)

public static MouseMotionListener remove(MouseMotionListener list, MouseMotionListener oldListener)

public static MouseListener remove(MouseListener list, MouseListener oldListener)

public static WindowListener remove(WindowListener list, WindowListener oldListener)

public static ActionListener remove(ActionListener list, ActionListener oldListener)

public static ItemListener remove(ItemListener list, ItemListener oldListener)

public static AdjustmentListener remove(AdjustmentListener list, AdjustmentListener oldListener)

public static TextListener remove(TextListener list, TextListener oldListener)

These methods remove oldListener from the list of listeners, list. They are called by the "remove
listener" methods of the different components. If oldListener is not found in the list, nothing happens.
All these methods return the new list of listeners.

protected static EventListener removeInternal(EventListener list, EventListener oldListener)

The removeInternal() method is a support routine for the various remove() methods. It removes
oldListener from the list of listeners, list. Nothing happens if oldListener is not found in the list.
The new set of listeners is returned.

protected EventListener remove(EventListener oldListener)

This remove() method removes oldListener from the AWTEventMulticaster. It is a support routine
for removeInternal().

protected void saveInternal(ObjectOutputStream s, String k) throws IOException

The saveInternal() method is a support method for serialization.

Using an event multicaster

Example 4.4 shows how to use AWTEventMulticaster to create a component that generates ItemEvents. The
AWTEventMulticaster is used in the addItemListener() and removeItemListener() methods. When
it comes time to generate the event in processEvent(), the itemStateChanged() method is called to notify
anyone who might be interested. The item event is generated when a mouse button is clicked; we just count the number
of clicks to determine whether an item was selected or deselected. Since we do not have any mouse listeners, we need
to enable mouse events with enableEvents() in the constructor, as shown in the following example.

Example 4.4: Using an AWTEventMulticaster

// Java 1.1 only
import java.awt.*;
import java.awt.event.*;
class ItemEventComponent extends Component implements ItemSelectable {
 boolean selected;
 int i = 0;
 ItemListener itemListener = null;
 ItemEventComponent () {
 enableEvents (AWTEvent.MOUSE_EVENT_MASK);
 }
 public Object[] getSelectedObjects() {
 Object o[] = new Object[1];
 o[0] = new Integer (i);
 return o;
 }
 public void addItemListener (ItemListener l) {
 itemListener = AWTEventMulticaster.add (itemListener, l);
 }
 public void removeItemListener (ItemListener l) {
 itemListener = AWTEventMulticaster.remove (itemListener, l);
 }
 public void processEvent (AWTEvent e) {
 if (e.getID() == MouseEvent.MOUSE_PRESSED) {
 if (itemListener != null) {
 selected = !selected;
 i++;
 itemListener.itemStateChanged (
 new ItemEvent (this, ItemEvent.ITEM_STATE_CHANGED,
 getSelectedObjects(),
 (selected?ItemEvent.SELECTED:ItemEvent.DESELECTED)));
 }
 }
 }
}
public class ItemFrame extends Frame implements ItemListener {
 ItemFrame () {
 super ("Listening In");
 ItemEventComponent c = new ItemEventComponent ();
 add (c, "Center");
 c.addItemListener (this);
 c.setBackground (SystemColor.control);
 setSize (200, 200);
 }
 public void itemStateChanged (ItemEvent e) {
 Object[] o = e.getItemSelectable().getSelectedObjects();
 Integer i = (Integer)o[0];
 System.out.println (i);
 }
 public static void main (String args[]) {

 ItemFrame f = new ItemFrame();
 f.show();
 }
}

The ItemFrame displays just an ItemEventComponent and listens for its item events.

The EventQueue class lets you manage Java 1.1 events directly. You don't usually need to manage events yourself;
the system takes care of event delivery behind the scene. However, should you need to, you can acquire the system's
event queue by calling Toolkit.getSystemEventQueue(), peek into the event queue by calling
peekEvent(), or post new events by calling postEvent(). All of these operations may be restricted by the
SecurityManager. You should not remove the events from the queue (i.e., don't call getNextEvent()) unless
you really mean to.Constructors

public EventQueue()

This constructor creates an EventQueue for those rare times when you need to manage your own queue of
events. More frequently, you just work with the system event queue acquired through the Toolkit.

Methods

public synchronized AWTEvent peekEvent()

The peekEvent() method looks into the event queue and returns the first event, without removing that event.
If you modify the event, your modifications are reflected in the event still on the queue. The returned object is
an instance of AWTEvent. If the queue is empty, peekEvent() returns null.

public synchronized AWTEvent peekEvent(int id)

This peekEvent() method looks into the event queue for the first event of the specified type. id is one of the
integer constants from an AWTEvent subclass or an integer constant of your own. If there are no events of the
appropriate type on the queue, peekEvent() returns null.

Note that a few of the AWTEvent classes have both event types and subtypes; peekEvent() checks event
types only and ignores the subtype. For example, to find an ItemEvent, you would call
peekEvent(ITEM_STATE_CHANGED). However, a call to peekEvent(SELECTED) would return
null, since SELECTED identifies an ItemEvent subtype.

public synchronized void postEvent(AWTEvent theEvent)

This version of postEvent() puts a new style (Java1.1) event on the event queue.

public synchronized AWTEvent getNextEvent() throws InterruptedException

The getNextEvent() method removes an event from the queue. If the queue is empty, the call waits. The
object returned is the item taken from the queue; it is either an Event or an AWTEvent. If the method call is

interrupted, the method getNextEvent() throws an InterruptedException.

The Event Class Components

Chapter 5
Components

5.4 A Simple Calculator

It is always helpful to see complete and somewhat useful examples after learning something new.
Example 5.2 shows a working calculator that performs floating point addition, subtraction,
multiplication, and division. Figure 5.4 shows the calculator in operation. The button in the lower left
corner is a decimal point. This applet uses a number of classes that will be discussed later in the book
(most notably, some layout managers and a Panel); try to ignore them for now. Focus on the
action() and compute() methods; action() figures out which button was pressed, converting it
to a digit (0-9 plus the decimal point) or an operator (=, +, -, *, /). As you build a number, it is displayed
in the label lab, which conveniently serves to store the number in string form. The compute()
method reads the label's text, converts it to a floating point number, does the computation, and displays
the result in the label. The addButtons() method is a helper method to create a group of Button
objects at one time.

Example 5.2: Calculator Source Code

import java.awt.*;
import java.applet.*;
public class JavaCalc extends Applet {
 Label lab;
 boolean firstDigit = true;
 float savedValue = 0.0f; // Initial value
 String operator = "="; // Initial operator
 public void addButtons (Panel p, String labels) {
 int count = labels.length();
 for (int i=0;i<count;i++)
 p.add (new Button (labels.substring(i,i+1)));
 }
 public void init () {
 setLayout (new BorderLayout());
 add ("North", lab = new Label ("0", Label.RIGHT));
 Panel p = new Panel();

 p.setLayout (new GridLayout (4, 4));
 addButtons (p, "789/");
 addButtons (p, "456*");
 addButtons (p, "123-");
 addButtons (p, ".0=+");
 add ("Center", p);
 }
 public boolean action (Event e, Object o) {
 if (e.target instanceof Button) {
 String s = (String)o;
 if ("0123456789.".indexOf (s) != -1) { // isDigit
 if (firstDigit) {
 firstDigit = false;
 lab.setText (s);
 } else {
 lab.setText (lab.getText() + s);
 }
 } else { // isOperator
 if (!firstDigit) {
 compute (lab.getText());
 firstDigit = true;
 }
 operator = s;
 }
 return true;
 }
 return false;
 }
 public void compute (String s) {
 float sValue = new Float (s).floatValue();
 char c = operator.charAt (0);
 switch (c) {
 case '=': savedValue = sValue;
 break;
 case '+': savedValue += sValue;
 break;
 case '-': savedValue -= sValue;
 break;
 case '*': savedValue *= sValue;
 break;
 case '/': savedValue /= sValue;
 break;
 }

 lab.setText (String.valueOf(savedValue));
 }
}

Figure 5.4: Calculator applet

[Graphic: Figure 5-4]

Buttons Canvas

Chapter 5
Components

5.6 Creating Your Own Component

If you find that no AWT component satisfies your needs, you can create your own. This is usually done either by
extending an existing component or by starting from scratch. When extending an existing component, you start
with the base functionality of an existing object and add to it. The users will not see anything new or different
about the object until they start to interact with it, since it is not a new component. For example, a TextField
could be subclassed to convert all letters input to uppercase. On the other hand, if you create a new component
from scratch, it will appear the same on all platforms (regardless of what the platform's native components look
like), and you have to make sure the user can fairly easily figure out how to work with it. Example 5.3 shows how
to create your own Component by creating a Label that displays vertically, as opposed to the standard Label
Component that displays horizontally. The whole process is fairly easy.

The third possibility for creating your own components involves adding functionality to containers. This is fairly
easy to do and can be useful if you are constantly grouping components together. For example, if you are always
adding a TextField or Label to go with a Scrollbar to display the value, do it once, and call it something
meaningful like LabeledScrollbarPanel. Then whenever you need it again, reuse your
LabeledScrollbarPanel. Think about reusability whenever you can.

With Java 1.1, the colors for these new components should be set to color values consistent to the user's platform.
This is done through color constants provided in the SystemColor class introduced in Chapter 2, Simple
Graphics.

VerticalLabel

When you create new components, they must meet three requirements:

● In Java 1.0, you must extend a subclass of Component, usually Canvas. In Java 1.1, you can extend
Component itself, creating a lightweight component. In many cases, this alternative is more efficient.

● You must provide a constructor for the new component so that you can create new instances of it; if you
really don't need a constructor, you can use the default constructor that you inherit from Canvas or
Component.

● You must provide a way to draw the object on the screen by overriding the paint() method.

If initializing the component requires information about display characteristics (for example, you need to know the
default Font), you must wait until the object is displayed on the screen before you initialize it. This is done by
overriding the addNotify() method. First, call super.addNotify() to create the peer; you can now ask
for platform-dependent information and initialize your component accordingly. Remember to override
getPreferredSize() and getMinimumSize() (the Java 1.0 names are preferredSize() and
minimumSize()) to return the proper dimensions for the new component, so that layout management works
properly. There can be other support methods, depending upon the requirements of the object. For example, it is
helpful, but not required, to provide a toString() or paramString() method.

Creating a new component sounds a lot harder than it is. Example 5.3 contains the source for a new component
called VerticalLabel. It displays a label that reads from top to bottom, instead of from left to right, and can be
configured to display its text right or left justified or centered. Figure 5.5 displays the new component
VerticalLabel in action.

Example 5.3: Source for VerticalLabel Component

import java.awt.*;
public class VerticalLabel extends Canvas {
 public static final int LEFT = 0;
 public static final int CENTER = 1;
 public static final int RIGHT = 2;
 private String text;
 private int vgap;
 private int alignment;
 Dimension mySize;
 int textLength;
 char chars[];
 // constructors
 public VerticalLabel () {
 this (null, 0, CENTER);
 }
 public VerticalLabel (String text) {
 this (text, 0, CENTER);
 }
 public VerticalLabel (String text, int vgap, int alignment) {
 this.text = text;
 this.vgap = vgap;
 this.alignment = alignment;
 }
 void init () {
 textLength = text.length();
 chars = new char[textLength];
 text.getChars (0, textLength, chars, 0);
 Font f = getFont();
 FontMetrics fm = getFontMetrics (f);
 mySize = new Dimension(0,0);
 mySize.height = (fm.getHeight() * textLength) + (vgap * 2);

 for (int i=0; i < textLength; i++) {
 mySize.width = Math.max (mySize.width, fm.charsWidth(chars, i, 1));
 }
 }
 public int getAlignment () {
 return alignment;
 }
 public void addNotify () {
 super.addNotify();
 init(); // Component must be visible for init to work
 }
 public void setText (String text) {this.text = text; init();}
 public String getText () {return text; }
 public void setVgap (int vgap) {this.vgap = vgap; init();}
 public int getVgap () {return vgap; }
 public Dimension preferredSize () {return mySize; }
 public Dimension minimumSize () {return mySize; }
 public void paint (Graphics g) {
 int x,y;
 int xPositions[];
 int yPositions[];
// Must redo this each time since font/screen area might change
// Use actual width for alignment
 Font f = getFont();
 FontMetrics fm = getFontMetrics (f);
 xPositions = new int[textLength];
 for (int i=0; i < textLength; i++) {
 if (alignment == RIGHT) {
 xPositions[i] = size().width - fm.charWidth (chars[i]);
 } else if (alignment == LEFT) {
 xPositions[i] = 0;
 } else {// CENTER
 xPositions[i] = (size().width - fm.charWidth (chars[i])) / 2;
 }
 }
 yPositions = new int[textLength];
 for (int i=0; i < textLength; i++) {
 yPositions[i] = (fm.getHeight() * (i+1)) + vgap;
 }
 for (int i = 0; i < textLength; i++) {
 x = xPositions[i];
 y = yPositions[i];
 g.drawChars (chars, i, 1, x, y);
 }
 }
 protected String paramString () {
 String str=",align=";

 switch (alignment) {
 case LEFT: str += "left"; break;
 case CENTER: str += "center"; break;
 case RIGHT: str += "right"; break;
 }
 if (vgap!=0) str+= ",vgap=" + vgap;
 return super.paramString() + str + ",label=" + text;
 }
}

Figure 5.5: Using VerticalLabel

[Graphic: Figure
5-5]

The following code is a simple applet using the VerticalLabel. It creates five instances of VerticalLabel
within a BorderLayout panel, with gaps (see Chapter 7, Layouts for more on BorderLayout). The top and
bottom labels are justified to the left and right, respectively, to demonstrate justification.

import java.awt.*;
import java.applet.*;
public class vlabels extends Applet {
 public void init () {
 setLayout (new BorderLayout (10, 10));
 setFont (new Font ("TimesRoman", Font.BOLD, 12));
 add ("North", new VerticalLabel ("One", 10, VerticalLabel.LEFT));
 add ("South", new VerticalLabel ("Two", 10, VerticalLabel.RIGHT));
 add ("West", new VerticalLabel ("Three"));
 add ("East", new VerticalLabel ("Four"));
 add ("Center", new VerticalLabel ("Five"));
 resize (preferredSize());
 }

}

Lightweight VerticalLabel

The VerticalLabel in Example 5.3 works in both Java 1.0 and 1.1 but is relatively inefficient. When you
create one, the system must create a Canvas and the peer of the Canvas. This work doesn't gain you anything;
since this is a new component, it doesn't have to match the native appearance of any other component.

In Java 1.1, there's a way to avoid the overhead if you are creating a component that doesn't have to match a native
object. This is called a lightweight component. To create one, you just subclass Component itself. To make a
lightweight version of our VerticalLabel, we have to change only one line of code.

// Java 1.1 only
public class VerticalLabel extends Component

Everything else remains unchanged.

Canvas Cursor

Chapter 5
Components

5.7 Cursor

Introduced in Java 1.1, the Cursor class provides the different cursors that can be associated with a
Component. Previously, cursors could only be associated with a whole Frame. Now any component
can use fancy cursors when the user is interacting with the system.

To change the cursor, a component calls its setCursor() method; its argument is a Cursor object,
which is defined by this class.

NOTE:

There is still no way to assign a user-defined cursor to a Component. You are restricted to the 14
predefined cursors.

Cursor Constants

The following is a list of Cursor constants. The cursors corresponding to the constants are shown in
Figure 5.6.

public final static int DEFAULT_CURSOR
public final static int CROSSHAIR_CURSOR
public final static int TEXT_CURSOR
public final static int WAIT_CURSOR
public final static int HAND_CURSOR
public final static int MOVE_CURSOR
public final static int N_RESIZE_CURSOR
public final static int S_RESIZE_CURSOR
public final static int E_RESIZE_CURSOR
public final static int W_RESIZE_CURSOR
public final static int NE_RESIZE_CURSOR
public final static int NW_RESIZE_CURSOR

public final static int SE_RESIZE_CURSOR
public final static int SW_RESIZE_CURSOR

Figure 5.6: Standard Java cursors

[Graphic: Figure 5-6]

Cursor Methods

public Cursor (int type)

The sole constructor creates a Cursor of the specified type. type must be one of the Cursor
class constants. If type is not one of the class constants, the constructor throws the run-time
exception IllegalArgumentException.

This constructor exists primarily to support object serialization; you don't need to call it in your
code. It is more efficient to call getPredefinedCursor(), discussed later in this section.

Miscellaneous methods

public int getType()

The getType() method returns the cursor type. The value returned is one of the class constants.

static public Cursor getPredefinedCursor(int type)

The getPredefinedCursor() method returns the predefined Cursor of the given type. If
type is not one of the class constants, this method throws the run-time exception
IllegalArgumentException. This method checks what Cursor objects already exist and
gives you a reference to a preexisting Cursor if it can find one with the appropriate type.
Otherwise, it creates a new Cursor for you. This is more efficient than calling the Cursor

constructor whenever you need one.

static public Cursor getDefaultCursor()

The getDefaultCursor() method returns the predefined Cursor for the
DEFAULT_CURSOR type.

Creating Your Own
Component

Containers

Chapter 6
Containers

6.2 Panel

The Panel class provides a generic container within an existing display area. It is the simplest of all the
containers. When you load an applet into Netscape Navigator or an appletviewer, you have a Panel to
work with at the highest level.

A Panel has no physical appearance. It is just a rectangular display area. The default
LayoutManager of Panel is FlowLayout; FlowLayout is described in FlowLayout.

Panel Methods

Constructors

public Panel ()

The first constructor creates a Panel with a LayoutManager of FlowLayout.

public Panel (LayoutManager layout)

This constructor allows you to set the initial LayoutManager of the new Panel to layout. If
layout is null, there is no LayoutManager, and you must shape and position the
components within the Panel yourself.

Miscellaneous methods

public void addNotify ()

The addNotify() method creates the Panel peer. If you override this method, first call
super.addNotify(), then add your customizations for the new class. Then you can do
everything you need with the information about the newly created peer.

Panel Events

In Java 1.0, a Panel peer generates all the events that are generated by the Component class; it does
not generate events that are specific to a particular type of component. That is, it generates key events,
mouse events, and focus events; it doesn't generate action events or list events. If an event happens
within a child component of a Panel, the target of the event is the child component, not the Panel.
There's one exception to this rule: if a component uses the LightweightPeer (new to Java 1.1), it
cannot be the target of an event.

With Java 1.1, events are delivered to whatever listener is associated with a contained component. The
fact that the component is within a Panel has no relevance.

Container Insets

Chapter 6
Containers

6.3 Insets

The Insets class provides a way to encapsulate the layout margins of the four different sides of a
container. The class helps in laying out containers. The Container can retrieve their values through
the getInsets() method, then analyze the settings to position components. The different inset values
are measured in pixels. The space reserved by insets can still be used for drawing directly within
paint(). Also, if the LayoutManager associated with the container does not look at the insets, the
request will be completely ignored.

Insets Methods

Variables

There are four variables for insets, one for each border.

public int top

This variable contains the border width in pixels for the top of a container.

public int bottom

This variable contains the border width in pixels for the bottom of a container.

public int left

This variable contains the border width in pixels for the left edge of a container.

public int right

This variable contains the border width in pixels for the right edge of a container.

Constructors

public Insets (int top, int left, int bottom, int right)

The constructor creates an Insets object with top, left, bottom, and right being the size
of the insets in pixels. If this object was the return object from the getInsets() method of a
container, these values represent the size of a border inside that container.

Miscellaneous methods

public Object clone ()

The clone() method creates a clone of the Insets so the same Insets object can be
associated with multiple containers.

public boolean equals(Object object)

The equals() method defines equality for insets. Two Insets objects are equal if the four
settings for the different values are equal.

public String toString ()

The toString() method of Insets returns the current settings. Using the new Insets
(10, 20, 30, 40) constructor, the results would be:

java.awt.Insets[top=10,left=20,bottom=30,right=40]

Insets Example

The following source code demonstrates the use of insets within an applet's Panel. The applet displays
a button that takes up the entire area of the Panel, less the insets, then draws a rectangle around that
area. This is shown visually in Figure 6.1. The example demonstrates that if you add components to a
container, the LayoutManager deals with the insets for you in positioning them. But if you are
drawing directly to the Panel, you must look at the insets if you want to avoid the requested area within
the container.

import java.awt.*;
import java.applet.*;
public class myInsets extends Applet {
 public Insets insets () {

 return new Insets (50, 50, 50, 50);
 }
 public void init () {
 setLayout (new BorderLayout ());
 add ("Center", new Button ("Insets"));
 }
 public void paint (Graphics g) {
 Insets i = insets();
 int width = size().width - i.left - i.right;
 int height = size().height - i.top - i.bottom;
 g.drawRect (i.left-2, i.top-2, width+4, height+4);
 g.drawString ("Insets Example", 25, size().height - 25);
 }
}

Figure 6.1: Insets

[Graphic: Figure 6-1]

To change the applet's insets from the default, we override the insets() method to return a new
Insets object, with the new values.

Panel Window

Chapter 6
Containers

6.4 Window

A Window is a top-level display area that exists outside the browser or applet area you are working in. It
has no adornments, such as the borders, window title, or menu bar that a typical window manager might
provide. A Frame is a subclass of Window that adds these parts (borders, window title). Normally you
will work with the children of Window and not Window directly. However, you might use a Window to
create your own pop-up menu or some other GUI component that requires its own window and isn't
provided by AWT. This technique isn't as necessary in Java 1.1, which has a PopupMenu component.

The default LayoutManager for Window is BorderLayout, which is described in BorderLayout.

Window Methods

Constructors

public Window (Frame parent)

There is one public constructor for Window. It has one parameter, which specifies the parent
of the Window. When the parent is minimized, so is the Window. In an application, you must
therefore create a Frame before you can create a Window; this isn't much of an inconvenience
since you usually need a Frame in which to build your user interface. In an applet, you often do
not have access to a Frame to use as the parent, so you can pass null as the argument.

Figure 6.2 shows a simple Window on the left. Notice that there are no borders or window
management adornments present. The Window on the right was created by an applet loaded over
the network. Notice the warning message you get in the status bar at the bottom of the screen.
This is to warn users that the Window was created by an applet that comes from an untrusted
source, and you can't necessarily trust it to do what it says. The warning is particularly appropriate
for windows, since a user can't necessarily tell whether a window was created by an applet or any
other application. It is therefore possible to write applets that mimic windows from well-known
applications, to trick the user into giving away passwords, credit card numbers, or other sensitive

information.

Figure 6.2: Two windows

In some environments, you can get the browser's Frame to use with the Window's constructor.
This is one way to create a Dialog, as we shall see. By repeatedly calling getParent() until
there are no more parents, you can discover an applet's top-level parent, which should be the
browser's Frame. Example 6.1 contains the code you would write to do this. You should then
check the return value to see if you got a Frame or null. This code is completely nonportable,
but you may happen to be in an environment where it works.

Example 6.1: Finding a Parent Frame

import java.awt.*;
public class ComponentUtilities {
 public static Frame getTopLevelParent (Component component) {
 Component c = component;
 while (c.getParent() != null)
 c = c.getParent();
 if (c instanceof Frame)
 return (Frame)c;
 else
 return null;
 }
}

Appearance methods

A handful of methods assist with the appearance of the Window.

public void pack ()

The pack() method resizes the Window to the preferred size of the components it contains and
validates the Window.

public void show ()

The show() method displays the Window. When a Window is initially created it is hidden. If
the window is already showing when this method is called, it calls toFront() to bring the
window to the foreground. To hide the window, just call the hide() method of Component.
After you show() a window, it is validated for you.

The first call to show() for any Window generates a WindowEvent with the ID
WINDOW_OPENED.

public void dispose ()

The dispose() method releases the resources of the Window by hiding it and removing its
peer. Calling this method generates a WindowEvent with the ID WINDOW_CLOSED.

public void toFront ()

The toFront() method brings the Window to the foreground of the display. This is
automatically called if you call show() and the Window is already shown.

public void toBack ()

The toBack() method puts the Window in the background of the display.

public boolean isShowing()

The isShowing() method returns true if the Window is visible on the screen.

Miscellaneous methods

public Toolkit getToolkit ()

The getToolkit() method returns the current Toolkit of the window. The Toolkit
provides you with information about the native platform. This will allow you to size the Window
based upon the current screen resolution and get images for an application. See Building a New
Component from a Window for a usage example.

public Locale getLocale ()

The getLocale() method retrieves the current Locale of the window, if it has one. Using a
Locale allows you to write programs that can adapt themselves to different languages and
different regional variants. If no Locale has been set, getLocale() returns the default
Locale. The default Locale has a user language of English and no region. To change the
default Locale, set the system properties user.language and user.region or call
Locale.setDefault() (setDefault() verifies access rights with the security
manager).[1]

[1] For more on the Locale class, see the Java Fundamental Classes Reference
from O'Reilly & Associates.

public final String getWarningString ()

The getWarningString() method returns null or a string that is displayed on the bottom
of insecure Window instances. If the SecurityManager says that top-level windows do not
get a warning message, this method returns null. If a message is required, the default text is
"Warning: Applet Window". However, Java allows the user to change the warning by setting the
system property awt.appletWarning. (Netscape Navigator and Internet Explorer do not
allow the warning message to be changed. Netscape Navigator's current (V3.0) warning string is
"Unsigned Java Applet Window.") The purpose of this string is to warn users that the Window
was created by an untrusted source, as opposed to a standard application, and should be used with
caution.

public Component getFocusOwner ()

The getFocusOwner() method allows you to ask the Window which of its components
currently has the input focus. This is useful if you are cutting and pasting from the system
clipboard; asking who has the input focus tells you where to put the data you get from the
clipboard. The system clipboard is covered in Chapter 16, Data Transfer. If no component in the
Window has the focus, getFocusOwner() returns null.

public synchronized void addNotify ()

The addNotify() method creates the Window peer. This is automatically done when you call

the show() method of the Window. If you override this method, first call
super.addNotify(), then add your customizations for the new class. Then you can do
everything you need to with the information about the newly created peer.

Window Events

In Java 1.0, a Window peer generates all the events that are generated by the Component class; it does
not generate events that are specific to a particular type of component. That is, it generates key events,
mouse events, and focus events; it doesn't generate action events or list events. If an event occurs within
a child component of a Window, the target of the event is the child component, not the Window.

In addition to the Component events, five events are specific to windows, none of which are passed on
by the window's peer. These events happen at the Frame and Dialog level. The events are
WINDOW_DESTROY, WINDOW_EXPOSE, WINDOW_ICONIFY, WINDOW_DEICONIFY, and
WINDOW_MOVED. The default event handler, handleEvent(), doesn't call a convenience method to
handle any of these events. If you want to work with them, you must override handleEvent(). See
Frame Events for an example that catches the WINDOW_DESTROY event.

public boolean postEvent (Event e)

The postEvent() method tells the Window to deal with Event e. It calls the
handleEvent() method, which returns true if somebody handled e and false if no one
handles it. This method, which overrides Component.postEvent(), is necessary because a
Window is, by definition, an outermost container, and therefore does not need to post the event to
its parent.

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners for different event types; the listeners are told when the
event happens. These methods register listeners and let the Window component inspect its own events.

public void addWindowListener(WindowListener listener)

The addWindowListener() method registers listener as an object interested in being
notified when an WindowEvent passes through the EventQueue with this Window as its
target. When such an event occurs, one of the methods in the WindowListener interface is
called. Multiple listeners can be registered.

public void removeWindowListener(WindowListener listener)

The removeWindowListener() method removes listener as an interested listener. If
listener is not registered, nothing happens.

protected void processEvent(AWTEvent e)

The processEvent() method receives every AWTEvent with this Window as its target.
processEvent() then passes them along to any listeners for processing. When you subclass
Window, overriding processEvent() allows you to process all events yourself, before
sending them to any listeners. In a way, overriding processEvent() is like overriding
handleEvent() using the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last to
ensure that regular event processing can occur. If you want to process your own events, it's a good
idea to call enableEvents() (inherited from Component) to ensure that events are delivered
even in the absence of registered listeners.

protected void processWindowEvent(WindowEvent e)

The processWindowEvent() method receives every WindowEvent with this Window as
its target. processWindowEvent() then passes them along to any listeners for processing.
When you subclass Window, overriding processWindowEvent() allows you to process all
events yourself, before sending them to any listeners. In a way, overriding
processWindowEvent() is like overriding handleEvent() using the 1.0 event model.

If you override processWindowEvent(), you must remember to call
super.processWindowEvent(e) last to ensure that regular event processing can occur. If
you want to process your own events, it's a good idea to call enableEvents() (inherited from
Component) to ensure that events are delivered even in the absence of registered listeners.

Insets Frames

Chapter 6
Containers

6.5 Frames

The Frame is a special type of Window that looks like other high level programs in your windowing
environment. It adds a MenuBar, window title, and window gadgets (like resize, maximize, minimize,
window menu) to the basic Window object. All the menu-related pieces are discussed in Chapter 10, Would
You Like to Choose from the Menu?

The default layout manager for a Frame is BorderLayout.

Frame Constants

The Frame class includes a number of constants used to specify cursors. These constants are left over from
Java 1.0 and maintained for compatibility. In Java 1.1, you should use the new Cursor class, introduced in
the previous chapter, and the Component.setCursor() method to change the cursor over a frame. Avoid
using the Frame constants for new code. To see these cursors, refer to Figure 5.6.

public final static int DEFAULT_CURSOR
public final static int CROSSHAIR_CURSOR
public final static int TEXT_CURSOR
public final static int WAIT_CURSOR
public final static int SW_RESIZE_CURSOR
public final static int SE_RESIZE_CURSOR
public final static int NW_RESIZE_CURSOR
public final static int NE_RESIZE_CURSOR
public final static int N_RESIZE_CURSOR
public final static int S_RESIZE_CURSOR
public final static int W_RESIZE_CURSOR
public final static int E_RESIZE_CURSOR
public final static int HAND_CURSOR
public final static int MOVE_CURSOR

NOTE:

HAND_CURSOR and MOVE_CURSOR are not available on Windows platforms with Java 1.0. If you ask to use
these and they are not available, you get DEFAULT_CURSOR.

Frame Constructors

public Frame ()

The constructor for Frame creates a hidden window with a window title of "Untitled" (Java1.0) or an
empty string (Java1.1). Like Window, the default LayoutManager of a Frame is
BorderLayout. DEFAULT_CURSOR is the initial cursor. To position the Frame on the screen, call
Component.move(). Since the Frame is initially hidden, you need to call the show() method
before the user sees the Frame.

public Frame (String title)

This version of Frame's constructor is identical to the first but sets the window title to title. Figure
6.3 shows the results of a call to new Frame("My Frame") followed by resize() and
show().

Figure 6.3: A typical Frame

[Graphic: Figure 6-3]

Frame Methods

public String getTitle ()

The getTitle() method returns the current title for the Frame. If there is no title, this method
returns null.

public void setTitle (String title)

The setTitle() method changes the Frame's title to title.

public Image getIconImage ()

The getIconImage() method returns the image used as the icon. Initially, this returns null. For
some platforms, the method should not be used because the platform does not support the concept.

public void setIconImage (Image image)

The setIconImage() method changes the image to display when the Frame is iconified to
image. Not all platforms utilize this resource.

public MenuBar getMenuBar ()

The getMenuBar() method retrieves the Frame's current menu bar.

public synchronized void setMenuBar (MenuBar bar)

The setMenuBar() method changes the menu bar of the Frame to bar. If bar is null, it
removes the menu bar so that none is available. It is possible to have multiple menu bars based upon
the context of the application. However, the same menu bar cannot appear on multiple frames and only
one can appear at a time. The MenuBar class, and everything to do with menus, is covered in Chapter
10, Would You Like to Choose from the Menu?.

public synchronized void remove (MenuComponent component)

The remove() method removes component from Frame if component is the frame's menu bar.
This is equivalent to calling setMenuBar() with a parameter of null and in actuality is what
remove() calls.

public synchronized void dispose ()

The dispose() method frees up the system resources used by the Frame. If any Dialogs or
Windows are associated with this Frame, their resources are freed, too. Some people like to call
Component.hide() before calling the dispose() method so users do not see the frame
decomposing.

public boolean isResizable ()

The isResizable() method will tell you if the current Frame is resizable.

public void setResizable (boolean resizable)

The setResizable() method changes the resize state of the Frame. A resizable value of

true means the user can resize the Frame, false means the user cannot. This must be set before the
Frame is shown or the peer created.

public void setCursor (int cursorType)

The setCursor() method changes the cursor of the Frame to cursorType. cursorType must
be one of the cursor constants provided with the Frame class. You cannot create your own cursor
image yet. When changing from the DEFAULT_CURSOR to another cursor, the mouse must be moved
for the cursor icon to change to the new cursor. If cursorType is not one of the predefined cursor
types, setCursor() throws the IllegalArgumentException run-time exception.

This method has been replaced by the Component.setCursor() method. Both function
equivalently, but this method is being phased out.

public int getCursorType ()

The getCursorType() method retrieves the current cursor.

This method has been replaced by the Component.getCursor() method. Both function
equivalently, but this method is being phased out.

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method creates the Frame peer. This is automatically done when you call the
show() method of the Frame. If you override this method, first call super.addNotify(), then
add your customizations for the new class. Then you can do everything you need to do with the
information about the newly created peer.

protected String paramString ()

When you call the toString() method of Frame, the default toString() method of
Component is called. This in turn calls paramString(), which builds up the string to display. At
the Frame level, paramString() appends resizable (if true) and the title (if present).
Using the default Frame constructor, the results would be:

java.awt.Frame[0,0,0x0,invalid,hidden,layout=java.awt.BorderLayout,
resizable,title=]

Until the Frame is shown, via show(), the position and size are not known and therefore appear as
zeros. After showing the Frame, you might see:

java.awt.Frame[44,44,300x300,layout=java.awt.BorderLayout,
resizable,title=]

Frame Events

In Java 1.0, a Frame peer generates all the events that are generated by the Component class; it does not
generate events that are specific to a particular type of component. That is, it generates key events, mouse
events, and focus events; it doesn't generate action events or list events. If an event happens within a child
component of a Frame, the target of the event is the child component, not the Frame.Window

In addition to the Component events, Frame generates the WINDOW events. These events are
WINDOW_DESTROY, WINDOW_EXPOSE, WINDOW_ICONIFY, WINDOW_DEICONIFY, and
WINDOW_MOVED.

One common event, WINDOW_DESTROY, is generated when the user tries to close the Frame by selecting
Quit, Close, or Exit (depending on your windowing environment) from the window manager's menu. By
default, this event does nothing. You must provide an event handler that explicitly closes the Frame. If you
do not, your Frame will close only when the Java Virtual Machine exits--for example, when you quit
Netscape Navigator. The handleEvent() method in the following example, or one like it, should therefore
be included in all classes that extend Frame. If a WINDOW_DESTROY event occurs, it gets rid of the Frame
and exits the program. Make sure your method calls super.handleEvent() to process the other events.

public boolean handleEvent (Event e) {
 if (e.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 System.exit(0);
 return true; // boolean method, must return something
 } else {
 // handle other events we find interesting
 }
 // make sure normal event processing happens
 return super.handleEvent (e);
}

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners for different event types; the listeners are told when the event
happens. The Frame class inherits all its listener handling from Window.

Here's the Java 1.1 code necessary to handle WINDOW_CLOSING events; it is equivalent to the
handleEvent() method in the previous example. First, you must add the following line to the Frame's
constructor:

enableEvents (AWTEvent.WINDOW_EVENT_MASK);

This line guarantees that we will receive window events, even if there is no listener. The
processWindowEvent() method in the following code does the actual work of closing things down:

// Java 1.1 only
protected void processWindowEvent(WindowEvent e) {
 if (e.getID() == WindowEvent.WINDOW_CLOSING) {
 // Notify others we are closing
 if (windowListener != null)
 windowListener.windowClosing(e);
 System.exit(0);
 } else {
 super.processEvent(e);
 }
}

If you forget to enable events, processWindowEvent() may never be called, and your windows will not
shut down until the Java Virtual Machine exits. All subclasses of Frame should include code like this to make
sure they terminate gracefully.

Building a New Component from a Window

Now that we have discussed the Frame and Window objects, we can briefly investigate some ways to use
them together. Previously I said that you can use a Window to build your own pop-up menu. That's no longer
necessary in Java 1.1, but the same techniques apply to plenty of other objects. In the following example, we
build a set of pop-up buttons; it also uses the Toolkit of a Frame to load images within an application. The
pop-up button set appears when the user presses the right mouse button over the image. It is positioned at the
coordinates of the mouseDown() event; to do so, we add the current location() of the Frame to the
mouse's x and y coordinates. Figure 6.4 shows what this application looks like when the pop-up button set is
on the screen.

import java.awt.*;
public class PopupButtonFrame extends Frame {
 Image im;
 Window w = new PopupWindow (this);
 PopupButtonFrame () {
 super ("PopupButton Example");
 resize (250, 100);
 show();
 im = getToolkit().getImage ("rosey.jpg");
 MediaTracker mt = new MediaTracker (this);
 mt.addImage (im, 0);
 try {

 mt.waitForAll();
 } catch (Exception e) {e.printStackTrace(); }
 }
 public static void main (String args[]) {
 Frame f = new PopupMenuFrame ();
 }
 public void paint (Graphics g) {
 if (im != null)
 g.drawImage (im, 20, 20, this);
 }
 public boolean mouseDown (Event e, int x, int y) {
 if (e.modifiers == Event.META_MASK) {
 w.move (location().x+x, location().y+y);
 w.show();
 return true;
 }
 return false;
 }
}
class PopupWindow extends Window {
 PopupWindow (Frame f) {
 super (f);
 Panel p = new Panel ();
 p.add (new Button ("About"));
 p.add (new Button ("Save"));
 p.add (new Button ("Quit"));
 add ("North", p);
 setBackground (Color.gray);
 pack();
 }
 public boolean action (Event e, Object o) {
 if ("About".equals (o))
 System.out.println ("About");
 else if ("Save".equals (o))
 System.out.println ("Save Me");
 else if ("Quit".equals (o))
 System.exit (0);
 hide();
 return true;
 }
}

Figure 6.4: Pop-up buttons

[Graphic: Figure 6-4]

The most interesting method in this application is mouseDown(). When the user clicks on the mouse,
mouseDown() checks whether the META_MASK is set in the event modifiers; this indicates that the user
pressed the right mouse button, or pressed the left button while pressing the Meta key. If this is true,
mouseDown() moves the window to the location of the mouse click, calls show() to display the window,
and returns true to indicate that the event was handled completely. If mouseDown were called with any
other kind of mouse event, we return false to let the event propagate to any other object that might be
interested. Remember that the coordinates passed with the mouse event are the coordinates of the mouse click
relative to the Frame; to find out where to position the pop-up window, we need an absolute location and
therefore ask the Frame for its location.

PopupWindow itself is a simple class. Its constructor simply creates a display with three buttons. The call to
pack() sizes the window so that it provides a nice border around the buttons but isn't excessively large; you
can change the border by playing with the window's insets if you want, but that usually isn't necessary. The
class PopupWindow has an action() method that is called when the user clicks one of the buttons. When
the user clicks on a button, action() prints a message and hides the window.

Window Dialogs

Chapter 6
Containers

6.6 Dialogs

The Dialog class provides a special type of display window that is normally used for pop-up messages
or input from the user. It should be associated with a Frame (a required parameter for the constructor),
and whenever anything happens to this Frame, the same thing will happen to the Dialog. For instance,
if the parent Frame is iconified, the Dialog disappears until the Frame is de-iconified. If the Frame
is destroyed, so are all the associated dialogs. Figure 6.5 and Figure 6.6 show typical dialog boxes.

In addition to being associated with a Frame, Dialog is either modeless or modal. A modeless
Dialog means a user can interact with both the Frame and the Dialog at the same time. A modal
Dialog is one that blocks input to the remainder of the application, including the Frame, until the
Dialog box is acted upon. Note that the parent Frame is still executing; unlike some windowing
systems, Java does not suspend the entire application for a modal Dialog. Normally, blocking access
would be done to get input from the user or to show a warning message. Example 6.2 shows how to
create and use a modal Dialog box, as we will see later in the chapter.

Since Dialog subclasses Window, its default LayoutManager is BorderLayout.

In applets, when you create a Dialog, you need to provide a reference to the browser's Frame, not the
applet. In order to get this, you can try to go up the container hierarchy of the Applet with
getParent() until it returns null. (You cannot specify a null parent as you can with a Window.)
See Example 6.1 for a utility method to do this. Simple include a line like the following in your applet:

Frame top = ComponentUtilities.getTopLevelParent (this);

Then pass top to the Dialog constructor. Another alternative is to create a new Frame to associate
with your dialog.

Dialog Constructors and Methods

Constructors

If any constructor is passed a null parent, the constructor throws the run-time exception
IllegalArgumentException.

public Dialog (Frame parent)

This constructor creates an instance of Dialog with no title and with parent as the Frame
owning it. It is not modal and is initially resizable.

public Dialog (Frame parent, boolean modal)

This constructor creates an instance of Dialog with no title and with parent as the Frame
owning it. If modal is true, the Dialog grabs all the user input of the program until it is
closed. If modal is false, there is no special behavior associated with the Dialog. Initially,
the Dialog will be resizable. This constructor is comment-flagged as deprecated.

public Dialog (Frame parent, String title)

This version of the constructor creates an instance of Dialog with parent as the Frame
owning it and a window title of title. It is not modal and is initially resizable.

public Dialog (Frame parent, String title, boolean modal)

This version of the constructor creates an instance of Dialog with parent as the Frame
owning it and a window title of title. If mode is true, the Dialog grabs all the user input of
the program until it is closed. If modal is false, there is no special behavior associated with the
Dialog. Initially, the Dialog will be resizable.

NOTE:

In some 1.0 versions of Java, modal dialogs were not supported properly. You needed to create some
multithreaded contraption that simulated modality. Modal dialogs work properly in 1.1.

Figure 6.5: A Dialog in an application or local applet

[Graphic: Figure 6-5]

Figure 6.6: The same Dialog in an applet that came across the network

[Graphic: Figure 6-6]

Appearance methods

public String getTitle ()

The getTitle() method returns the current title for the Dialog. If there is no title for the
Dialog, getTitle() returns null.

public void setTitle (String title)

The setTitle() method changes the current title of the Dialog to title. To turn off any
title for the Dialog, use null for title.

public boolean isResizable ()

The isResizable() method tells you if the current Dialog is resizable.

public void setResizable (boolean resizable)

The setResizable() method changes the resize state of the Dialog. A resizable value
of true means the user can resize the Dialog, while false means the user cannot. This must
be set before the Dialog is shown or the peer created.

Modal methods

public boolean isModal ()

The isModal() method returns the current mode of the Dialog. true indicates the dialog
traps all user input.

public void setModal (boolean mode)

The setModal() method changes the current mode of the Dialog to mode. The next time the
dialog is displayed via show(), it will be modal. If the dialog is currently displayed,
setModal() has no immediate effect. The change will take place the next time show() is
called.

public void show ()

The show() method brings the Dialog to the front and displays it. If the dialog is modal,
show() takes care of blocking events so that they don't reach the parent Frame.

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method creates the Dialog peer. The peer is created automatically when
you call the dialog's show() method. If you override the method addNotify(), first call
super.addNotify(), then add your customizations for the new class. You will then be able
to do everything you need with the information about the newly created peer.

protected String paramString ()

When you call the toString() method of Dialog, the default toString() method of
Component is called. This in turn calls paramString() which builds up the string to display.
At the Dialog level, paramString() appends the current mode (modal/modeless) and title
(if present). Using the constructor Dialog (top, `Help`, true), the results would be as
follows:

java.awt.Dialog[0,0,0x0,invalid,hidden,layout=java.awt.BorderLayout,

 modal,title=Help]

Dialog Events

In Java 1.0, a Dialog peer generates all the events that are generated by the Component class; it does
not generate events that are specific to a particular type of component. That is, it generates key events,
mouse events, and focus events; it doesn't generate action events or list events. If an event happens
within a child component of a Dialog, the target of the event is the child component, not the
Dialog.Window

In addition to the Component events, Dialog generates the WINDOW events. These events are
WINDOW_DESTROY, WINDOW_EXPOSE, WINDOW_ICONIFY, WINDOW_DEICONIFY, and
WINDOW_MOVED. Listeners and 1.1 event handling

With the 1.1 event model, you register listeners for different event types; the listeners are told when the
event happens. The Dialog class inherits all its listener handling from Window.

Dialog Example

Example 6.2 demonstrates how a modal Dialog tries to work in Java 1.0. In some windowing systems,
"modal" means that the calling application, and sometimes the entire system stops, and input to anything
other than the Dialog is blocked. With Java 1.0, a modal Dialog acts only on the parent frame and
simply prevents it from getting screen-oriented input by disabling all components within the frame. The
Java program as a whole continues to execute.

Example 6.2 displays a Dialog window with username and password fields, and an Okay button. When
the user selects the Okay button, a realistic application would validate the username and password; in this
case, they are just displayed on a Frame. Since the Frame must wait for the Dialog to finish before
looking at the values of the two fields, the Dialog must tell the Frame when it can look. This is done
through a custom interface implemented by the parent Frame and invoked by the Dialog in its action
method.

Figure 6.7 is the initial Dialog; Figure 6.8 shows the result after you click Okay. Example 6.2 contains
the source code.

Figure 6.7: Username and password Dialog

[Graphic: Figure 6-
7]

Notice the use of the newly created DialogHandler interface when the user selects the Okay button.
Also, see how the pre- and post-event-handling methods are separated. All the pre-event processing takes
place before the Dialog is shown. The post-event processing is called by the Dialog through the new
DialogHandler interface method, dialogDoer(). The interface provides a common method name
for all your Dialog boxes to call.

Figure 6.8: Resulting Frame

[Graphic: Figure 6-8]

Example 6.2: Modal Dialog Usage

import java.awt.*;
interface DialogHandler {
 void dialogDoer (Object o);
}
class modeTest extends Dialog {
 TextField user;
 TextField pass;

 modeTest (DialogHandler parent) {
 super ((Frame)parent, "Mode Test", true);
 add ("North", new Label ("Please enter username/password"));
 Panel left = new Panel ();
 left.setLayout (new BorderLayout ());
 left.add ("North", new Label ("Username"));
 left.add ("South", new Label ("Password"));
 add ("West", left);
 Panel right = new Panel ();
 right.setLayout (new BorderLayout ());
 user = new TextField (15);
 pass = new TextField (15);
 pass.setEchoCharacter ('*');
 right.add ("North", user);
 right.add ("South", pass);
 add ("East", right);
 add ("South", new Button ("Okay"));
 resize (250, 125);
 }
 public boolean handleEvent (Event e) {
 if (e.id == Event.WINDOW_DESTROY) {
 dispose();
 return true;
 } else if ((e.target instanceof Button) &&
 (e.id == Event.ACTION_EVENT)) {
 ((DialogHandler)getParent ()).dialogDoer(e.arg);
 }
 return super.handleEvent (e);
 }
}
public class modeFrame extends Frame implements DialogHandler {
 modeTest d;
 modeFrame (String s) {
 super (s);
 resize (100, 100);
 d = new modeTest (this);
 d.show ();
 }
 public static void main (String []args) {
 Frame f = new modeFrame ("Frame");
 }
 public boolean handleEvent (Event e) {
 if (e.id == Event.WINDOW_DESTROY) {

 hide();
 dispose();
 System.exit (0);
 }
 return super.handleEvent (e);
 }
 public void dialogDoer(Object o) {
 d.dispose();
 add ("North", new Label (d.user.getText()));
 add ("South", new Label (d.pass.getText()));
 show ();
 }
}

Since the Java 1.1 modal Dialog blocks the calling Frame appropriately, the overhead of the
DialogHandler interface is not necessary and all the work can be combined into the main()
method, as shown in the following:

// only reliable in Java 1.1
import java.awt.*;
class modeTest11 extends Dialog {
 TextField user;
 TextField pass;
 modeTest11 (Frame parent) {
 super (parent, "Mode Test", true);
 add ("North", new Label ("Please enter username/password"));
 Panel left = new Panel ();
 left.setLayout (new BorderLayout ());
 left.add ("North", new Label ("Username"));
 left.add ("South", new Label ("Password"));
 add ("West", left);
 Panel right = new Panel ();
 right.setLayout (new BorderLayout ());
 user = new TextField (15);
 pass = new TextField (15);
 pass.setEchoCharacter ('*');
 right.add ("North", user);
 right.add ("South", pass);
 add ("East", right);
 add ("South", new Button ("Okay"));
 resize (250, 125);
 }
 public boolean handleEvent (Event e) {

 if (e.id == Event.WINDOW_DESTROY) {
 dispose();
 return true;
 } else if ((e.target instanceof Button) &&
 (e.id == Event.ACTION_EVENT)) {
 hide();
 }
 return super.handleEvent (e);
 }
}
public class modeFrame11 extends Frame {
 modeFrame11 (String s) {
 super (s);
 resize (100, 100);
 }
 public static void main (String []args) {
 Frame f = new modeFrame11 ("Frame");
 modeTest11 d;
 d = new modeTest11 (f);
 d.show ();
 d.dispose();
 f.add ("North", new Label (d.user.getText()));
 f.add ("South", new Label (d.pass.getText()));
 f.show ();
 }
 public boolean handleEvent (Event e) {
 if (e.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 System.exit (0);
 }
 return super.handleEvent (e);
 }
}

The remainder of the code is virtually identical. The most significant difference is that the dialog's
handleEvent()method just hides the dialog, rather than calling
DialogHandler.dialogDoer().

Frames FileDialog

Chapter 6
Containers

6.7 FileDialog

FileDialog is a subclass of Dialog that lets the user select files for opening or saving. You must load or save any
files yourself. If used in an application or appletviewer, the FileDialog always looks like the local system's file
dialog. The FileDialog is always a modal Dialog, meaning that the calling program is blocked from continuing
(and cannot accept input) until the user responds to the FileDialog. Figure 6.9 shows the FileDialog component
in Motif, Windows NT/95, and the Macintosh.

Unlike the other Window subclasses, there is no LayoutManager for FileDialog, since you are creating the
environment's actual file dialog. This means you cannot subclass FileDialog to alter its behavior or appearance.
However, the class is not "final."

NOTE:

Netscape Navigator throws an AWTError when you try to create a FileDialog because Navigator does not permit
local file system access.

FileDialog Methods

Constants

A FileDialog has two modes: one for loading a file (input) and one for saving (output). The following variables
provide the mode to the constructor. The FileDialog functions the same way in both modes. The only visible
difference is whether a button on the screen is labeled Load or Save. You must load or save the requested file yourself.
On certain platforms there may be functional differences: in SAVE mode, the FileDialog may ask if you want to
replace a file if it already exists; in LOAD mode, the FileDialog may not accept a filename that does not exist.

public final static int LOAD

LOAD is the constant for load mode. It is the default mode.

public final static int SAVE

SAVE is the constant for save mode.

Constructors

public FileDialog (Frame parent)

The first constructor creates a FileDialog for loading with a parent Frame of parent. The window title is
initially empty.

public FileDialog (Frame parent, String title)

This constructor creates a FileDialog for loading with a parent Frame of parent. The window title is
title.

public FileDialog (Frame parent, String title, int mode)

The final constructor creates a FileDialog with an initial mode of mode. If mode is neither LOAD nor
SAVE, the FileDialog is in SAVE mode.

Figure 6.9: FileDialogs for Motif, Windows NT/95, and the Macintosh

Appearance methods

public String getDirectory ()

getDirectory() returns the current directory for the FileDialog. Normally, you check this when
FileDialog returns after a show() and a call to getFile() returns something other than null.

public void setDirectory (String directory)

The setDirectory() method changes the initial directory displayed in the FileDialog to directory.
You must call setDirectory() prior to displaying the FileDialog.

public String getFile ()

The getFile() method returns the current file selection from the FileDialog. If the user pressed the
Cancel button on the FileDialog, getFile() returns null. This is the only way to determine if the user
pressed Cancel.

NOTE:

On some platforms in Java 1.0 getFile() returns a string that ends in .*.* (two periods and two asterisks) if the
file does not exist. You need to remove the extra characters before you can create the file.

public void setFile (String file)

The setFile() method changes the default file for the FileDialog to file. Because the FileDialog
is modal, this must be done before you call show(). The string may contain a filename filter like *.java to
show a preliminary list of files to select. This has nothing to do with the use of the FilenameFilter class.

public FilenameFilter getFilenameFilter ()

The getFilenameFilter() method returns the current FilenameFilter. The FilenameFilter
class is part of the java.io package. FilenameFilter is an interface that allows you to restrict choices to
certain directory and filename combinations. For example, it can be used to limit the user to selecting .jpg, .gif,
and .xbm files. The class implementing FilenameFilter would not return other possibilities as choices.

public void setFilenameFilter (FilenameFilter filter)

The setFilenameFilter() method changes the current filename filter to filter. This needs to be done
before you show() the FileDialog.

NOTE:

The JDK does not support the FilenameFilter with FileDialog boxes. FilenameFilter works but can't be
used with FileDialog.

Miscellaneous methods

public int getMode ()

The getMode() method returns the current mode of the FileDialog. If an invalid mode was used in the
constructor, this method returns an invalid mode here. No error checking is performed.

public void setMode (int mode)

The setMode() method changes the current mode of the FileDialog to mode. If mode is not one of the
class constants LOAD or SAVE, setMode() throws the run-time exception
IllegalArgumentException.

public synchronized void addNotify ()

The addNotify() method creates the FileDialog peer. This is automatically done when you call the
show() method of the FileDialog. If you override this method, first call super.addNotify(), then
add your customizations for the new class. Then you can do everything you need with the information about the
newly created peer.

protected String paramString ()

When you call the toString() method of FileDialog, the default toString() method of Component
is called. This in turn calls paramString(), which builds up the string to display. At the FileDialog
level, paramString() appends the directory (if not null) and current mode to the return value. Using the
constructor FileDialog(top, `Load Me`), the results would be as follows:

java.awt.FileDialog[0,0,0x0,invalid,hidden,modal,title=Load Me,load]

A FileDialog Example

To get a better grasp of how the FileDialog works, the following application uses a FileDialog to select a file
for display in a TextArea. You can also use FileDialog to save the file back to disk. Figure 6.10 shows the
application, with a file displayed in the text area; the FileDialog itself looks like any other file dialog on the run-
time system. Example 6.3 shows the code.

CAUTION:

This example can overwrite an existing file.

Figure 6.10: FileDialog test program

Example 6.3: Complete FileDialog

import java.awt.*;
import java.io.*;
public class FdTest extends Frame {
 TextArea myTextArea;

 Label myLabel;
 Button loadButton;
 Button saveButton;
 FdTest () {
 super ("File Dialog Tester");
 Panel p = new Panel ();
 p.add (loadButton = new Button ("Load"));
 p.add (saveButton = new Button ("Save"));
 add ("North", myLabel = new Label ());
 add ("South", p);
 add ("Center", myTextArea = new TextArea (10, 40));
 Menu m = new Menu ("File");
 m.add (new MenuItem ("Quit"));
 MenuBar mb = new MenuBar();
 mb.add (m);
 setMenuBar (mb);
 pack();
 }
 public static void main (String args[]) {
 FdTest f = new FdTest();
 f.show();
 }
 public boolean handleEvent (Event e) {
 if (e.id == Event.WINDOW_DESTROY) {
 hide();
 dispose ();
 System.exit(0);
 return true; // never gets here
 }
 return super.handleEvent (e);
 }
 public boolean action (Event e, Object o) {
 if (e.target instanceof MenuItem) {
 hide();
 dispose ();
 System.exit(0);
 return true; // never gets here
 } else if (e.target instanceof Button) {
 int state;
 String msg;
 if (e.target == loadButton) {
 state = FileDialog.LOAD;
 msg = "Load File";
 } else {// if (e.target == saveButton)
 state = FileDialog.SAVE;
 msg = "Save File";
 }
 FileDialog file = new FileDialog (this, msg, state);
 file.setFile ("*.java"); // set initial filename filter

 file.show(); // Blocks
 String curFile;
 if ((curFile = file.getFile()) != null) {
 String filename = file.getDirectory() + curFile;
 // curFile ends in .*.* if file does not exist
 byte[] data;
 setCursor (Frame.WAIT_CURSOR);
 if (state == FileDialog.LOAD) {
 File f = new File (filename);
 try {
 FileInputStream fin = new FileInputStream (f);
 int filesize = (int)f.length();
 data = new byte[filesize];
 fin.read (data, 0, filesize);
 } catch (FileNotFoundException exc) {
 String errorString = "File Not Found: " + filename;
 data = new byte[errorString.length()];
 errorString.getBytes (0, errorString.length(), data, 0);
 } catch (IOException exc) {
 String errorString = "IOException: " + filename;
 data = new byte[errorString.length()];
 errorString.getBytes (0, errorString.length(), data, 0);
 }
 myLabel.setText ("Load: " + filename);
 } else {
// Remove trailing ".*.*" if present - signifies file does not exist
 if (filename.indexOf (".*.*") != -1) {
 filename = filename.substring (0, filename.length()-4);
 }
 File f = new File (filename);
 try {
 FileOutputStream fon = new FileOutputStream (f);
 String text = myTextArea.getText();
 int textsize = text.length();
 data = new byte[textsize];
 text.getBytes (0, textsize, data, 0);
 fon.write (data);
 fon.close ();
 } catch (IOException exc) {
 String errorString = "IOException: " + filename;
 data = new byte[errorString.length()];
 errorString.getBytes (0, errorString.length(), data, 0);
 }
 myLabel.setText ("Save: " + filename);
 }
 // Note - on successful save, text is redisplayed
 myTextArea.setText (new String (data, 0));
 setCursor (Frame.DEFAULT_CURSOR);
 }

 return true;
 }
 return false;
 }
}

Most of this application is one long action() method that handles all the action events that take place within the
Frame. The constructor doesn't do much besides arrange the display; it includes code to create a File menu with one
item, Quit. This menu is visible in the upper left corner of the Frame; we'll see more about working with menus in
Chapter 10, Would You Like to Choose from the Menu? We provide a main() method to display the Frame and a
handleEvent() method to shut the application down if the event WINDOW_DESTROY occurs.

But the heart of this program is clearly its action() method. action() starts by checking whether the user
selected a menu item; if so, it shuts down the application because the only item on our menu is Quit. It then checks
whether the user clicked on one of the buttons and sets the FileDialog mode to LOAD or SAVE accordingly. It then
sets a default filename, *.java, which limits the display to filenames ending in .java. Next, action() shows the
dialog. Because file dialogs are modal, show() blocks until the user selects a file or clicks Cancel.

The next line detects whether or not getFile() returns null. A null return indicates that the user selected Cancel;
in this case, the dialog disappears, but nothing else happens. We then build a complete filename from the directory
name and the name the user selected. If the dialog's state is LOAD, we read the file and display it in the text area.
Otherwise, the dialog's state must be SAVE, so we save the contents of the text area under the given filename. Note that
we first check for the string *.* and remove it if it is present. In Java 1.1, these two lines are unnecessary, but they
don't hurt, either.

Dialogs Layouts

Chapter 7
Layouts

7.2 FlowLayout

FlowLayout is the default LayoutManager for a Panel. A FlowLayout adds components to the
container in rows, working from left to right. When it can't fit any more components in a row, it starts a
new row--not unlike a word processor with word wrap enabled. When the container gets resized, the
components within it get repositioned based on the container's new size. If sufficient space is available,
components within FlowLayout containers are given their preferred size. If there is insufficient space,
you do not see the components in their entirety.

FlowLayout Methods

Constants

FlowLayout defines three constants, all of which are used to specify alignment. The alignment tells
FlowLayout where to start positioning the components on each row. Each component is still added
from left to right, no matter what the alignment setting is.

public final static int LEFT

LEFT is the constant for left alignment.

public final static int CENTER

CENTER is the constant for center alignment and is the default.

public final static int RIGHT

RIGHT is the constant for right alignment.

Constructors

public FlowLayout ()

This constructor creates a FlowLayout using default settings: center alignment with a
horizontal and vertical gap of five pixels. The gap is the space between the different components
in the different directions. By default, there will be five pixels between components. The
constructor is usually called within a call to setLayout(): setLayout (new
FlowLayout()). Figure 7.1 shows how the default FlowLayout behaves with different
screen sizes. As the screen C shows, if the screen is too small, the components will not be shrunk
so that they can fit better.

Figure 7.1: FlowLayout with six buttons and three different screen sizes

[Graphic: Figure 7-1]

public FlowLayout (int alignment)

This version of the constructor creates a FlowLayout using the specified alignment and a
horizontal and vertical gap of five pixels. Valid alignments are the FlowLayout constants,
although there is no verification. Figure 7.2 shows the effect of different alignments:
FlowLayout.LEFT (screen A), FlowLayout.CENTER (B), and FlowLayout.RIGHT (C).

Figure 7.2: FlowLayout with three different alignments

[Graphic: Figure 7-2]

public FlowLayout (int alignment, int hgap, int vgap)

The final version of the constructor is called by the other two. It requires you to explicitly specify
the alignment, horizontal gap (hgap), and vertical gap (vgap). This creates a FlowLayout
with an alignment of alignment, horizontal gap of hgap, and vertical gap of vgap. The units
for gaps are pixels. It is possible to have negative gaps if you want components to be placed on
top of one another. Figure 7.3 shows the effect of changing the gap sizes.

Figure 7.3: FlowLayout with hgap of 0 and vgap of 20

[Graphic: Figure 7-3]

Informational methods

public int getAlignment ()

The getAlignment() method retrieves the current alignment of the FlowLayout. The
return value should equal one of the class constants LEFT, CENTER, or RIGHT.

public void setAlignment (int alignment)

The setAlignment() method changes the FlowLayout alignment to alignment. The
alignment value should equal one of the class constants LEFT, CENTER, or RIGHT, but this
method does not check. After changing the alignment, you must validate() the Container.

public int getHgap ()

The getHgap() method retrieves the current horizontal gap setting.

public void setHgap (int hgap)

The setHgap() method changes the current horizontal gap setting to hgap. After changing the
gaps, you must validate() the Container.

public int getVgap ()

The getVgap() method retrieves the current vertical gap setting.

public void setVgap (int hgap)

The setVgap() method changes the current vertical gap setting to vgap. After changing the
gaps, you must validate() the Container.

LayoutManager methods

public void addLayoutComponent (String name, Component component)

The addLayoutComponent() method of FlowLayout does nothing.

public void removeLayoutComponent (Component component)

The removeLayoutComponent() method of FlowLayout does nothing.

public Dimension preferredLayoutSize (Container target)

The preferredLayoutSize() method of FlowLayout calculates the preferred dimensions
for the target container. The FlowLayout computes the preferred size by placing all the
components in one row and adding their individual preferred sizes along with gaps and insets.

public Dimension minimumLayoutSize (Container target)

The minimumLayoutSize() method of FlowLayout calculates the minimum dimensions
for the container by adding up the sizes of the components. The FlowLayout computes the
minimum size by placing all the components in one row and adding their individual minimum
sizes along with gaps and insets.

public void layoutContainer (Container target)

The layoutContainer() method draws target's components on the screen, starting with
the first row of the display, going left to right across the screen, based on the current alignment
setting. When it reaches the right margin of the container, it skips down to the next row, and
continues drawing additional components.

Miscellaneous methods

public String toString ()

The toString() method of FlowLayout returns the current horizontal and vertical gap
settings along with the alignment (left, center, right). For a FlowLayout that uses all the
defaults, toString() produces:

java.awt.FlowLayout[hgap=5,vgap=5,align=center]

The LayoutManager Interface BorderLayout

Chapter 7
Layouts

7.3 BorderLayout

BorderLayout is the default LayoutManager for a Window. It provides a very flexible way of
positioning components along the edges of the window. The following call to setLayout() changes
the LayoutManager of the current container to the default BorderLayout: setLayout(new
BorderLayout()). Figure 7.4 shows a typical BorderLayout.

Figure 7.4: BorderLayout

BorderLayout is the only layout provided that requires you to name components when you add them
to the layout; if you're using a BorderLayout, you must use add(String name, Component
component) in Java 1.0 or add(Component component, String name) in Java 1.1
(parameter order switched). (The CardLayout can use these versions of add(), but does not require
it.) The name parameter of add() specifies the region to which the component should be added. The
five different regions are "North", "South", "East", and "West" for the edges of the window, and "Center"
for any remaining interior space. These names are case sensitive. It is not necessary that a container use

all five regions. If a region is not used, it relinquishes its space to the regions around it. If you add()
multiple objects to a single region, the layout manager only displays the last one. If you want to display
multiple objects within a region, group them within a Panel first, then add() the Panel.

NOTE:

In Java 1.1, if you do not provide a name, the component is placed in the "Center" region.

BorderLayout Methods

Constants

Prior to Java 1.1, you had to use string constants to specify the constraints when adding a component to a
container whose layout is BorderLayout. With Java 1.1, you can use class constants, instead of a
literal string, in the following list.

public static final String CENTER

The CENTER constant represents the "Center" string and indicates that a component should be
added to the center region.

public static final String EAST

The EAST constant represents the "East" string and indicates that a component should be added to
the east region.

public static final String NORTH

The NORTH constant represents the "North" string and indicates that a component should be
added to the north region.

public static final String SOUTH

The SOUTH constant represents the "South" string and indicates that a component should be
added to the south region.

public static final String WEST

The WEST constant represents the "West" string and indicates that a component should be added
to the west region.

Constructors

public BorderLayout ()

This constructor creates a BorderLayout using a default setting of zero pixels for the
horizontal and vertical gaps. The gap specifies the space between adjacent components. With
horizontal and vertical gaps of zero, components in adjacent regions will touch each other. As
Figure 7.4 shows, each component within a BorderLayout will be resized to fill an entire
region.

public BorderLayout (int hgap, int vgap)

This version of the constructor allows you to create a BorderLayout with a horizontal gap of
hgap and vertical gap of vgap, putting some space between the different components. The units
for gaps are pixels. It is possible to have negative gaps if you want components to overlap.

Informational methods

public int getHgap ()

The getHgap() method retrieves the current horizontal gap setting.

public void setHgap (int hgap)

The setHgap() method changes the current horizontal gap setting to hgap. After changing the
gaps, you must validate() the Container.

public int getVgap ()

The getVgap() method retrieves the current vertical gap setting.

public void setVgap (int hgap)

The setVgap() method changes the current vertical gap setting to vgap. After changing the
gaps, you must validate() the Container.

LayoutManager methods

public void addLayoutComponent (String name, Component component)

This version of addLayoutComponent() has been deprecated and replaced by the
addLayoutComponent(Component, Object) method of the LayoutManager2
interface.

public void removeLayoutComponent (Component component)

The removeLayoutComponent() method of BorderLayout removes component from
the container, if it is in one of the five regions. If component is not in the container already,
nothing happens.

public Dimension preferredLayoutSize (Container target)

The preferredLayoutSize() method of BorderLayout calculates the preferred
dimensions for the components in target. To compute the preferred height, a BorderLayout
adds the height of the getPreferredSize() of the north and south components to the
maximum getPreferredSize() height of the east, west, and center components. The
vertical gaps are added in for the north and south components, if present. The top and bottom
insets are also added into the height. To compute the preferred width, a BorderLayout adds
the width of the getPreferredSize() of east, west, and center components, along with the
horizontal gap for the east and west regions. It compares this value to the preferred widths of the
north and south components. The BorderLayout takes the maximum of these three and then
adds the left and right insets, plus twice the horizontal gap. The result is the preferred width for
the container.

public Dimension minimumLayoutSize (Container target)

The minimumLayoutSize() method of BorderLayout calculates the minimum
dimensions for the components in target. To compute the minimum height, a
BorderLayout adds the height of the getMinimumSize() of the north and south
components to the maximum of the minimum heights of the east, west, and center components.
The vertical gaps are added in for the north and south components, if present, along with the
container's top and bottom insets. To compute the minimum width, a BorderLayout adds the
width of the getMinimumSize() of east, west, and center components, along with the
horizontal gap for the east and west regions. The BorderLayout takes the maximum of these
three and then adds the left and right insets, plus twice the horizontal gap. The result is the
minimum width for the container.

public void layoutContainer (Container target)

The layoutContainer() method draws target's components on the screen in the
appropriate regions. The north region takes up the entire width of the container along the top.

South does the same along the bottom. The heights of north and south will be the heights of the
components they contain. The east and west regions are given the widths of the components they
contain. For height, east and west are given whatever is left in the container after satisfying north's
and south's height requirements. If there is any extra vertical space, the east and west components
are resized accordingly. Any space left in the middle of the screen is assigned to the center region.
If there is insufficient space for all the components, space is allocated according to the following
priority: north, south, west, east, and center. Unlike FlowLayout, BorderLayout reshapes
the internal components of the container to fit within their region. Figure 7.5 shows what happens
if the east and south regions are not present and the gaps are nonzero.

Figure 7.5: BorderLayout with missing regions

LayoutManager2 methods

public void addLayoutComponent (Component component, Object name)

This addLayoutComponent() method puts component in the name region of the
container. In Java 1.1, if name is null, component is added to the center. If the name is not
"North", "South", "East", "West", or "Center", the component is added to the container but won't
be displayed. Otherwise, it is displayed in the appropriate region.

There can only be one component in any region, so any component already in the named region is
removed. To get multiple components in one region of a BorderLayout, group the components
in another container, and add the container as a whole to the layout.

If name is not a String, addLayoutComponent() throws the run-time exception

IllegalArgumentException.

public abstract Dimension maximumLayoutSize(Container target)

The maximumLayoutSize() method returns a Dimension object with a width and height of
Integer.MAX_VALUE. In effect, this means that BorderLayout does not support the
concept of maximum size.

public abstract float getLayoutAlignmentX(Container target)

The getLayoutAlignmentX() method says that BorderLayout containers should be
centered horizontally within the area available.

public abstract float getLayoutAlignmentY(Container target)

The getLayoutAlignmentY() method says that BorderLayout containers should
centered vertically within the area available.

public abstract void invalidateLayout(Container target)

The invalidateLayout() method of BorderLayout does nothing.

Miscellaneous methods

public String toString ()

The toString() method of BorderLayout returns a string showing the current horizontal
and vertical gap settings. If both gaps are zero, the result will be:

java.awt.BorderLayout[hgap=0,vgap=0]

FlowLayout GridLayout

Chapter 7
Layouts

7.4 GridLayout

The GridLayout layout manager is ideal for laying out objects in rows and columns, where each cell
in the layout has the same size. Components are added to the layout from left to right, top to bottom.
setLayout(new GridLayout(2,3)) changes the LayoutManager of the current container to a
2 row by 3 column GridLayout. Figure 7.6 shows an applet using this layout.

Figure 7.6: Applet using GridLayout

[Graphic: Figure 7-6]

GridLayout Methods

Constructors

public GridLayout ()

This constructor creates a GridLayout initially configured to have one row, an infinite number
of columns, and no gaps. A gap is the space between adjacent components in the horizontal or
vertical direction. With a gap of zero, components in adjacent cells will have no space between
them.

public GridLayout (int rows, int columns)

This constructor creates a GridLayout initially configured to be rows x columns in size. The
default setting for horizontal and vertical gaps is zero pixels. The gap is the space between
adjacent components in the horizontal and vertical directions. With a gap of zero, components in
adjacent cells will have no space between them.

You can set the number of rows or columns to zero; this means that the layout will grow without
bounds in that direction. If both rows and columns are zero, the run-time exception
IllegalArgumentException will be thrown.

NOTE:

The rows and columns passed to the GridLayout constructor are only recommended values. It is
possible that the system will pick other values if the number of objects you add to the layout is
sufficiently different from the size you requested; for example, you placed nine objects in a six-element
grid.

public GridLayout (int rows, int columns, int hgap, int vgap)

This version of the constructor is called by the previous one. It creates a GridLayout with an
initial configuration of rows x columns, with a horizontal gap of hgap and vertical gap of
vgap. The gap is the space between the different components in the different directions,
measured in pixels. It is possible to have negative gaps if you want components to overlap.

You can set the number of rows or columns to zero; this means that the layout will grow without
bounds in that direction. If both rows and columns are zero, the run-time exception
IllegalArgumentException will be thrown.

Informational methods

public int getColumns ()

The getColumns() method retrieves the current column setting, which may differ from the
number of columns displayed.

public void setColumns (int columns)

The setColumns() method changes the current column setting to columns. After changing
the setting, you must validate() the Container. If you try to set the number of rows and
the number of columns to zero, this method throws the run-time exception

IllegalArgumentException.

public int getRows ()

The getRows() method retrieves the current row setting; this may differ from the number of
rows displayed.

public void setRows (int rows)

The setRows() method changes the current row setting to rows. After changing the setting,
you must validate() the Container. If you try to set the number of rows and the number of
columns to zero, this method throws the run-time exception IllegalArgumentException.

public int getHgap ()

The getHgap() method retrieves the current horizontal gap setting.

public void setHgap (int hgap)

The setHgap() method changes the current horizontal gap setting to hgap. After changing the
gaps, you must validate() the Container.

public int getVgap ()

The getVgap() method retrieves the current vertical gap setting.

public void setVgap (int hgap)

The setVgap() method changes the current vertical gap setting to vgap. After changing the
gaps, you must validate() the Container.

LayoutManager methods

public void addLayoutComponent (String name, Component component)

The addLayoutComponent() method of GridLayout does nothing.

public void removeLayoutComponent (Component component)

The removeLayoutComponent() method of GridLayout does nothing.

public Dimension preferredLayoutSize (Container target)

The preferredLayoutSize() method of GridLayout calculates the preferred dimensions
for the components in target. The preferred size depends on the size of the grid, which may not
be the size requested by the constructor; the GridLayout treats the constructor's arguments as
recommendations and may ignore them if appropriate.

The actual number of rows and columns is based upon the number of components within the
Container. The GridLayout tries to observe the number of rows requested first, calculating
the number of columns. If the requested number of rows is nonzero, the number of columns is
determined by (# components + rows - 1) / rows. If request is for zero rows, the number of rows
to use is determined by a similar formula: (# components + columns - 1) / columns. Table 7.1
demonstrates this calculation. The last entry in this table is of special interest: if you request a 3x3
grid but only place four components in the layout, you get a 2x2 layout as a result. If you do not
want to be surprised, size the GridLayout based on the number of objects you plan to put into
the display.

Table 7.1: GridLayout Row/Column Calculation

Rows Columns # Components Display Rows Display Columns

0 1 10 10 1

0 2 10 5 2

1 0 10 1 10

2 0 10 2 5

2 3 10 2 5

2 3 20 2 10

3 2 10 3 4

3 3 3 3 1

3 3 4 2 2

Once we know the dimensions of the grid, it's easy to compute the preferred size for the layout.
The GridLayout takes the maximum height and maximum width of the preferred sizes for all
the components in the layout. (Note that the maximum width and maximum height aren't
necessarily from the same component.) This becomes the preferred size of each cell within the
layout. The preferred size of the layout as a whole is computed using the preferred size of a cell

and adding gaps and insets as appropriate.

public Dimension minimumLayoutSize (Container target)

The minimumLayoutSize() method of GridLayout calculates the minimum dimensions
for the components in target. First it determines the actual number of rows and columns in the
final layout, using the method described previously. The minimumLayoutSize() method
then determines the widest and tallest getMinimumSize() of a component, and this becomes
the minimum size of a cell within the layout. The minimum size of the layout as a whole is
computed using the minimum size of a cell and adding gaps and insets as appropriate.

public void layoutContainer (Container target)

The layoutContainer() method draws target's components on the screen in a series of
rows and columns. Each component within a GridLayout will be the same size, if it is possible.
If there is insufficient space for all the components, the size of each is reduced proportionally.

Miscellaneous methods

public String toString ()

The toString() method of GridLayout returns a string including the current horizontal and
vertical gap settings, along with the rows and columns settings. For a GridLayout created with
2 rows and 3 columns, the result would be:

java.awt.GridLayout[hgap=0,vgap=0,rows=2,cols=3]

BorderLayout CardLayout

Chapter 7
Layouts

7.5 CardLayout

The CardLayout layout manager is significantly different from the other layouts. Whereas the other
layout managers attempt to display all the components within the container at once, a CardLayout
displays only one component at a time. (That component could be a Component or another
Container.) The result is similar to Netscape Navigator's Property sheets or a tabbed Dialog, without
the tabs. You can flip through the cards (components) in the layout in order or jump to a specific card if
you know its name. The following call to setLayout() changes the LayoutManager of the current
container to CardLayout:

lm = new CardLayout();
setLayout (lm);

Unlike most other layout managers, CardLayout has a number of instance methods that programs
have to call. Therefore, you usually have to retain a reference to the layout manager. In addition, you
usually have some other component to control the CardLayout (i.e., select which card to view). Most
simply, you could put some buttons in a panel and stick this panel in the north region of a
BorderLayout; then make another panel with a CardLayout, and place that in the center. A more
complex task would be to build a set of tabs to control the CardLayout.

A CardLayout allows you to assign names to the components it manages. You can use the name to
jump to an arbitrary component by calling the manager's show() method. In Java 1.0, naming was
optional; you could call add(Component) to put a component in the layout with a null name. A null
name meant only that you couldn't flip to the component at will; you could only display the component
by calling next() or previous() (or first() or last()), which cycle through all the
components in order. In Java 1.1, all components added to a CardLayout must be named.

CardLayout Methods

Constructors

public CardLayout ()

This constructor creates a CardLayout using a horizontal and vertical gap of zero pixels. With
CardLayout, there is no space between components because only one component is visible at a
time; think of the gaps as insets.

public CardLayout (int hgap, int vgap)

This version of the constructor allows you to create a CardLayout with a horizontal gap of
hgap and vertical gap of vgap to add some space around the outside of the component that is
displayed. The units for gaps are pixels. Using negative gaps chops off components at the edges
of the container.

Informational methods

public int getHgap ()

The getHgap() method retrieves the current horizontal gap setting.

public void setHgap (int hgap)

The setHgap() method changes the current horizontal gap setting to hgap. After changing the
gaps, you must validate() the Container.

public int getVgap ()

The getVgap() method retrieves the current vertical gap setting.

public void setVgap (int hgap)

The setVgap() method changes the current vertical gap setting to vgap. After changing the
gaps, you must validate() the Container.

LayoutManager methods

public void addLayoutComponent (String name, Component component)

This version of addLayoutComponent() has been deprecated and replaced by the
addLayoutComponent(Component, Object) method of the LayoutManager2
interface.

public void removeLayoutComponent (Component component)

The removeLayoutComponent() method of CardLayout removes component from the
container. If component is not in the container already, nothing happens.

public Dimension preferredLayoutSize (Container target)

The preferredLayoutSize() method of CardLayout retrieves the preferred size for all
the components within it. The preferredLayoutSize() method then determines the widest
and tallest size of all components (not necessarily from the same one), adds the appropriate insets
and gaps, and uses that as the preferred size for the layout.

public Dimension minimumLayoutSize (Container target)

The minimumLayoutSize() method of CardLayout calculates the minimum size for all
the components within it. The minimumLayoutSize() method then determines the widest
and tallest minimum size of all components (not necessarily from the same one), adds the
appropriate insets and gaps, and uses that as the minimum size for the layout.

public void layoutContainer (Container target)

The layoutContainer() method draws target's visible components one on top of another.
Initially, all components are visible. Components do not become invisible until you select one for
display, by calling the first(), last(), next(), previous(), or show() methods.
Where possible, CardLayout reshapes all components to fit the target container.

LayoutManager2 methods

public void addLayoutComponent (Component component, Object name)

This addLayoutComponent() method of CardLayout puts component into an internal
table with a key of name. The name comes from the version of add() that has a constraints
object as a parameter. The name allows you to refer to the component when you call other card
layout methods, like show(). If you call the version of add() that only takes a Component
parameter, you cannot call the show() method to flip to the specific component.

If name is not a String, the run-time exception IllegalArgumentException is thrown.

public abstract Dimension maximumLayoutSize(Container target)

The maximumLayoutSize() method returns a Dimension object with a width and height of
Integer.MAX_VALUE. In practice, this means that CardLayout doesn't support the concept
of maximum size.

public abstract float getLayoutAlignmentX(Container target)

The getLayoutAlignmentX() method says that CardLayout containers should be
centered horizontally within the area available.

public abstract float getLayoutAlignmentY(Container target)

The getLayoutAlignmentY() method says that CardLayout containers should be
centered vertically within the area available.

public abstract void invalidateLayout(Container target)

The invalidateLayout() method of CardLayout does nothing.

CardLayout methods

This group of methods controls which component the CardLayout displays. The show() is only
usable if you assigned components names when adding them to the container. The others can be used
even if the components are unnamed; they cycle through the components in the order in which they were
added. All of these methods require the parent Container (i.e., the container being managed by this
layout manager) as an argument. If the layout manager of the parent parameter is anything other than
the container using this instance of the CardLayout, the method throws the run-time exception
IllegalArgumentException.

public void first (Container parent)

The first() method flips to the initial component in parent.

public void next (Container parent)

The next() method flips to the following component in parent, wrapping back to the
beginning if the current component is the last.

public void previous (Container parent)

The previous() method flips to the prior component in parent, wrapping to the end if the
current component is the first.

public void last (Container parent)

The last() method flips to the final component in parent.

public void show (Container parent, String name)

The show() method displays the component in parent that was assigned the given name when it
was added to the container. If there is no component with name contained within parent,
nothing happens.

Miscellaneous methods

public String toString ()

The toString() method of CardLayout returns the a string showing the current horizontal
and vertical gap settings. The result for a typical CardLayout would be:

java.awt.CardLayout[hgap=0,vgap=0]

CardLayout Example

Figure 7.7 shows a simple CardLayout. This layout has three cards that cycle when you make a
selection. The first card (A) contains some Checkbox items within a Panel, the second card (B)
contains a single Button, and the third (C) contains a List and a Choice within another Panel.

Figure 7.7: Different views of CardLayout

[Graphic: Figure 7-7]

Example 7.1 is the code that generated Figure 7.7.

Example 7.1: The CardExample Class

import java.awt.*;
import java.applet.*;
public class CardExample extends Applet {
 CardLayout cl = new CardLayout();
 public void init () {
 String fonts[] = Toolkit.getDefaultToolkit().getFontList();
 setLayout (cl);
 Panel pA = new Panel();
 Panel pC = new Panel ();
 p1.setLayout (new GridLayout (3, 2));
 List l = new List(4, false);
 Choice c = new Choice ();
 for (int i=0;i<fonts.length;i++) {
 pA.add (new Checkbox (fonts[i]));
 l.addItem (fonts[i]);
 c.addItem (fonts[i]);
 }
 pC.add (l);
 pC.add (c);
 add ("One", pA);
 add ("Two", new Button ("Click Here"));
 add ("Three", pC);
 }
 public boolean action (Event e, Object o) {
 cl.next(this);
 return true;
 }
}

Each panel within the CardLayout has its own layout manager. Panel A uses a GridLayout; panel
C uses its default layout manager, which is a FlowLayout. When the user takes any action (i.e.,
clicking on a checkbox or button, or selecting an item from the List or Choice components), the
system generates a call to action(), which calls the CardLayout's next() method, thus displaying
the next card in the sequence.

GridLayout GridBagLayout

Chapter 7
Layouts

7.6 GridBagLayout

The GridBagLayout is the most complex and flexible of the standard layout managers. Although it sounds
like it should be a subclass of GridLayout, it's a different animal entirely. With GridLayout, elements
are arranged in a rectangular grid, and each element in the container is sized identically (where possible). With
GridBagLayout, elements can have different sizes and can occupy multiple rows or columns. The position
and behavior of each element is specified by an instance of the GridBagConstraints class. By properly
constraining the elements, you can specify the number of rows and columns an element occupies, which
element grows when additional screen real estate is available, and various other restrictions. The actual grid
size is based upon the number of components within the GridBagLayout and the
GridBagConstraints of those objects. For example, Figure 7.8 shows a GridBagLayout with seven
components, arranged on a 3x3 grid. The maximum capacity of a screen using GridBagLayout in Java 1.0
is 128 x 128 cells; in Java 1.1, the maximum size is 512 x 512 cells.

Figure 7.8: GridBagLayout with seven components on a 3x3 grid

[Graphic: Figure 7-8]

With the other layout managers, adding a component to the container requires only a call to add(). In Java
1.0, the GridBagLayout also requires you to call setConstraints() to tell the layout manager how to
position the component. With Java 1.1, you use the new add() method that permits you to pass the
component and its constraints in a single method call (add(Component, Object)). If no components are
added with constraints (thus all using the defaults), the GridBagLayout places the components in a single
row at the center of the screen and sizes them to their getPreferredSize(). This is a nice way to place a
single object in the center of the screen without stretching it to take up the available space, as
BorderLayout does. Figure 7.9 compares the default GridBagLayout with a BorderLayout
displaying the same object in the center region.

Figure 7.9: Centering a component: GridBagLayout vs. BorderLayout

[Graphic: Figure 7-9]

When designing a container that will use GridBagLayout, it is easiest to plan what you want on graph
paper, and then determine how the constraints should be set. The alternative, adding the components to the
layout and then tweaking the constraints until you have something you like, could lead to premature baldness.
Seriously, a trial-and-error approach to getting the constraints right will certainly be frustrating and will
probably fail. Figure 7.10, using the same GridBagLayout used in Figure 7.8, indicates how the layout
manager counts cells. The partial code used to create the screen follows in Example 7.2.

Example 7.2: Creating a GridBagLayout

public void init() {
 Button b;
 GridBagLayout gb = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gb);
 try {
/* Row One - Three button */
 b = new Button ("One");
 addComponent (this, b, 0, 0, 1, 1,
 GridBagConstraints.NONE, GridBagConstraints.CENTER);
 b = new Button ("Two");
 addComponent (this, b, 1, 0, 1, 1,
 GridBagConstraints.NONE, GridBagConstraints.CENTER);
 b = new Button ("Three");
 addComponent (this, b, 2, 0, 1, 1,
 GridBagConstraints.NONE, GridBagConstraints.CENTER);
/* Row Two - Two buttons */
 b = new Button ("Four");
 addComponent (this, b, 0, 1, 2, 1,
 GridBagConstraints.NONE, GridBagConstraints.CENTER);
 b = new Button ("Five");
 addComponent (this, b, 2, 1, 1, 2,
 GridBagConstraints.NONE, GridBagConstraints.CENTER);
/* Row Three - Two buttons */

 b = new Button ("Six");
 addComponent (this, b, 0, 2, 1, 1,
 GridBagConstraints.NONE, GridBagConstraints.CENTER);
 b = new Button ("Seven");
 addComponent (this, b, 1, 2, 1, 1,
 GridBagConstraints.NONE, GridBagConstraints.CENTER);
 } catch (Exception e) {
 e.printStackTrace();
 }
}

Figure 7.10: How GridBagLayout counts rows and columns

[Graphic: Figure 7-10]

Most of the work in Example 7.2 is done by the helper method addComponent(), which creates a set of
constraints, applies them to a component, and adds the component to a container. The code for
addComponent() appears in GridBagConstraints; its signature is:

public static void addComponent (Container container, Component component,
 int gridx, int gridy, int gridwidth, int gridheight, int fill,
 int anchor) throws AWTException ;

The top left cell in the layout has location (0,0). There's nothing very surprising about buttons one, two,
three, six, and seven. They occupy a 1x1 area on the layout's 3x3 grid. Button four occupies a 2x1 area; it is
placed at location (0,1), and thus occupies this cell plus the cell at (1,1). Likewise, button five occupies a 1x2
area, and takes up the cells at (2,1) and (2,2). The total size of the layout is determined entirely by the
components that are placed in it and their constraints.

GridBagLayout Methods

Variables

There are a handful of instance variables for GridBagLayout. They are not initialized until the container
whose layout is GridBagLayout has been validated.

public int columnWidths[]

The columnWidths[] array contains the widths of the components in the row with the most
elements. The values of this array are returned by the getLayoutDimensions() method. You can
access the array directly, but it is not recommended.

public int rowHeights[]

The rowHeights[] array contains the heights of the components in the column with the most
elements. The values of this array are returned by the getLayoutDimensions() method. You can
access the array directly, but it is not recommended.

public double columnWeights[]

The columnWeights[] array contains the weightx values of the components in the row with the
most elements. The values of this array are returned by the getLayoutWeights() method. You
can access the array directly, but it is not recommended.

public double rowWeights[]

The row Weights[] array contains the weighty values of the components in the column with the
most elements. The values of this array are returned by the getLayoutWeights() method. You
can access the array directly, but it is not recommended.

Constructors

public GridBagLayout ()

The constructor for GridBagLayout creates an instance of GridBagLayout with default
GridBagConstraints behavior. An internal table is used to keep track of the components added to
the layout.

LayoutManager methods

public void addLayoutComponent (String name, Component component)

The addLayoutComponent() method of GridBagLayout does nothing. This method is not
deprecated, unlike the similarly named methods in the other layout managers that implement
LayoutManager2.

public void removeLayoutComponent (Component component)

The removeLayoutComponent() method of GridBagLayout does nothing.

public Dimension preferredLayoutSize (Container target)

The preferredLayoutSize() method calculates the preferred dimensions of the components of
target. Sizing is based on the constraints of the various components. This task is definitely better off
left to the computer.

public Dimension minimumLayoutSize (Container target)

The minimumLayoutSize() method calculates the minimum dimensions required to position the
components of target. Sizing is based on the constraints of the various components.

public void layoutContainer (Container target)

The layoutContainer() method positions the components within target based upon the
constraints of each component. If a component's anchor constraints are invalid,
layoutContainer() throws the run-time exception IllegalArgumentException. The
process of arranging the components is very complicated and beyond the scope of this book.

LayoutManager2 methods

public void addLayoutComponent (Component component, Object constraints)

This addLayoutComponent() method of GridBagLayout associates the component with the
given constraints object. It calls the setConstaints() method.

If name is not a GridBagConstraints, addLayoutComponent() throws the run-time
exception IllegalArgumentException.

public abstract Dimension maximumLayoutSize(Container target)

The maximumLayoutSize() method returns a Dimension object with a width and height of
Integer.MAX_VALUE. In practice, this means that GridBagLayout doesn't support the concept
of maximum size.

public abstract float getLayoutAlignmentX(Container target)

The getLayoutAlignmentX() method says that GridBagLayout containers should be centered
horizontally within the area available.

public abstract float getLayoutAlignmentY(Container target)

The getLayoutAlignmentY() method says that GridBagLayout containers should be centered
vertically within the area available.

public abstract void invalidateLayout(Container target)

The invalidateLayout() method of GridBagLayout does nothing.

Constraints

public GridBagConstraints getConstraints (Component component)

The getConstraints() method returns a clone of the current constraints for component. This
makes it easier to generate constraints for a component based on another component.

public void setConstraints (Component component, GridBagConstraints constraints)

The setConstraints() method changes the constraints on component to a clone of
constraints. The system creates a clone() of constraints so you can change the original
constraints without affecting component.

Layout

public Point getLayoutOrigin ()

The getLayoutOrigin() method returns the origin for the GridBagLayout. The origin is the
top left point within the container at which the components are drawn. Before the container is
validated, getLayoutOrigin() returns the Point (0,0). After validation,
getLayoutOrigin() returns the actual origin of the layout. The space used by the components
within a GridBagLayout may not fill the entire container. You can use the results of
getLayoutOrigin() and getLayoutDimensions() to find the layout's actual size and draw a
Rectangle around the objects.

public int[][] getLayoutDimensions ()

The getLayoutDimensions() method returns two one-dimensional arrays as a single two-
dimensional array. Index 0 is an array of widths (columnWidths instance variable), while index 1 is
an array of heights (rowHeights instance variable). Until the layout is validated, these will be
empty. After validation, the first array contains the widths of the components in the row with the most
elements. The second contains the heights of the components in the column with the most elements.
For Figure 7.10, the results would be (38, 51, 48) for widths since the first row has three elements and
(21, 21, 21) for the heights since the first (and second) column has three elements in it.

public double[][] getLayoutWeights ()

The getLayoutWeights() method returns two one-dimensional arrays as a single two-
dimensional array. Index 0 is an array of column weights (columnWeights instance variable), while
index 1 is an array of row weights (rowWeights instance variable). Until the layout is validated,
these will be empty. After validation, the first dimension contains all the weightx values of the
components in the row with the most elements. The second dimension contains all the weighty
values of the components in the column with the most elements. For Figure 7.10, the results would be
(0, 0, 0) for weightx since the first row has three elements and (0, 0, 0) for weighty since the first
column has three elements in it.

Miscellaneous methods

public Point location (int x, int y)

The location() method returns the Point (0,0) until the container is validated. After validation,
this method returns the grid element under the location (x, y), where x and y are in pixels. The results
could be used as the gridx and gridy constraints when adding another component.

public String toString ()

The toString() method of GridBagLayout returns the name of the class:

java.awt.GridBagLayout

CardLayout GridBagConstraints

Chapter 7
Layouts

7.7 GridBagConstraints

GridBagConstraints are the meat behind the GridBagLayout; they specify how to display
components. Unlike other layout managers, which have a built-in idea about what to do with their display, the
GridBagLayout is a blank slate. The constraints attached to each component tell the layout manager how
to build its display.

Every Component added to a GridBagLayout has a GridBagConstraints object associated with it.
When an object is first added to the layout, it is given a default set of constraints (described later in this
section). Calling setConstraints() (or add(Component, GridBagConstraints)) applies a
new set of constraints to the object. Most people create a helper method to make the setConstraints()
calls, passing constraint information as parameters. The helper method used in Example 7.2 follows:

public static void addComponent (Container container, Component component,
 int gridx, int gridy, int gridwidth, int gridheight, int fill,
 int anchor) throws AWTException {
 LayoutManager lm = container.getLayout();
 if (!(lm instanceof GridBagLayout)) {
 throw new AWTException ("Invalid layout" + lm);
 } else {
 GridBagConstraints gbc = new GridBagConstraints ();
 gbc.gridx = gridx;
 gbc.gridy = gridy;
 gbc.gridwidth = gridwidth;
 gbc.gridheight = gridheight;
 gbc.fill = fill;
 gbc.anchor = anchor;
 ((GridBagLayout)lm).setConstraints(component, gbc);
 container.add (component);
 }
}

In Java 1.1, you can make this method slightly cleaner by adding the component and applying the constraints
in the same call to add(). To do so, replace the lines calling setConstraints() and add() with this

line:

 // Java 1.1 only
 container.add(component, gbc);

GridBagConstraints Methods

Constants and variables

public int anchor

The anchor specifies the direction in which the component will drift in the event that it is smaller
than the space available for it. CENTER is the default. Others available are NORTH, SOUTH, EAST,
WEST, NORTHEAST, NORTHWEST, SOUTHEAST, and SOUTHWEST.

public final static int CENTER
public final static int EAST
public final static int NORTH
public final static int NORTHEAST
public final static int NORTHWEST
public final static int SOUTH
public final static int SOUTHEAST
public final static int SOUTHWEST
public final static int WEST

Constants used to set the anchor.

public int fill

The value of fill controls the component's resize policy. If fill is NONE (the default), the layout
manager tries to give the component its preferred size. If fill is VERTICAL, it resizes in height if
additional space is available. If fill is HORIZONTAL, it resizes in width. If fill is BOTH, the layout
manager takes advantage of all the space available in either direction. Figure 7.11 demonstrates
VERTICAL (A), HORIZONTAL (B), and NONE (C) values; Figure 7.8 demonstrated the use of BOTH.

public final static int NONE
public final static int BOTH
public final static int HORIZONTAL
public final static int VERTICAL

Constants used to set fill.

Figure 7.11: GridBagLayout with fill values of VERTICAL, HORIZONTAL, and NONE

[Graphic: Figure 7-11]

public int gridx
public int gridy

The gridx and gridy variables specify the grid position where this component will be placed. (0,0)
specifies the cell at the origin of the screen. Table 7.2 shows the gridx and gridy values for the
screen in Figure 7.8.

It isn't necessary to set gridx and gridy to a specific location; if you set these fields to RELATIVE
(the default), the system calculates the location for you. According to the comments in the source code,
if gridx is RELATIVE, the component appears to the right of the last component added to the layout.
If gridy is RELATIVE, the component appears below the last component added to the layout.
However, this is misleadingly simple. RELATIVE placement works best if you are adding components
along a row or a column. In this case, there are four possibilities to consider:

● gridx and gridy RELATIVE: components are placed in one row.

● gridx RELATIVE, gridy constant: components are placed in one row, each to the right of the
previous component.

● gridx constant, gridy RELATIVE: components are placed in one column, each below the previous
component.

● Varying gridx or gridy while setting the other field to RELATIVE appears to start a new row,
placing the component as the first element in the row.

public int gridwidth
public int gridheight

gridwidth and gridheight set the number of rows (gridwidth) and columns (gridheight)
a particular component occupies. If gridwidth or gridheight is set to REMAINDER, the
component will be the last element of the row or column occupying any space that's remaining. Table
7.2 shows the gridwidth and gridheight values for the screen in Figure 7.8. For the components
in the last column, the gridwidth values could be REMAINDER. Likewise, gridheight could be
set to REMAINDER for the components in the last row.

gridwidth and gridheight may also have the value RELATIVE, which forces the component to
be the next to last component in the row or column. Looking back to Figure 7.8: if button six has a
gridwidth of RELATIVE, button seven won't appear because button five is the last item in the row,
and six is already next to last. If button five has a gridheight of RELATIVE, the layout manager
will reserve space below it, so the button can be the next to last item in the column.

public final static int RELATIVE

Constant used for gridx and gridy to request relative placement, and by gridheight and
gridwidth to specify the next to last component in a column or row. The behavior of RELATIVE
placement can be very counter intuitive; in most cases, you will be better off specifying gridx,
gridy, gridheight, and gridwidth explicitly.

public final static int REMAINDER

Constant used for gridwidth and gridheight, to specify that a component should fill the rest of
the row or column.

Table 7.2: Demonstrating
gridx/gridy/gridwidth/gridheight

Component gridx gridy gridwidth gridheight

One 0 0 1 1

Two 1 0 1 1

Three 2 0 1 1

Four 0 1 2 1

Five 2 1 1 2

Six 0 2 1 1

Seven 1 2 1 3

public Insets insets

The insets field specifies the external padding in pixels around the component (i.e., between the
component and the edge of the cell, or cells, allotted to it). An Insets object can specify different
padding for the top, bottom, left, and right sides of the component.

public int ipadx
public int ipady

ipadx and ipady specify the internal padding within the component. ipadx specifies the extra

space to the right and left of the component (so the minimum width increases by 2*ipadx pixels).
ipady specifies the extra space above and below the component (so the minimum height increases by
2*ipady pixels).

The difference between insets (external padding) and the ipadx, ipady variables (internal padding)
is confusing. The insets don't add space to the component itself; they are external to the component.
ipadx and ipady change the component's minimum size, so they do add space to the component
itself.

public double weightx
public double weighty

The weightx and weighty variables describe how to distribute any additional space within the
container. They allow you to control how components grow (or shrink) when the user resizes the
container. If weightx is 0, the component won't get any additional space available in its row. If one
or more components in a row have weightx values greater than 0, any extra space is distributed
proportionally between them. For example, if one component has a weightx value of 1 and the others
are all 0, that one component will get all the additional space. If four components in a row each have
weightx values of 1 and the other components have weightx values of 0, the four components each
get one quarter of the additional space. weighty behaves similarly. Because weightx and
weighty control the distribution of extra space in any row or column, setting either for one
component may affect the position of other components.

Constructors

public GridBagConstraints ()

The constructor creates a GridBagConstraints object in which all the fields have their default
values. These defaults are shown in the Table 7.3.

Table 7.3: GridBagConstraints Defaults.

Variable Value Description

anchor CENTER
If the component is smaller than the space available, it will be centered within
its region.

fill NONE
The component should not resize itself if extra space is available within its
region.

gridx RELATIVE
The component associated with this constraint will be positioned relative to the
last item added. If all components have gridx and gridy RELATIVE, they
will be placed in a single row.

gridy RELATIVE
The component associated with this constraint will be positioned relative to the
last item added.

gridwidth 1 The component will occupy a single cell within the layout.

gridheight 1 The component will occupy a single cell within the layout.

insets 0x0x0x0 No extra space is added around the edges of the component.

ipadx 0 There is no internal padding for the component.

ipady 0 There is no internal padding for the component.

weightx 0 The component will not get any extra space, if it is available.

weighty 0 The component will not get any extra space, if it is available.

Miscellaneous methods

public Object clone ()

The clone() method creates a clone of the GridBagConstraints so the same
GridBagConstraints object can be associated with multiple components.

GridBagLayout Combining Layouts

Chapter 7
Layouts

7.8 Combining Layouts

If you can't create the display you want with any of the standard layout managers, or you are unable to
figure out GridBagLayout, you may want to try combining several different layouts. This technique
can often help you build the display you want. Figure 7.12 shows a display that uses three panels and
three different layouts.

Here's the source code to generate the display in Figure 7.12:

import java.awt.*;
public class multi extends java.applet.Applet {
 public void init() {
 Panel s = new Panel();
 Panel e = new Panel();
 setLayout (new BorderLayout ());
 add ("North", new Label ("Enter text", Label.CENTER));
 add ("Center", new TextArea ());
 e.setLayout (new GridLayout (0,1));
 e.add (new Button ("Reformat"));
 e.add (new Button ("Spell Check"));
 e.add (new Button ("Options"));
 add ("East", e);
 s.setLayout (new FlowLayout ());
 s.add (new Button ("Save"));
 s.add (new Button ("Cancel"));
 s.add (new Button ("Help"));
 add ("South", s);
 }
}

Figure 7.12: Multipanel screen using several layouts

The display in Figure 7.12 is created by adding four sections to a single BorderLayout. The north
region contains a panel with a single Label in it. The panel uses its default LayoutManager, which is
a FlowLayout. Why bother with this panel? Why not just add a label at the north position in the
BorderLayout? Our strategy gives the label the position and size we want: the label is centered and
displayed at its preferred size. If we had added the label directly to the BorderLayout, it would have
been left justified and resized to fill the region.

The TextArea has no special requirements, so we added it directly to the center of the
BorderLayout.

The three buttons on the right of the screen were arranged in a panel with a GridLayout; then this
panel was placed in the east region of the BorderLayout.

To create the buttons at the bottom of the screen, we used another Panel with a FlowLayout. It
centers the three buttons and displays them at their preferred size, with a gap between them.

With a little work, we could have created this display using a single Panel with a GridBagLayout.
The result would have been more efficient; placing panels within panels has performance implications.
Each container in the display has its own peer object, which uses up system resources. Furthermore, in
the 1.0 version of AWT, nesting containers complicates event handling. However, using a
GridBagLayout would have required much more work: figuring out the right
GridBagConstraints for each component would be time consuming and result in code that is
harder to understand. Sometimes, it's best to settle for the easy solution: a hybrid layout composed of
several simple panels, rather than a single very complex panel.

In Java 1.1, you can make this program even more efficient in its resource usage by using a lightweight

component instead of panels. This is particularly easy because the panels in the multipanel screen exist
strictly to help with layout and not for partitioning event handling. Therefore, you can define a
LightweightPanel that extends Container, with no methods. Use this class instead of Panel.
The LightweightPanel allows you to lay out areas without creating unnecessary peers. Here's all
the code for the LightweightPanel:

// Java 1.1 only
import java.awt.*;
public class LightweightPanel extends Container {
}

GridBagConstraints Disabling the LayoutManager

Chapter 7
Layouts

7.9 Disabling the LayoutManager

To create a container with no layout manager, use null as the argument to setLayout(). If you do
this, you must size and position every component individually. In most cases, disabling the
LayoutManager is a bad idea because what might look great on one platform could look really bad on
another, due to differences in fonts, native components, and other display characteristics. Figure 7.13
displays a container with a disabled LayoutManager; both buttons were positioned by specifying their
size and location explicitly.

Figure 7.13: Applet with disabled layout manager

[Graphic: Figure 7-13]

Here's the code that produces Figure 7.13:

import java.awt.Button;
import java.applet.Applet;

public class noLayout extends Applet {
 public void init () {
 setLayout (null);
 Button x = new Button ("Hello");
 add (x);
 x.reshape (50, 60, 50, 70);
 Button y = new Button ("World");
 add (y);
 y.reshape (100, 120, 50, 70);
 }
}

Combining Layouts Designing Your Own
LayoutManager

Chapter 7
Layouts

7.10 Designing Your Own LayoutManager

What if you can't find a LayoutManager that fits your requirements, or you find yourself repeatedly building the same
multipanel display? In cases like these, you can build your own layout manager. It's really not that difficult; you only
need to implement the five methods of the LayoutManager interface, plus a constructor and any additional methods
your design requires. In this section, we'll review the LayoutManager interface and then construct a custom
LayoutManager called CornerLayout.

LayoutManager Methods

A custom LayoutManager must implement the following five methods (ten methods if you implement
LayoutManager2). For many layout managers, several of these methods can be stubs that don't do anything.

public void addLayoutComponent (String name, Component component)

The addLayoutComponent() method is called by the add(name, component) method of
Container. If your new LayoutManager does not have named component areas or does not pass generic
positioning information via name, this method will be a stub with no code; you can let the container keep track of
the components for you. Otherwise, this method must keep track of the component added, along with the
information in name.

How would you implement this method? For layouts that have named component areas (like BorderLayout),
you could use a private instance variable to hold the component for each area. For layouts like CardLayout,
which lets you refer to individual components by name, you might want to store the components and their names
in an internal Hashtable.

public void removeLayoutComponent (Component component)

This method is called by the remove() and removeAll() methods of Container. If you are storing
information in internal instance variables or tables, you can remove the information about the given Component
from the tables at this point. If you're not keeping track of the components yourself, this method can be a stub that
does nothing.

public Dimension preferredLayoutSize (Container target)

This method is called by preferredSize() to calculate the desired size of target.[1] Obviously, the
preferred size of the container depends on the layout strategy that you implement. To compute the preferred size,

you usually need to call the preferredSize() method of every component in the container.

[1] This is still true in Java 1.1; the new method, getPreferredSize(), just calls the
deprecated method, preferredSize().

Computing the preferred size can be messy. However, some layout strategies let you take a shortcut. If your
layout policy is "I'm going to cram all the components into the space given to me, whether they fit or not," you
can compute the preferred size of your layout simply by calling target.size() or (in Java 1.1)
target.getSize().

public Dimension minimumLayoutSize (Container target)

This method is called by minimumSize() to calculate the minimum size of target. The minimum size of the
container depends on the layout strategy that you implement. To compute the minimum size, you usually need to
call the minimumSize() method of every component in the container.

As with preferredLayoutSize(), you can sometimes save a lot of work by returning target.size().

public void layoutContainer (Container target)

This method is called when target is first displayed and whenever it is resized. It is responsible for arranging the
components within the container. Depending upon the type of LayoutManager you are creating, you will
either loop through all the components in the container with the getComponent() method or use the named
components that you saved in the addLayoutComponent() method. To position and size the components,
call their reshape() or setBounds() methods.

A New LayoutManager: CornerLayout

CornerLayout is a simple but useful layout manager that is similar in many respects to BorderLayout. Like
BorderLayout, it positions components in five named regions: "Northeast", "Northwest", "Southeast", "Southwest",
and "Center". These regions correspond to the four corners of the container, plus the center. The "Center" region has
three modes. NORMAL, the default mode, places the "Center" component in the center of the container, with its corners at
the inner corner of the other four regions. FULL_WIDTH lets the center region occupy the full width of the container.
FULL_HEIGHT lets the center region occupy the full height of the container. You cannot specify both FULL_HEIGHT
and FULL_WIDTH; if you did, the "Center" component would overlap the corner components and take over the
container. Figure 7.14 shows a CornerLayout in each of these modes.

Not all regions are required. If a complete side is missing, the required space for the container decreases. Ordinarily, the
other components would grow to fill this vacated space. However, if the container is sized to its preferred size, so are the
components. Figure 7.15 shows this behavior.

Figure 7.14: CornerLayout

[Graphic: Figure 7-14]

Figure 7.15: CornerLayout with missing regions

[Graphic: Figure 7-15]

Example 7.3 is the code for the CornerLayout. It shows the Java 1.0 version of the layout manager. At the end of this
section, I show the simple change needed to adapt this manager to Java 1.1.

Example 7.3: The CornerLayout LayoutManager

import java.awt.*;
/**
 * An 'educational' layout. CornerLayout will layout a container
 * using members named "Northeast", "Northwest", "Southeast",
 * "Southwest", and "Center".
 *
 * The "Northeast", "Northwest", "Southeast" and "Southwest" components
 * get sized relative to the adjacent corner's components and
 * the constraints of the container's size. The "Center" component will
 * get any space left over.
 */
public class CornerLayout implements LayoutManager {
 int hgap;
 int vgap;
 int mode;
 public final static int NORMAL = 0;
 public final static int FULL_WIDTH = 1;
 public final static int FULL_HEIGHT = 2;
 Component northwest;

 Component southwest;
 Component northeast;
 Component southeast;
 Component center;

The CornerLayout class starts by defining instance variables to hold the gaps and mode and the components for each
corner of the screen. It also defines three constants that control the behavior of the center region: NORMAL,
FULL_WIDTH, and FULL_HEIGHT.

 /**
 * Constructs a new CornerLayout.
 */
 public CornerLayout() {
 this (0, 0, CornerLayout.NORMAL);
 }
 public CornerLayout(int mode) {
 this (0, 0, mode);
 }
 public CornerLayout(int hgap, int vgap) {
 this (hgap, vgap, CornerLayout.NORMAL);
 }
 public CornerLayout(int hgap, int vgap, int mode) {
 this.hgap = hgap;
 this.vgap = vgap;
 this.mode = mode;
 }

The constructors for CornerLayout are simple. The default (no arguments) constructor creates a CornerLayout
with no gaps; the "Center" region is NORMAL mode. The last constructor, which is called by the other three, stores the
gaps and the mode in instance variables.

 public void addLayoutComponent (String name, Component comp) {
 if ("Center".equals(name)) {
 center = comp;
 } else if ("Northwest".equals(name)) {
 northwest = comp;
 } else if ("Southeast".equals(name)) {
 southeast = comp;
 } else if ("Northeast".equals(name)) {
 northeast = comp;
 } else if ("Southwest".equals(name)) {
 southwest = comp;
 }
 }

addLayoutComponent() figures out which region a component has been assigned to, and saves the component in
the corresponding instance variable. If the name of the component isn't "Northeast", "Northwest", Southeast",
"Southwest", or "Center", the component is ignored.

 public void removeLayoutComponent (Component comp) {
 if (comp == center) {
 center = null;
 } else if (comp == northwest) {
 northwest = null;
 } else if (comp == southeast) {
 southeast = null;
 } else if (comp == northeast) {
 northeast = null;
 } else if (comp == southwest) {
 southwest = null;
 }
 }

removeLayoutComponent() searches for a given component in each region; if it finds the component,
removeLayoutComponent() discards it by setting the instance variable to null.

 public Dimension minimumLayoutSize (Container target) {
 Dimension dim = new Dimension(0, 0);
 Dimension northeastDim = new Dimension (0,0);
 Dimension northwestDim = new Dimension (0,0);
 Dimension southeastDim = new Dimension (0,0);
 Dimension southwestDim = new Dimension (0,0);
 Dimension centerDim = new Dimension (0,0);
 if ((northeast != null) && northeast.isVisible ()) {
 northeastDim = northeast.minimumSize ();
 }
 if ((southwest != null) && southwest.isVisible ()) {
 southwestDim = southwest.minimumSize ();
 }
 if ((center != null) && center.isVisible ()) {
 centerDim = center.minimumSize ();
 }
 if ((northwest != null) && northwest.isVisible ()) {
 northwestDim = northwest.minimumSize ();
 }
 if ((southeast != null) && southeast.isVisible ()) {
 southeastDim = southeast.minimumSize ();
 }
 dim.width = Math.max (northwestDim.width, southwestDim.width) +
 hgap + centerDim.width + hgap +
 Math.max (northeastDim.width, southeastDim.width);
 dim.height = Math.max (northwestDim.height, northeastDim.height) +
 + vgap + centerDim.height + vgap +
 Math.max (southeastDim.height, southwestDim.height);
 Insets insets = target.insets();
 dim.width += insets.left + insets.right;
 dim.height += insets.top + insets.bottom;
 return dim;
 }

minimumLayoutSize() computes the minimum size of the layout by finding the minimum sizes of all components.
To compute the minimum width, minimumLayoutSize() adds the width of the center, plus the greater of the widths
of the western regions (northwest and southwest), plus the greater of the widths of the eastern regions (northeast and
southeast), then adds the appropriate gaps and insets. The minimum height is computed similarly; the method takes the
greater of the minimum heights of the northern regions, the greater of the minimum heights of the southern regions, and
adds them to the minimum height of the center region, together with the appropriate gaps and insets.

 public Dimension preferredLayoutSize (Container target) {
 Dimension dim = new Dimension(0, 0);
 Dimension northeastDim = new Dimension (0,0);
 Dimension northwestDim = new Dimension (0,0);
 Dimension southeastDim = new Dimension (0,0);
 Dimension southwestDim = new Dimension (0,0);
 Dimension centerDim = new Dimension (0,0);
 if ((northeast != null) && northeast.isVisible ()) {
 northeastDim = northeast.preferredSize ();
 }
 if ((southwest != null) && southwest.isVisible ()) {
 southwestDim = southwest.preferredSize ();
 }
 if ((center != null) && center.isVisible ()) {
 centerDim = center.preferredSize ();
 }
 if ((northwest != null) && northwest.isVisible ()) {
 northwestDim = northwest.preferredSize ();
 }
 if ((southeast != null) && southeast.isVisible ()) {
 southeastDim = southeast.preferredSize ();
 }
 dim.width = Math.max (northwestDim.width, southwestDim.width) +
 hgap + centerDim.width + hgap +
 Math.max (northeastDim.width, southeastDim.width);
 dim.height = Math.max (northwestDim.height, northeastDim.height) +
 + vgap + centerDim.height + vgap +
 Math.max (southeastDim.height, southwestDim.height);
 Insets insets = target.insets();
 dim.width += insets.left + insets.right;
 dim.height += insets.top + insets.bottom;
 return dim;
 }

preferredLayoutSize() computes the preferred size of the layout. The method is almost identical to
minimumLayoutSize(), except that it uses the preferred dimensions of each component.

 public void layoutContainer (Container target) {
 Insets insets = target.insets();
 int top = insets.top;
 int bottom = target.size ().height - insets.bottom;

 int left = insets.left;
 int right = target.size ().width - insets.right;
 Dimension northeastDim = new Dimension (0,0);
 Dimension northwestDim = new Dimension (0,0);
 Dimension southeastDim = new Dimension (0,0);
 Dimension southwestDim = new Dimension (0,0);
 Dimension centerDim = new Dimension (0,0);
 Point topLeftCorner, topRightCorner, bottomLeftCorner,
 bottomRightCorner;
 if ((northeast != null) && northeast.isVisible ()) {
 northeastDim = northeast.preferredSize ();
 }
 if ((southwest != null) && southwest.isVisible ()) {
 southwestDim = southwest.preferredSize ();
 }
 if ((center != null) && center.isVisible ()) {
 centerDim = center.preferredSize ();
 }
 if ((northwest != null) && northwest.isVisible ()) {
 northwestDim = northwest.preferredSize ();
 }
 if ((southeast != null) && southeast.isVisible ()) {
 southeastDim = southeast.preferredSize ();
 }
 topLeftCorner = new Point (left +
 Math.max (northwestDim.width, southwestDim.width),
 top +
 Math.max (northwestDim.height, northeastDim.height));
 topRightCorner = new Point (right -
 Math.max (northeastDim.width, southeastDim.width),
 top +
 Math.max (northwestDim.height, northeastDim.height));
 bottomLeftCorner = new Point (left +
 Math.max (northwestDim.width, southwestDim.width),
 bottom -
 Math.max (southwestDim.height, southeastDim.height));
 bottomRightCorner = new Point (right -
 Math.max (northeastDim.width, southeastDim.width),
 bottom -
 Math.max (southwestDim.height, southeastDim.height));
 if ((northwest != null) && northwest.isVisible ()) {
 northwest.reshape (left, top,
 left + topLeftCorner.x,
 top + topLeftCorner.y);
 }
 if ((southwest != null) && southwest.isVisible ()) {
 southwest.reshape (left, bottomLeftCorner.y,
 bottomLeftCorner.x - left,
 bottom - bottomLeftCorner.y);
 }

 if ((southeast != null) && southeast.isVisible ()) {
 southeast.reshape (bottomRightCorner.x,
 bottomRightCorner.y,
 right - bottomRightCorner.x,
 bottom - bottomRightCorner.y);
 }
 if ((northeast != null) && northeast.isVisible ()) {
 northeast.reshape (topRightCorner.x, top,
 right - topRightCorner.x,
 topRightCorner.y);
 }
 if ((center != null) && center.isVisible ()) {
 int x = topLeftCorner.x + hgap;
 int y = topLeftCorner.y + vgap;
 int width = bottomRightCorner.x - topLeftCorner.x - hgap * 2;
 int height = bottomRightCorner.y - topLeftCorner.y - vgap * 2;
 if (mode == CornerLayout.FULL_WIDTH) {
 x = left;
 width = right - left;
 } else if (mode == CornerLayout.FULL_HEIGHT) {
 y = top;
 height = bottom - top;
 }
 center.reshape (x, y, width, height);
 }
 }

layoutContainer() does the real work: it positions and sizes the components in our layout. It starts by computing
the region of the target container that we have to work with, which is essentially the size of the container minus the
insets. The boundaries of the working area are stored in the variables top, bottom, left, and right. Next, we get
the preferred sizes of all visible components and use them to compute the corners of the "Center" region; these are stored
in the variables topLeftCorner, topRightCorner, bottomLeftCorner, and bottomRightCorner.

Once we've computed the location of the "Center" region, we can start placing the components in their respective
corners. To do so, we simply check whether the component is visible; if it is, we call its reshape() method. After
dealing with the corner components, we place the "Center" component, taking into account any gaps (hgap and vgap)
and the layout's mode. If the mode is NORMAL, the center component occupies the region between the inner corners of
the other components. If the mode is FULL_HEIGHT, it occupies the full height of the screen. If it is FULL_WIDTH, it
occupies the full width of the screen.

 public String toString() {
 Sting str;
 switch (mode) {
 case FULL_HEIGHT: str = "tall"; break;
 case FULL_WIDTH: str = "wide"; break;
 default: str = "normal"; break;
 }
 return getClass().getName () + "[hgap=" + hgap + ",vgap=" + vgap +
 ",mode="+str+"]";
 }

}

toString() simply returns a string describing the layout.

Strictly speaking, there's no reason to update the CornerLayout for Java 1.1. Nothing about Java 1.1 says that new
layout managers have to implement the LayoutManager2 interface. However, implementing LayoutManager2
isn't a bad idea, particularly since CornerLayout works with constraints; like BorderLayout, it has named regions.
To extend CornerLayout so that it implements LayoutManager2, add the following code; we'll create a new
CornerLayout2:

// Java 1.1 only
import java.awt.*;
public class CornerLayout2 extends CornerLayout implements LayoutManager2 {
 public void addLayoutComponent(Component comp, Object constraints) {
 if ((constraints == null) || (constraints instanceof String)) {
 addLayoutComponent((String)constraints, comp);
 } else {
 throw new IllegalArgumentException(
 "cannot add to layout: constraint must be a string (or null)");
 }
 }
 public Dimension maximumLayoutSize(Container target) {
 return new Dimension(Integer.MAX_VALUE, Integer.MAX_VALUE);
 }
 public float getLayoutAlignmentX(Container parent) {
 return Component.CENTER_ALIGNMENT;
 }
 public float getLayoutAlignmentY(Container parent) {
 return Component.CENTER_ALIGNMENT;
 }
 public void invalidateLayout(Container target) {
 }
}

Disabling the LayoutManager The sun.awt Layout
Collection

Chapter 7
Layouts

7.11 The sun.awt Layout Collection

The sun.awt package defines four additional layouts. The first two, HorizBagLayout and
VerticalBagLayout, are available only when used with Sun's JDK or Internet Explorer, since they
are not provided with Netscape Navigator and may not be available from other vendors. Therefore, these
layout managers should be used selectively within applets. The third layout manager,
VariableGridLayout, is available with Netscape Navigator 2.0 or 3.0 and Internet Explorer. Usage
of this layout manager is safer within applets but is still at your own risk. The final layout manager is
introduced in Java 1.1, OrientableFlowLayout. Only time will tell where that one will be
available. Any of these layout managers could be moved into a future version of java.awt if there is
enough interest.

HorizBagLayout

In a HorizBagLayout, the components are all arranged in a single row, from left to right. The height
of each component is the height of the container; the width of each component is its preferred width.
Figure 7.16 shows HorizBagLayout in use.

Figure 7.16: HorizBagLayout

Constructors

public HorizBagLayout ()

This constructor creates a HorizBagLayout with a horizontal gap of zero pixels. The gap is
the space between the different components in the horizontal direction.

public HorizBagLayout (int hgap)

This constructor creates a HorizBagLayout using a horizontal gap of hgap pixels.

LayoutManager methods

public void addLayoutComponent (String name, Component component)

The addLayoutComponent() method of HorizBagLayout does nothing.

public void removeLayoutComponent (Component component)

The removeLayoutComponent() method of HorizBagLayout does nothing.

public Dimension preferredLayoutSize (Container target)

The preferredLayoutSize() method of HorizBagLayout sums up the preferred widths
of all the components in target, along with the hgap and right and left insets to get the width
of the target. The height returned will be the preferred height of the tallest component.

public Dimension minimumLayoutSize (Container target)

The minimumLayoutSize() method of HorizBagLayout sums up the minimum widths of
all the components in target, along with the hgap and right and left insets to get the width of
the target. The height returned will be the minimum height of the tallest component.

public void layoutContainer (Container target)

The layoutContainer() method draws target's components on the screen in one row.
The height of each component is the height of the container. Each component's width is its
preferred width, if enough space is available.

Miscellaneous methods

public String toString ()

The toString() method of HorizBagLayout returns a string with the current horizontal
gap setting--for example:

sun.awt.HorizBagLayout[hgap=0]

VerticalBagLayout

The VerticalBagLayout places all the components in a single column. The width of each
component is the width of the container; each component is given its preferred height. Figure 7.17 shows
VerticalBagLayout in use.

Figure 7.17: VerticalBagLayout

Constructors

public VerticalBagLayout ()

This constructor creates a VerticalBagLayout with a vertical gap of zero pixels. The gap is
the space between components in the vertical direction. With a gap of 0, adjacent components will
touch each other.

public VerticalBagLayout (int vgap)

This constructor creates a VerticalBagLayout with a vertical gap of vgap pixels.

LayoutManager methods

public void addLayoutComponent (String name, Component component)

The addLayoutComponent() method of VerticalBagLayout does nothing.

public void removeLayoutComponent (Component component)

The removeLayoutComponent() method of VerticalBagLayout does nothing.

public Dimension preferredLayoutSize (Container target)

To get the preferred height of the layout, the preferredLayoutSize() method sums up the
preferred height of all the components in target along with the vgap and top and bottom
insets. For the preferred width, preferredLayoutSize() returns the preferred width of the
widest component.

public Dimension minimumLayoutSize (Container target)

To get the minimum height of the layout, the minimumLayoutSize() method sums up the
minimum height of all the components in target along with the vgap and top and bottom
insets. For the minimum width, minimumLayoutSize() returns the minimum width of the
widest component.

public void layoutContainer (Container target)

The layoutContainer() method draws target's components on the screen in one column.
The width of each component is the width of the container. Each component's height is its
preferredSize() height, if available.

Miscellaneous methods

public String toString ()

The toString() method of VerticalBagLayout returns a string with the current vertical
gap setting. For example:

sun.awt.VerticalBagLayout[vgap=0]

VariableGridLayout

The VariableGridLayout builds upon the GridLayout. It arranges components on a grid of rows
and columns. However, instead of giving all components the same size, the VariableGridLayout
allows you to size rows and columns fractionally. Another difference between
VariableGridLayout and GridBagLayout is that a VariableGridLayout has a fixed size.
If you ask for a 3x3 grid, you will get exactly that. The layout manager throws the
ArrayIndexOutOfBoundsException run-time exception if you try to add too many components.

Figure 7.18 shows a VariableGridLayout in which row one takes up 50 percent of the screen, and

rows two and three take up 25 percent of the screen each. Column one takes up 50 percent of the screen;
columns two and three take 25 percent each.

Figure 7.18: VariableGridLayout in Netscape Navigator

Here is the code that creates Figure 7.18:

import java.awt.*;
java.applet.Applet;
import sun.awt.VariableGridLayout;
public class vargrid extends Applet {
 public void init () {
 VariableGridLayout vgl;
 setLayout (vgl = new VariableGridLayout (3,3));
 vgl.setRowFraction (0, 1.0/2.0);
 vgl.setRowFraction (1, 1.0/4.0);
 vgl.setRowFraction (2, 1.0/4.0);
 vgl.setColFraction (0, 1.0/2.0);
 vgl.setColFraction (1, 1.0/4.0);
 vgl.setColFraction (2, 1.0/4.0);
 add (new Button ("One"));
 add (new Button ("Two"));
 add (new Button ("Three"));
 add (new Button ("Four"));
 add (new Button ("Five"));
 add (new Button ("Six"));
 add (new Button ("Seven"));

 add (new Button ("Eight"));
 add (new Button ("Nine"));
 }
}

Constructors

public VariableGridLayout (int rows, int columns)

This constructor creates a VariableGridLayout with the specified number of rows and
columns. You cannot specify zero for one dimension. If either rows or columns is zero, the
constructor throws the NullPointerException run-time exception. This constructor uses
the default values for horizontal and vertical gaps (zero pixels), which means that components in
adjacent cells will touch each other.

public VariableGridLayout (int rows, int columns, int hgap, int vgap)

This version of the constructor is called by the previous one. It creates a
VariableGridLayout with the specified number of rows and columns, a horizontal gap of
hgap, and a vertical gap of vgap. The gaps specify in pixels the space between adjacent
components in the horizontal and vertical directions. It is possible to have negative gaps if you
want components to overlap. You cannot specify zero for the number of rows or columns. If
either rows or columns is zero, the constructor throws the run-time exception
NullPointerException.

Support methods

The distinguishing feature of a VariableGridLayout is that you can tell a particular row or column
to take up a certain fraction of the display. By default, the horizontal space available is split evenly
among the grid's columns; vertical space is split evenly among the rows. This group of methods lets you
find out how much space is allotted to each row or column and lets you change that allocation. The sum
of the fractional amounts for each direction should add up to one. If greater than one, part of the display
will be drawn offscreen. If less than one, additional screen real estate will be unused.

public void setRowFraction (int rowNumber, double fraction)

This method sets the percentage of space available for row rowNumber to fraction.

public void setColFraction (int colNumber, double fraction)

This method sets the percentage of space available for column colNumber to fraction.

public double getRowFraction (int rowNumber)

This method returns the current fractional setting for row rowNumber.

public double getColFraction (int colNumber)

This method returns the current fractional setting for column colNumber.

LayoutManager methods

The only method from GridLayout that is overridden is the layoutContainer() method.

public void layoutContainer (Container target)

The layoutContainer() method draws target's components on the screen in a series of
rows and columns. The size of each component within a VariableGridLayout is determined
by the RowFraction and ColFraction settings for its row and column.

Miscellaneous methods

public String toString ()

The toString() method of VariableGridLayout returns a string with the current
horizontal and vertical gap settings, the number of rows and columns, and the row and column
fractional amounts. For example, the string produced by Figure 7.19 would be:

sun.awt.VariableGridLayout[hgap=0,vgap=0,rows=3,cols=3,
 rowFracs=[3]<0.50><0.25><0.25>,colFracs=[3]<0.50><0.25><0.25>]

OrientableFlowLayout

The OrientableFlowLayout is available for those who want something like a FlowLayout that
lets you arrange components from top to bottom. Figure 7.19 shows OrientableFlowLayout in use.

Figure 7.19: OrientableFlowLayout

Constants

Since OrientableFlowLayout subclasses FlowLayout, the FlowLayout constants of LEFT,
RIGHT, and CENTER are still available.

public static final int HORIZONTAL

The HORIZONTAL constant tells the layout manager to arrange components from left to right,
like the FlowLayout manager.

public static final int VERTICAL

The VERTICAL constant tells the layout manager to arrange components from top to bottom.

public static final int TOP

The TOP constant tells the layout manager to align the first component at the top of the screen
(top justification).

public static final int BOTTOM

The BOTTOM constant tells the layout manager to align the first component at the bottom of the
screen (bottom justification).

Constructors

public OrientableFlowLayout ()

This constructor creates a OrientableFlowLayout that acts like the default FlowLayout.
The objects flow from left to right and have an hgap and vgap of 5.

public OrientableFlowLayout (int direction)

This constructor creates a OrientableFlowLayout in the given direction. Valid values
are OrientableFlowLayout.HORIZONTAL or OrientableFlowLayout.VERTICAL.

public OrientableFlowLayout (int direction, int horizAlignment, int vertAlignment)

This constructor creates a OrientableFlowLayout in the given direction. Valid values are
OrientableFlowLayout.HORIZONTAL or OrientableFlowLayout.VERTICAL.
horizAlignment provides the horizontal alignment setting. vertAlignment provides a
vertical alignment setting; it may be OrientableFlowLayout.TOP,
FlowLayout.CENTER, or OrientableFlowLayout.BOTTOM. If direction is
HORIZONTAL, the vertical alignment is ignored. If direction is VERTICAL, the horizontal
alignment is ignored.

public OrientableFlowLayout (int direction, int horizAlignment, int vertAlignment, int horizHgap, int

horizVgap, int vertHgap, int vertVgap)

The final constructor adds separate horizontal and vertical gaps to the settings of
OrientableFlowLayout. The horizHgap and horizVgap parameters are the gaps when
horizontally aligned. The vertHgap and vertVgap parameters are the gaps when vertically
aligned.

LayoutManager methods

public Dimension preferredLayoutSize (Container target)

The preferredLayoutSize() method of OrientableFlowLayout calculates the
preferred dimensions for the target container. The OrientableFlowLayout computes the
preferred size by placing all the components in one row or column, depending upon the current
orientation, and adding their individual preferred sizes along with gaps and insets.

public Dimension minimumLayoutSize (Container target)

The minimumLayoutSize() method of OrientableFlowLayout calculates the
minimum dimensions for the container by adding up the sizes of the components. The
OrientableFlowLayout computes the minimum size by placing all the components in one
row or column, depending upon the current orientation, and adding their individual minimum
sizes along with gaps and insets.

public void layoutContainer (Container target)

The layoutContainer() method draws target's Components on the screen, starting with
the first row or column of the display, and going from left to right across the screen, or from top
to bottom, based on the current orientation. When it reaches the margin of the container, it skips
to the next row or column and continues drawing additional components.

Miscellaneous methods

public void orientHorizontally ()

The orientHorizontally() method allows you to change the orientation of the
LayoutManager to horizontal. The container must be validated before you see the effect of the
change.

public void orientVertically ()

The orientVertically() method allows you to change the orientation of the
LayoutManager to vertical. The container must be validated before you see the effect of the
change.

public String toString ()

The toString() method of OrientableFlowLayout returns a string with the current
orientation setting, along with the entire FlowLayout.toString() results. For example:

sun.awt.OrientableFlowLayout[orientation=vertical,
sun.awt.OrientableFlowLayout[hgap=5,vgap=5,align=center]]

Designing Your Own
LayoutManager

Other Layouts Available on
the Net

Chapter 7
Layouts

7.12 Other Layouts Available on the Net

Many custom layout managers are available on the Internet. Many of these duplicate the layout behavior
of other environments. For example, the FractionalLayout is based on Smalltalk's positioning
mechanism; it is located at http://www.mcs.net/~elunt/Java/FractionalLayoutDescription.html. The
RelativeLayout allows you to position components relative to others, similar to an X Window form;
you can find it at http://www-elec.enst.fr/java/RelativeLayout.java. If you like the way Tcl/Tk arranges
widgets, try the PackerLayout; it is available at
http://www.geom.umn.edu/~daeron/apps/ui/pack/gui.html. If none of these suit you, you can find a
collection of links to custom layout managers at http://www.softbear.com/people/larry/javalm.htm.
Gamelan (http://www.gamelan.com/) is always a good source for Java classes; try searching for
LayoutManager.

The sun.awt Layout
Collection

Input Fields

file:///C|/download/www.mcs.net/~elunt/Java/FractionalLayoutDescription.html
file:///C|/download/www-elec.enst.fr/java/RelativeLayout.java
file:///C|/download/www.geom.umn.edu/~daeron/apps/ui/pack/gui.html
file:///C|/download/www.softbear.com/people/larry/javalm.htm
file:///C|/download/www.gamelan.com/default.htm

Chapter 8
Input Fields

8.2 TextField

TextField is the TextComponent for single-line input. Some constructors permit you to set the width of the
TextField on the screen, but the current LayoutManager may change it. The text in the TextField is left
justified, and the justification is not customizable. To change the font and size of text within the TextField, call
setFont() as shown in Chapter 3, Fonts and Colors.

The width of the field does not limit the number of characters that the user can type into the field. It merely suggests
how wide the field should be. To limit the number of characters, it is necessary to override the keyDown() method
for the Component. Extending TextField contains an example showing how to do this.

TextField Methods

Constructors

public TextField ()

This constructor creates an empty TextField. The width of the TextField is zero columns, but it will
be made wide enough to display just about one character, depending on the current font and size.

public TextField (int columns)

This constructor creates an empty TextField. The TextField width is columns. The TextField
will try to be wide enough to display columns characters in the current font and size. As I mentioned
previously, the layout manager may change the size.

public TextField (String text)

This constructor creates a TextField with text as its content. In Java 1.0 systems, the TextField is 0
columns wide (the getColumns() result), but the system will size it to fit the length of text. With Java 1.1,
getColumns() actually returns text.length.

public TextField (String text, int columns)

This constructor creates a TextField with text as its content and a width of columns.

The following example uses all four constructors; the results are shown in Figure 8.2. With the third constructor, you
see that the TextField is not quite wide enough for our text. The system uses an average width per character to
try to determine how wide the field should be. If you want to be on the safe side, specify the field's length explicitly,
and add a few extra characters to ensure that there is enough room on the screen for the entire text.

import java.awt.TextField;
public class texts extends java.applet.Applet {
 public void init () {
 add (new TextField ()); // A
 add (new TextField (15)); // B
 add (new TextField ("Empty String")); // C
 add (new TextField ("Empty String", 20)); // D
 }
}

Figure 8.2: Using the TextField constructors

[Graphic: Figure 8-2]

Sizing

public int getColumns ()

The getColumns() method returns the number of columns set with the constructor or a later call to
setColumns(). This could be different from the displayed width of the TextField, depending upon the
current LayoutManager.

public void setColumns (int columns)

The setColumns() method changes the preferred number of columns for the TextField to display to
columns. Because the current LayoutManager will do what it wants, the new setting may be completely
ignored. If columns < 0, setColumns() throws the run-time exception
IllegalArgumentException.

public Dimension getPreferredSize (int columns)

public Dimension preferredSize (int columns)

The getPreferredSize() method returns the Dimension (width and height) for the preferred size of
a TextField with a width of columns. The columns specified may be different from the number of
columns designated in the constructor.

preferredSize() is the Java 1.0 name for this method.

public Dimension getPreferredSize ()

public Dimension preferredSize ()

The getPreferredSize() method returns the Dimension (width and height) for the preferred size of
the TextField. Without the columns parameter, this getPreferredSize() uses the constructor's
number of columns (or the value from a subsequent call to setColumns()) to calculate the TextField's
preferred size.

preferredSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize (int columns)

public Dimension minimumSize (int columns)

The getMinimumSize() method returns the minimum Dimension (width and height) for the size of a
TextField with a width of columns. The columns specified may be different from the columns
designated in the constructor.

minimumSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize ()
public Dimension minimumSize ()

The getMinimumSize() method returns the minimum Dimension (width and height) for the size of the
TextField. Without the columns parameter, this getMinimumSize() uses the constructor's number of
columns (or the value from a subsequent call to setColumns()) to calculate the TextField's minimum
size.

minimumSize() is the Java 1.0 name for this method.

Echoing character

It is possible to change the character echoed back to the user when he or she types. This is extremely useful for
implementing password entry fields.

public char getEchoChar ()

The getEchoChar() method returns the currently echoed character. If the TextField is echoing
normally, getEchoChar() returns zero.

public void setEchoChar (char c)

public void setEchoCharacter (char c)

The setEchoChar() method changes the character that is displayed to the user to c for every character in
the TextField. It is possible to change the echo character on the fly so that existing characters will be
replaced. A c of zero, (char)0, effectively turns off any change and makes the TextField behave
normally.

setEchoCharacter() is the Java 1.0 name for this method.

public boolean echoCharIsSet ()

The echoCharIsSet() method returns true if the echo character is set to a nonzero value. If the
TextField is displaying input normally, this method returns false.

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method creates the TextField peer. If you override this method, first call
super.addNotify(), then add your customizations for the new class. Then you will be able to do
everything you need with the information about the newly created peer.

protected String paramString ()

When you call the toString() method of TextField, the default toString() method of
Component is called. This in turn calls paramString(), which builds up the string to display. The
TextField level can add only one item. If the echo character is nonzero, the current echo character is
added (the method getEchoChar()). Using new TextField (`Empty String`, 20), the
results displayed could be:

java.awt.TextField[0,0,0x0,invalid,text="Empty String",editable,selection=0-0]

TextField Events

With the 1.0 event model, TextField components can generate KEY_PRESS and KEY_ACTION (which calls
keyDown()), KEY_RELEASE and KEY_ACTION_RELEASE (which calls keyUp()), and ACTION_EVENT
(which calls action()).

With the 1.1 event model, you register an ActionListener with the method addActionListener(). Then
when the user presses Return within the TextField the ActionListener.actionPerformed() method is
called through the protected TextField.processActionEvent() method. Key, mouse, and focus listeners

are registered through the three Component methods of addKeyListener(), addMouseListener(), and
addFocusListener(), respectively. Action

public boolean action (Event e, Object o)

The action() method for a TextField is called when the input focus is in the TextField and the user
presses the Return key. e is the Event instance for the specific event, while o is a String representing the
current contents (the getText() method).

Keyboard

public boolean keyDown (Event e, int key)

The keyDown() method is called whenever the user presses a key. keyDown() may be called many times
in succession if the key remains pressed. e is the Event instance for the specific event, while key is the
integer representation of the character pressed. The identifier for the event (e.id) for keyDown() could be
either Event.KEY_PRESS for a regular key or Event.KEY_ACTION for an action-oriented key (i.e., an
arrow or function key). Some of the things you can do through this method are validate input, convert each
character to uppercase, and limit the number or type of characters entered. The technique is simple: you just
need to remember that the user's keystroke is actually displayed by the TextField peer, which receives the
event after the TextField itself. Therefore, a TextField subclass can modify the character displayed by
modifying the key field (e.key) of the Event and returning false, which passes the Event on down
the chain; remember that returning false indicates that the Event has not been completely processed. The
following method uses this technique to convert all input to uppercase.

public boolean keyDown (Event e, int key) {
 e.key = Character.toUppercase (char(key));
 return false;
}

If keyDown() returns true, it indicates that the Event has been completely processed. In this case, the
Event never propagates to the peer, and the keystroke is never displayed.

public boolean keyUp (Event e, int key)

The keyUp() method is called whenever the user releases a key. e is the Event instance for the specific
event, while key is the integer representation of the character pressed. The identifier for the event (e.id)
for keyUp() could be either Event.KEY_RELEASE for a regular key or
Event.KEY_ACTION_RELEASE for an action-oriented key (i.e., an arrow or function key). Among other
things, keyUp() may be used to determine how long the key has been pressed.

Mouse

Ordinarily, the TextField component does not trigger any mouse events.

NOTE:

Mouse events are not generated for TextField with JDK 1.0.2. Your run-time environment may behave
differently. See Appendix C for more information about platform dependencies.

Focus

The TextField component does not reliably generate focus events.

NOTE:

The GOT_FOCUS and LOST_FOCUS events can be generated by TextFields, but these events are not reliable
across platforms. With Java 1.0, they are generated on most UNIX platforms but not on Windows NT/95 platforms.
They are generated on all platforms under Java 1.1. See Appendix C for more information about platform
dependencies.

public boolean gotFocus (Event e, Object o)

The gotFocus() method is triggered when the TextField gets the input focus. e is the Event instance
for the specific event, while o is a String representation of the current contents (getText()).

public boolean lostFocus (Event e, Object o)

The lostFocus() method is triggered when the input focus leaves the TextField. e is the Event
instance for the specific event, while o is a String representation of the current contents (getText()).

Listeners and 1.1 event handling

With the 1.1 event model, you register event listeners that are told when an event occurs. You can register text event
listeners by calling the method TextComponent.addTextListener().

public void addActionListener(ActionListener listener)

The addActionListener() method registers listener as an object interested in receiving
notifications when an ActionEvent passes through the EventQueue with this TextField as its target.
The listener.actionPerformed() method is called when these events occur. Multiple listeners can
be registered. The following code demonstrates how to use an ActionListener to reverse the text in the
TextField.

// Java 1.1 only
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
class MyAL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.out.println ("The current text is: " +
 e.getActionCommand());
 if (e.getSource() instanceof TextField) {

 TextField tf = (TextField)e.getSource();
 StringBuffer sb = new StringBuffer (e.getActionCommand());
 tf.setText (sb.reverse().toString());
 }
 }
}
public class text11 extends Applet {
 public void init () {
 TextField tf = new TextField ("Help Text", 20);
 add (tf);
 tf.addActionListener (new MyAL());
 }
}

public void removeActionListener(ActionListener listener)

The removeActionListener() method removes listener as a interested listener. If listener is
not registered, nothing happens.

protected void processEvent(AWTEvent e)

The processEvent() method receives all AWTEvents with this TextField as its target.
processEvent() then passes them along to any listeners for processing. When you subclass
TextField, overriding processEvent() allows you to process all events yourself, before sending them
to any listeners. In a way, overriding processEvent() is like overriding handleEvent() using the 1.0
event model.

If you override processEvent(), remember to call super.processEvent(e) last to ensure that
regular event processing can occur. If you want to process your own events, it's a good idea to call
enableEvents() (inherited from Component) to ensure that events are delivered even in the absence of
registered listeners.

protected void processActionEvent(ActionEvent e)

The processActionEvent() method receives all ActionEvents with this TextField as its target.
processActionEvent() then passes them along to any listeners for processing. When you subclass
TextField, overriding the method processActionEvent() allows you to process all action events
yourself, before sending them to any listeners. In a way, overriding processActionEvent() is like
overriding action() using the 1.0 event model.

If you override the processActionEvent() method, remember to call
super.processActionEvent(e) last to ensure that regular event processing can occur. If you want to
process your own events, it's a good idea to call enableEvents() (inherited from Component) to ensure
that events are delivered even in the absence of registered listeners.

The following applet is equivalent to the previous example, except that it overrides processActionEvent() to

receive events, eliminating the need for an ActionListener. The constructor calls enableEvents() to make
sure that events are delivered, even if no listeners are registered.

// Java 1.1 only
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
class MyTextField extends TextField {
 public MyTextField (String s, int len) {
 super (s, len);
 enableEvents (AWTEvent.ACTION_EVENT_MASK);
 }
 protected void processActionEvent(ActionEvent e) {
 System.out.println ("The current text is: " +
 e.getActionCommand());
 TextField tf = (TextField)e.getSource();
 StringBuffer sb = new StringBuffer (e.getActionCommand());
 tf.setText (sb.reverse().toString());
 super.processActionEvent(e)
 }
}
public class text12 extends Applet {
 public void init () {
 TextField tf = new MyTextField ("Help Text", 20);
 add (tf);
 }
}

Text Component TextArea

Chapter 8
Input Fields

8.3 TextArea

TextArea is the TextComponent for multiline input. Some constructors permit you to set the rows
and columns of the TextArea on the screen. However, the LayoutManager may change your
settings. As with TextField, the only way to limit the number of characters that a user can enter is to
override the keyDown() method. The text in a TextArea appears left justified, and the justification is
not customizable.

In Java 1.1, you can control the appearance of a TextArea scrollbar; earlier versions gave you no
control over the scrollbars. When visible, the vertical scrollbar is on the right of the TextArea, and the
horizontal scrollbar is on the bottom. You can remove either scrollbar with the help of several new
TextArea constants; you can't move them to another side. When the horizontal scrollbar is not present,
the text wraps automatically when the user reaches the right side of the TextArea. Prior to Java 1.1,
there was no way to enable word wrap.

TextArea Variables

Constants

The constants for TextArea are new to Java 1.1; they allow you to control the visibility and word wrap
policy of a TextArea scrollbar. There is no way to listen for the events when a user scrolls a
TextArea.

public static final int SCROLLBARS_BOTH

The SCROLLBARS_BOTH mode is the default for TextArea. It shows both scrollbars all the
time and does no word wrap.

public static final int SCROLLBARS_HORIZONTAL_ONLY

The SCROLLBARS_HORIZONTAL_ONLY mode displays a scrollbar along the bottom of the
TextArea. When this scrollbar is present, word wrap is disabled.

public static final int SCROLLBARS_NONE

The SCROLLBARS_NONE mode displays no scrollbars around the TextArea and enables word
wrap. If the text is too long, the TextArea displays the lines surrounding the cursor. You can use
the cursor to move up and down within the TextArea, but you cannot use a scrollbar to
navigate. Because this mode has no horizontal scrollbar, word wrap is enabled.

public static final int SCROLLBARS_VERTICAL_ONLY

The SCROLLBARS_VERTICAL_ONLY mode displays a scrollbar along the right edge of the
TextArea. If the text is too long to display, you can scroll within the area. Because this mode
has no horizontal scrollbar, word wrap is enabled.

TextArea Methods

Constructors

public TextArea ()

This constructor creates an empty TextArea with both scrollbars. The TextArea is 0 rows
high and 0 columns wide. Depending upon the platform, the TextArea could be really small
(and useless) or rather large. It is a good idea to use one of the other constructors to control the
size of the TextArea.

public TextArea (int rows, int columns)

This constructor creates an empty TextArea with both scrollbars. The TextArea is rows high
and columns wide.

public TextArea (String text)

This constructor creates a TextArea with an initial content of text and both scrollbars. The
TextArea is 0 rows high and 0 columns wide. Depending upon the platform, the TextArea
could be really small (and useless) or rather large. It is a good idea to use one of the other
constructors to control the size of the TextArea.

public TextArea (String text, int rows, int columns)

This constructor creates a TextArea with an initial content of text. The TextArea is rows
high and columns wide and has both scrollbars.

The following example uses the first four constructors. The results are shown in Figure 8.3. With the size-
less constructors, notice that Windows 95 creates a rather large TextArea. UNIX systems create a
much smaller area. Depending upon the LayoutManager, the TextAreas could be resized
automatically.

import java.awt.TextArea;
public class textas extends java.applet.Applet {
 public void init () {
 add (new TextArea ()); // A
 add (new TextArea (3, 10)); // B
 add (new TextArea ("Empty Area")); // C
 add (new TextArea ("Empty Area", 3, 10)); // D
 }
}

Figure 8.3: TextArea constructor

public TextArea (String text, int rows, int columns, int scrollbarPolicy)

The final constructor creates a TextArea with an initial content of text. The TextArea is
rows high and columns wide. The initial scrollbar display policy is designated by the
scrollbarPolicy parameter and is one of the TextArea constants in the previous example.
This constructor is the only way provided to change the scrollbar visibility; there is no
setScrollbarVisibility() method. Figure 8.4 displays the different settings.

Figure 8.4: TextArea policies

Setting text

The text-setting methods are usually called in response to an external event. When you handle the
insertion position, you must translate it from the visual row and column to a one-dimensional position. It
is easier to position the insertion point based upon the beginning, end, or current selection
(getSelectionStart() and getSelectionEnd()).

public void insert (String string, int position)

public void insertText (String string, int position)

The insert() method inserts string at position into the TextArea. If position is
beyond the end of the TextArea, string is appended to the end of the TextArea.

insertText() is the Java 1.0 name for this method.

public void append (String string)

public void appendText (String string)

The append() method inserts string at the end of the TextArea.

appendText() is the Java 1.0 name for this method.

public void replaceRange (String string, int startPosition, int endPosition)

public void replaceText (String string, int startPosition, int endPosition)

The replaceRange() method replaces the text in the current TextArea from
startPosition to endPosition with string. If endPosition is before
startPosition, it may or may not work as expected. (For instance, on a Windows 95
platform, it works fine when the TextArea is displayed on the screen. However, when the
TextArea is not showing, unexpected results happen. Other platforms may vary.) If
startPosition is 0 and endPosition is the length of the contents, this method functions
the same as TextComponent.setText().

replaceText() is the Java 1.0 name for this method.

Sizing

public int getRows ()

The getRows() method returns the number of rows set by the constructor or a subsequent call to
setRows(). This could be different from the displayed height of the TextArea.

public void setRows (int rows)

The setRows() method changes the preferred number of rows to display for the TextField
to rows. Because the current LayoutManager will do what it wants, the new setting may be
ignored. If rows < 0, setRows() throws the run-time exception
IllegalArgumentException.

public int getColumns ()

The getColumns() method returns the number of columns set by the constructor or a
subsequent call to setColumns(). This could be different from the displayed width of the
TextArea.

public void setColumns (int columns)

The setColumns() method changes the preferred number of columns to display for the
TextArea to columns. Because the current LayoutManager will do what it wants, the new

setting may be ignored. If columns < 0, setColumns() throws the run-time exception
IllegalArgumentException.

public Dimension getPreferredSize (int rows, int columns)

public Dimension preferredSize (int rows, int columns)

The getPreferredSize() method returns the Dimension (width and height) for the
preferred size of the TextArea with a preferred height of rows and width of columns. The
rows and columns specified may be different from the current settings.

preferredSize() is the Java 1.0 name for this method.

public Dimension getPreferredSize (int rows, int columns)

public Dimension preferredSize ()

The getPreferredSize() method returns the Dimension (width and height) for the
preferred size of the TextArea. Without the rows and columns parameters, this
getPreferredSize() uses the constructor's number of rows and columns to calculate the
TextArea's preferred size.

preferredSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize (int rows, int columns)

public Dimension minimumSize (int rows, int columns)

The getMinimumSize() method returns the minimum Dimension (width and height) for the
size of the TextArea with a height of rows and width of columns. The rows and columns
specified may be different from the current settings.

minimumSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize ()

public Dimension minimumSize ()

The getMinimumSize() method returns the minimum Dimension (width and height) for the
size of the TextArea. Without the rows and columns parameters, this getMinimumSize()
uses the current settings for rows and columns to calculate the TextArea's minimum size.

minimumSize() is the Java 1.0 name for this method.

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method creates the TextArea peer. If you override this method, call
super.addNotify() first, then add your customizations for the new class. You will then be
able to do everything you need with the information about the newly created peer.

public int getScrollbarVisibility()

The getScrollbarVisibility() method retrieves the scrollbar visibility setting, which is
set by the constructor. There is no setScollbarVisibility() method to change the
setting. The return value is one of the TextArea constants: SCROLLBARS_BOTH,
SCROLLBARS_HORIZONTAL_ONLY, SCROLLBARS_NONE, or
SCROLLBARS_VERTICAL_ONLY.

protected String paramString ()

When you call the toString() method of TextArea, the default toString() method of
Component is called. This in turn calls paramString(), which builds up the string to display.
The TextArea level adds the number of rows and columns for the TextArea, and Java 1.1
adds the scrollbar visibility policy. Using new TextArea(`Empty Area`, 3, 10), the
results displayed could be:

java.awt.TextArea[text0,0,0,0x0,invalid,text="Empty Area",
editable,selection=0-0, rows=3,columns=10, scrollbarVisibility=both]

TextArea Events

With the 1.0 event model, the TextArea component can generate KEY_PRESS and KEY_ACTION
(which calls keyDown()) along with KEY_RELEASE and KEY_ACTION_RELEASE (which called
keyUp()). There is no ACTION_EVENT generated for TextArea.

NOTE:

The GOT_FOCUS and LOST_FOCUS events can be generated by this component but not reliably across
platforms. Currently, they are generated on most UNIX platforms but not on Microsoft Windows NT/95
under Java 1.0. These events are generated under Java 1.1.

Similarly, the mouse events are not generated with JDK 1.0.2. See Appendix C for more information
about platform dependencies.

With the Java 1.1 event model, there are no listeners specific to TextArea. You can register key,
mouse, and focus listeners through the Component methods of addKeyListener(),
addMouseListener(), and addFocusListener(), respectively. To register listeners for text
events, call TextComponent.addTextListener(). Action

The TextArea component has no way to trigger the action event, since carriage return is a valid
character. You would need to put something like a Button on the screen to cause an action for a
TextArea. The following Rot13 program demonstrates this technique. The user enters text in the
TextArea and selects the Rotate Me button to rotate the text. If the user selects Rotate Me again, it
rotates again, back to the original position. Without the button, there would be no way to trigger the
event. Figure 8.5 shows this example in action.

import java.awt.*;
public class Rot13 extends Frame {
 TextArea ta;
 Component rotate, done;
 public Rot13 () {
 super ("Rot-13 Example");
 add ("North", new Label ("Enter Text to Rotate:"));
 ta = (TextArea)(add ("Center", new TextArea (5, 40)));
 Panel p = new Panel ();
 rotate = p.add (new Button ("Rotate Me"));
 done = p.add (new Button ("Done"));
 add ("South", p);
 }
 public static void main (String args[]) {
 Rot13 rot = new Rot13();
 rot.pack();
 rot.show();
 }
 public boolean handleEvent (Event e) {
 if (e.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 System.exit (0);
 return true;
 }
 return super.handleEvent (e);
 }
 public boolean action (Event e, Object o) {
 if (e.target == rotate) {
 ta.setText (rot13Text (ta.getText()));

 return true;
 } else if (e.target == done) {
 hide();
 dispose();
 System.exit (0);
 }
 return false;
 }
 String rot13Text (String s) {
 int len = s.length();
 StringBuffer returnString = new StringBuffer (len);
 char c;
 for (int i=0;i<len;i++) {
 c = s.charAt (i);
 if (((c >= 'A') && (c <= 'M')) ||
 ((c >= 'a') && (c <= 'm')))
 c += 13;
 else if (((c >= 'N') && (c <= 'Z')) ||
 ((c >= 'n') && (c <= 'z')))
 c -= 13;
 returnString.append (c);
 }
 return returnString.toString();
 }
}

Figure 8.5: TextArea with activator button

Keyboard

Ordinarily, the TextArea component generates all the key events.

public boolean keyDown (Event e, int key)

The keyDown() method is called whenever the user presses a key. keyDown() may be called
many times in succession if the key remains pressed. e is the Event instance for the specific
event, while key is the integer representation of the character pressed. The identifier for the event
(e.id) for keyDown() could be either Event.KEY_PRESS for a regular key or
Event.KEY_ACTION for an action-oriented key (i.e., an arrow or function key). Some of the
things you can do through this method are validate input, convert each character to uppercase, and
limit the number or type of characters entered. The technique is simple: you just need to remember
that the user's keystroke is actually displayed by the TextArea peer, which receives the event
after the TextArea itself. Therefore, a TextArea subclass can modify the character displayed
by modifying the key field (e.key) of the Event and returning false, which passes the
Event on down the chain; remember that returning false indicates that the Event has not
been completely processed. The following method uses this technique to convert all alphabetic
characters to the opposite case:

public boolean keyDown (Event e, int key) {
 if (Character.isUpperCase ((char)key)) {
 e.key = Character.toLowerCase ((char)key);
 } else if (Character.isLowerCase ((char)key)) {
 e.key = Character.toUpperCase ((char)key);
 }
 return false;
}

If keyDown() returns true, it indicates that the Event has been completely processed. In this
case, the Event never propagates to the peer, and the keystroke is never displayed.

public boolean keyUp (Event e, int key)

The keyUp() method is called whenever the user releases a key. e is the Event instance for the
specific event, while key is the integer representation of the character pressed. The identifier for
the event (e.id) for keyUp() could be either Event.KEY_RELEASE for a regular key, or
Event.KEY_ACTION_RELEASE for an action-oriented key (i.e., an arrow or function key).

Mouse

Ordinarily, the TextArea component does not trigger any mouse events.

NOTE:

Mouse events are not generated for TextArea with JDK 1.0.2. See Appendix C for more information
about platform dependencies.

Focus

The TextArea component does not reliably generate focus events.

NOTE:

The GOT_FOCUS and LOST_FOCUS events can be generated by this component but not reliably across
platforms. With the JDK, they are generated on most UNIX platforms but not on Microsoft Windows
NT/95 under JDK 1.0. These events are generated with JDK 1.1. See Appendix C for more information
about platform dependencies.

public boolean gotFocus (Event e, Object o)

The gotFocus() method is triggered when the TextArea gets the input focus. e is the Event
instance for the specific event, while o is a String representation of the current contents
(getText()).

public boolean lostFocus (Event e, Object o)

The lostFocus() method is triggered when the input focus leaves the TextArea. e is the
Event instance for the specific event, while o is a String representation of the current contents
(getText()).

Listeners and 1.1 event handling

There are no listeners specific to the TextArea class. You can register Key, mouse, and focus listeners
through the Component methods of addKeyListener(), addMouseListener(), and
addFocusListener(), respectively. Also, you register listeners for text events by calling
TextComponent.addTextListener().

TextField Extending TextField

Chapter 8
Input Fields

8.4 Extending TextField

To extend what you learned so far, Example 8.1 creates a sub-class of TextField that limits the number of
characters a user can type into it. Other than the six constructors, all the work is in the keyDown() method.
The entire class follows.

Example 8.1: The SizedTextField Class Limits the Number of Characters a User can Type

import java.awt.*;
public class SizedTextField extends TextField {
 private int size; // size = 0 is unlimited
 public SizedTextField () {
 super ("");
 this.size = 0;
 }
 public SizedTextField (int columns) {
 super (columns);
 this.size = 0;
 }
 public SizedTextField (int columns, int size) {
 super (columns);
 this.size = Math.max (0, size);
 }
 public SizedTextField (String text) {
 super (text);
 this.size = 0;
 }
 public SizedTextField (String text, int columns) {
 super (text, columns);
 this.size = 0;
 }
 public SizedTextField (String text, int columns, int size) {
 super (text, columns);
 this.size = Math.max (0, size);

 }
 public boolean keyDown (Event e, int key) {
 if ((e.id == Event.KEY_PRESS) && (this.size > 0) &&
 (((TextField)(e.target)).getText ().length () >= this.size)) {
 // Check for backspace / delete / tab--let these pass through
 if ((key == 127) || (key == 8) || (key == 9)) {
 return false;
 }
 return true;
 }
 return false;
 }
 protected String paramString () {
 String str = super.paramString ();
 if (size != 0) {
 str += ",size=" + size;
 }
 return str;
 }
}

Most of the SizedTextField class consists of constructors; you really don't need to provide an equivalent
to all the superclass's constructors, but it's not a bad idea. The keyDown() method looks at what the user
types before it reaches the screen and acts accordingly. It checks the length of the TextField and compares
it to the maximum length. It then does another check to see if the user typed a Backspace, Delete, or Tab, all
of which we want to allow: if the field has gotten too long, we want to allow the user to shorten it. We also
want to allow tab under all circumstances, so that focus traversal works properly. The rest of the logic is
simple:

● If the user typed Backspace, Delete, or Tab, return false to propagate the event.

● If the field is too long, return true to prevent the event from reaching the peer. This effectively
ignores the character.

TextArea Pick Me

Chapter 9
Pick Me

9.2 Lists

Like the Choice component, the List provides a way to present your user with a fixed sequence of
choices to select. However, with List, several items can be displayed at a time on the screen. A List
can also allow multiple selection, so that more than one choice can be selected.

Normally, a scrollbar is associated with the List to enable the user to move to the items that do not fit
on the screen. On some platforms, the List may not display the scrollbar if there is enough room to
display all choices. A List can be resized by the LayoutManager according to the space available.
Figure 9.2 shows two lists, one of which has no items to display.

List Methods

Constructors

public List ()

This constructor creates an empty List with four visible lines. You must rely on the current
LayoutManager to resize the List or override the preferredSize() (version 1.0) or
getPreferredSize() (version 1.1) method to affect the size of the displayed List. A List
created with this constructor is in single-selection mode, so the user can select only one item at a
time.

public List (int rows)

This constructor creates a List that has rows visible lines. This is just a request; the
LayoutManager is free to adjust the height of the List to some other amount based upon
available space. A List created with this constructor is in single-selection mode, so the user will
be able to select only one item at a time.

public List (int rows, boolean multipleSelections)

The final constructor for List creates a List that has rows visible lines. This is just a request;
the LayoutManager is free to adjust the height of the List to some other amount based upon
available space. If multipleSelections is true, this List permits multiple items to be
selected. If false, this is a single-selection list.

Figure 9.2: Two lists; the list on the right is empty

[Graphic: Figure 9-2]

Content control

public int getItemCount ()

public int countItems ()

The getItemCount() method returns the length of the list. The length of the list is the number
of items in the list, not the number of visible rows.

countItems() is the Java 1.0 name for this method.

public String getItem (int index)

The getItem() method returns the String representation for the item at position index. The
String is the parameter passed to the addItem() or add() method.

public String[] getItems ()

The getItems() method returns a String array that contains all the elements in the List.
This method does not care if an item is selected or not.

public synchronized void add (String item)

public synchronized void addItem (String item)

The add() method adds item as the last entry in the List. If item already exists in the list,
this method adds it again.

addItem() is the Java 1.0 name for this method.

public synchronized void add (String item, int index)

public synchronized void addItem (String item, int index)

This version of the add() method has an additional parameter, index, which specifies where to
add item to the List. If index < 0 or index >= getItemCount(), item is added to
the end of the List. The position count is zero based, so if index is 0, it will be added as the
first item.

addItem() is the Java 1.0 name for this method.

public synchronized void replaceItem (String newItem, int index)

The replaceItem() method replaces the contents at position index with newItem. If the
item at index has been selected, newItem will not be selected.

public synchronized void removeAll ()

public synchronized void clear ()

The removeAll() method clears out all the items in the list.

clear() is the Java 1.0 name for this method.

NOTE:

Early versions (Java1.0) of the clear() method did not work reliably across platforms. You were
better off calling the method listVar.delItems(0, listVar.countItems()-1), where
listVar is your List instance.

public synchronized void remove (String item)

The remove() method removes item from the list of available choices. If item appears in the
List several times, only the first instance is removed. If item is null, remove() throws the
run-time exception NullPointerException. If item is not found in the List, remove()
throws the IllegalArgumentException run-time exception.

public synchronized void remove (int position)

public synchronized void delItem (int position)

The remove() method removes the entry at position from the List. If position is
invalid--either position < 0 or position >= getItemCount()--remove() throws the
ArrayIndexOutOfBoundsException run-time exception with a message indicating that
position was invalid.

delItem() is the Java 1.0 name for this method.

public synchronized void delItems (int start, int end)

The delItems() method removes entries from position start to position end from the
List. If either parameter is invalid--either start < 0 or end >= getItemCount()--
delItems() throws the ArrayIndexOutOfBoundsException run-time exception with a
message indicating which position was invalid. If start is greater than end, nothing happens.

Selection and positioning

public synchronized int getSelectedIndex ()

The getSelectedIndex() method returns the position of the selected item. If nothing is
selected in the List, getSelectedIndex() returns -1. The value -1 is also returned if the
List is in multiselect mode and multiple items are selected. For multiselection lists, use
getSelectedIndexes() instead.

public synchronized int[] getSelectedIndexes ()

The getSelectedIndexes() method returns an integer array of the selected items. If
nothing is selected, the array will be empty.

public synchronized String getSelectedItem ()

The getSelectedItem() method returns the label of the selected item. The label is the string
used in the add() or addItem() call. If nothing is selected in the List,
getSelectedItem() returns null. The return value is also null if List is in multiselect
mode and multiple items are selected. For multiselection lists, use getSelectedItems()
instead.

public synchronized String[] getSelectedItems ()

The getSelectedItems() method returns a String array of the selected items. If nothing
is selected, the array is empty.

public synchronized Object[] getSelectedObjects ()

The getSelectedObjects() method returns the results of the method
getSelectedItems() as an Object array instead of a String array, to conform to the
ItemSelectable interface. If nothing is selected, the returned array is empty.

public synchronized void select (int index)

The select() method selects the item at position index, which is zero based. If the List is
in single-selection mode, any other selected item is deselected. If the List is in multiple-
selection mode, calling this method has no effect on the other selections. The item at position
index is made visible.

NOTE:

A negative index seems to select everything within the List. This seems more like an irregularity than a
feature to rely upon.

public synchronized void deselect (int index)

The deselect() method deselects the item at position index, which is zero based.
deselect() does not reposition the visible elements.

public boolean isIndexSelected (int index)

public boolean isSelected (int index)

The isIndexSelected() method checks whether index is currently selected. If it is,
isIndexSelected() returns true; otherwise, it returns false.

isSelected() is the Java 1.0 name for this method.

public boolean isMultipleMode ()

public boolean allowsMultipleSelections ()

The isMultipleMode() method returns the current state of the List. If the List is in
multiselection mode, isMultipleMode() returns true; otherwise, it returns false.

allowsMultipleSelections() is the Java 1.0 name for this method.

public void setMultipleMode (boolean value)

public void setMultipleSelections (boolean value)

The setMultipleMode() method allows you to change the current state of a List from one
selection mode to the other. The currently selected items change when this happens. If value is
true and the List is going from single- to multiple-selection mode, the selected item gets
deselected. If value is false and the List is going from multiple to single, the last item
physically selected remains selected (the last item clicked on in the list, not the item with the
highest index). If there was no selected item, the first item in the list becomes selected, or the last
item that was deselected becomes selected. If staying within the same mode,
setMultipleMode() has no effect on the selected items.

setMultipleSelections() is the Java 1.0 name for this method.

public void makeVisible (int index)

The makeVisible() method ensures that the item at position index is displayed on the
screen. This is useful if you want to make sure a certain entry is displayed when another action
happens on the screen.

public int getVisibleIndex ()

The getVisibleIndex() method returns the last index from a call to the method
makeVisible(). If makeVisible() was never called, -1 is returned.

Sizing

public int getRows ()

The getRows() method returns the number of rows passed to the constructor of the List. It
does not return the number of visible rows. To get a rough idea of the number of visible rows,
compare the getSize() of the component with the results of
getPreferredSize(getRows()).

public Dimension getPreferredSize (int rows)

public Dimension preferredSize (int rows)

The getPreferredSize() method returns the preferable Dimension (width and height) for

the size of a List with a height of rows. The rows specified may be different from the rows
designated in the constructor.

preferredSize() is the Java 1.0 name for this method.

public Dimension getPreferredSize ()

public Dimension preferredSize ()

The getPreferredSize() method returns the Dimension (width and height) for the
preferred size of the List. Without the rows parameter, this version of
getPreferredSize() uses the constructor's number of rows to calculate the List's
preferred size.

preferredSize() is the Java 1.0 name for this method.

public Dimension getMiminumSize (int rows)

public Dimension minimumSize (int rows)

The getMinimumSize() method returns the minimum Dimension (width and height) for
the size of a List with a height of rows. The rows specified may be different from the rows
designated in the constructor. For a List, getMinimumSize() and
getPreferredSize() should return the same dimensions.

minimumSize() is the Java 1.0 name for this method.

public Dimension getMiminumSize ()

public Dimension minimumSize ()

The getMinimumSize() method returns the minimum Dimension (width and height) for
the size of the List. Without the rows parameter, this getMinimumSize() uses the
constructor's number of rows to calculate the List's minimum size.

minimumSize() is the Java 1.0 name for this method.

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method creates the List peer. If you override this method, call
super.addNotify() first, then add your customizations for the new class. You will then be

able to do everything you need with the information about the newly created peer.

public synchronized void removeNotify ()

The removeNotify() method destroys the peer of the List and removes it from the screen.
Prior to the List peer's destruction, the last selected entry is saved. If you override this method
for a specific List, issue the particular commands that you need for your new object, then call
super.removeNotify() last.

protected String paramString ()

When you call the toString() method of List, the default toString() method of
Component is called. This in turn calls paramString(), which builds up the string to
display. At the List level, the currently selected item (getSelectedItem()) is appended to
the output. Using Figure 9.2 as an example, the results would be the following:

java.awt.List[0,34,107x54,selected=null]

List Events

The primary event for a List occurs when the user selects an item in the list. With the 1.0 event model,
double-clicking a selection causes an ACTION_EVENT and triggers the action() method, while
single-clicking causes a LIST_SELECT or LIST_DESELECT event. Once the List has the input
focus, it is possible to change the selection by using the arrow or keyboard keys. The arrow keys scroll
through the list of choices, triggering the KEY_ACTION, LIST_SELECT, LIST_DESELECT, and
KEY_ACTION_RELEASE events, and thus the keyDown(), handleEvent(), and keyUp()
methods (no specific method gets called for LIST_SELECT and LIST_DESELECT). action() is
called only when the user double-clicks on an item with the mouse. If the mouse is used to scroll through
the list, no mouse events are triggered; ACTION_EVENT is generated only when the user double-clicks
on an item.

With the 1.1 event model, you register an ItemListener with addItemListener() or an
ActionListener with the addActionListener() method. When the user selects the List,
either the ItemListener.itemStateChanged() method or the
ActionListener.actionPerformed() method is called through the protected
List.processItemEvent() method or List.processActionEvent() method. Key, mouse,
and focus listeners are registered through the three Component methods of addKeyListener(),
addMouseListener(), and addFocusListener(), respectively. Action

public boolean action (Event e, Object o)

The action() method for a List is called when the user double-clicks on any item in the
List. e is the Event instance for the specific event, while o is the label for the item selected,
from the add() or addItem() call. If List is in multiple-selection mode, you might not wish
to catch this event because it's not clear whether the user wanted to choose the item just selected
or all of the items selected. You can solve this problem by putting a multi-selecting list next to a
Button that the user presses when the selection process is finished. Capture the event generated
by the Button. The following example shows how to set up and handle a list in this manner,
with the display shown in Figure 9.3. In this example, I just print out the selections to prove that I
captured them.

import java.awt.*;
import java.applet.*;
public class list3 extends Applet {
 List l;
 public void init () {
 String fonts[];
 fonts = Toolkit.getDefaultToolkit().getFontList();
 l = new List(4, true);
 for (int i = 0; i < fonts.length; i++) {
 l.addItem (fonts[i]);
 }
 setLayout (new BorderLayout (10, 10));
 add ("North", new Label ("Pick Font Set"));
 add ("Center", l);
 add ("South", new Button ("Submit"));
 resize (preferredSize());
 validate();
 }
 public boolean action (Event e, Object o) {
 if (e.target instanceof Button) {
 String chosen[] = l.getSelectedItems();
 for (int i=0;i<chosen.length;i++)
 System.out.println (chosen[i]);
 }
 return false;
 }
}

Figure 9.3: Multiselect List

[Graphic: Figure 9-3]

Keyboard

Ordinarily, List generates all the KEY events once it has the input focus. But the way it handles
keyboard input differs slightly depending upon the selection mode of the list. Furthermore, each platform
offers slightly different behavior, so code that depends on keyboard events in List is not portable. One
strategy is to take advantage of the keyboard events when they are available but allow for another way of
managing the list in case they are not.

public boolean keyDown (Event e, int key)

The keyDown() method is called whenever the user presses a key while the List has the input
focus. e is the Event instance for the specific event, while key is the integer representation of
the character pressed. The identifier for the event (e.id) for keyDown() could be either
KEY_PRESS for a regular key or KEY_ACTION for an action-oriented key (i.e., arrow or
function key). If you check the current selection in this method through getSelectedItem()
or getSelectedIndex(), you will actually be told the previously selected item because the
List's selection has not changed yet. keyDown() is not called when the user selects items with
the mouse.

public boolean keyUp (Event e, int key)

The keyUp() method is called whenever the user releases a key while the List has the input
focus. e is the Event instance for the specific event, while key is the integer representation of
the character pressed. The identifier for the event (e.id) for keyUp() could be either
KEY_RELEASE for a regular key or KEY_ACTION_RELEASE for an action-oriented key (i.e.,
arrow or function key).

Mouse

Ordinarily, the List component does not trigger any mouse events. Double-clicking the mouse over any
element in the list generates an ACTION_EVENT. Single-clicking could result in either a

LIST_SELECT or LIST_DESELECT, depending on the mode of the List and the current state of the
item chosen. When the user changes the selection with the mouse, the ACTION_EVENT is posted only
when an item is double-clicked. List

There is a special pair of events for lists: LIST_SELECT and LIST_DESELECT. No special method is
called when these events are triggered. However, you can catch them in the handleEvent() method.
If the List is in single-selection mode, a LIST_SELECT event is generated whenever the user selects
one of the items in the List. In multiple-selection mode, you will get a LIST_SELECT event when an
element gets selected and a LIST_DESELECT event when it is deselected. The following code shows
how to use this event type.

public boolean handleEvent (Event e) {
 if (e.id == Event.LIST_SELECT) {
 System.out.println ("Selected item: " + e.arg);
 return true;
 } else {
 return super.handleEvent (e);
 }
}

Focus

Normally, the List component does not reliably trigger any focus events. Listeners and 1.1 event
handling

With the 1.1 event model, you register listeners, and they are told when the event happens.

public void addItemListener(ItemListener listener)

The addItemListener() method registers listener as an object interested in being
notified when an ItemEvent passes through the EventQueue with this List as its target.
The listener.itemStateChanged() method is called when these events occur. Multiple
listeners can be registered.

public void removeItemListener(ItemListener listener)

The removeItemListener() method removes listener as an interested listener. If
listener is not registered, nothing happens.

public void addActionListener(ActionListener listener)

The addActionListener() method registers listener as an object interested in being
notified when an ActionEvent passes through the EventQueue with this List as its target.
The listener.actionPerformed() method is called when these events occur. Multiple
listeners can be registered.

public void removeActionListener(ActionListener listener)

The removeActionListener() method removes listener as a interested listener. If
listener is not registered, nothing happens.

protected void processEvent(AWTEvent e)

The processEvent() method receives all AWTEvents with this List as its target.
processEvent() then passes them along to any listeners for processing. When you subclass
List, overriding processEvent() allows you to process all events yourself, before sending
them to any listeners. In a way, overriding the method processEvent() is like overriding
handleEvent() using the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last to
ensure that regular event processing can occur. If you want to process your own events, it's a good
idea to call enableEvents() (inherited from Component) to ensure that events are delivered
even in the absence of registered listeners.

protected void processItemEvent(ItemEvent e)

The processItemEvent() method receives all ItemEvents with this List as its target.
processItemEvent() then passes them along to any listeners for processing. When you
subclass List, overriding processItemEvent() allows you to process all events yourself,
before sending them to any listeners. In a way, overriding processItemEvent() is like
overriding handleEvent() to deal with LIST_SELECT and LIST_DESELECT using the
1.0 event model.

If you override processItemEvent(), remember to call the method
super.processItemEvent(e) last to ensure that regular event processing can occur. If you
want to process your own events, it's a good idea to call enableEvents() (inherited from
Component) to ensure that events are delivered even in the absence of registered listeners.

protected void processActionEvent(ActionEvent e)

The processActionEvent() method receives all ActionEvents with this List as its
target. processActionEvent() then passes them along to any listeners for processing. When

you subclass List, overriding processActionEvent() allows you to process all action
events yourself, before sending them to any listeners. In a way, overriding
processActionEvent() is like overriding action() using the 1.0 event model.

If you override processActionEvent(), remember to call the method
super.processActionEvent(e) last to ensure that regular event processing can occur. If
you want to process your own events, it's a good idea to call enableEvents() (inherited from
Component) to ensure that events are delivered even in the absence of registered listeners.

Choice Checkbox

Chapter 9
Pick Me

9.3 Checkbox

The Checkbox is a general purpose way to record a true or false state. When several checkboxes
are associated in a CheckboxGroup (CheckboxGroup), only one can be selected at a time; selecting
each Checkbox causes the previous selection to become deselected. The CheckboxGroup is Java's
way of offering the interface element known as radio buttons or a radio box. When you create a
Checkbox, you decide whether to place it into a CheckboxGroup by setting the proper argument in
its constructor.

Every Checkbox has both a label and a state, although the label could be empty. You can change the
label based on the state of the Checkbox. Figure 9.4 shows what several Checkbox components might
look like. The two on the left are independent, while the five on the right are in a CheckboxGroup.
Note that the appearance of a Checkbox varies quite a bit from platform to platform. However, the
appearance of a CheckboxGroup is always different from the appearance of an ungrouped
Checkbox, and the appearance of a checked Checkbox is different from an unchecked Checkbox.

Figure 9.4: Two separate checkboxes and a CheckboxGroup

[Graphic: Figure 9-4]

Checkbox Methods

Constructors

public Checkbox ()

This constructor for Checkbox creates a new instance with no label or grouping. The initial state
of the item is false. A checkbox doesn't necessarily need a label; however, a checkbox without
a label might be confusing, unless it is being used as a column in a table or a spreadsheet.

public Checkbox (String label)

The second constructor creates a new Checkbox with a label of label and no grouping. The
initial state of the item is false. If you want a simple yes/no choice and plan to make no the
default, use this constructor. If the Checkbox will be in a group or you want its initial value to
be true, use the next constructor.

public Checkbox (String label, boolean state)

This constructor allows you to specify the Checkbox's initial state. With it you create a
Checkbox with a label of label and an initial state of state.

public Checkbox (String label, boolean state, CheckboxGroup group)
public Checkbox (String label, CheckboxGroup group, boolean state)

The final constructor for Checkbox is the most flexible. With this constructor you create a
Checkbox with a label of label, a CheckboxGroup of group, and an initial state of
state. If group is null, the Checkbox is independent.

In Java 1.0, you created an independent Checkbox with an initial value of true by using null
as the group:

Checkbox cb = new Checkbox ("Help", null, true)

The shape of the Checkbox reflects whether it's in a CheckboxGroup or independent. On
Microsoft Windows, grouped checkboxes are represented as circles. On a UNIX system, they are
diamonds. On both systems, independent checkboxes are squares.

Label

public String getLabel ()

The getLabel() method retrieves the current label on the Checkbox and returns it as a
String object.

public synchronized void setLabel (String label)

The setLabel() method changes the label of the Checkbox to label. If the new label is a
different size than the old one, you have to validate() the container after the change to ensure
the entire label will be seen.

State

A state of true means the Checkbox is selected. A state of false means that the Checkbox is not
selected.

public boolean getState ()

The getState() method retrieves the current state of the Checkbox and returns it as a
boolean.

public void setState (boolean state)

The setState() method changes the state of the Checkbox to state. If the Checkbox is
in a CheckboxGroup and state is true, the other items in the group become false.

ItemSelectable method

public Objects[] getSelectedObjects ()

The getSelectedObjects() method returns the Checkbox label as a one-element
Object array if it is currently selected, or null if the Checkbox is not selected. Because this
method is part of the ItemSelectable interface, you can use it to look at the selected items in
a Choice, List, or Checkbox.

CheckboxGroup

This section lists methods that you issue to Checkbox to affect its relationship to a CheckboxGroup.
Methods provided by the CheckboxGroup itself can be found later in this chapter.

public CheckboxGroup getCheckboxGroup ()

The getCheckboxGroup() method returns the current CheckboxGroup for the

Checkbox. If the Checkbox is not in a group, this method returns null.

public void setCheckboxGroup (CheckboxGroup group)

The setCheckboxGroup() method allows you to insert a Checkbox into a different
CheckboxGroup. To make the Checkbox independent, pass a group argument of null.
The method sets every Checkbox in the original CheckboxGroup to false
(cb.getCheckboxGroup().setCurrent(null)), then the Checkbox is added to the
new group without changing any values in the new group.

Checkbox components take on a different shape when they are in a CheckboxGroup. If the
checkbox was originally not in a CheckboxGroup, the shape of the checkbox does not change
automatically when you put it in one with setCheckboxGroup(). (This also holds when you
remove a Checkbox from a CheckboxGroup and make it independent or vice versa.) In order
for the Checkbox to look right once added to group, you need to destroy and create
(removeNotify() and addNotify(), respectively) the Checkbox peer to correct the
shape. Also, it is possible to get multiple true Checkbox components in group this way, since
the new CheckboxGroup's current selection does not get adjusted. To avoid this problem, make
sure it is grouped properly the first time, or be sure to clear the selections with a call to
getCheckboxGroup().setCurrent(null).

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method will create the Checkbox peer in the appropriate shape. If you
override this method, call super.addNotify() first, then add your customizations for the
new class. You will then be able to do everything you need with the information about the newly
created peer.

protected String paramString ()

When you call the toString() method of Checkbox, the default toString() method of
Component is called. This in turn calls paramString() which builds up the string to display.
At the Checkbox level, the label (if non-null) and the state of the item are appended. Assuming
the Dialog Checkbox in Figure 9.4 was selected, the results would be:

java.awt.Checkbox[85,34,344x32,label=Dialog,state=true]

Checkbox Events

The primary event for a Checkbox occurs when the user selects it. With the 1.0 event model, this
generates an ACTION_EVENT and triggers the action() method. Once the Checkbox has the input
focus, the various keyboard events can be generated, but they do not serve any useful purpose because
the Checkbox doesn't change. The sole key of value for a Checkbox is the spacebar. This may
generate the ACTION_EVENT after KEY_PRESS and KEY_RELEASE; thus the sequence of method
calls would be keyDown(), keyUp(), and then action().

With the version 1.1 event model, you register an ItemListener with the method
addItemListener(). Then when the user selects the Checkbox, the method
ItemListener.itemStateChanged() is called through the protected
Checkbox.processItemEvent() method. Key, mouse, and focus listeners are registered through
the Component methods of addKeyListener(), addMouseListener(), and
addFocusListener(), respectively. Action

public boolean action (Event e, Object o)

The action() method for a Checkbox is called when the user selects it. e is the Event
instance for the specific event, while o is the opposite of the old state of the toggle. If the
Checkbox was true when it was selected, o will be false. Likewise, if it was false, o will
be true. This incantation sounds unnecessarily complex, and for a single Checkbox, it is: o is
just the new state of the Checkbox. The following code uses action() with a single
Checkbox.

public boolean action (Event e, Object o) {
 if (e.target instanceof Checkbox) {
 System.out.println ("Checkbox is now " + o);
 }
 return false;
}

On the other hand, if the Checkbox is in a CheckboxGroup, o is still the opposite of the old
state of the toggle, which may or may not be the new state of the Checkbox. If the Checkbox
is initially false, o will be true, and the Checkbox's new state will be true. However, if
the Checkbox is initially true, selecting the Checkbox doesn't change anything because one
Checkbox in the group must always be true. In this case, o is false (the opposite of the old
state), though the Checkbox's state remains true.

Therefore, if you're working with a CheckboxGroup and need to do something once when the
selection changes, perform your action only when o is true. To find out which Checkbox was
actually chosen, you need to call the getLabel() method for the target of event e. (It would be
nice if o gave us the label of the Checkbox that was selected, but it doesn't.) An example of this
follows:

public boolean action (Event e, Object o) {
 if (e.target instanceof Checkbox) {
 System.out.println (((Checkbox)(e.target)).getLabel() +
 " was selected.");
 if (new Boolean (o.toString()).booleanValue()) {
 System.out.println ("New option chosen");
 } else {
 System.out.println ("Use re-selected option");
 }
 }
 return false;
}

One other unfortunate twist of CheckboxGroup: it would be nice if there was some easy way to find
out about checkboxes that change state without selection--for example, if you could find out which
Checkbox was deselected when a new Checkbox was selected. Unfortunately, you can't, except by
keeping track of the state of all your checkboxes at all times. When a Checkbox state becomes false
because another Checkbox was selected, no additional event is generated, in either Java 1.0 or 1.1.
Keyboard

Checkboxes are able to capture keyboard-related events once the Checkbox has the input focus,
which happens when it is selected. If you can find a use for this, you can use keyDown() and
keyUp(). For most interface designs I can think of, action() is sufficient. A possible use for
keyboard events is to jump to other Checkbox options in a CheckboxGroup, but I think that is more
apt to confuse users than help.

public boolean keyDown (Event e, int key)

The keyDown() method is called whenever the user presses a key while the Checkbox has the
input focus. e is the Event instance for the specific event, while key is the integer
representation of the character pressed. The identifier for the event (e.id) for keyDown()
could be either KEY_PRESS for a regular key or KEY_ACTION for an action-oriented key (i.e.,
arrow or function key). There is no visible indication that the user has pressed a key over the
checkbox.

public boolean keyUp (Event e, int key)

The keyUp() method is called whenever the user releases a key while the Checkbox has the
input focus. e is the Event instance for the specific event, while key is the integer
representation of the character pressed. The identifier for the event (e.id) for keyUp() could
be either KEY_RELEASE for a regular key or KEY_ACTION_RELEASE for an action-oriented
key (i.e., arrow or function key). keyUp() may be used to determine how long key has been

pressed.

Mouse

Ordinarily, the Checkbox component does not reliably trigger any mouse events. Focus

Ordinarily, the Checkbox component does not reliably trigger any focus events. Listeners and 1.1 event
handling

With the 1.1 event model, you register listeners, and they are told when the event happens.

public void addItemListener(ItemListener listener)

The addItemListener() method registers listener as an object interested in being
notified when an ItemEvent passes through the EventQueue with this Checkbox as its
target. Then, the listener.itemStateChanged() method will be called. Multiple listeners
can be registered.

public void removeItemListener(ItemListener listener)

The removeItemListener() method removes listener as a interested listener. If listener
is not registered, nothing happens.

protected void processEvent(AWTEvent e)

The processEvent() method receives every AWTEvent with this Checkbox as its target.
processEvent() then passes it along to any listeners for processing. When you subclass
Checkbox, overriding processEvent() allows you to process all events yourself, before
sending them to any listeners. In a way, overriding processEvent() is like overriding
handleEvent() using the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last to
ensure that regular event processing can occur. If you want to process your own events, it's a good
idea to call enableEvents() (inherited from Component) to ensure that events are delivered
even in the absence of registered listeners.

protected void processItemEvent(ItemEvent e)

The processItemEvent() method receives every ItemEvent with this Checkbox as its
target. processItemEvent() then passes it along to any listeners for processing. When you

subclass Checkbox, overriding processItemEvent() allows you to process all events
yourself, before sending them to any listeners. In a way, overriding processItemEvent() is
like overriding action() using the 1.0 event model.

If you override processItemEvent(), remember to call the method
super.processItemEvent(e) last to ensure that regular event processing can occur. If you
want to process your own events, it's a good idea to call enableEvents() (inherited from
Component) to ensure that events are delivered even in the absence of registered listeners.

Lists CheckboxGroup

Chapter 9
Pick Me

9.4 CheckboxGroup

The CheckboxGroup lets multiple checkboxes work together to provide a mutually exclusion choice
(at most one Checkbox can be selected at a time). Because the CheckboxGroup is neither a
Component nor a Container, you should normally put all the Checkbox components associated
with a CheckboxGroup in their own Panel (or other Container). The LayoutManager of the
Panel should be GridLayout (0, 1) if you want them in one column. Figure 9.5 shows both a
good way and bad way of positioning a set of Checkbox items in a CheckboxGroup. The image on
the left is preferred because the user can sense that the items are grouped; the image on the right suggests
three levels of different checkboxes and can therefore surprise the user when checkboxes are deselected.

Figure 9.5: Straightforward and confusing layouts of Checkbox components

[Graphic: Figure 9-5]

CheckboxGroup Methods

Constructors

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch09_05.htm

public CheckboxGroup ()

This constructor creates an instance of CheckboxGroup.

Miscellaneous methods

public int getSelectedCheckbox ()

public Checkbox getCurrent ()

The getSelectedCheckbox() method returns the Checkbox within the
CheckboxGroup whose value is true. If no item is selected, null is returned.

getCurrent() is the Java 1.0 name for this method.

public synchronized void setSelectedCheckbox (Checkbox checkbox)

public synchronized void setCurrent (Checkbox checkbox)

The setSelectedCheckbox() method makes checkbox the currently selected Checkbox
within the CheckboxGroup. If checkboxis null, the method deselects all the items in the
CheckboxGroup. If checkbox is not within the CheckboxGroup, nothing happens.

setCurrent() is the Java 1.0 name for this method.

public String toString ()

The toString() method of CheckboxGroup creates a String representation of the current
choice (as returned by getSelectedCheckbox()). Using the "straightforward" layout in
Figure 9.5 as an example, the results would be:

java.awt.CheckboxGroup[current=java.awt.Checkbox[0,31,85x21,
 label=Helvetica,state=true]]

If there is no currently selected item, the results within the square brackets would be
current=null.

Checkbox ItemSelectable

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch09_05.htm

Chapter 10
Would You Like to Choose

from the Menu?

10.3 MenuShortcut

MenuShortcut is a class used to represent a keyboard shortcut for a MenuItem. When these events
occur, an action event is generated that triggers the menu component. When a shortcut is associated with
a MenuItem, the MenuItem automatically displays a visual clue, which indicates that a keyboard
accelerator is available.

MenuShortcut Methods

Constructors

public MenuShortcut (int key)

The first MenuShortcut constructor creates a MenuShortcut with key as its designated hot
key. The key parameter can be any of the virtual key codes from the KeyEvent class (e.g.,
VK_A, VK_B, etc.). These constants are listed in Table 4.4. To use the shortcut, the user must
combine the given key with a platform-specific modifier key. On Windows and Motif platforms,
the modifier is the Control key; on the Macintosh, it is the Command key. For example, if the
shortcut key is F1 (VK_F1) and you're using Windows, you would press Ctrl+F1 to execute the
shortcut. To find out the platform's modifier key, call the
Toolkit.getMenuShortcutKeyMask() method.

public MenuShortcut(int key, boolean useShiftModifier)

This MenuShortcut constructor creates a MenuShortcut with key as its designated hot
key. If useShiftModifier is true, the Shift key must be depressed for this shortcut to
trigger the action event (in addition to the shortcut key). The key parameter represents the integer
value of a KEY_PRESS event, so in addition to ASCII values, possible values include the various
Event keyboard constants (listed in Table 4.2) like Event.F1, Event.HOME, and

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch10_02.htm

Event.PAUSE. For example, if key is the ASCII value for A and useShiftModifier is
true, the shortcut key is Shift+Ctrl+A on a Windows/Motif platform.

Miscellaneous methods

public int getKey ()

The getKey() method retrieves the virtual key code for the key that triggered this
MenuShortcut. The virtual key codes are the VK constants defined by the KeyEvent class
(see Table 4.4).

public boolean usesShiftModifier()

The usesShiftModifier() method returns true if this MenuShortcut requires the Shift
key be pressed, false otherwise.

public boolean equals(MenuShortcut s)

The equals() method overrides Object's equals() method to define equality for menu
shortcuts. Two MenuShortcut objects are equal if their key and useShiftModifier
values are equal.

protected String paramString ()

The paramString() method of MenuShortcut helps build up a string describing the
shortcut; it appends the shortcut key and a shift modifier indicator to the string under construction.
Oddly, this method is not currently used, nor can you call it; MenuShortcut has its own
toString() method that does the job itself.

public String toString()

The toString() method of MenuShortcut builds a String to display the contents of the
MenuShortcut.

MenuContainer MenuItem

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch10_02.htm

Chapter 10
Would You Like to Choose

from the Menu?

10.4 MenuItem

A MenuItem is the basic item that goes on a Menu. Menus themselves are menu items, allowing
submenus to be nested inside of menus. MenuItem is a subclass of MenuComponent.

MenuItem Methods

Constructors

public MenuItem ()

The first MenuItem constructor creates a MenuItem with an empty label and no keyboard
shortcut. To set the label at later time, use setLabel().

public MenuItem (String label)

This MenuItem constructor creates a MenuItem with a label of label and no keyboard
shortcut. A label of "-" represents a separator.

public MenuItem (String label, MenuShortcut shortcut)

The final MenuItem constructor creates a MenuItem with a label of label and a
MenuShortcut of shortcut. Pressing the shortcut key is the same as selecting the menu
item.

Menu labels

Each MenuItem has a label. This is the text that is displayed on the menu.

NOTE:

Prior to Java 1.1, there was no portable way to associate a hot key with a MenuItem. However, in Java
1.0, if you precede a character with an & on a Windows platform, it will appear underlined, and that key
will act as the menu's mnemonic key (a different type of shortcut from MenuShortcut).
Unfortunately, on a Motif platform, the user will see the &. Because the & is part of the label, even if it is
not displayed, you must include it explicitly whenever you compare the label to a string.

public String getLabel ()

The getLabel() method retrieves the label associated with the MenuItem.

public void setLabel (String label)

The setLabel() method changes the label of the MenuItem to label.

Shortcuts

public MenuShortcut getMenuShortcut ()

The getMenuShortcut() method retrieves the shortcut associated with this MenuItem.

public void setShortcut (MenuShortcut shortcut)

The setShortcut() method allows you to change the shortcut associated with a MenuItem
to shortcut after the MenuItem has been created.

public void deleteMenuShortcut ()

The deleteMenuShortcut() method removes any associated MenuShortcut from the
MenuItem. If there was no shortcut, nothing happens.

Enabling

public boolean isEnabled ()

The isEnabled() method checks to see if the MenuItem is currently enabled. An enabled
MenuItem can be selected by the user. A disabled MenuItem, by convention, appears grayed
out on the Menu. Initially, each MenuItem is enabled.

public synchronized void setEnabled(boolean b)

public void enable (boolean condition)

The setEnabled() method either enables or disables the MenuItem based on the value of
condition. If condition is true, the MenuItem is enabled. If condition is false, it
is disabled. When enabled, the user can select it, generating ACTION_EVENT or notifying the
ActionListener. When disabled, the peer does not generate an ACTION_EVENT if the user
tries to select the MenuItem. A disabled MenuItem is usually grayed out to signify its state.
The way that disabling is signified is platform specific.

enable() is the Java 1.0 name for this method.

public synchronized void enable ()

The enable() method enables the MenuItem. In Java 1.1, it is better to use setEnabled().

public synchronized void disable ()

The disable() method disables the component so that the user cannot select it. In Java 1.1, it
is better to use setEnabled().

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method creates the MenuItem peer.

public String paramString ()

The paramString() method of MenuItem should be protected like other paramString()
methods. However, it is public so you have access to it. When you call the toString() method
of a MenuItem, the default toString() method of MenuComponent is called. This in turn
calls paramString() which builds up the string to display. At the MenuItem level, the
current label of the object and the shortcut (if present) is appended to the output. If the constructor
for the MenuItem was new MenuItem(`File`), the results of toString() would be:

java.awt.MenuItem[label=File]

MenuItem Events

Event handling

With 1.0 event handing, a MenuItem generates an ACTION_EVENT when it is selected. The argument
to action() will be the label of the MenuItem. But the target of the ACTION_EVENT is the Frame
containing the menu. You cannot subclass MenuItem and catch the Event within it with action(),
but you can with postEvent(). No other events are generated for MenuItem instances.

public boolean action (Event e, Object o)--overridden by user, called by system

The action() method for a MenuItem signifies that the user selected it. e is the Event
instance for the specific event, while o is the label of the MenuItem.

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners, and they are told when the event happens.

public String getActionCommand()

The getActionCommand() method retrieves the command associated with this MenuItem.
By default, it is the label. However, the default can be changed by using the
setActionCommand() method (described next). The command acts like the second parameter
to the action() method in the 1.0 event model.

public void setActionCommand(String command)

The setActionCommand() method changes the command associated with a MenuItem.
When an ActionEvent happens, the command is part of the event. By default, this would be
the label of the MenuItem. However, you can change the action command by calling this
method. Using action commands is a good idea, particularly if you expect your code to run in a
multilingual environment.

public void addActionListener(ItemListener listener)

The addActionListener() method registers listener as an object interested in being
notified when an ActionEvent passes through the EventQueue with this MenuItem as its
target. The listener.actionPerformed() method is called whenever these events occur.
Multiple listeners can be registered.

public void removeActionListener(ItemListener listener)

The removeActionListener() method removes listener as an interested listener. If
listener is not registered, nothing happens.

protected final void enableEvents(long eventsToEnable)

Using the enableEvents() method is usually not necessary. When you register an action
listener, the MenuItem listens for action events. However, if you wish to listen for events when
listeners are not registered, you must enable the events explicitly by calling this method. The
settings for the eventsToEnable parameter are found in the AWTEvent class; you can use
any of the EVENT_MASK constants like COMPONENT_EVENT_MASK, MOUSE_EVENT_MASK,
and WINDOW_EVENT_MASK ORed together for the events you care about. For instance, to listen
for action events, call:

enableEvents (AWTEvent.ACTION_EVENT_MASK);

protected final void disableEvents(long eventsToDisable)

Using the disableEvents() method is usually not necessary. When you remove an action
listener, the MenuItem stops listening for action events if there are no more listeners. However,
if you need to, you can disable events explicitly by calling disableEvents(). The settings for
the eventsToDisable parameter are found in the AWTEvent class; you can use any of the
EVENT_MASK constants such as FOCUS_EVENT_MASK, MOUSE_MOTION_EVENT_MASK, and
ACTION_EVENT_MASK ORed together for the events you no longer care about.

protected void processEvent(AWTEvent e)

The processEvent() method receives all AWTEvents with this MenuItem as its target.
processEvent() then passes them along to any listeners for processing. When you subclass
MenuItem, overriding processEvent() allows you to process all events yourself, before
sending them to any listeners. In a way, overriding processEvent() is like overriding
postEvent() using the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last to
ensure that regular event processing can occur. If you want to process your own events, it's a good
idea to call enableEvents() to ensure that events are delivered even in the absence of
registered listeners.

protected void processActionEvent(ItemEvent e)

The processActionEvent() method receives all ActionEvents with this MenuItem as
its target. processActionEvent() then passes them along to any listeners for processing.

When you subclass MenuItem, overriding processActionEvent() allows you to process
all action events yourself, before sending them to any listeners. In a way, overriding
processActionEvent() is like overriding action() using the 1.0 event model.

If you override processActionEvent(), remember to call the method
super.processActionEvent(e) last to ensure that regular event processing can occur. If
you want to process your own events, it's a good idea to call enableEvents() to ensure that
events are delivered even in the absence of registered listeners.

MenuShortcut Menu

Chapter 10
Would You Like to Choose

from the Menu?

10.5 Menu

Menus are the pull-down objects that appear on the MenuBar of a Frame or within other menus. They
contain MenuItems or CheckboxMenuItems for the user to select. The Menu class subclasses
MenuItem (so it can appear on a Menu, too) and implements MenuContainer. Tear-off menus are
menus that can be dragged, placed elsewhere on the screen, and remain on the screen when the input
focus moves to something else. Java supports tear-off menus if the underlying platform does. Motif
(UNIX) supports tear-off menus; Microsoft Windows platforms do not.

Menu Methods

Constructors

public Menu ()

The first constructor for Menu creates a menu that has no label and cannot be torn off. To set the
label at a later time, use setLabel().

public Menu (String label)

This constructor for Menu creates a Menu with label displayed on it. The Menu cannot be torn
off.

public Menu (String label, boolean tearOff)

This constructor for Menu creates a Menu with label displayed on it. The handling of
tearOff is platform dependent.

Figure 10.3 shows a tear-off menu for Windows NT/95 and Motif. Since Windows does not

support tear-off menus, the Windows menu looks and acts like a regular menu.

Figure 10.3: Tear-off menu

[Graphic: Figure 10-3]

Items

public int getItemCount()

public int countItems ()

The getItemCount() method returns the number of items within the Menu. Only top-level
items are counted: if an item is a submenu, this method doesn't include the items on it.

countItems() is the Java 1.0 name for this method.

public MenuItem getItem (int index)

The getItem() method returns the MenuItem at position index. If index is invalid,
getItem() throws the ArrayIndexOutOfBoundsException run-time exception.

public synchronized MenuItem add (MenuItem item)

The add() method puts item on the menu. The label assigned to item when it was created is
displayed on the menu. If item is already in another menu, it is removed from that menu. If
item is a Menu, it creates a submenu. (Remember that Menu subclasses MenuItem.)

public void add (String label)

This version of add() creates a MenuItem with label as the text and adds that to the menu. If
label is the String "-", a separator bar is added to the Menu.

public synchronized void insert(MenuItem item, int index)

The insert() method puts item on the menu at position index. The label assigned to item
when it was created is displayed on the menu. Positions are zero based, and if index < 0,
insert() throws the IllegalArgumentException run-time exception.

public synchronized void insert(String label, int index)

This version of insert() method creates a MenuItem with label as the text and adds that to
the menu at position index. If label is the String "--", a separator bar is added to the Menu.
Positions are zero based, and if index < 0, this method throws the
IllegalArgumentException run-time exception.

public void addSeparator ()

The addSeparator() method creates a separator MenuItem and adds that to the menu.
Separator menu items are strictly cosmetic and do not generate events when selected.

public void insertSeparator(int index)

The insertSeparator() method creates a separator MenuItem and adds that to the menu at
position index. Separator menu items are strictly cosmetic and do not generate events when
selected. Positions are zero based. If index < 0, insertSeparator() throws the
IllegalArgumentException run-time exception.

public synchronized void remove (int index)

The remove() method removes the MenuItem at position index from the Menu. If index is
invalid, remove() throws the ArrayIndexOutOfBoundsException run-time exception.
index is zero based, so it can range from 0 to getItemCount()-1.

public synchronized void remove (MenuComponent component)

This version of remove() removes the menu item component from the Menu. If component
is not in the Menu, nothing happens.

public synchronized void removeAll()

The removeAll() removes all MenuItems from the Menu.

Peers

public synchronized void addNotify ()

The addNotify() method creates the Menu peer with all the MenuItems on it.

public synchronized void removeNotify ()

The removeNotify() method destroys the peer of the MenuComponent and removes it from
the screen. The peers of the items on the menu are also destroyed.

Miscellaneous methods

public boolean isTearOff ()

The isTearOff() method returns true if this Menu is a tear-off menu, and false
otherwise. Once a menu is created, there is no way to change the tear-off setting. This method can
return true even on platforms that do not support tear-off menus.

public String paramString ()

The paramString() method of Menu should be protected like other paramString()
methods. However, it is public so you have access to it. When you call the toString() method
of a Menu, the default toString() method of MenuComponent is called. This in turn calls
paramString(), which builds up the string to display. At the Menu level, the setting for
TearOff (from constructor) and whether or not it is the help menu (from
MenuBar.setHelpMenu()) for the menu bar are added. If the constructor for the Menu was
new Menu (`File`), the results of toString() would be:

java.awt.Menu [menu0,label=File,tearOff=false,isHelpMenu=false]

Menu Events

A Menu does not generate any event when it is selected. An event is generated when a MenuItem on
the menu is selected, as long as it is not another Menu. You can capture all the events that happen on a
Menu by overriding postEvent().

MenuItem CheckboxMenuItem

Chapter 10
Would You Like to Choose

from the Menu?

10.6 CheckboxMenuItem

The CheckboxMenuItem is a subclass of MenuItem that can be toggled. It is similar to a
Checkbox but appears on a Menu. The appearance depends upon the platform. There may or may not
be a visual indicator next to the choice. However, when the MenuItem is selected (true), a checkmark
or some similar graphic will be displayed next to the label.

There is no way to put CheckboxMenuItem components into a CheckboxGroup to form a radio
menu group.

An example of a CheckboxMenuItem is the Show Java Console menu item in Netscape Navigator.

CheckboxMenuItem Methods

Constructors

public CheckboxMenuItem (String label)

The first CheckboxMenuItem constructor creates a CheckboxMenuItem with no label
displayed next to the check toggle. The initial value of the CheckboxMenuItem is false. To
set the label at a later time, use setLabel().

public CheckboxMenuItem (String label)

The next CheckboxMenuItem constructor creates a CheckboxMenuItem with label
displayed next to the check toggle. The initial value of the CheckboxMenuItem is false.

public CheckboxMenuItem (String label, boolean state)

The final CheckboxMenuItem constructor creates a CheckboxMenuItem with label

displayed next to the check toggle. The initial value of the CheckboxMenuItem is state.

Selection

public boolean getState ()

The getState() method retrieves the current state of the CheckboxMenuItem.

public void setState (boolean condition)

The setState() method changes the current state of the CheckboxMenuItem to
condition. When true, the CheckboxMenuItem will have the toggle checked.

public Object[] getSelectedObjects ()

The getSelectedItems() method returns the currently selected item as an Object array.
This method, which is required by the ItemSelectable interface, allows you to use the same
methods to retrieve the selected items of any Checkbox, Choice, or List. The array has at
most one element, which contains the label of the selected item; if no item is selected,
getSelectedItems() returns null.

Miscellaneous methods

public synchronized void addNotify ()

The addNotify() method creates the CheckboxMenuItem peer.

public String paramString ()

The paramString() method of CheckboxMenuItem should be protected like other
paramString() methods. However, it is public, so you have access to it. When you call the
toString() method of a CheckboxMenuItem, the default toString() method of
MenuComponent is called. This in turn calls paramString() which builds up the string to
display. At the CheckboxMenuItem level, the current state of the object is appended to the
output. If the constructor for the CheckboxMenuItem was new
CheckboxMenuItem(`File`) the results would be:

java.awt.CheckboxMenuItem[label=File,state=false]

CheckboxMenuItem Events

Event handling

A CheckboxMenuItem generates an ACTION_EVENT when it is selected. The argument to
action() is the label of the CheckboxMenuItem, like the method provided by MenuItem, not the
state of the CheckboxMenuItem as used in Checkbox. The target of the ACTION_EVENT is the
Frame containing the menu. You cannot subclass CheckboxMenuItem and handle the Event within
the subclass unless you override postEvent(). Listeners and 1.1 event handling

With the Java 1.1 event model, you register listeners, which are told when the event happens.

public void addItemListener(ItemListener listener)

The addItemListener() method registers listener as an object that is interested in being
notified when an ItemEvent passes through the EventQueue with this
CheckboxMenuItem as its target. When these item events occur, the
listener.itemStateChanged() method is called. Multiple listeners can be registered.

public void removeItemListener(ItemListener listener)

The removeItemListener() method removes listener as a interested listener. If
listener is not registered, nothing happens.

protected void processEvent(AWTEvent e)

The processEvent() method receives every AWTEvent with this CheckboxMenuItem as
its target. processEvent() then passes it along to any listeners for processing. When you
subclass CheckboxMenuItem, overriding processEvent() allows you to process all
events yourself, before sending them to any listeners. In a way, overriding processEvent() is
like overriding postEvent() using the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last to
ensure that regular event processing can occur. If you want to process your own events, it's a good
idea to call enableEvents() to ensure that events are delivered, even in the absence of
registered listeners.

protected void processItemEvent(ItemEvent e)

The processItemEvent() method receives every ItemEvent with this
CheckboxMenuItem as its target. processItemEvent() then passes it along to any
listeners for processing. When you subclass CheckboxMenuItem, overriding

processItemEvent() allows you to process all item events yourself, before sending them to
any listeners. In a way, overriding processItemEvent() is like overriding action()
using the 1.0 event model.

If you override processItemEvent(), remember to call the method
super.processItemEvent(e) last to ensure that regular event processing can occur. If you
want to process your own events, it's a good idea to call enableEvents() to ensure that events
are delivered even in the absence of registered listeners.

Menu MenuBar

Chapter 10
Would You Like to Choose

from the Menu?

10.7 MenuBar

The MenuBar is the component you add to the Frame that is displayed on the top line of the Frame;
the MenuBar contains menus. A Frame can display only one MenuBar at a time. However, you can
change the MenuBar based on the state of the program so that different menus can appear at different
points. The MenuBar class extends MenuComponent and implements the MenuContainer
interface.

A MenuBar can be used only as a child component of a Frame. An applet cannot have a MenuBar
attached to it, unless you implement the whole thing yourself. Normally, you cannot modify the
MenuBar of the applet holder (the browser), unless it is Java based. In other words, you cannot affect
the menus of Netscape Navigator, but you can customize appletviewer and HotJava, as shown in the
following code with the result shown in Figure 10.4. The getTopLevelParent() method was
introduced in Window with Window.

import java.awt.*;
public class ChangeMenu extends java.applet.Applet {
 public void init () {
 Frame f = ComponentUtilities.getTopLevelParent(this);
 if (f != null) {
 MenuBar mb = f.getMenuBar();
 Menu m = new Menu ("Cool");
 mb.add (m);
 }
 }
}

Figure 10.4: Customizing appletviewer's MenuBar

[Graphic: Figure 10-4]

NOTE:

When you add a MenuBar to a Frame, it takes up space that is part of the drawing area. You need to
get the top insets to find out how much space is occupied by the MenuBar and be careful not to draw
under it. If you do, the MenuBar will cover what you draw.

MenuBar Methods

Constructors

public MenuBar()

The MenuBar constructor creates an empty MenuBar. To add menus to the MenuBar, use the
add()method.

Menus

public int getMenuCount ()

public int countMenus ()

The getMenuCount() method returns the number of top-level menus within the MenuBar.

countMenus() is the Java 1.0 name for this method.

public Menu getMenu (int index)

The getMenu() method returns the Menu at position index. If index is invalid,
getMenu() throws the run-time exception ArrayIndexOutOfBoundsException.

public synchronized Menu add (Menu m)

The add() method puts choice m on the MenuBar. The label used to create m is displayed on the
MenuBar. If m is already in another MenuBar, it is removed from it. The order of items added
determines the order displayed on the MenuBar, with one exception: if a menu is designated as a
help menu by setHelpMenu(), it is placed at the right end of the menu bar. Only a Menu can
be added to a MenuBar; you can't add a MenuItem. In other words, a MenuItem has to lie
under at least one menu.

public synchronized void remove (int index)

The remove() method removes the Menu at position index from the MenuBar. If index is
invalid, remove() throws the ArrayIndexOutOfBoundsException run-time exception.
index is zero based.

public synchronized void remove (MenuComponent component)

This version of remove() removes the menu component from the MenuBar. If component
is not in MenuBar, nothing happens. The system calls this method when you add a new Menu to
make sure it does not exist on another MenuBar.

Shortcuts

public MenuItem getShortcutMenuItem (MenuShortcut shortcut)

The getShortcutMenuItem() method retrieves the MenuItem associated with the
MenuShortcut shortcut. If MenuShortcut does not exist for this Menu, the method
returns null. getShortcutMenuItem() walks through the all submenus recursively to try
to find shortcut.

public synchronized Enumeration shortcuts()

The shortcuts() method retrieves an Enumeration of all the MenuShortcut objects
associated with this MenuBar.

public void deleteShortcut (MenuShortcut shortcut)

The deleteShortcut() method removes MenuShortcut from the associated MenuItem
in the MenuBar. If the shortcut is not associated with any menu item, nothing happens.

Help menus

It is the convention on many platforms to display help menus as the last menu on the MenuBar. The

MenuBar class lets you designate one of the menus as this special menu. The physical position of a help
menu depends on the platform, but those giving special treatment to help menus place them on the right.
A Menu designated as a help menu doesn't have to bear the label "Help"; the label is up to you.

public Menu getHelpMenu ()

The getHelpMenu() method returns the Menu that has been designated as the help menu with
setHelpMenu(). If the menu bar doesn't have a help menu, getHelpMenu() returns null.

public synchronized void setHelpMenu (Menu m)

The setHelpMenu() method sets the menu bar's help menu to m. This makes m the rightmost
menu on the MenuBar, possibly right justified. If m is not already on the MenuBar, nothing
happens.

Peers

public synchronized void addNotify ()

The addNotify() method creates the MenuBar peer with all the menus on it, and in turn their
menu items.

public synchronized void removeNotify ()

The removeNotify() method destroys the peer of the MenuBar and removes it from the
screen. The peers of the items on the MenuBar are also destroyed.

MenuBar Events

A MenuBar does not generate any events.

CheckboxMenuItem Putting It All Together

Chapter 10
Would You Like to Choose

from the Menu?

10.8 Putting It All Together

Now that you know about all the different menu classes, it is time to show an example. Example 10.1 contains
the code to put up a functional MenuBar attached to a Frame, using the 1.0 event model. Figure 10.2 (earlier
in the chapter) displays the resulting screen. The key parts to examine are how the menus are put together in
the MenuTest constructor and how their actions are handled within action(). I implement one real action
in the example: the one that terminates the application when the user chooses Quit. Any other action just
displays the label of the item and (if it was a CheckBoxMenuItem) the item's state, to give you an idea of
how you can use the information returned in the event.

Example 10.1: MenuTest 1.0 Source Code

import java.awt.*;
public class MenuTest extends Frame {
 MenuTest () {
 super ("MenuTest");
 MenuItem mi;
 Menu file = new Menu ("File", true);
 file.add ("Open");
 file.add (mi = new MenuItem ("Close"));
 mi.disable();
 Menu extras = new Menu ("Extras", false);
 extras.add (new CheckboxMenuItem ("What"));
 extras.add ("Yo");
 extras.add ("Yo");
 file.add (extras);
 file.addSeparator();
 file.add ("Quit");
 Menu help = new Menu("Help");
 help.add ("About");
 MenuBar mb = new MenuBar();
 mb.add (file);
 mb.add (help);

 mb.setHelpMenu (help);
 setMenuBar (mb);
 resize (200, 200);
 }
 public boolean handleEvent (Event e) {
 if (e.id == Event.WINDOW_DESTROY) {
 System.exit(0);
 }
 return super.handleEvent (e);
 }
 public boolean action (Event e, Object o) {
 if (e.target instanceof MenuItem) {
 if ("Quit".equals (o)) {
 dispose();
 System.exit(1);
 } else {
 System.out.println ("User selected " + o);
 if (e.target instanceof CheckboxMenuItem) {
 CheckboxMenuItem cb = (CheckboxMenuItem)e.target;
 System.out.println ("The value is: " + cb.getState());
 }
 }
 return true;
 }
 return false;
 }
 public static void main (String []args) {
 MenuTest f = new MenuTest ();
 f.show();
 }
}

The MenuTest constructor builds all the menus, creates a menu bar, adds the menus to the menu bar, and
adds the menu bar to the Frame. To show what is possible, I've included a submenu, a separator bar, a
disabled item, and a help menu.

The handleEvent() method exists to take care of WINDOW_DESTROY events, which are generated if the
user uses a native command to exit from the window.

The action() method does the work; it received the action events generated whenever the user selects a
menu. We ignore most of them, but a real application would need to do more work figuring out the user's
selection. As it is, action() is fairly simple. If the user selected a menu item, we check to see whether the
item's label was "Quit"; if it was, we exit. If the user selected anything else, we print the selection and return
true to indicate that we handled the event.

Using Java 1.1 Events

Example 10.2 uses the Java 1.1 event model but is otherwise very similar to Example 10.1. Take a close look
at the differences and similarities. Although the code that builds the GUI is basically the same in both
examples, the event handling is completely different. The helper class MyMenuItem is necessary to simplify
event handling. In Java 1.1, every menu item can be an event source, so you have to register a listener for each
item. Rather than calling addActionListener() explicitly for each item, we create a subclass of
MenuItem that registers a listener automatically. The listener is specified in the constructor to
MyMenuItem; in this example, the object that creates the menus (MenuTest12) always registers itself as
the listener. An alternative would be to override processActionEvent() in MyMenuItem, but then
we'd also need to write a subclass for CheckboxMenuItem.

Having said all that, the code is relatively simple. MenuTest12 implements ActionListener so it can
receive action events from the menus. As I noted previously, it registers itself as the listener for every menu
item when it builds the interface. The actionPerformed() method is called whenever the user selects a
menu item; the logic of this method is virtually the same as it was in Example 10.1. Notice, though, that we
use getActionCommand() to read the label of the menu item. (Note also that getActionCommand()
doesn't necessarily return the label; you can change the command associated with the menu item by calling
setActionCommand().) Similarly, we call the event's getSource() method to get the menu item that
actually generated the event; we need this to figure out whether the user selected a CheckboxMenuItem
(which implements ItemSelectable).

We override processWindowEvent() so that we can receive WINDOW_CLOSING events without
registering a listener. Window closings occur when the user uses the native display manager to close the
application. If one of these events arrives, we shut down cleanly. To make sure that we receive window events
even if there are no listeners, the MenuTest12 constructor calls
enableEvents(WINDOW_EVENT_MASK).

Example 10.2: MenuTest12 Source Code, Using Java 1.1 Event Handling

// Java 1.1 only
import java.awt.*;
import java.awt.event.*;
public class MenuTest12 extends Frame implements ActionListener {
 class MyMenuItem extends MenuItem {
 public MyMenuItem (String s, ActionListener al) {
 super (s);
 addActionListener (al);
 }
 }
 public MenuTest12 () {
 super ("MenuTest");
 MenuItem mi;
 Menu file = new Menu ("File", true);

 file.add (new MyMenuItem ("Open", this));
 mi = file.add (new MyMenuItem ("Close", this));
 mi.setEnabled (false);
 Menu extras = new Menu ("Extras", false);
 mi = extras.add (new CheckboxMenuItem ("What"));
 mi.addActionListener(this);
 mi = extras.add (new MyMenuItem ("Yo", this));
 mi.setActionCommand ("Yo1");
 mi = extras.add (new MyMenuItem ("Yo", this));
 mi.setActionCommand ("Yo2");
 file.add (extras);
 file.addSeparator();
 file.add (new MyMenuItem ("Quit", this));
 Menu help = new Menu("Help");
 help.add (new MyMenuItem ("About", this));
 MenuBar mb = new MenuBar();
 mb.add (file);
 mb.add (help);
 mb.setHelpMenu (help);
 setMenuBar (mb);
 setSize (200, 200);
 enableEvents (AWTEvent.WINDOW_EVENT_MASK);
 }
// Cannot override processActionEvent since method of MenuItem
// Would have to subclass both MenuItem and CheckboxMenuItem
 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand().equals("Quit")) {
 System.exit(0);
 }
 System.out.println ("User selected " + e.getActionCommand());
 if (e.getSource() instanceof ItemSelectable) {
 ItemSelectable is = (ItemSelectable)e.getSource();
 System.out.println ("The value is: " +
 (is.getSelectedObjects().length != 0)));
 }
 }
 protected void processWindowEvent(WindowEvent e) {
 if (e.getID() == WindowEvent.WINDOW_CLOSING) {
 // Notify others we are closing
 super.processWindowEvent(e);
 System.exit(0);
 } else {
 super.processWindowEvent(e);
 }
 }

 public static void main (String []args) {
 MenuTest12 f = new MenuTest12 ();
 f.show();
 }
}

I took the opportunity when writing the 1.1 code to make one additional improvement to the program. By
using action commands, you can easily differentiate between the two Yo menu items. Just call
setActionCommand() to assign a different command to each item. (I used "Yo1" and "Yo2".) You could
also differentiate between the items by saving a reference to each menu item, calling getSource() in the
event handler, and comparing the result to the saved references. However, if the ActionListener is
another class, it would need access to those references. Using action commands is simpler and results in a
cleaner event handler.

The intent of the setActionCommand() and getActionCommand() methods is more for
internationalization support. For example, you could use setActionCommand() to associate the command
Quit with a menu item, then set the item's label to the appropriate text for the user's locality.

MenuBar PopupMenu

Chapter 10
Would You Like to Choose

from the Menu?

10.9 PopupMenu

The PopupMenu class is new to Java 1.1; it allows you to associate context-sensitive menus with Java
components. To associate a pop-up menu with a component, create the menu, and add it to the component
using the add(PopupMenu) method, which all components inherit from the Component class.

In principle, any GUI object can have a pop-up menu. In practice, there are a few exceptions. If the
component's peer has its own pop-up menu (i.e., a pop-up menu provided by the run-time platform), that
pop-up menu effectively overrides the pop-up menu provided by Java. For example, under Windows
NT/95, a TextArea has a pop-up menu provided by the Windows NT/95 platforms. Java can't override
this menu; although you can add a pop-up menu to a TextArea, you can't display that menu under
Windows NT/95 with the usual mouse sequence.

PopupMenu Methods

Constructors

public PopupMenu()

The first PopupMenu constructor creates an untitled PopupMenu. Once created, the menu can
be populated with menu items like any other menu.

public PopupMenu(String label)

This constructor creates a PopupMenu with a title of label. The title appears only on platforms
that support titles for context menus. Once created, the menu can be populated with menu items
like any other menu.

Miscellaneous methods

public void show(Component origin, int x, int y)

Call the show() method to display the PopupMenu. x and y specify the location at which the
pop-up menu should appear; origin specifies the Component whose coordinate system is used
to locate x and y. In most cases, you'll want the menu to appear at the point where the user clicked
the mouse; to do this, set origin to the Component that received the mouse event, and set x
and y to the location of the mouse click. It is easy to extract this information from an old-style
(1.0) Event or a Java 1.1 MouseEvent. In Java 1.1, the platform-independent way to say "give
me the mouse events that are supposed to trigger pop-up menus" is to call
MouseEvent.isPopupTrigger(). If this method returns true, you should show the pop-
up menu if one is associated with the event source. (Note that the mouse event could also be used
for some other purpose.)

If the PopupMenu is not associated with a Component, show() throws the run-time exception
NullPointerException. If origin is not the MenuContainer for the PopupMenu and
origin is not within the Container that the pop-up menu belongs to, show() throws the run-
time exception IllegalArgumentException. Finally, if the Container of origin does
not exist or is not showing, show() throws a run-time exception.

public synchronized void addNotify ()

The addNotify() method creates the PopupMenu peer with all the MenuItems on it.

Example 10.3 is a simple applet that raises a pop-up menu if the user clicks the appropriate mouse button
anywhere within the applet. Although the program could use the 1.0 event model, under the 1.0 model, it
is impossible to tell which mouse event is appropriate to display the pop-up menu.

Example 10.3: Using a PopupMenu

// Java 1.1 only
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
public class PopupTest extends Applet implements ActionListener {
 PopupMenu popup;
 public void init() {
 MenuItem mi;
 popup = new PopupMenu("Title Goes Here");
 popup.add(mi = new MenuItem ("Undo"));
 mi.addActionListener (this);
 popup.addSeparator();

 popup.add(mi = new MenuItem("Cut")).setEnabled(false);
 mi.addActionListener (this);
 popup.add(mi = new MenuItem("Copy")).setEnabled(false);
 mi.addActionListener (this);
 popup.add(mi = new MenuItem ("Paste"));
 mi.addActionListener (this);
 popup.add(mi = new MenuItem("Delete")).setEnabled(false);
 mi.addActionListener (this);
 popup.addSeparator();
 popup.add(mi = new MenuItem ("Select All"));
 mi.addActionListener (this);
 add (popup);
 resize(200, 200);
 enableEvents (AWTEvent.MOUSE_EVENT_MASK);
 }
 protected void processMouseEvent (MouseEvent e) {
 if (e.isPopupTrigger())
 popup.show(e.getComponent(), e.getX(), e.getY());
 super.processMouseEvent (e);
 }
 public void actionPerformed(ActionEvent e) {
 System.out.println (e);
 }
}

Putting It All Together Scrolling

Chapter 11
Scrolling

11.2 Scrolling An Image

Example 11.1 is a Java application that displays any image in the current directory in a viewing area. The
viewing area scrolls to accommodate larger images; the user can use the scrollbars or keypad keys to scroll the
image. In Java 1.1, it is trivial to implement this example with a ScrollPane; however, if you're using 1.0,
you don't have this luxury. Even if you're using 1.1, this example shows a lot about how to use scrollbars.

Our application uses a Dialog to select which file to display; a FilenameFilter limits the list to image
files. We use a menu to let the user request a file list or exit the program. After the user picks a file, the
application loads it into the display area. Figure 11.3 shows the main scrolling window.

Figure 11.3: Scrolling an image

The code for the scrolling image consists of a ScrollingImage class, plus several helper classes. It places
everything into the file ScrollingImage.java for compilation.

Example 11.1: Source Code for Scrolling an Image

import java.awt.*;
import java.io.FilenameFilter;
import java.io.File;

The first class contains the FilenameFilter used to select relevant filenames: that is, files that are likely
to contain GIF, JPEG, or XBM images. If the filename has an appropriate ending, the accept() method
returns true; otherwise, it returns false.

// True for files ending in jpeg/jpg/gif/xbm
class ImageFileFilter implements FilenameFilter {
 public boolean accept (File dir, String name) {
 String tempname = name.toLowerCase();
 return (tempname.endsWith ("jpg") || tempname.endsWith ("jpeg") ||
 tempname.endsWith ("gif") || tempname.endsWith ("xbm"));
 }
}

The ImageListDialog class displays a list of files from which the user can select. Instead of using
FileDialog, we created a customized List to prevent the user from roaming around the entire hard drive;
choices are limited to appropriate files in the current directory. When the user selects an entry (by double-
clicking), the image is then displayed in the scrolling area.

class ImageListDialog extends Dialog {
 private String name = null;
 private String entries[];
 private List list;
 ImageListDialog (Frame f) {
 super (f, "Image List", true);
 File dir = new File (System.getProperty("user.dir"));
 entries = dir.list (new ImageFileFilter());
 list = new List (10, false);
 for (int i=0;i<entries.length;i++) {
 list.addItem (entries[i]);
 }
 add ("Center", list);
 pack();
 }
 public String getName () {
 return name;
 }
 public boolean action (Event e, Object o) {
 name = (String)e.arg;
 ((ScrollingImage)getParent()).processImage();
 dispose();

 return true;
 }
}

The code in this class is straightforward. The constructor reads the current directory from the system property
list, uses the list() method of the File class to create a list of files that match our filename filter, and then
creates a List object that lists these files. getName() returns the name of the selected file. action() is
called when the user selects a file; it sets the name of the selected file from the arg field of the Event and
then calls the processImage() method of its parent container. The parent container of our
ImageListDialog is the ScrollingImage class we are defining; its processImage() method
displays a scrollable image.

The next class, ImageCanvas, is the Canvas that the image is drawn onto. We use a separate Canvas
rather than drawing directly onto the Frame so that the scrollbars do not overlap the edges of the image. You
will notice that the paint() method uses negative x and y values. This starts the drawing outside the
Canvas area; as a result, the Canvas displays only part of the image. This is how we do the actual scrolling.
(xPos, yPos) are the values given to us from the scrollbars; by positioning the image at (-xPos, -yPos), we
ensure that the point (xPos, yPos) appears in the upper left corner of the canvas.

class ImageCanvas extends Canvas {
 Image image;
 int xPos, yPos;
 public void redraw (int xPos, int yPos, Image image) {
 this.xPos = xPos;
 this.yPos = yPos;
 this.image = image;
 repaint();
 }
 public void paint (Graphics g) {
 if (image != null)
 g.drawImage (image, -xPos, -yPos, this);
 }
}

ScrollingImage provides the framework for the rest of the program. It provides a menu to bring up the
Dialog to choose the file, the scrollbars to scroll the scrolling canvas, and the image canvas area. This class
also implements event handling methods to capture the scrollbar events, paging keys, and menu events.

public class ScrollingImage extends Frame {
 static Scrollbar horizontal, vertical;
 ImageCanvas center;
 int xPos, yPos;
 Image image;
 ImageListDialog ild;
 ScrollingImage () {

 super ("Image Viewer");
 add ("Center", center = new ImageCanvas ());
 add ("South", horizontal = new Scrollbar (Scrollbar.HORIZONTAL));
 add ("East", vertical = new Scrollbar (Scrollbar.VERTICAL));
 Menu m = new Menu ("File", true);
 m.add ("Open");
 m.add ("Close");
 m.add ("-");
 m.add ("Quit");
 MenuBar mb = new MenuBar();
 mb.add (m);
 setMenuBar (mb);
 resize (400, 300);
 }
 public static void main (String args[]) {
 ScrollingImage si = new ScrollingImage ();
 si.show();
 }
 public boolean handleEvent (Event e) {
 if (e.id == Event.WINDOW_DESTROY) {
 System.exit(0);
 } else if (e.target instanceof Scrollbar) {
 if (e.target == horizontal) {
 xPos = ((Integer)e.arg).intValue();
 } else if (e.target == vertical) {
 yPos = ((Integer)e.arg).intValue();
 }
 center.redraw (xPos, yPos, image);
 }
 return super.handleEvent (e);
 }

This handleEvent() method kills the program if the user used the windowing system to exit from it
(WINDOW_DESTROY). More to the point, if a Scrollbar generated the event, handleEvent() figures
out if it was the horizontal or vertical scrollbar, saves its value as the x or y position, and redraws the image in
the new location. Finally, it calls super.handleEvent(); as we will see in the following code, other
events that we care about (key events and menu events) we don't want to handle here--we would rather handle
them normally, in action() and keyDown() methods.

 public void processImage () {
 image = getToolkit().getImage (ild.getName());
 MediaTracker tracker = new MediaTracker (this);
 tracker.addImage (image, 0);
 try {
 tracker.waitForAll();

 } catch (InterruptedException ie) {
 }
 xPos = 0;
 yPos = 0;
 int imageHeight = image.getHeight (this);
 int imageWidth = image.getWidth (this);
 vertical.setValues (0, 5, 0, imageHeight);
 horizontal.setValues (0, 5, 0, imageWidth);
 center.redraw (xPos, yPos, image);
 }

processImage() reads the image's filename, calls getImage(), and sets up a MediaTracker to wait
for the image to load. Once the image has loaded, it reads the height and width, and uses these to set the
maximum values for the vertical and horizontal scrollbars by calling setValues(). The scrollbars'
minimum and initial values are both 0. The size of the scrollbar "handle" is set to 5, rather than trying to
indicate the visible portion of the image.

 public boolean action (Event e, Object o) {
 if (e.target instanceof MenuItem) {
 if ("Open".equals (o)) {
 // If showing already, do not show again
 if ((ild == null) || (!ild.isShowing())) {
 ild = new ImageListDialog (this);
 ild.show();
 }
 } else if ("Close".equals(o)) {
 image = null;
 center.redraw (xPos, yPos, image);
 } else if ("Quit".equals(o)) {
 System.exit(0);
 }
 return true;
 }
 return false;
 }

action() handles menu events. If the user selected Open, it displays the dialog box that selects a file. Close
redraws the canvas with a null image; Quit exits the program. If any of these events occurred, action()
returns true, indicating that the event was fully handled. If any other event occurred, action() returns
false, so that the system will deliver the event to any other methods that might be interested in it.

 public boolean keyDown (Event e, int key) {
 if (e.id == Event.KEY_ACTION) {
 Scrollbar target = null;
 switch (key) {

 case Event.HOME:
 target = vertical;
 vertical.setValue(vertical.getMinimum());
 break;
 case Event.END:
 target = vertical;
 vertical.setValue(vertical.getMaximum());
 break;
 case Event.PGUP:
 target = vertical;
 vertical.setValue(vertical.getValue()
 - vertical.getPageIncrement());
 break;
 case Event.PGDN:
 target = vertical;
 vertical.setValue(vertical.getValue()
 + vertical.getPageIncrement());
 break;
 case Event.UP:
 target = vertical;
 vertical.setValue(vertical.getValue()
 - vertical.getLineIncrement());
 break;
 case Event.DOWN:
 target = vertical;
 vertical.setValue(vertical.getValue()
 + vertical.getLineIncrement());
 break;
 case Event.LEFT:
 target = horizontal;
 if (e.controlDown())
 horizontal.setValue(horizontal.getValue() -
 horizontal.getPageIncrement());
 else
 horizontal.setValue(horizontal.getValue() -
 horizontal.getLineIncrement());
 break;
 case Event.RIGHT:
 target = horizontal;
 if (e.controlDown())
 horizontal.setValue(horizontal.getValue() +
 horizontal.getPageIncrement());
 else
 horizontal.setValue(horizontal.getValue() +
 horizontal.getLineIncrement());

 break;
 default:
 return false;
 }
 Integer value = new Integer (target.getValue());
 postEvent (new Event ((Object)target,
 Event.SCROLL_ABSOLUTE, (Object)value));
 return true;
 }
 return false;
 }
}

keyDown() isn't really necessary, but it adds a nice extension to our scrollbars: in addition to using the
mouse, the user can scroll with the arrow keys. Pressing an arrow key generates a KEY_ACTION event. If we
have one of these events, we check what kind of key it was, then compute a new scrollbar value, then call
setValue() to set the appropriate scrollbar to this value. For example, if the user presses the page up key,
we read the page increment, add it to the current value of the vertical scrollbar, and then set the vertical
scrollbar accordingly. (Note that this works even though nondefault page and line increments aren't
implemented correctly.) The one trick here is that we have to get the rest of the program to realize that the
scrollbar values have changed. To do so, we create a new SCROLL_ABSOLUTE event, and call
postEvent() to deliver it.

Scrollbar The Adjustable Interface

Chapter 11
Scrolling

11.3 The Adjustable Interface

The Adjustable interface is new to Java 1.1. It provides the method signatures required for an object
that lets you adjust a bounded integer value. It is currently implemented by Scrollbar and returned by
two methods within ScrollPane.

Constants of the Adjustable Interface

There are two direction specifiers for Adjustable.

public final static int HORIZONTAL

HORIZONTAL is the constant for horizontal orientation.

public final static int VERTICAL

VERTICAL is the constant for vertical orientation.

Methods of the Adjustable Interface

public abstract int getOrientation ()

The getOrientation() method is for returning the current orientation of the adjustable
object, either Adjustable.HORIZONTAL or Adjustable.VERTICAL.

setOrientation() is not part of the interface. Not all adjustable objects need to be able to
alter orientation. For example, Scrollbar instances can change their orientation, but each
Adjustable instance associated with a ScrollPane has a fixed, unchangeable orientation.

public abstract int getVisibleAmount ()

The getVisibleAmount() method lets you retrieve the size of the visible slider of the
adjustable object.

public abstract void setVisibleAmount (int amount)

The setVisibleAmount() method lets you change the size of the visible slider to amount.

public abstract int getValue ()

The getValue() method lets you retrieve the current value of the adjustable object.

public abstract void setValue (int value)

The setValue() method lets you change the value of the adjustable object to value.

public abstract int getMinimum ()

The getMinimum() method lets you retrieve the current minimum setting for the object.

public abstract void setMinimum (int minimum)

The setMinimum() method lets you change the minimum value of the adjustable object to
minimum.

public abstract int getMaximum ()

The getMaximum() method lets you retrieve the current maximum setting for the object.

public abstract void setMaximum (int maximum)

The setMaximum() method lets you change the maximum value of the adjustable object to
maximum.

public abstract int getUnitIncrement ()

The getUnitIncrement() method lets you retrieve the current line increment.

public abstract void setUnitIncrement (int amount)

The setUnitIncrement() method lets you change the line increment amount of the
adjustable object to amount.

public abstract int getBlockIncrement ()

The getBlockIncrement() method lets you retrieve the current page increment.

public abstract void setBlockIncrement (int amount)

The setBlockIncrement() method lets you change the paging increment amount of the
adjustable object to amount.

public abstract void addAdjustmentListener(AdjustmentListener listener)

The addAdjustmentListener() method lets you register listener as an object
interested in being notified when an AdjustmentEvent passes through the EventQueue
with this Adjustable object as its target.

public abstract void removeAdjustmentListener(ItemListener listener)

The removeAdjustmentListener() method removes listener as a interested listener.
If listener is not registered, nothing happens.

Scrolling An Image ScrollPane

Chapter 11
Scrolling

11.4 ScrollPane

A ScrollPane is a Container with built-in scrollbars that can be used to scroll its contents. In the current
implementation, a ScrollPane can hold only one Component and has no layout manager. The component within a
ScrollPane is always given its preferred size. While the scrollpane's inability to hold multiple components sounds
like a deficiency, it isn't; there's no reason you can't put a Panel inside a ScrollPane, put as many components as
you like inside the Panel, and give the Panel any layout manager you wish.

Scrolling is handled by the ScrollPane peer, so processing is extremely fast. In Example 11.1, the user moves a
Scrollbar to trigger a scrolling event, and the peer sends the event to the Java program to find someone to deal with
it. Once it identifies the target, it posts the event, then tries to find a handler. Eventually, the applet's handleEvent()
method is called to reposition the ImageCanvas. The new position is then given to the peer, which finally redisplays
the Canvas. Although most of the real work is behind the scenes, it is still happening. With ScrollPane, the peer
generates and handles the event itself, which is much more efficient.

ScrollPane Methods

Constants

The ScrollPane class contains three constants that can be used to control its scrollbar display policy. The constants
are fairly self-explanatory. The constants are used in the constructor for a ScrollPane instance.

public static final int SCROLLBARS_AS_NEEDED

SCROLLBARS_AS_NEEDED is the default scrollbar display policy. With this policy, the ScrollPane displays
each scrollbar only if the Component is too large in the scrollbar's direction.

public static final int SCROLLBARS_ ALWAYS

With the SCROLLBARS_ALWAYS display policy, the ScrollPane should always display both scrollbars,
whether or not they are needed.

public static final int SCROLLBARS_ NEVER

With the SCROLLBARS_NEVER display policy, the ScrollPane should never display scrollbars, even when
the object is bigger than the ScrollPane's area. When using this mode, you should provide some means for the

user to scroll, either through a button outside the container or by listening for events happening within the
container.

Constructors

public ScrollPane ()

The first constructor creates an instance of ScrollPane with the default scrollbar display policy setting,
SCROLLBARS_AS_NEEDED.

public ScrollPane (int scrollbarDisplayPolicy)

The other constructor creates an instance of ScrollPane with a scrollbar setting of
scrollbarDisplayPolicy. If scrollbarDisplayPolicy is not one of the class constants, this
constructor throws the IllegalArgumentException run-time exception.

Layout methods

public final void setLayout(LayoutManager mgr)

The setLayout() method of ScrollPane throws an AWTError. It overrides the setLayout() method
of Container to prevent you from changing a ScrollPane's layout manager.

public void doLayout ()

public void layout ()

The doLayout() method of ScrollPane shapes the contained object to its preferred size.

layout() is another name for this method.

public final void addImpl(Component comp, Object constraints, int index)

The addImpl() method of ScrollPane permits only one object to be added to the ScrollPane. It
overides the addImpl() method of Container to enforce the ScrollPane's limitations on adding
components. If index > 0, addImpl() throws the run-time exception IllegalArgumentException. If
a component is already within the ScrollPane, it is removed before comp is added. The constraints
parameter is ignored.

Scrolling methods

public int getScrollbarDisplayPolicy()

The getScrollbarDisplayPolicy() method retrieves the current display policy, as set by the
constructor. You cannot change the policy once it has been set. The return value is one of the class constants:
SCROLLBARS_AS_NEEDED, SCROLLBARS_ALWAYS, or SCROLLBARS_NEVER.

public Dimension getViewportSize()

The getViewportSize() method returns the current size of the ScrollPane, less any Insets, as a
Dimension object. The size is given in pixels and has an initial value of 100 x 100.

public int getHScrollbarHeight()

The getHScrollbarHeight() method retrieves the height in pixels of a horizontal scrollbar. The value
returned is without regard to the display policy; that is, you may be given a height even if the scrollbar is not
displayed. This method may return 0 if the scrollbar's height cannot be calculated at this time (no peer) or if you
are using the SCROLLBARS_NEVER display policy.

The width of a horizontal scrollbar is just getViewportSize().width.

public int getVScrollbarWidth()

The getVScrollbarWidth() method retrieves the width in pixels of a vertical scrollbar. The value returned
is without regard to the display policy; that is, you may be given a width even if the scrollbar is not displayed.
This method may return 0 if the scrollbar's width cannot be calculated at this time (no peer) or if you are using the
SCROLLBARS_NEVER display policy.

The height of a vertical scrollbar is just getViewportSize().height.

public Adjustable getHAdjustable()

The getHAdjustable() method returns the adjustable object representing the horizontal scrollbar (or null
if it is not present). Through the methods of Adjustable, you can get the different settings of the scrollbar.

The object that this method returns is an instance of the package private class ScrollPaneAdjustable,
which implements the Adjustable interface. this class allows you to register listeners for the scrollpane's
events and inquire about various properties of the pane's scrollbars. It does not let you set some scrollbar
properties; the setMinimum(), setMaximum(), and setVisibleAmount() methods throw an
AWTError when called.

public Adjustable getVAdjustable()

The getVAdjustable() method returns the adjustable object representing the vertical scrollbar (or null if
it is not present). Through the methods of Adjustable, you can get the different settings of the scrollbar.

The object that this method returns is an instance of the package private class ScrollPaneAdjustable,
which implements the Adjustable interface. this class allows you to register listeners for the scrollpane's
events and inquire about various properties of the pane's scrollbars. It does not let you set some scrollbar
properties; the setMinimum(), setMaximum(), and setVisibleAmount() methods throw an
AWTError when called.

public void setScrollPosition(int x, int y)

This setScrollPosition() method moves the ScrollPane to the designated location if possible. The x
and y arguments are scrollbar settings, which should be interpreted in terms of the minimum and maximum
values given to you by the horizontal and vertical Adjustable objects (returned by the previous two methods).
If the ScrollPane does not have a child component, this method throws the run-time exception
NullPointerException. You can also move the ScrollPane by calling the
Adjustable.setValue() method of one of the scrollpane's Adjustable objects.

public void setScrollPosition(Point p)

This setScrollPosition() method calls the previous with parameters of p.x, and p.y.

public Point getScrollPosition()

The getScrollPosition() method returns the current position of both the scrollpane's Adjustable
objects as a Point. If there is no component within the ScrollPane, getScrollPosition() throws the
NullPointerException run-time exception. Another way to get this information is by calling the
Adjustable.getValue() method of each Adjustable object.

Miscellaneous methods

public void printComponents (Graphics g)

The printComponents() method of ScrollPane prints the single component it contains. This is done by
clipping the context g to the size of the display area and calling the contained component's printAll()
method.

public synchronized void addNotify ()

The addNotify() method creates the ScrollPane peer. If you override this method, call
super.addNotify() first, then add your customizations for the new class. You will then be able to do
everything you need with the information about the newly created peer.

protected String paramString ()

ScrollPane doesn't have its own toString() method; so when you call the toString() method of a
ScrollPane, you are actually calling the Component.toString() method. This in turn calls
paramString(), which builds the string to display. For a ScrollPane, paramString() adds the current
scroll position, insets, and scrollbar display policy. For example:

java.awt.ScrollPane[scrollpane0,0,0,0x0,invalid,ScrollPosition=(0,0),
 Insets=(0,0,0,0),ScrollbarDisplayPolicy=always]

ScrollPane Events

The ScrollPane peer deals with the scrolling events for you. It is not necessary to catch or listen for these events. As
with any other Container, you can handle the 1.0 events of the object you contain or listen for 1.1 events that happen

within you.

Using a ScrollPane

The following applet demonstrates one way to use a ScrollPane. Basically, you place the object you want to scroll in
the ScrollPane by calling the add() method. This can be a Panel with many objects on it or a Canvas with an
image drawn on it. You then add as many objects as you want to the Panel or scribble on the Canvas to your heart's
delight. No scrolling event handling is necessary. That is all there is to it. To make this example a little more interesting,
whenever you select a button, the ScrollPane scrolls to a randomly selected position. Figure 11.4 displays the screen.

Figure 11.4: A ScrollPane containing many buttons

Here's the code:

// Java 1.1 only
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
public class scroll extends Applet implements ActionListener, ContainerListener {
 ScrollPane sp = new ScrollPane (ScrollPane.SCROLLBARS_ALWAYS);
 public void init () {
 setLayout (new BorderLayout ());
 Panel p = new Panel(new GridLayout (7, 8));
 p.addContainerListener (this);
 for (int j=0;j<50;j++)
 p.add (new Button ("Button-" + j));
 sp.add (p);
 add (sp, "Center");
 }
 public void componentAdded(ContainerEvent e) {
 if (e.getID() == ContainerEvent.COMPONENT_ADDED) {
 if (e.getChild() instanceof Button) {
 Button b = (Button)e.getChild();
 b.addActionListener(this);
 }
 }
 }

 public void componentRemoved(ContainerEvent e) {
 }
 public void actionPerformed (ActionEvent e) {
 Component c = sp.getComponent();
 Dimension d = c.getSize();
 sp.setScrollPosition ((int)(Math.random()*d.width),
 (int)(Math.random()*d.height));
 }
}

Working with the ScrollPane itself is easy; we just create one, add a Panel to it, set the Panel's layout manager to
GridLayout, and add a lot of buttons to the Panel. The applet itself is the action listener for all the buttons; when
anybody clicks a button, actionPerformed() is called, which generates a new random position based on the
viewport size and sets the new scrolling position accordingly by calling setScrollPosition().

The more interesting part of this applet is the way it works with buttons. Instead of directly adding a listener for each
button, we add a ContainerListener to the containing panel and let it add listeners. Although this may seem like
extra work here, it demonstrates how you can use container events to take actions whenever someone adds or removes a
component. At first glance, you might ask why I didn't just call
enableEvents(AWTEvent.CONTAINER_EVENT_MASK) and override the applet's
processContainerEvent() to attach the listeners. If we were only adding our components to the applet, that
would work great. Unfortunately, the applet is not notified when buttons are added to an unrelated panel. It would be
notified only when the panel was added to the applet.

The Adjustable Interface Image Processing

Chapter 12
Image Processing

12.2 ColorModel

A color model determines how colors are represented within AWT. ColorModel is an abstract class that you can
subclass to specify your own representation for colors. AWT provides two concrete subclasses of ColorModel
that you can use to build your own color model; they are DirectColorModel and IndexColorModel. These
two correspond to the two ways computers represent colors internally.

Most modern computer systems use 24 bits to represent each pixel. These 24 bits contain 8 bits for each primary
color (red, green, blue); each set of 8 bits represents the intensity of that color for the particular pixel. This
arrangement yields the familiar "16 million colors" that you see in advertisements. It corresponds closely to Java's
direct color model.

However, 24 bits per pixel, with something like a million pixels on the screen, adds up to a lot of memory. In the
dark ages, memory was expensive, and devoting this much memory to a screen buffer cost too much. Therefore,
designers used fewer bits--possibly as few as three, but more often eight--for each pixel. Instead of representing the
colors directly in these bits, the bits were an index into a color map. Graphics programs would load the color map
with the colors they were interested in and then represent each pixel by using the index of the appropriate color in
the map. For example, the value 1 might represent fuschia; the value 2 might represent puce. Full information about
how to display each color (the red, green, and blue components that make up fuschia or puce) is contained only in
the color map. This arrangement corresponds closely to Java's indexed color model.

Because Java is platform-independent, you don't need to worry about how your computer or the user's computer
represents colors. Your programs can use an indexed or direct color map as appropriate. Java will do the best it can
to render the colors you request. Of course, if you use 5,000 colors on a computer that can only display 256, Java is
going to have to make compromises. It will decide which colors to put in the color map and which colors are close
enough to the colors in the color map, but that's done behind your back.

Java's default color model uses 8 bits per pixel for red, green, and blue, along with another 8 bits for alpha
(transparency) level. However, as I said earlier, you can create your own ColorModel if you want to work in
some other scheme. For example, you could create a grayscale color model for black and white pictures, or an HSB
(hue, saturation, brightness) color model if you are more comfortable working with this system. Your color model's
job will be to take a pixel value in your representation and translate that value into the corresponding alpha, red,
green, and blue values. If you are working with a grayscale image, your image producer could deliver grayscale
values to the image consumer, plus a ColorModel that tells the consumer how to render these gray values in
terms of ARGB components.

ColorModel Methods

Constructors

public ColorModel (int bits)

There is a single constructor for ColorModel. It has one parameter, bits, which describes the number of
bits required per pixel of an image. Since this is an abstract class, you cannot call this constructor directly.
Since each pixel value must be stored within an integer, the maximum value for bits is 32. If you request
more, you get 32.

Pseudo-constructors

public static ColorModel getRGBdefault()

The getRGBdefault() method returns the default ColorModel, which has 8 bits for each of the
components alpha, red, green, and blue. The order the pixels are stored in an integer is 0xAARRGGBB, or
alpha in highest order byte, down to blue in the lowest.

Other methods

public int getPixelSize ()

The getPixelSize() method returns the number of bits required for each pixel as described by this color
model. That is, it returns the number of bits passed to the constructor.

public abstract int getAlpha (int pixel)

The getAlpha() method returns the alpha component of pixel for a color model. Its range must be
between 0 and 255, inclusive. A value of 0 means the pixel is completely transparent and the background
will appear through the pixel. A value of 255 means the pixel is opaque and you cannot see the background
behind it.

public abstract int getRed (int pixel)

The getRed() method returns the red component of pixel for a color model. Its range must be between 0
and 255, inclusive. A value of 0 means the pixel has no red in it. A value of 255 means red is at maximum
intensity.

public abstract int getGreen (int pixel)

The getGreen() method returns the green component of pixel for a color model. Its range must be
between 0 and 255, inclusive. A value of 0 means the pixel has no green in it. A value of 255 means green is
at maximum intensity.

public abstract int getBlue (int pixel)

The getBlue() method returns the blue component of pixel for a color model. Its range must be
between 0 and 255, inclusive. A value of 0 means the pixel has no blue in it. A value of 255 means blue is at
maximum intensity.

public int getRGB(int pixel)

The getRGB() method returns the color of pixel in the default RGB color model. If a subclass has
changed the ordering or size of the different color components, getRGB() will return the pixel in the RGB
color model (0xAARRGGBB order). In theory, the subclass does not need to override this method, unless it
wants to make it final. Making this method final may yield a significant performance improvement.

public void finalize ()

The garbage collector calls finalize() when it determines that the ColorModel object is no longer
needed. finalize() frees any internal resources that the ColorModel object has used.

DirectColorModel

The DirectColorModel class is a concrete subclass of ColorModel. It specifies a color model in which each
pixel contains all the color information (alpha, red, green, and blue values) explicitly. Pixels are represented by 32-
bit (int) quantities; the constructor lets you change which bits are allotted to each component.

All of the methods in this class, except constructors, are final, because of assumptions made by the implementation.
You can create subclasses of DirectColorModel, but you can't override any of its methods. However, you
should not need to develop your own subclass. Just create an instance of DirectColorModel with the
appropriate constructor. Any subclassing results in serious performance degradation, because you are going from
fast, static final method calls to dynamic method lookups.Constructors

public DirectColorModel (int bits, int redMask, int greenMask, int blueMask, int alphaMask)

This constructor creates a DirectColorModel in which bits represents the total number of bits used to
represent a pixel; it must be less than or equal to 32. The redMask, greenMask, blueMask, and
alphaMask specify where in a pixel each color component exists. Each of the bit masks must be
contiguous (e.g., red cannot be the first, fourth, and seventh bits of the pixel), must be smaller than 2^bits,
and should not exceed 8 bits. (You cannot display more than 8 bits of data for any color component, but the
mask can be larger.) Combined, the masks together should be bits in length. The default RGB color model
is:

new DirectColorModel (32, 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000)

The run-time exception IllegalArgumentException is thrown if any of the following occur:

❍ The bits that are set in a mask are not contiguous.

❍ Mask bits overlap (i.e., the same bit is set in two or more masks).

❍ The number of mask bits exceeds bits.

public DirectColorModel (int bits, int redMask, int greenMask, int blueMask)

This constructor for DirectColorModel calls the first with an alpha mask of 0, which means that colors
in this color model have no transparency component. All colors will be fully opaque with an alpha value of
255. The same restrictions for the red, green, and blue masks apply.

Methods

final public int getAlpha (int pixel)

The getAlpha() method returns the alpha component of pixel for the color model as a number from 0
to 255, inclusive. A value of 0 means the pixel is completely transparent, and the background will appear
through the pixel. A value of 255 means the pixel is opaque, and you cannot see the background behind it.

final public int getRed (int pixel)

The getRed() method returns the red component of pixel for the color model. Its range is from 0 to 255.
A value of 0 means the pixel has no red in it. A value of 255 means red is at maximum intensity.

final public int getGreen (int pixel)

The getGreen() method returns the green component of pixel for the color model. Its range is from 0
to 255. A value of 0 means the pixel has no green in it. A value of 255 means green is at maximum intensity.

final public int getBlue (int pixel)

The getBlue() method returns the blue component of pixel for the color model. Its range is from 0 to
255. A value of 0 means the pixel has no blue in it. A value of 255 means blue is at maximum intensity.

final public int getRGB (int pixel)

The getRGB() method returns the color of pixel in the default RGB color model. If a subclass has
changed the ordering or size of the different color components, getRGB() will return the pixel in the RGB
color model (0xAARRGGBB order). The getRGB() method in this subclass is identical to the method in
ColorModel but overrides it to make it final.

Other methods

final public int getAlphaMask ()

The getAlphaMask() method returns the alphaMask from the DirectColorModel constructor (or
0 if constructor did not have alphaMask). The alphaMask specifies which bits in the pixel represent the

alpha transparency component of the color model.

final public int getRedMask ()

The getRedMask() method returns the redMask from the DirectColorModel constructor. The
redMask specifies which bits in the pixel represent the red component of the color model.

final public int getGreenMask ()

The getGreenMask() method returns the greenMask from the DirectColorModel constructor.
The greenMask specifies which bits in the pixel represent the green component of the color model.

final public int getBlueMask ()

The getBlueMask() method returns the blueMask from the DirectColorModel constructor. The
blueMask specifies which bits in the pixel represent the blue component of the color model.

IndexColorModel

The IndexColorModel is another concrete subclass of ColorModel. It specifies a ColorModel that uses a
color map lookup table (with a maximum size of 256), rather than storing color information in the pixels
themselves. Pixels are represented by an index into the color map, which is at most an 8-bit quantity. Each entry in
the color map gives the alpha, red, green, and blue components of some color. One entry in the map can be
designated "transparent." This is called the "transparent pixel"; the alpha component of this map entry is ignored.

All of the methods in this class, except constructors, are final because of assumptions made by the implementation.
You shouldn't need to create subclasses; you can if necessary, but you can't override any of the
IndexColorModel methods. Example 12.2 (later in this chapter) uses an IndexColorModel. Constructors

There are two sets of constructors for IndexColorModel. The first two constructors use a single-byte array for
the color map. The second group implements the color map with separate byte arrays for each color component.

public IndexColorModel (int bits, int size, byte colorMap[], int start, boolean hasalpha, int transparent)

This constructor creates an IndexColorModel. bits is the number of bits used to represent each pixel
and must not exceed 8. size is the number of elements in the map; it must be less than 2^bits. hasalpha
should be true if the color map includes alpha (transparency) components and false if it doesn't.
transparent is the location of the transparent pixel in the map (i.e., the pixel value that is considered
transparent). If there is no transparent pixel, set transparent to -1.

The colorMap describes the colors used to paint pixels. start is the index within the colorMap array at
which the map begins; prior elements of the array are ignored. An entry in the map consists of three or four
consecutive bytes, representing the red, green, blue, and (optionally) alpha components. If hasalpha is
false, a map entry consists of three bytes, and no alpha components are present; if hasalpha is true,
map entries consist of four bytes, and all four components must be present.

For example, consider a pixel whose value is p, and a color map with a hasalpha set to false.
Therefore, each element in the color map occupies three consecutive array elements. The red component of
that pixel will be located at colorMap[start + 3*p]; the green component will be at
colorMap[start + 3*p + 1]; and so on. The value of size may be smaller than 2^bits, meaning that
there may be pixel values with no corresponding entry in the color map. These pixel values (i.e., size <=
p < 2^bits) are painted with the color components set to 0; they are transparent if hasalpha is true,
opaque otherwise.

If bits is too large (greater than 8), size is too large (greater than 2^bits), or the colorMap array is too
small to hold the map, the run-time exception ArrayIndexOutOfBoundsException will be thrown.

public IndexColorModel (int bits, int size, byte colorMap[], int start, boolean hasalpha)

This version of the IndexColorModel constructor calls the previous constructor with a transparent
index of -1; that is, there is no transparent pixel. If bits is too large (greater than 8), or size is too large
(greater than 2^bits), or the colorMap array is too small to hold the map, the run-time exception,
ArrayIndexOutOfBoundsException will be thrown.

public IndexColorModel (int bits, int size, byte red[], byte green[], byte blue[], int transparent)

The second set of constructors for IndexColorModel is similar to the first group, with the exception that
these constructors use three or four separate arrays (one per color component) to represent the color map,
instead of a single array.

The bits parameter still represents the number of bits in a pixel. size represents the number of elements
in the color map. transparent is the location of the transparent pixel in the map (i.e., the pixel value that
is considered transparent). If there is no transparent pixel, set transparent to -1.

The red, green, and blue arrays contain the color map itself. These arrays must have at least size
elements. They contain the red, green, and blue components of the colors in the map. For example, if a pixel
is at position p, red[p] contains the pixel's red component; green[p] contains the green component; and
blue[p] contains the blue component. The value of size may be smaller than 2^bits, meaning that there
may be pixel values with no corresponding entry in the color map. These pixel values (i.e., size <= p <
2^bits) are painted with the color components set to 0.

If bits is too large (greater than 8), size is too large (greater than 2^bits), or the red, green, and blue
arrays are too small to hold the map, the run-time exception ArrayIndexOutOfBoundsException
will be thrown.

public IndexColorModel (int bits, int size, byte red[], byte green[], byte blue[])

This version of the IndexColorModel constructor calls the previous one with a transparent index of
-1; that is, there is no transparent pixel. If bits is too large (greater than 8), size is too large (greater than
2^bits), or the red, green, and blue arrays are too small to hold the map, the run-time exception
ArrayIndexOutOfBoundsException will be thrown.

public IndexColorModel (int bits, int size, byte red[], byte green[], byte blue[], byte alpha[])

Like the previous constructor, this version creates an IndexColorModel with no transparent pixel. It
differs from the previous constructor in that it supports transparency; the array alpha contains the map's
transparency values. If bits is too large (greater than 8), size is too large (greater than 2^bits), or the red,
green, blue, and alpha arrays are too small to hold the map, the run-time exception
ArrayIndexOutOfBoundsException will be thrown.

Methods

final public int getAlpha (int pixel)

The getAlpha() method returns the alpha component of pixel for a color model, which is a number
between 0 and 255, inclusive. A value of 0 means the pixel is completely transparent and the background
will appear through the pixel. A value of 255 means the pixel is opaque and you cannot see the background
behind it.

final public int getRed (int pixel)

The getRed() method returns the red component of pixel for a color model, which is a number between
0 and 255, inclusive. A value of 0 means the pixel has no red in it. A value of 255 means red is at maximum
intensity.

final public int getGreen (int pixel)

The getGreen() method returns the green component of pixel for a color model, which is a number
between 0 and 255, inclusive. A value of 0 means the pixel has no green in it. A value of 255 means green is
at maximum intensity.

final public int getBlue (int pixel)

The getBlue() method returns the blue component of pixel for a color model, which is a number
between 0 and 255, inclusive. A value of 0 means the pixel has no blue in it. A value of 255 means blue is at
maximum intensity.

final public int getRGB (int pixel)

The getRGB() method returns the color of pixel in the default RGB color model. If a subclass has
changed the ordering or size of the different color components, getRGB() will return the pixel in the RGB
color model (0xAARRGGBB order). This version of getRGB is identical to the version in the
ColorModel class but overrides it to make it final.

Other methods

final public int getMapSize()

The getMapSize() method returns the size of the color map (i.e., the number of distinct colors).

final public int getTransparentPixel ()

The getTransparentPixel() method returns the color map index for the transparent pixel in the color
model. If no transparent pixel exists, it returns -1. It is not possible to change the transparent pixel after the
color model has been created.

final public void getAlphas (byte alphas[])

The getAlphas() method copies the alpha components of the ColorModel into elements 0 through
getMapSize()-1 of the alphas array. Space must already be allocated in the alphas array.

final public void getReds (byte reds[])

The getReds() method copies the red components of the ColorModel into elements 0 through
getMapSize()-1 of the reds array. Space must already be allocated in the reds array.

final public void getGreens (byte greens[])

The getGreens() method copies the green components of the ColorModel into elements 0 through
getMapSize()-1 of the greens array. Space must already be allocated in the greens array.

final public void getBlues (byte blues[])

The getBlues() method copies the blue components of the ColorModel into elements 0 through
getMapSize()-1 of the blues array. Space must already be allocated in the blues array.

ImageObserver ImageProducer

Chapter 12
Image Processing

12.3 ImageProducer

The ImageProducer interface defines the methods that ImageProducer objects must implement. Image
producers serve as sources for pixel data; they may compute the data themselves or interpret data from some
external source, like a GIF file. No matter how it generates the data, an image producer's job is to hand that data to
an image consumer, which usually renders the data on the screen. The methods in the ImageProducer interface
let ImageConsumer objects register their interest in an image. The business end of an ImageProducer--that is,
the methods it uses to deliver pixel data to an image consumer--are defined by the ImageConsumer interface.
Therefore, we can summarize the way an image producer works as follows:

● It waits for image consumers to register their interest in an image.

● As image consumers register, it stores them in a Hashtable, Vector, or some other collection
mechanism.

● As image data becomes available, it loops through all the registered consumers and calls their methods to
transfer the data.

There's a sense in which you have to take this process on faith; image consumers are usually well hidden. If you call
createImage(), an image consumer will eventually show up.

Every Image has an ImageProducer associated with it; to acquire a reference to the producer, use the
getSource() method of Image.

Because an ImageProducer must call methods in the ImageConsumer interface, we won't show an example of
a full-fledged producer until we have discussed ImageConsumer.

ImageProducer Interface

Methods

public void addConsumer (ImageConsumer ic)

The addConsumer() method registers ic as an ImageConsumer interested in the Image information.
Once an ImageConsumer is registered, the ImageProducer can deliver Image pixels immediately or

wait until startProduction() has been called.

Note that one image may have many consumers; therefore, addConsumer() usually stores image
consumers in a collection like a Vector or Hashtable. There is one notable exception: if the producer
has the image data in memory, addConsumer() can deliver the image to the consumer immediately. When
addConsumer() returns, it has finished with the consumer. In this case, you don't need to manage a list of
consumers, because there is only one image consumer at a time. (In this case, addConsumer() should be
implemented as a synchronized method.)

public boolean isConsumer (ImageConsumer ic)

The isConsumer() method checks to see if ic is a registered ImageConsumer for this
ImageProducer. If ic is registered, true is returned. If ic is not registered, false is returned.

public void removeConsumer (ImageConsumer ic)

The removeConsumer() method removes ic as a registered ImageConsumer for this
ImageProducer. If ic was not a registered ImageConsumer, nothing should happen. This is not an
error that should throw an exception. Once ic has been removed from the registry, the ImageProducer
should no longer send data to it.

public void startProduction (ImageConsumer ic)

The startProduction() method registers ic as an ImageConsumer interested in the Image
information and tells the ImageProducer to start sending the Image data immediately. The
ImageProducer sends the image data to ic and all other registered ImageConsumer objects, through
addConsumer().

public void requestTopDownLeftRightResend (ImageConsumer ic)

The requestTopDownLeftRightResend() method is called by the ImageConsumer ic requesting
that the ImageProducer retransmit the Image data in top-down, left-to-right order. If the
ImageProducer is unable to send the data in that order or always sends the data in that order (like with
MemoryImageSource), it can ignore the call.

FilteredImageSource

The FilteredImageSource class combines an ImageProducer and an ImageFilter to create a new
Image. The image producer generates pixel data for an original image. The FilteredImageSource takes this
data and uses an ImageFilter to produce a modified version: the image may be scaled, clipped, or rotated, or the
colors shifted, etc. The FilteredImageSource is the image producer for the new image. The ImageFilter
object transforms the original image's data to yield the new image; it implements the ImageConsumer interface.
We cover the ImageConsumer interface in ImageConsumer and the ImageFilter class in ImageFilter. Figure
12.1 shows the relationship between an ImageProducer, FilteredImageSource, ImageFilter, and the
ImageConsumer.

Figure 12.1: Image producers, filters, and consumers

Constructors

public FilteredImageSource (ImageProducer original, ImageFilter filter)

The FilteredImageSource constructor creates an image producer that combines an image,
original, and a filter, filter, to create a new image. The ImageProducer of the original image is
the constructor's first parameter; given an Image, you can acquire its ImageProducer by using the
getSource() method. The following code shows how to create a new image from an original. ImageFilter
shows several extensive examples of image filters.

Image image = getImage (new URL
 ("http://www.ora.com/graphics/headers/homepage.gif"));
Image newOne = createImage (new FilteredImageSource
 (image.getSource(), new SomeImageFilter()));

ImageProducer interface methods

The ImageProducer interface methods maintain an internal table for the image consumers. Since this is private,
you do not have direct access to it.

public synchronized void addConsumer (ImageConsumer ic)

The addConsumer() method adds ic as an ImageConsumer interested in the pixels for this image.

public synchronized boolean isConsumer (ImageConsumer ic)

The isConsumer() method checks to see if ic is a registered ImageConsumer for this
ImageProducer. If ic is registered, true is returned. If not registered, false is returned.

public synchronized void removeConsumer (ImageConsumer ic)

The removeConsumer() method removes ic as a registered ImageConsumer for this
ImageProducer.

public void startProduction (ImageConsumer ic)

The startProduction() method registers ic as an ImageConsumer interested in the Image
information and tells the ImageProducer to start sending the Image data immediately.

public void requestTopDownLeftRightResend (ImageConsumer ic)

The requestTopDownLeftRightResend() method registers ic as an ImageConsumer interested
in the Image information and requests the ImageProducer to retransmit the Image data in top-down,
left-to-right order.

MemoryImageSource

The MemoryImageSource class allows you to create images completely in memory; you generate pixel data,
place it in an array, and hand that array and a ColorModel to the MemoryImageSource constructor. The
MemoryImageSource is an image producer that can be used with a consumer to display the image on the screen.
For example, you might use a MemoryImageSource to display a Mandelbrot image or some other image
generated by your program. You could also use a MemoryImageSource to modify a pre-existing image; use
PixelGrabber to get the image's pixel data, modify that data, and then use a MemoryImageSource as the
producer for the modified image. Finally, you can use MemoryImageSource to simplify implementation of a
new image type; you can develop a class that reads an image in some unsupported format from a local file or the
network; interprets the image file and puts pixel data into an array; and uses a MemoryImageSource to serve as
an image producer. This is simpler than implementing an image producer yourself, but it isn't quite as flexible; you
lose the ability to display partial images as the data becomes available.

In Java 1.1, MemoryImageSource supports multiframe images to animate a sequence. In earlier versions, it was
necessary to create a dynamic ImageFilter to animate the image. Constructors

There are six constructors for MemoryImageSource, each with slightly different parameters. They all create an
image producer that delivers some array of data to an image consumer. The constructors are:

public MemoryImageSource (int w, int h, ColorModel cm, byte pix[], int off, int scan)
public MemoryImageSource (int w, int h, ColorModel cm, byte pix[], int off, int scan, Hashtable props)
public MemoryImageSource (int w, int h, ColorModel cm, int pix[], int off, int scan)
public MemoryImageSource (int w, int h, ColorModel cm, int pix[], int off, int scan, Hashtable props)
public MemoryImageSource (int w, int h, int pix[], int off, int scan)
public MemoryImageSource (int w, int h, int pix[], int off, int scan, Hashtable props)

The parameters that might be present are:

w

Width of the image being created, in pixels.

h

Height of the image being created, in pixels.

cm

The ColorModel that describes the color representation used in the pixel data. If this parameter is not
present, the MemoryImageSource uses the default RGB color model
(ColorModel.getRGBDefault()).

pix[]

The array of pixel information to be converted into an image. This may be either a byte array or an int
array, depending on the color model. If you're using a direct color model (including the default RGB color
model), pix is usually an int array; if it isn't, it won't be able to represent all 16 million possible colors. If
you're using an indexed color model, the array should be a byte array. However, if you use an int array
with an indexed color model, the MemoryImageSource ignores the three high-order bytes because an
indexed color model has at most 256 entries in the color map. In general: if your color model requires more
than 8 bits of data per pixel, use an int array; if it requires 8 bits or less, use a byte array.

off

The first pixel used in the array (usually 0); prior pixels are ignored.

scan

The number of pixels per line in the array (usually equal to w). The number of pixels per scan line in the
array may be larger than the number of pixels in the scan line. Extra pixels in the array are ignored.

props

A Hashtable of the properties associated with the image. If this argument isn't present, the constructor
assumes there are no properties.

The pixel at location (x, y) in the image is located at pix[y * scan + x + off]. ImageProducer interface
methods

In Java 1.0, the ImageProducer interface methods maintain a single internal variable for the image consumer
because the image is delivered immediately and synchronously. There is no need to worry about multiple
consumers; as soon as one registers, you give it the image, and you're done. These methods keep track of this single
ImageConsumer.

In Java 1.1, MemoryImageSource supports animation. One consequence of this new feature is that it isn't always
possible to deliver all the image's data immediately. Therefore, the class maintains a list of image consumers that are
notified when each frame is generated. Since this list is private, you do not have direct access to it.

public synchronized void addConsumer (ImageConsumer ic)

The addConsumer() method adds ic as an ImageConsumer interested in the pixels for this image.

public synchronized boolean isConsumer (ImageConsumer ic)

The isConsumer() method checks to see if ic is a registered ImageConsumer for this
ImageProducer. If ic is registered, true is returned. If ic is not registered, false is returned.

public synchronized void removeConsumer (ImageConsumer ic)

The removeConsumer() method removes ic as a registered ImageConsumer for this
ImageProducer.

public void startProduction (ImageConsumer ic)

The startProduction() method calls addConsumer().

public void requestTopDownLeftRightResend (ImageConsumer ic)

The requestTopDownLeftRightResend() method does nothing since in-memory images are already
in this format or are multiframed, with each frame in this format.

Animation methods

In Java 1.1, MemoryImageSource supports animation; it can now pass multiple frames to interested image
consumers. This feature mimics GIF89a's multiframe functionality. (If you have GIF89a animations, you can
display them using getImage() and drawImage(); you don't have to build a complicated creature using
MemoryImageSource.) . An animation example follows in Example 12.3 (later in this chapter).

public synchronized void setAnimated(boolean animated)

The setAnimated() method notifies the MemoryImageSource if it will be in animation mode
(animated is true) or not (animated is false). By default, animation is disabled; you must call this
method to generate an image sequence. To prevent losing data, call this method immediately after calling the
MemoryImageSource constructor.

public synchronized void setFullBufferUpdates(boolean fullBuffers)

The setFullBufferUpdates() method controls how image updates are done during an animation. It is
ignored if you are not creating an animation. If fullBuffers is true, this method tells the
MemoryImageSource that it should always send all of an image's data to the consumers whenever it
received new data (by a call to newPixels()). If fullBuffers is false, the MemoryImageSource
sends only the changed portion of the image and notifies consumers (by a call to
ImageConsumer.setHints()) that frames sent will be complete.

Like setAnimated(), setFullBufferUpdates() should be called immediately after calling the
MemoryImageSource constructor, before the animation is started.

To do the actual animation, you update the image array pix[] that was specified in the constructor and call one of
the overloaded newPixels() methods to tell the MemoryImageSource that you have changed the image data.
The parameters to newPixels() determine whether you are animating the entire image or just a portion of the
image. You can also supply a new array to take pixel data from, replacing pix[]. In any case, pix[] supplies the
initial image data (i.e., the first frame of the animation).

If you have not called setAnimated(true), calls to any version of newPixels() are ignored.

public void newPixels()

The version of newPixels() with no parameters tells the MemoryImageSource to send the entire pixel
data (frame) to all the registered image consumers again. Data is taken from the original array pix[]. After
the data is sent, the MemoryImageSource notifies consumers that a frame is complete by calling
imageComplete(ImageConsumer.SINGLEFRAMEDONE), thus updating the display when the image
is redisplayed. Remember that in many cases, you don't need to update the entire image; updating part of the
image saves CPU time, which may be crucial for your application. To update part of the image, call one of
the other versions of newPixels().

public synchronized void newPixels(int x, int y, int w, int h)

This newPixels() method sends part of the image in the array pix[] to the consumers. The portion of
the image sent has its upper left corner at the point (x, y), width w and height h, all in pixels. Changing part
of the image rather than the whole thing saves considerably on system resources. Obviously, it is appropriate
only if most of the image is still. For example, you could use this method to animate the steam rising from a
cup of hot coffee, while leaving the cup itself static (an image that should be familiar to anyone reading
JavaSoft's Web site). After the data is sent, consumers are notified that a frame is complete by a call to
imageComplete(ImageConsumer.SINGLEFRAMEDONE), thus updating the display when the image
is redisplayed.

If setFullBufferUpdates() was called, the entire image is sent, and the dimensions of the bounding
box are ignored.

public synchronized void newPixels(int x, int y, int w, int h, boolean frameNotify)

This newPixels() method is identical to the last, with one exception: consumers are notified that new
image data is available only when frameNotify is true. This method allows you to generate new image
data in pieces, updating the consumers only once when you are finished.

If setFullBufferUpdates() was called, the entire image is sent, and the dimensions of the bounding
box are ignored.

public synchronized void newPixels(byte[] newpix, ColorModel newmodel, int offset, int scansize)

public synchronized void newPixels(int[] newpix, ColorModel newmodel, int offset, int scansize)

These newPixels() methods change the source of the animation to the byte or int array newpix[],
with a ColorModel of newmodel. offset marks the beginning of the data in newpix to use, while
scansize states the number of pixels in newpix per line of Image data. Future calls to other versions of
newPixels() should modify newpix[] rather than pix[].

Using MemoryImageSource to create a static image

You can create an image by generating an integer or byte array in memory and converting it to an image with
MemoryImageSource. The following MemoryImage applet generates two identical images that display a series
of color bars from left to right. Although the images look the same, they were generated differently: the image on
the left uses the default DirectColorModel; the image on the right uses an IndexColorModel.

Because the image on the left uses a DirectColorModel, it stores the actual color value of each pixel in an array
of integers (rgbPixels[]). The image on the right can use a byte array (indPixels[]) because the
IndexColorModel puts the color information in its color map instead of the pixel array; elements of the pixel
array need to be large enough only to address the entries in this map. Images that are based on
IndexColorModel are generally more efficient in their use of space (integer vs. byte arrays, although
IndexColorModel requires small support arrays) and in performance (if you filter the image).

The output from this example is shown in Figure 12.2. The source is shown in Example 12.2.

Figure 12.2: MemoryImage applet output

Example 12.2: MemoryImage Test Program

import java.applet.*;
import java.awt.*;
import java.awt.image.*;
public class MemoryImage extends Applet {
 Image i, j;
 int width = 200;

 int height = 200;
 public void init () {
 int rgbPixels[] = new int [width*height];
 byte indPixels[] = new byte [width*height];
 int index = 0;
 Color colorArray[] = {Color.red, Color.orange, Color.yellow,
 Color.green, Color.blue, Color.magenta};
 int rangeSize = width / colorArray.length;
 int colorRGB;
 byte colorIndex;
 byte reds[] = new byte[colorArray.length];
 byte greens[] = new byte[colorArray.length];
 byte blues[] = new byte[colorArray.length];
 for (int i=0;i<colorArray.length;i++) {
 reds[i] = (byte)colorArray[i].getRed();
 greens[i] = (byte)colorArray[i].getGreen();
 blues[i] = (byte)colorArray[i].getBlue();
 }
 for (int y=0;y<height;y++) {
 for (int x=0;x<width;x++) {
 if (x < rangeSize) {
 colorRGB = Color.red.getRGB();
 colorIndex = 0;
 } else if (x < (rangeSize*2)) {
 colorRGB = Color.orange.getRGB();
 colorIndex = 1;
 } else if (x < (rangeSize*3)) {
 colorRGB = Color.yellow.getRGB();
 colorIndex = 2;
 } else if (x < (rangeSize*4)) {
 colorRGB = Color.green.getRGB();
 colorIndex = 3;
 } else if (x < (rangeSize*5)) {
 colorRGB = Color.blue.getRGB();
 colorIndex = 4;
 } else {
 colorRGB = Color.magenta.getRGB();
 colorIndex = 5;
 }
 rgbPixels[index] = colorRGB;
 indPixels[index] = colorIndex;
 index++;
 }
 }
 i = createImage (new MemoryImageSource (width, height, rgbPixels,
 0, width));
 j = createImage (new MemoryImageSource (width, height,
 new IndexColorModel (8, colorArray.length, reds, greens, blues),

 indPixels, 0, width));
 }
 public void paint (Graphics g) {
 g.drawImage (i, 0, 0, this);
 g.drawImage (j, width+5, 0, this);
 }
}

Almost all of the work is done in init() (which, in a real applet, isn't a terribly good idea; ideally init() should
be lightweight). Previously, we explained the color model's use for the images on the left and the right. Toward the
end of init(), we create the images i and j by calling createImage() with a MemoryImageSource as the
image producer. For image i, we used the simplest MemoryImageSource constructor, which uses the default
RGB color model. For j, we called the IndexColorModel constructor within the MemoryImageSource
constructor, to create a color map that has only six entries: one for each of the colors we use. Using
MemoryImageSource for animation

As we've seen, Java 1.1 gives you the ability to create an animation using a MemoryImageSource by updating
the image data in memory; whenever you have finished an update, you can send the resulting frame to the
consumers. This technique gives you a way to do animations that consume very little memory, since you keep
overwriting the original image. The applet in Example 12.3 demonstrates MemoryImageSource's animation
capability by creating a Mandelbrot image in memory, updating the image as new points are added. Figure 12.3
shows the results, using four consumers to display the image four times.

Example 12.3: Mandelbrot Program

// Java 1.1 only
import java.awt.*;
import java.awt.image.*;
import java.applet.*;
public class Mandelbrot extends Applet implements Runnable {
 Thread animator;
 Image im1, im2, im3, im4;
 public void start() {
 animator = new Thread(this);
 animator.start();
 }
 public synchronized void stop() {
 animator = null;
 }
 public void paint(Graphics g) {
 if (im1 != null)
 g.drawImage(im1, 0, 0, null);
 if (im2 != null)
 g.drawImage(im2, 0, getSize().height / 2, null);
 if (im3 != null)
 g.drawImage(im3, getSize().width / 2, 0, null);
 if (im4 != null)

 g.drawImage(im4, getSize().width / 2, getSize().height / 2, null);
 }
 public void update (Graphics g) {
 paint (g);
 }
 public synchronized void run() {
 Thread.currentThread().setPriority(Thread.MIN_PRIORITY);
 int width = getSize().width / 2;
 int height = getSize().height / 2;
 byte[] pixels = new byte[width * height];
 int index = 0;
 int iteration=0;
 double a, b, p, q, psq, qsq, pnew, qnew;
 byte[] colorMap = {(byte)255, (byte)255, (byte)255, // white
 (byte)0, (byte)0, (byte)0}; // black
 MemoryImageSource mis = new MemoryImageSource(
 width, height,
 new IndexColorModel (8, 2, colorMap, 0, false, -1),
 pixels, 0, width);
 mis.setAnimated(true);
 im1 = createImage(mis);
 im2 = createImage(mis);
 im3 = createImage(mis);
 im4 = createImage(mis);
 // Generate Mandelbrot
 final int ITERATIONS = 16;
 for (int y=0; y<height; y++) {
 b = ((double)(y-64))/32;
 for (int x=0; x<width; x++) {
 a = ((double)(x-64))/32;
 p=q=0;
 iteration = 0;
 while (iteration < ITERATIONS) {
 psq = p*p;
 qsq = q*q;
 if ((psq + qsq) >= 4.0)
 break;
 pnew = psq - qsq + a;
 qnew = 2*p*q+b;
 p = pnew;
 q = qnew;
 iteration++;
 }
 if (iteration == ITERATIONS) {
 pixels[index] = 1;
 mis.newPixels(x, y, 1, 1);
 repaint();
 }

 index++;
 }
 }
 }
}

Figure 12.3: Mandelbrot output

Most of the applet in Example 12.3 should be self-explanatory. The init() method starts the thread in which we
do our computation. paint() just displays the four images we create. All the work, including the computation, is
done in the thread's run() method. run() starts by setting up a color map, creating a MemoryImageSource
with animation enabled and creating four images using that source as the producer. It then does the computation,
which I won't explain; for our purposes, the interesting part is what happens when we've computed a pixel. We set
the appropriate byte in our data array, pixels[], and then call newPixels(), giving the location of the new
pixel and its size (1 by 1) as arguments. Thus, we redraw the images for every new pixel. In a real application, you
would probably compute a somewhat larger chunk of new data before updating the screen, but the same principles
apply.

ColorModel ImageConsumer

Chapter 12
Image Processing

12.4 ImageConsumer

The ImageConsumer interface specifies the methods that must be implemented to receive data from an
ImageProducer. For the most part, that is the only context in which you need to know about the ImageConsumer
interface. If you write an image producer, it will be handed a number of obscure objects, about which you know nothing
except that they implement ImageConsumer, and that you can therefore call the methods discussed in this section to
deliver your data. The chances that you will ever implement an image consumer are rather remote, unless you are porting
Java to a new environment. It is more likely that you will want to subclass ImageFilter, in which case you may need
to implement some of these methods. But most of the time, you will just need to know how to hand your data off to the
next element in the chain.

The java.awt.image package includes two classes that implement ImageConsumer: PixelGrabber and
ImageFilter (and its subclasses). These classes are unique in that they don't display anything on the screen.
PixelGrabber takes the image data and stores it in a pixel array; you can use this array to save the image in a file,
generate a new image, etc. ImageFilter, which is used in conjunction with FilteredImageSource, modifies the
image data; the FilteredImageSource sends the modified image to another consumer, which can further modify or
display the new image. When you draw an image on the screen, the JDK's ImageRepresentation class is probably
doing the real work. This class is part of the sun.awt.image package. You really don't need to know anything about
it, although you may see ImageRepresentation mentioned in a stack trace if you try to filter beyond the end of a
pixel array.

ImageConsumer Interface

Constants

There are two sets of constants for ImageConsumer. One set represents those that can be used for the
imageComplete() method. The other is used with the setHints() method. See the descriptions of those methods
on how to use them.

The first set of flags is for the imageComplete() method:

public static final int IMAGEABORTED

The IMAGEABORTED flag signifies that the image creation process was aborted and the image is not complete. In
the image production process, an abort could mean multiple things. It is possible that retrying the production
would succeed.

public static final int IMAGEERROR

The IMAGEERROR flag signifies that an error was encountered during the image creation process and the image
is not complete. In the image production process, an error could mean multiple things. More than likely, the
image file or pixel data is invalid, and retrying won't succeed.

public static final int SINGLEFRAMEDONE

The SINGLEFRAMEDONE flag signifies that a frame other than the last has completed loading. There are
additional frames to display, but a new frame is available and is complete. For an example of this flag in use, see
the dynamic ImageFilter example in Example 12.8.

public static final int STATICIMAGEDONE

The STATICIMAGEDONE flag signifies that the image has completed loading. If this is a multiframe image, all
frames have been generated. For an example of this flag in use, see the dynamic ImageFilter example in
Example 12.8.

The following set of flags can be ORed together to form the single parameter to the setHints() method. Certain flags
do not make sense set together, but it is the responsibility of the concrete ImageConsumer to enforce this.

public static final int COMPLETESCANLINES

The COMPLETESCANLINES flag signifies that each call to setPixels() will deliver at least one complete
scan line of pixels to this consumer.

public static final int RANDOMPIXELORDER

The RANDOMPIXELORDER flag tells the consumer that pixels are not provided in any particular order.
Therefore, the consumer cannot perform optimization that depends on pixel delivery order. In the absence of both
COMPLETESCANLINES and RANDOMPIXELORDER, the ImageConsumer should assume pixels will arrive in
RANDOMPIXELORDER.

public static final int SINGLEFRAME

The SINGLEFRAME flag tells the consumer that this image contains a single non-changing frame. This is the
case with most image formats. An example of an image that does not contain a single frame is the multiframe
GIF89a image.

public static final int SINGLEPASS

The SINGLEPASS flag tells the consumer to expect each pixel once and only once. Certain image formats, like
progressive JPEG images, deliver a single image several times, with each pass yielding a sharper image.

public static final int TOPDOWNLEFTRIGHT

The final setHints() flag, TOPDOWNLEFTRIGHT, tells the consumer to expect the pixels in a top-down, left-
right order. This flag will almost always be set.

Methods

The interface methods are presented in the order in which they are normally called by an ImageProducer.

void setDimensions (int width, int height)

The setDimensions() method should be called once the ImageProducer knows the width and height
of the image. This is the actual width and height, not necessarily the scaled size. It is the consumer's
responsibility to do the scaling and resizing.

void setProperties (Hashtable properties)

The setProperties() method should only be called by the ImageProducer if the image has any
properties that should be stored for later retrieval with the getProperty() method of Image. Every image
format has its own property set. One property that tends to be common is the "comment" property. properties
represents the Hashtable of properties for the image; the name of each property is used as the Hashtable
key.

void setColorModel (ColorModel model)

The setColorModel() method gives the ImageProducer the opportunity to tell the ImageConsumer
that the ColorModel model will be used for the majority of pixels in the image. The ImageConsumer may
use this information for optimization. However, each call to setPixels() contains its own ColorModel,
which isn't necessarily the same as the color model given here. In other words, setColorModel() is only
advisory; it does not guarantee that all (or any) of the pixels in the image will use this model. Using different
color models for different parts of an image is possible, but not recommended.

void setHints (int hints)

An ImageProducer should call the setHints() method prior to any setPixels() calls. The hints are
formed by ORing the constants COMPLETESCANLINES, RANDOMPIXELORDER, SINGLEFRAME,
SINGLEPASS, and TOPDOWNLEFTRIGHT. These hints give the image consumer information about the order in
which the producer will deliver pixels. When the ImageConsumer is receiving pixels, it can take advantage of
these hints for optimization.

void setPixels (int x, int y, int width, int height, ColorModel model, byte pixels[], int offset, int scansize)

An ImageProducer calls the setPixels() method to deliver the image pixel data to the ImageConsumer.
The bytes are delivered a rectangle at a time. (x, y) represents the top left corner of the rectangle; its dimensions
are width x height. model is the ColorModel used for this set of pixels; different calls to setPixels()
may use different color models. The pixels themselves are taken from the byte array pixels. offset is the
first element of the pixel array that will be used. scansize is the length of the scan lines in the array. In most
cases, you want the consumer to render all the pixels on the scan line; in this case, scansize will equal width.
However, there are cases in which you want the consumer to ignore part of the scan line; you may be clipping an
image, and the ends of the scan line fall outside the clipping region. In this case, rather than copying the pixels
you want into a new array, you can specify a width that is smaller than scansize.

That's a lot of information, but it's easy to summarize. A pixel located at point (x1, y1) within the rectangle being
delivered to the consumer is located at position ((y1 - y) * scansize + (x1 - x) + offset)
within the array pixels[]. Figure 12.4 shows how the pixels delivered by setPixels() fit into the complete
image; Figure 12.5 shows how pixels are stored within the array.

Figure 12.4: Delivering pixels for an image

[Graphic: Figure 12-4]

Figure 12.5: Storing pixels in an array

[Graphic: Figure 12-5]

void setPixels (int x, int y, int width, int height, ColorModel model, int pixels[], int offset, int scansize)

The second setPixels() method is similar to the first. pixels[] is an array of ints; this is necessary when
you have more than eight bits of data per pixel.

void imageComplete (int status)

The ImageProducer calls imageComplete() to tell an ImageConsumer that it has transferred a
complete image. The status argument is a flag that describes exactly why the ImageProducer has finished. It
may have one of the following values: IMAGEABORTED (if the image production was aborted); IMAGEERROR
(if an error in producing the image occurred); SINGLEFRAMEDONE (if a single frame of a multiframe image has
been completed); or STATICIMAGEDONE (if all pixels have been delivered). When imageComplete() gets
called, the ImageConsumer should call the image producer's removeConsumer() method, unless it wants
to receive additional frames (status of SINGLEFRAMEDONE).

PPMImageDecoder

Now that we have discussed the ImageConsumer interface, we're finally ready to give an example of a full-fledged
ImageProducer. This producer uses the methods of the ImageConsumer interface to communicate with image
consumers; image consumers use the ImageProducer interface to register themselves with this producer.

Our image producer will interpret images in the PPM format.[1] PPM is a simple image format developed by Jef
Poskanzer as part of the pbmplus image conversion package. A PPM file starts with a header consisting of the image
type, the image's width and height in pixels, and the maximum value of any RGB component. The header is entirely in
ASCII. The pixel data follows the header; it is either in binary (if the image type is P6) or ASCII (if the image type is
P3). The pixel data is simply a series of bytes describing the color of each pixel, moving left to right and top to bottom.
In binary format, each pixel is represented by three bytes: one for red, one for green, and one for blue. In ASCII format,
each pixel is represented by three numeric values, separated by white space (space, tab, or newline). A comment may
occur anywhere in the file, but it would be surprising to see one outside of the header. Comments start with # and
continue to the end of the line. ASCII format files are obviously much larger than binary files. There is no compression
on either file type.

[1] For more information about PPM and the pbmplus package, see Encyclopedia of Graphics File
Formats, by James D. Murray and William VanRyper (from O'Reilly & Associates). See also
http://www.acme.com/.

The PPMImageDecoder source is listed in Example 12--4. The applet that uses this class is shown in Example 12.5.
You can reuse a lot of the code in the PPMImageDecoder when you implement your own image producers.

Example 12.4: PPMImageDecoder Source

import java.awt.*;
import java.awt.image.*;
import java.util.*;
import java.io.*;
public class PPMImageDecoder implements ImageProducer {
/* Since done in-memory, only one consumer */
 private ImageConsumer consumer;
 boolean loadError = false;
 int width;
 int height;
 int store[][];
 Hashtable props = new Hashtable();
/* Format of Ppm file is single pass/frame, w/ complete scan lines in order */
 private static int PpmHints = (ImageConsumer.TOPDOWNLEFTRIGHT |
 ImageConsumer.COMPLETESCANLINES |
 ImageConsumer.SINGLEPASS |
 ImageConsumer.SINGLEFRAME);

The class starts by declaring class variables and constants. We will use the variable PpmHints when we call
setHints(). Here, we set this variable to a collection of "hint" constants that indicate we will produce pixel data in
top-down, left-right order; we will always send complete scan lines; we will make only one pass over the pixel data (we
will send each pixel once); and there is one frame per image (i.e., we aren't producing a multiframe sequence).

The next chunk of code implements the ImageProducer interface; consumers use it to request image data:

file:///C|/download/www.acme.com/default.htm

/* There is only a single consumer. When it registers, produce image. */
/* On error, notify consumer. */
 public synchronized void addConsumer (ImageConsumer ic) {
 consumer = ic;
 try {
 produce();
 }catch (Exception e) {
 if (consumer != null)
 consumer.imageComplete (ImageConsumer.IMAGEERROR);
 }
 consumer = null;
 }
/* If consumer passed to routine is single consumer, return true, else false. */
 public synchronized boolean isConsumer (ImageConsumer ic) {
 return (ic == consumer);
 }
/* Disables consumer if currently consuming. */
 public synchronized void removeConsumer (ImageConsumer ic) {
 if (consumer == ic)
 consumer = null;
 }
/* Production is done by adding consumer. */
 public void startProduction (ImageConsumer ic) {
 addConsumer (ic);
 }
 public void requestTopDownLeftRightResend (ImageConsumer ic) {
 // Not needed. The data is always in this format.
 }

The previous group of methods implements the ImageProducer interface. They are quite simple, largely because of
the way this ImageProducer generates images. It builds the image in memory before delivering it to the consumer;
you must call the readImage() method (discussed shortly) before you can create an image with this consumer.
Because the image is in memory before any consumers can register their interest, we can write an addConsumer()
method that registers a consumer and delivers all the data to that consumer before returning. Therefore, we don't need to
manage a list of consumers in a Hashtable or some other collection object. We can store the current consumer in an
instance variable ic and forget about any others: only one consumer exists at a time. To make sure that only one
consumer exists at a time, we synchronize the addConsumer(), isConsumer(), and removeConsumer()
methods. Synchronization prevents another consumer from registering itself before the current consumer has finished. If
you write an ImageProducer that builds the image in memory before delivering it, you can probably use this code
verbatim.

addConsumer() is little more than a call to the method produce(), which handles "consumer relations": it delivers
the pixels to the consumer using the methods in the ImageConsumer interface. If produce() throws an exception,
addConsumer() calls imageComplete() with an IMAGEERROR status code. Here's the code for the produce()
method:

/* Production Process:
 Prerequisite: Image already read into store array. (readImage)
 props / width / height already set (readImage)

 Assumes RGB Color Model - would need to filter to change.
 Sends Ppm Image data to consumer.
 Pixels sent one row at a time.
*/
 private void produce () {
 ColorModel cm = ColorModel.getRGBdefault();
 if (consumer != null) {
 if (loadError) {
 consumer.imageComplete (ImageConsumer.IMAGEERROR);
 } else {
 consumer.setDimensions (width, height);
 consumer.setProperties (props);
 consumer.setColorModel (cm);
 consumer.setHints (PpmHints);
 for (int j=0;j<height;j++)
 consumer.setPixels (0, j, width, 1, cm, store[j], 0, width);
 consumer.imageComplete (ImageConsumer.STATICIMAGEDONE);
 }
 }
 }

produce() just calls the ImageConsumer methods in order: it sets the image's dimensions, hands off an empty
Hashtable of properties, sets the color model (the default RGB model) and the hints, and then calls setPixels()
once for each row of pixel data. The data is in the integer array store[][], which has already been loaded by the
readImage() method (defined in the following code). When the data is delivered, the method setPixels() calls
imageComplete() to indicate that the image has been finished successfully.

/* Allows reading to be from internal byte array, in addition to disk/socket */
 public void readImage (byte b[]) {
 readImage (new ByteArrayInputStream (b));
 }
/* readImage reads image data from Stream */
/* parses data for PPM format */
/* closes inputstream when done */
 public void readImage (InputStream is) {
 long tm = System.currentTimeMillis();
 boolean raw=false;
 DataInputStream dis = null;
 BufferedInputStream bis = null;
 try {
 bis = new BufferedInputStream (is);
 dis = new DataInputStream (bis);
 String word;
 word = readWord (dis);
 if ("P6".equals (word)) {
 raw = true;
 } else if ("P3".equals (word)) {
 raw = false;
 } else {
 throw (new AWTException ("Invalid Format " + word));

 }
 width = Integer.parseInt (readWord (dis));
 height = Integer.parseInt (readWord (dis));
 // Could put comments in props - makes readWord more complex
 int maxColors = Integer.parseInt (readWord (dis));
 if ((maxColors < 0) || (maxColors > 255)) {
 throw (new AWTException ("Invalid Colors " + maxColors));
 }
 store = new int[height][width];
 if (raw) { // binary format (raw) pixel data
 byte row[] = new byte [width*3];
 for (int i=0;i<height;i++){
 dis.readFully (row);
 for (int j=0,k=0;j<width;j++,k+=3) {
 int red = row[k];
 int green = row[k+1];
 int blue = row[k+2];
 if (red < 0)
 red +=256;
 if (green < 0)
 green +=256;
 if (blue < 0)
 blue +=256;
 store[i][j] = (0xff<< 24) | (red << 16) |
 (green << 8) | blue;
 }
 }
 } else { // ASCII pixel data
 for (int i=0;i<height;i++) {
 for (int j=0;j<width;j++) {
 int red = Integer.parseInt (readWord (dis));
 int green = Integer.parseInt (readWord (dis));
 int blue = Integer.parseInt (readWord (dis));
 store[i][j] = (0xff<< 24) | (red << 16) |
 (green << 8) | blue;
 }
 }
 }
 } catch (IOException io) {
 loadError = true;
 System.out.println ("IO Exception " + io.getMessage());
 } catch (AWTException awt) {
 loadError = true;
 System.out.println ("AWT Exception " + awt.getMessage());
 } catch (NoSuchElementException nse) {
 loadError = true;
 System.out.println ("No Such Element Exception " + nse.getMessage());
 } finally {
 try {
 if (dis != null)

 dis.close();
 if (bis != null)
 bis.close();
 if (is != null)
 is.close();
 } catch (IOException io) {
 System.out.println ("IO Exception " + io.getMessage());
 }
 }
 System.out.println ("Done in " + (System.currentTimeMillis() - tm)
 + " ms");
 }

readImage() reads the image data from an InputStream and converts it into the array of pixel data that
produce() transfers to the consumer. Code using this class must call readImage() to process the data before
calling createImage(); we'll see how this works shortly. Although there is a lot of code in readImage(), it's
fairly simple. (It would be much more complex if we were dealing with an image format that compressed the data.) It
makes heavy use of readWord(), a utility method that we'll discuss next; readWord() returns a word of ASCII text
as a string.

readImage() starts by converting the InputStream into a DataInputStream. It uses readWord() to get the
first word from the stream. This should be either "P6" or "P3", depending on whether the data is in binary or ASCII. It
then uses readWord() to save the image's width and height and the maximum value of any color component. Next, it
reads the color data into the store[][] array. The ASCII case is simple because we can use readWord() to read
ASCII words conveniently; we read red, green, and blue words, convert them into ints, and pack the three into one
element (one pixel) of store[][]. For binary data, we read an entire scan line into the byte array row[], using
readFully(); then we start a loop that packs this scan line into one row of store[][]. A little additional
complexity is in the inner loop because we must keep track of two arrays (row[] and store[][]). We read red,
green, and blue components from row[], converting Java's signed bytes to unsigned data by adding 256 to any negative
values; finally, we pack these components into one element of store[][].

/* readWord returns a word of text from stream */
/* Ignores PPM comment lines. */
/* word defined to be something wrapped by whitespace */
 private String readWord (InputStream is) throws IOException {
 StringBuffer buf = new StringBuffer();
 int b;
 do {// get rid of leading whitespace
 if ((b=is.read()) == -1)
 throw new EOFException();
 if ((char)b == '#') { // read to end of line - ppm comment
 DataInputStream dis = new DataInputStream (is);
 dis.readLine();
 b = ' '; // ensure more reading
 }
 }while (Character.isSpace ((char)b));
 do {
 buf.append ((char)(b));
 if ((b=is.read()) == -1)

 throw new EOFException();
 } while (!Character.isSpace ((char)b)); // reads first space
 return buf.toString();
 }
}

readWord() is a utility method that reads one ASCII word from an InputStream. A word is a sequence of
characters that aren't spaces; space characters include newlines and tabs in addition to spaces. This method also throws
out any comments (anything between # and the end of the line). It collects the characters into a StringBuffer,
converting the StringBuffer into a String when it returns.

Example 12.5: PPMImageDecoder Test Program

import java.awt.Graphics;
import java.awt.Color;
import java.awt.image.ImageConsumer;
import java.awt.Image;
import java.awt.MediaTracker;
import java.net.URL;
import java.net.MalformedURLException;
import java.io.InputStream;
import java.io.IOException;
import java.applet.Applet;
public class ppmViewer extends Applet {
 Image image = null;
 public void init () {
 try {
 String file = getParameter ("file");
 if (file != null) {
 URL imageurl = new URL (getDocumentBase(), file);
 InputStream is = imageurl.openStream();
 PPMImageDecoder ppm = new PPMImageDecoder ();
 ppm.readImage (is);
 image = createImage (ppm);
 repaint();
 }
 } catch (MalformedURLException me) {
 System.out.println ("Bad URL");
 } catch (IOException io) {
 System.out.println ("Bad File");
 }
 }
 public void paint (Graphics g) {
 g.drawImage (image, 0, 0, this);
 }
}

The applet we use to test our ImageProducer is very simple. It creates a URL that points to an appropriate PPM file
and gets an InputStream from that URL. It then creates an instance of our PPMImageDecoder; calls

readImage() to load the image and generate pixel data; and finally, calls createImage() with our
ImageProducer as an argument to create an Image object, which we draw in paint().

PixelGrabber

The PixelGrabber class is a utility for converting an image into an array of pixels. This is useful in many situations.
If you are writing a drawing utility that lets users create their own graphics, you probably want some way to save a
drawing to a file. Likewise, if you're implementing a shared whiteboard, you'll want some way to transmit images across
the Net. If you're doing some kind of image processing, you may want to read and alter individual pixels in an image.
The PixelGrabber class is an ImageConsumer that can capture a subset of the current pixels of an Image. Once
you have the pixels, you can easily save the image in a file, send it across the Net, or work with individual points in the
array. To recreate the Image (or a modified version), you can pass the pixel array to a MemoryImageSource.

Prior to Java 1.1, PixelGrabber saves an array of pixels but doesn't save the image's width and height--that's your
responsibility. You may want to put the width and height in the first two elements of the pixel array and use an offset of
2 when you store (or reproduce) the image.

Starting with Java 1.1, the grabbing process changes in several ways. You can ask the PixelGrabber for the image's
size or color model. You can grab pixels asynchronously and abort the grabbing process before it is completed. Finally,
you don't have to preallocate the pixel data array. Constructors

public PixelGrabber (ImageProducer ip, int x, int y, int width, int height, int pixels[], int offset, int scansize)

The first PixelGrabber constructor creates a new PixelGrabber instance. The PixelGrabber uses
ImageProducer ip to store the unscaled cropped rectangle at position (x, y) of size width x height into
the pixels array, starting at offset within pixels, and each row starting at increments of scansize from
that.

As shown in Figure 12.5, the position (x1, y1) would be stored in pixels[] at position (y1 - y) *
scansize + (x1 - x) + offset. Calling grabPixels() starts the process of writing pixels into the
array.

The ColorModel for the pixels copied into the array is always the default RGB model: that is, 32 bits per pixel,
with 8 bits for alpha, red, green, and blue components.

public PixelGrabber (Image image, int x, int y, int width, int height, int pixels[], int offset, int scansize)

This version of the PixelGrabber constructor gets the ImageProducer of the Image image through
getSource(); it then calls the previous constructor to create the PixelGrabber.

public PixelGrabber (Image image, int x, int y, int width, int height, boolean forceRGB)

This version of the constructor does not require you to preallocate the pixel array and lets you preserve the color
model of the original image. If forceRGB is true, the pixels of image are converted to the default RGB
model when grabbed. If forceRGB is false and all the pixels of image use one ColorModel, the original
color model of image is preserved.

As with the other constructors, the x, y, width, and height values define the bounding box to grab. However,

there's one special case to consider. Setting width or height to -1 tells the PixelGrabber to take the
width and height from the image itself. In this case, the grabber stores all the pixels below and to the right of
the point (x, y). If (x, y) is outside of the image, you get an empty array.

Once the pixels have been grabbed, you get the pixel data via the getPixels() method described in "Other
methods." To get the ColorModel, see the getColorModel() method.

ImageConsumer interface methods

public void setDimensions (int width, int height)

In Java 1.0, the setDimensions() method of PixelGrabber ignores the width and height, since this
was set by the constructor.

With Java 1.1, setDimensions() is called by the image producer to give it the dimensions of the original
image. This is how the PixelGrabber finds out the image's size if the constructor specified -1 for the image's
width or height.

public void setHints (int hints)

The setHints() method ignores the hints.

public void setProperties (Hashtable properties)

The setProperties() method ignores the properties.

public void setColorModel (ColorModel model)

The setColorModel() method ignores the model.

public void setPixels (int x, int y, int w, int h, ColorModel model, byte pixels[], int offset, int scansize)

The setPixels() method is called by the ImageProducer to deliver pixel data for some image. If the
pixels fall within the portion of the image that the PixelGrabber is interested in, they are stored within the
array passed to the PixelGrabber constructor. If necessary, the ColorModel is used to convert each pixel
from its original representation to the default RGB representation. This method is called when each pixel coming
from the image producer is represented by a byte.

public void setPixels (int x, int y, int w, int h, ColorModel model, int pixels[], int offset, int scansize)

The second setPixels() method is almost identical to the first; it is used when each pixel coming from the
image producer is represented by an int.

public synchronized void imageComplete (int status)

The imageComplete() method uses status to determine if the pixels were successfully delivered. The
PixelGrabber then notifies anyone waiting for the pixels from a grabPixels() call.

Grabbing methods

public synchronized boolean grabPixels (long ms) throws InterruptedException

The grabPixels() method starts storing pixel data from the image. It doesn't return until all pixels have been
loaded into the pixels array or until ms milliseconds have passed. The return value is true if all pixels were
successfully acquired. Otherwise, it returns false for the abort, error, or timeout condition encountered. The
exception InterruptedException is thrown if another thread interrupts this one while waiting for pixel
data.

public boolean grabPixels () throws InterruptedException

This grabPixels() method starts storing pixel data from the image. It doesn't return until all pixels have been
loaded into the pixels array. The return value is true if all pixels were successfully acquired. It returns false if
it encountered an abort or error condition. The exception InterruptedException is thrown if another
thread interrupts this one while waiting for pixel data.

public synchronized void startGrabbing()

The startGrabbing() method provides an asynchronous means of grabbing the pixels. This method returns
immediately; it does not block like the grabPixels() methods described previously. To find out when the
PixelGrabber has finished, call getStatus().

public synchronized void abortGrabbing()

The abortGrabbing() method allows you to stop grabbing pixel data from the image. If a thread is waiting
for pixel data from a grabPixels() call, it is interrupted and grabPixels() throws an
InterruptedException.

Other methods

public synchronized int getStatus()

public synchronized int status ()

Call the getStatus() method to find out whether a PixelGrabber succeeded in grabbing the pixels you
want. The return value is a set of ImageObserver flags ORed together. ALLBITS and FRAMEBITS indicate
success; which of the two you get depends on how the image was created. ABORT and ERROR indicate that
problems occurred while the image was being produced.

status()is the Java 1.0 name for this method.

public synchronized int getWidth()

The getWidth() method reports the width of the image data stored in the destination buffer. If you set width to
-1 when you called the PixelGrabber constructor, this information will be available only after the grabber has
received the information from the image producer (setDimensions()). If the width is not available yet,
getWidth() returns -1.

The width of the resulting image depends on several factors. If you specified the width explicitly in the
constructor, the resulting image has that width, no questions asked--even if the position at which you start
grabbing is outside the image. If you specified -1 for the width, the resulting width will be the difference between
the x position at which you start grabbing (set in the constructor) and the actual image width; for example, if you
start grabbing at x=50 and the original image width is 100, the width of the resulting image is 50. If x falls
outside the image, the resulting width is 0.

public synchronized int getHeight()

The getHeight() method reports the height of the image data stored in the destination buffer. If you set height
to -1 when you called the PixelGrabber constructor, this information will be available only after the grabber
has received the information from the image producer (setDimensions()). If the height is not available yet,
getHeight() returns -1.

The height of the resulting image depends on several factors. If you specified the height explicitly in the
constructor, the resulting image has that height, no questions asked--even if the position at which you start
grabbing is outside the image. If you specified -1 for the height, the resulting height will be the difference
between the y position at which you start grabbing (set in the constructor) and the actual image height; for
example, if you start grabbing at y=50 and the original image height is 100, the height of the resulting image is
50. If y falls outside the image, the resulting height is 0.

public synchronized Object getPixels()

The getPixels() method returns an array of pixel data. If you passed a pixel array to the constructor, you get
back your original array object, with the data filled in. If, however, the array was not previously allocated, you get
back a new array. The size of this array depends on the image you are grabbing and the portion of that image you
want. If size and image format are not known yet, this method returns null. If the PixelGrabber is still
grabbing pixels, this method returns an array that may change based upon the rest of the image. The type of the
array you get is either int[] or byte[], depending on the color model of the image. To find out if the
PixelGrabber has finished, call getStatus().

public synchronized ColorModel getColorModel()

The getColorModel() method returns the color model of the image. This could be the default RGB
ColorModel if a pixel buffer was explicitly provided, null if the color model is not known yet, or a varying
color model until all the pixel data has been grabbed. After all the pixels have been grabbed,
getColorModel() returns the actual color model used for the getPixels()array. It is best to wait until
grabbing has finished before you ask for the ColorModel; to find out, call getStatus().

Using PixelGrabber to modify an image

You can modify images by combining a PixelGrabber with MemoryImageSource. Use getImage() to load an
image from the Net; then use PixelGrabber to convert the image into an array. Modify the data in the array any way
you please; then use MemoryImageSource as an image producer to display the new image.

Example 12.6 demonstrates the use of the PixelGrabber and MemoryImageSource to rotate, flip, and mirror an

image. (We could also do the rotations with a subclass of ImageFilter, which we will discuss next.) The output is
shown in Figure 12.6. When working with an image that is loaded from a local disk or the network, remember to wait
until the image is loaded before grabbing its pixels. In this example, we use a MediaTracker to wait for the image to
load.

Example 12.6: Flip Source

import java.applet.*;
import java.awt.*;
import java.awt.image.*;
public class flip extends Applet {
 Image i, j, k, l;
 public void init () {
 MediaTracker mt = new MediaTracker (this);
 i = getImage (getDocumentBase(), "ora-icon.gif");
 mt.addImage (i, 0);
 try {
 mt.waitForAll();
 int width = i.getWidth(this);
 int height = i.getHeight(this);
 int pixels[] = new int [width * height];
 PixelGrabber pg = new PixelGrabber
 (i, 0, 0, width, height, pixels, 0, width);
 if (pg.grabPixels() && ((pg.status() &
 ImageObserver.ALLBITS) !=0)) {
 j = createImage (new MemoryImageSource (width, height,
 rowFlipPixels (pixels, width, height), 0, width));
 k = createImage (new MemoryImageSource (width, height,
 colFlipPixels (pixels, width, height), 0, width));
 l = createImage (new MemoryImageSource (height, width,
 rot90Pixels (pixels, width, height), 0, height));
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

Figure 12.6: Flip output

[Graphic: Figure 12-6]

The try block in Example 12.6 does all the interesting work. It uses a PixelGrabber to grab the entire image into
the array pixels[]. After calling grabPixels(), it checks the PixelGrabber status to make sure that the image
was stored correctly. It then generates three new images based on the first by calling createImage() with a
MemoryImageSource object as an argument. Instead of using the original array, the MemoryImageSource objects
call several utility methods to manipulate the array: rowFlipPixels(), colFlipPixels(), and
rot90Pixels(). These methods all return integer arrays.

public void paint (Graphics g) {
 g.drawImage (i, 10, 10, this); // regular
 if (j != null)
 g.drawImage (j, 150, 10, this); // rowFlip
 if (k != null)
 g.drawImage (k, 10, 60, this); // colFlip
 if (l != null)
 g.drawImage (l, 150, 60, this); // rot90
}
private int[] rowFlipPixels (int pixels[], int width, int height) {
 int newPixels[] = null;
 if ((width*height) == pixels.length) {
 newPixels = new int [width*height];
 int newIndex=0;
 for (int y=height-1;y>=0;y--)
 for (int x=width-1;x>=0;x--)
 newPixels[newIndex++]=pixels[y*width+x];
 }
 return newPixels;
}

rowFlipPixels() creates a mirror image of the original, flipped horizontally. It is nothing more than a nested loop
that copies the original array into a new array.

 private int[] colFlipPixels (int pixels[], int width, int height) {
 ...

 }
private int[] rot90Pixels (int pixels[], int width, int height) {
 ...
 }
}

colFlipPixels() and rot90Pixels() are fundamentally similar to rowFlipPixels(); they just copy the
original pixel array into another array, and return the result. colFlipPixels() generates a vertical mirror image;
rot90Pixels() rotates the image by 90 degrees counterclockwise. Grabbing data asynchronously

To demonstrate the new methods introduced by Java 1.1 for PixelGrabber, the following program grabs the pixels
and reports information about the original image on mouse clicks. It takes its data from the image used in Figure 12.6.

// Java 1.1 only
import java.applet.*;
import java.awt.*;
import java.awt.image.*;
import java.awt.event.*;
public class grab extends Applet {
 Image i;
 PixelGrabber pg;
 public void init () {
 i = getImage (getDocumentBase(), "ora-icon.gif");
 pg = new PixelGrabber (i, 0, 0, -1, -1, false);
 pg.startGrabbing();
 enableEvents (AWTEvent.MOUSE_EVENT_MASK);
 }
 public void paint (Graphics g) {
 g.drawImage (i, 10, 10, this);
 }
 protected void processMouseEvent(MouseEvent e) {
 if (e.getID() == MouseEvent.MOUSE_CLICKED) {
 System.out.println ("Status: " + pg.getStatus());
 System.out.println ("Width: " + pg.getWidth());
 System.out.println ("Height: " + pg.getHeight());
 System.out.println ("Pixels: " +
 (pg.getPixels() instanceof byte[] ? "bytes" : "ints"));
 System.out.println ("Model: " + pg.getColorModel());
 }
 super.processMouseEvent (e);
 }
}

This applet creates a PixelGrabber without specifying an array, then starts grabbing pixels. The grabber allocates its
own array, but we never bother to ask for it since we don't do anything with the data itself: we only report the grabber's
status. (If we wanted the data, we'd call getPixels().) Sample output from a single mouse click, after the image
loaded, would appear something like the following:

Status: 27

Width: 120
Height: 38
Pixels: bytes
Model: java.awt.image.IndexColorModel@1ed34

You need to convert the status value manually to the corresponding meaning by looking up the status codes in
ImageObserver. The value 27 indicates that the 1, 2, 8, and 16 flags are set, which translates to the WIDTH, HEIGHT,
SOMEBITS, and FRAMEBITS flags, respectively.

ImageProducer ImageFilter

Chapter 12
Image Processing

12.5 ImageFilter

Image filters provide another way to modify images. An ImageFilter is used in conjunction with a
FilteredImageSource object. The ImageFilter, which implements ImageConsumer (and Cloneable),
receives data from an ImageProducer and modifies it; the FilteredImageSource, which implements
ImageProducer, sends the modified data to the new consumer. As Figure 12.1 shows, an image filter sits between
the original ImageProducer and the ultimate ImageConsumer.

The ImageFilter class implements a "null" filter that does nothing to the image. To modify an image, you must
use a subclass of ImageFilter, by either writing one yourself or using a subclass provided with AWT, like the
CropImageFilter. Another ImageFilter subclass provided with AWT is the RGBImageFilter; it is useful
for filtering an image on the basis of a pixel's color. Unlike the CropImageFilter, RGBImageFilter is an
abstract class, so you need to create your own subclass to use it. Java 1.1 introduces two more image filters,
AreaAveragingScaleFilter and ReplicateScaleFilter. Other filters must be created by subclassing
ImageFilter and providing the necessary methods to modify the image as necessary.

ImageFilters tend to work on a pixel-by-pixel basis, so large Image objects can take a considerable amount of
time to filter, depending on the complexity of the filtering algorithm. In the simplest case, filters generate new pixels
based upon the color value and location of the original pixel. Such filters can start delivering data before they have
loaded the entire image. More complex filters may use internal buffers to store an intermediate copy of the image so
the filter can use adjacent pixel values to smooth or blend pixels together. These filters may need to load the entire
image before they can deliver any data to the ultimate consumer.

To use an ImageFilter, you pass it to the FilteredImageSource constructor, which serves as an
ImageProducer to pass the new pixels to their consumer. The following code runs the image logo.jpg through an
image filter, SomeImageFilter, to produce a new image. The constructor for SomeImageFilter is called
within the constructor for FilteredImageSource, which in turn is the only argument to createImage().

Image image = getImage (new URL (
 "http://www.ora.com/images/logo.jpg"));
Image newOne = createImage (new FilteredImageSource (image.getSource(),
 new SomeImageFilter()));

ImageFilter Methods

Variables

protected ImageConsumer consumer;

The actual ImageConsumer for the image. It is initialized automatically for you by the
getFilterInstance() method.

Constructor

public ImageFilter ()

The only constructor for ImageFilter is the default one, which takes no arguments. Subclasses can provide
their own constructors if they need additional information.

ImageConsumer interface methods

public void setDimensions (int width, int height)

The setDimensions() method of ImageFilter is called when the width and height of the original
image are known. It calls consumer.setDimensions() to tell the next consumer the dimensions of the
filtered image. If you subclass ImageFilter and your filter changes the image's dimensions, you should
override this method to compute and report the new dimensions.

public void setProperties (Hashtable properties)

The setProperties() method is called to provide the image filter with the property list for the original
image. The image filter adds the property filters to the list and passes it along to the next consumer. The
value given for the filters property is the result of the image filter's toString() method; that is, the
String representation of the current filter. If filters is already set, information about this
ImageFilter is appended to the end. Subclasses of ImageFilter may add other properties.

public void setColorModel (ColorModel model)

The setColorModel() method is called to give the ImageFilter the color model used for most of the
pixels in the original image. It passes this color model on to the next consumer. Subclasses may override this
method if they change the color model.

public void setHints (int hints)

The setHints() method is called to give the ImageFilter hints about how the producer will deliver
pixels. This method passes the same set of hints to the next consumer. Subclasses must override this method if
they need to provide different hints; for example, if they are delivering pixels in a different order.

public void setPixels (int x, int y, int width, int height, ColorModel model, byte pixels[], int offset, int scansize)
public void setPixels (int x, int y, int width, int height, ColorModel model, int pixels[], int offset, int scansize)

The setPixels() method receives pixel data from the ImageProducer and passes all the information on
to the ImageConsumer. (x, y) is the top left corner of the bounding rectangle for the pixels. The bounding

rectangle has size width x height. The ColorModel for the new image is model. pixels is the byte or
integer array of the pixel information, starting at offset (usually 0), with scan lines of size scansize
(usually width).

public void imageComplete (int status)

The imageComplete() method receives the completion status from the ImageProducer and passes
it along to the ImageConsumer.

If you subclass ImageFilter, you will probably override the setPixels() methods. For simple filters,
you may be able to modify the pixel array and deliver the result to consumer.setPixels() immediately.
For more complex filters, you will have to build a buffer containing the entire image; in this case, the call to
imageComplete() will probably trigger filtering and pixel delivery.

Cloneable interface methods

public Object clone ()

The clone() method creates a clone of the ImageFilter. The getFilterInstance() function uses
this method to create a copy of the ImageFilter. Cloning allows the same filter instance to be used with
multiple Image objects.

Other methods

public ImageFilter getFilterInstance (ImageConsumer ic)

FilteredImageSource calls getFilterInstance() to register ic as the ImageConsumer for an
instance of this filter; to do so, it sets the instance variable consumer. In effect, this method inserts the
ImageFilter between the image's producer and the consumer. You have to override this method only if
there are special requirements for the insertion process. This default implementation just calls clone().

public void resendTopDownLeftRight (ImageProducer ip)

The resendTopDownLeftRight() method tells the ImageProducer ip to try to resend the image
data in the top-down, left-to-right order. If you override this method and your ImageFilter has saved the
image data internally, you may want your ImageFilter to resend the data itself, rather than asking the
ImageProducer. Otherwise, your subclass may ignore the request or pass it along to the
ImageProducer ip.

Subclassing ImageFilter: A blurring filter

When you subclass ImageFilter, there are very few restrictions on what you can do. We will create a few
subclasses that show some of the possibilities. This ImageFilter generates a new pixel by averaging the pixels
around it. The result is a blurred version of the original. To implement this filter, we have to save all the pixel data
into a buffer; we can't start delivering pixels until the entire image is in hand. Therefore, we override setPixels()
to build the buffer; we override imageComplete() to produce the new pixels and deliver them.

Before looking at the code, here are a few hints about how the filter works; it uses a few tricks that may be helpful in
other situations. We need to provide two versions of setPixels(): one for integer arrays, and the other for byte
arrays. To avoid duplicating code, both versions call a single method, setThePixels(), which takes an Object
as an argument, instead of a pixel array; thus it can be called with either kind of pixel array. Within the method, we
check whether the pixels argument is an instance of byte[] or int[]. The body of this method uses another trick:
when it reads the byte[] version of the pixel array, it ANDs the value with 0xff. This prevents the byte value, which
is signed, from being converted to a negative int when used as an argument to cm.getRGB().

The logic inside of imageComplete() gets a bit hairy. This method does the actual filtering, after all the data has
arrived. Its job is basically simple: compute an average value of the pixel and the eight pixels surrounding it (i.e., a
3x3 rectangle with the current pixel in the center). The problem lies in taking care of the edge conditions. We don't
always want to average nine pixels; in fact, we may want to average as few as four. The if statements figure out
which surrounding pixels should be included in the average. The pixels we care about are placed in sumArray[],
which has nine elements. We keep track of the number of elements that have been saved in the variable sumIndex
and use a helper method, avgPixels(), to compute the average. The code might be a little cleaner if we used a
Vector, which automatically counts the number of elements it contains, but it would probably be much slower.

Example 12.7 shows the code for the blurring filter.

Example 12.7: Blur Filter Source

import java.awt.*;
import java.awt.image.*;
public class BlurFilter extends ImageFilter {
 private int savedWidth, savedHeight, savedPixels[];
 private static ColorModel defaultCM = ColorModel.getRGBdefault();
 public void setDimensions (int width, int height) {
 savedWidth=width;
 savedHeight=height;
 savedPixels=new int [width*height];
 consumer.setDimensions (width, height);
 }

We override setDimensions() to save the original image's height and width, which we use later.

 public void setColorModel (ColorModel model) {
 // Change color model to model you are generating
 consumer.setColorModel (defaultCM);
 }
 public void setHints (int hintflags) {
 // Set new hints, but preserve SINGLEFRAME setting
 consumer.setHints (TOPDOWNLEFTRIGHT | COMPLETESCANLINES |
 SINGLEPASS | (hintflags & SINGLEFRAME));
 }

This filter always generates pixels in the same order, so it sends the hint flags TOPDOWNLEFTRIGHT,
COMPLETESCANLINES, and SINGLEPASS to the consumer, regardless of what the image producer says. It sends
the SINGLEFRAME hint only if the producer has sent it.

 private void setThePixels (int x, int y, int width, int height,
 ColorModel cm, Object pixels, int offset, int scansize) {
 int sourceOffset = offset;
 int destinationOffset = y * savedWidth + x;
 boolean bytearray = (pixels instanceof byte[]);
 for (int yy=0;yy<height;yy++) {
 for (int xx=0;xx<width;xx++)
 if (bytearray)
 savedPixels[destinationOffset++]=
 cm.getRGB(((byte[])pixels)[sourceOffset++]&0xff);
 else
 savedPixels[destinationOffset++]=
 cm.getRGB(((int[])pixels)[sourceOffset++]);
 sourceOffset += (scansize - width);
 destinationOffset += (savedWidth - width);
 }
 }

setThePixels() saves the pixel data for the image in the array savedPixels[]. Both versions of
setPixels() call this method. It doesn't pass the pixels along to the image consumer, since this filter can't process
the pixels until the entire image is available.

public void setPixels (int x, int y, int width, int height,
 ColorModel cm, byte pixels[], int offset, int scansize) {
 setThePixels (x, y, width, height, cm, pixels, offset, scansize);
}
public void setPixels (int x, int y, int width, int height,
 ColorModel cm, int pixels[], int offset, int scansize) {
 setThePixels (x, y, width, height, cm, pixels, offset, scansize);
}
public void imageComplete (int status) {
 if ((status == IMAGEABORTED) || (status == IMAGEERROR)) {
 consumer.imageComplete (status);
 return;
 } else {
 int pixels[] = new int [savedWidth];
 int position, sumArray[], sumIndex;
 sumArray = new int [9]; // maxsize - vs. Vector for performance
 for (int yy=0;yy<savedHeight;yy++) {
 position=0;
 int start = yy * savedWidth;
 for (int xx=0;xx<savedWidth;xx++) {
 sumIndex=0;
 // xx yy
 sumArray[sumIndex++] = savedPixels[start+xx]; // center center
 if (yy != (savedHeight-1)) // center bottom
 sumArray[sumIndex++] = savedPixels[start+xx+savedWidth];

 if (yy != 0) // center top
 sumArray[sumIndex++] = savedPixels[start+xx-savedWidth];
 if (xx != (savedWidth-1)) // right center
 sumArray[sumIndex++] = savedPixels[start+xx+1];
 if (xx != 0) // left center
 sumArray[sumIndex++] = savedPixels[start+xx-1];
 if ((yy != 0) && (xx != 0)) // left top
 sumArray[sumIndex++] = savedPixels[start+xx-savedWidth-1];
 if ((yy != (savedHeight-1)) && (xx != (savedWidth-1)))
 // right bottom
 sumArray[sumIndex++] = savedPixels[start+xx+savedWidth+1];
 if ((yy != 0) && (xx != (savedWidth-1))) //right top
 sumArray[sumIndex++] = savedPixels[start+xx-savedWidth+1];
 if ((yy != (savedHeight-1)) && (xx != 0)) //left bottom
 sumArray[sumIndex++] = savedPixels[start+xx+savedWidth-1];
 pixels[position++] = avgPixels(sumArray, sumIndex);
 }
 consumer.setPixels (0, yy, savedWidth, 1, defaultCM,
 pixels, 0, savedWidth);
 }
 consumer.imageComplete (status);
 }
}

imageComplete() does the actual filtering after the pixels have been delivered and saved. If the producer reports
that an error occurred, this method passes the error flags to the consumer and returns. If not, it builds a new array,
pixels[], which contains the filtered pixels, and delivers these to the consumer.

Previously, we gave an overview of how the filtering process works. Here are some details. (xx, yy) represents the
current point's x and y coordinates. The point (xx, yy) must always fall within the image; otherwise, our loops are
constructed incorrectly. Therefore, we can copy (xx, yy) into the sumArray[] for averaging without any tests. For
the point's eight neighbors, we check whether the neighbor falls in the image; if so, we add it to sumArray[]. For
example, the point just below (xx, yy) is at the bottom center of the 3x3 rectangle of points we are averaging. We
know that xx falls within the image; yy falls within the image if it doesn't equal savedHeight-1. We do similar
tests for the other points.

Even though we're working with a rectangular image, our arrays are all one-dimensional so we have to convert a
coordinate pair (xx, yy) into a single array index. To help us do the bookkeeping, we use the local variable start to
keep track of the start of the current scan line. Then start + xx is the current point; start + xx + savedWidth
is the point immediately below; start + xx + savedWidth-1 is the point below and to the left; and so on.

avgPixels() is our helper method for computing the average value that we assign to the new pixel. For each pixel
in the pixels[] array, it extracts the red, blue, green, and alpha components; averages them separately, and returns
a new ARGB value.

 private int avgPixels (int pixels[], int size) {
 float redSum=0, greenSum=0, blueSum=0, alphaSum=0;
 for (int i=0;i<size;i++)

 try {
 int pixel = pixels[i];
 redSum += defaultCM.getRed (pixel);
 greenSum += defaultCM.getGreen (pixel);
 blueSum += defaultCM.getBlue (pixel);
 alphaSum += defaultCM.getAlpha (pixel);
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println ("Ooops");
 }
 int redAvg = (int)(redSum / size);
 int greenAvg = (int)(greenSum / size);
 int blueAvg = (int)(blueSum / size);
 int alphaAvg = (int)(alphaSum / size);
 return ((0xff << 24) | (redAvg << 16) |
 (greenAvg << 8) | (blueAvg << 0));
 }
}

Producing many images from one: dynamic ImageFilter

The ImageFilter framework is flexible enough to allow you to return a sequence of images based on an original.
You can send back one frame at a time, calling the following when you are finished with each frame:

consumer.imageComplete(ImageConsumer.SINGLEFRAMEDONE);

After you have generated all the frames, you can tell the consumer that the sequence is finished with the
STATICIMAGEDONE constant. In fact, this is exactly what the new animation capabilities of
MemoryImageSource use.

In Example 12.8, the DynamicFilter lets the consumer display an image. After the image has been displayed, the
filter gradually overwrites the image with a specified color by sending additional image frames. The end result is a
solid colored rectangle. Not too exciting, but it's easy to imagine interesting extensions: you could use this technique
to implement a fade from one image into another. The key points to understand are:

● This filter does not override setPixels(), so it is extremely fast. In this case, we want the original image to
reach the consumer, and there is no reason to save the image in a buffer.

● Filtering takes place in the image-fetching thread, so it is safe to put the filter-processing thread to sleep if the
image is coming from disk. If the image is in memory, filtering should not sleep because there will be a
noticeable performance lag in your program if it does. The DynamicFilter class has a delay parameter to
its constructor that lets you control this behavior.

● This subclass overrides setDimensions() to save the image's dimensions for its own use. It needs to
override setHints() because it sends pixels to the consumer in a nonstandard order: it sends the original
image, then goes back and starts sending overlays. Likewise, this subclass overrides
resendTopDownLeftRight() to do nothing because there is no way the original ImageProducer can
replace all the changes with the original Image.

● imageComplete() is where all the fun happens. Take a special look at the status flags that are returned.

Example 12.8: DynamicFilter Source

import java.awt.*;
import java.awt.image.*;
public class DynamicFilter extends ImageFilter {
 Color overlapColor;
 int delay;
 int imageWidth;
 int imageHeight;
 int iterations;
 DynamicFilter (int delay, int iterations, Color color) {
 this.delay = delay;
 this.iterations = iterations;
 overlapColor = color;
 }
 public void setDimensions (int width, int height) {
 imageWidth = width;
 imageHeight = height;
 consumer.setDimensions (width, height);
 }
 public void setHints (int hints) {
 consumer.setHints (ImageConsumer.RANDOMPIXELORDER);
 }
 public void resendTopDownLeftRight (ImageProducer ip) {
 }
 public void imageComplete (int status) {
 if ((status == IMAGEERROR) || (status == IMAGEABORTED)) {
 consumer.imageComplete (status);
 return;
 } else {
 int xWidth = imageWidth / iterations;
 if (xWidth <= 0)
 xWidth = 1;
 int newPixels[] = new int [xWidth*imageHeight];
 int iColor = overlapColor.getRGB();
 for (int x=0;x<(xWidth*imageHeight);x++)
 newPixels[x] = iColor;
 int t=0;
 for (;t<(imageWidth-xWidth);t+=xWidth) {
 consumer.setPixels(t, 0, xWidth, imageHeight,
 ColorModel.getRGBdefault(), newPixels, 0, xWidth);
 consumer.imageComplete (ImageConsumer.SINGLEFRAMEDONE);
 try {
 Thread.sleep (delay);
 } catch (InterruptedException e) {
 e.printStackTrace();

 }
 }
 int left = imageWidth-t;
 if (left > 0) {
 consumer.setPixels(imageWidth-left, 0, left, imageHeight,
 ColorModel.getRGBdefault(), newPixels, 0, xWidth);
 consumer.imageComplete (ImageConsumer.SINGLEFRAMEDONE);
 }
 consumer.imageComplete (STATICIMAGEDONE);
 }
 }
}

The DynamicFilter relies on the default setPixels() method to send the original image to the consumer.
When the original image has been transferred, the image producer calls this filter's imageComplete() method,
which does the real work. Instead of relaying the completion status to the consumer, imageComplete() starts
generating its own data: solid rectangles that are all in the overlapColor specified in the constructor. It sends
these rectangles to the consumer by calling consumer.setPixels(). After each rectangle, it calls
consumer.imageComplete() with the SINGLEFRAMEDONE flag, meaning that it has just finished one frame
of a multi-frame sequence. When the rectangles have completely covered the image, the method
imageComplete() finally notifies the consumer that the entire image sequence has been transferred by sending
the STATICIMAGEDONE flag.

The following code is a simple applet that uses this image filter to produce a new image:

import java.applet.*;
import java.awt.*;
import java.awt.image.*;
public class DynamicImages extends Applet {
 Image i, j;
 public void init () {
 i = getImage (getDocumentBase(), "rosey.jpg");
 j = createImage (new FilteredImageSource (i.getSource(),
 new DynamicFilter(250, 10, Color.red)));
 }
 public void paint (Graphics g) {
 g.drawImage (j, 10, 10, this);
 }
}

One final curiosity: the DynamicFilter doesn't make any assumptions about the color model used for the original
image. It sends its overlays with the default RGB color model. Therefore, this is one case in which an
ImageConsumer may see calls to setPixels() that use different color models.

RGBImageFilter

RGBImageFilter is an abstract subclass of ImageFilter that provides a shortcut for building the most
common kind of image filters: filters that independently modify the pixels of an existing image, based only on the

pixel's position and color. Because RGBImageFilter is an abstract class, you must subclass it before you can do
anything. The only method your subclass must provide is filterRGB(), which produces a new pixel value based
on the original pixel and its location. A handful of additional methods are in this class; most of them provide the
behind-the-scenes framework for funneling each pixel through the filterRGB() method.

If the filtering algorithm you are using does not rely on pixel position (i.e., the new pixel is based only on the old
pixel's color), AWT can apply an optimization for images that use an IndexColorModel: rather than filtering
individual pixels, it can filter the image's color map. In order to tell AWT that this optimization is okay, add a
constructor to the class definition that sets the canFilterIndexColorModel variable to true. If
canFilterIndexColorModel is false (the default) and an IndexColorModel image is sent through the
filter, nothing happens to the image. Variables

protected boolean canFilterIndexColorModel

Setting the canFilterIndexColorModel variable permits the ImageFilter to filter
IndexColorModel images. The default value is false. When this variable is false,
IndexColorModel images are not filtered. When this variable is true, the ImageFilter filters the
colormap instead of the individual pixel values.

protected ColorModel newmodel

The newmodel variable is used to store the new ColorModel when canFilterIndexColorModel is
true and the ColorModel actually is of type IndexColorModel. Normally, you do not need to access
this variable, even in subclasses.

protected ColorModel origmodel

The origmodel variable stores the original color model when filtering an IndexColorModel. Normally,
you do not need to access this variable, even in subclasses.

Constructors

public RGBImageFilter ()--called by subclass

The only constructor for RGBImageFilter is the implied constructor with no parameters. In most
subclasses of RGBImageFilter, the constructor has to initialize only the
canFilterIndexColorModel variable.

ImageConsumer interface methods

public void setColorModel (ColorModel model)

The setColorModel() method changes the ColorModel of the filter to model. If
canFilterIndexColorModel is true and model is of type IndexColorModel, a filtered version of
model is used instead.

public void setPixels (int x, int y, int w, int h, ColorModel model, byte pixels[], int off, int scansize)

public void setPixels (int x, int y, int w, int h, ColorModel model, int pixels[], int off, int scansize)

If necessary, the setPixels() method converts the pixels buffer to the default RGB ColorModel and
then filters them with filterRGBPixels(). If model has already been converted, this method just passes
the pixels along to the consumer's setPixels().

Other methods

The only method you care about here is filterRGB(). All subclasses of RGBImageFilter must override this
method. It is very difficult to imagine situations in which you would override (or even call) the other methods in this
group. They are helper methods that funnel pixels through filterRGB().

public void substituteColorModel (ColorModel oldModel, ColorModel newModel)

substituteColorModel() is a helper method for setColorModel(). It initializes the protected
variables of RGBImageFilter. The origmodel variable is set to oldModel and the newmodel
variable is set to newModel.

public IndexColorModel filterIndexColorModel (IndexColorModel icm)

filterIndexColorModel() is another helper method for setColorModel(). It runs the entire color
table of icm through filterRGB() and returns the filtered ColorModel for use by
setColorModel().

public void filterRGBPixels (int x, int y, int width, int height, int pixels[], int off, int scansize)

filterRGBPixels() is a helper method for setPixels(). It filters each element of the pixels buffer
through filterRGB(), converting pixels to the default RGB ColorModel first. This method changes the
values in the pixels array.

public abstract int filterRGB (int x, int y, int rgb)

filterRGB() is the one method that RGBImageFilter subclasses must implement. The method takes
the rgb pixel value at position (x, y) and returns the converted pixel value in the default RGB ColorModel.
Coordinates of (-1, -1) signify that a color table entry is being filtered instead of a pixel.

A transparent image filter that extends RGBImageFilter

Creating your own RGBImageFilter is fairly easy. One of the more common applications for an
RGBImageFilter is to make images transparent by setting the alpha component of each pixel. To do so, we extend
the abstract RGBImageFilter class. The filter in Example 12.9 makes the entire image translucent, based on a
percentage passed to the class constructor. Filtering is independent of position, so the constructor can set the
canFilterIndexColorModel variable. A constructor with no arguments uses a default alpha value of 0.75.

Example 12.9: TransparentImageFilter Source

import java.awt.image.*;
class TransparentImageFilter extends RGBImageFilter {
 float alphaPercent;
 public TransparentImageFilter () {
 this (0.75f);
 }
 public TransparentImageFilter (float aPercent)
 throws IllegalArgumentException {
 if ((aPercent < 0.0) || (aPercent > 1.0))
 throw new IllegalArgumentException();
 alphaPercent = aPercent;
 canFilterIndexColorModel = true;
 }
 public int filterRGB (int x, int y, int rgb) {
 int a = (rgb >> 24) & 0xff;
 a *= alphaPercent;
 return ((rgb & 0x00ffffff) | (a << 24));
 }
}

CropImageFilter

The CropImageFilter is an ImageFilter that crops an image to a rectangular region. When used with
FilteredImageSource, it produces a new image that consists of a portion of the original image. The cropped
region must be completely within the original image. It is never necessary to subclass this class. Also, using the 10 or
11 argument version of Graphics.drawImage() introduced in Java 1.1 precludes the need to use this filter,
unless you need to save the resulting cropped image.

If you crop an image and then send the result through a second ImageFilter, the pixel array received by the filter
will be the size of the original Image, with the offset and scansize set accordingly. The width and height
are set to the cropped values; the result is a smaller Image with the same amount of data. CropImageFilter
keeps the full pixel array around, partially empty. Constructors

public CropImageFilter (int x, int y, int width, int height)

The constructor for CropImageFilter specifies the rectangular area of the old image that makes up the
new image. The (x, y) coordinates specify the top left corner for the cropped image; width and height
must be positive or the resulting image will be empty. If the (x, y) coordinates are outside the original image
area, the resulting image is empty. If (x, y) starts within the image but the rectangular area of size width x
height goes beyond the original image, the part that extends outside will be black. (Remember the color
black has pixel values of 0 for red, green, and blue.)

ImageConsumer interface methods

public void setProperties (Hashtable properties)

The setProperties() method adds the croprect image property to the properties list. The bounding

Rectangle, specified by the (x, y) coordinates and width x height size, is associated with this property.
After updating properties, this method sets the properties list of the consumer.

public void setDimensions (int width, int height)

The setDimensions() method of CropImageFilter ignores the width and height parameters to
the function call. Instead, it relies on the size parameters in the constructor.

public void setPixels (int x, int y, int w, int h, ColorModel model, byte pixels[], int offset, int scansize)

public void setPixels (int x, int y, int w, int h, ColorModel model, int pixels[], int offset, int scansize)

These setPixels() methods check to see what portion of the pixels array falls within the cropped area
and pass those pixels along.

Cropping an image with CropImageFilter

Example 12.10 uses a CropImageFilter to extract the center third of a larger image. No subclassing is needed;
the CropImageFilter is complete in itself. The output is displayed in Figure 12.7.

Example 12.10: Crop Applet Source

import java.applet.*;
import java.awt.*;
import java.awt.image.*;
public class Crop extends Applet {
 Image i, j;
 public void init () {
 MediaTracker mt = new MediaTracker (this);
 i = getImage (getDocumentBase(), "rosey.jpg");
 mt.addImage (i, 0);
 try {
 mt.waitForAll();
 int width = i.getWidth(this);
 int height = i. getHeight(this);
 j = createImage (new FilteredImageSource (i.getSource(),
 new CropImageFilter (width/3, height/3,
 width/3, height/3)));
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 public void paint (Graphics g) {
 g.drawImage (i, 10, 10, this); // regular
 if (j != null) {
 g.drawImage (j, 10, 90, this); // cropped
 }
 }

}

Figure 12.7: Image cropping example output.

[Graphic: Figure 12-7]

TIP:

You can use CropImageFilter to help improve your animation performance or just the general download time of
images. Without CropImageFilter, you can use Graphics.clipRect() to clip each image of an image strip
when drawing. Instead of clipping each Image (each time), you can use CropImageFilter to create a new
Image for each cell of the strip. Or for times when an image strip is inappropriate, you can put all your images within
one image file (in any order whatsoever), and use CropImageFilter to get each out as an Image .

ReplicateScaleFilter

Back in Chapter 2, Simple Graphics we introduced you to the getScaledInstance() method. This method uses
a new image filter that is provided with Java 1.1. The ReplicateScaleFilter and its subclass,
AreaAveragingScaleFilter, allow you to scale images before calling drawImage(). This can greatly speed
your programs because you don't have to wait for the call to drawImage() before performing scaling.

The ReplicateScaleFilter is an ImageFilter that scales by duplicating or removing rows and columns.
When used with FilteredImageSource, it produces a new image that is a scaled version of the original. As you
can guess, ReplicateScaleFilter is very fast, but the results aren't particularly pleasing aesthetically. It is
great if you want to magnify a checkerboard but not that useful if you want to scale an image of your Aunt Polly. Its
subclass, AreaAveragingScaleFilter, implements a more time-consuming algorithm that is more suitable
when image quality is a concern. Constructor

public ReplicateScaleFilter (int width, int height)

The constructor for ReplicateScaleFilter specifies the size of the resulting image. If either parameter
is -1, the resulting image maintains the same aspect ratio as the original image.

ImageConsumer interface methods

public void setProperties (Hashtable properties)

The setProperties() method adds the rescale image property to the properties list. The value of the
rescale property is a quoted string showing the image's new width and height, in the form
`<width>x<height>`, where the width and height are taken from the constructor. After updating
properties, this method sets the properties list of the consumer.

public void setDimensions (int width, int height)

The setDimensions() method of ReplicateScaleFilter passes the new width and height from the
constructor along to the consumer. If either of the constructor's parameters are negative, the size is recalculated
proportionally. If both are negative, the size becomes width x height.

public void setPixels (int x, int y, int w, int h, ColorModel model, int pixels[], int offset, int scansize)
public void setPixels (int x, int y, int w, int h, ColorModel model, byte pixels[], int offset, int scansize)

The setPixels() method of ReplicateScaleFilter checks to see which rows and columns of
pixels to pass along.

AreaAveragingScaleFilter

The AreaAveragingScaleFilter subclasses ReplicateScaleFilter to provide a better scaling
algorithm. Instead of just dropping or adding rows and columns, AreaAveragingScaleFilter tries to blend
pixel values when creating new rows and columns. The filter works by replicating rows and columns to generate an
image that is a multiple of the original size. Then the image is resized back down by an algorithm that blends the
pixels around each destination pixel. AreaAveragingScaleFilter methods

Because this filter subclasses ReplicateScaleFilter, the only methods it includes are those that override
methods of ReplicateScaleFilter. Constructors

public AreaAveragingScaleFilter (int width, int height)

The constructor for AreaAveragingScaleFilter specifies the size of the resulting image. If either
parameter is -1, the resulting image maintains the same aspect ratio as the original image.

ImageConsumer interface methods

public void setHints (int hints)

The setHints() method of AreaAveragingScaleFilter checks to see if some optimizations can be
performed based upon the value of the hints parameter. If they can't, the image filter has to cache the pixel
data until it receives the entire image.

public void setPixels (int x, int y, int w, int h, ColorModel model, byte pixels[], int offset, int scansize)

public void setPixels (int x, int y, int w, int h, ColorModel model, int pixels[], int offset, int scansize)

The setPixels() method of AreaAveragingScaleFilter accumulates the pixels or passes them
along based upon the available hints. If setPixels() accumulates the pixels, this filter passes them along to
the consumer when appropriate.

Cascading Filters

It is often a good idea to perform complex filtering operations by using several filters in a chain. This technique
requires the system to perform several passes through the image array, so it may be slower than using a single
complex filter; however, cascading filters yield code that is easier to understand and quicker to write--particularly if
you already have a collection of image filters from other projects.

For example, assume you want to make a color image transparent and then render the image in black and white. The
easy way to do this task is to apply a filter that converts color to a gray value and then apply the
TransparentImageFilter we developed in Example 12.9. Using this strategy, we have to develop only one
very simple filter. Example 12.11 shows the source for the GrayImageFilter; Example 12.12 shows the applet
that applies the two filters in a daisy chain.

Example 12.11: GrayImageFilter Source

import java.awt.image.*;
public class GrayImageFilter extends RGBImageFilter {
 public GrayImageFilter () {
 canFilterIndexColorModel = true;
 }
 public int filterRGB (int x, int y, int rgb) {
 int gray = (((rgb & 0xff0000) >> 16) +
 ((rgb & 0x00ff00) >> 8) +
 (rgb & 0x0000ff)) / 3;
 return (0xff000000 | (gray << 16) | (gray << 8) | gray);
 }
}

Example 12.12: DrawingImages Source

import java.applet.*;
import java.awt.*;
import java.awt.image.*;
public class DrawingImages extends Applet {
 Image i, j, k, l;
 public void init () {
 i = getImage (getDocumentBase(), "rosey.jpg");
 GrayImageFilter gif = new GrayImageFilter ();
 j = createImage (new FilteredImageSource (i.getSource(), gif));
 TransparentImageFilter tf = new TransparentImageFilter (.5f);
 k = createImage (new FilteredImageSource (j.getSource(), tf));
 l = createImage (new FilteredImageSource (i.getSource(), tf));
 }

 public void paint (Graphics g) {
 g.drawImage (i, 10, 10, this); // regular
 g.drawImage (j, 270, 10, this); // gray
 g.drawImage (k, 10, 110, Color.red, this); // gray - transparent
 g.drawImage (l, 270, 110, Color.red, this); // transparent
 }
}

Granted, neither the GrayImageFilter or the TransparentImageFilter are very complex, but consider the
savings you would get if you wanted to blur an image, crop it, and then render the result in grayscale. Writing a filter
that does all three is not a task for the faint of heart; remember, you can't subclass RGBImageFilter or
CropImageFilter because the result does not depend purely on each pixel's color and position. However, you can
solve the problem easily by cascading the filters developed in this chapter.

ImageConsumer AWT Exceptions and Errors

Chapter 13
AWT Exceptions and Errors

13.2 IllegalComponentStateException

IllegalComponentStateException is a subclass of IllegalStateException; both are
new to Java 1.1. This exception is used when you try to do something with a Component that is not yet
appropriate. With the standard AWT components, this can happen only in three instances:

● If you call setCaretPosition() to set the cursor position of a text component before the
component's peer exists.

● If you call getLocale() to get the locale of a component that does not have one and is not in a
container that has one.

● If you call getLocationOnScreen() for a component that is not showing.

In these cases, the operation isn't fundamentally illegal; you are just trying to perform it before the
component is ready. When you create your own components, you should consider using this exception
for similar cases.

Since IllegalComponentStateException is a subclass of Run-TimeException, you do not
have to enclose method calls that might throw this exception within try/catch blocks. However,
catching this exception isn't a bad idea, since it should be fairly easy to correct the problem and retry the
operation.

IllegalComponentStateException Method

Constructor

public IllegalComponentStateException ()

The first constructor creates an IllegalComponentStateException instance with no

detail message.

public IllegalComponentStateException (String message)

This constructor creates an IllegalComponentStateException with a detail message of
message. This message can be retrieved using getMessage(), which it inherits from
Exception (and is required by the Throwable interface).

IllegalComponentStateException Example

The following code throws an IllegalComponentStateException. The Exception occurs
because the TextField peer does not exist when setCaretPosition() is called.
setCaretPosition() throws an IllegalComponentStateException, and the next
statement never executes.

import java.awt.TextField;
public class illegal {
 public static void main (String[] args) {
 new TextField().setCaretPosition (24);
 System.out.println ("Never gets here");
 }
}

AWTException AWTError

Chapter 13
AWT Exceptions and Errors

13.3 AWTError

AWTError is a subclass of Error that is used when a serious run-time error has occurred within AWT.
For example, an AWTError is thrown if the default Toolkit cannot be initialized or if you try to
create a FileDialog within Netscape Navigator (since that program does not permit local file system
access). When an AWTError is thrown and not caught, the virtual machine stops your program. You
may throw this Error to indicate a serious run-time problem in any subclass of the AWT classes. Using
AWTError is slightly preferable to creating your own Error because you don't have to provide another
class file. Since it is part of Java, AWTError is guaranteed to exist on the run-time platform.

Methods are not required to declare that they throw AWTError. If you throw an error that is not caught,
it will eventually propagate to the top level of the system.

AWTError Method

Constructor

public AWTError (String message)

The sole constructor creates an AWTError with a detail message of message. This message can
be retrieved using getMessage(), which it inherits from Error (and is required by the
Throwable interface). If you do not want a detailed message, message may be null.

Throwing an AWTError

The code in Example 13.1 throws an AWTError if it is executed with this command:

java -Dawt.toolkit=foo throwme

The error occurs because the Java interpreter tries to use the toolkit foo, which does not exist

(assuming that class foo does not exist in your CLASSPATH). Therefore, getDefaultToolkit()
throws an AWTError, and the next statement never executes.

Example 13.1: The throwme class

import java.awt.Toolkit;
public class throwme {
 public static void main (String[] args) {
 System.out.println (Toolkit.getDefaultToolkit());
 System.out.println ("Never Gets Here");
 }
}

IllegalComponentStateException And Then There Were
Applets

Chapter 14
And Then There Were

Applets

14.2 AudioClip Interface

Once an audio file is loaded into memory with getAudioClip(), you use the AudioClip interface
to work with it. Methods

Three methods define the AudioClip interface. The class that implements these methods depends on
the run-time environment; the class is probably sun.applet.AppletAudioClip or
netscape.applet.AppletAudioClip.

If you play an audio clip anywhere within your Applet, you should call the AudioClip stop()
method within the stop() method of the applet. This ensures that the audio file will stop playing when
the user leaves your web page. Stopping audio clips is a must if you call loop() to play the sound
continuously; if you don't stop an audio clip, the user will have to exit the browser to get the sound to
stop playing.

Applets can play audio clips simultaneously. Based upon the user's actions, you may want to play a
sound file in the background continuously, while playing other files.

void play ()

The play() method plays the audio clip once from the beginning.

void loop ()

The loop() method plays the audio clip continuously. When it gets to the end-of-file marker, it
resets itself to the beginning.

void stop ()

The stop() method stops the applet from playing the audio clip.

Using an AudioClip

The applet in Example 14.2 loads three audio files in the init() method. The start() method plays
Dino barking in the background as a continuous loop. Whenever the browser calls paint(), Fred yells
"Wilma," and when you click the mouse anywhere, the call to mouseDown() plays Fred yelling,
"Yabba-Dabba-Doo." If you try real hard, all three can play at once. Before playing any audio clip, the
applet makes sure that the clip is not null--that is, that the clip loaded correctly. stop() stops all clips
from playing; you should make sure that applets stop all audio clips before the viewer leaves the web
page.

Example 14.2: AudioClip Usage

import java.net.*;
import java.awt.*;
import java.applet.*;
public class AudioTestExample extends Applet{
 AudioClip audio1, audio2, audio3;
 public void init () {
 audio1 = getAudioClip (getCodeBase(), "audio/flintstones.au");
 audio2 = getAudioClip (getCodeBase(), "audio/dino.au");
 audio3 = getAudioClip (getCodeBase(), "audio/wilma.au");
 }
 public boolean mouseDown (Event e, int x, int y) {
 if (audio1 != null)
 audio1.play();
 return true;
 }
 public void start () {
 if (audio2 != null)
 audio2.loop();
 }
 public void paint (Graphics g) {
 if (audio3 != null)
 audio3.play();
 }
 public void stop () {
 if (audio1 != null)
 audio1.stop();
 if (audio2 != null)
 audio2.stop();
 if (audio3 != null)

 audio3.stop();
 }
}

What's a Java Applet? AppletContext Interface

Chapter 14
And Then There Were

Applets

14.3 AppletContext Interface

The AppletContext interface provides the means to control the browser environment where the
applet is running. Methods

Some of these methods are so frequently used that they are also provided within the Applet class.

public abstract AudioClip getAudioClip (URL url)

The getAudioClip() method loads the audio file located at url. url must be a complete
and valid URL. Upon success, getAudioClip() returns an instance of a class that implements
the AudioClip interface. You can then call methods in the AudioClip interface (see
AudioClip Interface) to play the clip. If an error occurs during loading (e.g., because the file was
not found or the URL was invalid), getAudioClip() returns null.

public abstract Image getImage (URL url)

The getImage() method loads the image file located at url. url must be a complete and
valid URL. The method returns a system-specific object that subclasses Image and returns
immediately. The Image is not loaded until needed. A call to prepareImage(),
MediaTracker, or drawImage() forces loading to start.

public abstract Applet getApplet (String name)

The getApplet() method fetches the Applet from the current HTML page named name,
which can be the applet's class name or the name provided in the NAME parameter of the
<APPLET> tag. getApplet() returns null if the applet does not exist in the current context.
This method allows you to call methods of other applets within the same context, loaded by the
same ClassLoader. For example:

MyApplet who = (MyApplet)getAppletContext().getApplet("hey");
who.method();

TIP:

Netscape Navigator 3.0 restricts which applets can communicate with each other. Internet Explorer
seems to have a similar restriction. For applets to communicate, they must:

❍ Have the same CODEBASE.

❍ Have the same or no ARCHIVES tag.

❍ Have MAYSCRIPT tags and appear in the same frame; alternatively, neither applet may have a
MAYSCRIPT tag.

If these conditions are not met and you try to cast the return value of getApplet() or
getApplets() to the appropriate class, either the cast will throw a ClassCastException; or
nothing will happen, and the method will not continue beyond the point of the failure.

public abstract Enumeration getApplets ()

The getApplets() method gathers all the Applets in the current context, loaded by the
same ClassLoader, into a collection and returns the Enumeration. You can then cycle through
them to perform some operation collectively. For example:

Enumeration e = getAppletContext().getApplets();
while (e.hasMoreElements()) {
 Object o = e.nextElement();
 if (o instance of MyApplet) {
 MyApplet a = (Object)o;
 a.MyAppletMethod();
 }
}

TIP:

If you want communication between applets on one page, be aware that there is no guarantee which
applet will start first. Communications must be synchronized by using a controlling class or continual
polling.

public abstract void showDocument (URL url)

The showDocument() method shows url in the current browser window. The browser may
ignore the request if it so desires.

public abstract void showDocument (URL url, String frame)

The showDocument() method shows url in a browser window specified by frame.
Different frame values and the results are shown in Table 14.1. The browser may ignore the request, as
appletviewer does.

try {
 URL u = new URL (getDocumentBase(), (String) file);
 getAppletContext().showDocument (u, "_blank");
} catch (Exception e) {
}

Table 14.1: Target Values

Target String Results

_blank Show url new browser window with no name.

_parent Show url in the parent frame of the current window.

_self Replace current url with url (i.e., display in the current window).

_top Show url in top-most frame.

name Show url in new browser window named name.

public abstract void showStatus (String message)

The showStatus() method displays message on the browser's status line, if it has one. How
to display this string is up to the browser, and the browser can overwrite it whenever it wants.
You should use showStatus() only for messages that the user can afford to miss.

AudioClip Interface AppletStub Interface

Chapter 14
And Then There Were

Applets

14.4 AppletStub Interface

The AppletStub interface provides a way to get information from the run-time browser environment.
The Applet class provides methods with similar names that call these methods. Methods

public abstract boolean isActive ()

The isActive() method returns the current state of the applet. While an applet is initializing, it
is not active, and calls to isActive() return false. The system marks the applet active just
prior to calling start(); after this point, calls to isActive() return true.

public abstract URL getDocumentBase ()

The getDocumentBase() method returns the complete URL of the HTML file that loaded the
applet. This method can be used with the getImage() or getAudioClip() methods to load
an image or audio file relative to the HTML file.

public abstract URL getCodeBase ()

The getCodeBase() method returns the complete URL of the .class file that contains the
applet. This method can be used with the getImage() method or the getAudioClip()
method to load an image or audio file relative to the .class file.

public abstract String getParameter (String name)

The getParameter() method allows you to get parameters from <PARAM> tags within the
<APPLET> tag of the HTML file that loaded the applet. The name parameter of
getParameter() must match the name string of the <PARAM> tag; name is case insensitive.
The return value of getParameter() is the value associated with name; it is always a
String regardless of the type of data in the tag. If name is not found within the <PARAM> tags

of the <APPLET>, getParameter() returns null.

public abstract AppletContext getAppletContext ()

The getAppletContext() method returns the current AppletContext of the applet. This
is part of the stub that is set by the system when setStub() is called.

public abstract void appletResize (int width, int height)

The appletResize() method is called by the resize method of the Applet class. The
method changes the size of the applet space to width x height. The browser must support
changing the applet space; if it doesn't, the size remains unchanged.

AppletContext Interface Audio in Applications

Chapter 14
And Then There Were

Applets

14.5 Audio in Applications

The rest of this chapter describes how to use audio in your applications. Because the audio support discussed so far has
been provided by the browser, applications that don't run in the context of a browser must use a different set of classes to
work with audio. These classes are within the sun.audio package. Although the sun.* package hierarchy is not
necessarily included by other vendors, the sun.audio classes discussed here are provided with Netscape Navigator
2.0/3.0 and Internet Explorer 3.0. Therefore, you can use these classes within applets, too. This section ends by
developing a SunAudioClip class that has an interface similar to the applet's audio interface; you can use it to
minimize coding differences between applets and applications.

AudioData

The AudioData class holds a clip of 8000 Hz µLaw audio data. This data can be used to construct an
AudioDataStream or ContinuousAudioDataStream, which can then be played with the AudioPlayer.
Constructor

public AudioData (byte buffer[])

The AudioData constructor accepts a byte array buffer and creates an instance of AudioData. The buffer
should contain 8000 Hz µLaw audio data.

Methods

There are no methods for AudioData.

AudioStream

AudioStream subclasses FilterInputStream, which extends InputStream. Using an InputStream lets
you move back and forth (rewind and fast forward) within an audio file, in addition to playing the audio data from start
to finish. Constructors

public AudioStream (InputStream in) throws IOException

The AudioStream constructor has InputStream in as its parameter and can throw IOException on
error. In the following code, we get an input stream by opening a .au file. Another common way to construct an
AudioStream is to use the stream associated with a URL through the URL's openStream() method.

FileInputStream fis = new FileInputStream ("/usr/openwin/demo/sounds/1.au");
AudioStream audiostream = new AudioStream (fis);

or:

AudioStream audiostream = new AudioStream (savedUrl.openStream());

If you are constructing the audio data yourself, you would use a ByteArrayInputStream. Whatever the
source of the data, the input stream should provide data in Sun's .au format.

Methods

public int read (byte buffer[], int offset, int length) throws IOException

The read() method for AudioStream reads an array of bytes into buffer. offset is the first element of
buffer that is used. length is the maximum number of bytes to read. This method blocks until some input is
available. read() returns the actual number of bytes read. If the end of stream is encountered and no bytes were
read, read() returns -1. Ordinarily, you read() an AudioStream only if you want to modify the audio data
in some way.

public int getLength()

The getLength() method returns the length of the audio data contained within the AudioStream, excluding
any header information in the file.

public AudioData getData () throws IOException

The getData() method of AudioStream is the most important and most frequently used. It reads the data
from the input stream and creates an AudioData instance. As the following code shows, you can create an
AudioStream and get the AudioData with one statement.

AudioData audiodata = new AudioStream (aUrl.openStream()).getData();

AudioDataStream

Constructors

public AudioDataStream (AudioData data)

This constructor creates an AudioDataStream from an AudioData object data. The resulting
AudioDataStream is a subclass of ByteArrayInputStream and can be played by the
AudioPlayer.start() method.

Methods

There are no methods for AudioDataStream.

ContinuousAudioDataStream

Constructors

public ContinuousAudioDataStream (AudioData data)

This constructor creates a continuous stream of audio from data. The resulting
ContinuousAudioDataStream is a subclass of AudioDataStream and, therefore, of
ByteArrayInputStream. It can be played by AudioPlayer.start(); whenever the player reaches the
end of the continuous audio data stream, it restarts from the beginning.

Methods

public int read ()

This read() method of ContinuousAudioDataStream overrides the read() method in
ByteArrayInputStream to rewind back to the beginning of the stream when end-of-file is reached. This
method is used by the system when it reads the InputStream; it is rarely called directly. read() never
returns -1 since it loops back to the beginning on end-of-file.

public int read (byte buffer[], int offset, int length)

This read() method of ContinuousAudioDataStream overrides the read() method in
ByteArrayInputStream to rewind back to the beginning of the stream when end-of-file is reached. This
method is used by the system when it reads the InputStream; it is rarely called directly. read() returns the
actual number of bytes read. read() never returns -1 since it loops back to the beginning on end-of-file.

AudioStreamSequence

Constructors

public AudioStreamSequence (Enumeration e)

The constructor for AudioStreamSequence accepts an Enumeration e(normally the elements of a
Vector of AudioStreams) as its sole parameter. The constructor converts the sequence of audio streams into
a single stream to be played in order. An example follows:

Vector v = new Vector ();
v.addElement (new AudioStream (url1.openStream ());
v.addElement (new AudioStream (url2.openStream ());
AudioStreamSequence audiostream = new AudioStreamSequence (v.elements ());

Methods

public int read ()

This read() method of AudioStreamSequence overrides the read() method in InputStream to start

the next stream when end-of-file is reached. This method is used by the system when it reads the InputStream
and is rarely called directly. If the end of all streams is encountered and no bytes were read, read() returns -1.
Otherwise, read() returns the character read.

public int read (byte buffer[], int offset, int length)

This read() method of AudioStreamSequence overrides the read() method in InputStream to start
the next stream when end-of-file is reached. This method is used by the system when it reads the InputStream
and is rarely called directly. read() returns the actual number of bytes read. If the end of all streams is
encountered and no bytes were read, read() returns -1.

AudioPlayer

The AudioPlayer class is the workhorse of the sun.audio package. It is used to play all the streams that were
created with the other classes. There is no constructor for AudioPlayer; it just extends Thread and provides
start() and stop() methods. Variable

public final static AudioPlayer player

player is the default audio player. This audio player is initialized automatically when the class is loaded; you
do not have to initialize it (in fact, you can't because it is final) or call the constructor yourself.

Methods

public synchronized void start (InputStream in)

The start() method starts a thread that plays the InputStream in. Stream in continues to play until there
is no more data or it is stopped. If in is a ContinuousAudioDataStream, the playing continues until
stop() (described next) is called.

public synchronized void stop (InputStream in)

The stop() method stops the player from playing InputStream in. Nothing happens if the stream in is no
longer playing or was never started.

SunAudioClip Class Definition

The class in Example 14.3 is all you need to play audio files in applications. It implements the
java.applet.AudioClip interface, so the methods and functionality will be familiar. The test program in
main() demonstrates how to use the class. Although the class itself can be used in applets, provided your users have
the sun.audio package available, it is geared towards application users.

Example 14.3: The SunAudioClip Class

import java.net.URL;
import java.io.FileInputStream;
import sun.audio.*;

public class SunAudioClip implements java.applet.AudioClip {
 private AudioData audiodata;
 private AudioDataStream audiostream;
 private ContinuousAudioDataStream continuousaudiostream;
 static int length;
 public SunAudioClip (URL url) throws java.io.IOException {
 audiodata = new AudioStream (url.openStream()).getData();
 audiostream = null;
 continuousaudiostream = null;
 }
 public SunAudioClip (String filename) throws java.io.IOException {
 FileInputStream fis = new FileInputStream (filename);
 AudioStream audioStream = new AudioStream (fis);
 audiodata = audioStream.getData();
 audiostream = null;
 continuousaudiostream = null;
 }
 public void play () {
 audiostream = new AudioDataStream (audiodata);
 AudioPlayer.player.start (audiostream);
 }
 public void loop () {
 continuousaudiostream = new ContinuousAudioDataStream (audiodata);
 AudioPlayer.player.start (continuousaudiostream);
 }
 public void stop () {
 if (audiostream != null)
 AudioPlayer.player.stop (audiostream);
 if (continuousaudiostream != null)
 AudioPlayer.player.stop (continuousaudiostream);
 }
 public static void main (String args[]) throws Exception {
 URL url1 = new URL ("http://localhost:8080/audio/1.au");
 URL url2 = new URL ("http://localhost:8080/audio/2.au");
 SunAudioClip sac1 = new SunAudioClip (url1);
 SunAudioClip sac2 = new SunAudioClip (url2);
 SunAudioClip sac3 = new SunAudioClip ("1.au");
 sac1.play ();
 sac2.loop ();
 sac3.play ();
 try {// Delay for loop
 Thread.sleep (2000);
 } catch (InterruptedException ie) {}
 sac2.stop();
 }
}

AppletStub Interface Toolkit and Peers

Chapter 16
Data Transfer

16.3 ClipboardOwner Interface

Classes that need to place objects on a clipboard must implement the ClipboardOwner interface. An
object becomes the clipboard owner by placing something on a Clipboard and remains owner as long
as that object stays on the clipboard; it loses ownership when someone else writes to the clipboard. The
ClipboardOwner interface provides a way to receive notification when you lose ownership--that is,
when the object you placed on the clipboard is replaced by something else. Methods

public abstract void lostOwnership(Clipboard clipboard, Transferable contents)

The lostOwnership() method tells the owner of contents that it is no longer on the given
clipboard. It is usually implemented as an empty stub but is available for situations in which
you have to know.

Transferable Interface Clipboard

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_02.htm

Chapter 16
Data Transfer

16.4 Clipboard

The Clipboard class is a repository for a Transferable object and can be used for cut, copy, and
paste operations. You can work with a private clipboard by creating your own instance of Clipboard,
or you can work with the system clipboard by asking the Toolkit for it:

Toolkit.getDefaultToolkit().getSystemClipboard()

When working with the system clipboard, native applications have access to information created within
Java programs and vice versa. Access to the system clipboard is controlled by the SecurityManager
and is restricted within applets.

Clipboard Methods

Variables

protected ClipboardOwner owner

The owner instance variable represents the current owner of contents. When something new
is placed on the clipboard, the previous owner is notified by a call to the lostOwnership()
method. The owner usually ignores this notification. However, the clipboard's contents are
passed back to owner in case some special processing or comparison needs to be done.

protected Transferable contents

The contents instance variable is the object currently on the clipboard; it was placed on the
clipboard by owner. To retrieve the current contents, use the getContents() method.

Constructors

public Clipboard(String name)

The constructor for Clipboard allows you to create a private clipboard named name. This
clipboard is not accessible outside of your program and has no security constraints placed upon it.

Miscellaneous methods

public String getName()

The getName() method fetches the clipboard's name. For private clipboards, this is the name
given in the constructor. The name of the system clipboard is "System".

public synchronized Transferable getContents(Object requester)

The getContents() method allows you to retrieve the current contents of the clipboard. This
is the method you would call when the user selects Paste from a menu.

Once you have the Transferable data, you try to get the data in whatever flavor you want by
calling the Transferable.getTransferData() method, possibly after calling
Transferable.isDataFlavorSupported(). The requester represents the object
that is requesting the clipboard's contents; it is usually just this, since the current object is
making the request.

public synchronized void setContents(Transferable contents, ClipboardOwner owner)

The setContents() method changes the contents of the clipboard to contents and changes
the clipboard's owner to owner. You would call this method when the user selects Cut or Copy
from a menu. The owner parameter represents the object that owns contents. This object
must implement the ClipboardOwner interface; it will be notified by a call to
lostOwnership() when something else is placed on the clipboard.

ClipboardOwner Interface StringSelection

Chapter 16
Data Transfer

16.5 StringSelection

StringSelection is a convenience class that can be used for copy and paste operations on Unicode
text strings (String). It implements both the ClipboardOwner and Transferable interfaces, so
it can be used both as the contents of the clipboard and as its owner. For example, if s is a
StringSelection, you can call Clipboard.setContents(s,s). StringSelection
supports both stringFlavor and plainTextFlavor and doesn't do anything when it loses
clipboard ownership.

StringSelection Methods

Constructors

public StringSelection(String data)

The constructor creates an instance of StringSelection containing data. You can use this
object to place the data on a clipboard.

Miscellaneous methods

public DataFlavor[] getTransferDataFlavors()

The getTransferDataFlavors() method returns a two-element DataFlavor array
consisting of DataFlavor.stringFlavor and DataFlavor.plainTextFlavor. This
means that you can paste a StringSelection as either a Java String or as plain text (i.e.,
the MIME type plain/text).

public boolean isDataFlavorSupported(DataFlavor flavor)

The isDataFlavorSupported() method is returns true if flavor is either

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_06.htm

DataFlavor.stringFlavor or DataFlavor.plainTextFlavor; it returns false
for any other flavor.

public Object getTransferData(DataFlavor flavor) throws UnsupportedFlavorException, IOException

The getTransferData() method returns an object from which you can get the data on the
clipboard; the object's type is determined by the flavor parameter. This method returns a
String containing the data on the clipboard if flavor is DataFlavor.stringFlavor; it
returns a StringBufferInputStream from which you can read the data on the clipboard if
you ask for DataFlavor.plainTextFlavor. Otherwise, getTransferData() throws
an UnsupportedFlavorException.

public void lostOwnership(Clipboard clipboard, Transferable contents)

The lostOwnership() method of StringSelection is an empty stub; it does nothing
when you lose ownership. If you want to know when you've lost ownership of string data placed
on the clipboard, write a subclass of StringSelection and override this method.

Clipboard UnsupportedFlavorException

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_06.htm

Chapter 16
Data Transfer

16.7 Reading and Writing the Clipboard

Now that you know about the different java.awt.datatransfer classes required to use the
clipboard, let's put them all together in an example. Example 16.1 creates a TextField for input
(copying), a read-only TextArea for output (pasting), and a couple of buttons to control its operation.
Figure 16.1 shows the program's user interface. When the user clicks on the Copy button or presses
Return in the TextField, the text in the TextField is copied to the Clipboard. When the user
clicks on the Paste button, the contents of the clipboard are drawn in the TextArea. Since the clipboard
is not private, you can copy or paste from anywhere on your desktop, not just this program.

Example 16.1: Using the System Clipboard

// Java 1.1 only
import java.io.*;
import java.awt.*;
import java.awt.datatransfer.*;
public class ClipMe extends Frame {
 TextField tf;
 TextArea ta;
 Button copy, paste;
 Clipboard clipboard = null;
 ClipMe() {
 super ("Clipping Example");
 add (tf = new TextField("Welcome"), "North");
 add (ta = new TextArea(), "Center");
 ta.setEditable(false);
 Panel p = new Panel();
 p.add (copy = new Button ("Copy"));
 p.add (paste = new Button ("Paste"));
 add (p, "South");
 setSize (250, 250);
 }

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_06.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_01.htm

 public static void main (String args[]) {
 new ClipMe().show();
 }
 public boolean handleEvent (Event e) {
 if (e.id == Event.WINDOW_DESTROY) {
 System.exit(0);
 return true; // never gets here
 }
 return super.handleEvent (e);
 }
 public boolean action (Event e, Object o) {
 if (clipboard == null)
 clipboard = getToolkit().getSystemClipboard();
 if ((e.target == tf) || (e.target == copy)) {
 StringSelection data;
 data = new StringSelection (tf.getText());
 clipboard.setContents (data, data);
 } else if (e.target == paste) {
 Transferable clipData = clipboard.getContents(this);
 String s;
 try {
 s = (String)(clipData.getTransferData(
 DataFlavor.stringFlavor));
 } catch (Exception ee) {
 s = ee.toString();
 }
 ta.setText(s);
 }
 return true;
 }
}

Figure 16.1: Using the system clipboard

[Graphic: Figure 16-1]

We won't say anything about how the display is set up; that should be familiar. All the interesting stuff
happens in the action method, which is called in response to a button click. We check which button
the user clicked; if the user clicked the Copy button, we read the text field tf and use it to create a new
StringSelection named data. If the user clicked the Paste button, we retrieve the data from the
clipboard by calling getContents(). This gives us an object about which (strictly speaking) we know
nothing, except that it implements Transferable. In this case, we're pretty sure that we're getting text
from the clipboard, so we call getTransferData() and ask for the data in the stringFlavor
form. We catch the exception that might occur if we're wrong about the data flavor. This program has no
way of placing anything but text on the clipboard, but there's no guarantee that the user didn't cut some
other kind of object from a native application.

Once we have our String, we call the setText() method of the TextArea to tell it about the new
string, and we are finished.

UnsupportedFlavorException Printing

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_06.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_01.htm

Chapter 18
java.applet Reference

18.2 Package diagrams

The following figures provide a visual representation of the relationships between the classes in the
AWT packages.

java.awt, as the mother of all AWT packages, is better represented by two diagrams, one for the
graphics classes and one for the component and layout classes.

Figure 18.1: Component and Layout classes of the java.awt package.

Figure 18.2: Graphics classes of java.awt package

Figure 18.3: The java.awt.image package

Figure 18.4: The java.awt.datatransfer package

Figure 18.5: The java.awt.event package

Figure 18.6: The java.awt.peer package

Figure 18.7: The java.applet package

Introduction to the Reference
Chapters

AWTError

Chapter 18
java.applet Reference

Applet

Name

Applet

Description

The Applet class provides the framework for delivering Java programs within web pages.

Class Definition

public class java.applet.Applet
 extends java.awt.Panel {
 // Constructors
 public Applet();
 // Instance Methods
 public void destroy();
 public AppletContext getAppletContext();
 public String getAppletInfo();
 public AudioClip getAudioClip (URL url);
 public AudioClip getAudioClip (URL url, String filename);

 public URL getCodeBase();
 public URL getDocumentBase();
 public Image getImage (URL url);
 public Image getImage (URL url, String filename);

 public Locale getLocale();
 public String getParameter (String name);
 public String[][] getParameterInfo();
 public void init();
 public boolean isActive();
 public void play (URL url);
 public void play (URL url, String filename);
 public void resize (int width, int height);
 public void resize (Dimension dim);
 public final void setStub (AppletStub stub);
 public void showStatus (String message);
 public void start();
 public void stop();
}

Constructors

Applet

public Applet()

Description

Constructs an Applet object.

Instance Methods

destroy

public void destroy()

Description

Called when the browser determines that it doesn't need to keep the applet around anymore.

getAppletContext

public AppletContext getAppletContext()

Returns

The current AppletContext of the applet.

getAppletInfo

public String getAppletInfo()

Returns

A short information string about the applet to be shown to the user.

getAudioClip

public AudioClip getAudioClip (URL url)

Parameters

url

URL of an audio file.

Returns

Object that implements the AudioClip interface for playing audio files.

Description

Fetches an audio file to play with the AudioClip interface.

public AudioClip getAudioClip (URL url , String filename)

Parameters

url

Base URL of an audio file.

filename

Specific file, relative to url, that contains an audio file.

Returns

Object that implements AudioClip interface for playing audio file.

Description

Fetches an audio file to play with the AudioClip interface.

getCodeBase

public URL getCodeBase()

Returns

The complete URL of the .class file that contains the applet.

getDocumentBase

public URL getDocumentBase()

Returns

The complete URL of the .html file that loaded the applet.

getImage

public Image getImage (URL url)

Parameters

url

URL of an image file.

Returns

Image to be displayed.

Description

Initiates the image loading process for the file located at the specified location.

public Image getImage (URL url, String filename)

Parameters

url

Base URL of an image file.

filename

Specific file, relative to url, that contains an image file.

Returns

Image to be displayed.

Description

Initiates the image loading process for the file located at the specified location.

getLocale

public Locale getLocale()

Returns

Applet's locale.

Overrides

Component.getLocale()

Description

Used for internationalization support.

getParameter

public String getParameter (String name)

Parameters

name

Name of parameter to get.

Returns

The value associated with the given parameter in the HTML file, or null.

Description

Allows you to get parameters from within the <APPLET> tag of the .html file that loaded the
applet.

getParameterInfo

public String[][] getParameterInfo()

Returns

Overridden to provide a series of three-string arrays that describes the parameters this applet
reads.

init

public void init()

Description

Called by the system when the applet is first loaded.

isActive

public boolean isActive()

Returns

true if the applet is active, false otherwise.

play

public void play (URL url)

Parameters

url

URL of an audio file .

Description

Plays an audio file once.

public void play (URL url, String filename)

Parameters

url

Base URL of an audio file .

filename

Specific file, relative to url, that contains an audio file.

Description

Plays an audio file once.

resize

public void resize(int width, int height)

Parameters

width

New width for the Applet.

height

New height for the Applet.

Description

Changes the size of the applet.

public void resize (Dimension dim)

Parameters

dim

New dimensions for the applet.

Description

Changes the size of the applet.

setStub

public final void setStub (AppletStub stub)

Parameters

stub

Platform specific stubfor environment.

Description

Called by the system to setup AppletStub.

showStatus

public void showStatus (String message)

Parameters

message

Message to display to user.

Description

Displays a message on the status line of the browser.

start

public void start()

Description

Called by the system every time the applet is displayed.

stop

public void stop()

Description

Called by the system when it wants the applet to stop execution; typically, every time the user
leaves the page that includes the applet.

See Also

AppletContext, AppletStub, AudioClip, Container, Dimension, Image, Locale,
Panel, String, URL

Package diagrams AppletContext

Chapter 18
java.applet Reference

AppletContext

Name

AppletContext

Description

AppletContext is an interface that provides the means to control the browser environment in which
the applet is running.

Interface Definition

public abstract interface java.applet.AppletContext {
 // Interface Methods
 public abstract Applet getApplet (String name);
 public abstract Enumeration getApplets();
 public abstract AudioClip getAudioClip (URL url);
 public abstract Image getImage (URL url);
 public abstract void showDocument (URL url);
 public abstract void showDocument (URL url, String frame);
 public abstract void showStatus (String message);
}

Interface Methods

getApplet

public abstract Applet getApplet (String name)

Parameters

name

Name of applet to locate.

Returns

Applet fetched.

Description

Gets a reference to another executing applet.

getApplets

public abstract Enumeration getApplets()

Returns

List of applets executing.

Description

Gets references to all executing applets.

getAudioClip

public abstract AudioClip getAudioClip (URL url)

Parameters

url

Location of an audio file.

Returns

AudioClip fetched.

Description

Loads an audio file.

getImage

public abstract Image getImage (URL url)

Parameters

url

Location of an image file.

Returns

Image fetched.

Description

Loads an image file.

showDocument

public abstract void showDocument (URL url)

Parameters

url

New web page to display.

Description

Changes the displayed web page.

public abstract void showDocument (URL url, String frame)

Parameters

url

New web page to display.

frame

Name of the frame in which to display the new page.

Description

Displays a web page in another frame.

showStatus

public abstract void showStatus (String message)

Parameters

message

Message to display.

Description

Displays a message on the status line of the browser.

See Also

Applet, AudioClip, Enumeration, Image, Object, String, URL

Applet AppletStub

Chapter 18
java.applet Reference

AppletStub

Name

AppletStub

[Graphic: Figure from the text]

Description

AppletStub is an interface that provides the means to get information from the run-time browser
environment.

Interface Definition

public abstract interface java.applet.AppletStub {
 // Interface Methods
 public abstract void appletResize (int width, int height);
 public abstract AppletContext getAppletContext();
 public abstract URL getCodeBase();
 public abstract URL getDocumentBase();
 public abstract String getParameter (String name);
 public abstract boolean isActive();
}

Interface Methods

appletResize

public abstract void appletResize (int width, int height)

Parameters

width

Requested new width for applet.

height

Requested new height for applet.

Description

Changes the size of the applet.

getAppletContext

public abstract AppletContext getAppletContext()

Returns

Current AppletContext of the applet.

getCodeBase

public abstract URL getCodeBase()

Returns

Complete URL for the applet's .class file.

getDocumentBase

public abstract URL getDocumentBase()

Returns

Complete URL for the applet's .html file.

getParameter

public abstract String getParameter (String name)

Parameters

name

Name of a <PARAM> tag.

Returns

Value associated with the parameter.

Description

Gets a parameter value from the <PARAM> tag(s) of the applet.

isActive

public abstract boolean isActive()

Returns

true if the applet is active, false otherwise

Description

Returns current state of the applet.

See Also

AppletContext, Object, String, URL

AppletContext AudioClip

Chapter 18
java.applet Reference

AudioClip

Name

AudioClip

Description

AudioClip is an interface for playing audio files.

Interface Definition

public abstract interface java.applet.AudioClip {
 // Interface Methods
 public abstract void loop();
 public abstract void play();
 public abstract void stop();
}

Interface Methods

loop

public abstract void loop()

Description

Plays an audio clip continuously.

play

public abstract void play()

Description

Plays an audio clip once from the beginning.

stop

public abstract void stop()

Description

Stops playing an audio clip.

See Also

Object

AppletStub AWTError

Chapter 19
java.awt Reference

AWTEvent

Name

AWTEvent

Description

The root class of all AWT events. Subclasses of this class are the replacement for java.awt.Event,
which is only used for the Java 1.0.2 event model. In Java 1.1, event objects are passed from event source
components to objects implementing a corresponding listener interface. Some event sources have a
corresponding interface, too. For example, AdjustmentEvents are passed from Adjustable
objects to AdjustmentListeners. Some event types do not have corresponding interfaces; for
example, ActionEvents are passed from Buttons to ActionListeners, but there is no
"Actionable" interface that Button implements.

Class Definition

public abstract class java.awt.AWTEvent
 extends java.util.EventObject {
 // Constants
 public final static long ACTION_EVENT_MASK;
 public final static long ADJUSTMENT_EVENT_MASK;
 public final static long COMPONENT_EVENT_MASK;
 public final static long CONTAINER_EVENT_MASK;
 public final static long FOCUS_EVENT_MASK;
 public final static long ITEM_EVENT_MASK;
 public final static long KEY_EVENT_MASK;
 public final static long MOUSE_EVENT_MASK;
 public final static long MOUSE_MOTION_EVENT_MASK;
 public final static long RESERVED_ID_MAX;
 public final static long TEXT_EVENT_MASK;
 public final static long WINDOW_EVENT_MASK;
 // Variables
 protected boolean consumed;
 protected int id;
 // Constructors
 public AWTEvent (Event event);
 public AWTEvent (Object source, int id);
 // Instance Methods
 public int getID();
 public String paramString();
 public String toString();
 // Protected Instance Methods
 protected void consume();
 protected boolean isConsumed();
}

Constants

ACTION_EVENT_MASK

public static final long ACTION_EVENT_MASK

The mask for action events.

ADJUSTMENT_EVENT_MASK

public static final long ADJUSTMENT_EVENT_MASK

The mask for adjustment events.

COMPONENT_EVENT_MASK

public static final long COMPONENT_EVENT_MASK

The mask for component events.

CONTAINER_EVENT_MASK

public static final long CONTAINER_EVENT_MASK

The mask for container events.

FOCUS_EVENT_MASK

public static final long FOCUS_EVENT_MASK

The mask for focus events.

ITEM_EVENT_MASK

public static final long ITEM_EVENT_MASK

The mask for item events.

KEY_EVENT_MASK

public static final long KEY_EVENT_MASK

The mask for key events.

MOUSE_EVENT_MASK

public static final long MOUSE_EVENT_MASK

The mask for mouse events.

MOUSE_MOTION_EVENT_MASK

public static final long MOUSE_MOTION_EVENT_MASK

The mask for mouse motion events.

RESERVED_ID_MAX

public static final int

The maximum reserved event id.

TEXT_EVENT_MASK

public static final long TEXT_EVENT_MASK

The mask for text events.

WINDOW_EVENT_MASK

public static final long WINDOW_EVENT_MASK

The mask for window events.

Variables

consumed

protected boolean consumed

If consumed is true, the event will not be sent back to the peer. Semantic events will never be sent
back to a peer; thus consumed is always true for semantic events.

id

protected int id

The type ID of this event.

Constructors

AWTEvent

public AWTEvent (Event event)

Parameters

event

A version 1.0.2 java.awt.Event object.

Description

Constructs a 1.1 java.awt.AWTEvent derived from a 1.0.2 java.awt.Event object.

public AWTEvent (Object source, int id)

Parameters

source

The object that the event originated from.

id

An event type ID.

Description

Constructs an AWTEvent object.

Instance Methods

getID

public int getID()

Returns

The type ID of the event.

paramString

public String paramString()

Returns

A string with the current settings of AWTEvent.

Description

Helper method for toString() that generates a string of current settings.

toString

public String toString()

Returns

A string representation of the AWTEvent object.

Overrides

Object.toString()

Protected Instance Methods

consume

protected void consume()

Description

Consumes the event so it is not sent back to its source.

isConsumed

public boolean isConsumed()

Returns

A flag indicating whether this event has been consumed.

See Also

ActionEvent, AdjustmentEvent, ComponentEvent, Event, EventObject,
FocusEvent, ItemEvent, KeyEvent, MouseEvent, WindowEvent

AWTError AWTEventMulticaster

Chapter 19
java.awt Reference

AWTEventMulticaster

Name

AWTEventMulticaster

Description

This class multicasts events to event listeners. Each multicaster has two listeners, cunningly named a and b. When an
event source calls one of the listener methods of the multicaster, the multicaster calls the same listener method on both a
and b. Multicasters are built into trees using the static add() and remove() methods. In this way a single event can
be sent to many listeners.

Static methods make it easy to implement event multicasting in component subclasses. Each time an

add<type>Listener() function is called in the component subclass, call the corresponding
AWTEventMulticaster.add() method to chain together (or "tree up") listeners. Similarly, when a
remove<type>Listener() function is called, AWTEventMulticaster.remove() can be called to remove a
chained listener.

Class Definition

public class java.awt.AWTEventMulticaster
 extends java.lang.Object
 implements java.awt.event.ActionListener, java.awt.event.AdjustmentListener,
 java.awt.event.ComponentListener, java.awt.event.ContainerListener,
 java.awt.event.FocusListener, java.awt.event.ItemListener,
 java.awt.event.KeyListener, java.awt.event.MouseListener,
 java.awt.event.MouseMotionListener, java.awt.event.TextListener,
 java.awt.event.WindowListener {
 // Variables
 protected EventListener a;
 protected EventListener b;
 // Constructors
 protected AWTEventMulticaster(EventListener a, EventListener b);
 // Class Methods
 public static ActionListener add(ActionListener a, ActionListener b);
 public static AdjustmentListener add(AdjustmentListener a,
 AdjustmentListener b);
 public static ComponentListener add(ComponentListener a,
 ComponentListener b);
 public static ContainerListener add(ContainerListener a,
 ContainerListener b);
 public static FocusListener add(FocusListener a, FocusListener b);
 public static ItemListener add(ItemListener a, ItemListener b);
 public static KeyListener add(KeyListener a, KeyListener b);
 public static MouseListener add(MouseListener a, MouseListener b);
 public static MouseMotionListener add(MouseMotionListener a,
 MouseMotionListener b);
 public static TextListener add(TextListener a, TextListener b);
 public static WindowListener add(WindowListener a, WindowListener b);
 protected static EventListener addInternal(EventListener a, EventListener b);
 public static ActionListener remove(ActionListener l, ActionListener oldl);
 public static AdjustmentListener remove(AdjustmentListener l,
 AdjustmentListener oldl);
 public static ComponentListener remove(ComponentListener l,
 ComponentListener oldl);
 public static ContainerListener remove(ContainerListener l,
 ContainerListener oldl);
 public static FocusListener remove(FocusListener l, FocusListener oldl);
 public static ItemListener remove(ItemListener l, ItemListener oldl);
 public static KeyListener remove(KeyListener l, KeyListener oldl);
 public static MouseListener remove(MouseListener l, MouseListener oldl);
 public static MouseMotionListener remove(MouseMotionListener l,

 MouseMotionListener oldl);
 public static TextListener remove(TextListener l, TextListener oldl);
 public static WindowListener remove(WindowListener l, WindowListener;
 protected static EventListener removeInternal(EventListener l,
 EventListener oldl);
 // Instance Methods
 public void actionPerformed(ActionEvent e);
 public void adjustmentValueChanged(AdjustmentEvent e);
 public void componentAdded(ContainerEvent e);
 public void componentHidden(ComponentEvent e);
 public void componentMoved(ComponentEvent e);
 public void componentRemoved(ContainerEvent e);
 public void componentResized(ComponentEvent e);
 public void componentShown(ComponentEvent e);
 public void focusGained(FocusEvent e);
 public void focusLost(FocusEvent e);
 public void itemStateChanged(ItemEvent e);
 public void keyPressed(KeyEvent e);
 public void keyReleased(KeyEvent e);
 public void keyTyped(KeyEvent e);
 public void mouseClicked(MouseEvent e);
 public void mouseDragged(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);
 public void mouseMoved(MouseEvent e);
 public void mousePressed(MouseEvent e);
 public void mouseReleased(MouseEvent e);
 public void textValueChanged(TextEvent e);
 public void windowActivated(WindowEvent e);
 public void windowClosed(WindowEvent e);
 public void windowClosing(WindowEvent e);
 public void windowDeactivated(WindowEvent e);
 public void windowDeiconified(WindowEvent e);
 public void windowIconified(WindowEvent e);
 public void windowOpened(WindowEvent e);
 // Protected Instance Methods
 protected EventListener remove(EventListener oldl);
 protected void saveInternal(ObjectOutputStream s, String k) throws IOException;
}

Variables

a

protected EventListener a

One of the EventListeners this AWTEventMulticaster sends events to.

b

protected EventListener b

One of the EventListeners this AWTEventMulticaster sends events to.

Constructors

AWTEventMulticaster

protected AWTEventMulticaster (EventListener a, EventListener b)

Parameters

a

A listener that receives events.

b

A listener that receives events.

Description

Constructs an AWTEventMulticaster that sends events it receives to the supplied listeners. The constructor
is protected because it is only the class methods of AWTEventMulticaster that ever instantiate this class.

Class Methods

add

public static ActionListener add (ActionListener a, ActionListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

public static AdjustmentListener add (AdjustmentListener a, AdjustmentListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

public static ComponentListener add (ComponentListener a, ComponentListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

public static ContainerListener add (ContainerListener a, ContainerListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

public static FocusListener add (FocusListener a, FocusListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

public static ItemListener add (ItemListener a, ItemListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

public static KeyListener add (KeyListener a, KeyListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

public static MouseListener add (MouseListener a, MouseListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

public static MouseMotionListener add (MouseMotionListener a, MouseMotionListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

public static TextListener add (TextListener a, TextListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

public static WindowListener add (WindowListener a, WindowListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

addInternal

public static EventListener addInternal (EventListener a, EventListener b)

Parameters

a

An event listener.

b

An event listener.

Returns

A listener object that passes events to a and b.

Description

This method is a helper for the add() methods.

remove

public static ActionListener remove (ActionListener l, ActionListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

public static AdjustmentListener remove (AdjustmentListener l, AdjustmentListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

public static ComponentListener remove (ComponentListener l, ComponentListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

public static ContainerListener remove (ContainerListener l, ContainerListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

public static FocusListener remove (FocusListener l, FocusListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

public static ItemListener remove (ItemListener l, ItemListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

public static KeyListener remove (KeyListener l, KeyListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

public static MouseListener remove (MouseListener l, MouseListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

public static MouseMotionListener remove (MouseMotionListener l, MouseMotionListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

public static TextListener remove (TextListener l, TextListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

public static WindowListener remove (WindowListener l, WindowListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

public static WindowListener remove (WindowListener l, WindowListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

removeInternal

public static EventListener removeInternal (EventListener l, EventListener oldl)

Parameters

l

An event listener.

oldl

An event listener.

Returns

A listener object that multicasts to l but not oldl.

Description

This method is a helper for the remove() methods.

Instance Methods

actionPerformed

public void actionPerformed (ActionEvent e)

Parameters

e

The action event that occurred.

Description

Handles the event by passing it on to listeners a and b.

adjustmentValueChanged

public void adjustmentValueChanged (AdjustmentEvent e)

Parameters

e

The adjustment event that occurred.

Description

Handles the event by passing it on to listeners a and b.

componentAdded

public void componentAdded (ContainerEvent e)

Parameters

e

The container event that occurred.

Description

Handles the event by passing it on to listeners a and b.

componentHidden

public void componentHidden (ComponentEvent e)

Parameters

e

The component event that occurred.

Description

Handles the event by passing it on to listeners a and b.

componentMoved

public void componentMoved (ComponentEvent e)

Parameters

e

The component event that occurred.

Description

Handles the event by passing it on to listeners a and b.

componentRemoved

public void componentRemoved (ContainerEvent e)

Parameters

e

The container event that occurred.

Description

Handles the event by passing it on to listeners a and b.

componentResized

public void componentResized (ComponentEvent e)

Parameters

e

The component event that occurred.

Description

Handles the event by passing it on to listeners a and b.

componentShown

public void componentShown (ComponentEvent e)

Parameters

e

The component event that occurred.

Description

Handles the event by passing it on to listeners a and b.

focusGained

public void focusGained (FocusEvent e)

Parameters

e

The focus event that occurred.

Description

Handles the event by passing it on to listeners a and b.

focusLost

public void focusLost (FocusEvent e)

Parameters

e

The focus event that occurred.

Description

Handles the event by passing it on to listeners a and b.

itemStateChanged

public void itemStateChanged (ItemEvent e)

Parameters

e

The item event that occurred.

Description

Handles the event by passing it on to listeners a and b.

keyPressed

public void keyPressed (KeyEvent e)

Parameters

e

The key event that occurred.

Description

Handles the event by passing it on to listeners a and b.

keyReleased

public void keyReleased (KeyEvent e)

Parameters

e

The key event that occurred.

Description

Handles the event by passing it on to listeners a and b.

keyTyped

public void keyTyped (KeyEvent e)

Parameters

e

The key event that occurred.

Description

Handles the event by passing it on to listeners a and b.

mouseClicked

public void mouseClicked (MouseEvent e)

Parameters

e

The mouse event that occurred.

Description

Handles the event by passing it on to listeners a and b.

mouseDragged

public void mouseDragged (MouseEvent e)

Parameters

e

The mouse event that occurred.

Description

Handles the event by passing it on to listeners a and b.

mouseEntered

public void mouseEntered (MouseEvent e)

Parameters

e

The mouse event that occurred.

Description

Handles the event by passing it on to listeners a and b.

mouseExited

public void mouseExited (MouseEvent e)

Parameters

e

The mouse event that occurred.

Description

Handles the event by passing it on to listeners a and b.

mouseMoved

public void mouseMoved (MouseEvent e)

Parameters

e

The mouse event that occurred.

Description

Handles the event by passing it on to listeners a and b.

mousePressed

public void mousePressed (MouseEvent e)

Parameters

e

The mouse event that occurred.

Description

Handles the event by passing it on to listeners a and b.

mouseReleased

public void mouseReleased (MouseEvent e)

Parameters

e

The mouse event that occurred.

Description

Handles the event by passing it on to listeners a and b.

textValueChanged

public void textValueChanged (TextEvent e)

Parameters

e

The text event that occurred.

Description

Handles the event by passing it on to listeners a and b.

windowActivated

public void windowActivated (WindowEvent e)

Parameters

e

The window event that occurred.

Description

Handles the event by passing it on to listeners a and b.

windowClosed

public void windowClosed (WindowEvent e)

Parameters

e

The window event that occurred.

Description

Handles the event by passing it on to listeners a and b.

windowClosing

public void windowClosing (WindowEvent e)

Parameters

e

The window event that occurred.

Description

Handles the event by passing it on to listeners a and b.

windowDeactivated

public void windowDeactivated (WindowEvent e)

Parameters

e

The window event that occurred.

Description

Handles the event by passing it on to listeners a and b.

windowDeiconified

public void windowDeiconified (WindowEvent e)

Parameters

e

The window event that occurred.

Description

Handles the event by passing it on to listeners a and b.

windowIconified

public void windowIconified (WindowEvent e)

Parameters

e

The window event that occurred.

Description

Handles the event by passing it on to listeners a and b.

windowOpened

public void windowOpened (WindowEvent e)

Parameters

e

The window event that occurred.

Description

Handles the event by passing it on to listeners a and b.

Protected Instance Methods

remove

protected EventListener remove(EventListener oldl)

Parameters

oldl

The listener to remove.

Returns

The resulting EventListener.

Description

This method removes oldl from the AWTEventMulticaster and returns the resulting listener.

See Also

ActionEvent, AdjustmentEvent, ComponentEvent, Event, EventListener, EventObject,
FocusEvent, ItemEvent, KeyEvent, MouseEvent, WindowEvent

AWTEvent AWTException

Chapter 19
java.awt Reference

AWTException

Name

AWTException

[Graphic: Figure from the text]

Description

An AWTException; thrown to indicate an exceptional condition; must be caught or declared in a
throws clause.

Class Definition

public class java.awt.AWTException
 extends java.lang.Exception {

 // Constructors
 public AWTException (String message);
}

Constructors

AWTException

public AWTException (String message)

Parameters

message

Detailed message.

See Also

Exception, String

AWTEventMulticaster Adjustable

Chapter 19
java.awt Reference

Adjustable

Name

Adjustable

[Graphic: Figure from the text]

Description

The Adjustable interface is useful for scrollbars, sliders, dials, and other components that have an
adjustable numeric value. Classes that implement the Adjustable interface should send
AdjustmentEvent objects to listeners that have registered via
addAdjustmentListener(AdjustmentListener).

Interface Definition

public abstract interface java.awt.Adjustable {
 // Constants
 public final static int HORIZONTAL = 0;
 public final static int VERTICAL = 1;

 // Interface Methods
 public abstract void addAdjustmentListener (AdjustmentListener l);
 public abstract int getBlockIncrement();
 public abstract int getMaximum();
 public abstract int getMinimum();

 public abstract int getOrientation();
 public abstract int getUnitIncrement();
 public abstract int getValue();
 public abstract int getVisibleAmount();
 public abstract void removeAdjustmentListener (AdjustmentListener l);
 public abstract void setBlockIncrement (int b);
 public abstract void setMaximum (int max);
 public abstract void setMinimum (int min);
 public abstract void setUnitIncrement (int u);
 public abstract void setValue (int v);
 public abstract void setVisibleAmount (int v);
}

Constants

HORIZONTAL

public static final int HORIZONTAL

A constant representing horizontal orientation.

VERTICAL

public static final int VERTICAL

A constant representing vertical orientation.

Interface Methods

addAdjustmentListener

public abstract void addAdjustmentListener (ActionListener l)

Parameters

l

An object that implements the AdjustmentListener interface.

Description

Add a listener for adjustment event.

getBlockIncrement

public abstract int getBlockIncrement()

Returns

The amount to scroll when a paging area is selected.

getMaximum

public abstract int getMaximum()

Returns

The maximum value that the Adjustable object can take.

getMinimum

public abstract int getMinimum()

Returns

The minimum value that the Adjustable object can take.

getOrientation

public abstract int getOrientation()

Returns

A value representing the direction of the Adjustable object.

getUnitIncrement

public abstract int getUnitIncrement()

Returns

The unit amount to scroll.

getValue

public abstract int getValue()

Returns

The current setting for the Adjustable object.

getVisibleAmount

public abstract int getVisibleAmount()

Returns

The current visible setting (i.e., size) for the Adjustable object.

removeAdjustmentListener

public abstract void removeAdjustmentListener (AdjustmentListener l)

Parameters

l

One of the object's AdjustmentListeners.

Description

Remove an adjustment event listener.

setBlockIncrement

public abstract void setBlockIncrement (int b)

Parameters

b

New block increment amount.

Description

Changes the block increment amount for the Adjustable object.

setMaximum

public abstract void setMaximum (int max)

Parameters

max

New maximum value.

Description

Changes the maximum value for the Adjustable object.

setMinimum

public abstract void setMinimum (int min)

Parameters

min

New minimum value.

Description

Changes the minimum value for the Adjustable object.

setUnitIncrement

public abstract void setUnitIncrement (int u)

Parameters

u

New unit increment amount.

Description

Changes the unit increment amount for the Adjustable object.

setValue

public abstract void setValue (int v)

Parameters

v

New value.

Description

Changes the current value of the Adjustable object.

setVisibleAmount

public abstract void setVisibleAmount (int v)

Parameters

v

New amount visible.

Description

Changes the current visible amount of the Adjustable object.

See Also

AdjustmentEvent, AdjustmentListener, Scrollbar

AWTException BorderLayout

Chapter 19
java.awt Reference

BorderLayout

Name

BorderLayout

Description

BorderLayout is a LayoutManager that provides the means to lay out components along the edges of
a container. It divides the container into five regions, named North, East, South, West, and Center. Normally
you won't call the LayoutManager's methods yourself. When you add() a Component to a
Container, the Container calls the addLayoutComponent() method of its LayoutManager.

Class Definition

public class java.awt.BorderLayout
 extends java.lang.Object
 implements java.awt.LayoutManager2, java.io.Serializable {
 // Constants

 public final static String CENTER;

 public final static String EAST;

 public final static String NORTH;

 public final static String SOUTH;

 public final static String WEST;

 // Constructors
 public BorderLayout();
 public BorderLayout (int hgap, int vgap);

 // Instance Methods

 public void addLayoutComponent (Component comp, Object constraints);

 public void addLayoutComponent (String name, Component component);

 public int getHgap();

 public abstract float getLayoutAlignmentX(Container target);

 public abstract float getLayoutAlignmentY(Container target);

 public int getVgap();

 public abstract void invalidateLayout(Container target);

 public void layoutContainer (Container target);

 public abstract Dimension maximumLayoutSize(Container target);
 public Dimension minimumLayoutSize (Container target);
 public Dimension preferredLayoutSize (Container target);
 public void removeLayoutComponent (Component component);

 public void setHgap (int hgap);

 public void setVgap (int vgap);
 public String toString();
}

Constants

CENTER

public final static String CENTER

A constant representing center orientation.

EAST

public final static String EAST

A constant representing east orientation.

NORTH

public final static String NORTH

A constant representing north orientation.

SOUTH

public final static String SOUTH

A constant representing south orientation.

WEST

public final static String WEST

A constant representing west orientation.

Constructors

BorderLayout

public BorderLayout()

Description

Constructs a BorderLayout object.

public BorderLayout (int hgap, int vgap)

Parameters

hgap

Horizontal space between each component in the container.

vgap

Vertical space between each component in the container.

Description

Constructs a BorderLayout object with the values specified as the gaps between each component
in the container managed by this instance of BorderLayout.

Instance Methods

addLayoutComponent

public void addLayoutComponent (Component comp, Object constraints)

Parameters

comp

The component being added.

constraints

An object describing the constraints on this component.

Implements

LayoutManager2.addLayoutComponent()

Description

Adds the component comp to a container subject to the given constraints. This is a more
general version of addLayoutComponent(String, Component) method. It corresponds to
java.awt.Container's add(Component, Object) method. In practice, it is used the same
in version 1.1 as in Java 1.0.2, except with the parameters swapped:

Panel p = new Panel(new BorderLayout());
p.add(new Button("OK"), BorderLayout.SOUTH);

addLayoutComponent

public void addLayoutComponent (String name, Component component)

Parameters

name

Name of region to add component to.

component

Actual component being added.

Implements

LayoutManager.addLayoutComponent()

Description

Adds a component to a container in region name. This has been replaced in version 1.1 with the
more general addLayoutComponent(Component, Object).

getHgap

public int getHgap()

Returns

The horizontal gap for this BorderLayout instance.

getLayoutAlignmentX

public abstract float getLayoutAlignmentX (Container target)

Parameters

target

The container to inspect.

Returns

The value .5 for all containers.

Description

This method returns the preferred alignment of the given container target. A return value of 0 is
left aligned, .5 is centered, and 1 is right aligned.

getLayoutAlignmentY

public abstract float getLayoutAlignmentY (Container target)

Parameters

target

The container to inspect.

Returns

The value .5 for all containers.

Description

This method returns the preferred alignment of the given container target. A return value of 0 is
top aligned, .5 is centered, and 1 is bottom aligned.

getVgap

public int getVgap()

Returns

The vertical gap for this BorderLayout instance.

invalidateLayout

public abstract void invalidateLayout (Container target)

Parameters

target

The container to invalidate.

Description

Does nothing.

layoutContainer

public void layoutContainer (Container target)

Parameters

target

The container that needs to be redrawn.

Implements

LayoutManager.layoutContainer()

Description

Draws components contained within target.

maximumLayoutSize

public abstract Dimension maximumLayoutSize (Container target)

Parameters

target

The container to inspect.

Returns

A Dimension whose horizontal and vertical components are Integer.MAX_VALUE.

Description

For BorderLayout, a maximal Dimension is always returned.

minimumLayoutSize

public Dimension minimumLayoutSize (Container target)

Parameters

target

The container whose size needs to be calculated.

Returns

Minimum Dimension of the container target.

Implements

LayoutManager.minimumLayoutSize()

Description

Calculates minimum size of target. container.

preferredLayoutSize

public Dimension preferredLayoutSize (Container target)

Parameters

target

The container whose size needs to be calculated.

Returns

Preferred Dimension of the container target.

Implements

LayoutManager.preferredLayoutSize()

Description

Calculates preferred size of target container.

removeLayoutComponent

public void removeLayoutComponent (Component component)

Parameters

component

Component to stop tracking.

Implements

LayoutManager.removeLayoutComponent()

Description

Removes component from any internal tracking systems.

setHgap

public void setHgap (int hgap)

Parameters

hgap

The horizontal gap value.

Description

Sets the horizontal gap between components.

setVgap

public void setVgap (int vgap)

Parameters

vgap

The vertical gap value.

Description

Sets the vertical gap between components.

toString

public String toString()

Returns

A string representation of the BorderLayout object.

Overrides

Object.toString()

See Also

Component, Container, Dimension, LayoutManager, LayoutManager2, Object, String

Adjustable Button

Chapter 19
java.awt Reference

Button

Name

Button

[Graphic: Figure from the text]

Description

The Button is the familiar labeled button object. It inherits most of its functionality from Component.
For example, to change the font of the Button, you would use Component's setFont() method.
The Button sends java.awt.event.ActionEvent objects to its listeners when it is pressed.

Class Definition

public class java.awt.Button
 extends java.awt.Component {

 // Constructors
 public Button();
 public Button (String label);

 // Instance Methods

 public void addActionListener (ActionListener l);
 public void addNotify();

 public String getActionCommand();
 public String getLabel();

 public void removeActionListener (ActionListener l);

 public void setActionCommand (String command);
 public synchronized void setLabel (String label);

 // Protected Instance Methods
 protected String paramString();

 protected void processActionEvent (ActionEvent e);

 protected void processEvent (AWTEvent e);
}

Constructors

Button

public Button()

Description

Constructs a Button object with no label.

public Button (String label)

Parameters

label

The text for the label on the button

Description

Constructs a Button object with text of label.

Instance Methods

addActionListener

public void addActionListener (ActionListener l)

Parameters

l

An object that implements the ActionListener interface.

Description

Add a listener for the action event.

addNotify

public void addNotify()

Overrides

Component.addNotify()

Description

Creates Button's peer.

getActionCommand

public String getActionCommand()

Returns

Current action command string.

Description

Returns the string used for the action command.

getLabel

public String getLabel()

Returns

Text of the Button's label.

removeActionListener

public void removeActionListener (ActionListener l)

Parameters

l

One of this Button's ActionListeners.

Description

Remove an action event listener.

setActionCommand

public void setActionCommand (String command)

Parameters

command

New action command string.

Description

Specify the string used for the action command.

setLabel

public synchronized void setLabel (String label)

Parameters

label

New text for label of Button.

Description

Changes the Button's label to label.

Protected Instance Methods

paramString

protected String paramString()

Returns

String with current settings of Button.

Overrides

Component.paramString()

Description

Helper method for toString() used to generate a string of current settings.

processActionEvent

protected void processActionEvent (ActionEvent e)

Parameters

e

The action event to process.

Description

Action events are passed to this method for processing. Normally, this method is called by
processEvent().

processEvent

protected void processEvent (AWTEvent e)

Parameters

e

The event to process.

Description

Low level AWTEvents are passed to this method for processing.

See Also

ActionListener, Component, String

BorderLayout Canvas

Chapter 19
java.awt Reference

Canvas

Name

Canvas

[Graphic: Figure from the text]

Description

Canvas is a Component that provides a drawing area and is often used as a base class for new
components.

Class Definition

public class java.awt.Canvas
 extends java.awt.Component {

 // Constructors
 public Canvas();

 // Instance Methods
 public void addNotify();
 public void paint (Graphics g);
}

Constructors

Canvas

public Canvas()

Description

Constructs a Canvas object.

Instance Methods

addNotify

public void addNotify()

Overrides

Component.addNotify()

Description

Creates Canvas's peer.

paint

public void paint (Graphics g)

Parameters

g

Graphics context of component.

Description

Empty method to be overridden in order to draw something in graphics context.

See Also

Component, Graphics

Button CardLayout

Chapter 19
java.awt Reference

CardLayout

Name

CardLayout

[Graphic: Figure from the text]

Description

The CardLayout LayoutManager provides the means to manage multiple components, displaying
one at a time. Components are displayed in the order in which they are added to the layout, or in an
arbitrary order by using an assignable name.

Class Definition

public class java.awt.CardLayout
 extends java.lang.Object
 implements java.awt.LayoutManager2, java.io.Serializable {

 // Constructors
 public CardLayout();
 public CardLayout (int hgap, int vgap);

 // Instance Methods
 public void addLayoutComponent (Component comp,

 Object constraints);

 public void addLayoutComponent (String name, Component component);
 public void first (Container parent);

 public int getHgap();

 public abstract float getLayoutAlignmentX(Container target);

 public abstract float getLayoutAlignmentY(Container target);

 public int getVgap();

 public abstract void invalidateLayout(Container target);
 public void last (Container parent);
 public void layoutContainer (Container target);

 public abstract Dimension maximumLayoutSize(Container target);
 public Dimension minimumLayoutSize (Container target);
 public void next (Container parent);
 public Dimension preferredLayoutSize (Container target);
 public void previous (Container parent);
 public void removeLayoutComponent (Component component);

 public void setHgap (int hgap);

 public void setVgap (int vgap);
 public void show (Container parent, String name);
 public String toString();
}

Constructors

CardLayout

public CardLayout()

Description

Constructs a CardLayout object.

public CardLayout (int hgap, int vgap)

Parameters

hgap

Horizontal space around left and right of container

vgap

Vertical space around top and bottom of container

Description

Constructs a CardLayout object with the values specified as the gaps around the container
managed by this instance of CardLayout.

Instance Methods

addLayoutComponent

public void addLayoutComponent (Component comp, Object constraints)

Parameters

comp

The component being added.

constraints

An object describing the constraints on this component.

Implements

LayoutManager2.addLayoutComponent()

Description

Adds the component comp to a container subject to the given constraints. This is a more
generalized version of addLayoutComponent(String, Component). It corresponds to
java.awt.Container's add(Component, Object). In practice, it is used the same in
Java 1.1 as in Java 1.0.2, except with the parameters swapped:

Panel p = new Panel();
p.setLayoutManager(new CardLayout());
p.add(new Button("OK"), "Don Julio");

addLayoutComponent

public void addLayoutComponent (String name, Component component)

Parameters

name

Name of the component to add.

component

The actual component being added.

Implements

LayoutManager.addLayoutComponent()

Description

Places component under the layout's management, assigning it the given name. This has been
replaced in version 1.1 with the more general addLayoutComponent(Component,
Object).

first

public void first (Container parent)

Parameters

parent

The container whose displayed component is changing.

Throws

IllegalArgumentException

If the LayoutManager of parent is not CardLayout.

Description

Sets the container to display the first component in parent.

getHgap

public int getHgap()

Returns

The horizontal gap for this CardLayout instance.

getLayoutAlignmentX

public abstract float getLayoutAlignmentX (Container target)

Parameters

target

The container to inspect.

Returns

The value .5 for all containers.

Description

This method returns the preferred alignment of the given container target. A return value of 0 is
left aligned, .5 is centered, and 1 is right aligned.

getLayoutAlignmentY

public abstract float getLayoutAlignmentY (Container target)

Parameters

target

The container to inspect.

Returns

The value .5 for all containers.

Description

This method returns the preferred alignment of the given container target. A return value of 0 is
top aligned, .5 is centered, and 1 is bottom aligned.

getVgap

public int getVgap()

Returns

The vertical gap for this CardLayout instance.

invalidateLayout

public abstract void invalidateLayout (Container target)

Parameters

target

The container to invalidate.

Description

Does nothing.

last

public void last (Container parent)

Parameters

parent

The container whose displayed component is changing.

Throws

IllegalArgumentException

If the LayoutManager of parent is not CardLayout.

Description

Sets the container to display the final component in parent.

layoutContainer

public void layoutContainer (Container target)

Parameters

target

The container that needs to be redrawn.

Implements

LayoutManager.layoutContainer()

Description

Displays the currently selected component contained within target.

maximumLayoutSize

public abstract Dimension maximumLayoutSize (Container target)

Parameters

target

The container to inspect.

Returns

A Dimension whose horizontal and vertical components are Integer.MAX_VALUE.

Description

For CardLayout, a maximal Dimension is always returned.

minimumLayoutSize

public Dimension minimumLayoutSize (Container target)

Parameters

target

The container whose size needs to be calculated.

Returns

Minimum Dimension of the container target.

Implements

LayoutManager.minimumLayoutSize()

Description

Calculates minimum size of the target container.

next

public void next (Container parent)

Parameters

parent

The container whose displayed component is changing.

Throws

IllegalArgumentException

If the LayoutManager of parent is not CardLayout.

Description

Sets the container to display the following component in the parent.

preferredLayoutSize

public Dimension preferredLayoutSize (Container target)

Parameters

target

The container whose size needs to be calculated.

Returns

Preferred Dimension of the container target.

Implements

LayoutManager.preferredLayoutSize()

Description

Calculates preferred size of the target container.

previous

public void previous (Container parent)

Parameters

parent

The container whose displayed component is changing.

Throws

IllegalArgumentException

If the LayoutManager of parent is not CardLayout.

Description

Sets the container to display the prior component in parent.

removeLayoutComponent

public void removeLayoutComponent (Component component)

Parameters

component

Component to stop tracking.

Implements

LayoutManager.removeLayoutComponent()

Description

Removes component from the layout manager's internal tables.

setHgap

public void setHgap (int hgap)

Parameters

hgap

The horizontal gap value.

Description

Sets the horizontal gap for the left and right of the container.

setVgap

public void setVgap (int vgap)

Parameters

vgap

The vertical gap value.

Description

Sets the vertical gap for the top and bottom of the container.

show

public void show (Container parent, String name)

Parameters

parent

The container whose displayed component is changing.

name

Name of component to display.

Throws

IllegalArgumentException

If LayoutManager of parent is not CardLayout.

Description

Sets the container to display the component name in parent.

toString

public String toString()

Returns

A string representation of the CardLayout object.

Overrides

Object.toString()

See Also

Component, Container, Dimension, LayoutManager, LayoutManager2, Object,
String

Canvas Checkbox

Chapter 19
java.awt Reference

Checkbox

Name

Checkbox

[Graphic: Figure from the text]

Description

The Checkbox is a Component that provides a true or false toggle switch for user input.

Class Definition

public class java.awt.Checkbox
 extends java.awt.Component
 implements java.awt.ItemSelectable {

 // Constructors
 public Checkbox();
 public Checkbox (String label);

 public Checkbox (String label, boolean state);

 public Checkbox (String label, boolean state, CheckboxGroup group);
 public Checkbox (String label, CheckboxGroup group, boolean state);

 // Instance Methods

 public void addItemListener (ItemListener l);

 public void addNotify();
 public CheckboxGroup getCheckboxGroup();
 public String getLabel();

 public Object[] getSelectedObjects();
 public boolean getState();

 public void removeItemListener (ItemListener l);
 public void setCheckboxGroup (CheckboxGroup group);
 public synchronized void setLabel (String label);
 public void setState (boolean state);

 // Protected Instance Methods
 protected String paramString();

 protected void processEvent (AWTEvent e);

 protected void processItemEvent (ItemEvent e);
}

Constructors

Checkbox

public Checkbox()

Description

Constructs a Checkbox object with no label that is initially false.

public Checkbox (String label)

Parameters

label

Text to display with the Checkbox.

Description

Constructs a Checkbox object with the given label that is initially false.

public Checkbox (String label, boolean state)

Parameters

label

Text to display with the Checkbox.

state

Intial value of the Checkbox.

Description

Constructs a Checkbox with the given label, initialized to the given state.

public Checkbox (String label, boolean state, CheckboxGroup group)

Parameters

label

Text to display with the Checkbox.

state

Intial value of the Checkbox.

group

The CheckboxGroup this Checkbox should belong to.

Description

Constructs a Checkbox with the given label, initialized to the given state and belonging to
group.

public Checkbox (String label, CheckboxGroup group, boolean state)

Parameters

label

Text to display with the Checkbox.

group

The CheckboxGroup this Checkbox should belong to.

state

Intial value of the Checkbox.

Description

Constructs a Checkbox object with the given settings.

Instance Methods

addItemListener

public void addItemListener (ItemListener l)

Parameters

l

The listener to be added.

Implements

ItemSelectable.addItemListener(ItemListener l)

Description

Adds a listener for the ItemEvent objects this Checkbox generates.

addNotify

public void addNotify()

Overrides

Component.addNotify()

Description

Creates Checkbox peer.

getCheckboxGroup

public CheckboxGroup getCheckboxGroup()

Returns

The current CheckboxGroup associated with the Checkbox, if any.

getLabel

public String getLabel()

Returns

The text associated with the Checkbox.

getSelectedObjects

public Object[] getSelectedObjects()

Implements

ItemSelectable.getSelectedObjects()

Description

If the Checkbox is checked, returns an array with length 1 containing the label of the Checkbox;
otherwise returns null.

getState

public boolean getState()

Returns

The current state of the Checkbox.

removeItemListener

public void removeItemListener (ItemListener l)

Parameters

l

The listener to be removed.

Implements

ItemSelectable.removeItemListener (ItemListener l)

Description

Removes the specified ItemListener so it will not receive ItemEvent objects from this
Checkbox.

setCheckboxGroup

public void setCheckboxGroup (CheckboxGroup group)

Parameters

group

New group in which to place the Checkbox.

Description

Associates the Checkbox with a different CheckboxGroup.

setLabel

public synchronized void setLabel (String label)

Parameters

label

New text to associate with Checkbox.

Description

Changes the text associated with the Checkbox.

setState

public void setState (boolean state)

Parameters

state

New state for the Checkbox.

Description

Changes the state of the Checkbox.

Protected Instance Methods

paramString

protected String paramString()

Returns

String with current settings of Checkbox.

Overrides

Component.paramString()

Description

Helper method for toString() to generate string of current settings.

processEvent

protected void processEvent(AWTEvent e)

Parameters

e

The event to process.

Description

Low level AWTEvents are passed to this method for processing.

processItemEvent

protected void processItemEvent(ItemEvent e)

Parameters

e

The item event to process.

Description

Item events are passed to this method for processing. Normally, this method is called by
processEvent().

See Also

CheckboxGroup, Component, ItemEvent, ItemSelectable, String

CardLayout CheckboxGroup

Chapter 19
java.awt Reference

CheckboxGroup

Name

CheckboxGroup

[Graphic: Figure from the text]

Description

The CheckboxGroup class provides the means to group multiple Checkbox items into a mutual
exclusion set, so that only one checkbox in the set has the value true at any time. The checkbox with
the value true is the currently selected checkbox. Mutually exclusive checkboxes usually have a
different appearance from regular checkboxes and are also called "radio buttons."

Class Definition

public class java.awt.CheckboxGroup
 extends java.lang.Object
 implements java.io.Serializable {

 // Constructors
 public CheckboxGroup();

 // Instance Methods

 public Checkbox getCurrent();

 public Checkbox getSelectedCheckbox()

 public synchronized void setCurrent (Checkbox checkbox);

 public synchronized void setSelectedCheckbox (Checkbox checkbox);
 public String toString();
}

Constructors

CheckboxGroup

public CheckboxGroup()

Description

Constructs a CheckboxGroup object.

Instance Methods

getCurrent

public Checkbox getCurrent()

Returns

The currently selected Checkbox within the CheckboxGroup.

Description

Replaced by the more aptly named getSelectedCheckbox().

getSelectedCheckbox

public Checkbox getSelectedCheckbox()

Returns

The currently selected Checkbox within the CheckboxGroup.

setCurrent

public synchronized void setCurrent (Checkbox checkbox)

Parameters

checkbox

The Checkbox to select.

Description

Changes the currently selected Checkbox within the CheckboxGroup.

Description

Replaced by setSelectedCheckbox(Checkbox).

setSelectedCheckbox

public synchronized void setSelectedCheckbox (Checkbox checkbox)

Parameters

checkbox

The Checkbox to select.

Description

Changes the currently selected Checkbox within the CheckboxGroup.

toString

public String toString()

Returns

A string representation of the CheckboxGroup object.

Overrides

Object.toString()

See Also

Checkbox, Object, String

Checkbox CheckboxMenuItem

Chapter 19
java.awt Reference

CheckboxMenuItem

Name

CheckboxMenuItem

[Graphic: Figure from the text]

Description

The CheckboxMenuItem class represents a menu item with a boolean state.

Class Definition

public class java.awt.CheckboxMenuItem
 extends java.awt.MenuItem
 implements java.awt.ItemSelectable {

 // Constructors

 public CheckboxMenuItem();
 public CheckboxMenuItem (String label);

 public CheckboxMenuItem (String label, boolean state);

 // Instance Methods

 public void addItemListener (ItemListener l);
 public void addNotify();

 public Object[] getSelectedObjects();
 public boolean getState();
 public String paramString();

 public void removeItemListener (ItemListener l);
 public synchronized void setState (boolean condition);

 // Protected Instance Methods

 protected void processEvent (AWTEvent e);

 protected void processItemEvent (ItemEvent e);
}

Constructors

CheckboxMenuItem

public CheckboxMenuItem()

Description

Constructs a CheckboxMenuItem object with no label.

public CheckboxMenuItem (String label)

Parameters

label

Text that appears on CheckboxMenuItem.

Description

Constructs a CheckboxMenuItem object whose value is initially false.

public CheckboxMenuItem (String label, boolean state)

Parameters

label

Text that appears on CheckboxMenuItem.

state

The initial state of the menu item.

Description

Constructs a CheckboxMenuItem object with the specified label and state.

Instance Methods

addItemListener

public void addItemListener (ItemListener l)

Parameters

l

The listener to be added.

Implements

ItemSelectable.addItemListener(ItemListener l)

Description

Adds a listener for the ItemEvent objects this CheckboxMenuItem fires off.

addNotify

public void addNotify()

Overrides

MenuItem.addNotify()

Description

Creates CheckboxMenuItem's peer.

getSelectedObjects

public Object[] getSelectedObjects()

Implements

ItemSelectable.getSelectedObjects()

Description

If the CheckboxMenuItem is checked, returns an array with length 1 containing the label of
the CheckboxMenuItem; otherwise returns null.

getState

public boolean getState()

Returns

The current state of the CheckboxMenuItem.

paramString

public String paramString()

Returns

A string with current settings of CheckboxMenuItem.

Overrides

MenuItem.paramString()

Description

Helper method for toString() to generate string of current settings.

removeItemListener

public void removeItemListener (ItemListener l)

Parameters

l

The listener to be removed.

Implements

ItemSelectable.removeItemListener (ItemListener l)

Description

Removes the specified ItemListener so it will not receive ItemEvent objects from this
CheckboxMenuItem.

setState

public synchronized void setState (boolean condition)

Parameters

condition

New state for the CheckboxMenuItem.

Description

Changes the state of the CheckboxMenuItem.

Protected Instance Methods

processEvent

protected void processEvent(AWTEvent e)

Parameters

e

The event to process.

Overrides

MenuItem.processEvent(AWTEvent)

Description

Low level AWTEvents are passed to this method for processing.

processItemEvent

protected void processItemEvent(ItemEvent e)

Parameters

e

The item event to process.

Description

Item events are passed to this method for processing. Normally, this method is called by
processEvent().

See Also

ItemEvent, ItemSelectable, MenuItem, String

CheckboxGroup Choice

Chapter 19
java.awt Reference

Choice

Name

Choice

[Graphic: Figure from the text]

Description

The Choice is a Component that provides a drop-down list of choices to choose from.

Class Definition

public class java.awt.Choice
 extends java.awt.Component
 implements java.awt.ItemSelectable {

 // Constructors
 public Choice();

 // Instance Methods

 public synchronized void add (String item);

 public synchronized void addItem (String item);

 public void addItemListener (ItemListener l);
 public void addNotify();

 public int countItems();
 public String getItem (int index);

 public int getItemCount();
 public int getSelectedIndex();
 public synchronized String getSelectedItem();

 public synchronized Object[] getSelectedObjects();

 public synchronized void insert (String item, int index);

 public synchronized void remove (int position);

 public synchronized void remove (String item);

 public synchronized void removeAll();

 public void removeItemListener (ItemListener l);
 public synchronized void select (int pos);
 public synchronized void select (String str);

 // Protected Instance Methods
 protected String paramString();

 protected void processEvent (AWTEvent e);

 protected void processItemEvent (ItemEvent e);
}

Constructors

Choice

public Choice()

Description

Constructs a Choice object.

Instance Methods

add

public synchronized void add (String item)

Parameters

item

Text for new entry.

Throws

NullPointerException

If item is null.

Description

Adds a new entry to the available choices.

addItem

public synchronized void addItem (String item)

Parameters

item

Text for new entry.

Throws

NullPointerException

If item is null.

Description

Replaced by add(String).

addItemListener

public void addItemListener (ItemListener l)

Parameters

l

The listener to be added.

Implements

ItemSelectable.addItemListener(ItemListener l)

Description

Adds a listener for the ItemEvent objects this Choice generates.

addNotify

public void addNotify()

Overrides

Component.addNotify()

Description

Creates Choice's peer.

countItems

public int countItems()

Returns

Number of items in the Choice.

Description

Replaced by getItemCount().

getItem

public String getItem (int index)

Parameters

index

Position of entry.

Returns

A string for an entry at a given position.

Throws

ArrayIndexOutOfBoundsException

If index is invalid; indices start at zero.

getItemCount

public int getItemCount()

Returns

Number of items in the Choice.

getSelectedIndex

public int getSelectedIndex()

Returns

Position of currently selected entry.

getSelectedItem

public synchronized String getSelectedItem()

Returns

Currently selected entry as a String.

getSelectedObjects

public synchronized Object[] getSelectedObjects()

Implements

ItemSelectable.getSelectedObjects()

Description

A single-item array containing the current selection.

insert

public synchronized void insert (String item, int index)

Parameters

item

The string to add.

index

The position for the new string.

Throws

IllegalArgumentException

If index is less than zero.

Description

Inserts item in the given position.

remove

public synchronized void remove (int position)

Parameters

position

The index of an entry in the Choice component.

Description

Removes the entry in the given position.

public synchronized void remove (String string)

Parameters

string

Text of an entry within the Choice component.

Throws

IllegalArgumentException

If string is not in the Choice.

Description

Makes the first entry that matches string the selected item.

removeAll

public synchronized void removeAll()

Description

Removes all the entries from the Choice.

removeItemListener

public void removeItemListener (ItemListener l)

Parameters

l

The listener to be removed.

Implements

ItemSelectable.removeItemListener (ItemListener l)

Description

Removes the specified ItemListener so it will not receive ItemEvent objects from this
Choice.

select

public synchronized void select (int pos)

Parameters

pos

The index of an entry in the Choice component.

Throws

IllegalArgumentException

If the position is not valid.

Description

Makes the entry in the given position.

public synchronized void select (String str)

Parameters

str

Text of an entry within the Choice component.

Description

Makes the first entry that matches str the selected item for the Choice.

Protected Instance Methods

paramString

protected String paramString()

Returns

A string with current settings of Choice.

Overrides

Component.paramString()

Description

Helper method for toString() to generate string of current settings.

processEvent

protected void processEvent (AWTEvent e)

Parameters

e

The event to process.

Description

Low level AWTEvents are passed to this method for processing.

processItemEvent

protected void processItemEvent (ItemEvent e)

Parameters

e

The item event to process.

Description

Item events are passed to this method for processing. Normally, this method is called by
processEvent().

See Also

Component, ItemSelectable, String

CheckboxMenuItem Color

Chapter 19
java.awt Reference

Color

Name

Color

[Graphic: Figure from the text]

Description

The Color class represents a specific color to the system.

Class Definition

public final class java.awt.Color
 extends java.lang.Object
 implements java.io.Serializable {

 // Constants
 public static final Color black;
 public static final Color blue;
 public static final Color cyan;
 public static final Color darkGray;
 public static final Color gray;
 public static final Color green;
 public static final Color lightGray;
 public static final Color magenta;
 public static final Color orange;
 public static final Color pink;
 public static final Color red;

 public static final Color white;
 public static final Color yellow;

 // Constructors
 public Color (int rgb);
 public Color (int red, int green, int blue);
 public Color (float red, float green, float blue);

 // Class Methods

 public static Color decode (String name);
 public static Color getColor (String name);
 public static Color getColor (String name, Color defaultColor);
 public static Color getColor (String name, int defaultColor);
 public static Color getHSBColor (float hue, float saturation,
 float brightness);
 public static int HSBtoRGB (float hue, float saturation, float brightness);
 public static float[] RGBtoHSB (int red, int green, int blue,
 float hsbvalues[]);

 // Instance Methods
 public Color brighter();
 public Color darker();
 public boolean equals (Object object);
 public int getBlue();
 public int getGreen();
 public int getRed();
 public int getRGB();
 public int hashCode();
 public String toString();
}

Constants

black

public static final Color black

The color black.

blue

public static final Color blue

The color blue.

cyan

public static final Color cyan

The color cyan.

darkGray

public static final Color darkGray

The color dark gray.

gray

public static final Color gray

The color gray.

green

public static final Color green

The color green.

lightGray

public static final Color lightGray

The color light gray.

magenta

public static final Color magenta

The color magenta.

orange

public static final Color orange

The color orange.

pink

public static final Color pink

The color pink.

red

public static final Color red

The color red.

white

public static final Color white

The color white.

yellow

public static final Color yellow

The color yellow.

Constructors

Color

public Color (int rgb)

Parameters

rgb

Composite color value

Description

Constructs a Color object with the given rgb value.

public Color (int red, int green, int blue)

Parameters

red

Red component of color in the range[0, 255]

green

Green component of color in the range[0, 255]

blue

Blue component of color in the range[0, 255]

Description

Constructs a Color object with the given red, green, and blue values.

public Color (float red, float green, float blue)

Parameters

red

Red component of color in the range[0.0, 1.0]

green

Green component of color in the range[0.0, 1.0]

blue

Blue component of color in the range[0.0, 1.0]

Description

Constructs a Color object with the given red, green, and blue values.

Class Methods

decode

public static Color decode (String nm)

Parameters

nm

A String representing a color as a 24-bit integer.

Returns

The color requested.

Throws

NumberFormatException

If nm cannot be converted to a number.

Description

Gets color specified by the given string.

getColor

public static Color getColor (String name)

Parameters

name

The name of a system property indicating which color to fetch.

Returns

Color instance of name requested, or null if the name is invalid.

Description

Gets color specified by the system property name.

public static Color getColor (String name, Color defaultColor)

Parameters

name

The name of a system property indicating which color to fetch.

defaultColor

Color to return if name is not found in properties, or invalid.

Returns

Color instance of name requested, or defaultColor if the name is invalid.

Description

Gets color specified by the system property name.

public static Color getColor (String name, int defaultColor)

Parameters

name

The name of a system property indicating which color to fetch.

defaultColor

Color to return if name is not found in properties, or invalid.

Returns

Color instance of name requested, or defaultColor if the name is invalid.

Description

Gets color specified by the system property name. The default color is specified as a 32-bit RGB value.

getHSBColor

public static Color getHSBColor (float hue, float saturation, float brightness)

Parameters

hue

Hue component of Color to create, in the range[0.0, 1.0].

saturation

Saturation component of Color to create, in the range[0.0, 1.0].

brightness

Brightness component of Color to create, in the range[0.0, 1.0].

Returns

Color instance for values provided.

Description

Create an instance of Color by using hue, saturation, and brightness instead of red, green, and blue values.

HSBtoRGB

public static int HSBtoRGB (float hue, float saturation, float brightness)

Parameters

hue

Hue component of Color to convert, in the range[0.0, 1.0].

saturation

Saturation component of Color to convert, in the range[0.0, 1.0].

brightness

Brightness component of Color to convert, in the range[0.0, 1.0].

Returns

Color value for hue, saturation, and brightness provided.

Description

Converts a specific hue, saturation, and brightness to a Color and returns the red, green, and blue values in
a composite integer value.

RGBtoHSB

public static float[] RGBtoHSB (int red, int green, int blue, float[] hsbvalues)

Parameters

red

Red component of Color to convert, in the range[0, 255].

green

Green component of Color to convert, in the range[0, 255].

blue

Blue component of Color to convert, in the range[0, 255].

hsbvalues

Three element array in which to put the result. This array is used as the method's return object. If
null, a new array is allocated.

Returns

Hue, saturation, and brightness values for Color provided, in elements 0, 1, and 2 (respectively) of the
returned array.

Description

Allows you to convert specific red, green, blue value to the hue, saturation, and brightness equivalent.

Instance Methods

brighter

public Color brighter()

Returns

Brighter version of current color.

Description

Creates new Color that is somewhat brighter than current.

darker

public Color darker()

Returns

Darker version of current color.

Description

Creates new Color that is somewhat darker than current.

equals

public boolean equals (Object object)

Parameters

object

The object to compare.

Returns

true if object represents the same color, false otherwise.

Overrides

Object.equals(Object)

Description

Compares two different Color instances for equivalence.

getBlue

public int getBlue()

Returns

Blue component of current color.

getGreen

public int getGreen()

Returns

Green component of current color.

getRed

public int getRed()

Returns

Red component of current color.

getRGB

public int getRGB()

Returns

Current color as a composite value.

Description

Gets integer value of current color.

hashCode

public int hashCode()

Returns

A hashcode to use when storing Color in a Hashtable.

Overrides

Object.hashCode()

Description

Generates a hashcode for the Color.

toString

public String toString()

Returns

A string representation of the Color object.

Overrides

Object.toString()

See Also

Object, Properties, Serializable, String

Choice

Chapter 19
java.awt Reference

Component

Name

Component

[Graphic: Figure from the text]

Description

The Component class is the parent of all non-menu GUI components.

Class Definition

public abstract class java.awt.Component
 extends java.lang.Object
 implements java.awt.image.ImageObserver
 implements java.awt.MenuContainer
 implements java.io.Serializable {
 // Constants

 public final static float BOTTOM_ALIGNMENT;

 public final static float CENTER_ALIGNMENT;

 public final static float LEFT_ALIGNMENT;

 public final static float RIGHT_ALIGNMENT;

 public final static float TOP_ALIGNMENT;
 // Variables

 protected Locale locale;
 // Constructors

 protected Component();

 // Instance Methods

 public boolean action (Event e, Object o);

 public synchronized void add (PopupMenu popup);
 public synchronized void addComponentListener

 (ComponentListener l);

 public synchronized void addFocusListener (FocusListener l);

 public synchronized void addKeyListener (KeyListener l);

 public synchronized void addMouseListener (MouseListener l);
 public synchronized void addMouseMotionListener

 (MouseMotionListener l);
 public void addNotify();

 public Rectangle bounds();
 public int checkImage (Image image, ImageObserver observer);
 public int checkImage (Image image, int width, int height,
 ImageObserver observer);

 public boolean contains (int x, int y);

 public boolean contains (Point p);
 public Image createImage (ImageProducer producer);
 public Image createImage (int width, int height);

 public void deliverEvent (Event e);

 public void disable();

 public final void dispatchEvent (AWTEvent e)

 public void doLayout();

 public void enable();

 public void enable (boolean condition);

 public float getAlignmentX();

 public float getAlignmentY();
 public Color getBackground();

 public Rectangle getBounds();
 public synchronized ColorModel getColorModel();

 public Component getComponentAt (int x, int y);

 public Component getComponentAt (Point p);

 public Cursor getCursor();
 public Font getFont();
 public FontMetrics getFontMetrics (Font f);
 public Color getForeground();
 public Graphics getGraphics();

 public Locale getLocale();

 public Point getLocation();

 public Point getLocationOnScreen();

 public Dimension getMaximumSize();

 public Dimension getMinimumSize();

 public String getName();
 public Container getParent();

 public ComponentPeer getPeer();

 public Dimension getPreferredSize();

 public Dimension getSize();
 public Toolkit getToolkit();

 public final Object getTreeLock();

 public boolean gotFocus (Event e, Object o);

 public boolean handleEvent (Event e);

 public void hide();
 public boolean imageUpdate (Image image, int infoflags, int x, int y,
 int width, int height);

 public boolean inside (int x, int y);
 public void invalidate();
 public boolean isEnabled();

 public boolean isFocusTraversable();
 public boolean isShowing();
 public boolean isValid();
 public boolean isVisible();

 public boolean keyDown (Event e, int key);

 public boolean keyUp (Event e, int key);

 public void layout();
 public void list();
 public void list (PrintStream out);
 public void list (PrintStream out, int indentation);

 public void list (PrintWriter out);

 public void list (PrintWriter out, int indentation);

 public Component locate (int x, int y);

 public Point location();

 public boolean lostFocus (Event e, Object o);

 public Dimension minimumSize();

 public boolean mouseDown (Event e, int x, int y);

 public boolean mouseDrag (Event e, int x, int y);

 public boolean mouseEnter (Event e, int x, int y);

 public boolean mouseExit (Event e, int x, int y);

 public boolean mouseMove (Event e, int x, int y);

 public boolean mouseUp (Event e, int x, int y);

 public void move (int x, int y);

 public void nextFocus();
 public void paint (Graphics g);
 public void paintAll (Graphics g);

 public boolean postEvent (Event e);

 public Dimension preferredSize();
 public boolean prepareImage (Image image, ImageObserver observer);
 public boolean prepareImage (Image image, int width, int height,
 ImageObserver observer);
 public void print (Graphics g);
 public void printAll (Graphics g);

 public synchronized void remove (MenuComponent popup);
 public synchronized void removeComponentListener

 (ComponentListener l);

 public synchronized void removeFocusListener (FocusListener l);

 public synchronized void removeKeyListener (KeyListener l);

 public synchronized void removeMouseListener (MouseListener l);
 public synchronized void removeMouseMotionListener

 (MouseMotionListener l);
 public void removeNotify();
 public void repaint();
 public void repaint (long tm);
 public void repaint (int x, int y, int width, int height);
 public void repaint (long tm, int x, int y, int width, int height);
 public void requestFocus();

 public void reshape (int x, int y, int width, int height);

 public void resize (Dimension d);

 public void resize (int width, int height);
 public void setBackground (Color c);

 public void setBounds (int x, int y, int width, int height);

 public void setBounds (Rectangle r);

 public synchronized void setCursor (Cursor cursor);

 public void setEnabled (boolean b);
 public synchronized void setFont (Font f);
 public void setForeground (Color c);

 public void setLocale (Locale l);

 public void setLocation (int x, int y);

 public void setLocation (Point p);

 public void setName (String name);

 public void setSize (int width, int height);

 public void setSize (Dimension d);

 public void setVisible (boolean b);

 public void show();

 public void show (boolean condition);

 public Dimension size();
 public String toString();

 public void transferFocus();
 public void update (Graphics g);
 public void validate();

 // Protected Instance Methods

 protected final void disableEvents (long eventsToDisable);

 protected final void enableEvents (long eventsToEnable);
 protected String paramString();

 protected void processComponentEvent (ComponentEvent e);

 protected void processEvent (AWTEvent e);

 protected void processFocusEvent (FocusEvent e);

 protected void processKeyEvent (KeyEvent e);

 protected void processMouseEvent (MouseEvent e);

 protected void processMouseMotionEvent (MouseEvent e);
}

Constants

BOTTOM_ALIGNMENT

public final static float BOTTOM_ALIGNMENT

Constant representing bottom alignment in getAlignmentY().

CENTER_ALIGNMENT

public final static float CENTER_ALIGNMENT

Constant representing center alignment in getAlignmentX() and getAlignmentY().

LEFT_ALIGNMENT

public final static float LEFT_ALIGNMENT

Constant representing left alignment in getAlignmentX().

RIGHT_ALIGNMENT

public final static float RIGHT_ALIGNMENT

Constant representing right alignment in getAlignmentX().

TOP_ALIGNMENT

public final static float TOP_ALIGNMENT

Constant representing top alignment in getAlignmentY().

Variables

locale

protected Locale locale

Description

The locale for the component. Used for internationalization support.

Constructors

Component

protected Component()

Description

This constructor creates a "lightweight" component. This constructor allows Component to be
directly subclassed using code written entirely in Java.

Instance Methods

action

public boolean action (Event e, Object o)

Parameters

e

Event instance identifying what triggered the call to this method.

o

Argument specific to the component subclass that generated the event.

Returns

true if event handled, false to propagate it to parent container.

Description

Method called when user performs some action in Component. This method is a relic of the old
1.0.2 event model and is replaced by the process...Event() methods.

add

public synchronized void add (PopupMenu popup)

Parameters

popup

The menu to add.

Description

After the PopupMenu is added to a component, it can be shown in the component's coordinate
space.

addComponentListener

public void addComponentListener (ComponentListener l)

Description

Adds a listener for the ComponentEvent objects this Component generates.

addFocusListener

public void addFocusListener (FocusListener l)

Description

Adds a listener for the FocusEvent objects this Component generates.

addKeyListener

public void addKeyListener (KeyListener l)

Description

Adds a listener for the KeyEvent objects this Component generates.

addMouseListener

public void addMouseListener (MouseListener l)

Description

Adds a listener for the MouseEvent objects this Component generates.

addMouseMotionListener

public void addMouseMotionListener (MouseMotionListener l)

Description

Adds a listener for the motion MouseEvent objects this Component generates.

addNotify

public void addNotify()

Description

Creates peer of Component's subclass.

bounds

public Rectangle bounds()

Returns

Gets bounding rectangle of Component.

Description

A Rectangle that returns the outer limits of the Component. Replaced by getBounds() in
1.1.

checkImage

public int checkImage (Image image, ImageObserver observer)

Parameters

image

Image to check.

observer

The object an image will be rendered onto.

Returns

ImageObserver Flags ORed together indicating the image's status.

Description

Checks status of image construction.

public int checkImage (Image image, int width, int height, ImageObserver observer)

Parameters

image

Image to check.

width

Horizontal size image will be scaled to.

height

Vertical size image will be scaled to.

observer

Object image will be rendered onto.

Returns

ImageObserver flags ORed together indicating the image's status.

Description

Checks status of image construction.

contains

public boolean contains (int x, int y)

Parameters

x

The x coordinate, in this Component's coordinate system.

y

The y coordinate, in this Component's coordinate system.

Returns

true if the Component contains the point; false otherwise.

public boolean contains (Point p)

Parameters

p

The point to be tested, in this Component's coordinate system.

Returns

true if the Component contains the point; false otherwise.

createImage

public Image createImage (ImageProducer producer)

Parameters

producer

Class that implements ImageProducer interface to create the new image.

Returns

Newly created image instance.

Description

Creates an Image based upon an ImageProducer.

public Image createImage (int width, int height)

Parameters

width

Horizontal size for in-memory Image.

height

Vertical size for in-memory Image.

Returns

Newly created image instance.

Description

Creates an empty in-memory Image for double buffering; to draw on the image, use its graphics
context.

deliverEvent

public void deliverEvent (Event e)

Parameters

e

Event instance to deliver.

Description

Delivers event to the component for processing.

disable

public void disable()

Description

Disables component so that it is unresponsive to user interactions. Replaced by
setEnabled(false).

dispatchEvent

public final void dispatchEvent (AWTEvent e)

Parameters

e

The AWTEvent to process.

Description

Tells the component to deal with the AWTEvent e.

doLayout

public void doLayout()

Description

Lays out component. This method is a replacement for layout().

enable

public void enable()

Description

Enables component so that it is responsive to user interactions. Use setEnabled(true)
instead.

public void enable (boolean condition)

Parameters

condition

true to enable the component; false to disable it.

Description

Enables or disables the component based upon condition. Use setEnabled(boolean)
instead.

getAlignmentX

public float getAlignmentX()

Returns

A number between 0 and 1 representing the horizontal alignment of this component.

Description

One of the constants LEFT_ALIGNMENT, CENTER_ALIGNMENT, or RIGHT_ALIGNMENT may
be returned. CENTER_ALIGNMENT is returned by default.

getAlignmentY

public float getAlignmentY()

Returns

A number between 0 and 1 representing the vertical alignment of this component.

Description

One of the constants TOP_ALIGNMENT, CENTER_ALIGNMENT, or BOTTOM_ALIGNMENT may
be returned. CENTER_ALIGNMENT is returned by default.

getBackground

public Color getBackground()

Returns

Background color of the component.

getBounds

public Rectangle getBounds()

Returns

Gets bounding rectangle of Component.

Description

Returns a Rectangle that returns the outer limits of the Component.

getColorModel

public synchronized ColorModel getColorModel()

Returns

ColorModel used to display the current component.

getComponentAt

public Component getComponentAt (int x, int y)

Parameters

x

The x coordinate, in this Component's coordinate system.

y

The y coordinate, in this Component's coordinate system.

Returns

Returns the Component containing the given point.

public Component getComponentAt (Point p)

Parameters

p

The point to be tested, in this Component's coordinate system.

Returns

Returns the Component containing the given point.

getCursor

public Cursor getCursor()

Returns

Current cursor of the component.

getFont

public Font getFont()

Returns

Current font of the component.

getFontMetrics

public FontMetrics getFontMetrics (Font f)

Parameters

f

A Font object, whose platform specific information is desired.

Returns

Size information for the given Font.

getForeground

public Color getForeground()

Returns

Foreground color of component.

getGraphics

public Graphics getGraphics()

Throws

InternalException

If acquiring graphics context is unsupported.

Returns

Component's graphics context.

getLocale

public Locale getLocale()

Throws

IllegalComponentStateException

If the component does not have a locale or it has not been added to a hierarchy that does.

Returns

Component's locale.

getLocation

public Point getLocation()

Returns

Position of component.

Description

Gets the current position of this Component in its parent's coordinate space.

getLocationOnScreen

public Point getLocationOnScreen()

Returns

Position of component.

Description

Gets the current position of this Component in the screen's coordinate space.

getMaximumSize

public Dimension getMaximumSize()

Returns

The maximum dimensions of the component.

Description

By default, a maximal Dimension is returned.

getMinimumSize

public Dimension getMinimumSize()

Returns

The minimum dimensions of the component.

getName

public String getName()

Returns

This component's name.

getParent

public Container getParent()

Returns

Parent Container of Component.

Description

Gets container that this Component is held in.

getPeer

public ComponentPeer getPeer()

Returns

Peer of Component.

getPreferredSize

public Dimension getPreferredSize()

Returns

The preferred dimensions of the component.

getSize

public Dimension getSize()

Returns

Dimensions of component.

Description

Gets width and height of component.

getToolkit

public Toolkit getToolkit()

Returns

Toolkit of Component.

getTreeLock

public final Object getTreeLock()

Returns

The AWT tree locking object.

Description

Returns the object used for tree locking and layout operations.

gotFocus

public boolean gotFocus (Event e, Object o)

Parameters

e

Event instance identifying what triggered the call to this method.

o

Argument specific to the component subclass that generated the event.

Returns

true if event handled, false to propagate it to parent container.

Description

Called when Component gets input focus. This method is not used in the 1.1 event model.

handleEvent

public boolean handleEvent (Event e)

Parameters

e

Event instance identifying what triggered the call to this method.

Returns

true if event handled, false to propagate it to parent container.

Description

High-level event handling routine that calls helper routines. Replaced by
processEvent(AWTEvent).

hide

public void hide()

Description

Hides component from view. Replaced by setVisible(false).

imageUpdate

public boolean imageUpdate (Image image, int infoflags, int x, int y, int width, int height)

Parameters

image

Image being loaded.

infoflags

ImageObserver flags ORed together of available information.

x

x coordinate of upper-left corner of Image.

y

y coordinate of upper-left corner of Image.

width

Horizontal dimension of Image.

height

Vertical dimension of Image.

Returns

true if Image fully loaded, false otherwise.

Implements

ImageObserver.imageUpdate()

Description

An asynchronous update interface for receiving notifications about Image information as it is
loaded. Meaning of parameters changes with values of flags.

inside

public boolean inside (int x, int y)

Parameters

x

Horizontal position.

y

Vertical position.

Returns

true if the point (x, y) falls within the component's bounds, false otherwise.

Description

Checks if coordinates are within bounding box of Component. Replaced by contains(int,
int).

invalidate

public void invalidate()

Description

Sets the component's valid state to false.

isEnabled

public boolean isEnabled()

Returns

true if enabled, false otherwise.

Description

Checks to see if the Component is currently enabled.

isFocusTraversable

public boolean isFocusTraversable()

Returns

true if this Component can be traversed using Tab and Shift-Tab, false otherwise.

Description

Checks to see if the Component is navigable using the keyboard.

isShowing

public boolean isShowing()

Returns

true if showing, false otherwise.

Description

Checks to see if the Component is currently showing.

isValid

public boolean isValid()

Returns

true if valid, false otherwise.

Description

Checks to see if the Component is currently valid.

isVisible

public boolean isVisible()

Returns

true if visible, false otherwise.

Description

Checks to see if the Component is currently visible.

keyDown

public boolean keyDown (Event e, int key)

Parameters

e

Event instance identifying what triggered the call to this method.

key

Integer representation of key pressed.

Returns

true if event handled, false to propagate it to parent container.

Description

Method called whenever the user presses a key. Replaced by
processKeyEvent(KeyEvent).

keyUp

public boolean keyUp (Event e, int key)

Parameters

e

Event instance identifying what triggered the call to this method.

key

Integer representation of key released.

Returns

true if event handled, false to propagate it to parent container.

Description

Method called whenever the user releases a key. Replaced by
processKeyEvent(KeyEvent).

layout

public void layout()

Description

Lays out component. Replaced by doLayout().

list

public void list()

Description

Prints the contents of the Component to System.out.

public void list (PrintStream out)

Parameters

out

Output stream to send results to.

Description

Prints the contents of the Component to a PrintStream.

public void list (PrintStream out, int indentation)

Parameters

out

Output stream to send results to.

indentation

Indentation to use when printing.

Description

Prints the contents of the Component indented to a PrintStream.

public void list (PrintWriter out)

Parameters

out

Output stream to send results to.

Description

Prints the contents of the Component to a PrintWriter.

public void list (PrintWriter out, int indentation)

Parameters

out

Output stream to send results to.

indentation

Indentation to use when printing.

Description

Prints the contents of the Component indented to a PrintWriter.

locate

public Component locate (int x, int y)

Parameters

x

Horizontal position.

y

Vertical position.

Returns

Component if the point (x, y) falls within the component, null otherwise.

Description

Replaced by getComponentAt(int, int).

location

public Point location()

Returns

Position of component.

Description

Gets the current position of this Component in its parent's coordinate space. Replaced by
getLocation().

lostFocus

public boolean lostFocus (Event e, Object o)

Parameters

e

Event instance identifying what triggered the call to this method.

o

Argument specific to the component subclass that generated the event.

Returns

true if event handled, false to propagate it to parent container.

Description

Method called when Component loses input focus. Replaced by
processFocusEvent(FocusEvent).

minimizeSize

public Dimension minimumSize()

Returns

The minimum dimensions of the component. Replaced by getMinimumSize().

mouseDown

public boolean mouseDown (Event e, int x, int y)

Parameters

e

Event instance identifying what triggered the call to this method.

x

Horizontal position of the mouse within Component when Event initiated

y

Vertical position of the mouse within Component when Event initiated

Returns

true if event handled, false to propagate it to parent container.

Description

Method called when the user presses a mouse button over Component. Replaced by
processMouseEvent(MouseEvent).

mouseDrag

public boolean mouseDrag (Event e, int x, int y)

Parameters

e

Event instance identifying what triggered the call to this method.

x

Horizontal position of the mouse within Component when Event initiated

y

Vertical position of the mouse within Component when Event initiated

Returns

true if event handled, false to propagate it to parent container.

Description

Method called when the user is pressing a mouse button and moves the mouse. Replaced by
processMouseMotionEvent(MouseEvent).

mouseEnter

public boolean mouseEnter (Event e, int x, int y)

Parameters

e

Event instance identifying what triggered the call to this method.

x

Horizontal position of the mouse within Component when Event initiated

y

Vertical position of the mouse within Component when Event initiated

Returns

true if event handled, false to propagate it to parent container.

Description

Method called when the mouse enters Component. Replaced by
processMouseEvent(MouseEvent).

mouseExit

public boolean mouseExit (Event e, int x, int y)

Parameters

e

Event instance identifying what triggered the call to this method.

x

Horizontal position of the mouse within Component when Event initiated

y

Vertical position of the mouse within Component when Event initiated

Returns

true if event handled, false to propagate it to parent container.

Description

Method called when the mouse exits Component. Replaced by
processMouseEvent(MouseEvent).

mouseMove

public boolean mouseMove (Event e, int x, int y)

Parameters

e

Event instance identifying what triggered the call to this method.

x

Horizontal position of the mouse within Component when Event initiated

y

Vertical position of the mouse within Component when Event initiated

Returns

true if event handled, false to propagate it to parent container.

Description

Method called when the user is not pressing a mouse button and moves the mouse. Replaced by
processMouseMotionEvent(MouseEvent).

mouseUp

public boolean mouseUp (Event e, int x, int y)

Parameters

e

Event instance identifying what triggered the call to this method.

x

Horizontal position of the mouse within Component when Event initiated

y

Vertical position of the mouse within Component when Event initiated

Returns

true if event is handled, false to propagate it to the parent container.

Description

Method called when user releases mouse button over Component. Replaced by
processMouseEvent(MouseEvent).

move

public void move (int x, int y)

Parameters

x

New horizontal position for component.

y

New vertical position for component.

Description

Relocates component. Replaced by setLocation(int, int).

nextFocus

public void nextFocus()

Description

Moves focus from current component to next one in parent container. Replaced by
transferFocus().

paint

public void paint (Graphics g)

Parameters

g

Graphics context of component.

Description

Empty method to be overridden to draw something in the graphics context.

paintAll

public void paintAll (Graphics g)

Parameters

g

Graphics context of component.

Description

Method to validate component and paint its peer if it is visible.

postEvent

public boolean postEvent (Event e)

Parameters

e

Event instance to post to component

Returns

If Event is handled, true is returned. Otherwise, false is returned.

Description

Tells Component to deal with Event.

preferredSize

public Dimension preferredSize()

Returns

The preferred dimensions of the component. Replaced by getPreferredSize().

prepareImage

public boolean prepareImage (Image image, ImageObserver observer)

Parameters

image

Image to start loading.

observer

Component on which image will be rendered.

Returns

true if Image is fully loaded, false otherwise.

Description

Forces Image to start loading.

public boolean prepareImage (Image image, int width, int height, ImageObserver
observer)

Parameters

image

Image to start loading.

width

Horizontal size of the Image after scaling.

height

Vertical size of the Image after scaling.

observer

Component on which image will be rendered.

Returns

true if Image is fully loaded, false otherwise.

Description

Forces Image to start loading.

print

public void print (Graphics g)

Parameters

g

Graphics context.

Description

Empty method to be overridden to print something into the graphics context.

printAll

public void printAll (Graphics g)

Parameters

g

Graphics context.

Description

Method to print this component and its children.

remove

public void remove (MenuComponent popup)

Parameters

popup

The menu to remove.

Description

After adding a PopupMenu, you can use this method to remove it.

removeComponentListener

public void removeComponentListener (ComponentListener l)

Description

Removes the specified ComponentListener from this Component.

removeFocusListener

public void removeFocusListener (FocusListener l)

Description

Removes the specified FocusListener from this Component.

removeKeyListener

public void removeKeyListener (KeyListener l)

Description

Removes the specified KeyListener from this Component.

removeMouseListener

public void removeMouseListener (MouseListener l)

Description

Removes the specified MouseListener from this Component.

removeMouseMotionListener

public void removeMouseMotionListener (MouseMotionListener l)

Description

Removes the specified MouseMotionListener from this Component.

removeNotify

public void removeNotify()

Description

Removes peer of Component's subclass.

repaint

public void repaint()

Description

Requests scheduler to redraw the component as soon as possible.

public void repaint (long tm)

Parameters

tm

Millisecond delay allowed before repaint.

Description

Requests scheduler to redraw the component within a time period.

public void repaint (int x, int y, int width, int height)

Parameters

x

Horizontal origin of bounding box to redraw.

y

Vertical origin of bounding box to redraw.

width

Width of bounding box to redraw.

height

Height of bounding box to redraw.

Description

Requests scheduler to redraw a portion of component as soon as possible.

public void repaint (long tm, int x, int y, int width, int height)

Parameters

tm

Millisecond delay allowed before repaint.

x

Horizontal origin of bounding box to redraw.

y

Vertical origin of bounding box to redraw.

width

Width of bounding box to redraw.

height

Height of bounding box to redraw.

Description

Requests scheduler to redraw a portion of component within a time period.

requestFocus

public void requestFocus()

Description

Requests the input focus for this Component.

reshape

public void reshape (int x, int y, int width, int height)

Parameters

x

New horizontal position for component.

y

New vertical position for component.

width

New width for component.

height

New height for component.

Description

Relocates and resizes component. Replaced by setBounds(int, int, int, int).

resize

public void resize (Dimension d)

Parameters

d

New dimensions for the component.

Description

Resizes component. Replaced by setSize(Dimension).

public void resize (int width, int height)

Parameters

width

New width for component.

height

New height for component.

Description

Resizes component. Replaced by setSize(int, int).

setBackground

public void setBackground (Color c)

Parameters

c

New background color.

Description

Changes the component's background color.

setBounds

public void setBounds (int x, int y, int width, int height)

Parameters

x

New horizontal position for component.

y

New vertical position for component.

width

New width for component.

height

New height for component.

Description

Relocates and resizes the component.

public void setBounds (Rectangle r)

Parameters

r

New coordinates for component.

Description

Relocates and resizes component.

setCursor

public synchronized void setCursor (Cursor cursor)

Parameters

cursor

The new cursor for the component.

Description

Changes the component's cursor.

setEnabled

public void setEnabled (boolean b)

Parameters

b

true to enable the component, false to disable it.

Description

Enables or disables the component. Replaces enable(), enable(boolean), and
disable().

setFont

public synchronized void setFont (Font f)

Parameters

f

Font to change component to.

Description

Changes the font of the component.

setForeground

public void setForeground (Color c)

Parameters

c

New foreground color.

Description

Changes the foreground color of component's area.

setLocale

public void setLocale (Locale l)

Parameters

l

The locale object for the component.

Description

Sets the Component's locale.

setLocation

public void setLocation (int x, int y)

Parameters

x

New horizontal position for component.

y

New vertical position for component.

Description

Relocates the component.

public void setLocation (Point p)

Parameters

p

New position for component.

Description

Relocates the component.

setName

public void setName (String name)

Parameters

name

New name for component.

Description

Sets the component's name.

setSize

public void setSize (int width, int height)

Parameters

width

New width for component.

height

New height for component.

Description

Resizes the component.

public void setSize (Dimension d)

Parameters

d

New dimensions for the component.

Description

Resizes the component.

setVisible

public void setVisible (boolean b)

Parameters

b

true to show component, false to hide it.

Description

Shows or hides the component based on the b parameter.

show

public void show()

Description

Replaced by setVisible(true).

public void show (boolean condition)

Parameters

condition

true to show the component, false to hide it.

Description

Replaced by setVisible(boolean).

size

public Dimension size()

Returns

Dimensions of the component.

Description

Gets width and height of the component. Replaced by getSize().

toString

public String toString()

Returns

A string representation of the Component object.

Overrides

Object.toString()

transferFocus

public void transferFocus()

Description

Transfers focus to the next component in the container hierarchy.

update

public void update (Graphics g)

Parameters

g

Graphics context of component.

Description

Called to update the component's display area.

validate

public void validate()

Description

Sets the component's valid state to true.

Protected Instance Methods

disableEvents

protected final void disableEvents (long eventsToDisable)

Parameters

eventsToDisable

A value representing certain kinds of events. This can be constructed by ORing the event

mask constants defined in java.awt.AWTEvent.

Description

By default, a component receives events corresponding to the event listeners that have registered.
If a component should not receive events of a certain type, even if there is a listener registered for
that type of event, this method can be used to disable that event type.

enableEvents

protected final void enableEvents (long eventsToEnable)

Parameters

eventsToEnable

A value representing certain kinds of events. This can be constructed by ORing the event
mask constants defined in java.awt.AWTEvent.

Description

By default, a component receives events corresponding to the event listeners that have registered.
If a component should receive other types of events as well, this method can be used to request
them.

paramString

protected String paramString()

Returns

A String with the current settings of the Component.

Description

Helper method for toString() to generate a string of current settings.

processComponentEvent

protected void processComponentEvent(ComponentEvent e)

Parameters

e

The event to process.

Description

Component events are passed to this method for processing. Normally, this method is called by
processEvent().

processEvent

protected void processEvent(AWTEvent e)

Parameters

e

The event to process.

Description

Low level AWTEvents are passed to this method for processing.

processFocusEvent

protected void processFocusEvent(FocusEvent e)

Parameters

e

The event to process.

Description

Focus events are passed to this method for processing. Normally, this method is called by
processEvent().

processKeyEvent

protected void processKeyEvent(KeyEvent e)

Parameters

e

The event to process.

Description

Key events are passed to this method for processing. Normally, this method is called by
processEvent().

processMouseEvent

protected void processMouseEvent(MouseEvent e)

Parameters

e

The event to process.

Description

Mouse events are passed to this method for processing. Normally, this method is called by
processEvent().

processMouseMotionEvent

protected void processMouseMotionEvent(MouseEvent e)

Parameters

e

The event to process.

Description

Mouse motion events are passed to this method for processing. Normally, this method is called by
processEvent().

See Also

Button, Canvas, Checkbox, Choice, Color, ColorModel, ComponentPeer, Container,
Dimension, Event, Font, FontMetrics, Graphics, ImageObserver, ImageProducer,
Label, List, MenuContainer, Object, Point, PrintStream, Rectangle, Scrollbar,
Serializable, String, TextComponent, Toolkit

Color Container

Chapter 19
java.awt Reference

Container

Name

Container

[Graphic: Figure from the text]

Description

The Container class serves as a general purpose holder of other Component objects.

Class Definition

public abstract class java.awt.Container
 extends java.awt.Component {
 // Constructors

 protected Container();

 // Instance Methods
 public Component add (Component component);

 public Component add (Component component, int position);

 public void add (Component comp, Object constraints);
 public void add (Component comp, Object constraints,

 int position);

 public Component add (String name, Component component);

 public void addContainerListener (ContainerListener l);
 public void addNotify();
 public int countComponents();

 public void deliverEvent (Event e);

 public void doLayout();

 public float getAlignmentX();

 public float getAlignmentY();
 public Component getComponent (int n);

 public Component getComponentAt (int x, int y);

 public Component getComponentAt (Point p);

 public int getComponentCount();
 public Component[] getComponents();

 public Insets getInsets();
 public LayoutManager getLayout();

 public Dimension getMaximumSize();

 public Dimension getMinimumSize();

 public Dimension getPreferredSize();
 public Insets insets();

 public void invalidate();

 public boolean isAncestorOf (Component c);

 public void layout();
 public void list (PrintStream out, int indentation);

 public void list (PrintWriter out, int indentation);

 public Component locate (int x, int y);

 public Dimension minimumSize();

 public void paint (Graphics g);
 public void paintComponents (Graphics g);

 public Dimension preferredSize();

 public void print (Graphics g);
 public void printComponents (Graphics g);

 public void remove (int index);
 public void remove (Component component);

 public void removeAll();

 public void removeContainerListener (ContainerListener l);
 public void removeNotify();
 public void setLayout (LayoutManager manager);
 public void validate();
 // Protected Instance Methods
 protected void addImpl (Component comp, Object constraints,

 int index);
 protected String paramString();

 protected void processContainerEvent (ContainerEvent e);

 protected void processEvent (AWTEvent e);

 protected void validateTree();
}

Constructors

Container

protected Container()

Description

This constructor creates a "lightweight" container. This constructor allows Container to be
subclassed using code written entirely in Java.

Instance Methods

add

public Component add (Component component)

Parameters

component

Component to add to container.

Returns

Component just added.

Throws

IllegalArgumentException if you add component to itself.

Description

Adds component as the last component in the container.

public Component add (Component component, int position)

Parameters

component

Component to add to container.

position

Position of component; -1 adds the component as the last in the container.

Returns

Component just added.

Throws

ArrayIndexOutOfBoundsException

If position invalid.

IllegalArgumentException

If you add Component to itself.

Description

Adds component to container at a certain position.

public void add (Component component, Object constraints)

Parameters

component

Component to add to container.

constraints

An object describing constraints on the component being added.

Description

Adds component to container subject to contraints.

public void add (Component component, Object constraints, int index)

Parameters

component

Component to add to container.

constraints

An object describing constraints on the component being added.

index

The position of the component in the container's list.

Description

Adds component to container subject to contraints at position index.

public Component add (String name, Component component)

Parameters

name

Name of component being added. This parameter is often significant to the layout manager
of the container (e.g "North", "Center").

component

Component to add to container.

Returns

Component just added.

Throws

IllegalArgumentException

If you add component to itself.

Description

Adds the component to the container with the given name. Replaced by the more general
add(Component, Object).

addContainerListener

public void addContainerListener (ContainerListener l)

Parameters

l

An object that implements the ContainerListener interface.

Description

Add a listener for the container events.

addNotify

public void addNotify()

Overrides

Component.addNotify()

Description

Creates Container's peer and peers of contained components.

countComponents

public int countComponents()

Returns

Number of components within Container.

deliverEvent

public void deliverEvent (Event e)

Parameters

e

Event instance to deliver.

Overrides

Component.deliverEvent(Event)

Description

Tries to locate the component contained in the container that should receive the event.

doLayout

public void doLayout()

Description

Lays out the container. This method is a replacement for layout().

getAlignmentX

public float getAlignmentX()

Returns

A number between 0 and 1 representing the horizontal alignment of this component.

Overrides

Component.getAlignmentX()

Description

If the container's layout manager implements LayoutManager2, this method returns the
getLayoutAlignmentX() value of the layout manager. Otherwise the getAlignmentX()
value of Component is returned.

getAlignmentY

public float getAlignmentY()

Returns

A number between 0 and 1 representing the vertical alignment of this component.

Overrides

Component.getAlignmentY()

Description

If the container's layout manager implements LayoutManager2, this method returns the
getLayoutAlignmentY() value of the layout manager. Otherwise the getAlignmentY()
value of Component is returned.

getComponent

public synchronized Component getComponent (int position)

Parameters

position

Position of component to get.

Throws

ArrayIndexOutOfBoundsException

If position is invalid.

Returns

Component at designated position within Container.

getComponentAt

public Component getComponentAt (int x, int y)

Parameters

x

The x coordinate, in this Container's coordinate system.

y

The y coordinate, in this Container's coordinate system.

Returns

Returns the Component containing the give point.

public Component getComponentAt (Point p)

Parameters

p

The point to be tested, in this Container's coordinate system.

Returns

Returns the Component containing the give point.

getComponentCount

public int getComponentCount()

Returns

Returns the number of components in the container.

getComponents

public Component[] getComponents()

Returns

Array of components within the container.

getInsets

public Insets getInsets()

Returns

The insets of the container.

getLayout

public LayoutManager getLayout()

Returns

LayoutManager of Container.

getMaximumSize

public Dimension getMaximumSize()

Overrides

Component.getMaximumSize()

Returns

The maximum dimensions of the component.

getMinimumSize

public Dimension getMinimumSize()

Overrides

Component.getMinimumSize()

Returns

The minimum dimensions of the component.

getPreferredSize

public Dimension getPreferredSize()

Returns

The preferred dimensions of the component.

insets

public Insets insets()

Returns

Current Insets of Container. Replaced by getInsets().

invalidate

public void invalidate()

Overrides

Component.invalidate()

Description

Sets the container's valid state to false.

isAncestorOf

public boolean isAncestorOf (Component c)

Parameters

c

The component in question.

Returns

If c is contained in the container's hierarchy, returns true; otherwise false.

layout

public void layout()

Overrides

Component.layout()

Description

Replaced by doLayout().

list

public void list (PrintStream out, int indentation)

Parameters

out

Output Stream to send results to.

indentation

Indentation to use when printing.

Overrides

Component.list(PrintStream, int)

Description

Recursively lists all components in Container.

public void list (PrintWriter out, int indentation)

Parameters

out

Output Writer to send results to.

indentation

Indentation to use when printing.

Overrides

Component.list(PrintWriter, int)

Description

Recursively lists all components in Container.

locate

public Component locate (int x, int y)

Parameters

x

Horizontal position to check.

y

Vertical position to check.

Returns

Component within Container at given coordinates, or Container.

Overrides

Component.locate(int, int)

Description

Replaced by getComponentAt(int, int).

minimizeSize

public Dimension minimumSize()

Returns

Minimum dimensions of contained objects.

Overrides

Component.minimumSize()

Description

Replaced by getMinimumSize().

paint

public void paint (Graphics g)

Parameters

g

Graphics context of container.

Overrides

Component.paint()

Description

This method tells any lightweight components that are children of this container to paint
themselves.

paintComponents

public void paintComponents (Graphics g)

Parameters

g

Graphics context of Container.

Description

Paints the different components in Container.

preferredSize

public Dimension preferredSize()

Returns

Preferred dimensions of contained objects.

Overrides

Component.preferredSize()

Description

Replaced by getPreferredSize().

print

public void print (Graphics g)

Parameters

g

Graphics context of container.

Overrides

Component.print()

Description

This method tells any lightweight components that are children of this container to print
themselves.

printComponents

public void printComponents (Graphics g)

Parameters

g

Graphics context of Container.

Description

Prints the different components in Container.

remove

public void remove (int index)

Parameters

index

Index of the component to remove.

Description

Removes the component in position index from Container.

public void remove (Component component)

Parameters

component

Component to remove.

Description

Removes component from Container.

removeAll

public void removeAll()

Description

Removes all components from Container.

removeContainerListener

public void removeContainerListener (ContainerListener l)

Parameters

l

One of this Container's ContainerListeners.

Description

Remove a container event listener.

removeNotify

public void removeNotify()

Overrides

Component.removeNotify()

Description

Removes Container's peer and peers of contained components.

setLayout

public void setLayout (LayoutManager manager)

Parameters

manager

New LayoutManager for Container.

Description

Changes LayoutManager of Container.

validate

public void validate()

Overrides

Component.validate()

Description

Sets Container's valid state to true and recursively validates its children.

Protected Instance Methods

addImpl

protected void addImpl (Component comp, Object constraints, int index)

Parameters

comp

The component to add.

constraints

Constraints on the component.

index

Position at which to add this component. Pass -1 to add the component at the end.

Description

This method adds a component subject to the given constraints at a specific position in the

container's list of components. It is a helper method for the various overrides of add().

paramString

protected String paramString()

Returns

String with current settings of Container.

Overrides

Component.paramString()

Description

Helper method for toString() to generate string of current settings.

processContainerEvent

protected void processContainerEvent (ContainerEvent e)

Parameters

e

The event to process.

Description

Container events are passed to this method for processing. Normally, this method is called by
processEvent().

processEvent

protected void processEvent (AWTEvent e)

Parameters

e

The event to process.

Overrides

Component.processEvent()

Description

Low level AWTEvents are passed to this method for processing.

validateTree

protected void validateTree()

Description

Descends recursively into the Container's components and recalculates layout for any subtrees
that are marked invalid.

See Also

Component, Dimension, Event, Graphics, Insets, LayoutManager, Panel,
PrintStream, String, Window

Component Cursor

Chapter 19
java.awt Reference

Cursor

Name

Cursor

[Graphic: Figure from the text]

Description

The Cursor class represents the mouse pointer. It encapsulates information that used to be in
java.awt.Frame in the 1.0.2 release.

Class Definition

public class java.awt.Cursor
 extends java.lang.Object
 implements java.io.Serializable {
 // Constants
 public final static int CROSSHAIR_CURSOR;
 public final static int DEFAULT_CURSOR;
 public final static int E_RESIZE_CURSOR;
 public final static int HAND_CURSOR;
 public final static int MOVE_CURSOR;
 public final static int N_RESIZE_CURSOR;
 public final static int NE_RESIZE_CURSOR;

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_18.htm

 public final static int NW_RESIZE_CURSOR;
 public final static int S_RESIZE_CURSOR;
 public final static int SE_RESIZE_CURSOR;
 public final static int SW_RESIZE_CURSOR;
 public final static int TEXT_CURSOR;
 public final static int W_RESIZE_CURSOR;
 public final static int WAIT_CURSOR;
 // Class Variables
 protected static Cursor[] predefined;
 // Class Methods
 public static Cursor getDefaultCursor();
 public static Cursor getPredefinedCursor (int type);
 // Constructors
 public Cursor (int type);
 // Instance Methods
 public int getType();
}

Constants

CROSSHAIR_CURSOR

public final static int CROSSHAIR_CURSOR

Constant representing a cursor that looks like a crosshair.

DEFAULT_CURSOR

public final static int DEFAULT_CURSOR

Constant representing the platform's default cursor.

E_RESIZE_CURSOR

public final static int E_RESIZE_CURSOR

Constant representing the cursor for resizing an object on the left.

HAND_CURSOR

public final static int HAND_CURSOR

Constant representing a cursor that looks like a hand.

MOVE_CURSOR

public final static int MOVE_CURSOR

Constant representing a cursor used to move an object.

N_RESIZE_CURSOR

public final static int N_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the top.

NE_RESIZE_CURSOR

public final static int NE_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the top left corner.

NW_RESIZE_CURSOR

public final static int NW_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the top right corner.

S_RESIZE_CURSOR

public final static int S_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the bottom.

SE_RESIZE_CURSOR

public final static int SE_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the bottom left corner.

SW_RESIZE_CURSOR

public final static int SW_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the bottom right corner.

TEXT_CURSOR

public final static int TEXT_CURSOR

Constant representing a cursor used within text.

W_RESIZE_CURSOR

public final static int W_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the right side.

WAIT_CURSOR

public final static int WAIT_CURSOR

Constant representing a cursor that indicates the program is busy.

Class Variables

predefined

protected static Cursor[] predefined

An array of cursor instances corresponding to the predefined cursor types.

Class Methods

getDefaultCursor

public static Cursor getDefaultCursor()

Returns

The default system cursor.

getPredefinedCursor

public static Cursor getPredefinedCursor (int type)

Parameters

type

One of the type constants defined in this class.

Returns

A Cursor object with the specified type.

Constructors

Cursor

public Cursor (int type)

Parameters

type

One of the type constants defined in this class.

Description

Constructs a Cursor object with the specified type.

Instance Methods

getType

public int getType()

Returns

The type of cursor.

See Also

Frame

Container Dialog

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_18.htm

Chapter 19
java.awt Reference

Graphics

Name

Graphics

[Graphic: Figure from the text]

Description

The Graphics class is an abstract class that represents an object on which you can draw. The concrete classes
that are actually used to represent graphics objects are platform dependent, but because they extend the
Graphics class, must implement the methods here.

Class Definition

public abstract class java.awt.Graphics
 extends java.lang.Object {

 // Constructors
 protected Graphics();

 // Instance Methods
 public abstract void clearRect (int x, int y, int width, int height);
 public abstract void clipRect (int x, int y, int width, int height);
 public abstract void copyArea (int x, int y, int width, int height,
 int deltax, int deltay);
 public abstract Graphics create();
 public Graphics create (int x, int y, int width, int height);
 public abstract void dispose();
 public void draw3DRect (int x, int y, int width, int height,

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_26.htm

 boolean raised);
 public abstract void drawArc (int x, int y, int width, int height,
 int startAngle, int arcAngle);
 public void drawBytes (byte text[], int offset, int length,
 int x, int y);
 public void drawChars (char text[], int offset, int length,
 int x, int y);
 public abstract boolean drawImage (Image image, int x, int y,
 ImageObserver observer);
 public abstract boolean drawImage (Image image, int x, int y,
 int width, int height, ImageObserver observer);
 public abstract boolean drawImage (Image image, int x, int y,
 Color backgroundColor, ImageObserver observer);
 public abstract boolean drawImage (Image image, int x, int y,
 int width, int height, Color backgroundColor, ImageObserver observer);
 public abstract boolean drawImage(Image img, int dx1, int dy1,
 int dx2, int dy2, int sx1, int sy1, int sx2, int sy2, ImageObserver

 observer);
 public abstract boolean drawImage(Image img, int dx1, int dy1,
 int dx2, int dy2, int sx1, int sy1, int sx2, int sy2, Color bgcolor,

 ImageObserver observer);
 public abstract void drawLine (int x1, int y1, int x2, int y2);
 public abstract void drawOval (int x, int y, int width, int height);
 public abstract void drawPolygon (int xPoints[], int yPoints[],
 int numPoints);
 public void drawPolygon (Polygon p);
 public abstract void drawPolyline(int[] xPoints, int[] yPoints,

 int nPoints);
 public void drawRect (int x, int y, int width, int height);
 public abstract void drawRoundRect (int x, int y, int width,
 int height, int arcWidth, int arcHeight);
 public abstract void drawString (String text, int x, int y);
 public void fill3DRect (int x, int y, int width, int height,
 boolean raised);
 public abstract void fillArc (int x, int y, int width, int height,
 int startAngle, int arcAngle);
 public abstract void fillOval (int x, int y, int width, int height);
 public abstract void fillPolygon (int xPoints[], int yPoints[],
 int numPoints);
 public void fillPolygon (Polygon p);
 public abstract void fillRect (int x, int y, int width, int height);
 public abstract void fillRoundRect (int x, int y, int width,
 int height, int arcWidth, int arcHeight);
 public void finalize();

 public abstract Shape getClip();

 public abstract Rectangle getClipBounds();
 public abstract Rectangle getClipRect();
 public abstract Color getColor();
 public abstract Font getFont();
 public FontMetrics getFontMetrics();
 public abstract FontMetrics getFontMetrics (Font font);

 public abstract void setClip (int x, int y, int width, int height);

 public abstract void setClip (Shape clip);
 public abstract void setColor (Color color);
 public abstract void setFont (Font font);
 public abstract void setPaintMode();
 public abstract void setXORMode (Color xorColor);
 public String toString();
 public abstract void translate (int x, int y);
}

Constructors

Graphics

protected Graphics()

Description

Called by constructors of platform specific subclasses.

Instance Methods

clearRect

public abstract void clearRect (int x, int y, int width, int height)

Parameters

x

x coordinate of origin of area to clear.

y

y coordinate of origin of area to clear.

width

size in horizontal direction to clear.

height

size in vertical direction to clear.

Description

Resets a rectangular area to the background color.

clipRect

public abstract void clipRect (int x, int y, int width, int height)

Parameters

x

x coordinate of origin of clipped area.

y

y coordinate of origin of clipped area.

width

size in horizontal direction to clip.

height

size in vertical direction to clip.

Description

Reduces the drawing area to the intersection of the current drawing area and the rectangular area defined
by x, y, width, and height.

copyArea

public abstract void copyArea (int x, int y, int width, int height, int deltax, int deltay)

Parameters

x

x coordinate of origin of area to copy.

y

y coordinate of origin of area to copy.

width

size in horizontal direction to copy.

height

size in vertical direction to copy.

deltax

offset in horizontal direction to copy area to.

deltay

offset in vertical direction to copy area to.

Description

Copies a rectangular area to a new area, whose top left corner is (x+deltax, y+deltay).

create

public abstract Graphics create()

Returns

New graphics context.

Description

Creates a second reference to the same graphics context.

public Graphics create (int x, int y, int width, int height)

Parameters

x

x coordinate of origin of new graphics context.

y

y coordinate of origin of new graphics context.

width

size in horizontal direction.

height

size in vertical direction.

Returns

New graphics context

Description

Creates a second reference to a subset of the same graphics context.

dispose

public abstract void dispose()

Description

Frees system resources used by graphics context.

draw3DRect

public void draw3DRect (int x, int y, int width, int height, boolean raised)

Parameters

x

x coordinate of the rectangle origin.

y

y coordinate of the rectangle origin

width

Width of the rectangle to draw.

height

Height of the rectangle to draw.

raised

Determines if rectangle drawn is raised or not; true for a raised rectangle.

Description

Draws an unfilled 3-D rectangle from (x, y) of size width x height.

drawArc

public abstract void drawArc (int x, int y, int width, int height, int startAngle, int arcAngle)

Parameters

x

x coordinate of the bounding rectangle's origin.

y

y coordinate of the bounding rectangle's origin

width

Width of the bounding rectangle for the arc.

height

Height of the bounding rectangle for the arc.

startAngle

Angle at which arc begins, in degrees

arcAngle

length of arc, in degrees

Description

Draws an unfilled arc from startAngle to arcAngle within bounding rectangle from (x, y) of size
width x height. Zero degrees is at three o'clock; positive angles are counter clockwise.

drawBytes

public void drawBytes (byte text[], int offset, int length, int x, int y)

Parameters

text

Text to draw, as a byte array.

offset

Starting position within text to draw.

length

Number of bytes to draw.

x

x coordinate of baseline origin.

y

y coordinate of baseline origin.

Throws

ArrayIndexOutOfBoundsException

If offset or length is invalid.

Description

Draws text on screen, starting with text[offset] and ending with text[offset+length-1].

drawChars

public void drawChars (char text[], int offset, int length, int x, int y)

Parameters

text

Text to draw, as a char array.

offset

Starting position within text to draw.

length

Number of bytes to draw.

x

x coordinate of baseline origin.

y

y coordinate of baseline origin.

Throws

ArrayIndexOutOfBoundsException

If offset or length is invalid.

Description

Draws text on screen, starting with text[offset] and ending with text[offset+length-1].

drawImage

public abstract boolean drawImage (Image image, int x, int y, ImageObserver observer)

Parameters

image

Image to draw.

x

x coordinate of image origin.

y

y coordinate of image origin.

observer

Object that watches for image information; almost always this.

Returns

true if the image has fully loaded when the method returns, false otherwise.

Description

Draws image to screen at (x, y), at its original size. Drawing may be asynchronous. If image is not fully
loaded when the method returns, observer is notified when additional information made available.

public abstract boolean drawImage (Image image, int x, int y, int width, int height,
ImageObserver observer)

Parameters

image

Image to draw.

x

x coordinate of image origin.

y

y coordinate of image origin.

width

New image size in horizontal direction.

height

New image size in vertical direction.

observer

Object that watches for image information; almost always this.

Returns

true if the image has fully loaded when the method returns, false otherwise.

Description

Draws image to screen at (x, y), scaled to width x height. Drawing may be asynchronous. If image
is not fully loaded when the method returns, observer is notified when additional information made
available.

public abstract boolean drawImage (Image image, int x, int y, Color backgroundColor,
ImageObserver observer)

Parameters

image

Image to draw.

x

x coordinate of image origin.

y

y coordinate of image origin.

backgroundColor

Color to show through image where transparent.

observer

Object that watches for image information; almost always this.

Returns

true if the image has fully loaded when the method returns, false otherwise.

Description

Draws image to screen at (x, y), at its original size. Drawing may be asynchronous. If image is not fully
loaded when the method returns, observer is notified when additional information made available. The
background color is visible through any transparent pixels.

public abstract boolean drawImage (Image image, int x, int y, int width, int height, Color
backgroundColor, ImageObserver observer)

Parameters

image

Image to draw.

x

x coordinate of image origin.

y

y coordinate of image origin.

width

New image size in horizontal direction.

height

New image size in vertical direction.

backgroundColor

Color to show through image where transparent.

observer

Object that watches for image information; almost always this.

Returns

true if the image has fully loaded when the method returns, false otherwise.

Description

Draws image to screen at (x, y), scaled to width x height. Drawing may be asynchronous. If image
is not fully loaded when the method returns, observer is notified when additional information made
available. The background color is visible through any transparent pixels.

public abstract boolean drawImage (Image image, int dx1, int dy1, int dx2, int dy2, int sx1, int
sy1, int sx2, int sy2, ImageObserver observer)

Parameters

image

Image to draw.

dx1

x coordinate of one corner of destination (device) rectangle.

dy1

y coordinate of one corner of destination (device) rectangle.

dx2

x coordinate of the opposite corner of destination (device) rectangle.

dy2

y coordinate of the opposite corner of destination (device) rectangle.

sx1

x coordinate of one corner of source (image) rectangle.

sy1

y coordinate of one corner of source (image) rectangle.

sx2

x coordinate of the opposite corner of source (image) rectangle.

sy2

y coordinate of the opposite corner of source (image) rectangle.

observer

Object that watches for image information; almost always this.

Returns

true if the image has fully loaded when the method returns, false otherwise.

Description

Draws the part of image described by dx1, dy1, dx2, and dy2 to the screen into the rectangle described
by sx1, sy1, sx2, and sy2. Drawing may be asynchronous. If image is not fully loaded when the
method returns, observer is notified when additional information is made available.

public abstract boolean drawImage (Image image, int dx1, int dy1, int dx2, int dy2, int sx1, int
sy1, int sx2, int sy2, Color backgroundColor, ImageObserver observer)

Parameters

image

Image to draw.

dx1

x coordinate of one corner of destination (device) rectangle.

dy1

y coordinate of one corner of destination (device) rectangle.

dx2

x coordinate of the opposite corner of destination (device) rectangle.

dy2

y coordinate of the opposite corner of destination (device) rectangle.

sx1

x coordinate of one corner of source (image) rectangle.

sy1

y coordinate of one corner of source (image) rectangle.

sx2

x coordinate of the opposite corner of source (image) rectangle.

sy2

y coordinate of the opposite corner of source (image) rectangle.

backgroundColor

Color to show through image where transparent.

observer

Object that watches for image information; almost always this.

Returns

true if the image has fully loaded when the method returns, false otherwise.

Description

Draws the part of image described by dx1, dy1, dx2, and dy2 to the screen into the rectangle described
by sx1, sy1, sx2, and sy2. Drawing may be asynchronous. If image is not fully loaded when the
method returns, observer is notified when additional information made available. The background
color is visible through any transparent pixels.

drawLine

public abstract void drawLine (int x1, int y1, int x2, int y2)

Parameters

x1

x coordinate of one point on line.

y1

y coordinate of one point on line.

x2

x coordinate of the opposite point on line.

y2

y coordinate of the opposite point on line.

Description

Draws a line connecting (x1, y1) and (x2, y2).

drawOval

public abstract void drawOval (int x, int y, int width, int height)

Parameters

x

x coordinate of bounding rectangle origin.

y

y coordinate of bounding rectangle origin

width

Width of bounding rectangle to draw in.

height

Height of bounding rectangle to draw in.

Description

Draws an unfilled oval within bounding rectangle from (x, y) of size width x height.

drawPolygon

public abstract void drawPolygon (int xPoints[], int yPoints[], int numPoints)

Parameters

xPoints[]

The array of x coordinates for each point.

yPoints[]

The array of y coordinates for each point.

numPoints

The number of elements in both xPoints and yPoints arrays to use.

Description

Draws an unfilled polygon based on first numPoints elements in xPoints and yPoints.

public void drawPolygon (Polygon p)

Parameters

p

Points of object to draw.

Description

Draws an unfilled polygon based on points within the Polygon p.

drawPolyline

public abstract void drawPolyline (int xPoints[], int yPoints[], int nPoints)

Parameters

xPoints[]

The array of x coordinates for each point.

yPoints[]

The array of y coordinates for each point.

nPoints

The number of elements in both xPoints and yPoints arrays to use.

Description

Draws a series of line segments based on first numPoints elements in xPoints and yPoints.

drawRect

public void drawRect (int x, int y, int width, int height)

Parameters

x

x coordinate of rectangle origin.

y

y coordinate of rectangle origin

width

Width of rectangle to draw.

height

Height of rectangle to draw.

Description

Draws an unfilled rectangle from (x, y) of size width x height.

drawRoundRect

public abstract void drawRoundRect (int x, int y, int width, int height, int arcWidth, int
arcHeight)

Parameters

x

x coordinate of bounding rectangle origin.

y

y coordinate of bounding rectangle origin

width

Width of rectangle to draw.

height

Height of rectangle to draw.

arcWidth

Width of arc of rectangle corner.

arcHeight

Height of arc of rectangle corner.

Description

Draws an unfilled rectangle from (x, y) of size width x height with rounded corners.

drawString

public abstract void drawString (String text, int x, int y)

Parameters

text

Text to draw.

x

x coordinate of baseline origin.

y

y coordinate of baseline origin.

Description

Draws text on screen.

fill3DRect

public void fill3DRect (int x, int y, int width, int height, boolean raised)

Parameters

x

x coordinate of rectangle origin.

y

y coordinate of rectangle origin

width

Width of rectangle to draw.

height

Height of rectangle to draw.

raised

true to draw a rectangle that appears raised; false to draw a rectangle that appears depressed.

Description

Draws a filled 3-D rectangle from (x, y) of size width x height.

fillArc

public abstract void fillArc (int x, int y, int width, int height, int startAngle, int arcAngle)

Parameters

x

x coordinate of bounding rectangle origin.

y

y coordinate of bounding rectangle origin

width

Width of bounding rectangle to draw in.

height

Height of bounding rectangle to draw in.

startAngle

Starting angle of arc.

arcAngle

The extent of the arc, measured from startAngle

Description

Draws a filled arc from startAngle to arcAngle within bounding rectangle from (x, y) of size
width x height. Zero degrees is at three o'clock; positive angles are counter clockwise.

fillOval

public abstract void fillOval (int x, int y, int width, int height)

Parameters

x

x coordinate of bounding rectangle origin.

y

y coordinate of bounding rectangle origin

width

Width of bounding rectangle to draw in.

height

Height of bounding rectangle to draw in.

Description

Draws filled oval within bounding rectangle from (x, y) of size width x height.

fillPolygon

public abstract void fillPolygon (int xPoints[], int yPoints[], int numPoints)

Parameters

xPoints[]

The array of x coordinates for each point.

yPoints[]

The array of y coordinates for each point.

numPoints

The number of elements in both xPoints and yPoints arrays to use.

Throws

ArrayIndexOutOfBoundsException

If numPoints > xPoints.length or numPoints > yPoints.length.

Description

Draws filled polygon based on first numPoints elements in xPoints and yPoints.

public void fillPolygon (Polygon p)

Parameters

p

Points of object to draw.

Description

Draws filled polygon based on points within the Polygon p.

fillRect

public abstract void fillRect (int x, int y, int width, int height)

Parameters

x

x coordinate of rectangle origin.

y

y coordinate of rectangle origin

width

Width of rectangle to draw.

height

Height of rectangle to draw.

Description

Draws filled rectangle from (x, y) of size width x height.

fillRoundRect

public abstract void fillRoundRect (int x, int y, int width, int height, int arcWidth, int arcHeight)

Parameters

x

x coordinate of bounding rectangle origin.

y

y coordinate of bounding rectangle origin

width

Width of rectangle to draw.

height

Height of rectangle to draw.

arcWidth

Width of arc of rectangle corner.

arcHeight

Height of arc of rectangle corner.

Description

Draws a filled rectangle from (x, y) of size width x height with rounded corners.

finalize

public void finalize()

Overrides

Object.finalize()

Description

Tells the garbage collector to dispose of graphics context.

getClip

public abstract Shape getClip ()

Returns

Shape describing the clipping are of the graphics context.

getClipBounds

public abstract Rectangle getClipBounds()

Returns

Rectangle describing the clipping area of the graphics context.

getClipRect

public abstract Rectangle getClipRect()

Returns

Replaced by getClipBounds().

getColor

public abstract Color getColor()

Returns

The current drawing Color of the graphics context.

getFont

public abstract Font getFont()

Returns

The current Font of the graphics context.

getFontMetrics

public FontMetrics getFontMetrics()

Returns

The FontMetrics of the current font of the graphics context.

public abstract FontMetrics getFontMetrics (Font font)

Parameters

font

Font to get metrics for.

Returns

The FontMetrics of the given font for the graphics context.

setClip

public abstract void setClip (int x, int y, int width, int height)

Parameters

x

x coordinate of rectangle

y

y coordinate of rectangle

width

width of rectangle

height

height of rectangle

Description

Changes current clipping region to the specified rectangle.

public abstract void setClip (Shape clip)

Parameters

clip

The new clipping shape.

Description

Changes current clipping region to the specified shape.

setColor

public abstract void setColor (Color color)

Parameters

color

New color.

Description

Changes current drawing color of graphics context.

setFont

public abstract void setFont (Font font)

Parameters

font

New font.

Description

Changes current font of graphics context.

setPaintMode

public abstract void setPaintMode()

Description

Changes painting mode to normal mode.

setXORMode

public abstract void setXORMode (Color xorColor)

Parameters

xorColor

XOR mode drawing color.

Description

Changes painting mode to XOR mode; in this mode, drawing the same object in the same color at the
same location twice has no net effect.

toString

public String toString()

Returns

A string representation of the Graphics object.

Overrides

Object.toString()

translate

public void translate (int x, int y)

Parameters

x

x coordinate of new drawing origin.

y

y coordinate of new drawing origin.

Description

Moves the origin of drawing operations to (x, y).

See Also

Color, Font, FontMetrics, Image, ImageObserver, Object, Polygon, Rectangle, Shape,
String

Frame GridBagConstraints

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_26.htm

Chapter 19
java.awt Reference

GridBagConstraints

Name

GridBagConstraints

Description

The GridBagConstraints class provides the means to control the layout of components within a
Container whose LayoutManager is GridBagLayout.

Class Definition

public class java.awt.GridBagConstraints
 extends java.lang.Object
 implements java.lang.Cloneable, java.io.Serializable {

 // Constants
 public final static int BOTH;
 public final static int CENTER;
 public final static int EAST;
 public final static int HORIZONTAL;
 public final static int NONE;
 public final static int NORTH;

 public final static int NORTHEAST;
 public final static int NORTHWEST;
 public final static int RELATIVE;
 public final static int REMAINDER;
 public final static int SOUTH;
 public final static int SOUTHEAST;
 public final static int SOUTHWEST;
 public final static int VERTICAL;
 public final static int WEST;

 // Variables
 public int anchor;
 public int fill;
 public int gridheight;
 public int gridwidth;
 public int gridx;
 public int gridy;
 public Insets insets;
 public int ipadx;
 public int ipady;
 public double weightx
 public double weighty

 // Constructors
 public GridBagConstraints();

 // Instance Methods
 public Object clone();
}

Constants

BOTH

public final static int BOTH

Constant for possible fill value.

CENTER

public final static int CENTER

Constant for possible anchor value.

EAST

public final static int EAST

Constant for possible anchor value.

HORIZONTAL

public final static int HORIZONTAL

Constant for possible fill value.

NONE

public final static int NONE

Constant for possible fill value.

NORTH

public final static int NORTH

Constant for possible anchor value.

NORTHEAST

public final static int NORTHEAST

Constant for possible anchor value.

NORTHWEST

public final static int NORTHWEST

Constant for possible anchor value.

RELATIVE

public final static int RELATIVE

Constant for possible gridx, gridy, gridwidth, or gridheight value.

REMAINDER

public final static int REMAINDER

Constant for possible gridwidth or gridheight value.

SOUTH

public final static int SOUTH

Constant for possible anchor value.

SOUTHEAST

public final static int SOUTHEAST

Constant for possible anchor value.

SOUTHWEST

public final static int SOUTHWEST

Constant for possible anchor value.

VERTICAL

public final static int VERTICAL

Constant for possible fill value.

WEST

public final static int WEST

Constant for possible anchor value.

Variables

anchor

public int anchor

Specifies the alignment of the component in the event that it is smaller than the space allotted for it by
the layout manager; e.g., CENTER centers the object within the region.

fill

public int fill

The component's resize policy if additional space available.

gridheight

public int gridheight

Number of columns a component occupies.

gridwidth

public int gridwidth

Number of rows a component occupies.

gridx

public int gridx

Horizontal grid position at which to add component.

gridy

public int gridy

Vertical grid position at which to add component.

insets

public Insets insets

Specifies the outer padding around the component.

ipadx

public int ipadx

Serves as the internal padding within the component in both the right and left directions.

ipady

public int ipady

Serves as the internal padding within the component in both the top and bottom directions.

weightx

public double weightx

Represents the percentage of extra horizontal space that will be given to this component if there is
additional space available within the container.

weighty

public double weighty

Represents the percentage of extra vertical space that will be given to this component if there is
additional space available within the container.

Constructors

GridBagConstraints

public GridBagConstraints()

Description

Constructs a GridBagConstraints object.

Instance Methods

clone

public Object clone()

Returns

A new instance of GridBagConstraints with same values for constraints.

Overrides

Object.clone()

See Also

Cloneable, GridBagLayout, Insets, Object, Serializable

Graphics GridBagLayout

Chapter 19
java.awt Reference

GridBagLayout

Name

GridBagLayout

Description

The GridBagLayout LayoutManager provides the means to layout components in a flexible grid-
based display model.

Class Definition

public class java.awt.GridBagLayout
 extends java.lang.Object
 implements java.awt.LayoutManager2, java.io.Serializable {

 // Protected Constants
 protected static final MAXGRIDSIZE;
 protected static final MINSIZE;
 protected static final PREFERREDSIZE;

 // Variables

 public double columnWeights[];
 public int columnWidths[];
 public int rowHeights[];
 public double rowWeights[];

 // Protected Variables
 protected Hashtable comptable;
 protected GridBagConstraints defaultConstraints;
 protected GridBagLayoutInfo layoutInfo;

 // Constructors
 public GridBagLayout();

 // Instance Methods

 public void addLayoutComponent (Component comp, Object constraints);
 public void addLayoutComponent (String name, Component component);
 public GridBagConstraints getConstraints (Component component);

 public abstract float getLayoutAlignmentX(Container target);

 public abstract float getLayoutAlignmentY(Container target);
 public int[][] getLayoutDimensions();
 public Point getLayoutOrigin();
 public double[][] getLayoutWeights();

 public abstract void invalidateLayout(Container target);
 public void layoutContainer (Container target);
 public Point location (int x, int y);

 public abstract Dimension maximumLayoutSize(Container target);
 public Dimension minimumLayoutSize (Container target);
 public Dimension preferredLayoutSize (Container target);
 public void removeLayoutComponent (Component component);
 public void setConstraints (Component component,
 GridBagConstraints constraints);
 public String toString();

 // Protected Instance Methods
 protected void AdjustForGravity (GridBagConstraints constraints,
 Rectangle r);
 protected void ArrangeGrid (Container target);
 protected GridBagLayoutInfo GetLayoutInfo (Container target,
 int sizeFlag);
 protected Dimension GetMinSize (Container target,
 GridBagLayoutInfo info);
 protected GridBagConstraints lookupConstraints (Component comp);
}

Protected Constants

MAXGRIDSIZE

protected static final MAXGRIDSIZE

Maximum number of rows and columns within container managed by GridBagLayout.

MINSIZE

protected static final MINSIZE

Used for internal sizing purposes.

PREFERREDSIZE

protected static final PREFERREDSIZE

Used for internal sizing purposes.

Variables

columnWeights

public double[] columnWeights

The weightx values of the components in the row with the most elements.

columnWidths

public int[] columnWidths

The width values of the components in the row with the most elements.

rowHeights

public int[] rowHeights

The height values of the components in the column with the most elements.

rowWeights

public double[] rowWeights

The weighty values of the components in the column with the most elements.

Protected Variables

comptable

protected Hashtable comptable

Internal table to manage components.

defaultConstraints

protected GridBagConstraints defaultConstraints

Constraints to use for Components that have none.

layoutInfo

protected GridBagLayoutInfo layoutInfo

Internal information about the GridBagLayout.

Constructors

GridBagLayout

public GridBagLayout()

Description

Constructs a GridBagLayout object.

Instance Methods

addLayoutComponent

public void addLayoutComponent (Component comp, Object constraints)

Parameters

comp

The component being added.

constraints

An object describing the constraints on this component.

Implements

LayoutManager2.addLayoutComponent()

Description

Adds the component comp to container subject to the given constraints. This is a more
generalized version of addLayoutComponent(String, Component). It corresponds to
java.awt.Container's add(Component, Object).

public void addLayoutComponent (String name, Component component)

Parameters

name

Name of component to add.

component

Actual component being added.

Implements

LayoutManager.addLayoutComponent()

Description

Does nothing.

getConstraints

public GridBagConstraints getConstraints (Component component)

Parameters

component

Component whose constraints are desired

Returns

GridBagConstraints for component requested.

getLayoutAlignmentX

public abstract float getLayoutAlignmentX (Container target)

Parameters

target

The container to inspect.

Returns

The value .5 for all containers.

Description

This method returns the preferred alignment of the given container target. A return value of 0 is
left aligned, .5 is centered, and 1 is right aligned.

getLayoutAlignmentY

public abstract float getLayoutAlignmentY (Container target)

Parameters

target

The container to inspect.

Returns

The value .5 for all containers.

Description

This method returns the preferred alignment of the given container target. A return value of 0 is
top aligned, .5 is centered, and 1 is bottom aligned.

getLayoutDimensions

public int[][] getLayoutDimensions()

Returns

Returns two single dimension arrays as a multi-dimensional array. Index 0 is an array of widths
(columnWidths instance variable), while index 1 is an array of heights (rowHeights instance
variable).

getLayoutOrigin

public Point getLayoutOrigin()

Returns

Returns the origin of the components within the Container whose LayoutManager is
GridBagLayout.

getLayoutWeights

public double[][] getLayoutWeights()

Returns

Returns two single dimension arrays as a multi-dimensional array. Index 0 is an array of columns
weights (columnWeights instance variable), while index 1 is an array of row weights
(rowWeights instance variable).

invalidateLayout

public abstract void invalidateLayout (Container target)

Parameters

target

The container to invalidate.

Description

Does nothing.

layoutContainer

public void layoutContainer (Container target)

Parameters

target

The container that needs to be redrawn.

Implements

LayoutManager.layoutContainer()

Description

Draws components contained within target.

location

public Point location (int x, int y)

Parameters

x

The x coordinate of the grid position to find.

y

The y coordinate of the grid position to find.

Returns

Returns the grid element under the location provided at position (x, y) in pixels. Note that the
returned Point uses the GridBagLayout's grid for its coordinate space.

Description

Locates the grid position in the Container under the given location.

maximumLayoutSize

public abstract Dimension maximumLayoutSize (Container target)

Parameters

target

The container to inspect.

Returns

A Dimension whose horizontal and vertical components are Integer.MAX_VALUE.

Description

For GridBagLayout, a maximal Dimension is always returned.

minimumLayoutSize

public Dimension minimumLayoutSize (Container target)

Parameters

target

The container whose size needs to be calculated.

Returns

Minimum Dimension of container target.

Implements

LayoutManager.minimumLayoutSize()

Description

Calculates minimum size of target container.

preferredLayoutSize

public Dimension preferredLayoutSize (Container target)

Parameters

target

The container whose size needs to be calculated.

Returns

Preferred Dimension of container target

Implements

LayoutManager.preferredLayoutSize()

Description

Calculates preferred size of target container.

removeLayoutComponent

public void removeLayoutComponent (Component component)

Parameters

component

Component to stop tracking.

Implements

LayoutManager.removeLayoutComponent()

Description

Does nothing.

setConstraints

public void setConstraints (Component component, GridBagConstraints constraints)

Parameters

component

Component to set constraints for

constraints

Constraints for component

Description

Changes the GridBagConstraints on component to those provided.

toString

public String toString()

Returns

A string representation of the GridBagLayout object.

Overrides

Object.toString()

Protected Instance Methods

AdjustForGravity

protected void AdjustForGravity (GridBagConstraints constraints, Rectangle r)

Parameters

constraints

Constraints to use for adjustment of Rectangle.

r

Rectangular area that needs to be adjusted.

Description

Helper routine for laying out a cell of the grid. The routine adjusts the values for r based upon the
constraints.

ArrangeGrid

protected void ArrangeGrid (Container target)

Parameters

target

Container to layout.

Description

Helper routine that does the actual arrangement of components in target.

GetLayoutInfo

protected GridBagLayoutInfo GetLayoutInfo (Container target, int sizeFlag)

Parameters

target

Container to get information about.

sizeFlag

One of the constants MINSIZE or PREFERREDSIZE.

Returns

Returns an internal class used to help size the container.

GetMinSize

protected Dimension GetMinSize (Container target, GridBagLayoutInfo info)

Parameters

target

Container to calculate size.

info

Specifics about the container's constraints.

Returns

Minimum Dimension of container target based on info.

Description

Helper routine for calculating size of container.

lookupConstraints

protected GridBagConstraints lookupConstraints (Component comp)

Parameters

comp

Component in question.

Returns

A reference to the GridBagConstraints object for this component.

Description

Helper routine for calculating size of container.

See Also

Component, Container, Dimension, GridBagConstraints, Hashtable, LayoutManager,
LayoutManager2, Object, Point, Rectangle, String

GridBagConstraints GridLayout

Chapter 19
java.awt Reference

GridLayout

Name

GridLayout

Description

The GridLayout LayoutManager provides the means to layout components in a grid of rows and
columns.

Class Definition

public class java.awt.GridLayout
 extends java.lang.Object
 implements java.awt.LayoutManager, java.io.Serializable
 {

// Constructors

 public GridLayout();
 public GridLayout (int rows, int cols);
 public GridLayout (int rows, int cols, int hgap, int vgap);

// Instance Methods
 public void addLayoutComponent (String name, Component component);

 public int getColumns();

 public int getHgap();

 public int getRows();

 public int getVgap();
 public void layoutContainer (Container target);
 public Dimension minimumLayoutSize (Container target);
 public Dimension preferredLayoutSize (Container target);
 public void removeLayoutComponent (Component component);

 public int setColumns(int cols);

 public int setHgap(int hgap);

 public int setRows(int rows);

 public int setVgap(int vgap);
 public String toString();
}

Constructors

GridLayout

public GridLayout()

Description

Constructs a GridLayout object with a default single row and one column per component.

public GridLayout (int rows, int cols)

Parameters

rows

Requested number of rows in container.

cols

Requested number of columns in container.

Description

Constructs a GridLayout object with the requested number of rows and columns. Note that the
actual number of rows and columns depends on the number of objects in the layout, not the
constructor's parameters.

public GridLayout (int rows, int cols, int hgap, int vgap)

Parameters

rows

Requested number of rows in container.

cols

Requested number of columns in container.

hgap

Horizontal space between each component in a row.

vgap

Vertical space between each row.

Description

Constructs a GridLayout object with the requested number of rows and columns and the
values specified as the gaps between each component. Note that the actual number of rows and
columns depends on the number of objects in the layout, not the constructor's parameters.

Instance Methods

addLayoutComponent

public void addLayoutComponent (String name, Component component)

Parameters

name

Name of component to add.

component

Actual component being added.

Implements

LayoutManager.addLayoutComponent()

Description

Does nothing.

getColumns

public int getColumns()

Returns

The number of columns.

getHgap

public int getHgap()

Returns

The horizontal gap for this GridLayout instance.

getRows

public int getRows()

Returns

The number of rows.

getVgap

public int getVgap()

Returns

The vertical gap for this GridLayout instance.

layoutContainer

public void layoutContainer (Container target)

Parameters

target

The container that needs to be redrawn.

Implements

LayoutManager.layoutContainer()

Description

Draws the components contained within the target.

minimumLayoutSize

public Dimension minimumLayoutSize (Container target)

Parameters

target

The container whose size needs to be calculated.

Returns

Minimum Dimension of the container target.

Implements

LayoutManager.minimumLayoutSize()

Description

Calculates the minimum size of the target container.

preferredLayoutSize

public Dimension preferredLayoutSize (Container target)

Parameters

target

The container whose size needs to be calculated.

Returns

Preferred Dimension of the container target.

Implements

LayoutManager.preferredLayoutSize()

Description

Calculates the preferred size of the target container.

removeLayoutComponent

public void removeLayoutComponent (Component component)

Parameters

component

Component to stop tracking.

Implements

LayoutManager.removeLayoutComponent()

Description

Does nothing.

setColumns

public void setColumns(int cols)

Parameters

cols

The new number of columns.

Description

Sets the number of columns.

setHgap

public void setHgap(int hgap)

Parameters

hgap

The horizontal gap value.

Description

Sets the horizontal gap between components.

setRows

public void setRows(int rows)

Parameters

rows

The new number of rows.

Description

Sets the number of rows.

setVgap

public void setVgap(int vgap)

Parameters

vgap

The vertical gap value.

Description

Sets the vertical gap between components.

toString

public String toString()

Returns

A string representation of the GridLayout object.

Overrides

Object.toString()

See Also

Component, Container, Dimension, LayoutManager, Object, String

GridBagLayout IllegalComponentStateException

Chapter 19
java.awt Reference

IllegalComponentStateException

Name

IllegalComponentStateException

[Graphic: Figure from the text]

Description

An Exception indicating that a Component was not in an appropriate state to perform a requested
action.

Class Definition

public class java.awt.IllegalComponentStateException
 extends java.lang.IllegalStateException {

 // Constructors
 public IllegalComponentStateException();
 public IllegalComponentStateException (String s);
}

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_32.htm

Constructors

IllegalComponentStateException

public IllegalComponentStateException()

Description

Constructs the exception object with no detail message.

public IllegalComponentStateException (String s)

Parameters

s

Detail message

Description

Constructs the exception object with the given detail message.

See Also

Exception, String

GridLayout Image

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_32.htm

Chapter 19
java.awt Reference

SystemColor

Name

SystemColor

[Graphic: Figure from the text]

Description

SystemColor provides information on the colors that the windowing system uses to display windows
and other graphic components. Most windowing systems allow the user to choose different color
schemes; SystemColor enables programs to find out what colors are in use in order to paint
themselves in a consistent manner.

Class Definition

public final class java.awt.SystemColor
 extends java.awt.Color
 implements java.io.Serializable {
 // Constants
 public final static int ACTIVE_CAPTION;
 public final static int ACTIVE_CAPTION_BORDER;
 public final static int ACTIVE_CAPTION_TEXT;
 public final static int CONTROL;
 public final static int CONTROL_DK_SHADOW;

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_55.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_57.htm

 public final static int CONTROL_HIGHLIGHT;
 public final static int CONTROL_LT_HIGHLIGHT;
 public final static int CONTROL_SHADOW;
 public final static int CONTROL_TEXT;
 public final static int DESKTOP;
 public final static int INACTIVE_CAPTION;
 public final static int INACTIVE_CAPTION_BORDER;
 public final static int INACTIVE_CAPTION_TEXT;
 public final static int INFO;
 public final static int INFO_TEXT;
 public final static int MENU;
 public final static int MENU_TEXT;
 public final static int NUM_COLORS;
 public final static int SCROLLBAR;
 public final static int TEXT;
 public final static int TEXT_HIGHLIGHT;
 public final static int TEXT_HIGHLIGHT_TEXT;
 public final static int TEXT_INACTIVE_TEXT;
 public final static int TEXT_TEXT;
 public final static int WINDOW;
 public final static int WINDOW_BORDER;
 public final static int WINDOW_TEXT;
 public final static SystemColor activeCaption;
 public final static SystemColor activeCaptionBorder;
 public final static SystemColor activeCaptionText;
 public final static SystemColor control;
 public final static SystemColor controlDkShadow;
 public final static SystemColor controlHighlight;
 public final static SystemColor controlLtHighlight;
 public final static SystemColor controlShadow;
 public final static SystemColor controlText;
 public final static SystemColor desktop;
 public final static SystemColor inactiveCaption;
 public final static SystemColor inactiveCaptionBorder;
 public final static SystemColor inactiveCaptionText;
 public final static SystemColor info;
 public final static SystemColor infoText;
 public final static SystemColor menu;
 public final static SystemColor menuText;
 public final static SystemColor scrollbar;
 public final static SystemColor text;
 public final static SystemColor textHighlight;
 public final static SystemColor textHighlightText;

 public final static SystemColor textInactiveText;
 public final static SystemColor textText;
 public final static SystemColor window;
 public final static SystemColor windowBorder;
 public final static SystemColor windowText;
 // Public Instance Methods
 public int getRGB();
 public String toString();
}

Constants

ACTIVE_CAPTION

public static final int ACTIVE_CAPTION

ACTIVE_CAPTION_BORDER

public static final int ACTIVE_CAPTION_BORDER

ACTIVE_CAPTION_TEXT

public static final int ACTIVE_CAPTION_TEXT

CONTROL

public static final int CONTROL

CONTROL_DK_SHADOW

public static final int CONTROL_DK_SHADOW

CONTROL_HIGHLIGHT

public static final int CONTROL_HIGHLIGHT

CONTROL_LT_HIGHLIGHT

public static final int CONTROL_LT_HIGHLIGHT

CONTROL_SHADOW

public static final int CONTROL_SHADOW

CONTROL_TEXT

public static final int CONTROL_TEXT

DESKTOP

public static final int DESKTOP

INACTIVE_CAPTION

public static final int INACTIVE_CAPTION

INACTIVE_CAPTION_BORDER

public static final int INACTIVE_CAPTION_BORDER

INACTIVE_CAPTION_TEXT

public static final int INACTIVE_CAPTION_TEXT

INFO

public static final int INFO

INFO_TEXT

public static final int INFO_TEXT

MENU

public static final int MENU

MENU_TEXT

public static final int MENU_TEXT

NUM_COLORS

public static final int NUM_COLORS

SCROLLBAR

public static final int SCROLLBAR

TEXT

public static final int TEXT

TEXT_HIGHLIGHT

public static final int TEXT_HIGHLIGHT

TEXT_HIGHLIGHT_TEXT

public static final int TEXT_HIGHLIGHT_TEXT

TEXT_INACTIVE_TEXT

public static final int TEXT_INACTIVE_TEXT

TEXT_TEXT

public static final int TEXT_TEXT

WINDOW

public static final int WINDOW

WINDOW_BORDER

public static final int WINDOW_BORDER

WINDOW_TEXT

public static final int WINDOW_TEXT

activeCaption

public static final SystemColor activeCaption

Background color for captions in window borders.

activeCaptionBorder

public static final SystemColor activeCaptionBorder

Border color for captions in window borders.

activeCaptionText

public static final SystemColor activeCaptionText

Text color for captions in window borders.

control

public static final SystemColor control

Background color for controls.

controlDkShadow

public static final SystemColor controlDkShadow

Dark shadow color for controls.

controlHighlight

public static final SystemColor controlHighlight

Highlight color for controls.

controlLtHighlight

public static final SystemColor controlLtHighlight

Light highlight color for controls.

controlShadow

public static final SystemColor controlShadow

Shadow color for controls.

controlText

public static final SystemColor controlText

Text color for controls.

desktop

public static final SystemColor desktop

Desktop background color.

inactiveCaption

public static final SystemColor inactiveCaption

Background color for inactive captions in window borders.

inactiveCaptionBorder

public static final SystemColor inactiveCaptionBorder

Border color for inactive captions in window borders.

inactiveCaptionText

public static final SystemColor inactiveCaptionText

Text color for inactive captions in window borders.

info

public static final SystemColor info

Background color for informational text.

infoText

public static final SystemColor infoText

Text color for informational text.

menu

public static final SystemColor menu

Background color for menus.

menuText

public static final SystemColor menuText

Text color for menus.

scrollbar

public static final SystemColor scrollbar

Background color for scrollbars.

text

public static final SystemColor text

Background color for text components.

textHighlight

public static final SystemColor textHighlight

Background color for highlighted text.

textHighlightText

public static final SystemColor textHighlightText

Text color for highlighted text.

textInactiveText

public static final SystemColor textInactiveText

Text color for inactive text.

textText

public static final SystemColor textText

Text color for text components.

window

public static final SystemColor window

Background color for windows.

windowBorder

public static final SystemColor windowBorder

Border color for windows.

windowText

public static final SystemColor windowText

Text color for windows.

Instance Methods

getRGB

public int getRGB()

Returns

Current color as a composite value

Overrides

Color.getRGB()

Description

Gets integer value of current system color.

toString

public String toString()

Returns

A string representation of the SystemColor object.

Overrides

Color.toString()

See Also

Color, Serializable, String

Shape TextArea

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_55.htm
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_57.htm

Chapter 20
java.awt.datatransfer

Reference

ClipboardOwner

Name

ClipboardOwner

[Graphic: Figure from the text]

Description

ClipboardOwner is implemented by classes that want to be notified when someone else sets the contents of a
clipboard.

Interface Definition

public abstract interface java.awt.datatransfer.ClipboardOwner {
 // Interface Methods
 public abstract void lostOwnership (Clipboard clipboard, Transferable contents);
}

Interface Methods

lostOwnership

public abstract void lostOwnership (Clipboard clipboard, Transferable contents)

Parameters

clipboard

The clipboard whose contents have changed.

contents

The contents that this owner originally put on the clipboard.

Description

Tells the ClipboardOwner that the contents it placed on the given clipboard are no longer there.

See Also

Clipboard, StringSelection, Transferable

Clipboard DataFlavor

Chapter 20
java.awt.datatransfer

Reference

DataFlavor

Name

DataFlavor

[Graphic: Figure from the text]

Description

The DataFlavor class encapsulates information about data formats.

Class Definition

public class java.awt.datatransfer.DataFlavor
 extends java.lang.Object {
 // Class Variables
 public static DataFlavor plainTextFlavor;
 public static DataFlavor stringFlavor;
 // Constructors
 public DataFlavor (Class representationClass,
 String humanPresentableName);
 public DataFlavor (String MIMEType, String humanPresentableName);
 // Instance Methods
 public boolean equals (DataFlavor dataFlavor);
 public String getHumanPresentableName();

 public String getMIMEType();
 public Class getRepresentationClass();
 public boolean isMIMETypeEqual (String MIMEType);
 public final boolean isMIMETypeEqual (DataFlavor dataFlavor);
 public void setHumanPresentableName (String humanPresentableName);
 // Protected Instance Methods
 protected String normalizeMIMEType (String MIMEType);
 protected String normalizeMIMETypeParameter (String parameterName,
 String parameterValue);
}

Class Variables

plainTextFlavor

public static DataFlavor plainTextFlavor

A preset DataFlavor object representing plain text.

stringFlavor

public static DataFlavor stringFlavor

A preset DataFlavor object representing a Java String.

Constructors

DataFlavor

public DataFlavor (Class representationClass, String humanPresentableName)

Parameters

representationClass

The Java class that represents data in this flavor.

humanPresentableName

A name for this flavor that humans will recognize.

Description

Constructs a DataFlavor object with the given characteristics. The MIME type for this
DataFlavor is application/x-java-serialized-object <Java
ClassName>.[1]

[1] The type name changed to x-java-serialized-object in the 1.1.1
release.

public DataFlavor (String MIMEType, String humanPresentableName)

Parameters

MIMEType

The MIME type string this DataFlavor represents.

humanPresentableName

A name for this flavor that humans will recognize.

Description

Constructs a DataFlavor object with the given characteristics. The representation class used
for this DataFlavor is java.io.InputStream.

Instance Methods

equals

public boolean equals (DataFlavor dataFlavor)

Parameters

dataFlavor

The flavor to compare.

Returns

true if dataFlavor is equivalent to this DataFlavor, false otherwise.

Description

Compares two different DataFlavor instances for equivalence.

getHumanPresentableName

public String getHumanPresentableName()

Returns

The name of this flavor.

getMIMEType

public String getMIMEType()

Returns

The MIME type string for this flavor.

getRepresentationClass

public Class getRepresentationClass()

Returns

The Java class that will be used to represent data in this flavor.

isMIMETypeEqual

public boolean isMIMETypeEqual (String MIMEType)

Parameters

MIMEType

The type to compare.

Returns

true if the given MIME type is the same as this DataFlavor's MIME type; false otherwise.

Description

Compares two different DataFlavor MIME types for equivalence.

public final boolean isMIMETypeEqual (DataFlavor dataFlavor)

Parameters

dataFlavor

The flavor to compare.

Returns

true if DataFlavor's MIME type is the same as this DataFlavor's MIME type; false
otherwise.

Description

Compares two different DataFlavor MIME types for equivalence.

setHumanPresentableName

public void setHumanPresentableName (String humanPresentableName)

Parameters

humanPresentableName

A name for this flavor that humans will recognize.

Description

Changes the name of the DataFlavor.

Protected Instance Methods

normalizeMIMEType

protected String normalizeMIMEType (String MIMEType)

Parameters

MIMEType

The MIME type string to normalize.

Returns

Normalized MIME type string.

Description

This method is called for each MIME type string. Subclasses can override this method to add
default parameter/value pairs to MIME strings.

normalizeMIMETypeParameter

protected String normalizeMIMETypeParameter (String parameterName, String
parameterValue)

Parameters

parameterName

The MIME type parameter to normalize.

parameterValue

The corresponding value.

Returns

Normalized MIME type parameter string.

Description

This method is called for each MIME type parameter string. Subclasses can override this method
to handle special parameters, such as those that are case-insensitive.

See Also

Class, String

ClipboardOwner StringSelection

Chapter 20
java.awt.datatransfer

Reference

StringSelection

Name

StringSelection

[Graphic: Figure from the text]

Description

StringSelection is a "convenience" class that can be used for copy and paste operations on Unicode
text strings. For example, you could place a string on the system's clipboard with the following code:

Clipboard c =
 Toolkit.getDefaultToolkit().getSystemClipboard();
StringSelection s = new StringSelection(
 "Be safe when you cut and paste.");
c.setContents(s, s);

Class Definition

public class java.awt.datatransfer.StringSelection
 extends java.lang.Object
 implements java.awt.datatransfer.ClipboardOwner,
 java.awt.datatransfer.Transferable {

 // Constructor
 public StringSelection(String data);
 // Instance Methods
 public synchronized Object getTransferData (DataFlavor flavor)
 throws UnsupportedFlavorException, IOException;
 public synchronized DataFlavor[] getTransferDataFlavors();
 public boolean isDataFlavorSupported (DataFlavor flavor);
 public void lostOwnership (Clipboard clipboard, Transferable contents);
}

Constructors

StringSelection

public StringSelection (String data)

Parameters

data

The string to be placed in a clipboard.

Description

Constructs a StringSelection object from the given string.

Instance Methods

getTransferData

public synchronized Object getTransferData (DataFlavor flavor) throws
UnsupportedFlavorException, IOException

Parameters

flavor

The requested flavor for the returned data, which can be either
DataFlavor.stringFlavor or DataFlavor.plainTextFlavor.

Returns

The string that the StringSelection was constructed with. This is returned either as a String
object or a Reader object, depending on the flavor requested.

Throws

UnsupportedFlavorException

If the requested flavor is not supported.

IOException

If a Reader representing the string could not be created.

Implements

Transferable.getTransferData(DataFlavor)

Description

Returns the string this StringSelection represents. This is returned either as a String object
or a Reader object, depending on the flavor requested.

getTransferDataFlavors

public synchronized DataFlavor[] getTransferDataFlavors()

Returns

An array of the data flavors the StringSelection supports.

Implements

Transferable.getTransferDataFlavors()

Description

DataFlavor.stringFlavor and DataFlavor.plainTextFlavor are returned.

isDataFlavorSupported

public boolean isDataFlavorSupported (DataFlavor flavor)

Parameters

flavor

The flavor in question.

Returns

true if flavor is supported; false otherwise.

Implements

Transferable.isDataFlavorSupported(DataFlavor)

lostOwnership

public void lostOwnership (Clipboard clipboard, Transferable contents)

Parameters

clipboard

The clipboard whose contents are changing.

contents

The contents that were on the clipboard.

Implements

ClipboardOwner.lostOwnership(Clipboard, Transferable)

Description

Does nothing.

See Also

Clipboard, ClipboardOwner, DataFlavor, String, Transferable

DataFlavor Transferable

Chapter 20
java.awt.datatransfer

Reference

Transferable

Name

Transferable

[Graphic: Figure from the text]

Description

The Transferable interface is implemented by objects that can be placed on Clipboards.

Interface Definition

public abstract interface Transferable {
 // Instance Methods
 public abstract Object getTransferData (DataFlavor flavor)
 throws UnsupportedFlavorException, IOException;
 public abstract DataFlavor[] getTransferDataFlavors();
 public abstract boolean isDataFlavorSupported (DataFlavor flavor);
}

Interface Methods

getTransferData

public abstract Object getTransferData (DataFlavor flavor) throws
UnsupportedFlavorException, IOException

Parameters

flavor

The requested flavor for the returned data.

Returns

The data represented by this Transferable object, in the requested flavor.

Throws

UnsupportedFlavorException

If the requested flavor is not supported.

IOException

If a Reader representing the data could not be created.

Description

Returns the data this Transferable object represents. The class of object returned depends on
the flavor requested.

getTransferDataFlavors

public abstract DataFlavor[] getTransferDataFlavors()

Returns

An array of the supported data flavors.

Description

The data flavors should be returned in order, sorted from most to least descriptive.

isDataFlavorSupported

public abstract boolean isDataFlavorSupported (DataFlavor flavor)

Parameters

flavor

The flavor in question.

Returns

true if flavor is supported; false otherwise.

See Also

Clipboard, DataFlavor, Reader, StringSelection, Transferable

StringSelection UnsupportedFlavorException

Chapter 20
java.awt.datatransfer

Reference

UnsupportedFlavorException

Name

UnsupportedFlavorException

Description

This exception is thrown from Transferable.getTransferData(DataFlavor) to indicate
that the DataFlavor requested is not available.

Class Definition

public class java.awt.datatransfer.UnsupportedFlavorException
 extends java.lang.Exception {
 // Constructor
 public UnsupportedFlavorException (DataFlavor flavor);
}

Constructors

UnsupportedFlavorException

public UnsupportedFlavorException (DataFlavor flavor)

Parameters

flavor

The flavor that caused the exception.

See Also

DataFlavor, Exception, Transferable

Transferable ActionEvent

Chapter 21
java.awt.event Reference

ActionListener

Name

ActionListener

Description

Objects that implement the ActionListener interface can receive ActionEvent objects. Listeners
must first register themselves with objects that produce events. When events occur, they are then
automatically propagated to all registered listeners.

Interface Definition

public abstract interface java.awt.event.ActionListener
 extends java.util.EventListener {
 // Interface Methods
 public abstract void actionPerformed (ActionEvent e);
}

Interface Methods

actionPerformed

public abstract void actionPerformed (ActionEvent e)

Parameters

e

The action event that occurred.

Description

Notifies the ActionListener that an event occurred.

See Also

ActionEvent, AWTEventMulticaster, EventListener

ActionEvent AdjustmentEvent

Chapter 21
java.awt.event Reference

AdjustmentEvent

Name

AdjustmentEvent

[Graphic: Figure from the text]

Description

AdjustmentEvents are generated by objects that implement the Adjustable interface. Scrollbar is
one example of such an object.

Class Definition

public class java.awt.event.AdjustmentEvent
 extends java.awt.AWTEvent {
 // Constants
 public final static int ADJUSTMENT_FIRST;
 public final static int ADJUSTMENT_LAST;
 public final static int ADJUSTMENT_VALUE_CHANGED;
 public final static int BLOCK_DECREMENT;
 public final static int BLOCK_INCREMENT;
 public final static int TRACK;
 public final static int UNIT_DECREMENT;
 public final static int UNIT_INCREMENT;
 // Constructors

 public AdjustmentEvent (Adjustable source, int id, int type, int value);
 // Instance Methods
 public Adjustable getAdjustable();
 public int getAdjustmentType();
 public int getValue();
 public String paramString();
}

Constants

ADJUSTMENT_FIRST

public final static int ADJUSTMENT_FIRST

Specifies the beginning range of adjustment event ID values.

ADJUSTMENT_LAST

public final static int ADJUSTMENT_LAST

Specifies the ending range of adjustment event ID values.

ADJUSTMENT_VALUE_CHANGED

public final static int ADJUSTMENT_VALUE_CHANGED

Event type ID for value changed.

BLOCK_DECREMENT

public final static int BLOCK_DECREMENT

Adjustment type for block decrement.

BLOCK_INCREMENT

public final static int BLOCK_INCREMENT

Adjustment type for block increment.

TRACK

public final static int TRACK

Adjustment type for tracking.

UNIT_DECREMENT

public final static int UNIT_DECREMENT

Adjustment type for unit decrement.

UNIT_INCREMENT

public final static int UNIT_INCREMENT

Adjustment type for unit increment.

Constructors

AdjustmentEvent

public AdjustmentEvent (Adjustable source, int id, int type, int value)

Parameters

source

The object that generated the event.

id

The event type ID of the event.

type

The type of adjustment event.

value

The value of the Adjustable object.

Description

Constructs an AdjustmentEvent with the given characteristics.

Instance Methods

getAdjustable

public Adjustable getAdjustable()

Returns

The source of this event.

getAdjustmentType

public int getAdjustmentType()

Returns

One of the adjustment type constants.

Description

The type will be BLOCK_DECREMENT, BLOCK_INCREMENT, TRACK, UNIT_DECREMENT, or
UNIT_INCREMENT.

getValue

public int getValue()

Returns

The new value of the Adjustable object.

paramString

public String paramString()

Returns

String with current settings of the AdjustmentEvent.

Overrides

AWTEvent.paramString()

Description

Helper method for toString() to generate string of current settings.

See Also

Adjustable, AdjustmentListener, AWTEvent, Scrollbar

ActionListener AdjustmentListener

Chapter 21
java.awt.event Reference

AdjustmentListener

Name

AdjustmentListener

Description

Objects that implement the AdjustmentListener interface can receive AdjustmentEvent
objects. Listeners must first register themselves with objects that produce events. When events occur,
they are then automatically propagated to all registered listeners.

Interface Definition

public abstract interface java.awt.event.AdjustmentListener
 extends java.util.Eventlistener {
 // Interface Methods
 public abstract void adjustmentValueChanged (AdjustmentEvent e);
}

Interface Methods

adjustmentPerformed

public abstract void adjustmentValueChanged (AdjustmentEvent e)

Parameters

e

The adjustment event that occurred.

Description

Notifies the AdjustmentListener that an event occurred.

See Also

AdjustmentEvent, AWTEventMulticaster, EventListener

AdjustmentEvent ComponentAdapter

Chapter 21
java.awt.event Reference

ComponentAdapter

Name

ComponentAdapter

[Graphic: Figure from the text]

Description

ComponentAdapter is a class that implements the methods of ComponentListener with empty
functions. It may be easier for you to extend ComponentAdapter, overriding only those methods you
are interested in, than to implement ComponentListener and provide the empty functions yourself.

Class Definition

public abstract class java.awt.event.ComponentAdapter
 extends java.lang.Object
 implements java.awt.event.ComponentListener {
 // Instance Methods
 public void componentHidden (ComponentEvent e);
 public void componentMoved (ComponentEvent e);
 public void componentResized (ComponentEvent e);
 public void componentShown (ComponentEvent e);
}

Instance Methods

componentHidden

public void componentHidden (ComponentEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a component is hidden.

componentMoved

public void componentMoved (ComponentEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a component is moved.

componentResized

public void componentResized (ComponentEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a component is resized.

componentShown

public void componentShown (ComponentEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a component is shown.

See Also

Component, ComponentEvent, ComponentListener

AdjustmentListener ComponentEvent

Chapter 21
java.awt.event Reference

ComponentEvent

Name

ComponentEvent

[Graphic: Figure from the text]

Description

Component events are generated when a component is shown, hidden, moved, or resized. AWT
automatically deals with component moves and resizing; these events are provided only for notification.
Subclasses of ComponentEvent deal with other specific component-level events.

Class Definition

public class java.awt.event.ComponentEvent

 extends java.awt.AWTEvent {
 // Constants
 public final static int COMPONENT_FIRST;
 public final static int COMPONENT_HIDDEN;
 public final static int COMPONENT_LAST;
 public final static int COMPONENT_MOVED;
 public final static int COMPONENT_RESIZED;
 public final static int COMPONENT_SHOWN;
 // Constructors
 public ComponentEvent (Component source, int id);
 // Instance Methods
 public Component getComponent();
 public String paramString();
}

Constants

COMPONENT_FIRST

public final static int COMPONENT_FIRST

Specifies the beginning range of component event ID values.

COMPONENT_HIDDEN

public final static int COMPONENT_HIDDEN

Event type ID indicating that the component was hidden.

COMPONENT_LAST

public final static int COMPONENT_LAST

Specifies the ending range of component event ID values.

COMPONENT_MOVED

public final static int COMPONENT_MOVED

Event type ID indicating that the component was moved.

COMPONENT_RESIZED

public final static int COMPONENT_RESIZED

Event type ID indicating that the component was resized.

COMPONENT_SHOWN

public final static int COMPONENT_SHOWN

Event type ID indicating that the component was shown.

Constructors

ComponentEvent

public ComponentEvent (Component source, int id)

Parameters

source

The object that generated the event.

id

The event type ID of the event.

Description

Constructs a ComponentEvent with the given characteristics.

Instance Methods

getComponent

public Component getComponent()

Returns

The source of this event.

paramString

public String paramString()

Returns

String with current settings of the ComponentEvent.

Overrides

AWTEvent.paramString()

Description

Helper method for toString() to generate string of current settings.

See Also

AWTEvent, Component, ComponentAdapter, ComponentListener, ContainerEvent,
FocusEvent, InputEvent, PaintEvent, WindowEvent

ComponentAdapter ComponentListener

Chapter 21
java.awt.event Reference

ComponentListener

Name

ComponentListener

[Graphic: Figure from the text]

Description

Objects that implement the ComponentListener interface can receive ComponentEvent objects.
Listeners must first register themselves with objects that produce events. When events occur, they are
then automatically propagated to all registered listeners.

Interface Definition

public abstract interface java.awt.event.ComponentListener
 extends java.util.EventListener {
 // Instance Methods
 public abstract void componentHidden (ComponentEvent e);
 public abstract void componentMoved (ComponentEvent e);
 public abstract void componentResized (ComponentEvent e);
 public abstract void componentShown (ComponentEvent e);

}

Interface Methods

componentHidden

public abstract void componentHidden (ComponentEvent e)

Parameters

e

The component event that occurred.

Description

Notifies the ComponentListener that a component was hidden.

componentMoved

public abstract void componentMoved (ComponentEvent e)

Parameters

e

The component event that occurred.

Description

Notifies the ComponentListener that a component was moved.

componentResized

public abstract void componentResized (ComponentEvent e)

Parameters

e

The component event that occurred.

Description

Notifies the ComponentListener that a component was resized.

componentShown

public abstract void componentShown (ComponentEvent e)

Parameters

e

The component event that occurred.

Description

Notifies the ComponentListener that a component was shown.

See Also

AWTEventMulticaster, ComponentAdapter, ComponentEvent, EventListener

ComponentEvent ContainerAdapter

Chapter 21
java.awt.event Reference

ContainerAdapter

Name

ContainerAdapter

[Graphic: Figure from the text]

Description

The ContainerAdapter class implements the methods of ContainerListener with empty
functions. It may be easier for you to extend ContainerAdapter, overriding only those methods you
are interested in, than to implement ContainerListener and provide the empty functions yourself.

Class Definition

public abstract class java.awt.event.ContainerAdapter
 extends java.lang.Object
 implements java.awt.event.ContainerListener {
 // Instance Methods
 public void componentAdded (ContainerEvent e);
 public void componentRemoved (ContainerEvent e);
}

Instance Methods

componentAdded

public void componentAdded (ComponentEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a component is added to a container.

componentRemoved

public void componentRemoved (ComponentEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a component is removed from a
container.

See Also

ContainerEvent, ContainerListener

ComponentListener

Chapter 21
java.awt.event Reference

ContainerEvent

Name

ContainerEvent

[Graphic: Figure from the text]

Description

Container events are fired off when a component is added to or removed from a container. The AWT
automatically deals with adding components to containers; these events are provided only for
notification.

Class Definition

public class java.awt.event.ContainerEvent
 extends java.awt.event.ComponentEvent {
 // Constants
 public final static int COMPONENT_ADDED;
 public final static int COMPONENT_REMOVED;
 public final static int CONTAINER_FIRST;
 public final static int CONTAINER_LAST;
 // Constructors

 public ContainerEvent (Component source, int id, Component child);
 // Instance Methods
 public Component getChild();
 public Container getContainer();
 public String paramString();
}

Constants

COMPONENT_ADDED

public final static int COMPONENT_ADDED

Event type ID indicating that a component was added to a container.

CONTAINER_FIRST

public final static int CONTAINER_FIRST

Specifies the beginning range of container event ID values.

CONTAINER_LAST

public final static int CONTAINER_LAST

Specifies the ending range of container event ID values.

COMPONENT_REMOVED

public final static int COMPONENT_REMOVED

Event type ID indicating that a component was removed from a container.

Constructors

ContainerEvent

public ContainerEvent (Component source, int id, Component child)

Parameters

source

The object that generated the event.

id

The event type ID of the event.

child

The component that was added or removed.

Description

Constructs a ContainerEvent with the given characteristics.

Instance Methods

getChild

public Component getChild()

Returns

The component that is being added or removed.

getContainer

public Container getContainer()

Returns

The container for this event.

paramString

public String paramString()

Returns

String with current settings of the ContainerEvent.

Overrides

ComponentEvent.paramString()

Description

Helper method for toString() to generate string of current settings.

See Also

Component, ComponentEvent, Container, ContainerAdapter, ContainerListener

ContainerAdapter

Chapter 21
java.awt.event Reference

ContainerListener

Name

ContainerListener

[Graphic: Figure from the text]

Description

Objects that implement the ContainerListener interface can receive ContainerEvent objects.
Listeners must first register themselves with objects that produce events. When events occur, they are
then automatically propagated to all registered listeners.

Interface Definition

public abstract interface java.awt.event.ContainerListener
 extends java.util.EventListener {
 // Instance Methods
 public abstract void componentAdded (ContainerEvent e);
 public abstract void componentRemoved (ContainerEvent e);
}

Interface Methods

componentAdded

public abstract void componentAdded (ContainerEvent e)

Parameters

e

The event that occurred.

Description

Notifies the ContainerListener that a component has been added to the container.

componentRemoved

public abstract void componentRemoved (ContainerEvent e)

Parameters

e

The event that occurred.

Description

Notifies the ContainerListener that a component has been removed from the container.

See Also

ContainerAdapter, ContainerEvent, EventListener

ContainerEvent FocusAdapter

Chapter 21
java.awt.event Reference

FocusAdapter

Name

FocusAdapter

Description

The FocusAdapter class implements the methods of FocusListener with empty functions. It may
be easier for you to extend FocusAdapter, overriding only those methods you are interested in, than
to implement FocusListener and provide the empty functions yourself.

Class Definition

public abstract class java.awt.event.FocusAdapter
 extends java.lang.Object
 implements java.awt.event.FocusListener {
 // Instance Methods
 public void focusGained (FocusEvent e);
 public void focusLost (FocusEvent e);
}

Instance Methods

focusGained

public void focusGained (FocusEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a component gains focus.

focusLost

public void focusLost (FocusEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a component loses focus.

See Also

FocusEvent, FocusListener

ContainerListener FocusEvent

Chapter 21
java.awt.event Reference

FocusEvent

Name

FocusEvent

[Graphic: Figure from the text]

Description

Focus events are generated when a component gets or loses input focus. Focus events come in two
flavors, permanent and temporary. Permanent focus events occur with explicit focus changes. For
example, when the user tabs through components, this causes permanent focus events. An example of a
temporary focus event is when a component loses focus as its containing window is deactivated.

Class Definition

public class java.awt.event.FocusEvent
 extends java.awt.event.ComponentEvent {
 // Constants
 public final static int FOCUS_FIRST;
 public final static int FOCUS_GAINED;
 public final static int FOCUS_LAST;
 public final static int FOCUS_LOST;

 // Constructors
 public FocusEvent (Component source, int id);
 public FocusEvent (Component source, int id, boolean temporary);
 // Instance Methods
 public boolean isTemporary();
 public String paramString();
}

Constants

FOCUS_FIRST

public final static int FOCUS_FIRST

Specifies the beginning range of focus event ID values.

FOCUS_GAINED

public final static int FOCUS_GAINED

Event type ID indicating that the component gained the input focus.

FOCUS_LAST

public final static int FOCUS_LAST

Specifies the ending range of focus event ID values.

FOCUS_LOST

public final static int FOCUS_LOST

Event type ID indicating that the component lost the input focus.

Constructors

FocusEvent

public FocusEvent (Component source, int id)

Parameters

source

The object that generated the event.

id

The event type ID of the event.

Description

Constructs a non-temporary FocusEvent with the given characteristics.

public FocusEvent (Component source, int id, boolean temporary)

Parameters

source

The object that generated the event.

id

The event type ID of the event.

temporary

A flag indicating whether this is a temporary focus event.

Description

Constructs a FocusEvent with the given characteristics.

Instance Methods

isTemporary

public boolean isTemporary()

Returns

true if this is a temporary focus event; false otherwise.

paramString

public String paramString()

Returns

String with current settings of the FocusEvent.

Overrides

ComponentEvent.paramString()

Description

Helper method for toString() to generate string of current settings.

See Also

Component, ComponentEvent, FocusAdapter, FocusListener

FocusAdapter FocusListener

Chapter 21
java.awt.event Reference

FocusListener

Name

FocusListener

Description

Objects that implement the FocusListener interface can receive FocusEvent objects. Listeners
must first register themselves with objects that produce events. When events occur, they are then
automatically propagated to all registered listeners.

Interface Definition

public abstract interface java.awt.event.FocusListener
 extends java.util.EventListener {
 // Instance Methods
 public abstract void focusGained (FocusEvent e);
 public abstract void focusLost (FocusEvent e);
}

Interface Methods

focusGained

public abstract void focusGained (FocusEvent e)

Parameters

e

The component event that occurred.

Description

Notifies the FocusListener that a component gained the input focus.

focusLost

public abstract void focusLost (FocusEvent e)

Parameters

e

The component event that occurred.

Description

Notifies the FocusListener that a component lost the input focus.

See Also

AWTEventMulticaster, EventListener, FocusAdapter, FocusEvent

FocusEvent InputEvent

Chapter 21
java.awt.event Reference

InputEvent

Name

InputEvent

[Graphic: Figure from the text]

Description

InputEvent is the root class for representing user input events. Input events are passed to listeners
before the event source processes them. If one of the listeners consumes an event by using consume(),
the event will not be processed by the event source peer.

Class Definition

public abstract class java.awt.event.InputEvent
 extends java.awt.event.ComponentEvent {
 // Constants
 public final static int ALT_MASK;

 public final static int BUTTON1_MASK;
 public final static int BUTTON2_MASK;
 public final static int BUTTON3_MASK;
 public final static int CTRL_MASK;
 public final static int META_MASK;
 public final static int SHIFT_MASK;
 // Instance Methods
 public void consume();
 public int getModifiers();
 public long getWhen();
 public boolean isAltDown();
 public boolean isConsumed();
 public boolean isControlDown();
 public boolean isMetaDown();
 public boolean isShiftDown();
}

Constants

ALT_MASK

public final static int ALT_MASK

The ALT key mask. ORed with other masks to form modifiers setting of event.

BUTTON1_MASK

public final static int BUTTON1_MASK

The mouse button 1 key mask. ORed with other masks to form modifiers setting of event.

BUTTON2_MASK

public final static int BUTTON2_MASK

The mouse button 2 key mask. ORed with other masks to form modifiers setting of event. This constant
is identical to ALT_MASK.

BUTTON3_MASK

public final static int BUTTON3_MASK

The mouse button 3 key mask. ORed with other masks to form modifiers setting of event. This constant
is identical to ALT_MASK.

CTRL_MASK

public final static int CTRL_MASK

The Control key mask. ORed with other masks to form modifiers setting of event.

META_MASK

public final static int META_MASK

The Meta key mask. ORed with other masks to form modifiers setting of event.

SHIFT_MASK

public final static int SHIFT_MASK

The Shift key mask. ORed with other masks to form modifiers setting of event.

Instance Methods

consume

public void consume()

Description

A consumed event will not be delivered to its source for default processing.

getModifiers

public int getModifiers()

Returns

The modifier flags, a combination of the _MASK constants.

Description

Use this method to find out what modifier keys were pressed when an input event occurred.

getWhen

public long getWhen()

Returns

The time at which this event occurred.

Description

The time of the event is returned as the number of milliseconds since the epoch (00:00:00 UTC,
January 1, 1970). Conveniently, java.util.Date has a constructor that accepts such values.

isAltDown

public boolean isAltDown()

Returns

true if the Alt key was pressed; false otherwise.

isConsumed

public boolean isConsumed()

Returns

true if the event has been consumed; false otherwise.

isControlDown

public boolean isControlDown()

Returns

true if the Control key was pressed; false otherwise.

isMetaDown

public boolean isMetaDown()

Returns

true if the Meta key was pressed; false otherwise.

isShiftDown

public boolean isShiftDown()

Returns

true if the Shift key was pressed; false otherwise.

See Also

ComponentEvent, KeyEvent, MouseEvent

FocusListener ItemEvent

Chapter 21
java.awt.event Reference

ItemEvent

Name

ItemEvent

Description

ItemEvents are generated by objects that implement the ItemSelectable interface. Choice is one example of
such an object.

Class Definition

public class java.awt.event.ItemEvent
 extends java.awt.AWTEvent {
 // Constants
 public final static int DESELECTED;
 public final static int ITEM_FIRST;
 public final static int ITEM_LAST;
 public final static int ITEM_STATE_CHANGED;
 public final static int SELECTED;
 // Constructors
 public ItemEvent (ItemSelectable source, int id, Object item, int stateChange);

// Instance Methods
 public Object getItem();
 public ItemSelectable getItemSelectable();
 public int getStateChange();
 public String paramString();
}

Constants

DESELECTED

public final static int DESELECTED

Indicates that an item was deselected.

ITEM_FIRST

public final static int ITEM_FIRST

Specifies the beginning range of item event ID values.

ITEM_LAST

public final static int ITEM_LAST

Specifies the ending range of item event ID values.

ITEM_STATE_CHANGED

public final static int ITEM_STATE_CHANGED

An event type indicating that an item was selected or deselected.

SELECTED

public final static int SELECTED

Indicates that an item was selected.

Constructors

ItemEvent

public ItemEvent (ItemSelectable source, int id, Object item, int stateChange)

Parameters

source

The object that generated the event.

id

The type ID of the event.

item

The item whose state is changing.

stateChange

Either SELECTED or DESELECTED.

Description

Constructs an ItemEvent with the given characteristics.

Instance Methods

getItem

public Object getItem()

Returns

The item pertaining to this event.

Description

Returns the item whose changed state triggered this event.

getItemSelectable

public ItemSelectable getItemSelectable()

Returns

The source of this event.

Description

Returns an object that implements the ItemSelectable interface.

getStateChange

public int getStateChange()

Returns

The change in state that triggered this event. The new state is returned.

Description

This method will return SELECTED or DESELECTED.

paramString

public String paramString()

Returns

String with current settings of ItemEvent.

Overrides

AWTEvent.paramString()

Description

Helper method for toString() to generate string of current settings.

See Also

AWTEvent, ItemSelectable, ItemListener

InputEvent ItemListener

Chapter 21
java.awt.event Reference

ItemListener

Name

ItemListener

[Graphic: Figure from the text]

Description

Objects that implement the ItemListener interface can receive ItemEvent objects. Listeners must
first register themselves with objects that produce events. When events occur, they are then automatically
propagated to all registered listeners.

Interface Definition

public abstract interface java.awt.event.ItemListener
 extends java.util.EventListener {
 // Interface Methods
 public abstract void itemStateChanged (ItemEvent e);
}

Interface Methods

itemStateChanged

public abstract void itemStateChanged (ItemEvent e)

Parameters

e

The item event that occurred.

Description

Notifies the ItemListener that an event occurred.

See Also

AWTEventMulticaster, EventListener, ItemEvent

ItemEvent KeyAdapter

Chapter 21
java.awt.event Reference

KeyAdapter

Name

KeyAdapter

Description

The KeyAdapter class implements the methods of KeyListener with empty functions. It may be
easier for you to extend KeyAdapter, overriding only those methods you are interested in, than to
implement KeyListener and provide the empty functions yourself.

Class Definition

public abstract class java.awt.event.KeyAdapter
 extends java.lang.Object
 implements java.awt.event.KeyListener {
 // Instance Methods
 public void keyPressed (KeyEvent e);
 public void keyReleased (KeyEvent e);
 public void keyTyped (KeyEvent e);
}

Instance Methods

keyPressed

public void keyPressed (KeyEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a key is pressed.

keyReleased

public void keyReleased (KeyEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a pressed key is released.

keyTyped

public void keyTyped (KeyEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a key has been pressed and released.

See Also

KeyEvent, KeyListener

ItemListener KeyEvent

Chapter 21
java.awt.event Reference

KeyEvent

Name

KeyEvent

[Graphic: Figure from the text]

Description

Key events are generated when the user types on the keyboard.

Class Definition

public class java.awt.event.KeyEvent
 extends java.awt.event.InputEvent {
 // Constants
 public final static int CHAR_UNDEFINED;
 public final static int KEY_FIRST;
 public final static int KEY_LAST;
 public final static int KEY_PRESSED;
 public final static int KEY_RELEASED;
 public final static int KEY_TYPED;
 public final static int VK_0;

 public final static int VK_1;
 public final static int VK_2;
 public final static int VK_3;
 public final static int VK_4;
 public final static int VK_5;
 public final static int VK_6;
 public final static int VK_7;
 public final static int VK_8;
 public final static int VK_9;
 public final static int VK_A;
 public final static int VK_ACCEPT;
 public final static int VK_ADD;
 public final static int VK_ALT;
 public final static int VK_B;
 public final static int VK_BACK_QUOTE;
 public final static int VK_BACK_SLASH;
 public final static int VK_BACK_SPACE;
 public final static int VK_C;
 public final static int VK_CANCEL;
 public final static int VK_CAPS_LOCK;
 public final static int VK_CLEAR;
 public final static int VK_CLOSE_BRACKET;
 public final static int VK_COMMA;
 public final static int VK_CONTROL;
 public final static int VK_CONVERT;
 public final static int VK_D;
 public final static int VK_DECIMAL;
 public final static int VK_DELETE;
 public final static int VK_DIVIDE;
 public final static int VK_DOWN;
 public final static int VK_E;
 public final static int VK_END;
 public final static int VK_ENTER;
 public final static int VK_EQUALS;
 public final static int VK_ESCAPE;
 public final static int VK_F;
 public final static int VK_F1;
 public final static int VK_F2;
 public final static int VK_F3;
 public final static int VK_F4;
 public final static int VK_F5;
 public final static int VK_F6;
 public final static int VK_F7;

 public final static int VK_F8;
 public final static int VK_F9;
 public final static int VK_F10;
 public final static int VK_F11;
 public final static int VK_F12;
 public final static int VK_FINAL;
 public final static int VK_G;
 public final static int VK_H;
 public final static int VK_HELP;
 public final static int VK_HOME;
 public final static int VK_I;
 public final static int VK_INSERT;
 public final static int VK_J;
 public final static int VK_K;
 public final static int VK_KANA;
 public final static int VK_KANJI;
 public final static int VK_L;
 public final static int VK_LEFT;
 public final static int VK_M;
 public final static int VK_META;
 public final static int VK_MODECHANGE;
 public final static int VK_MULTIPLY;
 public final static int VK_N;
 public final static int VK_NONCONVERT;
 public final static int VK_NUM_LOCK;
 public final static int VK_NUMPAD0;
 public final static int VK_NUMPAD1;
 public final static int VK_NUMPAD2;
 public final static int VK_NUMPAD3;
 public final static int VK_NUMPAD4;
 public final static int VK_NUMPAD5;
 public final static int VK_NUMPAD6;
 public final static int VK_NUMPAD7;
 public final static int VK_NUMPAD8;
 public final static int VK_NUMPAD9;
 public final static int VK_O;
 public final static int VK_OPEN_BRACKET;
 public final static int VK_P;
 public final static int VK_PAGE_DOWN;
 public final static int VK_PAGE_UP;
 public final static int VK_PAUSE;
 public final static int VK_PERIOD;
 public final static int VK_PRINTSCREEN;

 public final static int VK_Q;
 public final static int VK_QUOTE;
 public final static int VK_R;
 public final static int VK_RIGHT;
 public final static int VK_S;
 public final static int VK_SCROLL_LOCK;
 public final static int VK_SEMICOLON;
 public final static int VK_SEPARATER;
 public final static int VK_SHIFT;
 public final static int VK_SLASH;
 public final static int VK_SPACE;
 public final static int VK_SUBTRACT;
 public final static int VK_T;
 public final static int VK_TAB;
 public final static int VK_U;
 public final static int VK_UNDEFINED;
 public final static int VK_UP;
 public final static int VK_V;
 public final static int VK_W;
 public final static int VK_X;
 public final static int VK_Y;
 public final static int VK_Z;
 // Constructors
 public KeyEvent (Component source, int id, long when, int modifiers,
 int keyCode, char keyChar);
 // Class Methods
 public static String getKeyModifiersText(int modifiers);
 public static String getKeyText(int keyCode);
 // Instance Methods
 public char getKeyChar();
 public int getKeyCode();
 public boolean isActionKey();
 public String paramString();
 public void setKeyChar (char keyChar);
 public void setKeyCode (int keyCode);
 public void setModifiers (int modifiers);
}

Constants

CHAR_UNDEFINED

public final static int CHAR_UNDEFINED

This constant is used for key presses have that no associated character.

KEY_FIRST

public final static int KEY_FIRST

Specifies the beginning range of key event ID values.

KEY_LAST

public final static int KEY_LAST

Specifies the ending range of key event ID values.

KEY_PRESSED

public final static int KEY_PRESSED

An event ID type for a key press.

KEY_RELEASED

public final static int KEY_RELEASED

An event ID type for a key release.

KEY_TYPED

public final static int KEY_TYPED

An event ID type for a typed key (a press and a release).

VK_0

public final static int VK_0

The 0 key.

VK_1

public final static int VK_1

The 1 key.

VK_2

public final static int VK_2

The 2 key.

VK_3

public final static int VK_3

The 3 key.

VK_4

public final static int VK_4

The 4 key.

VK_5

public final static int VK_5

The 5 key.

VK_6

public final static int VK_6

The 6 key.

VK_7

public final static int VK_7

The 7 key.

VK_8

public final static int VK_8

The 8 key.

VK_9

public final static int VK_9

The 9 key.

VK_A

public final static int VK_A

The `a' key.

VK_ACCEPT

public final static int VK_ACCEPT

This constant is used for Asian keyboards.

VK_ADD

public final static int VK_ADD

The plus (+) key on the numeric keypad.

VK_ALT

public final static int VK_ALT

The Alt key.

VK_B

public final static int VK_B

The `b' key.

VK_BACK_QUOTE

public final static int VK_BACK_QUOTE

The backquote (`) key.

VK_BACK_SLASH

public final static int VK_BACK_SLASH

The backslash key.

VK_BACK_SPACE

public final static int VK_BACK_SPACE

The Backspace key.

VK_C

public final static int VK_C

The `c' key.

VK_CANCEL

public final static int VK_CANCEL

The Cancel key.

VK_CAPS_LOCK

public final static int VK_CAPS_LOCK

The Caps Lock key.

VK_CLEAR

public final static int VK_CLEAR

The Clear key.

VK_CLOSE_BRACKET

public final static int VK_CLOSE_BRACKET

The close bracket `]' key.

VK_COMMA

public final static int VK_COMMA

The comma (,) key.

VK_CONTROL

public final static int VK_CONTROL

The Control key.

VK_CONVERT

public final static int VK_CONVERT

This constant is used for Asian keyboards.

VK_D

public final static int VK_D

The `d' key.

VK_DECIMAL

public final static int VK_DECIMAL

The decimal (.) key on the numeric keypad.

VK_DELETE

public final static int VK_DELETE

The Delete key.

VK_DIVIDE

public final static int VK_DIVIDE

The divide (/) key on the numeric keypad.

VK_DOWN

public final static int VK_DOWN

The Down arrow key.

VK_E

public final static int VK_E

The `e' key.

VK_END

public final static int VK_END

The End key.

VK_ENTER

public final static int VK_ENTER

The Enter key.

VK_EQUALS

public final static int VK_ EQUALS

The equals (=) key.

VK_ESCAPE

public final static int VK_ESCAPE

The Escape key.

VK_F

public final static int VK_F

The `f' key.

VK_F1

public final static int VK_F1

The F1 key.

VK_F2

public final static int VK_F2

The F2 key.

VK_F3

public final static int VK_F3

The F3 key.

VK_F4

public final static int VK_F4

The F4 key.

VK_F5

public final static int VK_F5

The F5 key.

VK_F6

public final static int VK_F6

The F6 key.

VK_F7

public final static int VK_F7

The F7 key.

VK_F8

public final static int VK_F8

The F8 key.

VK_F9

public final static int VK_F9

The F9 key.

VK_F10

public final static int VK_F10

The F10 key.

VK_F11

public final static int VK_F11

The F11 key.

VK_F12

public final static int VK_F12

The F12 key.

VK_FINAL

public final static int VK_FINAL

This constant is used for Asian keyboards.

VK_G

public final static int VK_G

The `g' key.

VK_H

public final static int VK_H

The `h' key.

VK_HELP

public final static int VK_HELP

The Help key.

VK_HOME

public final static int VK_HOME

The Home key.

VK_I

public final static int VK_I

The `i' key.

VK_INSERT

public final static int VK_INSERT

The Insert key.

VK_J

public final static int VK_J

The `j' key.

VK_K

public final static int VK_K

The `k' key.

VK_KANA

public final static int VK_KANA

This constant is used for Asian keyboards.

VK_KANJI

public final static int VK_KANJI

This constant is used for Asian keyboards.

VK_L

public final static int VK_L

The `l' key.

VK_LEFT

public final static int VK_LEFT

The Left arrow key.

VK_M

public final static int VK_M

The `m' key.

VK_MODECHANGE

public final static int VK_MODECHANGE

This constant is used for Asian keyboards.

VK_META

public final static int VK_META

The Meta key.

VK_MULTIPLY

public final static int VK_MULTIPLY

The * key on the numeric keypad.

VK_N

public final static int VK_N

The `n' key.

VK_NONCONVERT

public final static int VK_NONCONVERT

This constant is used for Asian keyboards.

VK_NUM_LOCK

public final static int VK_NUM_LOCK

The Num Lock key.

VK_NUMPAD0

public final static int VK_NUMPAD0

The 0 key on the numeric keypad.

VK_NUMPAD1

public final static int VK_NUMPAD1

The 1 key on the numeric keypad.

VK_NUMPAD2

public final static int VK_NUMPAD2

The 2 key on the numeric keypad.

VK_NUMPAD3

public final static int VK_NUMPAD3

The 3 key on the numeric keypad.

VK_NUMPAD4

public final static int VK_NUMPAD4

The 4 key on the numeric keypad.

VK_NUMPAD5

public final static int VK_NUMPAD5

The 5 key on the numeric keypad.

VK_NUMPAD6

public final static int VK_NUMPAD6

The 6 key on the numeric keypad.

VK_NUMPAD7

public final static int VK_NUMPAD7

The 7 key on the numeric keypad.

VK_NUMPAD8

public final static int VK_NUMPAD8

The 8 key on the numeric keypad.

VK_NUMPAD9

public final static int VK_NUMPAD9

The 9 key on the numeric keypad.

VK_O

public final static int VK_O

The `o' key.

VK_OPEN_BRACKET

public final static int VK_OPEN_BRACKET

The open bracket `[` key.

VK_P

public final static int VK_P

The `p' key.

VK_PAGE_DOWN

public final static int VK_PAGE_DOWN

The Page Down key.

VK_PAGE_UP

public final static int VK_PAGE_UP

The Page Up key.

VK_PAUSE

public final static int VK_PAUSE

The Pause key.

VK_PERIOD

public final static int VK_PERIOD

The period (.) key.

VK_PRINTSCREEN

public final static int VK_PRINTSCREEN

The Print Screen key.

VK_Q

public final static int VK_Q

The `q' key.

VK_QUOTE

public final static int VK_QUOTE

The quotation mark (") key.

VK_R

public final static int VK_R

The `r' key.

VK_RIGHT

public final static int VK_RIGHT

The Right arrow key.

VK_S

public final static int VK_S

The `s' key.

VK_SCROLL_LOCK

public final static int VK_SCROLL_LOCK

The Scroll Lock key.

VK_SEMICOLON

public final static int VK_SEMICOLON

The semicolon (;) key.

VK_SEPARATER

public final static int VK_SEPARATER

The numeric separator key on the numeric keypad (i.e., the locale-dependent key used to separate groups
of digits). A misspelling of VK_SEPARATOR.

VK_SHIFT

public final static int VK_SHIFT

The Shift key.

VK_SLASH

public final static int VK_SLASH

The slash (/) key.

VK_SPACE

public final static int VK_SPACE

The space key.

VK_SUBTRACT

public final static int VK_SUBTRACT

The subtract (-) key on the numeric keypad.

VK_T

public final static int VK_T

The `t' key.

VK_TAB

public final static int VK_TAB

The Tab key.

VK_U

public final static int VK_U

The `u' key.

VK_UNDEFINED

public final static int VK_UNDEFINED

An undefined key.

VK_UP

public final static int VK_UP

The Up arrow key.

VK_V

public final static int VK_V

The `v' key.

VK_W

public final static int VK_W

The `w' key.

VK_X

public final static int VK_X

The `x' key.

VK_Y

public final static int VK_Y

The `y' key.

VK_Z

public final static int VK_Z

The `z' key.

Constructors

KeyEvent

public KeyEvent (Component source, int id, long when, int modifiers, int keyCode, char
keyChar)

Parameters

source

The object that generated the event.

id

The event type ID of the event.

when

When the event occurred, in milliseconds from the epoch.

modifiers

What modifier keys were pressed with this key.

keyCode

The code of the key.

keyChar

The character for this key.

Description

Constructs a KeyEvent with the given characteristics.

Class Methods

getKeyModifiersText

public static String getKeyModifiersText(int modifiers)

Parameters

modifiers

One or more modifier keys.

Returns

A string describing the modifiers.

getKeyText

public static String getKeyText(int keyCode)

Parameters

keyCode

One of the key codes.

Returns

A string describing the given key.

Instance Methods

getKeyChar

public char getKeyChar()

Returns

The character corresponding to this event. KEY_TYPED events have characters.

getKeyCode

public int getKeyCode()

Returns

The integer key code corresponding to this event. This will be one of the constants defined above.
KEY_PRESSED and KEY_RELEASED events have codes. Key codes are virtual keys, not
actual. Pressing the `a' key is identical to `A', but has different modifiers. Same for `/' and `?' on a
standard keyboard.

isActionKey

public boolean isActionKey()

Returns

true if this event is for one of the action keys; false otherwise.

Description

In general, an action key is a key that causes an action but has no printing equivalent. The action
keys are the function keys, the arrow keys, Caps Lock, End, Home, Insert, Num Lock, Pause,
Page Down, Page Up, Print Screen, and Scroll Lock. They do not generate a KEY_TYPED event,
only KEY_PRESSED and KEY_RELEASED.

paramString

public String paramString()

Returns

A string with current settings of the KeyEvent.

Overrides

ComponentEvent.paramString()

Description

Helper method for toString() to generate string of current settings.

setKeyChar

public void setKeyChar(char keyChar)

Parameters

keyChar

The new key character.

Description

Sets the character code of this KeyEvent.

setKeyCode

public void setKeyCode (int keyCode)

Parameters

keyCode

The new key code.

Description

Sets the key code of this KeyEvent.

setModifiers

public void setModifiers (int modifiers)

Parameters

modifiers

The new modifiers.

Description

This is a combination of the mask constants defined in java.awt.event.InputEvent.

See Also

Component, ComponentEvent, InputEvent, KeyAdapter, KeyListener

KeyAdapter KeyListener

Chapter 21
java.awt.event Reference

KeyListener

Name

KeyListener

Description

Objects that implement the KeyListener interface can receive KeyEvent objects. Listeners must
first register themselves with objects that produce events. When events occur, they are then automatically
propagated to all registered listeners.

Interface Definition

public abstract interface java.awt.event.KeyListener
 extends java.util.EventListener {
 // Instance Methods
 public abstract void keyPressed (KeyEvent e);
 public abstract void keyReleased (KeyEvent e);
 public abstract void keyTyped (KeyEvent e);
}

Interface Methods

keyPressed

public abstract void keyPressed (KeyEvent e)

Parameters

e

The key event that occurred.

Description

Notifies the KeyListener that a key was pressed.

keyReleased

public abstract void keyReleased (KeyEvent e)

Parameters

e

The key event that occurred.

Description

Notifies the KeyListener that a key was released.

keyTyped

public abstract void keyTyped (KeyEvent e)

Parameters

e

The key event that occurred.

Description

Notifies the KeyListener that a key was typed (pressed and released).

See Also

AWTEventMulticaster, EventListener, KeyEvent, KeyListener

KeyEvent MouseAdapter

Chapter 21
java.awt.event Reference

MouseAdapter

Name

MouseAdapter

[Graphic: Figure from the text]

Description

The MouseAdapter class implements the methods of MouseListener with empty functions. It may
be easier for you to extend MouseAdapter, overriding only those methods you are interested in, than
to implement MouseListener and provide the empty functions yourself.

Class Definition

public abstract class java.awt.event.MouseAdapter
 extends java.lang.Object
 implements java.awt.event.MouseListener {
 // Instance Methods
 public void mouseClicked (MouseEvent e);
 public void mouseEntered (MouseEvent e);
 public void mouseExited (MouseEvent e);
 public void mousePressed (MouseEvent e);
 public void mouseReleased (MouseEvent e);
}

Instance Methods

mouseClicked

public void mouseClicked (MouseEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when the mouse button is clicked (pressed and
released).

mouseEntered

public void mouseEntered (MouseEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when the user moves the mouse cursor into a
component.

mouseExited

public void mouseExited (MouseEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when the moves the mouse cursor out of a
component.

mousePressed

public void mousePressed (MouseEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when the mouse button is pressed.

mouseReleased

public void mouseReleased (MouseEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when the mouse button is released.

See Also

MouseEvent, MouseListener

KeyListener MouseEvent

Chapter 21
java.awt.event Reference

MouseEvent

Name

MouseEvent

Description

Mouse events are generated when the user moves and clicks the mouse.

Class Definition

public class java.awt.event.MouseEvent
 extends java.awt.event.InputEvent {
 // Constants
 public final static int MOUSE_CLICKED;
 public final static int MOUSE_DRAGGED;
 public final static int MOUSE_ENTERED;
 public final static int MOUSE_EXITED;
 public final static int MOUSE_FIRST;
 public final static int MOUSE_LAST;
 public final static int MOUSE_MOVED;
 public final static int MOUSE_PRESSED;
 public final static int MOUSE_RELEASED;
 // Constructors
 public MouseEvent (Component source, int id, long when, int modifiers, int x,
 int y, int clickCount, boolean popupTrigger);
 // Instance Methods

 public int getClickCount();
 public synchronized Point getPoint();
 public int getX();
 public int getY();
 public boolean isPopupTrigger();
 public String paramString();
 public synchronized void translatePoint (int x, int y);
}

Constants

MOUSE_CLICKED

public final static int MOUSE_CLICKED

An event type ID indicating a mouse click.

MOUSE_DRAGGED

public final static int MOUSE_DRAGGED

An event type ID indicating a mouse move with the button held down.

MOUSE_ENTERED

public final static int MOUSE_ENTERED

An event type ID indicating that a mouse entered a component.

MOUSE_EXITED

public final static int MOUSE_EXITED

An event type ID indicating that a mouse left a component.

MOUSE_FIRST

public final static int MOUSE_FIRST

Specifies the beginning range of mouse event ID values.

MOUSE_LAST

public final static int MOUSE_LAST

Specifies the ending range of mouse event ID values.

MOUSE_MOVED

public final static int MOUSE_MOVED

An event type ID indicating a mouse move.

MOUSE_PRESSED

public final static int MOUSE_PRESSED

An event type ID indicating a mouse button press.

MOUSE_RELEASED

public final static int MOUSE_RELEASED

An event type ID indicating a mouse button release.

Constructors

MouseEvent

public MouseEvent (Component source, int id, long when, int modifiers, int x, int y, int clickCount,
boolean popupTrigger)

Parameters

source

The object that generated the event.

id

The event type ID of the event.

when

When the event occurred, in milliseconds from the epoch.

modifiers

What modifier keys were pressed with this key.

x

The horizontal location of the event.

y

The vertical location of the event.

clickCount

The number of times the mouse button has been clicked.

popupTrigger

A flag indicating if this event is a popup trigger event.

Description

Constructs a MouseEvent with the given characteristics.

Instance Methods

getClickCount

public int getClickCount()

Returns

The number of consecutive mouse button clicks for this event.

getPoint

public synchronized Point getPoint()

Returns

The location where the event happened.

getX

public int getX()

Returns

The horizontal location where the event happened.

getY

public int getY()

Returns

The vertical location where the event happened.

isPopupTrigger

public boolean isPopupTrigger()

Returns

Returns true if this event is the popup menu event for the run-time system.

paramString

public String paramString()

Returns

String with current settings of the MouseEvent.

Overrides

ComponentEvent.paramString()

Description

Helper method for toString() to generate string of current settings.

translatePoint

public synchronized void translatePoint (int x, int y)

Parameters

x

The horizontal amount of translation.

y

The vertical amount of translation.

Description

Translates the location of the event by the given amounts.

See Also

Component, ComponentEvent, InputEvent, MouseAdapter, MouseListener, Point

MouseAdapter MouseListener

Chapter 21
java.awt.event Reference

MouseListener

Name

MouseListener

[Graphic: Figure from the text]

Description

Objects that implement the MouseListener interface can receive non-motion oriented MouseEvent
objects. Listeners must first register themselves with objects that produce events. When events occur,
they are then automatically propagated to all registered listeners.

Interface Definition

public abstract interface java.awt.event.MouseListener
 extends java.util.EventListener {
 // Instance Methods
 public abstract void mouseClicked (MouseEvent e);
 public abstract void mouseEntered (MouseEvent e);
 public abstract void mouseExited (MouseEvent e);
 public abstract void mousePressed (MouseEvent e);

 public abstract void mouseReleased (MouseEvent e);
}

Interface Methods

mouseClicked

public abstract void mouseClicked (MouseEvent e)

Parameters

e

The key event that occurred.

Description

Notifies the MouseListener that the mouse button was clicked (pressed and released).

mouseEntered

public abstract void mouseEntered (MouseEvent e)

Parameters

e

The key event that occurred.

Description

Notifies the MouseListener that the mouse cursor has been moved into a component's
coordinate space.

mouseExited

public abstract void mouseExited (MouseEvent e)

Parameters

e

The key event that occurred.

Description

Notifies the MouseListener that the mouse cursor has been moved out of a component's
coordinate space.

mousePressed

public abstract void mousePressed (MouseEvent e)

Parameters

e

The key event that occurred.

Description

Notifies the MouseListener that the mouse button was pressed.

mouseReleased

public abstract void mouseReleased (MouseEvent e)

Parameters

e

The key event that occurred.

Description

Notifies the MouseListener that the mouse button was released.

See Also

EventListener, MouseAdapter, MouseEvent

MouseEvent MouseMotionAdapter

Chapter 21
java.awt.event Reference

MouseMotionAdapter

Name

MouseMotionAdapter

Description

The MouseMotionAdapter class implements the methods of MouseMotionListener with
empty functions. It may be easier for you to extend MouseMotionAdapter, overriding only those
methods you are interested in, than to implement MouseMotionListener and provide the empty
functions yourself.

Class Definition

public abstract class java.awt.event.MouseMotionAdapter
 extends java.lang.Object
 implements java.awt.event.MouseMotionListener {
 // Instance Methods
 public void mouseDragged (MouseEvent e);
 public void mouseMoved (MouseEvent e);
}

Instance Methods

mouseDragged

public void mouseDragged (MouseEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when the mouse is dragged.

mouseMoved

public void mouseEntered (MouseEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when the mouse moves.

See Also

MouseEvent, MouseMotionListener

MouseListener MouseMotionListener

Chapter 21
java.awt.event Reference

MouseMotionListener

Name

MouseMotionListener

[Graphic: Figure from the text]

Description

Objects that implement the MouseMotionListener interface can receive motion-oriented
MouseEvent objects. Listeners must first register themselves with objects that produce events. When
events occur, they are automatically propagated to all registered listeners.

Interface Definition

public abstract interface java.awt.event.MouseMotionListener
 extends java.util.EventListener {
 // Instance Methods
 public abstract void mouseDragged (MouseEvent e);
 public abstract void mouseMoved (MouseEvent e);
}

Interface Methods

mouseDragged

public abstract void mouseDragged (MouseEvent e)

Parameters

e

The key event that occurred.

Description

Notifies the MouseMotionListener that the mouse has been dragged.

mouseMoved

public abstract void mouseMoved (MouseEvent e)

Parameters

e

The key event that occurred.

Description

Notifies the MouseMotionListener that the mouse has been moved.

See Also

AWTEventMulticaster, EventListener, MouseEvent, MouseMotionAdapter

MouseMotionAdapter PaintEvent

Chapter 21
java.awt.event Reference

PaintEvent

Name

PaintEvent

Description

The PaintEvent class represents the paint and update operations that the AWT performs on
components. There is no PaintListener interface, so the only way to catch these events is to
override paint(Graphics) and update(Graphics) in Component. This class exists so that
paint events will get serialized properly.

Class Definition

public class java.awt.event.PaintEvent
 extends java.awt.event.ComponentEvent {
 // Constants
 public final static int PAINT;
 public final static int PAINT_FIRST;
 public final static int PAINT_LAST;
 public final static int UPDATE;

 // Constructor
 public PaintEvent (Component source, int id, Rectangle updateRect);
 // Instance Methods
 public Rectangle getUpdateRect();
 public String paramString();
 public void setUpdateRect (Rectangle updateRect);
}

Class Definition

public class java.awt.event.PaintEvent
 extends java.awt.event.ComponentEvent {
 // Constants
 public final static int PAINT;
 public final static int PAINT_FIRST;
 public final static int PAINT_LAST;
 public final static int UPDATE;
 //Constructor
 public PaintEvent (Component source, int id, Rectangle updateRect);
 // Instance Methods
 public Rectangle getUpdateRect();
 public String paramString();
 public void setUpdateRect (Rectangle updateRect);
}

Constants

PAINT

public final static int PAINT

The paint event type.

PAINT_FIRST

public final static int PAINT_FIRST

Specifies the beginning range of paint event ID values.

PAINT_LAST

public final static int PAINT_LAST

Specifies the ending range of paint event ID values.

UPDATE

public final static int UPDATE

The update event type.

Constructor

PaintEvent

public PaintEvent (Component source, ind id, Rectangle updateRect)

Parameters

source

The source of the event.

id

The event type ID.

g

The rectangular area to paint.

Description

Constructs a PaintEvent with the given characteristics.

Instance Methods

getUpdateRect

public Rectangle getUpdateRect()

Returns

The rectangular area that needs painting.

paramString

public String paramString()

Returns

String with current settings of the PaintEvent.

Overrides

ComponentEvent.paramString()

Description

Helper method for toString() to generate string of current settings.

setUpdateRect

public void setUpdateRect (Rectangle updateRect)

Parameters

updateRect

The rectangular area to paint.

Description

Changes the rectangular area that this PaintEvent will paint.

See Also

Component, ComponentEvent, Graphics

MouseMotionListener TextEvent

Chapter 21
java.awt.event Reference

TextEvent

Name

TextEvent

[Graphic: Figure from the text]

Description

Text events are generated by text components when their contents change, either programmatically or by
a user typing.

Class Definition

public class java.awt.event.TextEvent
 extends java.awt.AWTEvent {
 // Constants
 public final static int TEXT_FIRST;
 public final static int TEXT_LAST;
 public final static int TEXT_VALUE_CHANGED;
 // Constructors
 public TextEvent (Object source, int id);
 // Instance Methods
 public String paramString();
}

Constants

TEXT_FIRST

public final static int TEXT_FIRST

Specifies the beginning range of text event ID values.

TEXT_LAST

public final static int TEXT_LAST

Specifies the ending range of text event ID values.

TEXT_VALUE_CHANGED

public final static int TEXT_VALUE_CHANGED

The only text event type; it indicates that the contents of something have changed.

Constructors

TextEvent

public TextEvent (Object source, int id)

Parameters

source

The object that generated the event.

id

The type ID of the event.

Description

Constructs a TextEvent with the given characteristics.

Instance Methods

paramString

public String paramString()

Returns

String with current settings of the TextEvent.

Overrides

AWTEvent.paramString()

Description

Helper method for toString() to generate string of current settings.

See Also

AWTEvent, TextListener

PaintEvent TextListener

Chapter 21
java.awt.event Reference

TextListener

Name

TextListener

Description

Objects that implement the TextListener interface can receive TextEvent objects. Listeners must
first register themselves with objects that produce events. When events occur, they are then automatically
propagated to all registered listeners.

Interface Definition

public abstract interface java.awt.event.TextListener
 extends java.util.EventListener {
 // Interface Methods
 public abstract void textValueChanged (TextEvent e);
}

Interface Methods

textValueChanged

public abstract void textValueChanged (TextEvent e)

Parameters

e

The text event that occurred.

Description

Notifies the TextListener that an event occurred.

See Also

AWTEventMulticaster, EventListener, TextEvent

TextEvent WindowAdapter

Chapter 21
java.awt.event Reference

WindowAdapter

Name

WindowAdapter

[Graphic: Figure from the text]

Description

The WindowAdapter class implements the methods of WindowListener with empty functions. It
may be easier for you to extend WindowAdapter, overriding only those methods you are interested in,
than to implement WindowListener and provide the empty functions yourself.

Class Definition

public abstract class java.awt.event.WindowAdapter
 extends java.lang.Object
 implements java.awt.event.WindowListener {
 // Instance Methods
 public void windowActivated (WindowEvent e);
 public void windowClosed (WindowEvent e);
 public void windowClosing (WindowEvent e);
 public void windowDeactivated (WindowEvent e);
 public void windowDeiconified (WindowEvent e);
 public void windowIconified (WindowEvent e);

 public void windowOpened (WindowEvent e);
}

Instance Methods

windowActivated

public void windowActivated (WindowEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a window is activated.

windowClosed

public void windowClosed (WindowEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a window is closed.

windowClosing

public void windowClosing (WindowEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a window is in the process of closing.

windowDeactivated

public void windowDeactivated (WindowEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a window is deactivated.

windowDeiconified

public void windowDeiconified (WindowEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when an iconified window is restored.

windowIconified

public void windowIconified (WindowEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a window is iconified (minimized).

windowOpened

public void windowOpened (WindowEvent e)

Parameters

e

The event that has occurred.

Description

Does nothing. Override this function to be notified when a window is opened.

See Also

WindowEvent, WindowListener

TextListener WindowEvent

Chapter 21
java.awt.event Reference

WindowEvent

Name

WindowEvent

Description

Window events are generated when a window is opened, closed, iconified, or deiconified.

Class Definition

public class java.awt.event.WindowEvent
 extends java.awt.event.ComponentEvent {
 // Constants
 public final static int WINDOW_ACTIVATED;
 public final static int WINDOW_CLOSED;
 public final static int WINDOW_CLOSING;
 public final static int WINDOW_DEACTIVATED;
 public final static int WINDOW_DEICONIFIED;
 public final static int WINDOW_FIRST;
 public final static int WINDOW_ICONIFIED;

 public final static int WINDOW_LAST;
 public final static int WINDOW_OPENED;
 // Constructors
 public WindowEvent (Window source, int id);
 // Instance Methods
 public Window getWindow();
 public String paramString();
}

Constants

WINDOW_ACTIVATED

public final static int WINDOW_ACTIVATED

Event type ID indicating the window has been activated, brought to the foreground.

WINDOW_CLOSED

public final static int WINDOW_CLOSED

Event type ID indicating the window has closed.

WINDOW_CLOSING

public final static int WINDOW_CLOSING

Event type ID indicating the window is closing.

WINDOW_DEACTIVATED

public final static int WINDOW_DEACTIVATED

Event type ID indicating the window has been deactivated, placed in the background.

WINDOW_DEICONIFIED

public final static int WINDOW_DEICONIFIED

Event type ID indicating the window has been restored from an iconified state.

WINDOW_FIRST

public final static int WINDOW_FIRST

Specifies the beginning range of window event ID values.

WINDOW_ICONIFIED

public final static int WINDOW_ICONIFIED

Event type ID indicating the window has been iconified (minimized).

WINDOW_LAST

public final static int WINDOW_LAST

Specifies the ending range of window event ID values.

WINDOW_OPENED

public final static int WINDOW_OPENED

Event type ID indicating the window has opened.

Constructors

WindowEvent

public WindowEvent (Window source, int id)

Parameters

source

The object that generated the event.

id

The event type ID of the event.

Description

Constructs a WindowEvent with the given characteristics.

Instance Methods

getWindow

public Window getWindow()

Returns

The window that generated this event.

paramString

public String paramString()

Returns

String with current settings of the WindowEvent.

Overrides

ComponentEvent.paramString()

Description

Helper method for toString() to generate string of current settings.

See Also

ComponentEvent, Window, WindowAdapter, WindowListener

WindowAdapter WindowListener

Chapter 21
java.awt.event Reference

WindowListener

Name

WindowListener

[Graphic: Figure from the text]

Description

Objects that implement the WindowListener interface can receive WindowEvent objects. Listeners
must first register themselves with objects that produce events. When events occur, they are then
automatically propagated to all registered listeners.

Interface Definition

public abstract interface java.awt.event.WindowListener
 extends java.util.EventListener {
 // Instance Methods
 public abstract void windowActivated (WindowEvent e);
 public abstract void windowClosed (WindowEvent e);
 public abstract void windowClosing (WindowEvent e);
 public abstract void windowDeactivated (WindowEvent e);

 public abstract void windowDeiconified (WindowEvent e);
 public abstract void windowIconified (WindowEvent e);
 public abstract void windowOpened (WindowEvent e);
}

Interface Methods

windowActivated

public abstract void windowActivated (WindowEvent e)

Parameters

e

The event that occurred.

Description

Notifies the WindowListener that a window has been activated.

windowClosed

public abstract void windowClosed (WindowEvent e)

Parameters

e

The event that occurred.

Description

Notifies the WindowListener that a window has closed.

windowClosing

public abstract void windowClosing (WindowEvent e)

Parameters

e

The event that occurred.

Description

Notifies the WindowListener that a window is closing.

windowDeactivated

public abstract void windowDeactivated (WindowEvent e)

Parameters

e

The event that occurred.

Description

Notifies the WindowListener that a window has been deactivated.

windowDeiconified

public abstract void windowDeiconified (WindowEvent e)

Parameters

e

The event that occurred.

Description

Notifies the WindowListener that a window has been restored from an iconified state.

windowIconified

public abstract void windowIconified (WindowEvent e)

Parameters

e

The event that occurred.

Description

Notifies the WindowListener that a window has iconified (minimized).

windowOpened

public abstract void windowOpened (WindowEvent e)

Parameters

e

The event that occurred.

Description

Notifies the WindowListener that a window has opened.

See Also

AWTEventMulticaster, EventListener, Window, WindowAdapter, WindowEvent

WindowEvent java.awt.image Reference

Chapter 22
java.awt.image Reference

ColorModel

Name

ColorModel

[Graphic: Figure from the text]

Description

The abstract ColorModel class defines the way a Java program represents colors. It provides methods
for extracting different color components from a pixel.

Class Definition

public class java.awt.image.ColorModel
 extends java.lang.Object {
 // Variables
 protected int pixel_bits;
 // Constructors
 public ColorModel (int bits);
 // Class Methods
 public static ColorModel getRGBdefault();

 // Instance Methods

 public void finalize();
 public abstract int getAlpha (int pixel);
 public abstract int getBlue (int pixel);
 public abstract int getGreen (int pixel);
 public int getPixelSize();
 public abstract int getRed (int pixel);
 public int getRGB (int pixel);
}

ProtectedVariables

pixel_bits

protected int pixel_bits

The pixel_bits variable saves the ColorModel's bits setting (the total number of bits per pixel).

Constructors

ColorModel

public ColorModel (int bits)

Parameters

bits

The number of bits required per pixel using this model.

Description

Constructs a ColorModel object.

Class Methods

getRGBdefault

public static ColorModel getRGBdefault()

Returns

The default ColorModel format, which uses 8 bits for each of a pixel's color components: alpha
(transparency), red, green, and blue.

Instance Methods

finalize

public void finalize()

Overrides

Object.finalize()

Description

Cleans up when this object is garbage collected.

getAlpha

public abstract int getAlpha (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current alpha setting of the pixel.

getBlue

public abstract int getBlue (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current blue setting of the pixel.

getGreen

public abstract int getGreen (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current green setting of the pixel.

getPixelSize

public int getPixelSize()

Returns

The current pixel size for the color model.

getRed

public abstract int getRed (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current red setting of the pixel.

getRGB

public int getRGB (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current combined red, green, and blue settings of the pixel.

Description

Gets the color of pixel in the default RGB color model.

See Also

DirectColorModel, IndexColorModel, Object

AreaAveragingScaleFilter CropImageFilter

Chapter 22
java.awt.image Reference

CropImageFilter

Name

CropImageFilter

[Graphic: Figure from the text]

Description

The CropImageFilter class creates a smaller image by cropping (i.e., extracting a rectangular region from) a
larger image.

Class Definition

public class java.awt.image.CropImageFilter
 extends java.awt.image.ImageFilter {
 // Constructors
 public CropImageFilter (int x, int y, int width, int height);
 // Instance Methods
 public void setDimensions (int width, int height);
 public void setPixels (int x, int y, int width, int height, ColorModel model,
 byte[] pixels, int offset, int scansize);
 public void setPixels (int x, int y, int width, int height, ColorModel model,
 int[] pixels, int offset, int scansize);
 public void setProperties (Hashtable properties);
}

Constructors

CropImageFilter

public CropImageFilter (int x, int y, int width, int height)

Parameters

x

x-coordinate of top-left corner of piece to crop.

y

y-coordinate of top-left corner of piece to crop.

width

Width of image to crop.

height

Height of image to crop.

Description

Constructs a CropImageFilter that crops the specified region from the original image.

Instance Methods

setDimensions

public void setDimensions (int width, int height)

Parameters

width

Ignored parameter.

height

Ignored parameter.

Overrides

ImageFilter.setDimensions(int, int)

Description

Called with the original image's dimensions; these dimensions are ignored. The method in turn calls the
ImageConsumer with the dimensions of the cropped image.

setPixels

public void setPixels (int x, int y, int width, int height, ColorModel model, byte[] pixels, int offset, int
scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

width

Width of the rectangle of pixel data delivered with this method call.

height

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

offset

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Overrides

ImageFilter.setPixels(int, int, int, int, ColorModel, byte[], int, int)

Description

Receives a rectangle of image data from the ImageProducer; crops these pixels and delivers them to any
ImageConsumers.

public void setPixels (int x, int y, int width, int height, ColorModel model, int[] pixels, int offset, int
scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

width

Width of the rectangle of pixel data delivered with this method call.

height

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

offset

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Overrides

ImageFilter.setPixels(int, int, int, int, ColorModel, int[], int, int)

Description

Receives a rectangle of image data from the ImageProducer; crops these pixels and delivers them to any
ImageConsumers.

setProperties

public void setProperties (Hashtable properties)

Parameters

properties

The properties for the image.

Overrides

ImageFilter.setProperties(Hashtable)

Description

Adds the "croprect" image property to the properties list.

See Also

ColorModel, Hashtable, ImageFilter

ColorModel DirectColorModel

Chapter 22
java.awt.image Reference

DirectColorModel

Name

DirectColorModel

[Graphic: Figure from the text]

Description

The DirectColorModel class provides a ColorModel that specifies a translation between pixels
and alpha, red, green, and blue component values, where the color values are embedded directly within
the pixel.

Class Definition

public class java.awt.image.DirectColorModel
 extends java.awt.image.ColorModel {
 // Constructors
 public DirectColorModel (int bits, int redMask, int greenMask,
 int blueMask);
 public DirectColorModel (int bits, int redMask, int greenMask,
 int blueMask,
 int alphaMask);
 // Instance Methods
 public final int getAlpha (int pixel);
 public final int getAlphaMask();

 public final int getBlue (int pixel);
 public final int getBlueMask();
 public final int getGreen (int pixel);
 public final int getGreenMask()
 public final int getRed (int pixel);
 public final int getRedMask();
 public final int getRGB (int pixel);
}

Constructors

DirectColorModel

public DirectColorModel (int bits, int redMask, int greenMask, int blueMask)

Parameters

bits

The number of bits required per pixel of an image using this model.

redMask

The location of the red component of a pixel.

greenMask

The location of the green component of a pixel.

blueMask

The location of the blue component of a pixel.

Throws

IllegalArgumentException

If the mask bits are not contiguous or overlap.

Description

Constructs a DirectColorModel object with the given size and color masks; the alpha
(transparency) component is not used.

public DirectColorModel (int bits, int redMask, int greenMask, int blueMask, int
alphaMask)

Parameters

bits

The number of bits required per pixel of an image using this model.

redMask

The location of the red component of a pixel.

greenMask

The location of the green component of a pixel.

blueMask

The location of the blue component of a pixel.

alphaMask

The location of the alpha component of a pixel.

Throws

IllegalArgumentException

If the mask bits are not contiguous or overlap.

Description

Constructs a DirectColorModel object with the given size and color masks.

Instance Methods

getAlpha

public final int getAlpha (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current alpha setting of the pixel.

Overrides

ColorModel.getAlpha(int)

getAlphaMask

public final int getAlphaMask()

Returns

The current alpha mask setting of the color model.

getBlue

public final int getBlue (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current blue setting of the pixel.

Overrides

ColorModel.getBlue(int)

getBlueMask

public final int getBlueMask()

Returns

The current blue mask setting of the color model.

getGreen

public final int getGreen (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current green setting of the pixel.

Overrides

ColorModel.getGreen(int)

getGreenMask

public final int getGreenMask()

Returns

The current green mask setting of the color model.

getRed

public final int getRed (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current red setting of the pixel.

Overrides

ColorModel.getRed(int)

getRedMask

public final int getRedMask()

Returns

The current red mask setting of the color model.

getRGB

public final int getRGB (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current combined red, green, and blue settings of the pixel.

Overrides

ColorModel.getRGB(int)

Description

Gets the color of pixel in the default RGB color model.

See Also

ColorModel

CropImageFilter FilteredImageSource

Chapter 22
java.awt.image Reference

FilteredImageSource

Name

FilteredImageSource

Description

The FilteredImageSource class acts as glue to put an original ImageProducer and
ImageFilter together to create a new image. As the ImageProducer for the new image,
FilteredImageSource is responsible for registering image consumers for the new image.

Class Definition

public class java.awt.image.FilteredImageSource
 extends java.lang.Object
 implements java.awt.image.ImageProducer {
 // Constructors
 public FilteredImageSource (ImageProducer original,
 ImageFilter filter);
 // Instance Methods
 public synchronized void addConsumer (ImageConsumer ic);
 public synchronized boolean isConsumer (ImageConsumer ic);
 public synchronized void removeConsumer (ImageConsumer ic);
 public void requestTopDownLeftRightResend (ImageConsumer ic);

 public void startProduction (ImageConsumer ic);
}

Constructors

FilteredImageSource

public FilteredImageSource (ImageProducer original, ImageFilter filter)

Parameters

original

An ImageProducer that generates the image to be filtered.

filter

The ImageFilter to use to process image data delivered by original.

Description

Constructs a FilteredImageSource object to filter an image generated by an
ImageProducer.

Class Methods

addConsumer

public synchronized void addConsumer (ImageConsumer ic)

Parameters

ic

ImageConsumer interested in receiving the new image.

Implements

ImageProducer.addConsumer(ImageConsumer)

Description

Registers an ImageConsumer as interested in Image information.

isConsumer

public synchronized boolean isConsumer (ImageConsumer ic)

Parameters

ic

ImageConsumer to check.

Returns

true if ImageConsumer is registered with this ImageProducer, false otherwise.

Implements

ImageProducer.isConsumer(ImageConsumer)

removeConsumer

public synchronized void removeConsumer (ImageConsumer ic)

Parameters

ic

ImageConsumer to remove.

Implements

ImageProducer.removeConsumer(ImageConsumer)

Description

Removes an ImageConsumer from the registered consumers for this ImageProducer.

requestTopDownLeftRightResend

public void requestTopDownLeftRightResend (ImageConsumer ic)

Parameters

ic

ImageConsumer to communicate with.

Implements

ImageProducer.requestTopDownLeftRightResend()

Description

Requests the retransmission of the Image data in top-down, left-to-right order.

startProduction

public void startProduction (ImageConsumer ic)

Parameters

ic

ImageConsumer to communicate with.

Implements

ImageProducer.startProduction(ImageConsumer)

Description

Registers ImageConsumer as interested in Image information and tells ImageProducer to
start creating the filtered Image data immediately.

See Also

ImageFilter, ImageConsumer, ImageProducer, Object

DirectColorModel ImageConsumer

Chapter 22
java.awt.image Reference

ImageConsumer

Name

ImageConsumer

[Graphic: Figure from the text]

Description

ImageConsumer is an interface that provides the means to consume pixel data and render it for
display.

Interface Definition

public abstract interface java.awt.image.ImageConsumer {
 // Constants
 public final static int COMPLETESCANLINES;
 public final static int IMAGEABORTED;
 public final static int IMAGEERROR;
 public final static int RANDOMPIXELORDER;
 public final static int SINGLEFRAME;
 public final static int SINGLEFRAMEDONE;
 public final static int SINGLEPASS;
 public final static int STATICIMAGEDONE;

 public final static int TOPDOWNLEFTRIGHT;
 // Interface Methods
 public abstract void imageComplete (int status);
 public abstract void setColorModel (ColorModel model);
 public abstract void setDimensions (int width, int height);
 public abstract void setHints (int hints);
 public abstract void setPixels (int x, int y, int width, int height,
 ColorModel model, byte[] pixels, int offset, int scansize);
 public abstract void setPixels (int x, int y, int width, int height,
 ColorModel model, int[] pixels, int offset, int scansize);
 public abstract void setProperties (Hashtable properties);
}

Constants

COMPLETESCANLINES

public final static int COMPLETESCANLINES

Hint flag for the setHints(int) method; indicates that the image will be delivered one or more
scanlines at a time.

IMAGEABORTED

public final static int IMAGEABORTED

Status flag for the imageComplete(int) method indicating that the loading process for the image
aborted.

IMAGEERROR

public final static int IMAGEERROR

Status flag for the imageComplete(int) method indicating that an error happened during image
loading.

RANDOMPIXELORDER

public final static int RANDOMPIXELORDER

Hint flag for the setHints(int) method; indicates that the pixels will be delivered in no particular
order.

SINGLEFRAME

public final static int SINGLEFRAME

Hint flag for the setHints(int) method; indicates that the image consists of a single frame.

SINGLEFRAMEDONE

public final static int SINGLEFRAMEDONE

Status flag for the imageComplete(int) method indicating a single frame of the image has loaded.

SINGLEPASS

public final static int SINGLEPASS

Hint flag for the setHints(int) method; indicates that each pixel will be delivered once (i.e., the
producer will not make multiple passes over the image).

STATICIMAGEDONE

public final static int STATICIMAGEDONE

Status flag for the imageComplete(int) method indicating that the image has fully and successfully
loaded, and that there are no additional frames.

TOPDOWNLEFTRIGHT

public final static int TOPDOWNLEFTRIGHT

Hint flag for the setHints(int) method; indicates that pixels will be delivered in a top to bottom,
left to right order.

Interface Methods

imageComplete

public abstract void imageComplete (int status)

Parameters

status

Image loading status flags.

Description

Called when the image, or a frame of an image sequence, is complete to report the completion
status.

setColorModel

public abstract void setColorModel (ColorModel model)

Parameters

model

The color model for the image.

Description

Tells the ImageConsumer the color model used for most of the pixels in the image.

setDimensions

public abstract void setDimensions (int width, int height)

Parameters

width

Width for image.

height

Height for image.

Description

Tells the consumer the image's dimensions.

setHints

public abstract void setHints (int hints)

Parameters

hints

Image consumption hints.

Description

Gives the consumer information about how pixels will be delivered.

setPixels

public abstract void setPixels (int x, int y, int width, int height, ColorModel model, byte[]
pixels, int offset, int scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

width

Width of the rectangle of pixel data delivered with this method call.

height

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

offset

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Description

Delivers a rectangular block of pixels to the image consumer.

public abstract void setPixels (int x, int y, int width, int height, ColorModel model, int[]
pixels, int offset, int scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

width

Width of the rectangle of pixel data delivered with this method call.

height

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

offset

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Description

Delivers a rectangular block of pixels to the image consumer.

setProperties

public abstract void setProperties (Hashtable properties)

Parameters

properties

The properties for the image.

Description

Delivers a Hashtable that contains the image's properties.

See Also

ColorModel, Hashtable, ImageFilter, PixelGrabber, Object

FilteredImageSource ImageFilter

Chapter 22
java.awt.image Reference

ImageFilter

Name

ImageFilter

Description

The ImageFilter class sits between the ImageProducer and ImageConsumer as an image is
being created to provide a filtered version of that image. Image filters are always used in conjunction
with a FilteredImageSource. As an implementer of the ImageConsumer interface, an image
filter receives pixel data from the original image's source and delivers it to another image consumer. The
ImageFilter class implements a null filter (i.e., the new image is the same as the original); to produce
a filter that modifies an image, create a subclass of ImageFilter.

Class Definition

public class java.awt.image.ImageFilter
 extends java.lang.Object
 implements java.awt.image.ImageConsumer, java.lang.Cloneable {
 // Variables
 protected ImageConsumer consumer;
 // Constructors
 public ImageFilter();
 // Instance Methods
 public Object clone();
 public ImageFilter getFilterInstance (ImageConsumer ic);
 public void imageComplete (int status);
 public void resendTopDownLeftRight (ImageProducer ip);
 public void setColorModel (ColorModel model);
 public void setDimensions (int width, int height);
 public void setHints (int hints);
 public void setPixels (int x, int y, int width, int height,
 ColorModel model, byte[] pixels, int offset, int scansize);
 public void setPixels (int x, int y, int width, int height,
 ColorModel model, int[] pixels, int offset, int scansize);
 public void setProperties (Hashtable properties);
}

Protected Variables

consumer

protected ImageConsumer consumer

The consumer variable is a reference to the actual ImageConsumer for the Image.

Constructors

ImageFilter

public ImageFilter()

Description

Constructs an empty ImageFilter instance.

Instance Methods

clone

public Object clone()

Overrides

Object.clone()

Returns

A copy of the ImageFilter instance.

getFilterInstance

public ImageFilter getFilterInstance (ImageConsumer ic)

Parameters

ic

The consumer in question.

Returns

A copy of the ImageFilter instance.

Description

Returns the filter that will do the filtering for ic.

imageComplete

void imageComplete (int status)

Parameters

status

Image loading completion status flags.

Implements

ImageConsumer.imageComplete(int)

Description

Called by the ImageProducer to indicate an image's completion status. ImageFilter passes
these flags to the consumer unchanged.

resendTopDownLeftRight

public void resendTopDownLeftRight (ImageProducer ip)

Parameters

ip

The ImageProducer generating the original image.

Description

Called by the ImageConsumer to ask the filter to resend the image data in the top-down, left-to-
right order. In ImageFilter, this method calls the same method in the ImageProducer, thus
relaying the request.

setColorModel

void setColorModel (ColorModel model)

Parameters

model

The color model for the image.

Implements

ImageConsumer.setColorModel(ColorModel)

Description

Sets the image's color model.

setDimensions

void setDimensions (int width, int height)

Parameters

width

Width for image.

height

Height for image.

Implements

ImageConsumer.setDimensions(int, int)

Description

Sets the image's dimensions.

setHints

void setHints (int hints)

Parameters

hints

Image consumption hints.

Implements

ImageConsumer.setHints(int)

Description

Called by the ImageProducer to deliver hints about how the image data will be delivered.
ImageFilter passes these hints on to the ImageConsumer.

setPixels

void setPixels (int x, int y, int width, int height, ColorModel model, byte[] pixels, int
offset, int scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

width

Width of the rectangle of pixel data delivered with this method call.

height

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

offset

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Implements

ImageConsumer.setPixels(int, int, int, int, ColorModel, byte[],
int, int)

Description

Delivers a rectangular block of pixels to the ImageFilter. ImageFilter passes these pixels
on to the consumer unchanged.

void setPixels (int x, int y, int width, int height, ColorModel model, int[] pixels, int offset,
int scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

width

Width of the rectangle of pixel data delivered with this method call.

height

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

offset

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Implements

ImageConsumer.setPixels(int, int, int, int, ColorModel, int[],
int, int)

Description

Delivers a rectangular block of pixels to the ImageFilter. ImageFilter passes these pixels
on to the consumer unchanged.

setProperties

void setProperties (Hashtable properties)

Parameters

properties

The properties for the image.

Implements

ImageConsumer.setProperties(Hashtable)

Description

Initializes the image's properties. ImageFilter adds the property "filter" to the Hashtable,
and passes the result on to the image consumer; the value of the property is the string returned by
the filter's toString() method. If the property "filter" is already in the Hashtable,
ImageFilter adds the string returned by its toString() method to the value already

associated with that property.

See Also

Cloneable, ColorModel, CropImageFilter, Hashtable, ImageConsumer,
ImageProducer, Object, ReplicateImageFilter, RGBImageFilter

ImageConsumer ImageObserver

Chapter 22
java.awt.image Reference

ImageObserver

Name

ImageObserver

[Graphic: Figure from the text]

Description

ImageObserver is an interface that provides constants and the callback mechanism to receive
asynchronous information about the status of an image as it loads.

Interface Definition

public abstract interface java.awt.image.ImageObserver {
 // Constants
 public static final int ABORT;
 public static final int ALLBITS;
 public static final int ERROR;
 public static final int FRAMEBITS;
 public static final int HEIGHT;
 public static final int PROPERTIES;
 public static final int SOMEBITS;
 public static final int WIDTH;
 // Interface Methods
 public abstract boolean imageUpdate (Image image, int infoflags,

 int x, int y, int width, int height);
}

Constants

ABORT

public static final int ABORT

The ABORT flag indicates that the image aborted during loading. An attempt to reload the image may
succeed, unless ERROR is also set.

ALLBITS

public static final int ALLBITS

The ALLBITS flag indicates that the image has completely loaded successfully. The x, y, width, and
height arguments to imageUpdate() should be ignored.

ERROR

public static final int ERROR

The ERROR flag indicates that an error happened during the image loading process. An attempt to reload
the image will fail.

FRAMEBITS

public static final int FRAMEBITS

The FRAMEBITS flag indicates that a complete frame of a multi-frame image has loaded. The x, y,
width, and height arguments to imageUpdate() should be ignored.

HEIGHT

public static final int HEIGHT

The HEIGHT flag indicates that the height information is available for an image; the image's height is in
the height argument to imageUpdate().

PROPERTIES

public static final int PROPERTIES

The PROPERTIES flag indicates that the properties information is available for an image.

SOMEBITS

public static final int SOMEBITS

The SOMEBITS flag indicates that the image has started loading and some pixels are available. The
bounding rectangle for the pixels that have been delivered so far is indicated by the x, y, width, and
height arguments to imageUpdate().

WIDTH

public static final int WIDTH

The WIDTH flag indicates that the width information is available for an image; the image's width is in the
width argument to imageUpdate().

Interface Methods

imageUpdate

public abstract boolean imageUpdate (Image image, int infoflags, int x, int y, int width,
int height)

Parameters

image

Image that is being loaded.

infoflags

The ImageObserver flags for the information that is currently available.

x

Meaning depends on infoflags that are set.

y

Meaning depends on infoflags that are set.

width

Meaning depends on infoflags that are set.

height

Meaning depends on infoflags that are set.

Returns

true if image has completed loading (successfully or unsuccessfully), false if additional
information needs to be loaded.

Description

Provides the callback mechanism for the asynchronous loading of images.

See Also

Component, Image, Object

ImageFilter ImageProducer

Chapter 22
java.awt.image Reference

ImageProducer

Name

ImageProducer

Description

ImageProducer is an interface that provides the methods necessary for the production of images and the
communication with classes that implement the ImageConsumer interface.

Interface Definition

public abstract interface java.awt.image.ImageProducer {
 // Interface Methods
 public abstract void addConsumer (ImageConsumer ic);
 public abstract boolean isConsumer (ImageConsumer ic);
 public abstract void removeConsumer (ImageConsumer ic);
 public abstract void requestTopDownLeftRightResend (ImageConsumer ic);
 public abstract void startProduction (ImageConsumer ic);
}

Interface Methods

addConsumer

public abstract void addConsumer (ImageConsumer ic)

Parameters

ic

An ImageConsumer that wants to receive image data.

Description

Registers an ImageConsumer as interested in image information.

isConsumer

public abstract boolean isConsumer (ImageConsumer ic)

Parameters

ic

ImageConsumer to check.

Returns

true if ImageConsumer has registered with the ImageProducer, false otherwise.

removeConsumer

public abstract void removeConsumer (ImageConsumer ic)

Parameters

ic

ImageConsumer to remove.

Description

Removes an ImageConsumer from registered consumers for this ImageProducer.

requestTopDownLeftRightResend

public abstract void requestTopDownLeftRightResend (ImageConsumer ic)

Parameters

ic

ImageConsumer to communicate with.

Description

Requests the retransmission of the image data in top-down, left-to-right order.

startProduction

public abstract void startProduction (ImageConsumer ic)

Parameters

ic

ImageConsumer to communicate with.

Description

Registers ImageConsumer as interested in image information and tells ImageProducer to
start sending the image data immediately.

See Also

FilteredImageSource, Image, ImageConsumer, ImageFilter, MemoryImageSource,
Object

ImageObserver

Chapter 22
java.awt.image Reference

IndexColorModel

Name

IndexColorModel

[Graphic: Figure from the text]

Description

The IndexColorModel class is a ColorModel that uses a color map lookup table (with a maximum
size of 256) to convert pixel values into their alpha, red, green, and blue component parts.

Class Definition

public class java.awt.image.IndexColorModel
 extends java.awt.image.ColorModel {
 // Constructors
 public IndexColorModel (int bits, int size,
 byte[] colorMap, int start, boolean hasalpha);
 public IndexColorModel (int bits, int size,
 byte[] colorMap, int start, boolean hasalpha, int transparent);
 public IndexColorModel (int bits, int size,
 byte[] red, byte[] green, byte[] blue);
 public IndexColorModel (int bits, int size,
 byte[] red, byte[] green, byte[] blue, byte[] alpha);
 public IndexColorModel (int bits, int size,

 byte[] red, byte[] green, byte[] blue, int transparent);
 // Instance Methods
 public final int getAlpha (int pixel);
 public final void getAlphas (byte[] alphas);
 public final int getBlue (int pixel);
 public final void getBlues (byte[] blues);
 public final int getGreen (int pixel);
 public final void getGreens (byte[] greens);
 public final int getMapSize();
 public final int getRed (int pixel);
 public final void getReds (byte[] reds);
 public final int getRGB (int pixel);
 public final int getTransparentPixel();
}

Constructors

IndexColorModel

public IndexColorModel (int bits, int size, byte[] colorMap, int start, boolean hasalpha)

Parameters

bits

The number of bits in a pixel.

size

The number of entries in the color map. Note: this is not the size of the colorMap
parameter.

colorMap

Color component values in red, green, blue, alpha order; the alpha component is optional,
and may not be present.

start

The starting position in colorMap array.

hasalpha

If hasalpha is true, alpha components are present in colorMap array.

Throws

ArrayIndexOutOfBoundsException

If size is invalid.

Description

Constructs an IndexColorModel object with the given component settings. The size of
colorMap must be at least 3*size+start, if hasalpha is false; if hasalpha is true,
colorMap.length must be at least 4*size+start.

public IndexColorModel (int bits, int size, byte[] colorMap, int start, boolean hasalpha, int
transparent)

Parameters

bits

The number of bits in a pixel.

size

The number of entries in the color map. Note: this is not the size of the colorMap
parameter.

colorMap

Color component values in red, green, blue, alpha order; the alpha component is optional,
and may not be present.

start

The starting position in colorMap array.

hasalpha

If hasalpha is true, alpha components are present in colorMap array.

transparent

Position of colorMap entry for transparent pixel entry.

Throws

ArrayIndexOutOfBoundsException

If size invalid.

Description

Constructs an IndexColorModel object with the given component settings. The size of
colorMap must be at least 3*size+start, if hasalpha is false; if hasalpha is true,
colorMap.length must be at least 4*size+start. The color map has a transparent pixel;
its location is given by transparent.

public IndexColorModel (int bits, int size, byte[] red, byte[] green, byte[] blue)

Parameters

bits

The number of bits in a pixel.

size

The number of entries in the color map.

red

Red color component values.

green

Green color component values.

blue

Blue color component values.

Throws

ArrayIndexOutOfBoundsException

If size invalid.

Description

Constructs an IndexColorModel object with the given component settings. There is no alpha
component. The length of the red, green, and blue arrays must be greater than size.

public IndexColorModel (int bits, int size, byte[] red, byte[] green, byte[] blue, byte[]
alpha)

Parameters

bits

The number of bits in a pixel.

size

The number of entries in the color map.

red

Red color component values.

green

Green color component values.

blue

Blue color component values.

alpha

Alpha component values.

Throws

ArrayIndexOutOfBoundsException

If size is invalid.

NullPointerException

If size is positive and alpha array is null.

Description

Constructs an IndexColorModel object with the given component settings. The length of the
red, green, blue, and alpha arrays must be greater than size.

public IndexColorModel (int bits, int size, byte[] red, byte[] green, byte[] blue, int
transparent)

Parameters

bits

The number of bits in a pixel.

size

The number of entries in the color map.

red

Red color component values.

green

Green color component values.

blue

Blue color component values.

transparent

Position of transparent pixel entry.

Throws

ArrayIndexOutOfBoundsException

If size is invalid.

Description

Constructs an IndexColorModel object with the given component settings. The length of the
red, green, blue, and alpha arrays must be greater than size. The color map has a
transparent pixel; its location is given by transparent.

Instance Methods

getAlpha

public final int getAlpha (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current alpha setting of the pixel.

Overrides

ColorModel.getAlpha(int)

getAlphas

public final void getAlphas (byte[] alphas)

Parameters

alphas

The alpha values of the pixels in the color model.

Description

Copies the alpha values from the color map into the array alphas[].

getBlue

public final int getBlue (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current blue setting of the pixel.

Overrides

ColorModel.getBlue(int)

getBlues

public final void getBlues (byte[] blues)

Parameters

blues

The blue values of the pixels in the color model.

Description

Copies the blue values from the color map into the array blues[].

getGreen

public final int getGreen (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current green setting of the pixel.

Overrides

ColorModel.getGreen(int)

getGreens

public final void getGreens (byte[] greens)

Parameters

greens

The green values of the pixels in the color model.

Description

Copies the green values from the color map into the array greens[].

getMapSize

public final int getMapSize()

Returns

The current size of the color map table.

getRed

public final int getRed (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current red setting of the pixel.

Overrides

ColorModel.getRed(int)

getReds

public final void getReds (byte[] reds)

Parameters

reds

The red values of the pixels in the color model.

Description

Copies the red values from the color map into the array reds[].

getRGB

public final int getRGB (int pixel)

Parameters

pixel

A pixel encoded with this ColorModel.

Returns

The current combined red, green, and blue settings of the pixel.

Overrides

ColorModel.getRGB(int)

Description

Gets the color of pixel in the default RGB color model.

getTransparentPixel

public final int getTransparentPixel()

Returns

The array index for the transparent pixel in the color model.

See Also

ColorModel

ImageProducer MemoryImageSource

Chapter 22
java.awt.image Reference

MemoryImageSource

Name

MemoryImageSource

Description

The MemoryImageSource class allows you to create images completely in memory. You provide an
array of data; it serves as an image producer for that data. In the 1.1 release, new methods support using
this class for animation (notably setAnimated() and the various overrides of newPixels()).

Class Definition

public class java.awt.image.MemoryImageSource
 extends java.lang.Object
 implements java.awt.image.ImageProducer {
 // Constructors
 public MemoryImageSource (int w, int h, ColorModel cm,
 byte[] pix, int off, int scan);
 public MemoryImageSource (int w, int h, ColorModel cm,
 byte[] pix, int off, int scan, Hashtable props);
 public MemoryImageSource (int w, int h, ColorModel cm,
 int[] pix, int off, int scan);
 public MemoryImageSource (int w, int h, ColorModel cm,

 int[] pix, int off, int scan, Hashtable props);
 public MemoryImageSource (int w, int h, int[] pix,
 int off, int scan);
 public MemoryImageSource (int w, int h, int[] pix,
 int off, int scan, Hashtable props);
 // Instance Methods
 public synchronized void addConsumer (ImageConsumer ic);
 public synchronized boolean isConsumer (ImageConsumer ic);

 public void newPixels();
 public synchronized void newPixels (int x, int y,

 int w, int h);
 public synchronized void newPixels (int x, int y,

 int w, int h, boolean framenotify);
 public synchronized void newPixels (byte[] newpix,

 ColorModel newmodel, int offset, int scansize);
 public synchronized void newPixels (int[] newpix,

 ColorModel newmodel, int offset, int scansize);
 public synchronized void removeConsumer (ImageConsumer ic);
 public void requestTopDownLeftRightResend (ImageConsumer ic);

 public synchronized void setAnimated (boolean animated);
 public synchronized void setFullBufferUpdates

 (boolean fullbuffers);
 public void startProduction (ImageConsumer ic);
}

Constructors

MemoryImageSource

public MemoryImageSource (int w, int h, ColorModel cm, byte[] pix, int off, int scan)

Parameters

w

Width of the image being created.

h

Height of the image being created.

cm

ColorModel of the image being created.

pix

Array of pixel information.

off

The offset of the first pixel in the array; elements prior to this pixel are ignored.

scan

The number of pixels per scan line in the array.

Description

Constructs a MemoryImageSource object with the given parameters to serve as an
ImageProducer for a new image.

public MemoryImageSource (int w, int h, ColorModel cm, byte[] pix, int off, int scan,
Hashtable props)

Parameters

w

Width of the image being created.

h

Height of the image being created.

cm

ColorModel of the image being created.

pix

Array of pixel information.

off

The offset of the first pixel in the array; elements prior to this pixel are ignored.

scan

The number of pixels per scan line in the array.

props

Hashtable of properties associated with image.

Description

Constructs a MemoryImageSource object with the given parameters to serve as an
ImageProducer for a new image.

public MemoryImageSource (int w, int h, ColorModel cm, int[] pix, int off, int scan)

Parameters

w

Width of the image being created.

h

Height of the image being created.

cm

ColorModel of the image being created.

pix

Array of pixel information.

off

The offset of the first pixel in the array; elements prior to this pixel are ignored.

scan

The number of pixels per scan line in the array.

Description

Constructs a MemoryImageSource object with the given parameters to serve as an
ImageProducer for a new image.

public MemoryImageSource (int w, int h, ColorModel cm, int[] pix, int off, int scan,
Hashtable props)

Parameters

w

Width of the image being created.

h

Height of the image being created.

cm

ColorModel of the image being created.

pix

Array of pixel information.

off

The offset of the first pixel in the array; elements prior to this pixel are ignored.

scan

The number of pixels per scan line in the array.

props

Hashtable of properties associated with image.

Description

Constructs a MemoryImageSource object with the given parameters to serve as an
ImageProducer for a new image.

public MemoryImageSource (int w, int h, int[] pix, int off, int scan)

Parameters

w

Width of the image being created.

h

Height of the image being created.

pix

Array of pixel information.

off

The offset of the first pixel in the array; elements prior to this pixel are ignored.

scan

The number of pixels per scan line in the array.

Description

Constructs a MemoryImageSource object with the given parameters to serve as an
ImageProducer for a new image.

public MemoryImageSource (int w, int h, int[] pix, int off, int scan, Hashtable props)

Parameters

w

Width of the image being created.

h

Height of the image being created.

pix

Array of pixel information.

off

The offset of the first pixel in the array; elements prior to this pixel are ignored.

scan

The number of pixels per scan line in the array.

props

Hashtable of properties associated with image.

Description

Constructs a MemoryImageSource object with the given parameters to serve as an
ImageProducer for a new image.

Class Methods

addConsumer

public synchronized void addConsumer (ImageConsumer ic)

Parameters

ic

ImageConsumer requesting image data.

Implements

ImageProducer.addConsumer(ImageConsumer)

Description

Registers an ImageConsumer as interested in Image information.

isConsumer

public synchronized boolean isConsumer (ImageConsumer ic)

Parameters

ic

ImageConsumer to check.

Returns

true if ImageConsumer is registered with this ImageProducer, false otherwise.

Implements

ImageProducer.isConsumer(ImageConsumer)

newPixels

public synchronized void newPixels()

Description

Notifies the MemoryImageSource that there is new data available. The
MemoryImageSource notifies all ImageConsumers that there is new data, sending the full
rectangle and notifying the consumers that the frame is complete.

public synchronized void newPixels (int x, int y, int w, int h, boolean framenotify)

Parameters

x

x coordinate of the top left corner of the new image data.

y

y coordinate of the top left corner of the new image data.

w

Width of the new image data.

h

Height of the new image data.

Description

Notifies the MemoryImageSource that there is new data available. The
MemoryImageSource notifies all ImageConsumers that there is new data in the rectangle
described by x, y, w, and h. The consumers are notified that the frame is complete.

public synchronized void newPixels (int x, int y, int w, int h, boolean framenotify)

Parameters

x

x coordinate of the top left corner of the new image data.

y

y coordinate of the top left corner of the new image data.

w

Width of the new image data.

h

Height of the new image data.

framenotify

Determines whether this is a complete frame or not.

Description

Notifies the MemoryImageSource that there is new data available. The
MemoryImageSource notifies all ImageConsumers that there is new data in the rectangle
described by x, y, w, and h. If framenotify is true, the consumers will also be notified that a
frame is complete.

public synchronized void newPixels (byte[] newpix, ColorModel newmodel, int offset, int
scansize)

Parameters

newpix

New array of image data.

newmodel

The color model to use for the new data.

offset

Offset into the data array

scansize

Size of each line.

Description

Changes the image data for this MemoryImageSource and notifies its ImageConsumers that

new data is available.

public synchronized void newPixels (int[] newpix, ColorModel newmodel, int offset, int
scansize)

Parameters

newpix

New array of image data.

newmodel

The color model to use for the new data.

offset

Offset into the data array

scansize

Size of each line.

Description

Changes the image data for this MemoryImageSource and notifies its ImageConsumers that
new data is available.

removeConsumer

public void removeConsumer (ImageConsumer ic)

Parameters

ic

ImageConsumer to remove.

Implements

ImageProducer.removeConsumer(ImageConsumer)

Description

Removes an ImageConsumer from registered consumers for this ImageProducer.

requestTopDownLeftRightResend

public void requestTopDownLeftRightResend (ImageConsumer ic)

Parameters

ic

ImageConsumer requesting image data.

Implements

ImageProducer.requestTopDownLeftRightResend(ImageConsumer)

Description

Requests the retransmission of the Image data in top-down, left-to-right order.

setAnimated

public void setAnimated (boolean animated)

Parameters

animated

Flag indicating whether this image is animated.

Description

To use this MemoryImageSource for animation, call setAnimated(true). The
newPixels() methods will not work otherwise.

setFullBufferUpdates

public void setFullBufferUpdates (boolean fullbuffers)

Parameters

fullbuffers

true to send full buffers; false otherwise.

Description

This method is only important for animations; i.e., you should call setAnimated(true)
before using this function. If you do request to send full buffers, then any rectangle parameters
passed to newPixels() will be ignored and the entire image will be sent to the consumers.

startProduction

public void startProduction (ImageConsumer ic)

Parameters

ic

ImageConsumer requesting image data.

Implements

ImageProducer.startProduction(ImageConsumer)

Description

Registers ImageConsumer as interested in Image information and tells ImageProducer to
start sending the image data immediately.

See Also

ColorModel, Hashtable, ImageConsumer, ImageProducer, Object

IndexColorModel PixelGrabber

Chapter 22
java.awt.image Reference

PixelGrabber

Name

PixelGrabber

[Graphic: Figure from the text]

Description

The PixelGrabber class is an ImageConsumer that captures the pixels from an image and saves
them in an array.

Class Definition

public class java.awt.image.PixelGrabber
 extends java.lang.Object
 implements java.awt.image.ImageConsumer {
 // Constructors
 public PixelGrabber (Image img, int x, int y, int w, int h,

 boolean forceRGB);
 public PixelGrabber (Image image, int x, int y, int width,
 int height, int[] pixels, int offset, int scansize);
 public PixelGrabber (ImageProducer ip, int x, int y, int width,
 int height, int[] pixels, int offset, int scansize);
 // Instance Methods

 public synchronized void abortGrabbing();

 public synchronized ColorModel getColorModel();

 public synchronized int getHeight();

 public synchronized Object getPixels();

 public synchronized int getStatus();

 public synchronized int getWidth();
 public boolean grabPixels() throws InterruptedException;
 public synchronized boolean grabPixels (long ms)
 throws InterruptedException;
 public synchronized void imageComplete (int status);
 public void setColorModel (ColorModel model);
 public void setDimensions (int width, int height);
 public void setHints (int hints);
 public void setPixels (int x, int y, int width, int height,
 ColorModel model, byte[] pixels, int offset, int scansize);
 public void setPixels (int x, int y, int width, int height,
 ColorModel model, int[] pixels, int offset, int scansize);
 public void setProperties (Hashtable properties);

 public synchronized void startGrabbing();

 public synchronized int status();
}

Constructors

PixelGrabber

public PixelGrabber (Image img, int x, int y, int w, int h, boolean forceRGB)

Parameters

img

Image to use as source of pixel data.

x

x-coordinate of top-left corner of pixel data.

y

y-coordinate of top-left corner of pixel data.

w

Width of pixel data.

h

Height of pixel data.

forceRGB

true to force the use of the RGB color model; false otherwise.

Description

Constructs a PixelGrabber instance to grab the specified area of the image.

public PixelGrabber (Image image, int x, int y, int width, int height, int[] pixels, int offset,
int scansize)

Parameters

image

Image to use as source of pixel data.

x

x-coordinate of top-left corner of pixel data.

y

y-coordinate of top-left corner of pixel data.

width

Width of pixel data.

height

Height of pixel data.

pixels

Where to store pixel data when grabPixels() called.

offset

Offset from beginning of each line in pixels array.

scansize

Size of each line of data in pixels array.

Description

Constructs a PixelGrabber instance to grab the specified area of the image and store the pixel
data from this area in the array pixels[].

public PixelGrabber (ImageProducer ip, int x, int y, int width, int height, int[] pixels, int
offset, int scansize)

Parameters

ip

ImageProducer to use as source of pixel data.

x

x-coordinate of top-left corner of pixel data.

y

y-coordinate of top-left corner of pixel data.

width

Width of pixel data.

height

Height of pixel data.

pixels

Where to store pixel data when grabPixels() called.

offset

Offset from beginning of each line in pixels array.

scansize

Size of each line of data in pixels array.

Description

Constructs a PixelGrabber instance to grab data from the specified area of the image
generated by an ImageProducer and store the pixel data from this area in the array
pixels[].

Instance Methods

abortGrabbing

public synchronized void abortGrabbing()

Description

Stops the PixelGrabber's image-grabbing process.

getColorModel

public synchronized ColorModel getColorModel()

Returns

The color model the PixelGrabber is using for its array.

getHeight

public synchronized int getHeight()

Returns

The height of the grabbed image, or -1 if the height is not known.

getPixels

public synchronized Object getPixels()

Returns

The array of pixels.

Description

Either a byte array or an integer array is returned, or null if the size and format of the image are
not yet known. Because the PixelGrabber may change its mind about what ColorModel it's
using, different calls to this method may return different arrays until the image acquisition is
complete.

getStatus

public synchronized int getStatus()

Returns

A combination of ImageObserver flags indicating what data is available.

getWidth

public synchronized int getWidth()

Returns

The width of the grabbed image, or -1 if the width is not known.

grabPixels

public boolean grabPixels() throws InterruptedException

Throws

InterruptedException

If image grabbing is interrupted before completion.

Returns

true if the image has completed loading, false if the loading process aborted or an error
occurred.

Description

Starts the process of grabbing the pixel data from the source and storing it in the array
pixels[] from constructor. Returns when the image is complete, loading aborts, or an error
occurs.

public synchronized boolean grabPixels (long ms) throws InterruptedException

Parameters

ms

Milliseconds to wait for completion.

Returns

true if image has completed loading, false if the loading process aborted, or an error or a
timeout occurred.

Throws

InterruptedException

If image grabbing is interrupted before completion.

Description

Starts the process of grabbing the pixel data from the source and storing it in the array
pixels[] from constructor. Returns when the image is complete, loading aborts, an error
occurs, or a timeout occurs.

imageComplete

public synchronized void imageComplete (int status)

Parameters

status

Image loading completion status flags.

Implements

ImageConsumer.imageComplete(int)

Description

Called by the ImageProducer to indicate that the image has been delivered.

setColorModel

void setColorModel (ColorModel model)

Parameters

model

The color model for the image.

Implements

ImageConsumer.setColorModel(ColorModel)

Description

Does nothing.

setDimensions

void setDimensions (int width, int height)

Parameters

width

Width for image.

height

Height for image.

Implements

ImageConsumer.setDimensions(int, int)

Description

Does nothing.

setHints

void setHints (int hints)

Parameters

hints

Image consumption hints.

Implements

ImageConsumer.setHints(int)

Description

Does nothing.

setPixels

void setPixels (int x, int y, int width, int height, ColorModel model, byte[] pixels, int
offset, int scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

width

Width of the rectangle of pixel data delivered with this method call.

height

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

offset

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Implements

ImageConsumer.setPixels(int, int, int, int, ColorModel, byte[],
int, int)

Description

Called by the ImageProducer to deliver pixel data from the image.

void setPixels (int x, int y, int width, int height, ColorModel model, int[] pixels, int offset,
int scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

width

Width of the rectangle of pixel data delivered with this method call.

height

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

offset

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Implements

ImageConsumer.setPixels(int, int, int, int, ColorModel, int[],
int, int)

Description

Called by the ImageProducer to deliver pixel data from the image.

setProperties

void setProperties (Hashtable properties)

Parameters

properties

The properties for the image.

Implements

ImageConsumer.setProperties(Hashtable)

Description

Does nothing.

startGrabbing

public synchronized void startGrabbing()

Description

Starts the PixelGrabber's image-grabbing process.

status

public synchronized int status ()

Returns

The ImageObserver flags OR'ed together representing the available information about the
image. Replaced by getStatus().

See Also

ColorModel, Hashtable, Image, ImageConsumer, ImageProducer,
InterruptedException, MemoryImageSource, Object

MemoryImageSource ReplicateScaleFilter

Chapter 22
java.awt.image Reference

ReplicateScaleFilter

Name

ReplicateScaleFilter

Description

The ReplicateScaleFilter class uses a simple-minded algorithm to scale an image. If the image
is to be reduced, rows and columns of pixels are removed. If the image is to be expanded, rows and
columns are duplicated (replicated).

Class Definition

public class ReplicateScaleFilter
 extends java.awt.image.ImageFilter {
 // Variables
 protected int destHeight;
 protected int destWidth;
 protected Object outpixbuf;
 protected int srcHeight;
 protected int srcWidth;

 protected int[] srccols;
 protected int[] srcrows;
 // Constructor
 public ReplicateScaleFilter(int width, int height);
 // Instance Methods
 public void setDimensions (int w, int h);
 public void setPixels(int x, int y, int w, int h, ColorModel model,
 byte[] pixels, int off, int scansize);
 public void setPixels(int x, int y, int w, int h, ColorModel model,
 int[] pixels, int off, int scansize);
 public void setProperties(Hashtable props);
}

Variables

destHeight

protected int destHeight

Height of the scaled image.

destWidth

protected int destWidth

Width of the scaled image.

outpixbuf

protected Object outpixbuf

An internal buffer.

srcHeight

protected int srcHeight

Height of the original image.

srcWidth

protected int srcWidth

Width of the original image.

srccols

protected int[] srccols

Internal array used to map incoming columns to outgoing columns.

srcrows

protected int[] srcrows

Internal array used to map incoming rows to outgoing rows.

Constructor

ReplicateScaleFilter

public ReplicateScaleFilter (int width, int height)

Parameters

width

Width of scaled image.

height

Height of scaled image.

Description

Constructs a ReplicateScaleFilter that scales the original image to the specified size. If
both width and height are -1, the destination image size will be set to the source image size. If
either one of the parameters is -1, it will be set to preserve the aspect ratio of the original image.

Instance Methods

setDimensions

public void setDimensions (int w, int h)

Parameters

w

Width of the source image.

h

Height of the source image.

Overrides

ImageFilter.setDimensions(int, int)

Description

Sets the size of the source image.

setPixels

void setPixels (int x, int y, int w, int h, ColorModel model, byte[] pixels, int off, int
scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

w

Width of the rectangle of pixel data delivered with this method call.

h

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

off

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Overrides

ImageFilter.setPixels(int, int, int, int, ColorModel, byte[],
int, int)

Description

Receives a rectangle of image data from the ImageProducer; scales these pixels and delivers
them to any ImageConsumers.

void setPixels (int x, int y, int w, int h, ColorModel model, int[] pixels, int off, int scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

w

Width of the rectangle of pixel data delivered with this method call.

h

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

off

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Overrides

ImageFilter.setPixels(int, int, int, int, ColorModel, int[], int,
int)

Description

Receives a rectangle of image data from the ImageProducer; scales these pixels and delivers
them to any ImageConsumers.

setProperties

public void setProperties (Hashtable props)

Parameters

props

The properties for the image.

Overrides

ImageFilter.setProperties(Hashtable)

Description

Adds the "rescale" image property to the properties list.

See Also

ColorModel, Hashtable, ImageConsumer, ImageFilter, ImageProducer

PixelGrabber RGBImageFilter

Chapter 22
java.awt.image Reference

RGBImageFilter

Name

RGBImageFilter

[Graphic: Figure from the text]

Description

RGBImageFilter is an abstract class that helps you filter images based on each pixel's color and
position. In most cases, the only method you need to implement in subclasses is filterRGB(), which
returns a new pixel value based on the old pixel's color and position. RGBImageFilter cannot be used
to implement filters that depend on the value of neighboring pixels, or other factors aside from color and
position.

Class Definition

public abstract class java.awt.image.RGBImageFilter
 extends java.awt.image.ImageFilter {
 // Variables
 protected boolean canFilterIndexColorModel;
 protected ColorModel newmodel;
 protected ColorModel oldmodel;
 // Instance Methods
 public IndexColorModel filterIndexColorModel (IndexColorModel icm);
 public abstract int filterRGB (int x, int y, int rgb);

 public void filterRGBPixels (int x, int y, int width,
 int height, int[] pixels, int off, int scansize);
 public void setColorModel (ColorModel model);
 public void setPixels (int x, int y, int width, int height,
 ColorModel model, byte[] pixels, int offset, int scansize);
 public void setPixels (int x, int y, int width, int height,
 ColorModel model, int[] pixels, int offset, int scansize);
 public void substituteColorModel (ColorModel oldModel,
 ColorModel newModel);
}

Variables

canFilterIndexColorModel

protected boolean canFilterIndexColorModel

Setting the canFilterIndexColorModel variable to true indicates the filter can filter
IndexColorModel images. To filter an IndexColorModel, the filter must depend only on color,
not on position.

newmodel

protected ColorModel newmodel

A place to store a new ColorModel.

origmodel

protected ColorModel origmodel

A place to store an old ColorModel.

Instance Methods

filterIndexColorModel

public IndexColorModel filterIndexColorModel (IndexColorModel icm)

Parameters

icm

Color model to filter.

Returns

Filtered color model.

Description

Helper method for setColorModel() that runs the entire color table of icm through the
filterRGB() method of the subclass. Used only if canFilterIndexColorModel is
true, and the image uses an IndexColorModel.

filterRGB

public abstract int filterRGB (int x, int y, int rgb)

Parameters

x

x-coordinate of pixel data.

y

y-coordinate of pixel data.

rgb

Color value of pixel to filter.

Returns

New color value of pixel.

Description

Subclasses implement this method to provide a filtering function that generates new pixels.

filterRGBPixels

public void filterRGBPixels (int x, int y, int width, int height, int[] pixels, int off, int
scansize)

Parameters

x

x-coordinate of top-left corner of pixel data within entire image.

y

y-coordinate of top-left corner of pixel data within entire image.

width

Width of pixel data within entire image.

height

Height of pixel data within entire image.

pixels

Image data.

off

Offset from beginning of each line in pixels array.

scansize

Size of each line of data in pixels array.

Description

Helper method for setPixels() that filters each element of the pixels buffer through the

subclass's filterRGB() method.

setColorModel

public void setColorModel (ColorModel model)

Parameters

model

The color model for the image.

Overrides

ImageFilter.setColorModel(ColorModel)

Description

Sets the image's color model.

setPixels

public void setPixels (int x, int y, int width, int height, ColorModel model, byte[] pixels,
int offset, int scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

width

Width of the rectangle of pixel data delivered with this method call.

height

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

offset

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Overrides

ImageFilter.setPixels(int, int, int, int, ColorModel, byte[],
int, int)

Description

Called by the ImageProducer to deliver a rectangular block of pixels for filtering.

public void setPixels (int x, int y, int width, int height, ColorModel model, int[] pixels, int
offset, int scansize)

Parameters

x

x-coordinate of top-left corner of pixel data delivered with this method call.

y

y-coordinate of top-left corner of pixel data delivered with this method call.

width

Width of the rectangle of pixel data delivered with this method call.

height

Height of the rectangle of pixel data delivered with this method call.

model

Color model of image data.

pixels

Image data.

offset

Offset from beginning of the pixels array.

scansize

Size of each line of data in pixels array.

Overrides

ImageFilter.setPixels(int, int, int, int, ColorModel, int[], int,
int)

Description

Called by the ImageProducer to deliver a rectangular block of pixels for filtering.

substituteColorModel

public void substituteColorModel (ColorModel oldModel, ColorModel newModel)

Parameters

oldModel

New value for origmodel variable.

newModel

New value for newmodel variable.

Description

Helper method for setColorModel() to initialize the protected variables newmodel and
origmodel.

See Also

ColorModel, ImageFilter

ReplicateScaleFilter java.awt.peer Reference

Chapter 23
java.awt.peer Reference

CanvasPeer

Name

CanvasPeer

[Graphic: Figure from the text]

Description

CanvasPeer is an interface that defines the basis for canvases.

Interface Definition

public abstract interface java.awt.peer.CanvasPeer
 extends java.awt.peer.ComponentPeer {
}

See Also

ComponentPeer

ButtonPeer CheckboxMenuItemPeer

Chapter 23
java.awt.peer Reference

CheckboxMenuItemPeer

Name

CheckboxMenuItemPeer

[Graphic: Figure from the text]

Description

CheckboxMenuItemPeer is an interface that defines the basis for checkbox menu items.

Interface Definition

public abstract interface java.awt.peer.CheckboxMenuItemPeer
 extends java.awt.peer.MenuItemPeer {
 // Interface Methods
 public abstract void setState (boolean condition);
}

Interface Methods

setState

public abstract void setState (boolean condition)

Parameters

condition

New state for checkbox menu item's peer.

Description

Changes the state of checkbox menu item's peer.

See Also

MenuComponentPeer, MenuItemPeer

CanvasPeer CheckboxPeer

Chapter 23
java.awt.peer Reference

CheckboxPeer

Name

CheckboxPeer

[Graphic: Figure from the text]

Description

CheckboxPeer is an interface that defines the basis for checkbox components.

Interface Definition

public abstract interface java.awt.peer.CheckboxPeer
 extends java.awt.peer.ComponentPeer {
 // Interface Methods
 public abstract void setCheckboxGroup (CheckboxGroup group);
 public abstract void setLabel (String label);
 public abstract void setState (boolean state);
}

Interface Methods

setCheckboxGroup

public abstract void setCheckboxGroup (CheckboxGroup group)

Parameters

group

New group to put the checkbox peer in.

Description

Changes the checkbox group to which the checkbox peer belongs; implicitly removes the peer
from its old group, if any.

setLabel

public abstract void setLabel (String label)

Parameters

label

New text for label of checkbox's peer.

Description

Changes the text of the label of the checkbox's peer.

setState

public abstract void setState (boolean state)

Parameters

state

New state for the checkbox's peer.

Description

Changes the state of the checkbox's peer.

See Also

CheckboxGroup, ComponentPeer, String

CheckboxMenuItemPeer ChoicePeer

Chapter 23
java.awt.peer Reference

ChoicePeer

Name

ChoicePeer

[Graphic: Figure from the text]

Description

ChoicePeer is an interface that defines the basis for choice components.

Interface Definition

public abstract interface java.awt.peer.ChoicePeer
 extends java.awt.peer.ComponentPeer {
 // Interface Methods

 public abstract void add (String item, int index);

 public abstract void addItem (String item, int position);

 public abstract void remove (int index);
 public abstract void select (int position);
}

Interface Methods

add

public abstract void add (String item, int index)

Parameters

item

Text of the entry to add.

index

Position in which to add the entry; position 0 is the first entry in the list.

Description

Adds a new entry to the available choices at the designated position.

addItem

public abstract void addItem (String item, int position)

Parameters

item

Text of the entry to add.

position

Position in which to add the entry; position 0 is the first entry in the list.

Description

Adds a new entry to the available choices at the designated position.

remove

public abstract void remove (int index)

Parameters

index

Position of the item to remove.

Description

Removes an entry at the given position.

select

public abstract void select (int position)

Parameters

position

Position to make selected entry.

Description

Makes the given entry the selected one for the choice's peer.

See Also

ComponentPeer, String

CheckboxPeer

Chapter 23
java.awt.peer Reference

ComponentPeer

Name

ComponentPeer

[Graphic: Figure from the text]

Description

ComponentPeer is an interface that defines the basis for all non-menu GUI peer interfaces.

Interface Definition

public abstract interface java.awt.peer.ComponentPeer {

 // Interface Methods
 public abstract int checkImage (Image image, int width, int height,
 ImageObserver observer);
 public abstract Image createImage (ImageProducer producer);
 public abstract Image createImage (int width, int height);

 public abstract void disable();
 public abstract void dispose();

 public abstract void enable();
 public abstract ColorModel getColorModel();
 public abstract FontMetrics getFontMetrics (Font f);
 public abstract Graphics getGraphics();

 public abstract Point getLocationOnScreen();

 public abstract Dimension getMinimumSize();

 public abstract Dimension getPreferredSize();
 public abstract Toolkit getToolkit();
 public abstract boolean handleEvent (Event e);

 public abstract void hide();

 public abstract boolean isFocusTraversable();

 public abstract Dimension minimumSize();
 public abstract void paint (Graphics g);

 public abstract Dimension preferredSize ();
 public abstract boolean prepareImage (Image image, int width, int height,
 ImageObserver observer);
 public abstract void print (Graphics g);
 public abstract void repaint (long tm, int x, int y, int width, int height);
 public abstract void requestFocus();

 public abstract void reshape (int x, int y, int width, int height);
 public abstract void setBackground (Color c);

 public abstract void setBounds (int x, int y, int width, int height);

 public abstract void setCursor (Cursor cursor);

 public abstract void setEnabled (boolean b);
 public abstract void setFont (Font f);
 public abstract void setForeground (Color c);

 public abstract void setVisible (boolean b);

 public abstract void show();
}

Interface Methods

checkImage

public abstract int checkImage (Image image, int width, int height, ImageObserver observer)

Parameters

image

Image to check.

width

Horizontal size to which the image will be scaled.

height

Vertical size to which the image will be scaled.

observer

An ImageObserver to monitor image loading; normally, the object on which the image will be
rendered.

Returns

ImageObserver flags ORed together indicating status.

Description

Checks status of image construction.

createImage

public abstract Image createImage (ImageProducer producer)

Parameters

producer

An object that implements the ImageProducer interface to create a new image.

Returns

Newly created image instance.

Description

Creates an Image based upon an ImageProducer.

public abstract Image createImage (int width, int height)

Parameters

width

Horizontal size for in-memory Image.

height

Vertical size for in-memory Image.

Returns

Newly created image instance.

Description

Creates an in-memory Image for double buffering.

disable

public abstract void disable()

Description

Disables component so that it is unresponsive to user interactions. Replaced by setEnabled(false).

dispose

public abstract void dispose()

Description

Releases resources used by peer.

enable

public abstract void enable()

Description

Enables component so that it is responsive to user interactions. Replaced by setEnabled(true).

getColorModel

public abstract ColorModel getColorModel()

Returns

ColorModel used to display the current component.

getFontMetrics

public abstract FontMetrics getFontMetrics (Font f)

Parameters

f

A font whose metrics are desired.

Returns

Font sizing information for the desired font.

getGraphics

public abstract Graphics getGraphics()

Throws

InternalException

If acquiring a graphics context is unsupported

Returns

Component's graphics context.

getLocationOnScreen

public abstract Point getLocationOnScreen()

Returns

The location of the component in the screen's coordinate space.

getMinimumSize

public abstract Dimension getMinimumSize()

Returns

The minimum dimensions of the component.

getPreferredSize

public abstract Dimension getPreferredSize()

Returns

The preferred dimensions of the component.

getToolkit

public abstract Toolkit getToolkit()

Returns

Toolkit of Component.

handleEvent

public abstract boolean handleEvent (Event e)

Parameters

e

Event instance identifying what caused the method to be called.

Returns

true if the peer handled the event, false to propagate the event to the parent container.

Description

High-level event handling routine.

hide

public abstract void hide()

Description

Hides the component. Replaced by setVisible(false).

isFocusTraversable

public abstract boolean isFocusTraversable()

Returns

true if the peer can be tabbed onto, false otherwise.

Description

Determines if this peer is navigable using the keyboard.

minimumSize

public abstract Dimension minimumSize()

Returns

The minimum dimensions of the component. Replaced by getMinimumSize().

paint

public abstract void paint (Graphics g)

Parameters

g

Graphics context of the component.

Description

Draws something in graphics context.

preferredSize

public abstract Dimension preferredSize()

Returns

The preferred dimensions of the component. Replaced by getPreferredSize().

prepareImage

public abstract boolean prepareImage (Image image, int width, int height, ImageObserver
observer)

Parameters

image

Image to load.

width

Horizontal size to which the image will be scaled.

height

Vertical size to which the image will be scaled.

observer

An ImageObserver to monitor image loading; normally, the object on which the image will be
rendered.

Returns

true if the image has already loaded, false otherwise.

Description

Forces the image to start loading.

print

public abstract void print (Graphics g)

Parameters

g

Graphics context of component.

Description

Print something from the graphics context.

repaint

public abstract void repaint (long tm, int x, int y, int width, int height)

Parameters

tm

Millisecond delay allowed before repaint.

x

Horizontal origin of bounding box to redraw.

y

Vertical origin of bounding box to redraw.

width

Width of bounding box to redraw.

height

Height of bounding box to redraw.

Description

Requests scheduler to redraw portion of component within a time period.

requestFocus

public abstract void requestFocus()

Description

Requests this Component gets the input focus.

reshape

public abstract void reshape (int x, int y, int width, int height)

Parameters

x

New horizontal position for component.

y

New vertical position for component.

width

New width for component.

height

New height for component.

Description

Relocates and resizes the component's peer. Replaced by setBounds(int, int, int, int).

setBackground

public abstract void setBackground (Color c)

Parameters

c

New color for the background.

Description

Changes the background color of the component.

setBounds

public abstract void setBounds (int x, int y, int width, int height)

Parameters

x

New horizontal position for component.

y

New vertical position for component.

width

New width for component.

height

New height for component.

Description

Relocates and resizes the component's peer.

setCursor

public abstract void setCursor (Cursor cursor)

Parameters

cursor

New cursor.

Description

Changes the cursor of the component.

setEnabled

public abstract void setEnabled (boolean b)

Parameters

b

true to enable the peer; false to disable it.

Description

Enables or disables the peer.

setFont

public abstract void setFont (Font f)

Parameters

f

New font for the component.

Description

Changes the font used to display text in the component.

setForeground

public abstract void setForeground (Color c)

Parameters

c

New foreground color for the component.

Description

Changes the foreground color of the component.

setVisible

public abstract void setVisible (boolean b)

Parameters

b

true to show the peer; false to hide it.

Description

Shows or hides the peer.

show

public abstract void show()

Description

Makes the peer visible. Replaced by setVisible(true).

See Also

ButtonPeer, CanvasPeer, CheckboxPeer, ChoicePeer, Color, ColorModel, ContainerPeer,
Cursor, Dimension, Event, Font, FontMetrics, Graphics, Image, ImageObserver,
ImageProducer, LabelPeer, ListPeer, ScrollbarPeer, TextComponentPeer, Toolkit

ChoicePeer ContainerPeer

Chapter 23
java.awt.peer Reference

ContainerPeer

Name

ContainerPeer

[Graphic: Figure from the text]

Description

ContainerPeer is an interface that defines the basis for containers.

Interface Definition

public abstract interface java.awt.peer.ContainerPeer
 extends java.awt.peer.ComponentPeer {
 // Interface Methods

 public abstract void beginValidate();

 public abstract void endValidate();

 public abstract Insets getInsets();

 public abstract Insets insets();
}

Interface Methods

beginValidate

public abstract void beginValidate()

Description

Notifies the peer that the Container is going to validate its contents.

endValidate

public abstract void endValidate()

Description

Notifies the peer that the Container is finished validating its contents.

getInsets

public Insets getInsets()

Returns

Current Insets of container's peer.

insets

public Insets insets()

Returns

Current Insets of container's peer. Replaced by getInsets().

See Also

ComponentPeer, Insets, PanelPeer, ScrollPanePeer, WindowPeer

ComponentPeer DialogPeer

Chapter 23
java.awt.peer Reference

DialogPeer

Name

DialogPeer

[Graphic: Figure from the text]

Description

DialogPeer is an interface that defines the basis for a dialog box.

Interface Definition

public abstract interface java.awt.peer.DialogPeer
 extends java.awt.peer.WindowPeer {
 // Interface Methods
 public abstract void setResizable (boolean resizable);
 public abstract void setTitle (String title);

}

Interface Methods

setResizable

public abstract void setResizable (boolean resizable)

Parameters

resizable

true if the dialog's peer should allow resizing; false to prevent resizing.

Description

Changes the resize state of the dialog's peer.

setTitle

public abstract void setTitle (String title)

Parameters

title

New title for the dialog's peer.

Description

Changes the title of the dialog's peer.

See Also

FileDialogPeer, String, WindowPeer

ContainerPeer FileDialogPeer

Chapter 23
java.awt.peer Reference

FileDialogPeer

Name

FileDialogPeer

[Graphic: Figure from the text]

Description

FileDialogPeer is an interface that defines the basis for a file dialog box.

Interface Definition

public abstract interface java.awt.peer.FileDialogPeer
 extends java.awt.peer.DialogPeer {
 // Interface Methods
 public abstract void setDirectory (String directory);
 public abstract void setFile (String file);

 public abstract void setFilenameFilter (FilenameFilter filter);
}

Interface Methods

setDirectory

public abstract void setDirectory (String directory)

Parameters

directory

Initial directory for file dialog's peer.

Description

Changes the directory displayed in the file dialog's peer.

setFile

public abstract void setFile (String file)

Parameters

file

Initial filename for the file dialog's peer.

Description

Changes the default file selection for the file dialog's peer.

setFilenameFilter

public abstract void setFilenameFilter (FilenameFilter filter)

Parameters

filter

Initial filter for file dialog's peer.

Description

Changes the current filename filter of the file dialog's peer.

See Also

DialogPeer, FilenameFilter, String

DialogPeer FontPeer

Chapter 23
java.awt.peer Reference

FontPeer

Name

FontPeer

[Graphic: Figure from the text]

Description

FontPeer is an interface that defines the basis for fonts.

Interface Definition

public abstract interface java.awt.peer.FontPeer {
}

See Also

ComponentPeer

FileDialogPeer FramePeer

Chapter 23
java.awt.peer Reference

FramePeer

Name

FramePeer

[Graphic: Figure from the text]

Description

FramePeer is an interface that defines the basis for a frame.

Interface Definition

public abstract interface java.awt.peer.FramePeer
 extends java.awt.peer.WindowPeer {
 // Interface Methods
 public abstract void setIconImage (Image image);
 public abstract void setMenuBar (MenuBar bar);
 public abstract void setResizable (boolean resizable);
 public abstract void setTitle (String title);

}

Interface Methods

setIconImage

public abstract void setIconImage (Image image)

Parameters

image

New image to use for frame peer's icon.

Description

Changes the icon associated with the frame's peer.

setMenuBar

public abstract void setMenuBar (MenuBar bar)

Parameters

bar

New MenuBar to use for the frame's peer.

Description

Changes the menu bar of the frame.

setResizable

public abstract void setResizable (boolean resizable)

Parameters

resizable

true if the frame's peer should allow resizing, false to prevent resizing.

Description

Changes the resize state of the frame's peer.

setTitle

public abstract void setTitle (String title)

Parameters

title

New title to use for the frame's peer.

Description

Changes the title of the frame's peer.

See Also

Image, MenuBar, String, WindowPeer

FontPeer LabelPeer

Chapter 23
java.awt.peer Reference

LabelPeer

Name

LabelPeer

[Graphic: Figure from the text]

Description

LabelPeer is an interface that defines the basis for label components.

Interface Definition

public abstract interface java.awt.peer.LabelPeer
 extends java.awt.peer.ComponentPeer {
 // Interface Methods
 public abstract void setAlignment (int alignment);
 public abstract void setText (String label);
}

Interface Methods

setAlignment

public abstract void setAlignment (int alignment)

Parameters

alignment

New alignment for label's peer.

Description

Changes the current alignment of label's peer.

setText

public abstract void setText (String label)

Parameters

label

New text for label's peer.

Description

Changes the current text of label's peer.

See Also

ComponentPeer, String

FramePeer LightweightPeer

Chapter 23
java.awt.peer Reference

LightweightPeer

Name

LightweightPeer

[Graphic: Figure from the text]

Description

LightweightPeer is an interface that defines the basis for components that don't have a visual
representation. When you directly subclass Component or Container, a LightweightPeer is used.

Interface Definition

public abstract interface java.awt.peer.LightweightPeer
 extends java.awt.peer.ComponentPeer {
}

See Also

ComponentPeer

LabelPeer ListPeer

Chapter 23
java.awt.peer Reference

ListPeer

Name

ListPeer

[Graphic: Figure from the text]

Description

ListPeer is an interface that defines the basis for list components.

Interface Definition

public abstract interface java.awt.peer.ListPeer
 extends java.awt.peer.ComponentPeer {
 // Interface Methods

 public abstract void add (String item, int index);

 public abstract void addItem (String item, int index);

 public abstract void clear();
 public abstract void delItems (int start, int end);
 public abstract void deselect (int index);

 public abstract Dimension getMinimumSize (int rows);

 public abstract Dimension getPreferredSize (int rows);

 public abstract int[] getSelectedIndexes();
 public abstract void makeVisible (int index);

 public abstract Dimension minimumSize (int rows);

 public abstract Dimension preferredSize (int rows);

 public abstract void removeAll();
 public abstract void select (int position);

 public abstract void setMultipleMode (boolean b);

 public abstract void setMultipleSelections (boolean value);
}

Interface Methods

add

public abstract void add (String item, int index)

Parameters

item

Text of an entry to add to the list.

index

Position in which to add the entry; position 0 is the first entry in the list.

Description

Adds a new entry to the available choices of the list's peer at the designated position.

addItem

public abstract void addItem (String item, int index)

Parameters

item

Text of an entry to add to the list.

index

Position in which to add the entry; position 0 is the first entry in the list.

Description

Adds a new entry to the available choices of the list's peer at the designated position. Replaced by
add(String, int).

clear

public abstract void clear()

Description

Clears all the entries out of the list's peer. Replaced by removeAll().

delItems

public abstract void delItems (int start, int end)

Parameters

start

Starting position of entries to delete.

end

Ending position of entries to delete.

Description

Removes a set of entries from the list's peer.

deselect

public abstract void deselect (int index)

Parameters

index

Position to deselect.

Description

Deselects entry at designated position, if selected.

getMinimumSize

public abstract Dimension getMinimumSize (int rows)

Parameters

rows

Number of rows within list's peer to size.

Returns

The minimum dimensions of a list's peer of the given size.

getPreferredSize

public abstract Dimension getPreferredSize (int rows)

Parameters

rows

Number of rows within list's peer to size.

Returns

The preferred dimensions of a list's peer of the given size.

getSelectedIndexes

public abstract int[] getSelectedIndexes()

Returns

Array of positions of currently selected entries in list's peer.

makeVisible

public abstract void makeVisible (int index)

Parameters

index

Position to make visible on screen.

Description

Ensures an item is displayed on the screen in the list's peer.

minimumSize

public abstract Dimension minimumSize (int rows)

Parameters

rows

Number of rows within list's peer to size.

Returns

The minimum dimensions of a list's peer of the given size. Replaced by
getMinimumSize(int).

preferredSize

public abstract Dimension preferredSize (int rows)

Parameters

rows

Number of rows within list's peer to size.

Returns

The preferred dimensions of a list's peer of the given size. Replaced by
getPreferredSize(int).

removeAll

public abstract void removeAll()

Description

Clears all the entries out of the list's peer.

select

public abstract void select (int position)

Parameters

position

Position to select; 0 indicates the first item in the list.

Description

Makes the given entry the selected item for the list's peer; deselects other selected entries if
multiple selections are not enabled.

setMultipleMode

public abstract void setMultipleMode (boolean value)

Parameters

value

true to allow multiple selections within the list's peer; false to disallow multiple
selections.

Description

Changes list peer's selection mode.

setMultipleSelections

public abstract void setMultipleSelections (boolean value)

Parameters

value

true to allow multiple selections within the list's peer; false to disallow multiple
selections.

Description

Changes list peer's selection mode. Replaced by setMultipleMode(boolean).

See Also

ComponentPeer, Dimension, String

LightweightPeer MenuBarPeer

Chapter 23
java.awt.peer Reference

MenuBarPeer

Name

MenuBarPeer

[Graphic: Figure from the text]

Description

MenuBarPeer is an interface that defines the basis for menu bars.

Interface Definition

public abstract interface java.awt.peer.MenuBarPeer
 extends java.awt.peer.MenuComponentPeer {
 // Interface Methods
 public abstract void addHelpMenu (Menu m);
 public abstract void addMenu (Menu m);
 public abstract void delMenu (int index);
}

Interface Methods

addHelpMenu

public abstract void addHelpMenu (Menu m)

Parameters

m

Menu to designate as the help menu with the menu bar's peer.

Description

Sets a particular menu to be the help menu of the menu bar's peer.

addMenu

public abstract void addMenu (Menu m)

Parameters

m

Menu to add to the menu bar's peer

Description

Adds a menu to the menu bar's peer.

delMenu

public abstract void delMenu (int index)

Parameters

index

Menu position to delete from the menu bar's peer.

Description

Deletes a menu from the menu bar's peer.

See Also

Menu, MenuComponentPeer

ListPeer MenuComponentPeer

Chapter 23
java.awt.peer Reference

MenuComponentPeer

Name

MenuComponentPeer

[Graphic: Figure from the text]

Description

MenuComponentPeer is an interface that defines the basis for all menu GUI peer interfaces.

Interface Definition

public abstract interface java.awt.peer.MenuComponentPeer {
 // Interface Methods
 public abstract void dispose();
}

Interface Methods

dispose

public abstract void dispose()

Description

Releases resources used by peer.

See Also

MenuBarPeer, MenuItemPeer

MenuBarPeer MenuItemPeer

Chapter 23
java.awt.peer Reference

MenuItemPeer

Name

MenuItemPeer

[Graphic: Figure from the text]

Description

MenuBarPeer is an interface that defines the basis for menu bars.

Interface Definition

public abstract interface java.awt.peer.MenuItemPeer
 extends java.awt.peer.MenuComponentPeer {
 // Interface Methods

 public abstract void disable();

 public abstract void enable();

 public abstract void setEnabled (boolean b);
 public abstract void setLabel (String label);

}

Interface Methods

disable

public abstract void disable()

Description

Disables the menu item's peer so that it is unresponsive to user interactions. Replaced by
setEnabled(false).

enable

public abstract void enable()

Description

Enables the menu item's peer so that it is responsive to user interactions. Replaced by
setEnabled(true).

setEnabled

public abstract void setEnabled (boolean b)

Parameters

b

true to enable the peer; false to disable it.

Description

Enables or disables the menu item's peer.

setLabel

public abstract void setLabel (String label)

Parameters

label

New text to appear on the menu item's peer.

Description

Changes the label of the menu item's peer.

See Also

CheckboxMenuItemPeer, MenuComponentPeer, MenuPeer, String

MenuComponentPeer MenuPeer

Chapter 23
java.awt.peer Reference

MenuPeer

Name

MenuPeer

[Graphic: Figure from the text]

Description

MenuPeer is an interface that defines the basis for menus.

Interface Definition

public abstract interface java.awt.peer.MenuPeer
 extends java.awt.peer.MenuItemPeer {
 // Interface Methods
 public abstract void addItem (MenuItem item);
 public abstract void addSeparator();
 public abstract void delItem (int index);
}

Interface Methods

addItem

public abstract void addItem (MenuItem item)

Parameters

item

MenuItem to add to the menu's peer

Description

Adds a menu item to the menu's peer.

addSeparator

public abstract void addSeparator()

Description

Adds a menu separator to the menu's peer.

delItem

public abstract void delItem (int index)

Parameters

index

MenuItem position to delete from the menu's peer.

Description

Deletes a menu item from the menu's peer.

See Also

MenuItem, MenuItemPeer

MenuItemPeer PanelPeer

Chapter 23
java.awt.peer Reference

PanelPeer

Name

PanelPeer

[Graphic: Figure from the text]

Description

PanelPeer is an interface that defines the basis for a panel.

Interface Definition

public abstract interface java.awt.peer.PanelPeer
 extends java.awt.peer.ContainerPeer {
}

See Also

ContainerPeer

MenuPeer PopupMenuPeer

Chapter 23
java.awt.peer Reference

PopupMenuPeer

Name

PopupMenuPeer

[Graphic: Figure from the text]

Description

PopupMenuPeer is an interface that defines the basis for a popup menu.

Interface Definition

public abstract interface java.awt.peer.PopupMenuPeer
 extends java.awt.peer.MenuPeer {
 // Interface Methods
 public abstract void show (Event e);
}

Interface Methods

show

public abstract void show (Event e)

Parameters

e

A mouse down event that begins the display of the popup menu.

Description

Shows the peer at the location encapsulated in e.

See Also

Event, MenuPeer

PanelPeer ScrollbarPeer

Chapter 23
java.awt.peer Reference

ScrollbarPeer

Name

ScrollbarPeer

[Graphic: Figure from the text]

Description

ScrollbarPeer is an interface that defines the basis for scrollbar components.

Interface Definition

public abstract interface java.awt.peer.ScrollbarPeer
 extends java.awt.peer.ComponentPeer {
 // Interface Methods
 public abstract void setLineIncrement (int amount);
 public abstract void setPageIncrement (int amount);
 public abstract void setValues (int value, int visible, int minimum, int maximum);
}

Interface Methods

setLineIncrement

public abstract void setLineIncrement (int amount)

Parameters

amount

New line increment amount.

Description

Changes the line increment amount for the scrollbar's peer.

setPageIncrement

public abstract void setPageIncrement (int amount)

Parameters

amount

New paging increment amount.

Description

Changes the paging increment amount for the scrollbar's peer.

setValues

public abstract void setValues (int value, int visible, int minimum, int maximum)

Parameters

value

New value for the scrollbar's peer.

visible

New slider width.

minimum

New minimum value for the scrollbar's peer.

maximum

New maximum value for the scrollbar's peer.

Description

Changes the settings of the scrollbar's peer to the given amounts.

See Also

ComponentPeer

PopupMenuPeer ScrollPanePeer

Chapter 23
java.awt.peer Reference

ScrollPanePeer

Name

ScrollPanePeer

[Graphic: Figure from the text]

Description

ScrollPanePeer is an interface that defines the basis for a scrolling container.

Interface Definition

public abstract interface java.awt.peer.ScrollPanePeer
 extends java.awt.peer.ContainerPeer {
 // Interface Methods
 public abstract void childResized (int w, int h);
 public abstract int getHScrollbarHeight();
 public abstract int getVScrollbarWidth();
 public abstract void setScrollPosition (int x, int y);
 public abstract void setUnitIncrement (Adjustable adj, int u);

 public abstract void setValue (Adjustable adj, int v);
}

Interface Methods

childResized

public abstract void childResized (int w, int h)

Parameters

w

The new child width.

h

The new child height.

Description

Tells the peer that the child has a new size.

getHScrollbarHeight

public abstract int getHScrollbarHeight()

Returns

Height that a horizontal scrollbar would occupy.

Description

The height is returned regardless of whether the scrollbar is showing or not.

getVScrollbarWidth

public abstract int getVScrollbarWidth()

Returns

Width that a vertical scrollbar would occupy.

Description

The width is returned regardless of whether the scrollbar is showing or not.

setScrollPosition

public abstract void setScrollPosition (int x, int y)

Parameters

x

The new horizontal position.

y

The new vertical position.

Description

Changes the coordinate of the child component that is displayed at the origin of the
ScrollPanePeer.

setUnitIncrement

public abstract void setUnitIncrement (Adjustable adj, int u)

Parameters

adj

The Adjustable object to change.

u

The new value.

Description

Changes the unit increment of the given Adjustable object.

setValue

public abstract void setValue (Adjustable adj, int v)

Parameters

adj

The Adjustable object to change.

v

The new value.

Description

Changes the value of the given Adjustable object.

See Also

Adjustable, ContainerPeer, Scrollbar

ScrollbarPeer TextAreaPeer

Chapter 23
java.awt.peer Reference

TextAreaPeer

Name

TextAreaPeer

[Graphic: Figure from the text]

Description

TextAreaPeer is an interface that defines the basis for text areas.

Interface Definition

public abstract interface java.awt.peer.TextAreaPeer
 extends java.awt.peer.TextComponentPeer {
 // Interface Methods

 public abstract Dimension getMinimumSize (int rows, int columns);

 public abstract Dimension getPreferredSize (int rows, int columns);

 public abstract void insert (String string, int position);

 public abstract void insertText (String string, int position);

 public abstract Dimension minimumSize (int rows, int columns);

 public abstract Dimension preferredSize (int rows, int columns);

 public abstract void replaceRange (String string, int startPosition, int

endPosition);
 public abstract void replaceText (String string, int startPosition, int

endPosition);
}

Interface Methods

getMinimumSize

public abstract Dimension getMinimumSize (int rows, int columns)

Parameters

rows

Number of rows within the text area's peer.

columns

Number of columns within the text area's peer.

Returns

The minimum dimensions of a text area's peer of the given size.

getPreferredSize

public abstract Dimension getPreferredSize (int rows, int columns)

Parameters

rows

Number of rows within the text area's peer.

columns

Number of columns within the text area's peer.

Returns

The preferred dimensions of a text area's peer of the given size.

insert

public abstract void insert (String string, int position)

Parameters

string

Content to place within the text area's peer.

position

Location at which to insert the content.

Description

Places additional text within the text area's peer.

insertText

public abstract void insertText (String string, int position)

Parameters

string

Content to place within the text area's peer.

position

Location at which to insert the content.

Description

Places additional text within the text area's peer. Replaced by insert(String, int).

minimumSize

public abstract Dimension minimumSize (int rows, int columns)

Parameters

rows

Number of rows within the text area's peer.

columns

Number of columns within the text area's peer.

Returns

The minimum dimensions of a text area's peer of the given size. Replaced by
getMinimumSize(int, int).

preferredSize

public abstract Dimension preferredSize (int rows, int columns)

Parameters

rows

Number of rows within the text area's peer.

columns

Number of columns within the text area's peer.

Returns

The preferred dimensions of a text area's peer of the given size. Replaced by
getPreferredSize(int, int).

replaceRange

public abstract void replaceRange (String string, int startPosition, int endPosition)

Parameters

string

New content to place in the text area's peer.

startPosition

Starting position of the content to replace.

endPosition

Ending position of the content to replace.

Description

Replaces a portion of the text area peer's content with the given text.

replaceText

public abstract void replaceText (String string, int startPosition, int endPosition)

Parameters

string

New content to place in the text area's peer.

startPosition

Starting position of the content to replace.

endPosition

Ending position of the content to replace.

Description

Replaces a portion of the text area peer's content with the given text. Replaced by
replaceRange(String, int, int).

See Also

Dimension, String, TextComponentPeer

ScrollPanePeer TextComponentPeer

Chapter 23
java.awt.peer Reference

TextComponentPeer

Name

TextComponentPeer

[Graphic: Figure from the text]

Description

TextComponentPeer is an interface that defines the basis for text components.

Interface Definition

public abstract interface java.awt.peer.TextComponentPeer
 extends java.awt.peer.ComponentPeer {
 // Interface Methods

 public abstract int getCaretPosition();
 public abstract int getSelectionEnd();
 public abstract int getSelectionStart();
 public abstract String getText();

 public abstract void select (int selectionStart, int selectionEnd);

 public abstract void setCaretPosition (int pos);
 public abstract void setEditable (boolean state);
 public abstract void setText (String text);
}

Interface Methods

getCaretPosition

public abstract int getCaretPosition()

Returns

The current position of the caret (text cursor).

getSelectionEnd

public abstract int getSelectionEnd()

Returns

The ending cursor position of any selected text.

getSelectionStart

public abstract int getSelectionStart()

Returns

The initial position of any selected text.

getText

public abstract String getText()

Returns

The current contents of the text component's peer.

select

public abstract void select (int selectionStart, int selectionEnd)

Parameters

selectionStart

Beginning position of the text to select.

selectionEnd

Ending position of the text to select.

Description

Selects text in the text component's peer.

selectCaretPosition

public abstract void selectCaretPosition (int pos)

Parameters

pos

New caret position.

Description

Changes the position of the caret (text cursor).

setEditable

public abstract void setEditable (boolean state)

Parameters

state

true if the user can change the contents of the text component's peer (i.e., true to make
the peer editable); false to make the peer read-only.

Description

Allows you to change the current editable state of the text component's peer.

setText

public abstract void setText (String text)

Parameters

text

New text for the text component's peer .

Description

Sets the content of the text component's peer.

See Also

ComponentPeer, String, TextAreaPeer, TextFieldPeer

TextAreaPeer TextFieldPeer

Chapter 23
java.awt.peer Reference

TextFieldPeer

Name

TextFieldPeer

[Graphic: Figure from the text]

Description

TextFieldPeer is an interface that defines the basis for text fields.

Interface Definition

public abstract interface java.awt.peer.TextFieldPeer
 extends java.awt.peer.TextComponentPeer {
 // Interface Methods

 public abstract Dimension getMinimumSize (int rows, int columns);

 public abstract Dimension getPreferredSize (int rows, int columns);

 public abstract Dimension minimumSize (int rows, int columns);

 public abstract Dimension preferredSize (int rows, int columns);

 public abstract void setEchoChar (char echoChar);

 public abstract void setEchoCharacter (char c);
}

Interface Methods

getMinimumSize

public abstract Dimension getMinimumSize (int rows)

Parameters

rows

Number of rows within the text field's peer.

Returns

The minimum dimensions of a text field's peer of the given size.

getPreferredSize

public abstract Dimension getPreferredSize (int rows)

Parameters

rows

Number of rows within the text field's peer.

Returns

The preferred dimensions of a text field's peer of the given size.

minimumSize

public abstract Dimension minimumSize (int rows)

Parameters

rows

Number of rows within the text field's peer.

Returns

Replaced by getMinimumSize(int).

preferredSize

public abstract Dimension preferredSize (int rows)

Parameters

rows

Number of rows within the text field's peer.

Returns

Replaced by getPreferredSize(int).

setEchoChar

public abstract void setEchoChar (char c)

Parameters

c

The character to display for all input.

Description

Changes the character that is displayed to the user for every character he or she types in the text
field.

setEchoCharacter

public abstract void setEchoCharacter (char c)

Parameters

c

The character to display for all input.

Description

Replaced by setEchoChar(char).

See Also

Dimension, TextComponentPeer

TextComponentPeer WindowPeer

Chapter 23
java.awt.peer Reference

WindowPeer

Name

WindowPeer

[Graphic: Figure from the text]

Description

WindowPeer is an interface that defines the basis for a window.

Interface Definition

public abstract interface java.awt.peer.WindowPeer
 extends java.awt.peer.ContainerPeer {
 // Interface Methods
 public abstract void toBack();
 public abstract void toFront();
}

file:///C|/download/ftp.selab.org/ebook/javaref/awt/appa_01.htm

Interface Methods

toBack

public abstract void toBack()

Description

Puts the window's peer in the background of the display.

toFront

public abstract void toFront()

Description

Brings the window's peer to the foreground of the display.

See Also

ContainerPeer, DialogPeer, FramePeer

TextFieldPeer Using Properties and
Resources

file:///C|/download/ftp.selab.org/ebook/javaref/awt/appa_01.htm

Appendix C
Platform-Specific Event

Handling

C.2 Test Program

The test program, compList, listed in Source Code shows the events peers pass along to the Java run-time system.
You can then examine the output to see how the run-time system reacts to the different events. When you run
compList, the screen looks something like the one in Figure C.1.

Figure C.1: Test program

[Graphic: Figure C-1]

How to Use the Program

Java does not have an automated record and playback feature, so the work is left for you to do. The program displays
10 components: Label, Button, Scrollbar, List, multiselection List, Choice, Checkbox, TextField,
TextArea, and Canvas (the black box in Figure C.1). Basically, you must manually trigger every event for every
component.

For every component on the screen (except Done), do the following:

With the mouse

file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm

Move the cursor over the object, press the mouse button and release, and drag the cursor over the object.

With the keyboard

Press and release an alphabetic key, press and release the Home and End keys, arrow keys, and function keys.
Do this for every component, even for components like Button and Label that have no logical reason for
using keyboard events.

For items with choices

Select and deselect a few choices; double-click and single-click selections.

For the scrollbar

Click on each arrow, drag the slider, and click in the paging area (the space between each arrow and the
slider).

For the text field

Press Enter.

When finished

Press the Done button, and analyze the results. Run the program again (without exiting), and check the results
again. Try to trigger any specific events that you expect but didn't appear in the output from the first pass.
Generating some events requires a little work. For example, on a Macintosh, in order to get the MOUSE_UP
and MOUSE_DRAG events, you must do a MOUSE_DOWN off the component; otherwise, the
MOUSE_DOWN/MOUSE_UP combination turns into an ACTION_EVENT, if that component can generate it.

NOTE:

The SunTest business unit of Sun Microsystems has an early version of a record and playback Java GUI testing tool
called JavaSTAR. Information about it is available at http://www.suntest.com/JavaSTAR/JavaSTAR.html. In the
future, it may be possible to use JavaSTAR to help automate this process.

Source Code

The following is the source code for the test program:

import java.awt.*;
import java.util.*;
import java.applet.*;
public class compList extends Applet {
 Button done = new Button ("Done");
 Hashtable values = new Hashtable();
 public void init () {

file:///C|/download/www.suntest.com/JavaSTAR/JavaSTAR.html

 add (new Label ("Label"));
 add (new Button ("Button"));
 add (new Scrollbar (Scrollbar.HORIZONTAL, 50, 25, 0, 255));
 List l1 = new List (3, false);
 l1.addItem ("List 1");
 l1.addItem ("List 2");
 l1.addItem ("List 3");
 l1.addItem ("List 4");
 l1.addItem ("List 5");
 add (l1);
 List l2 = new List (3, true);
 l2.addItem ("Multi 1");
 l2.addItem ("Multi 2");
 l2.addItem ("Multi 3");
 l2.addItem ("Multi 4");
 l2.addItem ("Multi 5");
 add (l2);
 Choice c = new Choice ();
 c.addItem ("Choice 1");
 c.addItem ("Choice 2");
 c.addItem ("Choice 3");
 c.addItem ("Choice 4");
 c.addItem ("Choice 5");
 add (c);
 add (new Checkbox ("Checkbox"));
 add (new TextField ("TextField", 10));
 add (new TextArea ("TextArea", 3, 20));
 Canvas c1 = new Canvas ();
 c1.resize (50, 50);
 c1.setBackground (Color.blue);
 add (c1);
 add (done);
 }
 public boolean handleEvent (Event e) {
 if (e.target == done) {
 if (e.id == Event.ACTION_EVENT) {
 System.out.println (System.getProperty ("java.vendor"));
 System.out.println (System.getProperty ("java.version"));
 System.out.println (System.getProperty ("java.class.version"));
 System.out.println (System.getProperty ("os.name"));
 System.out.println (values);
 }
 }else {
 Vector v;
 Class c = e.target.getClass();
 v = (Vector)values.get(c);
 if (v == null)
 v = new Vector();
 Integer i = new Integer (e.id);

 if (!v.contains (i)) {
 v.addElement (i);
 values.put (c, v);
 }
 }
 return super.handleEvent (e);
 }
}

An HTML document to display the applet in a browser should look something like the following:

<APPLET code="compList.class" height=300 width=300>
</APPLET>

Examining Results

The results of the program are sent to standard output when you click on the Done button. What happens to the output
depends on the platform. It may be sent to a log file (Internet Explorer), the Java Console (Netscape Navigator), or the
command line (appletviewer). The following is sample output from Internet Explorer 3.0 on a Windows 95 platform.

Microsoft Corp.
1.0.2
45.3
Windows 95
{class java.awt.Canvas=[504, 503, 1004, 501, 506, 502, 505, 1005,
401, 402, 403, 404], class java.awt.Choice=[1001, 401, 402, 403,
404], class java.awt.Checkbox=[1001, 402, 401, 403, 404], class
compList=[504, 503, 501, 506, 502, 505, 1004, 1005], class java.
awt.TextField=[401, 402, 403, 404], class java.awt.List=[701,
1001, 401, 402, 403, 404, 702], class java.awt.Scrollbar=[602,
605, 604, 603, 601], class java.awt.TextArea=[401, 402, 403, 404],
class java.awt.Button=[1001, 401, 402, 403, 404]}

In addition to some identifying information about the run-time environment, the program displays a list of classes and
the events they passed. The integers represent the event constants of the Event class; for example, Canvas received
events with identifiers 504, 503, etc. The events are not sorted, so you can see the order in which they were sent.
Unfortunately, you have to look up these constants in the source code yourself. The class listed as compList is the
applet itself and shows you the events that the Applet class receives.

The Results Image Loading

file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm

Appendix D
Image Loading

D.2 A Brief Tour of sun.awt.image

The classes in sun.awt.image do the behind-the-scenes work for rendering an image from a file or
across the network. This information is purely for the curious; you should never have to work with these
classes yourself.

Image

The Image class in this package represents a concrete Image instance. It contains the basis for
the Image class that is actually used on the run-time platform, which exists in the package for the
specific environment. For instance, the sun.awt.win32 package includes the W32Image
(Java 1.0), the sun.awt.windows package includes WImage (Java 1.1), while the
sun.awt.motif package includes the X11Image, and the sun.awt.macos package
includes the MacImage.

ImageRepresentation

The ImageRepresentation is the ImageConsumer that watches the creation of the image
and notifies the ImageObserver when it is time to update the display. It plays an important
part in the overall control of the Image production process.

Image sources

A Java image can come from three different sources: memory (through createImage()), local
disk, or the network (through getImage()).

❍ OffScreenImageSource implements ImageProducer for a single framed image in
memory. When an Image created from an OffScreenImageSource is drawn with
drawImage(), the ImageObserver parameter can be null since all the image
information is already in memory and there is no need for periodic updating as more is
retrieved from disk. You can get the graphics context of OffScreenImageSource

images and use the context to draw on the image area. This is how double buffering works.

❍ InputStreamImageSource implements ImageProducer for an image that comes
from disk or across the network. When an Image created from an
InputStreamImageSource is drawn with drawImage(), the ImageObserver
parameter should be the component being drawn on (usually this) since the image
information will be loaded periodically with the help of the ImageObserver interface).
This class determines how to decode the image type and initializes the ImageDecoder
to one of GifImageDecoder, JPEGImageDecoder, or XbmImageDecoder,
although that can be overridden by a subclass. It can use a ContentHandler to work
with unknown image types.

❍ FileImageSource is a subclass of InputStreamImageSource for images that
come from the filesystem. It uses the filename to determine the type of image to decode
and checks the security manager to ensure that access is allowed.

❍ URLImageSource is a subclass of InputStreamImageSource for images that are
specified by a URL.

❍ ByteArrayImageSource (Java 1.1 only) is a subclass of
InputStreamImageSource for images that are created by calling
Toolkit.createImage(byte[]).

Image decoders

An ImageDecoder is utilized to convert the image source to an image object. If there is no
decoder for an image type, it can be read in with the help of a ContentHandler or your own
class that implements ImageProducer, like the PPMImageDecoder shown in Chapter 12,
Image Processing.

❍ GifImageDecoder reads in an image file in the GIF format.

❍ JPEGImageDecoder reads in an image file in the JPEG format.

❍ XbmImageDecoder reads in an image file in the XBM format. Although XBM support
is not required by the language specification, support is provided with Netscape Navigator,
Internet Explorer, HotJava, and the Java Developer's Kit from Sun.

ImageFetcher

The ImageFetcher class fetches the actual image from its source. This class creates a separate

daemon thread to fetch each image. The thread is run at a higher priority than the default but not
at the maximum priority.

How Images are Loaded

Chapter 1
Introduction

1.2 New Language Features in Java 1.1

Although Java 1.1 is a massive new release, there are relatively few changes to the Java language in this
version. The new features of the language are quite significant, however, as they add useful functionality
and make the Java language even more elegant. Here is a brief summary of the new features of the Java
language in Java 1.1:

● The addition of inner classes is the largest change to the Java language in Java 1.1. With this new
feature, classes can be defined as members of other classes, just like variables and methods.
Classes can also be defined within blocks of Java code, just like local variables. A class that is
declared inside of another class may have access to the instance variables of the enclosing class; a
class declared within a block may have access to the local variables and/or formal parameters of
that block.

Inner classes include: nested top-level classes and interfaces, member classes, local classes, and
anonymous classes. The various types of inner clases are described in Inner Classes. The syntax
for nested top-level and member classes is covered in Nested Top-Level and Member Classes,
while the syntax for nested top-level interfaces is covered in Nested Top-Level Interfaces. The
syntax for local classes is described in Local Classes. The syntax for an anonymous class is part
of an allocation expression, as covered in Allocation Expressions.

● Java 1.1 provides the ability to declare final local variables, method parameters, and catch
clause parameters. final local variables, method parameters, and catch parameters are needed
to allow local classes to access these entities within the scope of their blocks. The syntax for
final local variables is described in Local Variables, while final method parameters are
covered in Method formal parameters. The new syntax for the catch clause is described in The
try Statement.

● Instance initializers are blocks of code that execute when an instance of a class is created. Instance
initializers have been added in Java 1.1 to allow anonymous classes to perform any necessary
initialization, since anonymous classes can not define any constructors. The syntax for instance

initializers is covered in Instance Initializers.

● As of Java 1.1, final variable declarations do not have to include initializers. A final variable
declaration that does not include an initializer is called a blank final. The functionality of blank
finals is described in Variable modifiers and Final local variables.

● A class literal is a new kind of primary expression that can be used to obtain a Class object for a
particular data type. Class literals have been added to support the new Reflection API in Java 1.1.
The syntax for class literals is covered in Class Literals.

● An anonymous array is an array created and initialized without using a variable initializer. The
syntax for an anonymous array is part of an allocation expression, as described in Allocation
Expressions.

A "Hello World" Program Compiling a Java Source File

Chapter 1
Introduction

1.3 Compiling a Java Source File

The interface for the Java compiler in Sun's Java Development Kit (JDK) is the command line. To
compile a Java program, run the program javac with the name of the source file specified as a command-
line argument. For example, to compile the "Hello World" program, issue the following command:

C:\> javac HelloWorld.java

The Java compiler, javac, requires that the name of a Java source file end with a .java extension. If the
source file contains a class or interface that is declared with the keyword public, the filename must be
the name of that class or interface. There can be at most one such class or interface in a source file.

In an environment such as Windows 95 that does not distinguish between uppercase and lowercase
letters in a filename, you still need to be sure that the case of the filename exactly matches the case used
in the public class or interface declaration. If you use a filename with the incorrect case, the compiler
will be able to compile the file but it will complain about an incorrect filename.

The compiler produces a compiled class file with the same name as the public class or interface
declaration; the file extension used for a compiled Java file is .class.

If the javac compiler complains that it is unable to find some classes, it may mean that an environment
variable named CLASSPATH has not been set properly. The exact setting needed for CLASSPATH varies
depending on the operating system and its directory structure. However, the value of CLASSPATH
always specifies a list of directories in which the compiler should search for Java classes.

New Language Features in
Java 1.1

Running a Java Application

Chapter 1
Introduction

1.4 Running a Java Application

To run a Java application, you invoke the Java interpreter, java, with one or more arguments. The first
argument is always the name of a Java class. Here is how to run the "Hello World" application:

C:\> java HelloWorld

The capitalization of the class name must match the name used in the class declaration in the source file.
The interpreter loads the specified class and then calls its main() method.

A class can belong to a particular package. This allows the class to prevent classes in other packages
from accessing its declared variables and methods. If a class is not specified as part of a package, it
automatically becomes part of the default package. Because the HelloWorld class is part of the default
package, you do not need to include the package name as part of the class name on the command line. If
the HelloWorld class were part of a package called student.language, however, you would
have to include the package name on the command line. For example, you would run the application as
follows:

C:\> java student.language.HelloWorld

Any additional arguments specified on the command line are passed to the main() method in its
String[] parameter. For the "Hello World" application, the String[] parameter is an empty array.
If, however, there were command-line arguments, the first array element, String[0], would
correspond to the first command-line argument specified after the class name, String[1] would
correspond to the next command-line element, and so on. The name of the class does not appear as an
element in the array of parameters passed to the main() method. This is different than in C/C++, where
the first element in the array of command-line arguments identifies the program name and the second
element is the first command-line argument.

Compiling a Java Source File Notational Conventions

Chapter 1
Introduction

1.5 Notational Conventions

One of the topics of this manual is the syntax of Java: the way that identifiers such as foobar, operators
such as +, and punctuation such as ; can be put together to form a valid Java program. This book also
talks about lexical structure : the sequences of characters that can be put together to form valid numbers,
identifiers, operators, and the like.

To describe syntax and lexical structure, many language reference manuals use a notation called BNF.
BNF notation is very helpful to language implementors because it defines language constructs in a way
that can easily be turned into a working language parser. Unfortunately, however, BNF can be difficult
for human beings to understand. This reference manual uses a different notation, called a railroad
diagram, to describe syntax and lexical structure. Railroad diagrams are much easier for people to
understand. A railroad diagram provides a visual means of specifying the sequence of words, symbols,
and punctuation that can be used to write a syntactic construct or a lexical structure.

Here is a simple example:

The idea is to follow the lines from left to right. The sequence of words or symbols that you pass along
the way is the sequence of words or symbols that the railroad diagram specifies. The primary rule when
navigating railroad diagrams is that you can follow lines from left to right only, unless there is an arrow
pointing to the left. In the above example, there are no arrows, so there is only one way to navigate
through the diagram. Therefore, the above railroad diagram specifies exactly one sequence of words:
ROW YOUR BOAT.

The next example provides you with a choice of sequences:

You can navigate the above diagram with one of three sequences:

● ROW YOUR BOAT

● ROW YOUR CANOE

● ROW YOUR KAYAK

The following example contains an arrow:

In the above diagram, there is a left-pointing arrow on the line under the word ROW. That arrow means
that the line can only be traversed from right to left. The line with the arrow provides a loop that allows
the word ROW to be repeated one or more times, separated by commas. This allows a sequence like:
ROW,ROW,ROW YOUR BOAT.

The railroad diagrams shown so far lack a feature that is typically needed to make them useful: a name.
A name allows one railroad diagram to refer to another diagram. The following railroad diagram defines
a construct named color :

To further illustrate this point, let's look at two more railroad diagrams. The first diagram defines a
construct named size :

The second railroad diagram is similar to previous ones except that now it allows an optional color or
size to precede BOAT, CANOE, or KAYAK. The diagram does this by referring to the names of the railroad
diagrams that define these things:

In the diagrams in this book, the font for words such as ROW that are directly contained in railroad
diagrams is different from the font used for words like color that are names of railroad diagrams. The
preceding railroad diagram allows size and color to occur more than once. The next diagram limits size
and color to at most one occurrence:

The lines that refer to the size and color diagrams both have semi-circles with the number one under
them. The semi-circles represent bridges that collapse if crossed more than a certain number of times.
The number under the semi-circle is the number of times a bridge can be crossed. Adding bridges that
can be crossed only once creates a railroad diagram that permits no more than one occurrence of color
and size.

The other new feature introduced in the above railroad diagram is a circle enclosing a number. These
circles are connectors used when a diagram does not fit across a page. The numbered connector at the
right end of one part of a railroad diagram attaches to a connector with a matching number at the left end
of another part of the railroad diagram.

Running a Java Application Lexical Analysis

Chapter 2
Lexical Analysis

2.2 Tokenization

The tokenization phase of lexical analysis in Java handles breaking down the lines of Unicode source
code into comments, white space, and tokens. The rule that defines the overall lexical organization of
Java programs is TokenStream:

[Graphic: Figure from the text]

References Comments; Identifiers; Keywords; Literals; Operators; Separators; White Space

Identifiers

An identifier is generally used as the name for a thing in a program. A few identifiers are reserved by
Java for special uses; these are called keywords.

From the viewpoint of lexical analysis, an identifier is a sequence of one or more Unicode characters. The
first character must be a letter, underscore, or dollar sign. The other characters must be letters, numbers,
underscores, or dollar signs. An identifier can't have the same Unicode character sequence as a keyword:

[Graphic: Figure from the text]

For example, foo21, _foo, and $foo are all valid identifiers; 3foo is not a valid identifier. There is
no limit to the length of an identifier in Java. Although $ is a legal character in an identifier, you should
avoid using it to eliminate confusion with compiler-generated identifiers.

A UnicodeDigit is a Unicode character that is classified as a digit by Character.isDigit().

A UnicodeLetter is a Unicode character code that is classified as a letter by
Character.isLetter().

Two identifiers are the same if they have the same length and if corresponding characters in each
identifier have the same Unicode character code. It is possible, however, to have identifiers that are
distinct to a Java compiler, but not to the human eye. For example, the Java compiler recognizes
lowercase Latin `a' (\u0061) and lowercase Cyrillic `a' (\u0430) as different characters, although they
may well be visually indistinguishable.

References Character; Keywords

Keywords

Keywords are identifiers that have a special meaning to Java. Because of their special meanings,
keywords are not available for use as names of things defined in programs. A Keyword is one of the
following:

abstract default goto null synchronized

boolean do if package this

break double implements private throw

byte else import protected throws

case extends instanceof public transient

catch false int return true

char final interface short try

class finally long static void

const float native super volatile

continue for new switch while

The keywords const and goto are not currently used for any purpose in Java, although they may be
assigned meaning in future versions of the Java language.

References Identifiers

Literals

A literal is a token that represents a constant value of a primitive data type or a String object:

[Graphic: Figure from the text]

References Boolean literals; Character literals; Floating-point literals; Integer literals; String literals

Integer literals

An integer literal represents an integer constant:

[Graphic: Figure from the text]

NonZeroDigit is defined as one of the following characters: 1, 2, 3, 4, 5, 6, 7, 8, or 9.

OctalDigit is defined as one of the following characters: 0, 1, 2, 3, 4, 5, 6, or 7.

Integer literals that begin with a non-zero digit are in base 10 and are called decimal literals. Integer
literals that begin with 0x are in base 16 and are called hexadecimal literals. Integer literals that begin
with 0 followed by 0-7 are in base 8 and are called octal literals.

If an integer literal ends with L or l, its type is long; otherwise its type is int.

Integer literals cannot begin with a + or a -. If either of these characters precedes an integer literal, it is
treated as a unary operator, a separate token in its own right.

Here are some examples of int literals:

0
92
0642
0xDeadBeef

Here are some examples of long literals:

0L
1414213562373l
0x2000000000L
075204l

Note that the preceding examples end with either an uppercase or lowercase "L". They do not end with
the digit 1 (one).

Decimal literals of type int may not be greater than 2147483647, which represents 2^31-1. Decimal
literals of type long may not be greater than 9223372036854775807L, which represents 2^63-1.
Decimal literals cannot be used directly to represent negative values. To represent negative values using a
decimal literal, you must use the decimal literal in conjunction with the unary minus operator. For
example, representing -321 requires the use of a unary minus and a decimal literal. To represent the int -
2147483648, use 0x80000000. To represent the long -9223372036854775808L, use
0x8000000000000000L.

Hexadecimal and octal literals may be positive or negative because they represent either a 32-bit (int) or
64-bit (long) two's-complement quantity. Two's complement is a binary encoding technique that
represents both positive and negative values. The range of values that can be represented by int
hexadecimal and octal literals is shown in Table 2-1.

Table 2.1: Minimum and Maximum int Literals

Representation Minimum Value Maximum Value

Hexadecimal 0x80000000 0x7fffffff

Octal 020000000000 017777777777

Base 10 equivalent -2147483648 2147483647

The range of values that can be represented by long hexadecimal and octal literals is shown in Table 2-
2.

Table 2.2: Minimum and Maximum long Literals

Representation Minimum Value Maximum Value

Hexadecimal 0x8000000000000000L 0x7fffffffffffffffL

Octal 01000000000000000000000L 0777777777777777777777L

Base 10 equivalent -9223372036854775808 9223372036854775807

References **UNKNOWN XREF**; **UNKNOWN XREF**; Integer types; Conversion to Unicode;
Unary Operators

Floating-point literals

A floating-point literal represents a constant value of type float or double :

[Graphic: Figure from the text]

A floating-point literal must minimally contain at least one digit and either a decimal point or an
exponent.

The data type of a floating-point literal is float if and only if the suffix f or F appears at the end of the
literal. If there is no suffix or the suffix is d or D, the data type is double.

Floating-point literals cannot begin with a + or a -. If either of these precedes a floating-point literal, it is
treated as a separate token, a unary operator.

Here are some examples of float literals:

23e4f
1.E2f
.31416e1F
2.717f
7.63e+9f

Here are some examples of double literals:

23e4
1.E2
.31415e1D
2.717
7.53e+9d

The ranges of values that can be represented by float and double literals are shown in Table 2-3.

Table 2.3: Minimum and Maximum Floating-Point Literals

Representation Minimum Value Maximum Value

float 1.40239846e-45f 3.40282347e38f

double 4.94065645841246544e-324 1.79769313486231570e308

Floating-point literals that exceed these limits are treated as errors by the Java compiler. The special
floating-point values positive infinity, negative infinity, and not-a-number are available as predefined
constants in Java, as part of the Float and Double classes.

References **UNKNOWN XREF**; Floating-point types; Unary Operators; Double; Float

Boolean literals

There are two boolean literal values, represented by the keywords true and false:

[Graphic: Figure from the text]

References Boolean Type

Character literals

A character literal represents a constant value of type char (an unsigned 16-bit quantity). A character
literal consists of either the character being represented, or an equivalent escape sequence, enclosed in
single quotes:

[Graphic: Figure from the text]

[Graphic: Figure from the text]

Here are some examples of character literals:

'c'
'n'
'\\'
'\u0138'

The character sequence \uxxxx is not defined above as a valid Escape, even though it can be used as a
legal character literal. This sequence of characters is defined as an EscapedSourceCharacter, which is
handled during the pre-processing phase, before tokenization takes place. As a result, the tokenization
phase never sees an EscapedSourceCharacter. Tokenization sees only the single Unicode character that
replaces the EscapedSourceCharacter during pre-processing.

The translations of the different types of escape sequences supported in Java are shown in Table 2-4.

Table 2.4: Java Escape Sequences

Escape Sequence Unicode Equivalent Meaning

\b \u0008 Backspace

\t \u0009 Horizontal tab

\n \u000a Linefeed

\f \u000c Form feed

\r \u000d Carriage return

\" \u0022 Double quote

\' \u0027 Single quote

\\ \u005c Backslash

\xxx \u0000 to \u00ff The character corresponding to the octal value xxx

A character literal representing a carriage return character can be written only as '\r'; a character literal
representing a linefeed character can be written only as '\n'. During the pre-processing that precedes
token recognition, these characters are classified as line terminators, so neither carriage return (\u000d)
nor linefeed (\u000a) characters in Java source code can ever be seen by the Java compiler as being part
of a character literal.

If a backslash that is not part of a legal Escape appears in a character literal, it is flagged as an error. This
is different from languages like C++ that ignore backslashes in character literals that are not part of an
escape.

References Conversion to Unicode; Integer types; **UNKNOWN XREF**

String literals

A string literal represents a constant string value and consists of the characters in the string or the
equivalent escapes:

[Graphic: Figure from the text]

Here are some examples of string literals:

"" // the empty string
"Hello World"
"This has \"escapes\"\n" // a string literal with escapes

There is no primitive type for representing strings in Java. Instead, each string literal becomes a reference
to a String object. If two or more string literals consist of the same sequence of characters, they refer to
the same String object. Using one String object to represent multiple string literals works because,
once created, the contents of a String object cannot be changed.

For a string literal to contain a carriage return or linefeed character, the carriage return or linefeed must
be written as \r or \n. Neither carriage return (\u000d) nor linefeed (\u000a) characters in Java
source code can ever be seen by the Java compiler as part of a string literal. These characters are

classified as line terminators during the pre-processing phase that precedes token recognition. For the
same reason, \u Unicode escapes for carriage return and linefeed characters cannot be directly used in
string literals.

If a backslash that is not part of a legal Escape appears in a string literal it is flagged as an error. This is
different from languages like C++ that ignore backslashes in string literals that are not part of an escape.

Because operations on strings are generally based on the length of the string, Java does not automatically
supply a NUL character (\u0000) at the end of a string literal. For the same reason, it is not customary
for Java programs to put a NUL character at the end of a string.

References Escape 2.2.3.4; Specially supported classes; String; StringBuffer; String Concatenation
Operator +

Separators

A separator is any one of the punctuation tokens in the following railroad diagram:

[Graphic: Figure from the text]

Separator tokens are used to separate other types of tokens. Thus, separators are a part of a higher-level
syntactic construct. Although separators have syntactic significance, they do not imply any operation on
data.

Operators

An operator is a token that implies an operation on data. Java has both assignment and non-assignment
operators:

[Graphic: Figure from the text]

A NonAssignmentOperator is one of the following:

+ - <= ^ ++

< * >= % --

/ != ? >>

! & == : >>

~ | && >>>

An AssignmentOperator is one of the following:

= -= *=

/= |= &=

^= += %=

<<= >>= >>>=

Unlike C/C++, Java does not have a comma operator. Java does allow a comma to be used as a separator
in the header portion of for statements, however. Java also omits a number of other operators found in C
and C++. Most notably, Java does not include operators for accessing physical memory as an array of
bytes, such as sizeof, unary & (address of), unary * (contents of), or ->
(contents of field).

Comments

Java supports three styles of comments:

● A standard C-style comment, where all of the characters between /* and */ are ignored.

● A single-line comment, where all of the characters from // to the end of the line are ignored.

● A documentation comment that begins with /** and ends with */. These comments are similar
to standard C-style comments, but the contents of a documentation comment can be extracted to
produce automatically generated documentation.

The formal definition of a comment is:

[Graphic: Figure from the text]

C-style comments and documentation comments do not nest. For example, consider the following
arrangement of comments:

/* ... /* ... */ ... */

The Java compiler interprets the first */ to be the end of the comment, so that what follows is a syntax
error.

However, in a single-line comment (i.e., one that starts with //), the sequences /*, /**, and */ have
no special meaning. Similarly, in a C-style comment or a documentation comment (i.e., comments that
begin with /* or /**), the sequence // has no special meaning.

In order to comment out large chunks of code, you need to adopt a commenting style. The C/C++ practice
of using #if to comment out multiple lines of code is not available for Java programs because Java does
not have a conditional compilation mechanism. If you use C-style comments in your code, you'll need to
use the // style of comment to comment out multiple lines of code:

///*
// * Prevent instantiation of RomanNumeral objects without
// * parameters.
// */
// private RomanNumeral() {
// super();
// }

The /* */ style of comment cannot be used to comment out the lines in the above example because the
example already contains that style of comment, and these comments do not nest.

If, however, you stick to using the // style of comment in your code, you can use C-style comments to
comment out large blocks of code:

/*

 *// Prevent instantiation of RomanNumeral objects without
 *// parameters.
 * private RomanNumeral() {
 * super();
 * }
 */

Which style you choose is less important than using it consistently, so that you avoid inadvertently
nesting comments in illegal ways.

References Documentation Comments; Division of the Input Stream into Lines

White Space

White space denotes characters such as space, tab, and form feed that do not have corresponding glyphs,
but alter the position of following glyphs. White space and comments are discarded. The purpose of white
space is to separate tokens from each other:

[Graphic: Figure from the text]

SpaceCharacter is equivalent to \u0020.

HorizontalTabCharacter is equivalent to \u0009 or \t.

FormFeedCharacter is equivalent to \u000C or \f.

EndOf FileMarker is defined as \u001A. Also known as Control-Z, this is the last character in a pre-
processed compilation unit. It is treated as white space if it is the last character in a file, to enhance
compatibility with older MS-DOS programs and other operating environments that recognize \u001A as
an end-of-file marker.

References Division of the Input Stream into Lines

Pre-Processing Data Types

Chapter 3
Data Types

3.2 Reference Types

Java is an object-oriented language. An object is a collection of variables and associated methods that is
described by a class. The concepts in this section that relate to objects are discussed in detail in Object-
Orientation Java Style.

The name of a class can be used as a type, so you can declare an object-type variable or specify that a
method returns an object. If you declare a variable using the name of a class for its type, that variable can
contain a reference to an object of that class. Such a variable does not contain an actual object, but rather
a reference to the class instance, or object, the variable refers to. Because using a class name as a type
declares a reference to an object, such types are called reference types. Java also allows the use of an
interface name to specify a reference type. In addition, array types in Java are reference types because
Java treats arrays as objects.

The two main characteristics of objects in Java are that:

● Objects are always dynamically allocated. The lifetime of the storage occupied by an object is
determined by the program's logic, not by the lifetime of a procedure call or the boundaries of a
block. The lifetime of the storage occupied by an object refers to the span of time that begins when
the object is created and ends at the earliest time it can be freed by the garbage collector.

● Objects are not contained by variables. Instead, a variable contains a reference to an object. A
reference is similar to what is called a pointer in other languages. If there are two variables of the
same reference type and one variable is assigned to the other, both variables refer to the same
object. If the information in that object is changed, the change is visible through both variables.

Java references are very similar to pointers in C/C++, but they are not at all related to the C++ notion of a
reference. The main difference between Java references and C++ pointers is that Java does not allow any
arithmetic to be done with references. This, coupled with Java's lack of any way to explicitly deallocate
the storage used by reference type values, guarantees that a reference can never point to an illegal address.

The formal definition of a reference type is:

[Graphic: Figure from the text]

It is possible to cause a reference variable to contain a reference to nothing by assigning the special value
represented by the keyword null to the variable. The value null can be assigned to any reference
variable without a type cast.

Java does not allow reference types to be cast to primitive data types or primitive data types to be type
cast to reference types. In particular, unlike C/C++, there is no conversion between integer values and
references.

The only operation that Java provides for reference-type variables is the ability to fetch the referenced
object. However, Java does not provide an operator to fetch the object referenced by a reference variable.
Instead, the object fetch operation is performed implicitly by the following operations:

● A field expression that accesses a variable or method of a class or interface object

● A field expression that accesses an element of an array object

● A type comparison operation that uses the instanceof operator

References Array Types; ClassOrInterfaceName 4.1.6; Class Types; Field Expressions; Interface Types;
null; Object-Orientation Java Style; Primitive Types; The instanceof Operator

Class Types

The name of a class can be used to specify the type of a reference. If a variable is declared as a class type,
the variable either contains null or a reference to an object of that class or a subclass of that class. It is
not allowed to contain any other kinds of values. For example:

class Shape { ... }
class Triangle extends Shape { ... }
...
Shape s;
Triangle t;
...
s = t;

This example declares a class called Shape and a subclass of Shape called Triangle. The code later
declares a reference variable called s that can contain a reference to a Shape object and another variable
called t that can contain a reference to a Triangle object. The value of s can be assigned to the value
of t because an object is not only an instance of its declared class, but also an instance of every
superclass of its declared class. Since instances of the Triangle class are also instances of its
superclass Shape, the Java compiler has no problem with s = t.

However, saying t = s generates an error message from the compiler. Java does not allow a reference
variable declared as a class type to contain a reference to a superclass of the declared class. The
assignment t = s is illegal because Shape is a superclass of Triangle. The assignment can be
accomplished if s is first cast to a reference to Triangle:

t = (Triangle)s;

The cast operation ensures that the object referenced by s is a class type that is either Triangle or a
descendant of Triangle. When you cast an object reference to a subclass of the reference type, you are
saying that you want to treat the object being referenced as an instance of the specified subclass. If the
compiler cannot determine whether the argument of a cast will be of the required type, the compiler
generates runtime code that ensures that the argument really is an instance of the specified subclass. At
runtime, if the class of the object being referenced is not an instance of the specified subclass, a
ClassCastException is thrown.

References Casts; Classes; Class Declarations; Object Allocation Expressions; Runtime exceptions

Specially supported classes

Java provides special support for the String and StringBuffer classes. All string literals are
compiled into String objects. The result of a string concatenation operation is a String object. An
intermediate StringBuffer object is used to compute the result of a concatenation operation. Because
operations on strings are generally based on the length of the string, Java does not automatically supply a
NUL character (\u0000) at the end of a string literal. For the same reason, it is not customary for Java
programs to put a NUL character at the end of a string.

Java also provides special support for the Object class. This class is the ultimate superclass of all other
classes in Java. If a class is declared without its superclass being specified, the language automatically
specifies Object as its superclass.

The throw statement in Java is special, in that it requires the use of a Throwable object.

References Object; String; StringBuffer; String Concatenation Operator +; String literals; The throw
Statement; Throwable

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm

Interface Types

The name of an interface can be used to specify the type of a reference. A reference variable declared
using an interface name as its type can only reference instances of classes that implement that interface.
For example, Java provides an interface called Runnable. Java also provides a class called Thread
that implements Runnable. This means that the following assignment is allowed:

Runnable r;
r = new Thread();

The Java compiler does not allow a value to be assigned to a variable declared using an interface type
unless the compiler can be sure that the object referenced by the value implements the specified interface.
Casting a reference variable to an interface type allows the variable to be assigned to that interface type,
because the cast operation provides its own guarantee that the object implements the specified interface.
Unless the compiler is able to determine the actual class of the object that will be referenced at runtime,
the cast produces code that verifies at runtime that the object being cast really does implement the
specified interface. At runtime, if the object being cast does not implement the required interface, a
ClassCastException is thrown.

References Casts; Interfaces; Interface Declarations; Object Allocation Expressions; Runtime exceptions

Array Types

An array is a special kind of object that contains values called elements. Array elements are similar to
variables in that they contain values that can be used in expressions and set by assignment operations.
Elements differ from variables, however, in that they do not have names. Instead, they are identified by
non-negative integers. The elements in an array are identified by a contiguous range of integers from 0 to
one less than the number of elements in the array. The elements of an array must all contain the same type
of value; the type of the array is specified when the array is created.

An array-type variable is declared as follows:

int [] a;

This declaration specifies that the variable a refers to an array of int values. Java actually allows two
styles of array declarations: the one shown above and a style that is more like that used in C/C++. In other
words, you can put the square brackets after the variable name instead of after the type:

int a[];

Technically, all arrays in Java are one-dimensional. However, Java does allow you to declare an array of
arrays, which is a more flexible data structure than a multi-dimensional array. The additional flexibility
comes from the fact that the arrays in an array of arrays do not have to be the same length. Because arrays
of arrays are typically used to represent multi-dimensional arrays, this book refers to them as multi-
dimensional arrays, even though that is not precisely correct.

A multi-dimensional array is declared using multiple pairs of square brackets, as in the following
examples:

int [][] d2; // Refers to a 2-dimensional array
int [][][] d3; // Refers to a 3-dimensional array

When you declare a variable to refer to a multi-dimensional array, the number of dimensions in the array
is determined by the number of pairs of square brackets. Whether the brackets follow the type name or the
variable name is not important. Thus, the above variables could have been declared like this:

int [] d2[], // Refers to a 2-dimensional array
 d3[][]; // Refers to a 3-dimensional array

The actual length of each dimension of an array object is specified when the array object is created, not
when the array variable is declared. An array object is not created at the same time that an array variable
is declared. An array object is created with the new operator. Here are some examples:

int j[] = new int[10]; // An array of 10 ints
int k[][] = new float[3][4]; // An array of 3 arrays of 4 floats

The arrays contained in an array of arrays can also be of different lengths:

int a[][] = new int [3][];
a[0] = new int [5];
a[1] = new int [6];
a[2] = new int [7];

Although the first new operator is creating a two-dimensional array, only the length of one dimension is
specified. In this case, just the array of arrays is created. The subarrays are created by the subsequent new
operators.

The expression used to specify the length of an array does not have to be a constant. Consider the
following example:

int[] countArray(int n){
 int[] a = new int[n];

 for (int i=0; i<n; i++) {
 a[i]=i+1;
 }
 return a;
}

The number of elements in an array object is fixed at the time that the array object is created and cannot
be changed.[2] Every array object has a public variable called length that contains the number of
elements in the array. The variable length is final, which means that its value cannot be changed by
assignment.

[2] The standard class java.util.Vector implements an array-like object with a
length that can be changed.

The Java notion of arrays is fundamentally different than that of C/C++. Subscripting a Java array does
not imply pointer arithmetic, so there is no danger of an out-of-range index accessing memory that
shouldn't be accessed. Array objects in Java detect out-of-range subscripts; when they do they throw an
ArrayIndexOutOfBoundsException. And unlike C/C++, arrays of type char are not strings in
Java. Instead, Java uses the String class to support strings.

Although array objects are reference types, array objects are different from other kinds of objects. The
Object class is the parent class of all array objects, but array objects do not really belong to a class of
their own. An array object inherits all of the variables and methods of the Object class. Every array also
defines the variable length, but there is no class declaration for an array type.

References Variable initializers; Array Allocation Expressions; Index Expressions; Object; String

Primitive Types Expressions

Chapter 5
Declarations

5.5 Interface Declarations

An interface declaration creates a reference type in Java. An interface declaration is similar to a class
declaration, with the following two very important differences.

● All of the methods in an interface are implicitly abstract. Every method declaration in an
interface specifies the formal parameters and return type of the method, but it does not include an
implementation of the method.

● All of the variables in an interface are implicitly static and final.

Interfaces are most useful for declaring that an otherwise unrelated set of classes have a common set of
methods. For example, if you want to store a variety of objects in a database, you might want all of those
objects to have fetch and store methods. The fetch and store methods of each object require different
implementations, so it makes sense to declare the fetch and store methods in an interface declaration.
Then any class that needs fetch and store methods can implement the interface.

The formal definition for an interface declaration is:

While the above diagram may seem complicated, an interface declaration is really made up of five distinct
things:

● Optional modifiers that specify attributes of the class

● The keyword interface

● An identifier that names the interface

● An optional extends clause that specifies the super interfaces of the declared interface

● Any number of interface member declarations, which can include variables and methods

Here are some sample interface declarations:

interface Dyn {
 double squeeze();
}
interface Press extends Dyn {
 double squeeze(double theta);
}

Here is an example of a class that implements Press:

class Clamp implements Press {
 ...
 double squeeze() {
 return squeeze(0);

 }
 double squeeze(double theta) {
 return force*Math.cos(theta);
 }
 ...
}

Since the Press interface extends the Dyn interface, the Clamp class must implement the methods
declared in both Dyn and Press.

References Class Declarations; ClassOrInterfaceName 4.1.6; Identifiers; Interfaces; Interface Members

Interface Modifiers

The keywords public and abstract can appear as modifiers at the beginning of an interface
declaration. In this situation, these modifiers have the following meanings:

public

If an interface is declared public, it can be referenced by any class or interface. If the public
modifier is not used, however, the interface can only be referenced by classes and interfaces in the
same package. A single source file, or compilation unit, can only declare one public class or
interface (see Compilation Units for an exception to this rule).

abstract

An interface is implicitly abstract; so all of the methods in an interface are implicitly
abstract. Including the abstract modifier in an interface declaration is permitted, but it does
not change the meaning of the interface declaration.

References Compilation Units; Inner interface modifiers; Interface method modifiers; Interface variable
modifiers

Interface Name

The identifier that follows the keyword interface is the name of the interface. This identifier can be
used as a reference type wherever the interface is accessible.

References Interface Types

Interface Inheritance

The extends clause specifies any super-interfaces of the interface being declared; the extends
keyword can be followed by the names of one or more interfaces. If an interface has an extends clause,
the clause can only name other interfaces.

Including an interface in the extends clause of another interface means that the declared interface
inherits the variables and methods declared in the super-interface. A class that implements the declared
interface must implement all of the methods in the declared interface, as well as all of the methods
inherited from the super-interface.

If an interface declaration does not include an extends clause, the interface does not extend any other
interfaces.

Interface Members

The members of an interface can be variables or methods; an interface cannot have constructors, static
initializers, instance initializers, nested top-level classes or interfaces, or member classes:

References Interface Methods; Interface Variables

Interface Variables

Any field variables declared in an interface are implicitly static and final. In other words, field
variables in an interface are named constants. Every field variable declaration in an interface must contain
an initializer that sets the value of the named constant:

A variable declaration in an interface is made up of three distinct things:

● Optional modifiers that specify attributes of the variable.

● A type, which can be either a primitive type or a reference type.

● Any number of identifiers that name variables. Each name must be followed by an initializer that
sets the value of the constant.

References Variable initializers; Expression 4; Identifiers; Type 3

Interface variable modifiers

Variables in an interface are implicitly static and final. Including these modifiers in a variable
declaration is permitted, but it is not necessary and it does not change the meaning of the variable
declaration. Thus, by definition, all variables in an interface are named constants.

If an interface is declared public, a field variable declared in the interface is public, even if it is
declared with the private or protected modifier. If an interface is not declared public, however,
any field variables in the interface have the default accessibility, which means that they are only
accessible in classes and interfaces in the same package.

It is an error to declare a field variable in an interface with the transient or volatile modifier.

References Interface Modifiers; Variable modifiers

Interface variable type

If the interface variable declaration uses a primitive type, the variable contains a constant value of the
specified primitive type. If the declaration uses a reference type, the variable contains a constant reference
to the specified type of object. The presence of square brackets in a variable declaration, after either the
type or variable name, indicates that the variable contains a reference to an array.

References Array Types; Primitive Types; Reference Types

Interface variable name

The identifier that follows the variable type is the name of the variable. This identifier can be used
anywhere that the variable is accessible.

It is an error to declare two field variables with the same name in the same interface. It is also an error to
declare a field variable with the same name as a method declared in the same interface or any of its super-
interfaces.

An interface that extends another interface inherits all of the variables in its super-interface. Any class that
implements an interface has access to all of the variables defined in that interface, as well as the variables
inherited from super-interfaces.

If a field variable is declared with the same name as a variable declared in a super-interface, the variable
in the super-interface is considered to be shadowed. If a variable is shadowed in an interface, it cannot be
accessed as a field of that interface. However, a shadowed variable can be accessed by casting a reference
to an object that implements the interface to a reference to the appropriate super-interface in which the
variable is not shadowed. For example:

interface A {
 int x = 4;
}
interface B extends A {
 int x = 7;
}
class Z implements B {
 Z() {
 int i = x; // i gets the value of B's x
 int h = ((A)this).x; // h gets the value of A's x
 }
}

The variable x in interface A is shadowed by the variable x in interface B. Class Z implements interface
B, so a reference to x produces the value 7, as defined in interface B. However, it is possible to access the
shadowed variable by casting this to a reference to interface A.

In some situations, an interface may inherit multiple field variables with the same name. This leads to a
single, ambiguous variable name. For example:

interface A {
 int x = 4;
}
interface B {
 int x = 43;
}
interface C extends A, B {
 int y = 22;
}
class Z implements C {
 public static void main (String[] argv) {
 System.out.println(x); // Ambiguous
 }
}

In this example, the interface C inherits two variables named x. This is fine, as long as C does not refer to
the variable x by its simple name in any of its declarations. If C needs to use x, it must qualify the name
with the appropriate interface name (e.g., A.x). Class Z implements interface C, so it also has access to
two variables named x. As a result, the use of x in main() is ambiguous. This problem can be resolved
by qualifying the variable name with the appropriate interface name (e.g., B.x).

A class that implements multiple interfaces can also inherit multiple field variables with the same name.
Again, this leads to a single, ambiguous variable name:

interface A {
 int x = 4;
}
interface B {
 int x = 43;
}
class Z implements A, B {
 public static void main (String[] argv) {
 System.out.println(x); // Ambiguous
 }
}

The class Z implements both interface A and interface B, so it inherits two variables named x. As a result,
the use of x in main() is ambiguous. This problem can again be resolved by qualifying the variable

name with the appropriate interface name (e.g., B.x).

References Field Expressions; Identifiers; Interface method name

Interface variable initializers

Every variable declaration in an interface must include an initializer that sets the value of the constant.
The initializer does not, however, have to be a constant expression. If the variable is of a non-array type,
the expression in the initializer is evaluated and the variable is set to the result of the expression, as long
as the result is assignment-compatible with the variable. If the variable is of an array type, the initializer
must be an array initializer.

The initializer for a variable in an interface cannot refer to any variables that are declared after its own
declaration.

References Variable initializers; Array Types; Assignment Operators; Constant Expressions; Expression
4

Interface Methods

Any methods declared in an interface are implicitly abstract. In other words, methods in an interface
do not have a specified implementation:

A method declaration in an interface is made up of six distinct things:

● Optional modifiers that specify attributes of the method

● A type that specifies the type of value returned by the method

● An identifier that names the method

● A list of formal parameters that specifies the values that are passed to the method

● An optional throws clause that specifies any exceptions that can be thrown by the method

● A semicolon, since the method declaration does not include an implementation

References ClassOrInterfaceName 4.1.6; Exception Handling 9; Method formal parameters; Identifiers;
Type 3

Interface method modifiers

Methods in an interface are implicitly abstract. Including this modifier in a method declaration is
permitted, but it is not necessary and it does not change the meaning of the method declaration. Thus, by
definition, none of the methods in an interface has a specified implementation.

If an interface is declared public, a method declared in the interface is public, even if it is declared
with the private or protected modifier. If the interface is not declared public, however, any
methods in the interface have the default accessibility, which means that they are only accessible in
classes and interfaces in the same package.

It is an error to declare a method in an interface with the static, final, native, or
synchronized modifier. These modifiers are not allowed because defining a method in an interface is
not meant to imply anything about the nature of the implementation, other than the return type of the
method and the types of the formal parameters. A class that implements the interface has control over the
implementation of the methods and can use any of these modifiers when they are appropriate for the
implementation.

References Interface Modifiers; Method modifiers

Interface method return type

A method declaration in an interface must specify the type of value returned by the method. The return
value can be of a primitive type or of a reference type. The presence of square brackets in a method
declaration, after either the return type or the formal parameters, indicates that the method returns a
reference to the specified type of array. If the method does not return a value, the declaration uses void

to indicate that. The return type comes before the name of the method in the method declaration.

References Array Types; Method return type; Primitive Types; Reference Types

Interface method name

The identifier that follows the return type is the name of the method. This identifier can be used anywhere
that the method is accessible.

It is an error to declare two methods that have the same name, the same number of parameters, and the
same type for each corresponding parameter in the same interface. It is also an error to declare a method
with the same name as a variable declared in the same interface or any of its super-interfaces.

An interface that extends another interface inherits all of the methods in its super-interface. Any class that
implements an interface must provide an implementation for each of the methods defined in that interface,
as well as each of the methods inherited from super-interfaces.

If an interface inherits methods from multiple super-interfaces that have the same name, formal
parameters, and return type, there is no problem. The various super-interfaces are in agreement about the
method. The interface can also override the inherited methods by declaring a method with the same name,
formal parameters, and return type. In any case, a class that implements the interface has to provide a
single implementation for the method.

However, if an interface inherits methods from multiple super-interfaces that have the same name and
same formal parameters, but different return types, a compile-time error results. By the same token, if the
interface attempts to override an inherited method with a method that has the same name and same formal
parameters, but a different return type, a compile-time error results.

If an interface inherits methods from multiple super-interfaces that have the same name but different
formal parameters, there is no problem. The methods are simply considered overloaded in the interface.
The interface can even declare additional methods that have the same name but different formal
parameters. A class that implements the interface simply has to provide an implementation for each of the
overloaded methods.

References Identifiers; Interface variable name; Method Call Expression

Interface method formal parameters

The formal parameters in a method declaration specify a list of variables to which values are assigned
when the method is called. If a method has no formal parameters, the parentheses must still appear in the
method declaration. The presence of square brackets in a formal parameter declaration, either as part of a
reference type or after the name of a formal parameter, indicates that the formal parameter is an array

type.

References Array Types; Method formal parameters; Method formal parameters; Type 3

Interface method throws clause

If a method is expected to throw any exceptions, the method declaration must declare that fact in a
throws clause. If the declaration of a method in an interface contains a throws clause, any method in a
sub-interface that overrides that method cannot include any classes in its throws clause that are not
declared in the overridden method.

References Exception Handling 9; Method throws clause

Nested Top-Level Interfaces

Nested top-level interfaces are interfaces that are declared inside of another class. Just as with a top-level
interface declaration, the declaration of a nested top-level interface creates a reference type in Java. Here's
the formal definition of a nested top-level interface:

A nested top-level interface can be accessed outside of its enclosing class by qualifying its name with the
name of its enclosing class, as follows:

EnclosingClass.InnerInterface

The syntax for declaring nested top-level interfaces is not supported prior to Java 1.1.

References Nested top-level classes and interfaces; SimpleInterfaceDeclaration 5.5

Inner interface modifiers

The keywords public, abstract, and static can be used in the declaration of a nested top-level
interface. In this situation, these modifiers have the following meanings:

public

If a nested top-level interface is declared public, it is accessible from any class or interface that
can access the enclosing class. If the public modifier is not used, however, the nested top-level
interface can only be referenced by classes and interfaces in the same package as the enclosing
class.

abstract

A nested top-level interface is implicitly abstract; thus, all of the methods in the interface are
implicitly abstract. Including the abstract modifier in a nested top-level interface
declaration is permitted, but it does not change the meaning of the interface declaration.

static

A nested top-level interface is implicitly static. Including the static modifier in a nested top-
level interface declaration is permitted, but it does not change the meaning of the interface
declaration.

References Interface Modifiers

Inner interface members

The remainder of a nested top-level interface declaration is the same as that for a top-level interface
declaration, which is described in Interface Declarations.

References Interface Declarations; Interface Methods; Interface Variables

Class Declarations Statements and Control
Structures

Chapter 5
Declarations

5.4 Class Declarations

A class declaration creates a reference type in Java. The class declaration also specifies the
implementation of the class, including its variables, constructors, and methods. The formal definition of a
class declaration is:

[Graphic: Figure from the text]

[Graphic: Figure from the text]

[Graphic: Figure from the text]

While the above diagram may seem complicated, a class declaration is really made up of six distinct
things:

● Optional modifiers that specify attributes of the class

● The keyword class

● An identifier that names the class

● An optional extends clause that specifies the superclass of the declared class

● An optional implements clause that specifies the interfaces implemented by the declared class

● Any number of member declarations, which can include variables, methods, constructors, static
initializers, instance initializers, nested top-level classes and interfaces, and member classes

References Classes; ClassOrInterfaceName 4.1.6; Class Members; Identifiers

Class Modifiers

The keywords public, abstract, and final can appear as modifiers at the beginning of a class
declaration. In this situation, these modifiers have the following meanings:[3]

[3] Version 1.0 of Java included a private protected access specification; this
specification has been removed as of version 1.0.2 of the language.

public

If a class is declared public, it can be referenced by any other class. If the public modifier is
not used, however, the class can only be referenced by other classes in the same package. A single
source file, or compilation unit, can only declare one public class or interface (see Compilation
Units for an exception to this rule).

abstract

If a class is declared abstract, no instances of the class may be created. A class declared
abstract may contain abstract methods. Classes not declared abstract may not contain
abstract methods and must override any abstract methods they inherit with methods that are
not abstract. Furthermore, classes that implement an interface and are not declared
abstract must contain or inherit methods that are not abstract that have the same name,
number of parameters, and corresponding parameter types as the methods declared in the
interfaces that the class implements.

final

If a class is declared final, it cannot be subclassed. In other words, it cannot appear in the
extends clause of another class.

You want to declare a class final if it is important to ensure the exact properties and behavior
of that class. Many of the classes in the java.lang package are declared final for that
reason. In addition, the compiler can often optimize operations on final classes. For example,
the compiler can optimize operations involving the String class because it can safely assume
the exact logic of String methods. The compiler does not have to account for the possibility of
methods of a final class being overridden in a subclass.

References Compilation Units; Inner class modifiers; Local class modifiers; Method modifiers; Variable
modifiers

Class Name

The identifier that follows the keyword class is the name of the class. This identifier can be used as a

reference type wherever the class is accessible.

References Class Types

Class Inheritance

The extends clause specifies the superclass of the class being declared. If a class is declared without
an extends clause, the class Object is its implicit superclass. The class inherits all of the accessible
methods and variables of its superclass.

If a class is declared final, it cannot appear in an extends clause for any other class.

The implements clause specifies any interfaces implemented by the class being declared. Unless it is
an abstract class, the class (or one of its superclasses) must define implementations for all of the
methods declared in the interfaces.

References Inheritance; Interfaces; Interface Declarations; Object

Class Members

Fields are the variables, methods, constructors, static (load-time) initializers, instance initializers, nested
top-level classes and interfaces, and member classes that are declared as part of a class:

[Graphic: Figure from the text]

A member declaration causes the member to be defined throughout the entire class and all of its
subclasses. This means that it is not a problem to have forward references to members, or in other words,
you can use members in a class before you have defined them. For example:

class foo {
 void doIt() {
 countIt();
 }
 void countIt() {
 i++;
 }
 int i;

}

References Constructors; Nested Top-Level and Member Classes; Nested Top-Level Interfaces; Instance
Initializers; Methods; Static Initializers; Variables

Variables

A variable that is declared as a member in a class is called a field variable. A field variable is different
from a local variable, which is declared within a method or a block. The formal definition of a variable
declaration is:

[Graphic: Figure from the text]

While the above diagram may seem complicated, a variable declaration is really made up of four distinct
things:

● Optional modifiers that specify attributes of the variable.

● A type, which can be either a primitive type or a reference type.

● Any number of identifiers that name variables. Each name can be followed by pairs of square
brackets to indicate an array variable.

● An optional initializer for each variable declared.

Here are some examples of variable declarations:

int x;
public static final double[] k, m[];

References Variable initializers; Expression 4; Identifiers; Local Variables; Type 3

Variable modifiers

The modifiers public, protected, and private can be used in the declaration of a field variable to
specify the accessibility of the variable. In this situation, the modifiers have the following meanings:[4]

[4] Version 1.0 of Java included a private protected access specification; this
specification has been removed as of version 1.0.2 of the language.

public

A field variable that is declared public is accessible from any class.

protected

A field variable that is declared protected is accessible to any class that is part of the same
package as the class in which the variable is declared. Such a field variable is also accessible to
any subclass of the class in which it is declared; this occurs regardless of whether or not the
subclass is part of the same package.

private

A field variable that is declared private is only accessible in the class in which it is declared.
Such a field variable is not accessible to other classes. In particular, a field variable that is
declared private is not accessible in subclasses of the class in which it is declared.

If a field variable is not declared with any of the access modifiers, the variable has the default
accessibility. Default access is often called "friendly" access because it is similar to friendly access in

C++. A variable with default access is accessible in any class that is part of the same package as the class
in which the variable is declared. However, a friendly variable is not accessible to classes outside of the
package in which it is declared, even if the desired classes are subclasses of the class in which it is
declared.

The keywords static, final, transient, and volatile can also be used in the declaration of a
field variable. These modifiers have the following meanings:

static

A field variable that is declared with the static modifier is called a class variable. There is
exactly one copy of each class variable associated with the class; every instance of the class
shares the single copy of the class's static variables. Thus, setting the value of a class variable
changes the value of the variable for all objects that are instances of that class or any of its
subclasses.

For example, if you want to count how many instances of a class have been instantiated, you can
write:

class Foo {
 ...
 static int fooCount = 0;
 Foo() {
 fooCount++;
 }
 ...
}

A field variable that is not declared with the static modifier is called an instance variable.
There is a distinct copy of each instance variable associated with every instance of the class. Thus,
setting the value of an instance variable in one object does not affect the value of that instance
variable in any other object.

final

If a field variable is declared with the final modifier, the variable is a named constant value. As
such, it must be assigned an initial value. Any assignment to a final variable, other than the one
that provides its initial value, is a compile-time error. The initial value for a final variable is
typically provided by an initializer that is part of the variable's declaration. For example:

final int X = 4;

A final field variable that is not initialized in its declaration is called a blank final. Blank finals
are not supported prior to Java 1.1. A blank final that is declared static must be assigned a
value exactly once in a static initializer. A blank final that is not declared static must be
assigned a value exactly once in an instance initializer or exactly once in each constructor. The
compiler uses flow analysis that takes if statements and iteration statements into account to
ensure that a blank final is assigned a value exactly once. Thus, it is possible to have multiple
assignments to a blank final, so long as exactly one of them can be executed. For example, here is
an instance initializer that sets the value of a blank final:

{
 final int DAYS_IN_YEAR;
 if (isLeapYear(new Date()))
 DAYS_IN_YEAR = 366;
 else
 DAYS_IN_YEAR = 365;
 ...
}

Note that the meaning of final in a variable declaration is very different from the meaning of
final in a method or class declaration. In particular, if a class contains a final variable, you
can declare a variable with the same name in a subclass of that class without causing an error.

transient

The transient modifier is used to indicate that a field variable is not part of the persistent state
of an object. The java.io.ObjectOutputStream class defines write() methods that
output a representation of an object that can be read later to create a copy of the object. These
write() methods do not include field variables that are declared transient in the
representation of an object.

volatile

The volatile modifier is used to tell the compiler that a field variable will be modified
asynchronously by methods that are running in different threads. Each time the variable is
accessed or set, it is fetched from or stored into global memory in a way that avoids the
assumption that a version of the variable in a cache or a register is consistent with the version in
global memory.

References Class Modifiers; Inner class modifiers; Local class modifiers; Method modifiers

Variable type

A field variable declaration must always specify the type of the variable. If the declaration of a field
variable uses a primitive type, the variable contains a value of the specified primitive type. If the
declaration uses a reference type, the variable contains a reference to the specified type of object.

The presence of square brackets in a variable declaration, after either the type or variable name, indicates
that the variable contains a reference to an array. For example:

int a[]; // a is an array of int
int[] b; // b is also an array of int

It is also possible to declare a variable to contain an array of arrays, or more generally, arrays nested to
any level. Each pair of square brackets in the declaration corresponds to a dimension of the array; it
makes no difference whether the brackets appear after the type or the variable name. For example:

int[][][] d3; // Each of these is an array of
int[][] f3[]; // arrays of arrays of integers
int[] g3[][];
int h3[][][];
int[] j3, k3[]; // An array and an array of arrays

References Array Types; Primitive Types; Reference Types

Variable name

The identifier that follows the variable type is the name of the variable. This identifier can be used
anywhere that the variable is accessible.

It is an error to declare two field variables with the same name in the same class. It is also an error to
declare a field variable with the same name as a method declared in the same class or any of its
superclasses.

If a field variable is declared with the same name as a variable declared in a superclass, the variable in
the superclass is considered to be shadowed. If a variable is shadowed in a class, it cannot be accessed as
a field of that class. However, a shadowed variable can be accessed by casting a reference to an object of
that class to a reference to the appropriate superclass in which the variable is not shadowed. For example:

class A {
 int x = 4;
}
class B extends A {
 int x = 7;
 B () {

 int i = x; // i gets the value of B's x
 int h = ((A)this).x; // h gets the value of A's x
 }
}

Alternatively, if a variable is shadowed in a class but not in its immediate superclass, the methods of the
class can access the shadowed variable using the keyword super. In the above example, this would look
as follows:

int h = super.x; // h gets the value of A's x

If a method is declared with the same name and parameters as a method in a superclass, the method in
the superclass is considered to be overridden. Note that variable shadowing is different than method
overriding. The most important difference is that using a reference to an instance of an object's superclass
does not provide access to overridden methods. Overriding is described in detail in Method name.

References Field Expressions; Identifiers; Inheritance; Method name

Variable initializers

A variable declaration can contain an initializer. However, if a variable is declared to be final, it must
either have an initializer or be initialized exactly once in a static initializer, instance initializer, or
constructor. If the variable is of a non-array type, the expression in the initializer is evaluated and the
variable is set to the result of the expression, as long as the result is assignment-compatible with the
variable. If the variable is of an array type, the initializer must be an array initializer:

[Graphic: Figure from the text]

Each expression or array initializer in an array initializer is evaluated and becomes an element of the
array produced by the initializer. The variable is set to the array produced by the initializer, as long as the
assignment is assignment-compatible. Here are some examples of actual array initializers:

short a[] = {2,5,8,2,11}; // array of 5 shorts
int s[][] = { {3,45,8}, // array of 4 arrays
 {12,9,33}, // of 3 ints

 {7,22,53},
 {33,1,2} };

Note that a trailing comma is allowed within an array initializer. For example, the following is legal:

int x[] = {2,23,4,};

Any initializers for class variables (i.e., static variables) are evaluated when the class is loaded. The
initializer for a class variable cannot refer to any instance variables in the class. An initializer for a
static variable cannot refer to any static variables that are declared after its own declaration. The
initial value of a class variable can also be set in a static initializer for the class; static initializers are
described in Static Initializers.

Any initializers for instance variables are evaluated when a constructor for the class is called to create an
instance of the class. Every class has at least one constructor that explicitly or implicitly calls one of the
constructors of its immediate superclass before it does anything else. When the superclass's constructor
returns, any instance variable initializers (and instance initializers) are evaluated before the constructor
does anything else. The initial value of an instance variable can also be set in an instance initializer;
instance initializers are described in Instance Initializers. Of course, it is also possible to set the initial
values of instance variables explicitly in a constructor. Constructors are described in Constructors.

If a variable declaration does not contain an initializer, the variable is set to a default value. The actual
value is determined by the variable's type. Table 5-1 shows the default values used for the various types
in Java.

Table 5.1: Default Values for
Field Variables

Type Default Value

byte 0

char '\u0000'

short 0

int 0

long 0L

float 0.0F

double 0.0

boolean false

Object reference null

For an array, every element of the array is set to the appropriate default value, based on the type of
elements in the array.

Here are some examples of variable declarations, with and without initializers:

int i,j; // initialized to zero
long k = 243L;
double d = k*1.414;
String s; // initialized to null
char c[] = new char[123];
float f[] = { 3.2f, 4.7f, 9.12f, 345.9f};
Double dbl = new Double(382.3748);
java.io.File fl = new File("/dev/null");
Object o = fl;

References Array Types; Assignment Operators; Constructors; Expression 4; Instance Initializers; Static
Initializers; Variable modifiers

Methods

A method is a piece of executable code that can be called as a subroutine or a function. A method can be
passed parameters by its caller; the method can also return a result to its caller. In Java, a method can
only be declared as a field in a class. The formal definition of a method declaration is:

[Graphic: Figure from the text]

While the above diagram may seem complicated, a method declaration is really made up of six distinct
things:

● Optional modifiers that specify attributes of the method

● A type that specifies the type of value returned by the method

● An identifier that names the method

● A list of formal parameters that specifies the values that are passed to the method

● An optional throws clause that specifies any exceptions that can be thrown by the method

● A block that defines the functionality of the method

Here are some examples of method declarations:

public static void main(String[] argv) {
 System.out.println(argv[0]);
}
int readSquare(DataInputStream d) throws IOException {
 int i = d.readInt();
 return i*i;
}
int filledArray(int length, int value) [] {
 int [] array = new int [length];
 for (int i = 0; i < length; i++) {
 array[i] = value;
 }
 return array;
}

Unlike C/C++, Java only allows method declarations that fully specify the type and number of
parameters that the method can be called with.

References Blocks; ClassOrInterfaceName 4.1.6; Exception Handling 9; Method formal parameters;
Identifiers; Type 3

Method modifiers

The modifiers public, protected, and private can be used in the declaration of a method to
specify the accessibility of the method. In this situation, the modifiers have the following meanings:

public

A method that is declared public is accessible from any class.

protected

A method that is declared protected is accessible in any class that is part of the same package
as the class in which the method is declared. Such a method is also accessible to any subclass of
the class in which it is declared, regardless of whether or not the subclass is part of the same
package.

private

A method that is declared private is only accessible in the class in which it is declared. Such a
method is not accessible in other classes. In particular, a method that is declared private is not
accessible in subclasses of the class in which it is declared. A method cannot be declared both
private and abstract.

If a method is not declared with any of the access modifiers, it has the default accessibility. Default
access is often called "friendly" access because it is similar to friendly access in C++. A method with
default access is accessible in any class that is part of the same package as the class in which the method
is declared. However, a friendly method is not accessible to classes outside of the package in which it is
declared, even if the classes are subclasses of the class in which it is declared.

The keywords static, final, abstract, native, and synchronized can also be used in the
declaration of a method. These modifiers have the following meanings:

static

A method that is declared with the static modifier is called a class method. Class methods are
not associated with an instance of a class. This means that a class method cannot directly refer to
other, non-static methods or variables in its class, unless the method or variable is accessed
through an explicit object reference. In addition, the keywords this and super are treated as
undefined variables within static methods. A method that is declared static is also
implicitly final, or in other words, static methods cannot be overridden. A method that is
declared static cannot also be declared abstract.

Because static methods are not associated with a class instance, you do not need an instance of
a class to invoke such a method. For example, the Math class contains a collection of
mathematical methods that can be called using the class name:

Math.tan(x)

A method that is not declared with the static modifier is called an instance method. Instance
methods are associated with an instance of a class, so an instance method may contain direct

references to any other methods or variables in its class.

final

A method that is declared with the final modifier cannot be overridden. In other words, if a
method in a class is declared final, no subclass of that class can declare a method with the same
name, number of parameters, and parameter types as the final method. Although final
methods cannot be overridden, declaring a method to be final in no way prevents it from being
overloaded.

abstract

If a method is declared with the abstract modifier, the declaration must end with a semicolon
rather than a block. An abstract method declaration specifies the name, number and type of
parameters, and return type of the method; it does not specify the implementation of the method.
If a class contains an abstract method, the class must also be declared abstract. If a non-
abstract class inherits an abstract method, the class must override the method and provide
an implementation.

An abstract method cannot also be declared either private or static because neither
private nor static methods can be overridden. A private method cannot be overridden
because it is not inherited by its subclasses; a static method cannot be overridden because it is
implicitly final.

native

If a method is declared with the native modifier, the declaration must end with a semicolon
rather than a block. A native method is implemented in a platform-specific way using a
language other than Java, such as C++. Because the implementation of a native method is not
done in Java, Java requires the semicolon in place of an implementation.

Because the implementation of a native method is platform-specific, you should avoid using
native methods in classes that are expected to run on different kinds of clients. Native methods
also require an installation process, which is another reason to avoid them for use on clients.

synchronized

If a method is declared with the synchronized modifier, a thread must obtain a lock before it
can invoke the method. If the method is not declared static, the thread must obtain a lock
associated with the object used to access the method. If the method is declared static, the
thread must obtain a lock associated with the class in which the method is declared.

A synchronized method is one of two mechanisms for providing single-threaded access to the
contents of a class or object. The other mechanism is the synchronized statement. Of the two,
a synchronized method is usually the preferred mechanism. If all access to instance data that is
shared by multiple threads is through synchronized methods, the integrity of the instance data
is guaranteed, no matter what the callers of the methods do. On the other hand, if instance data
shared by multiple threads is directly accessible outside of the class that defines it or its
subclasses, providing single-threaded access to the data requires the use of synchronized
statements.

References Class Modifiers; Inner class modifiers; Local class modifiers; Variable modifiers

Method return type

A method declaration must always specify the type of value returned by the method. The return value can
be of a primitive type or of a reference type. If the method does not return a value, it should be declared
with its return type specified as void. The return type comes before the name of the method in the
method declaration.

The presence of square brackets in a method declaration, after either the return type or the formal
parameters, indicates that the method returns a reference to the specified type of array.

For example:

int a()[] {...}; // a returns an array of int
int[] b() {...}; // b also returns an array of int

It is also possible to declare that a method returns a reference to an array of arrays, or more generally,
arrays nested to any level. Each pair of square brackets in the declaration corresponds to a dimension of
the array; it makes no difference whether the brackets appear after the return type or the formal
parameters. For example:

int[][][] d3() {...}; // Each of these returns an array of
int[][] f3()[] {...}; // arrays of arrays of integers
int[] g3()[][] {...};
int h3()[][][] {...};

If a method is declared with the void return type, any return statement that appears within the
method must not contain a return value. Because a method with a void return type does not return a
value, such a method can only be called from an expression statement that consists of a method call
expression.

On the other hand, if a method is declared with a return type other than void, it must return through an

explicit return statement that contains a return value that is assignment-compatible with the return
type of the method.

References Array Types; Expression Statements; Primitive Types; Reference Types; The return
Statement

Method name

The identifier that follows the return type is the name of the method. This identifier can be used
anywhere that the method is accessible.

It is an error to declare two methods that have the same name, the same number of parameters, and the
same type for each corresponding parameter in the same class. It is also an error to declare a method with
the same name as a variable declared in the same class or any of its superclasses.

A method is said to be overloaded if there is more than one accessible method in a class with the same
name, but with parameters that differ in number or type.[5] This situation can arise if two or more such
methods are declared in the same class. It can also occur when at least one of the methods is defined in a
superclass and the rest are in a subclass.

[5] Although Java supports overloaded methods, it does not allow programs to define
overloaded operators. While it is true that the + operator is defined in an overloaded way,
that operator is part of the language specification and it is the only overloaded operator.

Overloaded methods aren't required to have the same return type. For example:

int max(int x, int y){return x>y ? x : y;}
double max(double x, double y){return x>y ? x : y;}

A method that is inherited from a superclass is said to be overridden if a method in the inheriting class
has the same name, number of parameters, and types of parameters as the inherited method. If the
overridden method returns void, the overriding method must also return void. Otherwise, the return
type of the overriding method must be the same as the type of the overridden method.

An overriding method can be more accessible than the overridden method, but it cannot be less
accessible. In other words, a subclass cannot hide things that are visible in its superclass, but it can make
visible things that are hidden. An object is considered to be an instance of its own class, as well as an
instance of each of its superclasses. As a result, you can use an object reference to call a method in an
object and not worry about whether the object is actually an instance of a subclass of the type of the
reference. If a subclass were allowed to override methods of its superclass with methods that were less
accessible, you would no longer be able to use a reference without regard to the actual type of the object

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_04.htm#JLR2-CH-6-SECT-4

being referenced.

For example, Object is the superclass of String. This means that a variable declared to contain a
reference to an Object may actually refer to a String. The Object class defines a public method
called hashCode(), so a reference to the Object class can be used to call the hashCode() method
of whatever subclass of Object it refers to. Allowing a subclass of Object to declare a private
hashcode() method would be inconsistent with this usage.

Table 5-2 shows the access modifiers that are permitted for an overriding method, based on the access
allowed for the overridden method.

Table 5.2: Permitted Access Modifiers for Overriding Methods

Access declared for overridden method

no modifier protected public

Access for overriding method

private not allowed not allowed not allowed

no modifier allowed not allowed not allowed

protected allowed allowed not allowed

public allowed allowed allowed

If a method in the superclass is declared private, it is not inherited by the subclass. This means that a
method in the subclass that has the same name, number of parameters, and types of parameters does not
override the private method in the superclass. As a result, the method in the subclass can have any
return type and there are no restrictions on its accessibility.

Non-static methods must be called through an object reference. If a non-static method is called
with no explicit object reference, it is implicitly called using the object reference this. At compile-time,
the type of the object reference is used to determine the combinations of method names and parameters
that are accessible to the calling expression (see Method Call Expression). At runtime, however, the
actual type of the object determines which of the methods is called. If the actual object is an instance of a
subclass of the referenced class and the subclass overrides the method being called, the overriding
method in the subclass is invoked.

In other words, the actual type of the object is used to determine which method to call, not the type of the
reference to that object. This means that you cannot simply cast an object reference to a superclass of the
class of the actual object to call to an overridden method. Instead, you use the keyword super to access
an overridden method in the superclass. For example:

class A {
 void doit() {
 ...
 }
}
class B extends A {
 void doit() {
 super.doit(); // calls overridden A.doit()
 }
 public static void main(String argv[]) {
 B b = new B();
 ((A)b).doit(); // calls B.doit()
 }
}

The doit() method in class B calls the overridden doit() method in class A using the super
construct. But, in main(), the doit() method in class B is invoked because casting a reference does
not provide access to overridden methods.

References Identifiers; Inheritance; Method Call Expression; Variable name

Method formal parameters

The formal parameters in a method declaration specify a list of variables to which values are assigned
when the method is called:

[Graphic: Figure from the text]

Within the block that contains the implementation of the method, the method's formal parameters are
treated as local variables; the name of each formal parameter is available as an identifier in the method's
implementation. Formal parameters differ from local variables only in that their declaration and value
come from outside the method's block.

If a formal parameter is declared final, any assignment to that parameter generates an error. The
syntax for declaring final parameters is not supported prior to Java 1.1.

If a method has no formal parameters, the parentheses must still appear in the method declaration.

Here's an example of a method declaration with formal parameters:

abstract int foo(DataInputStream d, Double[] values, int weights[]) ;

The presence of square brackets in a formal parameter declaration, either as part of a reference type or
after the name of a formal parameter, indicates that the formal parameter is an array type. For example:

foo(int a[], // a is an array of int
 int[] b) // b is also an array of int

It is also possible to declare that a formal parameter is an array of arrays, or more generally, arrays nested
to any level. Each pair of square brackets in the declaration corresponds to a dimension of the array; it
makes no difference whether the brackets appear with the type or after the name of the formal parameter.
For example:

int[][][] d3 // Each of these is an array of
int[][] f3[] // arrays of arrays of integers
int[] g3[][]
int h3[][][]

References Array Types; Blocks; Identifiers; Local Variables; Type 3

Method throws clause

If a method is expected to throw any exceptions, the method declaration must declare that fact in a
throws clause. Java requires that most types of exceptions either be caught or declared, so bugs caused
by programmers forgetting to handle particular types of exceptions are uncommon in Java programs.

If a method implementation contains a throw statement, or if the method calls another method declared
with a throws clause, there is the possibility that an exception will be thrown from within the method.
If the exception is not caught, it will be thrown out of the method to its caller. Any exception that can be
thrown out of a method in this way must be listed in a throws clause in the method declaration, unless
the exception is an instance of Error, RuntimeException, or a subclass of one of those classes.
Subclasses of the Error class correspond to situations that are not easily predicted, such as the system
running out of memory. Subclasses of RuntimeException correspond to many common runtime
problems, such as illegal casts and array index problems. The classes listed in a throws clause must be
Throwable or any of its subclasses; the Throwable class is the superclass of all objects that can be
thrown in Java.

Consider the following example:

import java.io.IOException;
class throwsExample {
 char[] a;

 int position;
 ...
 // Method explicitly throws an exception
 int read() throws IOException {
 if (position >= a.length)
 throw new IOException();
 return a[position++];
 }
 // Method implicitly throws an exception
 String readUpTo(char terminator) throws IOException {
 StringBuffer s = new StringBuffer();
 while (true) {
 int c = read(); // Can throw IOException
 if (c == -1 || c == terminator) {
 return s.toString();
 }
 s.append((char)c);
 }
 return s.toString():
 }
 // Method catches an exception internally
 int getLength() {
 String s;
 try {
 s = readUpTo(':');
 } catch (IOException e) {
 return 0;
 }
 return s.length();
 }
 // Method can throw a RuntimeException
 int getAvgLength() {
 int count = 0;
 int total = 0;
 int len;
 while (true){
 len = getLength();
 if (len == 0)
 break;
 count++;
 total += len;
 }
 return total/count; // Can throw ArithmeticException

 }
}

The method read() can throw an IOException, so it declares that fact in its throws clause.
Without that throws clause, the compiler would complain that the method must either declare
IOException in its throws clause or catch it. Although the readUpTo() method does not
explicitly throw any exceptions, it calls the read() method that does throw an IOException, so it
declares that fact in its throws clause. Whether explicitly or implicitly thrown, the requirement to catch
or declare an exception is the same. The getLength() method catches the IOException thrown by
readUpTo(), so it does not have to declare the exception. The final method, getAvgLength(), can
throw an ArithmeticException if count is zero. Because ArithmeticException is a
subclass of RuntimeException, the fact that it can be thrown out of getAvgLength() does not
need to be declared.

If a method overrides another method, the overriding method cannot throw anything that the overridden
method does not throw. Specifically, if the declaration of a method contains a throws clause, any
method that overrides that method cannot include any classes in its throws clause that are not declared
in the overridden method. This restriction avoids surprises. When a method is called, the Java compiler
requires that all of the objects listed the method's throws clause are either caught by the calling method
or declared in the calling method's throws clause. The requirement that an overriding method cannot
include any class in its throws clause that is not in the overridden method's throws clause ensures
that the guarantee made by the compiler is respected by the runtime environment.

References Exception Handling 9; The throw Statement; The try Statement

Method implementation

A method declaration must end with either a block or a semicolon. If either the abstract or native
modifier is used in the declaration, the declaration must end with a semicolon. All other method
declarations must end with a block that defines the implementation of the method.

References Blocks; Method modifiers

Constructors

A constructor is a special kind of method that is designed to set the initial values of an object's instance
variables and do anything else that is necessary to create an object. Constructors are only called as part of
the object creation process. The declaration of a constructor does not include a return type. The name of a
constructor is always the same as the name of the class:

[Graphic: Figure from the text]

A constructor declaration is really made up of five distinct things:

● Optional modifiers that specify attributes of the constructor

● An identifier that names the constructor; this identifier must be the same as the name of the class

● A list of formal parameters that specifies the values that are passed to the constructor

● An optional throws clause that specifies any exceptions that can be thrown by the constructor

● A block that defines the functionality of the constructor

Here is an example that shows a class with some constructors:

class Construct {
 private Construct(Double[] values, int weights[]) {
 }
 public Construct(OutputStream o, Double[] values, int weights[])
 throws IOException {
 this(values, weights);
 o.write(weights[0]);
 }
 public Construct() {
 }
}

References Blocks; ClassOrInterfaceName 4.1.6; Exception Handling 9; Method formal parameters;
Identifiers; Object Creation

Constructor modifiers

The modifiers public, protected, and private can be used in the declaration of a constructor to
specify the accessibility of the constructor. In this situation, the modifiers have the following meanings:

public

A constructor that is declared public is accessible from any class.

protected

A constructor that is declared protected is accessible in any class that is part of the same
package as the class in which the constructor is declared. Such a constructor is also accessible to
any subclass of the class in which it is declared, regardless of whether or not the subclass is part
of the same package.

private

A constructor that is declared private is accessible in the class in which it is declared. Such a
constructor is not accessible in other classes. In particular, a constructor that is declared
private is not accessible in subclasses of the class in which it is declared.

If a class is declared with at least one constructor, to prevent Java from providing a default
public constructor, and all of the constructors are declared private, no other class can create
an instance of the class. It makes sense to prevent the instantiation of a class if the class exists
only to provide a collection of static methods. An example of this type of class is
java.lang.Math.

private constructors can be used by static methods in the same class.

If a constructor is not declared with any of the access modifiers, the constructor has the default
accessibility. Default access is often called "friendly" access because it is similar to friendly access in
C++. A constructor with default access is accessible in any class that is part of the same package as the
class in which the constructor is declared. However, a friendly constructor is not accessible in subclasses
of the class in which it is declared.

References Class Modifiers; Inner class modifiers; Local class modifiers

Constructor name

A constructor has no name of its own. The identifier that appears in a constructor declaration must be the
same as the name of the class in which the constructor is declared. This identifier can be used anywhere
that the constructor is accessible.

References Class Types

Constructor return type

A constructor has no declared return type; it always returns an object that is an instance of its class. A
return statement in a constructor is treated the same as it is in a method declared to return void; the
return statement must not contain a return value. Note that it is not possible to explicitly declare a
constructor to have the return type void.

References The return Statement

Constructor formal parameters

The formal parameters in a constructor declaration specify a list of variables to which values are assigned
when the constructor is called. Within the block that contains the implementation of the constructor, the
constructor's formal parameters are treated as local variables; the name of each formal parameter is
available as an identifier in the constructor's implementation. Formal parameters differ from local
variables only in that their declaration and value come from outside the constructor's block.

If a formal parameter is declared final, any assignment to that parameter generates an error. The
syntax for declaring final parameters is not supported prior to Java 1.1.

If a constructor has no formal parameters, the parentheses must still appear in the constructor declaration.

The presence of square brackets in a formal parameter declaration, either as part of a reference type or
after the name of a formal parameter, indicates that the formal parameter is an array type. For example:

Foo(int a[], // a is an array of int
 int[] b) // b is also an array of int

It is also possible to declare that a formal parameter is an array of arrays, or more generally, arrays nested
to any level. Each pair of square brackets in the declaration corresponds to a dimension of the array; it
makes no difference whether the brackets appear with the type or after the name of the formal parameter.
For example:

int[][][] d3 // Each of these is an array of
int[][] f3[] // arrays of arrays of integers
int[] g3[][]
int h3[][][]

References Array Types; Blocks; Method formal parameters; Local Variables

Constructor throws clause

If a constructor is expected to throw any exceptions, the constructor declaration must declare that fact in
a throws clause. If a constructor implementation contains a throw statement, or if the constructor
calls another constructor or method declared with a throws clause, there is the possibility that an
exception will be thrown from within the constructor.

If the exception is not caught, it will be thrown out of the constructor to its caller. Any exception that can

be thrown out of a constructor in this way must be listed in a throws clause in the constructor
declaration, unless the exception is an instance of Error, RuntimeException, or a subclass of one
of those classes.

Subclasses of the Error class correspond to situations that are not easily predicted, such as the system
running out of memory. Subclasses of RuntimeException correspond to many common runtime
problems, such as illegal casts and array index problems. The classes listed in a throws clause must be
Throwable or any of its subclasses; the Throwable class is the superclass of all objects that can be
thrown in Java.

References Exception Handling 9; The throw Statement; The try Statement

Constructor implementation

The block at the end of a constructor declaration contains the implementation of the constructor. The
block is called the constructor body. The first statement in a constructor body is special; it is the only
place that Java allows an explicit call to a constructor outside of an allocation expression. An explicit call
to a constructor has a special form:

[Graphic: Figure from the text]

In an explicit constructor call, the keyword this can be used to specify a call to a constructor in the
same class. The keyword super can be used to specify a call to a constructor in the immediate
superclass.

For example:

class Square extends RegularPolygon {
 // Construct a square without specifying the length of the sides

 Square() {
 this(5);
 }
 // Construct a square with sides of a specified length
 Square(int len) {
 super(4,len);
 }
}

The first constructor simply calls the second constructor with the argument 5. The second constructor
calls a constructor in the immediate superclass to create a four-sided regular polygon with sides of the
given length.

Except for the constructors in the class Object, a constructor always begins by calling another
constructor in the same class or in its immediate superclass. If the first statement in a constructor is not
an explicit call to another constructor using this or super and the class is not Object, the compiler
inserts a call to super() before the first statement in the constructor.

In other words, if a constructor does not begin with an explicit call to another constructor, it begins with
an implicit call to the constructor of its immediate superclass that takes no argument. The result is
constructor chaining: a constructor for each superclass of a class is called before the constructor of the
class executes any of its own code. After all of the calls to the superclasses' constructors (explicit or
implicit) have returned, any instance variables that have initializers are initialized, and finally the
constructor executes its own code.

Constructor chaining places a restriction on the arguments that can be passed to a constructor in an
explicit constructor call. The expressions provided as arguments must not refer to any instance variables
of the object being created because these instance variables are not initialized until the superclass's
constructor returns.

References ArgumentList 4.1.8; Object Allocation Expressions; this; super

The default constructor

If a class declaration does not contain any constructor declarations, Java supplies a default constructor for
the class. The default constructor is public, it takes no arguments, and it simply calls the constructor of
its class's superclass that takes no arguments. The default constructor is approximately equivalent to:

public MyClass() {
 super();
}

Because Java creates a default constructor only for a class that does not have any explicitly declared
constructors, it is possible for the superclass of that class not to have a constructor that takes no
arguments. If a class declaration does not contain a constructor declaration and its immediate superclass
does not have a constructor that takes no arguments, the compiler issues an error message because the
default constructor references a non-existent constructor in the superclass. The default constructor for the
class Object does not contain a call to another constructor because class Object has no superclass.

References Object

Constructor inheritance

A subclass does not inherit constructors from its superclass, as it does normal methods. This is one
important difference between regular methods and constructors: constructors are not inherited. However,
a subclass can access a constructor in its superclass, as long as the constructor is accessible, based on any
access modifiers used in its declaration.

This example illustrates the difference between inheritance and accessibility:

public class A {
 public A (int q) {
 }
}
public class B extends A {
 public B () {
 super(5);
 }
}

Although class B is a subclass of class A, B does not inherit the public constructor in A that takes a single
argument. This means that if you try to create a new instance of B using an allocation expression with a
single argument, you'll get an error message from the compiler. Here's an erroneous call:

B b1 = new B(9);

However, as shown in the example, the constructor in B can access the constructor in A using the
keyword super.

The finalize method

A class declaration can include a special method that is called before an instance of the class is destroyed
by the garbage collector. This method is called a finalizer ; it has the name finalize(). The

finalize() method for a class must be declared with no parameters, a void return type, and no
modifiers:

void finalize() {...}

If a class has a finalize() method, it is normally called by the garbage collector before an object of
that class type is destroyed. A program can also explicitly call an object's finalize() method, but in
this case, the garbage collector does not call the method during the object destruction process. If the
garbage collector does call an object's finalize() method, the garbage collector does not
immediately destroy the object because the finalize() method might do something that results in a
reference to the object. Thus the garbage collector waits to destroy the object until it can again prove it is
safe to do so. The next time the garbage collector decides it is safe to destroy the object, it does so
without calling the finalizer again. In any case, a finalize() method is never called more than once
by the garbage collector for a particular object.

A superclass of the class may also define a finalize() method, but Java does not provide a
mechanism that automatically calls the superclass's finalize() method. If a class contains a
finalize() method, it is a good idea for that method to call super.finalize() as the very last
thing that it does. This technique ensures that the finalize() method of the superclass gets called.
The technique even works if the superclass does not explicitly define a finalize() method, since
every class inherits a default finalize() method from the Object class. This default finalize
method does not do anything.

References Object Destruction

Static Initializers

A static initializer is a piece of code that is executed when a class is loaded. A static initializer is simply
a block of code in a class declaration that is preceded by the keyword static:

[Graphic: Figure from the text]

A class is loaded when its definition is needed by another class. You can specifically request that a class
be loaded by calling the forName() method of the Class class on the class you want to load.
Alternatively, you can use the loadClass() method of a ClassLoader object to load a class
directly.

When a class is loaded, a Class object is created to represent it and storage for the class's static
variables is allocated. When a class is initialized, its static initializers and static variable initializers

are evaluated in the order in which they appear in the class declaration. For example, here is a class that
contains both static initializers and static variable initializers:

class foo {
 static int i = 4;
 static {
 i += 2;
 j = 5 * i;
 }
 static int j = 7;
 static double d;
 static frame f = new Frame();
 static { d = Math.tan(Math.PI/j); }
}

When the foo class is loaded, here is what happens. First, the variable i is set to 4. Then the first static
initializer is executed. It increments i by 2, which makes it 6, and sets j to 5*i, which is 30. Next, the
variable j is set to 7 by its initializer; this overwrites the value that was set in the static initializer. The
variable f is then set to the new Frame object created by its initializer. Finally, the second static

initializer is executed. It sets the variable d to , which is .

Notice that the first static initializer uses the variable j, even though the variable is not declared until
after the static initializer. A static initializer can refer to a static variable that is declared after the
static initializer. However, the same is not true for static variable initializers. A static variable
initializer cannot refer to any variables that are declared after its own declaration, or the compiler
generates an error message. The following class declaration is erroneous:

class foo {
 static int x = y*3; // error because y defined after x
 static int y;
}

If an exception is thrown out of a static initializer, the method that caused the class to be defined throws
an ExceptionInInitializerError. This ExceptionInInitializerError contains a
reference to the original exception that can be fetched by calling its getException() method.

References Blocks; Class; Errors; Variables

Instance Initializers

An instance initializer is a piece of code that is executed when an instance of a class is created.

Specifically, it is executed after the object's immediate superclass constructor returns, but before the
constructor of the class itself runs. An instance initializer is simply a block of code in a class that is not in
any method. Here is the formal syntax:

[Graphic: Figure from the text]

Every class has at least one constructor that explicitly or implicitly calls one of the constructors of its
immediate superclass before it does anything else. When the superclass's constructor returns, any
instance initializers and instance variable initializers are evaluated before the constructor does anything
else. The instance initializers and instance variable initializers are evaluated in the order in which they
appear in the class declaration. If an instance initializer throws an exception, the exception appears to
have come from the constructor that called the superclass's constructor.

References Blocks; Constructors; Variable initializers

Nested Top-Level and Member Classes

Nested top-level classes and member classes are classes that are declared inside of another class. Just as
with a top-level class declaration, the declaration of a nested top-level class or member class creates a
reference type in Java. Here's the formal definition of a nested top-level or member class declaration:

[Graphic: Figure from the text]

A class declared inside of another class has access to all of the variables, methods, and other inner classes
of the enclosing class. If a nested top-level or member class is not private, it can also be accessed
outside of its enclosing class by qualifying its name with the name of its enclosing class, as follows:

EnclosingClass.InnerClass

The syntax for declaring nested top-level classes and member classes is not supported prior to Java 1.1.

References Nested top-level classes and interfaces; Member classes; Class Declarations

Inner class modifiers

The keywords public, protected, and private can be used in the declaration of a nested top-
level or member class to specify the accessibility of the inner class. In this situation, the modifiers have
the following meanings:

public

A nested top-level or member class that is declared public is accessible from any class that can
access the enclosing class.

protected

A nested top-level or member class that is declared protected is accessible from any class that
is part of the same package as the enclosing class. Such an inner class is also accessible to any

subclass of the enclosing class, regardless of whether or not the subclass is part of the same
package.

private

A nested top-level or member class that is declared private is only accessible from its
enclosing class and other classes declared within the enclosing class. In particular, an inner class
that is declared private is not accessible in subclasses of its enclosing class.

If a nested top-level or member class is not declared with any of the access modifiers, the class has the
default accessability. Default access is often called "friendly" access because it is similar to friendly
access in C++. An inner class with default access is accessible in any class that is part of the same
package as the enclosing class. However, a friendly inner class is not accessible to classes outside of the
package of the enclosing class, even if the desired classes are subclasses of the enclosing class.

The keywords abstract, final, and static can also be used in the declaration of a nested top-
level or member class. These modifiers have the following meanings:

abstract

If a nested top-level or member class is declared abstract, no instances of the class may be
created. An inner class declared abstract may contain abstract methods; classes not
declared abstract may not contain abstract methods and must override any abstract
methods they inherit with methods that are not abstract. Furthermore, classes that implement
an interface and are not declared abstract must contain or inherit methods that are not
abstract, that have the same name, have the same number of parameters, and have
corresponding parameter types as the methods declared in the interfaces that the class implements.

final

If a nested top-level or member class is declared final, it cannot be subclassed. In other words,
it connot appear in the extends clause of another class.

static

An inner class that is declared with the static modifier is called a nested top-level class. A
class can only be declared with the static modifier if its enclosing class is a top-level class
(i.e., it is not declared within another class). The code within a nested top-level class cannot
directly access non-static variables and methods of its enclosing class.

An inner class that is not declared with the static modifier is called a member class. The code
within a member class can access all of the variables and methods of its enclosing class, including

private variables and methods.

References Class Modifiers; Local class modifiers

Inner class members

The body of a nested top-level or member class cannot declare any static variables, static
methods, static classes, or static initializers. Beyond those restrictions, the remainder of the
declaration is the same as that for a top-level class declaration, which is described in Class Declarations.

References Class Declarations; Constructors; Instance Initializers; Methods; Nested Top-Level and
Member Classes; Static Initializers; Variables

Object-Orientation Java Style Interface Declarations

Chapter 4
Expressions

4.6 Additive Operators

The additive operators in Java are binary operators that are used for addition and string concatenation (+)
and subtraction (-). The additive operators appear in additive expressions.

[Graphic: Figure from the text]

The additive operators are equal in precedence and are evaluated from left to right.

References Multiplicative Operators; Order of Operations

Arithmetic Addition Operator +

The binary arithmetic addition operator + produces a pure value that is the sum of its operands. The
arithmetic + operator may appear in an additive expression. The arithmetic addition operator never
throws an exception.

Here is an example that uses the arithmetic addition operator:

int addThree (int x, int y, int z) {
 return x + y + z;
}

If the type of either operand of + is a reference to a String object, the operator is the string
concatenation operator, not the arithmetic addition operator. The string concatenation operator is
described in String Concatenation Operator +.

Otherwise, the types of both operands of the arithmetic addition operator must be arithmetic types, or a
compile-time error occurs. The + operator may perform type conversions on its operands:

● If either operand is of type double, the other operand is converted to double and the operation
produces a double value.

● Otherwise, if either operand is of type float, the other operand is converted to float and the
operation produces a float value.

● Otherwise, if either operand is of type long, the other operand is converted to long and the
operation produces a long value.

● Otherwise, both operands are converted to int and the operation produces an int value.

If the addition of integer data overflows, the value produced by + contains the low order bits of the sum
and the sign of the value is the opposite of the mathematically correct sign, due to the limitations of the
two's complement representation used for integer data.

The addition of floating-point data is governed by the following rules:

● If either operand is not-a-number (NaN), the sum is NaN.

● If one operand is positive infinity and the other is negative infinity, the sum is NaN.

● If both of the operands are positive infinity, the sum is positive infinity.

● If both of the operands are negative infinity, the sum is negative infinity.

● If one of the operands is an infinity value and the other operand is a finite value, the sum is the
same infinity value as the operand.

● If one operand is positive zero and the other is negative zero; the sum is positive zero.

● If both operands are positive zero, the sum is positive zero.

● If both operands are negative zero, the sum is negative zero.

● If neither operand is NaN nor an infinity value, the sum is rounded to the nearest representable
value. If the magnitude of the sum is too large to be represented, the operation overflows and an
infinity value of the appropriate sign is produced. If the magnitude of the sum is too small to be
represented, the operation underflows and a zero value of the appropriate sign is produced.

References Arithmetic Types; String Concatenation Operator +

Arithmetic Subtraction Operator -

The binary subtraction operator - produces a pure value that is the difference between its operands; it
subtracts its right operand from its left operand. The arithmetic - operator may appear in an additive
expression. The arithmetic subtraction operator never throws an exception.

Here is an example that uses the arithmetic subtraction operator:

int subThree (int x, int y, int z) {
 return x - y - z;
}

The types of both operands of the arithmetic subtraction operator must be arithmetic types, or a compile-
time error occurs. The - operator may perform type conversions on its operands:

● If either operand is of type double, the other operand is converted to double and the operation
produces a double value.

● Otherwise, if either operand is of type float, the other operand is converted to float and the
operation produces a float value.

● Otherwise, if either operand is of type long, the other operand is converted to long and the
operation produces a long value.

● Otherwise, both operands are converted to int and the operation produces an int value.

For both integer and floating-point data, a-b always produces the same result as a-(+b).

If the subtraction of integer data overflows, the value produced by - contains the low order bits of the
difference and the sign of the value is the opposite of the mathematically correct sign, due to the

limitations of the two's complement representation used for integer data.

The subtraction of floating-point data is governed by the following rules:

● If either operand is not-a-number (NaN), the difference is NaN.

● If the left operand is positive infinity and the right operand is negative infinity, the difference is
positive infinity.

● If the left operand is negative infinity and the right operand is positive infinity, the difference is
negative infinity.

● If both operands are positive infinity, the difference is NaN.

● If both operands are negative infinity, the difference is NaN.

● If the left operand is an infinity value and the right operand is a finite value, the difference is the
same infinity value as the left operand.

● If the left operand is a finite value and the right argument is an infinity value, the difference is the
opposite infinity value of the right operand.

● If both operands are either positive zero or negative zero, the difference is positive zero.

● If the left operand is positive zero and the right operand is negative zero, the difference is positive
zero.

● If the left operand is negative zero and the right operand is positive zero, the difference is negative
zero.

● If neither operand is NaN nor an infinity value, the difference is rounded to the nearest
representable value. If the magnitude of the difference is too large to be represented, the operation
overflows and an infinity value of the appropriate sign is produced. If the magnitude of the
difference is too small to be represented, the operation underflows and a zero value of the
appropriate sign is produced.

References Arithmetic Types

String Concatenation Operator +

The string concatenation operator + produces a pure value that is a reference to a String object that it

creates. The String object contains the concatenation of the operands; the characters of the left
operand precede the characters of the right operand in the newly created string. The string concatenation
+ operator may appear in an additive expression.

Here is an example of some code that uses the string concatenation operator:

// format seconds into hours, minutes, and seconds
String formatTime(int t) {
 int minutes, seconds;
 seconds = t%60;
 t /= 60;
 minutes = t%60;
 return t/60 + ":" + minutes + ":" + seconds;
}

If neither operand of + is a reference to a String object, the operator is the arithmetic addition
operator, not the string concatenation operator. Note that Java does not allow a program to define
overloaded operators. However, the language defines the + operator to have a meaning that is
fundamentally different from arithmetic addition if at least one of its operands is a String object.

The way in which Java decides if + means arithmetic addition or string concatenation means that the use
of parentheses can alter the meaning of the + operator. Consider the following code:

int x = 3, y = 4;
System.out.println("x = " + x + ", y = " + y);
System.out.println("\"??\" + x + y ==> " + "??" + x + y);
System.out.println("\"??\" + (x + y) ==> " + "??"+ (x + y));

In the output from this code, you can see that the addition of parentheses changes the meaning of the last
+ from string concatenation to arithmetic addition:

x = 3, y = 4
"??" + x + y ==> ??34
"??" + (x + y) ==> ??7

If one of the operands of + is a String object and the other is not, the operand that is not a String
object is converted to one using the following rules:

● If the operand is an object reference that is null, it is converted to the string literal "null".

● If the operand is a non-null reference to an object that is not a string, the object's toString()
method is called. The result of the conversion is the string value returned by the object's

toString() method, unless the return value is null, in which case the result of the conversion
is the string literal "null". Since the Object class defines a toString() method, every
class in Java has such a method.

● If the type of the operand is char, the operand is converted to a reference to a String object
that has a length of one and contains that character.

● If the type of the operand is an integer type other than char, the operand is converted to a base
10 string representation of its value. If the value is negative, the string value starts with a minus
sign; if it is positive there is no sign character. If the value is zero, the result of the conversion is
"0". Otherwise, the string representation of the integer does not have any leading zeros.

● If the type of the operand is a floating-point type, the exact string representation depends on the
value being converted. If the absolute value of d is greater than or equal to 10^-3 or less than or
equal to 10^7, it is converted to a string with an optional minus sign (if the value is negative)
followed by up to eight digits before the decimal point, a decimal point, and the necessary number
of digits after the decimal point (but no trailing zero if there is more than one significant digit).
There is always a minimum of one digit after the decimal point.

Otherwise, the value is converted to a string with an optional minus sign (if the value is negative),
followed by a single digit, a decimal point, the necessary number of digits after the decimal point
(but no trailing zero if there is more than one significant digit), and the letter E followed by a plus
or a minus sign and a base 10 exponent of at least one digit. Again, there is always a minimum of
one digit after the decimal point.

In addition, the values NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY, -0.0, and
+0.0 are represented by the strings "NaN", "--Infinity", "Infinity", "--0.0", and
"0.0", respectively.

Note that the specification for this conversion has changed as of Java 1.1. Prior to that release, the
conversion provided a string representation that was equivalent to the %g format of the printf
function in C. In addition, the string representations of the infinity values, the zero values, and
NaN are not specified prior to Java 1.1.

● If the type of the operand is boolean, the value is converted to a reference to either the string
literal "true" or the string literal "false".

Java uses the StringBuffer object to implement string concatenation. Consider the following code:

String s, s1,s2;
s = s1 + s2;

To compute the string concatenation, Java compiler generates code equivalent to:

s = new StringBuffer().append(s1).append(s2).toString();

Consider another expression:

s = 1 + s1 + 2

In this case, the Java compiler generates code equivalent to:

s = new StringBuffer().append(1).append(s1).append(2).toString()

No matter how many strings are being concatenated in an expression, the expression always produces
exactly one StringBuffer object and one String object.[3] From an efficiency standpoint, if you
concatenate more than two strings, it may be more efficient to do so in a single expression, rather than in
multiple expressions.

[3] Although an optimizing compiler should be smart enough to combine multiple
concatenation expressions when it is advantageous, the compiler provided with Sun's
reference implementation of Java does not do this.

References Arithmetic Addition Operator +; Object; String; StringBuffer

Multiplicative Operators Shift Operators

Chapter 4
Expressions

4.13 Assignment Operators

Assignment operators set the values of variables and array elements. An assignment operator may appear
in an assignment expression:

[Graphic: Figure from the text]

The actual assignment operator in an assignment expression can be the simple assignment operator = or
one of the compound assignment operators shown below. All of the assignment operators are equal in
precedence. Assignment operators are evaluated from right to left, so a=b=c is equivalent to a=(b=c).

The left operand of an assignment operator must be an expression that produces a variable or an array
element. The left operand of an assignment operator cannot be an expression that evaluates to a pure
value, or a compile-time error occurs. So, for example, the left operand cannot be a final variable,
since a final variable evaluates to a pure value, not a variable.

The assignment operator itself produces a pure value, not a variable or an array element. The pure value
produced by an assignment operator is the value of the variable or array element after it has been set by
the assignment operation. The type of this pure value is the type of the variable or array element.

The simple assignment operator = just sets the value of a variable or array element. It does not imply any
other computation. The right operand of the simple assignment operator can be of any type, as long as
that type is assignment-compatible with the type of the left operand, as described in the next section. If
the right operand is not assignment-compatible, a compile-time error occurs.

The compound assignment operators are:

+= -= *=

/= |= &=

^= %= <<=

>>= >>>=

Both of the operands of a compound assignment operator must be of primitive types, or a compile-time
error occurs. The one exception is if the left operand of the += operator is of type String; in this case
the right operand can be of any type.

A compound assignment operator combines a binary operator with the simple assignment operator =.
Thus, to be assignment-compatible, the right operand of a compound assignment operator must be of a
type that complies with the rules for the indicated binary operation. Otherwise, a compile-time error
occurs. An assignment expression of the form:

e1 op = e2

is approximately equivalent to:

e1 = (type) ((e1) op (e2))

where type is the type of the expression e1. The only difference is that e1 is only evaluated once in the
expression that uses the compound assignment operator.

For example, consider the following code fragment:

j = 0;
a[0] = 3;
a[1]=6;
a[j++] += 2;

After this code is executed, j equals 1 and a[0] is 5. Contrast this with the following code:

j = 0;
a[0] = 3;
a[1]=6;
a[j++] = a[j++] + 2;

After this code is executed, j equals 2 and a[0] is 8 because j++ is evaluated twice.

References Array Types; **UNKNOWN XREF**; Conditional Operator; Interface Variables; Local
Variables; Order of Operations; Primitive Types; Reference Types; String; Unary Operators; Variables

Assignment Compatibility

Saying that one type of value is assignment-compatible with another type of value means that a value of
the first type can be assigned to a variable of the second type. Here are the rules for assignment
compatibility in Java:

● Every type is assignment-compatible with itself.

● The boolean type is not assignment-compatible with any other type.

● A value of any integer type can be assigned to a variable of any other integer type if the variable
is of a type that allows it to contain the value without any loss of information.

● A value of any integer type can be assigned to a variable of any floating-point type, but a value of
any floating-point type cannot be assigned to a variable of any integer type.

● A float value can be assigned to a double variable, but a double value cannot be assigned
to a float variable.

● With a type cast, a value of any arithmetic type can be assigned to a variable of any other
arithmetic type.

● Any reference can be assigned to a variable that is declared of type Object.

● A reference to an object can be assigned to a class-type reference variable if the class of the
variable is the same class or a superclass of the class of the object.

● A reference to an object can be assigned to an interface-type reference variable if the class of the
object implements the interface.

● A reference to an array can be assigned to an array variable if either of the following conditions is
true:

❍ Both array types contain elements of the same type.

❍ Both array types contain object references and the type of reference contained in the
elements of the array reference can be assigned to the type of reference contained in the
elements of the variable.

Here's an example that illustrates the rules about assignment compatibility of arrays:

class Triangle extends Shape {...}
...
int[] i = new int[8];
int j[];
long l[];
short s[];
Triangle[] t;
Shape[] sh;
j = i; // Okay
s = i; // Error
l = i; // Error
sh = t; // Okay
t = sh; // Error

Assigning i to j is fine because both variables are declared as references to arrays that contain int
values. On the other hand, assigning i to s is an error because the variables are declared as references to
arrays that contain different kinds of elements and these elements are not object references. Assigning i
to l is an error for the same reason. Assigning t to sh is fine because the variables are declared as
references to arrays that contain object references, and sh[0]=t[0] is legal. However, assigning sh to
t is an error because t[0]=sh[0] is not legal.

It is not always possible for the compiler to determine if an assignment to an array element is legal; in
these cases the assignment compatibility is checked at runtime. This situation can occur when a variable
contains a reference to an array whose type of elements is specified by a class or interface name. In this
case, it may not be possible to determine the actual type of the array elements until runtime. Consider the
following example:

void foo (InputStream a[]) {
 a[0] = new FileInputStream("/dev/null");
}

Figure 4.1 shows the InputStream class and some of its subclasses in the java.io package.

Figure 4.1: InputStream and some of its classes

[Graphic: Figure 4-1]

Any array with elements that contain references to objects of class InputStream or any of its
subclasses can be passed to the method foo() shown in the above example. For example:

FileInputStream f[] = new FileInputStream[3];
foo(f);

Since FileInputStream is a subclass of InputStream, the call to foo() does not cause any
problems at runtime.

However, the following call to foo() is problematic:

DataInputStream f[] = new DataInputStream[3];
foo(f);

This call causes an ArrayStoreException to be thrown at runtime. Although
DataInputStream is a subclass of InputStream, it is not a superclass of FileInputStream,
so the array element assignment in foo() is not assignment-compatible.

References Arithmetic Types; Array Types; Boolean Type; Class Types; Interface Types

Conditional Operator Order of Operations

Chapter 4
Expressions

4.10 Bitwise/Logical Operators

The bitwise/logical operators in Java are used for bitwise and logical AND (&), bitwise and logical
exclusive OR (^), and bitwise and logical inclusive OR (|) operations. These operators have different
precedence; the & operator has the highest precedence of the group and the | operator has the lowest. All
of the operators are evaluated from left to right.

The unary operator ~ provides a bitwise negation operation.

References Bitwise Negation Operator ~; Order of Operations

Bitwise/Logical AND Operator &

The bitwise/logical AND operator & produces a pure value that is the AND of its operands. The &
operator may appear in a bitwise or logical AND expression:

The bitwise/logical AND operator is evaluated from left to right. The operator never throws an
exception.

Here is a code example that shows the use of the bitwise AND operator:

boolean isOdd(int x) {
 return (x & 1) == 1;
}

The operands of the bitwise/logical AND operator must both be of either an integer type or the type
boolean, or a compile-time error occurs.

If both operands are of integer types, the operator performs a bitwise AND operation. The operator may
perform type conversions on the operands:

● If either operand is of type long, the other operand is converted to long and the operation
produces a long value.

● Otherwise, both operands are converted to int and the operation produces an int value.

The bitwise AND operator produces a pure value that is the bitwise AND of its operands. If the
corresponding bits in both of the converted operands are 1s, the corresponding bit in the result is a 1;
otherwise the corresponding bit in the result is a 0.

If both operands are of type boolean, the operator performs a logical AND operation. The logical AND
operation produces a pure value of type boolean. If both operands are true, the operation produces
true; otherwise the operation produces false. This operator differs from the conditional AND
operator (&&) because it always evaluates both of its operands, even if its left operand evaluates to
false.

References Boolean AND Operator &&; Boolean Type; Equality Comparison Operators; Integer types;
Order of Operations

Bitwise/Logical Exclusive OR Operator ^

The bitwise/logical exclusive OR operator ^ produces a pure value that is the exclusive OR of its
operands. The ^ operator may appear in a bitwise or logical exclusive OR expression:

The bitwise/logical exclusive OR operator is evaluated from left to right. The operator never throws an
exception.

The operands of the bitwise/logical exclusive OR operator must both be of either an integer type or the
type boolean, or a compile-time error occurs.

If both operands are of integer types, the operator performs a bitwise exclusive OR operation. The

operator may perform type conversions on the operands:

● If either operand is of type long, the other operand is converted to long and the operation
produces a long value.

● Otherwise, both operands are converted to int and the operation produces an int value.

The bitwise exclusive OR operator produces a pure value that is the bitwise exclusive OR of its operands.
If the corresponding bits in the converted operands are both 0 or both 1, the corresponding bit in the
result is a 0; otherwise the corresponding bit in the result is a 1.

If both operands are of type boolean, the operator performs a logical exclusive OR operation. The
logical exclusive OR operation produces a pure value of type boolean. If either, but not both, operands
are true, the operation produces true; otherwise the operation produces false.

References Bitwise/Logical AND Operator &; Boolean Type; Integer types; Order of Operations

Bitwise/Logical Inclusive OR Operator |

The bitwise/logical inclusive OR operator | produces a pure value that is the inclusive OR of its
operands. The | operator may appear in a bitwise or logical inclusive OR expression:

The bitwise/logical inclusive OR operator is evaluated from left to right. The operator never throws an
exception.

Here is a code example that shows the use of the bitwise inclusive OR operator:

setFont("Helvetica", Font.BOLD | Font.ITALIC, 18);

The operands of the bitwise/logical inclusive OR operator must both be of either an integer type or the
type boolean, or a compile-time error occurs.

If both operands are of integer types, the operator performs a bitwise inclusive OR operation. The
operator may perform type conversions on the operands:

● If either operand is of type long, the other operand is converted to long and the operation
produces a long value.

● Otherwise, both operands are converted to int and the operation produces an int value.

The bitwise inclusive OR operator produces a pure value that is the bitwise inclusive OR of its operands.
If the corresponding bits in either or both of the converted operands are 1s, the corresponding bit in the
result is a 1; otherwise the corresponding bit in the result is a 0.

If both operands are of type boolean, the operator performs a logical inclusive OR operation. The
logical inclusive OR operation produces a pure value of type boolean. If either or both operands are
true, the operation produces true; otherwise the operation produces false. This operator differs
from the conditional OR operator (||) because it always evaluates both of its operands, even if its left
operand evaluates to true.

References Boolean OR Operator ||; Boolean Type; Bitwise/Logical Exclusive OR Operator ^; Integer
types; Order of Operations

Equality Comparison
Operators

Boolean Operators

Chapter 10
The java.lang Package

Byte

Name

Byte

Synopsis

Class Name:

java.lang.Byte

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The Byte class provides an object wrapper for a byte value. This is useful when you need to treat a byte value as
an object. For example, there are a number of utility methods that take a reference to an Object as one of their
arguments. You cannot specify a byte value for one of these arguments, but you can provide a reference to a Byte

object that encapsulates the byte value. Furthermore, the Byte class is necessary as of JDK 1.1 to support the
Reflection API and class literals.

The Byte class also provides a number of utility methods for converting byte values to other primitive types and
for converting byte values to strings and vice versa.

Class Summary

public final class java.lang.Byte extends java.lang.Number {
 // Constants
 public static final byte MAX_VALUE;
 public static final byte MIN_VALUE;
 public static final Class TYPE;
 // Constructors
 public Byte(byte value);
 public Byte(String s);
 // Class Methods
 public static Byte decode(String nm);
 public static byte parseByte(String s);
 public static byte parseByte(String s, int radix);
 public static String toString(byte b);
 public static Byte valueOf(String s, int radix);
 public static Byte valueOf(String s);
 // Instance Methods
 public byte byteValue();
 public double doubleValue;
 public boolean equals(Object obj);
 public float floatValue
 public int hashCode();
 public int intValue();
 public long longValue();
 public short shortValue();
 public String toString();
}

Constants

MAX_VALUE

public static final byte MAX_VALUE= 127

The largest value that can be represented by a byte.

MIN_VALUE

public static final byte MIN_VALUE= -128

The smallest value that can be represented by a byte.

TYPE

public static final Class TYPE

The Class object that represents the primitive type byte. It is always true that Byte.TYPE == byte.class.

Constructors

Byte

public Byte(byte value)

Parameters

value

The byte value to be encapsulated by this object.

Description

Creates a Byte object with the specified byte value.

public Byte(String s) throws NumberFormatException

Parameters

s

The string to be made into a Byte object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid byte literal.

Description

Constructs a Byte object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the constructor throws a NumberFormatException.

Class Methods

decode

public static Byte decode(String nm) throws NumberFormatException

Parameters

nm

A String representation of the value to be encapsulated by a Byte object. If the string begins with #
or 0x, it is a radix 16 representation of the value. If the string begins with 0, it is a radix 8
representation of the value. Otherwise, it is assumed to be a radix 10 representation of the value.

Returns

A Byte object that encapsulates the given value.

Throws

NumberFormatException

If the String contains any non-digit characters other than a leading minus sign or the value
represented by the String is less than Byte.MIN_VALUE or greater than Byte.MAX_VALUE.

Description

This method returns a Byte object that encapsulates the given value.

parseByte

public static byte parseByte(String s) throws NumberFormatException

Parameters

s

The String to be converted to a byte value.

Returns

The numeric value of the byte represented by the String object.

Throws

NumberFormatException

If the String does not contain a valid representation of a byte or the value represented by the
String is less than Byte.MIN_VALUE or greater than Byte.MAX_VALUE.

Description

This method returns the numeric value of the byte represented by the contents of the given String object.
The String must contain only decimal digits, except that the first character may be a minus sign.

 public static byte parseByte(String s, int radix) throws NumberFormatException

Parameters

s

The String to be converted to a byte value.

radix

The radix used in interpreting the characters in the String as digits. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX. If radix is in the range 2 through 10,
only characters for which the Character.isDigit() method returns true are considered to be
valid digits. If radix is in the range 11 through 36, characters in the ranges `A' through `Z' and `a'
through `z' may be considered valid digits.

Returns

The numeric value of the byte represented by the String object in the specified radix.

Throws

NumberFormatException

If the String does not contain a valid representation of a byte, radix is not in the appropriate
range, or the value represented by the String is less than Byte.MIN_VALUE or greater than
Byte.MAX_VALUE.

Description

This method returns the numeric value of the byte represented by the contents of the given String object in
the specified radix. The String must contain only valid digits of the specified radix, except that the first
character may be a minus sign. The digits are parsed in the specified radix to produce the numeric value.

toString

public String toString(byte b)

Parameters

b

The byte value to be converted to a string.

Returns

The string representation of the given value.

Description

This method returns a String object that contains the decimal representation of the given value.

This method returns a string that begins with `-' if the given value is negative. The rest of the string is a
sequence of one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if
its argument is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

valueOf

public static Byte valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into a Byte object.

Returns

The Byte object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a byte or the value represented by the
String is less than Byte.MIN_VALUE or greater than Byte.MAX_VALUE.

Description

Constructs a Byte object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the method throws a NumberFormatException.

 public static Byte valueOf(String s, int radix) throws NumberFormatException

Parameters

s

The string to be made into a Byte object.

radix

The radix used in converting the string to a value. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The Byte object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a byte, radix is not in the appropriate range,
or the value represented by the String is less than Byte.MIN_VALUE or greater than
Byte.MAX_VALUE.

Description

Constructs a Byte object with the value specified by the given string in the specified radix. The string should
consist of one or more digit characters or characters in the range `A' to `Z' or `a' to `z' that are considered digits
in the given radix. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the method throws a NumberFormatException.

Instance Methods

byteValue

public byte byteValue()

Returns

The value of this object as a byte.

Overrides

Number.byteValue()

Description

This method returns the value of this object as a byte.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Byte and it contains the same value as the object this

method is associated with.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this object as a float.

hashCode

public int hashCode()

Returns

A hashcode based on the byte value of the object.

Overrides

Object.hashCode()

Description

This method returns a hashcode computed from the value of this object.

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the value of this object as an int.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the value of this object as a long.

shortValue

public short shortValue()

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the value of this object as a short.

toString

public String toString()

Returns

The string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains the decimal representation of the value of this object.

This method returns a string that begins with `-` if the given value is negative. The rest of the string is a
sequence of one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if
its argument is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Character; Class; Double; Exceptions; Float; Integer literals; Integer types; Integer; Long; Number; Short; String

Boolean Character

Chapter 10
The java.lang Package

Character

Name

Character

Synopsis

Class Name:

java.lang.Character

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The Character class provides an object wrapper for a char value. This is useful when you need to treat a

char value as an object. For example, there are a number of utility methods that take a reference to an Object
as one of their arguments. You cannot specify a char value for one of these arguments, but you can provide a
reference to a Character object that encapsulates the char value. Furthermore, as of JDK 1.1, the
Character class is necessary to support the Reflection API and class literals.

In Java, Character objects represent values defined by the Unicode standard. Unicode is defined by an
organization called the Unicode Consortium. The defining document for Unicode is The Unicode Standard,
Version 2.0 (ISBN 0-201-48345-9). More recent information about Unicode is available at http://unicode.org.
Appendix a, The Unicode 2.0 Character Set, contains a table that lists the characters defined by the Unicode 2.0
standard.

The Character class provides some utility methods, such as methods for determining the type (e.g., uppercase
or lowercase, digit or letter) of a character and for converting from uppercase to lowercase. The logic for these
utility methods is based on a Unicode attribute table that is part of the Unicode standard. That table is available at
ftp://unicode.org/pub/2.0-Update/UnicodeData-2.0.14.txt.

Some of the methods in the Character class are concerned with characters that are digits; these characters are
used by a number of other classes to convert strings that contain numbers into actual numeric values. The digit-
related methods all use a radix value to interpret characters. The radix is the numeric base used to represent
numbers as characters or strings. Octal is a radix 8 representation, while hexadecimal is a radix 16 representation.
The methods that require a radix parameter use it to determine which characters should be treated as valid
digits. In radix 2, only the characters `0' and `1' are valid digits. In radix 16, the characters `0' through `9', `a'
through `z', and `A' through `Z' are considerd valid digits.

Class Summary

public final class java.lang.Character extends java.lang.Object
 implements java.io.Serializable {
 // Constants
 public final static byte COMBINING_SPACING_MARK; // New in 1.1
 public final static byte CONNECTOR_PUNCTUATION; // New in 1.1
 public final static byte CONTROL; // New in 1.1
 public final static byte CURRENCY_SYMBOL; // New in 1.1
 public final static byte DASH_PUNCTUATION; // New in 1.1
 public final static byte DECIMAL_DIGIT_NUMBER; // New in 1.1
 public final static byte ENCLOSING_MARK; // New in 1.1
 public final static byte END_PUNCTUATION; // New in 1.1
 public final static byte FORMAT; // New in 1.1
 public final static byte LETTER_NUMBER; // New in 1.1
 public final static byte LINE_SEPARATOR; // New in 1.1
 public final static byte LOWERCASE_LETTER; // New in 1.1
 public final static byte MATH_SYMBOL; // New in 1.1
 public final static int MAX_RADIX;
 public final static char MAX_VALUE;
 public final static int MIN_RADIX;

 public final static char MIN_VALUE;
 public final static byte MODIFIER_LETTER; // New in 1.1
 public final static byte MODIFIER_SYMBOL; // New in 1.1
 public final static byte NON_SPACING_MARK; // New in 1.1
 public final static byte OTHER_LETTER; // New in 1.1
 public final static byte OTHER_NUMBER; // New in 1.1
 public final static byte OTHER_PUNCTUATION; // New in 1.1
 public final static byte OTHER_SYMBOL; // New in 1.1
 public final static byte PARAGRAPH_SEPARATOR; // New in 1.1
 public final static byte PRIVATE_USE; // New in 1.1
 public final static byte SPACE_SEPARATOR; // New in 1.1
 public final static byte START_PUNCTUATION; // New in 1.1
 public final static byte SURROGATE; // New in 1.1
 public final static byte TITLECASE_LETTER; // New in 1.1
 public final static Class TYPE; // New in 1.1
 public final static byte UNASSIGNED; // New in 1.1
 public final static byte UPPERCASE_LETTER; // New in 1.1
 // Constructors
 public Character(char value);
 // Class Methods
 public static int digit(char ch, int radix);
 public static char forDigit(int digit, int radix);
 public static int getNumericValue(char ch); // New in 1.1
 public static int getType(char ch); // New in 1.1
 public static boolean isDefined(char ch);
 public static boolean isDigit(char ch);
 public static boolean isIdentifierIgnorable(char ch); // New in 1.1
 public static boolean isISOControl(char ch); // New in 1.1
 public static boolean isJavaIdentifierPart(char ch); // New in 1.1
 public static boolean isJavaIdentifierStart(char ch); // New in 1.1
 public static boolean isJavaLetter(char ch); // Deprecated in 1.1
 public static boolean isJavaLetterOrDigit(char ch); // Deprecated in 1.1
 public static boolean isLetter(char ch);
 public static boolean isLetterOrDigit(char ch);
 public static boolean isLowerCase(char ch);
 public static boolean isSpace(char ch); // Deprecated in 1.1
 public static boolean isSpaceChar(char ch); // New in 1.1
 public static boolean isTitleCase(char ch);
 public static boolean isUnicodeIdentifierPart(char ch); // New in 1.1
 public static boolean isUnicodeIdentifierStart(char ch);// New in 1.1
 public static boolean isUpperCase(char ch);
 public static boolean isWhitespace(char ch); // New in 1.1
 public static char toLowerCase(char ch);
 public static char toTitleCase(char ch);
 public static char toUpperCase(char ch);
 // Instance Methods
 public char charValue();

 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Constants

COMBINING_SPACING_MARK

public final static byte COMBINING_SPACING_MARK

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

CONNECTOR_PUNCTUATION

public final static byte CONNECTOR_PUNCTUATION

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

CONTROL

public final static byte CONTROL

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

CURRENCY_SYMBOL

public final static byte CURRENCY_SYMBOL

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

DASH_PUNCTUATION

public final static byte DASH_PUNCTUATION

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

DECIMAL_DIGIT_NUMBER

public final static byte DECIMAL_DIGIT_NUMBER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

ENCLOSING_MARK

public final static byte ENCLOSING_MARK

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

END_PUNCTUATION

public final static byte END_PUNCTUATION

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

FORMAT

public final static byte FORMAT

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

LETTER_NUMBER

public final static byte LETTER_NUMBER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

LINE_SEPARATOR

public final static byte LINE_SEPARATOR

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

LOWERCASE_LETTER

public final static byte LOWERCASE_LETTER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

MATH_SYMBOL

public final static byte MATH_SYMBOL

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

MAX_RADIX

public static final int MAX_RADIX = 36

Description

The maximum value that can be specified for a radix.

MAX_VALUE

public final static char MAX_VALUE = '\ufff'f

Description

The largest value that can be represented by a char.

MIN_RADIX

public static final int MIN_RADIX = 2

Description

The minimum value that can be specified for a radix.

MIN_VALUE

public final static char MIN_VALUE = '\u0000'

Description

The smallest value that can be represented by a char.

MODIFIER_LETTER

public final static byte MODIFIER_LETTER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

MODIFIER_SYMBOL

public final static byte MODIFIER_SYMBOL

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

NON_SPACING_MARK

public final static byte NON_SPACING_MARK

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

OTHER_LETTER

public final static byte OTHER_LETTER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

OTHER_NUMBER

public final static byte OTHER_NUMBER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

OTHER_PUNCTUATION

public final static byte OTHER_PUNCTUATION

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

OTHER_SYMBOL

public final static byte OTHER_SYMBOL

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

PARAGRAPH_SEPARATOR

public final static byte PARAGRAPH_SEPARATOR

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

PRIVATE_USE

public final static byte PRIVATE_USE

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

SPACE_SEPARATOR

public final static byte SPACE_SEPARATOR

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

START_PUNCTUATION

public final static byte START_PUNCTUATION

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

SURROGATE

public final static byte SURROGATE

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

TITLECASE_LETTER

public final static byte TITLECASE_LETTER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type char. It is always true that Character.TYPE ==
char.class.

UNASSIGNED

public final static byte UNASSIGNED

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

UPPERCASE_LETTER

public final static byte UPPERCASE_LETTER

Availability

New as of JDK 1.1

Description

This constant can be returned by the getType() method as the general category of a Unicode character.

Constructors

Character

public Character(char value)

Parameters

value

The char value to be encapsulated by this object.

Description

Creates a Character object with the given char value.

Class Methods

digit

public static int digit(char ch, int radix)

Parameters

ch

A char value that is a legal digit in the given radix.

radix

The radix used in interpreting the specified character as a digit. If radix is in the range 2 through
10, only characters for which the isDigit() method returns true are considered to be valid
digits. If radix is in the range 11 through 36, characters in the ranges `A' through `Z' and `a'
through `z' may be considered valid digits.

Returns

The numeric value of the digit. This method returns -1 if the value of ch is not considered a valid digit, if
radix is less than MIN_RADIX, or if radix is greater than MAX_RADIX.

Description

Returns the numeric value represented by a digit character. For example, digit('7',10) returns 7. If
the value of ch is not a valid digit, the method returns -1. For example, digit('7',2) returns -1
because '7' is not a valid digit in radix 2. A number of methods in other classes use this method to
convert strings that contain numbers to actual numeric values. The forDigit() method is an
approximate inverse of this method.

If radix is greater than 10, characters in the range `A' to `A'+radix-11 are treated as valid digits. Such
a character has the numeric value ch-`A'+10. By the same token, if radix is greater than 10, characters
in the range `a' to `a'+radix-11 are treated as valid digits. Such a character has the numeric value ch-
`a'+10.

forDigit

public static char forDigit(int digit, int radix)

Parameters

digit

The numeric value represented as a digit character.

radix

The radix used to represent the specified value.

Returns

The character that represents the digit corresponding to the specified numeric value. The method returns `\
0' if digit is less than 0, if digit is equal to or greater than radix, if radix is less than
MIN_RADIX, or if radix is greater than MAX_RADIX.

Description

This method returns the character that represents the digit corresponding to the specified numeric value. If
digit is in the range 0 through 9, the method returns `0'+digit. If digit is in the range 10 through
MAX_RADIX-1, the method returns `a'+digit-10. The method returns `\ 0' if digit is less than 0, if
digit is equal to or greater than radix, if radix is less than MIN_RADIX, or if radix is greater than
MAX_RADIX.

getNumericValue

public static int getNumericValue(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value.

Returns

The Unicode numeric value of the character as a nonnegative integer. This method returns -1 if the
character has no numeric value; it returns -2 if the character has a numeric value that is not a nonnegative
integer, such as 1/2.

Description

This method returns the Unicode numeric value of the specified character as a nonnegative integer.

getType

public static int getType(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value.

Returns

An int value that represents the Unicode general category type of the character.

Description

This method returns the Unicode general category type of the specified character. The value corresponds
to one of the general category constants defined by Character.

isDefined

public static boolean isDefined(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character has an assigned meaning in the Unicode character set; otherwise false.

Description

This method returns true if the specified character value has an assigned meaning in the Unicode
character set.

isDigit

public static boolean isDigit(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as a digit in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is a digit, based on the definition of the
character in Unicode.

isIdentifierIgnorable

public static boolean isIdentifierIgnorable(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character is ignorable in a Java or Unicode identifier; otherwise false.

Description

This method determines whether or not the specified character is ignorable in a Java or Unicode identifier.
The following characters are ignorable in a Java or Unicode identifier:

\u0000 - \u0008 \u000E - \u001B \u007F -
\u009F

ISO control characters that aren't whitespace

\u200C - \u200F Join controls

\u200A - \u200E Bidirectional controls

\u206A - \u206F Format controls

\uFEFF Zero-width no-break space

isISOControl

public static boolean isISOControl(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character is an ISO control character; otherwise false.

Description

This method determines whether or not the specified character is an ISO control character. A character is
an ISO control character if it falls in the range \u0000 through \u001F or \u007F through \u009F.

isJavaIdentifierPart

public static boolean isJavaIdentifierPart(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear after the first character in a Java identifier; otherwise false.

Description

This method returns true if the specified character can appear in a Java identifier after the first character.
A character is considered part of a Java identifier if and only if it is a letter, a digit, a currency symbol
(e.g., $), a connecting punctuation character (e.g., _), a numeric letter (e.g., a Roman numeral), a
combining mark, a nonspacing mark, or an ignorable control character.

isJavaIdentifierStart

public static boolean isJavaIdentifierStart(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear as the first character in a Java identifier; otherwise false.

Description

This method returns true if the specified character can appear in a Java identifier as the first character. A
character is considered a start of a Java identifier if and only if it is a letter, a currency symbol (e.g., $), or
a connecting punctuation character (e.g., _).

isJavaLetter

public static boolean isJavaLetter(char ch)

Availability

Deprecated as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear as the first character in a Java identifier; otherwise false.

Description

This method returns true if the specified character can appear as the first character in a Java identifier. A
character is considered a Java letter if and only if it is a letter, the character $, or the character _ . This
method returns false for digits because digits are not allowed as the first character of an identifier.

This method is deprecated as of JDK 1.1. You should use isJavaIdentifierStart() instead.

isJavaLetterOrDigit

public static boolean isJavaLetterOrDigit(char ch)

Availability

Deprecated as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear after the first character in a Java identifier; otherwise false.

Description

This method returns true if the specified character can appear in a Java identifier after the first character.
A character is considered a Java letter or digit if and only if it is a letter, a digit, the character $, or the
character _.

This method is deprecated as of JDK 1.1. You should use isJavaIdentifierPart() instead.

isLetter

public static boolean isLetter(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as a letter in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is a letter, based on the definition of the
character in Unicode. This method does not consider character values in ranges that have not been
assigned meanings by Unicode to be letters.

isLetterOrDigit

public static boolean isLetterOrDigit(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as a letter in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is a letter or a digit, based on the definition
of the character in Unicode. There are some ranges that have not been assigned meanings by Unicode. If a
character value is in one of these ranges, this method does not consider the character to be a letter.

isLowerCase

public static boolean isLowerCase (char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as lowercase in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is lowercase. Unicode defines a number of
characters that do not have case mappings; if the specified character is one of these characters, the method
returns false.

isSpace

public static boolean isSpace(char ch)

Availability

Deprecated as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as whitespace in the ISO-Latin-1 character set; otherwise
false.

Description

This method determines whether or not the specified character is whitespace. This method recognizes the
whitespace characters shown in the following table.

\u0009 Horizontal tab

\u000A Newline

\u000C Formfeed

\u000D Carriage return

\u0020 ` ` Space

This method is deprecated as of JDK 1.1. You should use isWhitespace() instead.

isSpaceChar

public static boolean isSpaceChar(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character is a Unicode 2.0 space characters; otherwise false.

Description

This method determines if the specified character is a space character according to the Unicode 2.0
specification. A character is considered to be a Unicode space character if and only if it has the general

category "Zs", "Zl", or "Zp" in the Unicode specification.

isTitleCase

public static boolean isTitleCase(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as titlecase in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is a titlecase character. Unicode defines a
number of characters that do not have case mappings; if the specified character is one of these characters,
the method returns false.

Many characters are defined by the Unicode standard as having upper- and lowercase forms. There are
some characters defined by the Unicode standard that also have a titlecase form. The glyphs for these
characters look like a combination of two Latin letters. The titlecase form of these characters has a glyph
that looks like a combination of an uppercase Latin character and a lowercase Latin character; this case
should be used when the character appears as the first character of a word in a title. For example, one of
the Unicode characters that has a titlecase form looks like the letter `D' followed by the letter `Z'. Here is
what the three forms of this letter look like:

Uppercase `DZ'

Titlecase `Dz'

Lowercase `dz'

isUnicodeIdentifierPart

public static boolean isUnicodeIdentifierPart(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear after the first character in a Unicode identifier; otherwise
false.

Description

This method returns true if the specified character can appear in a Unicode identifier after the first
character. A character is considered part of a Unicode identifier if and only if it is a letter, a digit, a
connecting punctuation character (e.g., _), a numeric letter (e.g., a Roman numeral), a combining mark, a
nonspacing mark, or an ignorable control character.

isUnicodeIdentifierStart

public static boolean isUnicodeIdentifierStart(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character can appear as the first character in a Unicode identifier; otherwise false.

Description

This method returns true if the specified character can appear in a Unicode identifier as the first
character. A character is considered a start of a Unicode identifier if and only if it is a letter.

isUpperCase

public static boolean isUpperCase(char ch)

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as uppercase in the Unicode character set; otherwise false.

Description

This method determines whether or not the specified character is uppercase. Unicode defines a number of
characters that do not have case mappings; if the specified character is one of these characters, the method
returns false.

isWhitespace

public static boolean isWhitespace(char ch)

Availability

New as of JDK 1.1

Parameters

ch

A char value to be tested.

Returns

true if the specified character is defined as whitespace according to Java; otherwise false.

Description

This method determines whether or not the specified character is whitespace. This method recognizes the
following as whitespace:

Unicode category "Zs" except \u00A0 and \uFEFF Unicode space separators except no-break spaces

Unicode category "Zl" Unicode line separators

Unicode category "Zp" Unicode paragraph separators

\u0009 Horizontal tab

\u000A Linefeed

\u000B Vertical tab

\u000C Formfeed

\u000D Carriage return

\u001C File separator

\u001D Group separator

\u001E Record separator

\u001F Unit separator

toLowerCase

public static char toLowerCase(char ch)

Parameters

ch

A char value to be converted to lowercase.

Returns

The lowercase equivalent of the specified character, or the character itself if it cannot be converted to
lowercase.

Description

This method returns the lowercase equivalent of the specified character value. If the specified character is
not uppercase or if it has no lowercase equivalent, the character is returned unmodified. The Unicode
attribute table determines if a character has a mapping to a lowercase equivalent.

Some Unicode characters in the range \u2000 through \u2FFF have lowercase mappings. For example,
\u2160 (Roman numeral one) has a lowercase mapping to \u2170 (small Roman numeral one). The
toLowerCase() method maps such characters to their lowercase equivalents even though the method
isUpperCase() does not return true for such characters.

toTitleCase

public static char toTitleCase(char ch)

Parameters

ch

A char value to be converted to titlecase.

Returns

The titlecase equivalent of the specified character, or the character itself if it cannot be converted to
titlecase.

Description

This method returns the titlecase equivalent of the specified character value. If the specified character has
no titlecase equivalent, the character is returned unmodified. The Unicode attribute table is used to
determine the character's titlecase equivalent.

Many characters are defined by the Unicode standard as having upper- and lowercase forms. There are
some characters defined by the Unicode standard that also have a titlecase form. The glyphs for these
characters look like a combination of two Latin letters. The titlecase form of these characters has a glyph
that looks like a combination of an uppercase Latin character and a lowercase Latin character; this case
should be used when the character appears as the first character of a word in a title. For example, one of
the Unicode characters that has a titlecase form looks like the letter `D' followed by the letter `Z'. Here is
what the three forms of this letter look like:

Uppercase `DZ'

Titlecase `Dz'

Lowercase `dz'

toUpperCase

public static char toUpperCase(char ch)

Parameters

ch

A char value to be converted to lowercase.

Returns

The uppercase equivalent of the specified character, or the character itself if it cannot be converted to
uppercase.

Description

This method returns the uppercase equivalent of the specified character value. If the specified character is

not lowercase or if it has no uppercase equivalent, the character is returned unmodified. The Unicode
attribute table determines if a character has a mapping to an uppercase equivalent.

Some Unicode characters in the range \u2000 through \u2FFF have uppercase mappings. For example,
\u2170 (small Roman numeral one) has a lowercase mapping to \u2160 (Roman numeral one). The
toUpperCase() method maps such characters to their uppercase equivalents even though the method
isLowerCase() does not return true for such characters.

Instance Methods

charValue

public char charValue()

Returns

The char value contained by the object.

equals

public boolean equals(Object obj)

Parameters

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Character, and it contains the same value as the
object this method is associated with.

hashCode

public int hashCode()

Returns

A hashcode based on the char value of the object.

Overrides

Object.hashCode()

toString

public String toString()

Returns

A String of length one that contains the character value of the object.

Overrides

Object.toString()

Description

This method returns a string representation of the Character object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Character literals; Class; Integer types; Object

Byte Class

Chapter 4
Expressions

4.12 Conditional Operator

The conditional operator (? :) is a ternary operator. The operator selects one of two expressions for
evaluation, based on the value of its first operand. In this way, the conditional operator is similar to an
if statement. A conditional operator may appear in a conditional expression:

[Graphic: Figure from the text]

The conditional operator produces a pure value. Conditional expressions group from right to left.
Consider the following expression:

g?f:e?d:c?b:a

It is equivalent to

g?f:(e?d:(c?b:a))

The first operand of the conditional operator must be of type boolean, or a compile-time error occurs.
If the first operand evaluates to true, the operator evaluates the second operand (i.e., the one following
the ?) and produces the pure value of that expression. Otherwise, if the first operand evaluates to false,
the operator evaluates the third operand (i.e., the one following the :) and produces the pure value of that
expression. Note that the conditional operator evaluates either its second operand or its third operand, but
not both.

The second and third operands of the conditional operator may be of any type, but they must both be of
the same kind of type or a compile-time error occurs. If one operand is of an arithmetic type, the other
must also be of an arithmetic type. If one operand is of type boolean, the other must also be of type
boolean. If one operand is a reference type, the other must also be a reference type. Note that neither
the second nor the third operand can be an expression that invokes a void method.

The types of the second and third operands determine the type of pure value that the conditional operator
produces. If the second and third operands are of different types, the operator may perform a type
conversion on the operand that it evaluates. The operator does this to ensure that it always produces the
same type of result for a given expression, regardless of the value of its first operand.

If the second and third operands are both of arithmetic types, the conditional operator determines the type
of value it produces as follows:[6]

● If both operands are of the same type, the conditional operator produces a pure value of that type.

[6] Some of these rules are different from the way it is done in C/C++. In those
languages, integer data of types smaller than int are always converted to int
when they appear in any expression.

● If one operand is of type short and the other operand is of type byte, the conditional operator
produces a short value.

● If one operand is of type short, char, or byte and the other operand is a constant expression
that can be represented as a value of that type, the conditional operator produces a pure value of
that type.

● Otherwise, if either operand is of type double, the operator produces a double value.

● Otherwise, if either operand is of type float, the operator produces a float value.

● Otherwise, if either operand is of type long, the operator produces a long value.

● Otherwise, if either operand is of type int, the operator produces an int value.

If the second and third operands are both of type boolean, the conditional operator produces a pure
boolean value.

If the second and third operands are both reference types, the conditional operator determines the type of
value it produces as follows:

● If both operands are null, the conditional operator produces the pure value null.

● Otherwise, if exactly one of the operands is null, the conditional operator produces a value of
the type of the other operand.

● Otherwise, it must be possible to cast the value of one of the operands to the type of the other
operand, or a compile-time error occurs. The conditional operator produces a value of the type
that would be the target of the cast.

References Arithmetic Types; Boolean Type; Boolean OR Operator ||; Expression 4; Order of
Operations; Reference Types

Boolean Operators Assignment Operators

Chapter 4
Expressions

4.9 Equality Comparison Operators

The equality comparison operators in Java are used for equal-to (==) and not-equal-to (!=) comparison
operations. The equality comparison operators may appear in an equality expression:

[Graphic: Figure from the text]

The equality comparison operators are equal in precedence and are evaluated from left to right. The ==
and != comparison operators can perform numerical comparisons, boolean comparisons, and
reference type comparisons. Both of these operators produce boolean values.

References Relational Comparison Operators; Order of Operations

Equal-To Operator ==

The equal-to operator == performs a comparison between its operands and returns a boolean value. It
returns the pure value true if the operands are equal to each other; otherwise it returns the pure value
false. The == operator may appear as part of an equality expression. The equal-to operator never
throws an exception.

The operands of == may be of any type, but they must both be of the same kind of type or a compile-
time error occurs. If one operand is of an arithmetic type, the other must also be of an arithmetic type. If
one operand is of type boolean, the other must also be of type boolean. If one operand is a reference
type, the other must also be a reference type. Note that neither operand can be an expression that invokes
a void method.

If both operands are of arithmetic types, then the operator performs an arithmetic equality comparison.

The operator may perform type conversions on the operands:

● If either operand is of type double, then the other operand is converted to double.

● Otherwise, if either operand is of type float, the other operand is converted to float.

● Otherwise, if either operand is of type long, the other operand is converted to long.

● Otherwise, both operands are converted to int.

The equality comparison of any two arithmetic values produces true if and only if both operands are
the same value; otherwise the comparison produces false. The comparison of floating-point data is
governed by the following additional rules:

● If either operand is not-a-number (NaN), the comparison produces false.

● Positive infinity is a distinct value that is equal to itself, and not equal to any other value.

● Negative infinity is a distinct value that is equal to itself, and not equal to any other value.

● Positive and negative zero are treated as equal, so -0.0==0.0 produces true.

If both operands are boolean values, the operator performs a Boolean equality comparison. The
comparison produces true if both operands are true or both operands are false. Otherwise, the
comparison produces false.

If both operands are reference types, the operator performs an object equality comparison. In order to
perform this type of comparison, it must be possible to cast the value of one of the operands to the type
of the other operand, or a compile-time error occurs. The comparison produces true if both of its
operands refer to the same object or if both of its operands are null; otherwise the comparison produces
false.

Because the == operator determines if two objects are the same object, it is not appropriate for
comparisons that need to determine if two objects have the same contents. For example, if you need to
know whether two String objects contain the same sequences of characters, the == operator is
inappropriate. You should use the equals() method instead:[4]

[4] This is similar to the difference in C between writing string1==string2 and
strcmp(string1, string2)==0.

string1.equals (string2) // Compares contents of strings

string1 == string2 // Compares actual string objects

References Arithmetic Types; Boolean Type; Reference Types

Not-Equal-To-Operator !=

The not-equal-to operator != performs a comparison between its operands and returns a boolean
value. It returns the pure value true if the operands are not equal to each other; otherwise it returns the
pure value false. The != operator may appear as part of an equality expression. The not-equal-to
operator never throws an exception.

The operands of != may be of any type, but they must both be of the same kind of type or a compile-
time error occurs. If one operand is of an arithmetic type, the other must also be of an arithmetic type. If
one operand is of type boolean, the other must also be of type boolean. If one operand is a reference
type, the other must also be a reference type. Note that neither operand can be an expression that invokes
a void method.

If both operands are of arithmetic types, the operator performs an arithmetic inequality comparison. The
operator may perform type conversions on the operands:

● If either operand is of type double, then the other operand is converted to double.

● Otherwise, if either operand is of type float, the other operand is converted to float.

● Otherwise, if either operand is of type long, the other operand is converted to long.

● Otherwise, both operands are converted to int.

The inequality comparison of any two arithmetic values produces true if and only if both operands are
not the same value; otherwise the comparison produces false. The comparison of floating-point data is
governed by the following additional rules:

● If either operand is not-a-number (NaN), the comparison produces true. NaN is the only value
that compares as not equal to itself.

● Positive infinity is a distinct value that is equal to itself, and not equal to any other value.

● Negative infinity is a distinct value that is equal to itself, and not equal to any other value.

● Positive and negative zero are treated as equal, so -0.0!=0.0 produces false.

If both operands are boolean values, the operator performs a Boolean inequality comparison. The
comparison produces false if both operands are true or both operands are false. Otherwise, the
comparison produces true.

If both operands are reference types, the operator performs an object equality comparison. In order to
perform this type of comparison, it must be possible to cast the value of one of the operands to the type
of the other operand, or a compile-time error occurs. The comparison produces true if both of its
operands refer to different objects and if both of its operands are not null; otherwise the comparison
produces false.

Because the != operator determines if two objects are different objects, it is not appropriate for
comparisons that need to determine if two objects have different contents. For example, if you need to
know whether two String objects contain different sequences of characters, the != operator is
inappropriate. You should use the equals() method instead:[5]

[5] This is similar to the difference in C between writing string1!=string2 and
strcmp(string1, string2)!=0.

!string1.equals (string2) // Compares contents of strings
string1 != string2 // Compares actual string objects

References Arithmetic Types; Boolean Type; Reference Types

Relational Comparison
Operators

Bitwise/Logical Operators

Chapter 4
Expressions

4.3 Increment/Decrement Operators

The ++ operator is used to increment the contents of a variable or an array element by one, while the - -
operator is used to decrement such a value by one. The operand of ++ or - - must evaluate to a variable
or an array element; it cannot be an expression that produces a pure value. For example, the following
operations succeed because the operand of the ++ operator produces a variable:

int g = 0;
g++;

However, the following uses of ++ generate error messages:

final int h = 23;
h++;
5++;

The expression h++ produces an error because h is declared final, which means that its value cannot
be changed. The expression 5++ generates an error message because 5 is a literal value, not a variable.

The increment and decrement operators can be used in both postfix expressions (e.g., i++ or i- -) and
in prefix expressions (e.g., ++i or - -i). Although both types of expression have the same side effect
of incrementing or decrementing a variable, they differ in the values that they produce. A postfix
expression produces a pure value that is the value of the variable before it is incremented or decremented,
while a prefix expression produces a pure value that is the value of the variable after it has been
incremented or decremented. For example, consider the following code fragment:

int i = 3, j = 3;
System.out.println("i++ produces " + i++);
System.out.println("++j produces " + ++j);

The above code fragment produces the following output:

i++ produces 3
++j produces 4

After the code fragment has been evaluated, both i and j have the value 4.

In essence, what you need to remember is that a prefix expression performs its increment or decrement
before producing a value, while a postfix expression performs its increment or decrement after producing
a value.

Postfix Increment/Decrement Operators

A postfix increment/decrement expression is a primary expression that may be followed by either a ++ or
a - -:

The postfix increment and decrement operators are equal in precedence and are effectively non-
associative.

If a postfix expression includes a ++ or - -, the primary expression must produce a variable or an array
element of an arithmetic type. The postfix increment operator (++) has the side effect of incrementing the
contents of the variable or array element by one. The postfix decrement operator (- -) has the side effect
of decrementing the contents of the variable or array element by one.

The data type of the value produced by a postfix increment/decrement operator is the same as the data
type of the variable or array element produced by the primary expression. A postfix increment/decrement
operator produces the original pure value stored in the variable or array element before it is incremented
or decremented.

The following is an example of using a postfix decrement operator:

char j = '\u0100';
while (j-- > 0) // call doit for char values

 doit(j); // '\u00ff' through '\u0000'

This example works because Java treats char as an arithmetic data type.

References Arithmetic Types; Order of Operations; Primary Expressions

Prefix Increment/Decrement Operators

A prefix increment/decrement expression is a primary expression that may be preceded by either a ++ or
a - -:

The prefix increment and decrement operators are equal in precedence and are effectively non-
associative.

If a prefix expression includes a ++ or - -, the primary expression must produce a variable or an array
element of an arithmetic type. The prefix increment operator (++) has the side effect of incrementing the
contents of the variable or array element by one. The prefix decrement operator (- -) has the side effect
of decrementing the contents of the variable or array element by one.

The data type of the value produced by a prefix increment/decrement operator is the same as the data
type of the variable or array element produced by the primary expression. A prefix increment/decrement
operator produces the pure value stored in the variable or array element after it has been incremented or
decremented.

Here's an example of using a prefix increment operator:

void foo(int a[]) {
 int j = -1;
 while (++j < a.length) // call doit for each element
 doit(a[j]); // of a
 }

References Arithmetic Types; Order of Operations; Primary Expressions

Allocation Expressions Unary Operators

Chapter 10
The java.lang Package

Integer

Name

Integer

Synopsis

Class Name:

java.lang.Integer

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Integer class provides an object wrapper for an int value. This is useful when you need to treat an int value
as an object. For example, there are a number of utility methods that take a reference to an Object as one of their
arguments. You cannot specify an int value for one of these arguments, but you can provide a reference to an
Integer object that encapsulates the int value. Also, as of JDK 1.1, the Integer class is necessary to support the

Reflection API and class literals.

The Integer class also provides a number of utility methods for converting int values to other primitive types and
for converting int values to strings and vice versa.

Class Summary

public final class java.lang.Integer extends java.lang.Number {
 // Constants
 public static final int MAX_VALUE;
 public static final int MIN_VALUE;
 public final static Class TYPE; // New in 1.1
 // Constructors
 public Integer(int value);
 public Integer(String s);
 // Class Methods
 public static Integer decode(String nm) // New in 1.1
 public static Integer getInteger(String nm);
 public static Integer getInteger(String nm, int val);
 public static Integer getInteger(String nm, Integer val);
 public static int parseInt(String s);
 public static int parseInt(String s, int radix;
 public static String toBinaryString(long i);
 public static String toHexString(long i);
 public static String toOctalString(long i);
 public static String toString(int i);
 public static String toString(int i, int radix);
 public static Integer valueOf(String s);
 public static Integer valueOf(String s, int radix);
 // Instance Methods
 public byte byteValue(); // New in 1.1
 public double doubleValue();
 public boolean equals(Object obj);
 public float floatValue();
 public int hashCode();
 public int intValue();
 public long longValue();
 public short shortValue(); // New in 1.1
 public String toString();
}

Constants

MAX_VALUE

public static final int MAX_VALUE = 0x7fffffff // 2147483647

Description

The largest value that can be represented by an int.

MIN_VALUE

public static final int MIN_VALUE = 0x80000000 // -2147483648

Description

The smallest value that can be represented by an int.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type int. It is always true that Integer.TYPE == int.class.

Constructors

Integer

public Integer(int value)

Parameters

value

The int value to be encapsulated by this object.

Description

Creates an Integer object with the specified int value.

public Integer(String s) throws NumberFormatException

Parameters

s

The string to be made into an Integer object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid int literal.

Description

Constructs an Integer object with the value specified by the given string. The string should consist of one or
more digit characters. The digit characters can be preceded by a single `-' character. If the string contains any
other characters, the constructor throws a NumberFormatException.

Class Methods

decode

public static Integer decode(String nm)

Availability

New as of JDK 1.1

Parameters

nm

A String representation of the value to be encapsulated by an Integer object. If the string begins
with # or 0x, it is a radix 16 representation of the value. If the string begins with 0, it is a radix 8
representation of the value. Otherwise, it is assumed to be a radix 10 representation of the value.

Returns

An Integer object that encapsulates the given value.

Throws

NumberFormatException

If the String contains any nondigit characters other than a leading minus sign or the value represented
by the String is less than Integer.MIN_VALUE or greater than Integer.MAX_VALUE.

Description

This method returns an Integer object that encapsulates the given value.

getInteger

public static Integer getInteger(String nm)

Parameters

nm

The name of a system property.

Returns

The value of the system property as an Integer object, or an Integer object with the value 0 if the named
property does not exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as an Integer object. The method
obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is
parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's parsed
as a decimal integer.

public static Integer getInteger(String nm, int val)

Parameters

nm

The name of a system property.

val

A default int value for the property.

Returns

The value of the system property as an Integer object, or an Integer object with the value val if the
named property does not exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as an Integer object. The method

obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is
parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's parsed
as a decimal integer.

public static Integer getInteger(String nm, Integer val)

Parameters

nm

The name of a system property.

val

A default Integer value for the property.

Returns

The value of the system property as an Integer object, or the Integer object val if the named property
does not exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as an Integer object. The method
obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is
parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's as a
decimal integer.

parseInt

 public static int parseInt(String s) throws NumberFormatException

Parameters

s

The String to be converted to an int value.

Returns

The numeric value of the integer represented by the String object.

Throws

NumberFormatException

If the String does not contain a valid representation of an integer.

Description

This method returns the numeric value of the integer represented by the contents of the given String object.
The String must contain only decimal digits, except that the first character may be a minus sign.

 public static int parseInt(String s, int radix) throws NumberFormatException

Parameters

s

The String to be converted to an int value.

radix

The radix used in interpreting the characters in the String as digits. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX. If radix is in the range 2 through 10, only
characters for which the Character.isDigit() method returns true are considered to be valid
digits. If radix is in the range 11 through 36, characters in the ranges `A' through `Z' and `a' through `z'
may be considered valid digits.

Returns

The numeric value of the integer represented by the String object in the specified radix.

Throws

NumberFormatException

If the String does not contain a valid representation of an integer, or radix is not in the appropriate
range.

Description

This method returns the numeric value of the integer represented by the contents of the given String object in
the specified radix. The String must contain only valid digits of the specified radix, except that the first
character may be a minus sign. The digits are parsed in the specified radix to produce the numeric value.

toBinaryString

public static String toBinaryString(int value)

Parameters

value

The int value to be converted to a string.

Returns

A string that contains the binary representation of the given value.

Description

This method returns a String object that contains the representation of the given value as an unsigned binary
number. To convert the given value to an unsigned quantity, the method simply uses the value as if it were not
negative. In other words, if the given value is negative, the method adds 2^32 to it. Otherwise the value is used
as it is.

The string returned by this method contains a sequence of one or more `0' and `1' characters. The method returns
"0" if its argument is 0. Otherwise, the string returned by this method begins with `1'.

toHexString

public static String toHexString(int value)

Parameters

value

The int value to be converted to a string.

Returns

A string that contains the hexadecimal representation of the given value.

Description

This method returns a String object that contains the representation of the given value as an unsigned
hexadecimal number. To convert the given value to an unsigned quantity, the method simply uses the value as if
it were not negative. In other words, if the given value is negative, the method adds 2^32 to it. Otherwise the
value is used as it is.

The string returned by this method contains a sequence of one or more of the characters `0', `1', `2', `3', `4', `5',
`6', `7', `8', `9', `a', `b', `c', `d', `e', and `f'. The method returns "0" if its argument is 0. Otherwise, the string
returned by this method does not begin with `0'.

To produce a string that contains upper- instead of lowercase letters, use the String.toUpperCase()
method.

toOctalString

public static String toOctalString(int value)

Parameters

value

The int value to be converted to a string.

Returns

A string that contains the octal representation of the given value.

Description

This method returns a String object that contains a representation of the given value as an unsigned octal
number. To convert the given value to an unsigned quantity, the method simply uses the value as if it were not
negative. In other words, if the given value is negative, the method adds 2^32 to it. Otherwise the value is used
as it is.

The string returned by this method contains a sequence of one or more of the characters `0', `1', `2', `3', `4', `5',
`6', and `7'. The method returns "0" if its argument is 0. Otherwise, the string returned by this method does not
begin with `0'.

toString

public static String toString(int i)

Parameters

i

The int value to be converted to a string.

Returns

The string representation of the given value.

Description

This method returns a String object that contains the decimal representation of the given value.

This method returns a string that begins with `-' if the given value is negative. The rest of the string is a
sequence of one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if
its argument is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

public static String toString(int i, int radix)

Parameters

i

The int value to be converted to a string.

radix

The radix used in converting the value to a string. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The string representation of the given value in the specified radix.

Description

This method returns a String object that contains the representation of the given value in the specified radix.

This method returns a string that begins with `-' if the given value is negative. The rest of the string is a
sequence of one or more characters that represent the magnitude of the given value. The characters that can
appear in the sequence are determined by the value of radix. If N is the value of radix, the first N characters
on the following line can appear in the sequence:

0123456789abcdefghijklmnopqrstuvwxyz

The method does not verify that radix is in the proper range. If radix is less than
Character.MIN_RADIX or greater than Character.MAX_RADIX, the value 10 is used instead of the
given value.

This method returns "0" if its argument is 0. Otherwise, the string returned by this method does not begin with
"0" or "-0".

valueOf

 public static Integer valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into an Integer object.

Returns

The Integer object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of an integer.

Description

Constructs an Integer object with the value specified by the given string. The string should consist of one or
more digit characters. The digit characters can be preceded by a single `-' character. If the string contains any
other characters, the method throws a NumberFormatException.

 public static Integer valueOf(String s, int radix) throws NumberFormatException

Parameters

s

The string to be made into an Integer object.

radix

The radix used in converting the string to a value. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The Integer object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of an integer or radix is not in the appropriate
range.

Description

Constructs an Integer object with the value specified by the given string in the specified radix. The string
should consist of one or more digit characters or characters in the range `A' to `Z' or `a' to `z' that are considered

digits in the given radix. The digit characters can be preceded by a single `-' character. If the string contains any
other characters, the method throws a NumberFormatException.

Instance Methods

byteValue

public byte byteValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a byte.

Overrides

Number.byteValue()

Description

This method returns the value of this object as a byte. The high order bits of the value are discarded.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Integer and it contains the same value as the object this
method is associated with.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this object as a float. Rounding may occur.

hashCode

public int hashCode()

Returns

A hashcode based on the int value of the object.

Overrides

Object.hashCode()

Description

This method returns a hashcode computed from the value of this object.

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the value of this object as an int.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the value of this object as a long.

shortValue

public short shortValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the value of this object as a short. The high order bits of the value are discarded.

toString

public String toString()

Returns

The string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains the decimal representation of the value of this object.

This method returns a string that begins with `-' if the value is negative. The rest of the string is a sequence of
one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if the value of
the object is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Character; Class; Exceptions; Integer literals; Integer types; Long; Number; String; System

Float Long

Chapter 10
The java.lang Package

Long

Name

Long

Synopsis

Class Name:

java.lang.Long

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Long class provides an object wrapper for a long value. This is useful when you need to treat a long value as
an object. For example, there are a number of utility methods that take a reference to an Object as one of their
arguments. You cannot specify a long value for one of these arguments, but you can provide a reference to a Long

object that encapsulates the long value. Furthermore, as of JDK 1.1, the Long class is necessary to support the
Reflection API and class literals.

The Long class also provides a number of utility methods for converting long values to other primitive types and
for converting long values to strings and vice versa.

Class Summary

public final class java.lang.Long extends java.lang.Number {
 // Constants
 public static final long MIN_VALUE;
 public static final long MAX_VALUE;
 public final static Class TYPE; // New in 1.1
 // Constructors
 public Long(long value);
 public Long(String s);
 // Class Methods
 public static Long getLong(String nm);
 public static Long getLong(String nm, long val);
 public static Long getLong(String nm, Long val);
 public static long parseLong(String s);
 public static long parseLong(String s, int radix);
 public static String toBinaryString(long i);
 public static String toHexString(long i);
 public static String toOctalString(long i);
 public static String toString(long i);
 public static String toString(long i, int radix);
 public static Long valueOf(String s);
 public static Long valueOf(String s, int radix);
 // Instance Methods
 public byte byteValue(); // New in 1.1
 public double doubleValue();
 public boolean equals(Object obj);
 public float floatValue();
 public int hashCode();
 public int intValue();
 public long longValue();
 public short shortValue(); // New in 1.1
 public String toString();
}

Constants

MAX_VALUE

public static final long MAX_VALUE = 0x7fffffffffffffffL

Description

The largest value that can be represented by a long.

MIN_VALUE

public static final long MIN_VALUE = 0x8000000000000000L

Description

The smallest value that can be represented by a long.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type long. It is always true that Long.TYPE == long.class.

Constructors

Long

public Long(long value)

Parameters

value

The long value to be encapsulated by this object.

Description

Creates a Long object with the specified long value.

public Long(String s) throws NumberFormatException

Parameters

s

The string to be made into a Long object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid long literal.

Description

Constructs a Long object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the constructor throws a NumberFormatException.

Class Methods

getLong

public static Integer getLong(String nm)

Parameters

nm

The name of a system property.

Returns

The value of the system property as a Long object or a Long object with the value 0 if the named property
does not exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as a Long object. The method
obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is
parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's parsed
as a decimal integer.

public static Long getLong(String nm, long val)

Parameters

nm

The name of a system property.

val

A default value for the property.

Returns

The value of the system property as a Long object or a Long object with the value val if the named property
does not exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as a Long object. The method
obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is
parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's parsed
as a decimal integer.

public static Long getLong(String nm, Long val)

Parameters

nm

The name of a system property.

val

A default value for the property.

Returns

The value of the system property as a Long object, or the Long object val if the named property does not
exist or cannot be parsed.

Description

This method retrieves the value of the named system property and returns it as a Long object. The method
obtains the value of the system property as a String using System.getProperty().

If the value of the property begins with 0x or # and is not followed by a minus sign, the rest of the value is

parsed as a hexadecimal integer. If the value begins with 0, it's parsed as an octal integer; otherwise it's parsed
as a decimal integer.

parseLong

 public static long parseLong(String s) throws NumberFormatException

Parameters

s

The String to be converted to a long value.

Returns

The numeric value of the long represented by the String object.

Throws

NumberFormatException

If the String does not contain a valid representation of a long value.

Description

This method returns the numeric value of the long represented by the contents of the given String object.
The String must contain only decimal digits, except that the first character may be a minus sign.

 public static long parseLong(String s, int radix) throws NumberFormatException

Parameters

s

The String to be converted to a long value.

radix

The radix used in interpreting the characters in the String as digits. It must be in the range
Character.MIN_RADIX to Character.MAX_RADIX. If radix is in the range 2 through 10,
only characters for which the Character.isDigit() method returns true are considered valid
digits. If radix is in the range 11 through 36, characters in the ranges `A' through `Z' and `a' through
`z' may be considered valid digits.

Returns

The numeric value of the long represented by the String object in the specified radix.

Throws

NumberFormatException

If the String does not contain a valid representation of a long or radix is not in the appropriate
range.

Description

This method returns the numeric value of the long represented by the contents of the given String object in
the specified radix. The String must contain only valid digits of the specified radix, except that the first
character may be a minus sign. The digits are parsed in the specified radix to produce the numeric value.

toBinaryString

public static String toBinaryString(long value)

Parameters

value

The long value to be converted to a string.

Returns

A string that contains the binary representation of the given value.

Description

This method returns a String object that contains the representation of the given value as an unsigned binary
number. To convert the given value to an unsigned quantity, the method simply uses the value as if it were not
negative. In other words, if the given value is negative, the method adds 2^64 to it. Otherwise the value is used
as it is.

The string returned by this method contains a sequence of one or more `0' and `1' characters. The method
returns "0" if its argument is 0. Otherwise, the string returned by this method begins with `1'.

toHexString

public static String toHexString(long value)

Parameters

value

The long value to be converted to a string.

Returns

A string that contains the hexadecimal representation of the given value.

Description

This method returns a String object that contains the representation of the given value as an unsigned
hexadecimal number. To convert the given value to an unsigned quantity, the method simply uses the value as
if it were not negative. In other words, if the given value is negative, the method adds 2^64 to it. Otherwise the
value is used as it is.

The string returned by this method contains a sequence of one or more of the characters `0', `1', `2', `3', `4', `5',
`6', `7', `8', `9', `a', `b', `c', `d', `e', and `f'. The method returns "0" if its argument is 0. Otherwise, the string
returned by this method does not begin with `0'.

To produce a string that contains upper- instead of lowercase letters, use the String.toUpperCase()
method.

toOctalString

public static String toOctalString(long value)

Parameters

value

The long value to be converted to a string.

Returns

A string that contains the octal representation of the given value.

Description

This method returns a String object that contains a representation of the given value as an unsigned octal
number. To convert the given value to an unsigned quantity, the method simply uses the value as if it were not
negative. In other words, if the given value is negative, the method adds 2^64 to it. Otherwise the value is used
as it is.

The string returned by this method contains a sequence of one or more of the characters `0', `1', `2', `3', `4', `5',
`6', and `7'. The method returns "0" if its argument is 0. Otherwise, the string returned by this method does not
begin with `0'.

toString

public static String toString(long i)

Parameters

i

The long value to be converted to a string.

Returns

The string representation of the given value.

Description

This method returns a String object that contains the decimal representation of the given value.

This method returns a string that begins with `-' if the given value is negative. The rest of the string is a
sequence of one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if
its argument is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

public static String toString(long i, int radix)

Parameters

i

The long value to be converted to a string.

radix

The radix used in converting the value to a string. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The string representation of the given value in the specified radix.

Description

This method returns a String object that contains the representation of the given value in the specified radix.

This method returns a string that begins with`-' if the given value is negative. The rest of the string is a
sequence of one or more characters that represent the magnitude of the given value. The characters that can
appear in the sequence are determined by the value of radix. If N is the value of radix, the first N

characters on the following line can appear in the sequence:

0123456789abcdefghijklmnopqrstuvwxyz

The method does not verify that radix is in the proper range. If radix is less than
Character.MIN_RADIX or greater than Character.MAX_RADIX, the value 10 is used instead of the
given value.

This method returns "0" if its argument is 0. Otherwise, the string returned by this method does not begin with
"0" or "-0".

valueOf

 public static Long valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into a Long object.

Returns

The Long object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a long.

Description

Constructs a Long object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single - character. If the string contains any other
characters, the method throws a NumberFormatException.

 public static Long valueOf(String s, int radix) throws NumberFormatException

Parameters

s

The string to be made into a Long object.

radix

The radix used in converting the string to a value. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The Long object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a long.

Description

Constructs a Long object with the value specified by the given string in the specified radix. The string should
consist of one or more digit characters or characters in the range `A' to `Z' or `a' to `z' that are considered digits
in the given radix. The digit characters can be preceded by a single `-' character. If the string contains any
other characters, the method throws a NumberFormatException.

The method does not verify that radix is in the proper range. If radix is less than
Character.MIN_RADIX or greater than Character.MAX_RADIX, the value 10 is used instead of the
given value.

Instance Methods

byteValue

public byte byteValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a byte.

Overrides

Number.byteValue()

Description

This method returns the value of this object as a byte. The high order bits of the value are discarded.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double. Rounding may occur.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Long and it contains the same value as the object this
method is associated with.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this object as a float. Rounding may occur.

hashCode

public int hashCode()

Returns

A hashcode based on the long value of the object.

Overrides

Object.hashCode()

Description

This method returns a hashcode computed from the value of this object. More specifically, the result is the
exclusive OR of the two halves of the long value represented by the object. If value is the value of the
object, the method returns a result equivalent to the following expression:

(int)(value^(value>>>32))

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the value of this object as an int. The high-order bits of the value are discarded.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the value of this object as a long.

shortValue

public short shortValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the value of this object as a short. The high-order bits of the value are discarded.

toString

public String toString()

Returns

The string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains the decimal representation of the value of this object.

This method returns a string that begins with `-' if the value is negative. The rest of the string is a sequence of
one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if the value of
the object is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Character; Class; Exceptions; Integer; Integer literals; Integer types; Number; String; System

Integer Math

Chapter 4
Expressions

4.5 Multiplicative Operators

The multiplicative operators in Java are binary operators that are used for multiplication (*), division (/),
and the remainder operation (%). The multiplicative operators appear in multiplicative expressions:

The multiplicative operators are equal in precedence and are evaluated from left to right.

References Unary Operators; Order of Operations

Multiplication Operator *

The binary multiplication operator * produces a pure value that is the product of its operands. The *
operator may appear in a multiplicative expression. The multiplication operator never throws an
exception.

Here is an example that uses the multiplication operator:

int doubleIt(int x) {
 return x*2;
}

The types of both operands of the multiplication operator must be arithmetic types, or a compile-time

error occurs. The * operator may perform type conversions on its operands:

● If either operand is of type double, the other operand is converted to double and the operation
produces a double value.

● Otherwise, if either operand is of type float, the other operand is converted to float and the
operation produces a float value.

● Otherwise, if either operand is of type long, the other operand is converted to long and the
operation produces a long value.

● Otherwise, both operands are converted to int and the operation produces an int value.

If the multiplication of integer data overflows, the low order bits of the product are returned; no
exception is thrown. The most significant bit of the low order bits is treated as a sign bit. When overflow
occurs, the sign of the number produced may not be the same as the sign of the mathematically correct
product, due to the limitations of the two's complement representation used for integer data.

The multiplication of floating-point data is governed by the following rules:

● If either operand is not-a-number (NaN), the product is NaN.

● If neither operand is NaN and if both operands have the same sign, the product is positive.

● If neither operand is NaN and if the operands have different signs, the product is negative.

● If one of the operands is positive or negative infinity and the other operand is positive or negative
zero, the product is NaN.

● If one of the operands is an infinity value and the other operand is neither zero nor NaN, the
product is either positive or negative infinity, as determined by the rules governing the sign of
products.

● If neither operand is a zero value, an infinity value, or NaN, the product is rounded to the nearest
representable value. If the magnitude of the product is too large to be represented, the operation
overflows and an infinity value of the appropriate sign is produced. If the magnitude of the
product is too small to be represented, the operation underflows and a zero value of the
appropriate sign is produced.

References Arithmetic Types

Division Operator /

The binary division operator / produces a pure value that is the quotient of its operands. The left operand
is the dividend and the right operand is the divisor. The / operator may appear in a multiplicative
expression.

Here is an example that uses the division operator:

int halfIt(int x) {
 return x/2;
}

The types of both operands of the division operator must be arithmetic types, or a compile-time error
occurs. The / operator may perform type conversions on its operands:

● If either operand is of type double, the other operand is converted to double and the operation
produces a double value.

● Otherwise, if either operand is of type float, the other operand is converted to float and the
operation produces a float value.

● Otherwise, if either operand is of type long, the other operand is converted to long and the
operation produces a long value.

● Otherwise, both operands are converted to int and the operation produces an int value.

The division of integer data rounds toward zero. If the divisor of an integer division operator is zero, an
ArithmeticException is thrown. If the dividend is Integer.MIN_VALUE or
Long.MIN_VALUE and the divisor is -1, the quotient produced is Integer.MIN_VALUE or
Long.MIN_VALUE, due to the limitations of the two's complement representation used for integer data.

The division of floating-point data is governed by the following rules:

● If either operand is not-a-number (NaN), the quotient is NaN.

● If neither operand is NaN and if both operands have the same sign, the quotient is positive.

● If neither operand is NaN and if the operands have different signs, the quotient is negative.

● If both of the operands are positive or negative infinity, the quotient is NaN.

● If the dividend is an infinity value and the divisor is a finite number, the quotient is either positive
or negative infinity, as determined by the rules governing the sign of quotients.

● If the dividend is a finite number and the divisor is an infinity value, the quotient is either positive
or negative zero, as determined by the rules governing the sign of quotients.

● If the divisor is positive or negative zero and the dividend is not zero or NaN, the quotient is
either positive or negative infinity, as determined by the rules governing the sign of quotients.

● If both operands are zero values, the quotient is NaN.

● If the dividend is a zero value and the divisor is a non-zero finite number, the quotient is either
positive or negative zero, as determined by the rules governing the sign of quotients.

● If the dividend is a non-zero finite number and the divisor is a zero value, the quotient is either
positive or negative infinity, as determined by the rules governing the sign of quotients.

● If neither operand is a zero value, an infinity value, or NaN, the quotient is rounded to the nearest
representable value. If the magnitude of the quotient is too large to be represented, the operation
overflows and an infinity value of the appropriate sign is produced. If the magnitude of the
quotient is too small to be represented, the operation underflows and a zero value of the
appropriate sign is produced.

References Arithmetic Types; Integer; Long; Runtime exceptions

Remainder Operator %

The binary remainder operator % produces a pure value that is the remainder from an implied division of
its operands. The left operand is the dividend and the right operand is the divisor. The % operator may
appear in a multiplicative expression.

Here is an example that uses the remainder operator:

// format seconds into hours, minutes and seconds
String formatTime(int t) {
 int minutes, seconds;
 seconds = t%60;
 t /= 60;
 minutes = t%60;
 return t/60 + ":" + minutes + ":" + seconds;
}

The types of both operands of the remainder operator must be arithmetic types, or a compile-time error
occurs. The % operator may perform type conversions on its operands:

● If either operand is of type double, the other operand is converted to double and the operation
produces a double value.

● Otherwise, if either operand is of type float, the other operand is converted to float and the
operation produces a float value.

● Otherwise, if either operand is of type long, the other operand is converted to long and the
operation produces a long value.

● Otherwise, both operands are converted to int and the operation produces an int value.

When the remainder operation is performed on integer data, the following expression is guaranteed to
produce the same value as a%b:

a-((a/b)*b)

The sign of the value produced by the remainder operator is always the sign of the dividend. The
magnitude of the value produced by the remainder operator is always less than the absolute value of the
divisor. If the divisor is zero, an ArithmeticException is thrown.

Unlike C/C++, Java provides a remainder operation for floating-point data. The remainder of floating-
point data is computed in a manner similar to the remainder of integer data. The remainder operation uses
a truncating division to compute its value. This is unlike the IEEE 754 remainder operation, which uses a
rounding division. The IEEE remainder operation is provided by the Math.IEEEremainder()
method.

The computation of the remainder of double and float data is governed by the following rules:

● If either operand is not-a-number (NaN), the remainder is NaN.

● If neither operand is NaN, the sign of the remainder is the same as the sign of the dividend.

● If the dividend is positive or negative infinity or the divisor is positive or negative zero, the
remainder is NaN.

● If the dividend is a finite number and the divisor is an infinity value, the remainder is equal to the
dividend.

● If the dividend is a zero value and the divisor is a finite number, the remainder is equal to the
dividend.

● If neither operand is a zero value, an infinity value, or NaN, the remainder is computed according
to the following mathematical formula:

p is the dividend and d is the divisor. The notation means the greatest integer less than or
equal to x ; this is called the floor operation.

References Arithmetic Types; Math; Runtime exceptions

Unary Operators Additive Operators

Chapter 4
Expressions

4.8 Relational Comparison Operators

The relational comparison operators in Java are used for less than (<), less than or equal to (<=), greater
than or equal to (>=), greater than (>), and instanceof comparison operations. They may appear in a
relational expression:

[Graphic: Figure from the text]

The relational comparison operators are equal in precedence and are evaluated from left to right. The <,
<=, >=, and > operators are numerical comparison operators, while instanceof is a type comparison
operator. All of these operators produce boolean values.

References Shift Operators; Order of Operations; Type 3

Less-Than Operator <

The less-than operator < performs a comparison between its operands and returns a boolean value. It
returns the pure value true if its left operand is less than its right operand; otherwise the operator
returns the pure value false. The < operator may appear as part of a relational expression. The less-
than operator never throws an exception.

The types of both operands of the less-than operator must be arithmetic types, or a compile-time error
occurs. The < operator may perform type conversions on its operands:

● If either operand is of type double, then the other operand is converted to double.

● Otherwise, if either operand is of type float, the other operand is converted to float.

● Otherwise, if either operand is of type long, the other operand is converted to long.

● Otherwise, both operands are converted to int.

The comparison of any two arithmetic values produces true if the value of the left operand is less than
the value of the right operand; otherwise the comparison produces false. The comparison of floating-
point data is governed by the following additional rules:

● If either operand is not-a-number (NaN), the comparison produces false.

● Negative infinity is the most negative value. If the left operand is negative infinity, the
comparison produces true, unless the right operand is also negative infinity, in which case the
comparison produces false.

● Positive infinity is the most positive value. If the right operand is positive infinity, the comparison
produces true, unless the left operand is also positive infinity, in which case the comparison
produces false.

● Positive and negative zero are treated as equal, so -0.0 < 0.0 produces false.

References Arithmetic Types

Less-Than-Or-Equal-To Operator <=

The less-than-or-equal-to operator <= performs a comparison between its operands and returns a
boolean value. It returns the pure value true if its left operand is less than or equal to its right
operand; otherwise the operator returns the pure value false. The <= operator may appear as part of a
relational expression. The less-than-or-equal-to operator never throws an exception.

The types of both operands of the less-than-or-equal-to operator must be arithmetic types, or a compile-
time error occurs. The <= operator may perform type conversions on its operands:

● If either operand is of type double, then the other operand is converted to double.

● Otherwise, if either operand is of type float, the other operand is converted to float.

● Otherwise, if either operand is of type long, the other operand is converted to long.

● Otherwise, both operands are converted to int.

The comparison of any two arithmetic values produces true if the value of the left operand is less than
or equal to the value of the right operand; otherwise the comparison produces false. The comparison
of floating-point data is governed by the following additional rules:

● If either operand is not-a-number (NaN), the comparison produces false.

● Negative infinity is the most negative value. If the left operand is negative infinity, the
comparison always produces true.

● Positive infinity is the most positive value. If the right operand is positive infinity, the comparison
always produces true.

● Positive and negative zero are treated as equal, so 0.0 <= -0.0 produces true.

References Arithmetic Types

Greater-Than-Or-Equal-To Operator >=

The greater-than-or-equal-to operator >= performs a comparison between its operands and returns a
boolean value. It returns the pure value true if its left operand is greater than or equal to its right
operand; otherwise the operator returns the pure value false. The >= operator may appear as part of a
relational expression. The greater-than-or-equal-to operator never throws an exception.

The types of both operands of the greater-than-or-equal-to operator must be arithmetic types, or a
compile-time error occurs. The >= operator may perform type conversions on its operands:

● If either operand is of type double, then the other operand is converted to double.

● Otherwise, if either operand is of type float, the other operand is converted to float.

● Otherwise, if either operand is of type long, the other operand is converted to long.

● Otherwise, both operands are converted to int.

The comparison of any two arithmetic values produces true if the value of the left operand is greater
than or equal to the value of the right operand; otherwise the comparison produces false. The
comparison of floating-point data is governed by the following additional rules:

● If either operand is not-a-number (NaN), the comparison produces false.

● Negative infinity is the most negative value. If the right operand is negative infinity, the

comparison always produces true.

● Positive infinity is the most positive value. If the left operand is positive infinity, the comparison
always produces true.

● Positive and negative zero are treated as equal, so -0.0 >= 0.0 produces true.

References Arithmetic Types

Greater-Than Operator >

The greater-than operator > performs a comparison between its operands and returns a boolean value.
It returns the pure value true if its left operand is greater than its right operand; otherwise the operator
returns the pure value false. The > operator may appear as part of a relational expression. The greater-
than operator never throws an exception.

The types of both operands of the greater-than operator must be arithmetic types, or a compile-time error
occurs. The > operator may perform type conversions on its operands:

● If either operand is of type double, then the other operand is converted to double.

● Otherwise, if either operand is of type float, the other operand is converted to float.

● Otherwise, if either operand is of type long, the other operand is converted to long.

● Otherwise, both operands are converted to int.

The comparison of any two arithmetic values produces true if the value of the left operand is greater
than the value of the right operand; otherwise the comparison produces false. The comparison of
floating-point data is governed by the following additional rules:

● If either operand is not-a-number (NaN), the comparison produces false.

● Negative infinity is the most negative value. If the right operand is negative infinity, the
comparison produces true, unless the left operand is also negative infinity, in which case the
comparison produces false.

● Positive infinity is the most positive value. If the left operand is positive infinity, the comparison
produces true, unless the right operand is also positive infinity, in which case the comparison
produces false.

● Positive and negative zero are treated as equal, so 0.0 > -0.0 produces false.

References Arithmetic Types

The instanceof Operator

The instanceof operator performs a type comparison between its operands and returns a boolean
value. It returns the pure value true if the object referred to by the left operand can be cast to the type
specified as the right operand; otherwise the operator returns the pure value false. If the value of the
left operand is null, the instanceof operator returns the pure value false. The instanceof
operator may appear as part of a relational expression. The instanceof operator never throws an
exception.

The type of the left operand of the instanceof operator must be a reference type, or a compile-time
error occurs.

All objects inherit a method called equals() from the Object class. The equals() method defined
in the Object class returns true if the two objects being compared are the same object. For some
classes, it is more appropriate to override the equals() method so that it compares the contents of two
objects. Before such a method can do the comparison, it should verify that the objects are instances of the
same class by using instanceof. For example, let's suppose that you are defining a class to represent
complex numbers. Since you want the equals() method to compare the contents of complex number
objects, you define an equals method for the complex number class that looks like this:

boolean equals (Object o) {
 if (o instanceof complexNumber)
 return o.real == this.real
 && o.imaginary == this.imaginary;
}

The instanceof operator can also be used to find out if an object is an instance of a class that
implements an interface. For example:

if (o instanceof Runnable)
 (new Thread((Runnable)o).start;

References Casts; Class Types; Interface Types

Shift Operators Equality Comparison
Operators

Chapter 9
Exception Handling

9.4 The Exception Hierarchy

The possible exceptions in a Java program are organized in a hierarchy of exception classes. The
Throwable class, which is an immediate subclass of Object, is at the root of the exception hierarchy.
Throwable has two immediate subclasses: Exception and Error. Figure 9.1 shows the standard
exception classes defined in the java.lang package, while Figure 9.2 shows the standard error classes
defined in java.lang.

Figure 9.1: Standard Java exception classes

[Graphic: Figure 9-1]

Figure 9.2: Standard Java error classes

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm

[Graphic: Figure 9-2]

Exceptions

All of the subclasses of Exception represent exceptional conditions that a normal Java program may
want to handle. Many of the standard exceptions are also subclasses of RuntimeException. Runtime
exceptions represent runtime conditions that can generally occur in any Java method, so a method is not
required to declare that it throws any of the runtime exceptions. However, if a method can throw any of
the other standard exceptions, it must declare them in its throws clause.

A Java program should try to handle all of the standard exception classes, since they represent routine
abnormal conditions that should be anticipated and caught to prevent program termination.

Runtime exceptions

The java.lang package defines the following standard runtime exception classes:

ArithmeticException

This exception is thrown to indicate an exceptional arithmetic condition, such as integer division

by zero.

ArrayIndexOutOfBoundsException

This exception is thrown when an out-of-range index is detected by an array object. An out-of-
range index occurs when the index is less than zero or greater than or equal to the size of the
array.

ArrayStoreException

This exception is thrown when there is an attempt to store a value in an array element that is
incompatible with the type of the array.

ClassCastException

This exception is thrown when there is an attempt to cast a reference to an object to an
inappropriate type.

IllegalArgumentException

This exception is thrown to indicate that an illegal argument has been passed to a method.

IllegalMonitorStateException

This exception is thrown when an object's wait(), notify(), or notifyAll() method is
called from a thread that does not own the object's monitor.

IllegalStateException

This exception is thrown to indicate that a method has been invoked when the run-time
environment is in an inappropriate state for the requested operation. This exception is new in Java
1.1.

IllegalThreadStateException

This exception is thrown to indicate an attempt to perform an operation on a thread that is not
legal for the thread's current state, such as attempting to resume a dead thread.

IndexOutOfBoundsException

The appropriate subclass of this exception (i.e., ArrayIndexOutOfBoundsException or

StringIndexOutOfBoundsException) is thrown when an array or string index is out of
bounds.

NegativeArraySizeException

This exception is thrown in response to an attempt to create an array with a negative size.

NullPointerException

This exception is thrown when there is an attempt to access an object through a null object
reference. This can occur when there is an attempt to access an instance variable or call a method
through a null object or when there is an attempt to subscript an array with a null object.

NumberFormatException

This exception is thrown to indicate that an attempt to parse numeric information in a string has
failed.

RuntimeException

The appropriate subclass of this exception is thrown in response to a runtime error detected at the
virtual machine level. Because these exceptions are so common, methods that can throw objects
that are instances of RuntimeException or one of its subclasses are not required to declare
that fact in their throws clauses.

SecurityException

This exception is thrown in response to an attempt to perform an operation that violates the
security policy implemented by the installed SecurityManager object.

StringIndexOutOfBoundsException

This exception is thrown when a String or StringBuffer object detects an out-of-range
index. An out-of-range index occurs when the index is less than zero or greater than or equal to
the length of the string.

Other exceptions

The java.lang package defines the following standard exception classes that are not runtime
exceptions:

ClassNotFoundException

This exception is thrown to indicate that a class that is to be loaded cannot be found.

CloneNotSupportedException

This exception is thrown when the clone() method has been called for an object that does not
implement the Cloneable interface and thus cannot be cloned.

Exception

The appropriate subclass of this exception is thrown in response to an error detected at the virtual
machine level. If a program defines its own exception classes, they should be subclasses of the
Exception class.

IllegalAccessException

This exception is thrown when a program tries to dynamically load a class (i.e., uses the
forName() method of the Class class, or the findSystemClass() or the loadClass()
method of the ClassLoader class) and the currently executing method does not have access to
the specified class because it is in another package and not public. This exception is also
thrown when a program tries to create an instance of a class (i.e., uses the newInstance()
method of the Class class) that does not have a zero-argument constructor accessible to the
caller.

InstantiationException

This exception is thrown in response to an attempt to instantiate an abstract class or an
interface using the newInstance() method of the Class class.

InterruptedException

This exception is thrown to signal that a thread that is sleeping, waiting, or otherwise paused has
been interrupted by another thread.

NoSuchFieldException

This exception is thrown when a specified variable cannot be found. This exception is new in Java
1.1.

NoSuchMethodException

This exception is thrown when a specified method cannot be found.

Errors

The subclasses of Error represent errors that are normally thrown by the class loader, the virtual
machine, or other support code. Application-specific code should not normally throw any of these
standard error classes. If a method does throw an Error class or any of its subclasses, the method is not
required to declare that fact in its throws clause.

A Java program should not try to handle the standard error classes. Most of these error classes represent
non-recoverable errors and as such, they cause the Java runtime system to print an error message and
terminate program execution.

The java.lang package defines the following standard error classes:

AbstractMethodError

This error is thrown in response to an attempt to invoke an abstract method.

ClassCircularityError

This error is thrown when a circular reference among classes is detected during class
initialization.

ClassFormatError

This error is thrown when an error is detected in the format of a file that contains a class
definition.

Error

The appropriate subclass of this error is thrown when an unpredictable error, such as running out
of memory, occurs. Because of the unpredictable nature of these errors, methods that can throw
objects that are instances of Error or one of its subclasses are not required to declare that fact in
their throws clauses.

ExceptionInInitializerError

This error is thrown when an unexpected exception is thrown in a static initializer. This error is
new in Java 1.1.

IllegalAccessError

This error is thrown when a class attempts to access a field or call a method it does not have
access to. Usually this error is caught by the compiler; this error can occur at run-time if the
definition of a class changes after the class that references it was last compiled.

IncompatibleClassChangeError

This error or one of its subclasses is thrown when a class refers to another class in an
incompatible way. This situation occurs when the current definition of the referenced class is
incompatible with the definition of the class that was found when the referring class was
compiled. For example, say class A refers to a method in class B. Then, after class A is compiled,
the method is removed from class B. When class A is loaded, the run-time system discovers that
the method in class B no longer exists and throws an error.

InstantiationError

This error is thrown in response to an attempt to instantiate an abstract class or an interface.
Usually this error is caught by the compiler; this error can occur at run-time if the definition of a
class is changed after the class that references it was last compiled.

InternalError

This error is thrown to signal an internal error within the virtual machine.

LinkageError

The appropriate subclass of this error is thrown when there is a problem resolving a reference to a
class. Reasons for this may include a difficulty in finding the definition of the class or an
incompatibility between the current definition and the expected definition of the class.

NoClassDefFoundError

This error is thrown when the definition of a class cannot be found.

NoSuchFieldError

This error is thrown in response to an attempt to reference an instance or class variable that is not
defined in the current definition of a class. Usually this error is caught by the compiler; this error
can occur at run-time if the definition of a class is changed after the class that references it was
last compiled.

NoSuchMethodError

This error is thrown in response to an attempt to reference a method that is not defined in the
current definition of a class. Usually this error is caught by the compiler; this error can occur at
run-time if the definition of a class is changed after the class that references it was last compiled.

OutOfMemoryError

This error is thrown when an attempt to allocate memory fails.

StackOverflowError

This error is thrown when a stack overflow error occurs within the virtual machine.

ThreadDeath

This error is thrown by the stop() method of a Thread object to kill the thread. Catching
ThreadDeath objects is not recommended. If it is necessary to catch a ThreadDeath object,
it is important to re-throw the object so that it is possible to cleanly stop the catching thread.

UnknownError

This error is thrown when an error of unknown origins is detected in the run-time system.

UnsatisfiedLinkError

This error is thrown when the implementation of a native method cannot be found.

VerifyError

This error is thrown when the byte-code verifier detects that a class file, though well-formed,
contains some sort of internal inconsistency or security problem.

VirtualMachineError

The appropriate subclass of this error is thrown to indicate that the Java virtual machine has
encountered an error.

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm

Generating Exceptions The java.lang Package

Chapter 4
Expressions

4.7 Shift Operators

The shift operators in Java are used for left shift (<<), right shift (>>), and unsigned right shift (>>>)
operations. The shift operators may appear in a shift expression:

The shift operators are equal in precedence and are evaluated from left to right.

References Additive Operators; Order of Operations

Left Shift Operator <<

The left shift operator << produces a pure value that is its left operand left-shifted by the number of bits
specified by its right operand. The << operator may appear in a shift expression. The left shift operator
never throws an exception.

Here are some examples of the left shift operator:

(3<<2) == 12
(-3<<2) == -12
(0x01234567<<4) == 0x12345670
(0xF1234567<<4) == 0x12345670

The type of each operand of the left shift operator must be an integer data type, or a compile-time error
occurs. The << operator may perform type conversions on its operands; unlike arithmetic binary

operators, each operand is converted independently. If the type of an operand is byte, short, or char,
that operand is converted to an int before the value of the operator is computed. The type of the value
produced by the left shift operator is the type of its left operand.

If the converted type of the left operand is int, only the five least significant bits of the value of the
right operand are used as the shift distance. Therefore, the shift distance is in the range 0 through 31. In
this case, the value produced by r << s is mathematically equivalent to:

If the type of the left operand is long, only the six least significant bits of the value of the right operand
are used as the shift distance. Therefore, the shift distance is in the range 0 through 63. In this case, the
value produced by r << s is mathematically equivalent to:

References Integer types

Right Shift Operator >>

The right shift operator >> produces a pure value that is its left operand right-shifted with sign extension
by the number of bits specified by its right operand. Right-shifting with sign extension means that
shifting a value n places to the right causes the n high order bits to contain the same value as the sign bit
of the unshifted value. The >> operator may appear as part of a shift expression. The right shift operator
never throws an exception. Here are some examples of the right shift operator:

(0x01234567>>4) == 0x00123456
(0xF1234567>>4) == 0xFF123456

The type of each operand of the right shift operator must be an integer data type, or a compile-time error
occurs. The >> operator may perform type conversions on its operands; unlike arithmetic binary
operators, each operand is converted independently. If the type of an operand is byte, short, or char,
that operand is converted to an int before the value of the operator is computed. The type of the value
produced by the right shift operator is the type of its left operand.

If the converted type of the left operand is int, only the five least significant bits of the value of the
right operand are used as the shift distance. Therefore, the shift distance is in the range 0 through 31.

In this case, the value produced by r >> s is mathematically equivalent to:

The notation means the greatest integer less than or equal to x ; this is called the floor operation.

If the type of the left operand is long, only the six least significant bits of the value of the right operand
are used as the shift distance. Therefore, the shift distance is in the range 0 through 63. In this case, the
value produced by r >> s is mathematically equivalent to:

References Integer types

Unsigned Right Shift Operator >>>

The unsigned right shift operator >>> produces a pure value that is its left operand right-shifted with
zero extension by the number of bits specified by its right operand. Right-shifting with zero extension
means that shifting a value n places to the right causes the n high order bits to contain zero. The >>>
operator may appear as part of a shift expression. The unsigned right shift operator never throws an
exception.

Here are some examples of the unsigned right shift operator:

(0x01234567>>>4) == 0x00123456
(0xF1234567>>>4) == 0x0F123456

The type of each operand of the unsigned right shift operator must be an integer data type, or a compile-
time error occurs. The >>> operator may perform type conversions on its operands; unlike arithmetic
binary operators, each operand is converted independently. If the type of an operand is byte, short, or
char, that operand is converted to an int before the value of the operator is computed. The type of the
value produced by the unsigned right shift operator is the type of its left operand. If the converted type of
the left operand is int, only the five least significant bits of the value of the right operand are used as
the shift distance. So, the shift distance is in the range 0 through 31. Here, the value produced by r >>>
s is the same as:

s==0 ? r : (r >> s) & ~(-1<<(32-s))

If the type of the left operand is long, then only the six least significant bits of the value of the right

operand are used as the shift distance. So, the shift distance is in the range 0 through 63. Here, the value
produced by r >>> s is the same as the following:

s==0 ? r : (r >> s) & ~(-1<<(64-s))

References Integer types

Additive Operators Relational Comparison
Operators

Chapter 10
The java.lang Package

Short

Name

Short

Synopsis

Class Name:

java.lang.Short

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The Short class provides an object wrapper for a short value. This is useful when you need to treat a short value as
an object. For example, there are a number of utility methods that take a reference to an Object as one of their
arguments. You cannot specify a short value for one of these arguments, but you can provide a reference to a Short
object that encapsulates the byte value. Furthermore, the Short class is necessary as of JDK 1.1 to support the

Reflection API and class literals.

The Short class also provides a number of utility methods for converting short values to other primitive types and
for converting short values to strings and vice-versa.

Class Summary

public final class java.lang.Short extends java.lang.Number {
 // Constants
 public static final short MAX_VALUE;
 public static final short MIN_VALUE;
 public static final Class TYPE;
 // Constructors
 public Short(short value);
 public Short(String s);
 // Class Methods
 public static Short decode(String nm);
 public static short parseShort(String s);
 public static short parseShort(String s, int radix);
 public static String toString(short s);
 public static Short valueOf(String s, int radix);
 public static Short valueOf(String s);
 // Instance Methods
 public byte byteValue();
 public double doubleValue();
 public boolean equals(Object obj);
 public float floatValue();
 public int hashCode();
 public int intValue();
 public long longValue();
 public short shortValue();
 public String toString();
}

Constants

MAX_VALUE

public static final short MAX_VALUE= 32767

The largest value that can be represented by a short.

MIN_VALUE

public static final byte MIN_VALUE= -32768

The smallest value that can be represented by a short.

TYPE

public static final Class TYPE

The Class object that represents the primitive type short. It is always true that Short.TYPE == short.class.

Constructors

Short

public Short(short value)

Parameters

value

The short value to be encapsulated by this object.

Description

Creates a Short object with the specified short value.

public Short(String s) throws NumberFormatException

Parameters

s

The string to be made into a Short object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid short literal.

Description

Constructs a Short object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the constructor throws a NumberFormatException.

Class Methods

decode

public static Short decode(String nm) throws NumberFormatException

Parameters

nm

A String representation of the value to be encapsulated by a Short object. If the string begins with #
or 0x, it is a radix 16 representation of the value. If the string begins with 0, it is a radix 8 representation
of the value. Otherwise, it is assumed to be a radix 10 representation of the value.

Returns

A Short object that encapsulates the given value.

Throws

NumberFormatException

If the String contains any non-digit characters other than a leading minus sign or the value represented
by the String is less than Short.MIN_VALUE or greater than Short.MAX_VALUE.

Description

This method returns a Short object that encapsulates the given value.

parseByte

 public static short parseShort(String s) throws NumberFormatException

Parameters

s

The String to be converted to a short value.

Returns

The numeric value of the short represented by the String object.

Throws

NumberFormatException

If the String does not contain a valid representation of a short or the value represented by the
String is less than Short.MIN_VALUE or greater than Short.MAX_VALUE.

Description

This method returns the numeric value of the short represented by the contents of the given String object.
The String must contain only decimal digits, except that the first character may be a minus sign.

 public static short parseShort(String s, int radix) throws NumberFormatException

Parameters

s

The String to be converted to a short value.

radix

The radix used in interpreting the characters in the String as digits. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX. If radix is in the range 2 through 10, only
characters for which the Character.isDigit() method returns true are considered to be valid
digits. If radix is in the range 11 through 36, characters in the ranges `A' through `Z' and `a' through `z'
are considered valid digits.

Returns

The numeric value of the short represented by the String object in the specified radix.

Throws

NumberFormatException

If the String does not contain a valid representation of a short, radix is not in the appropriate range, or
the value represented by the String is less than Short.MIN_VALUE or greater than
Short.MAX_VALUE.

Description

This method returns the numeric value of the short represented by the contents of the given String object in
the specified radix. The String must contain only valid digits of the specified radix, except that the first
character may be a minus sign. The digits are parsed in the specified radix to produce the numeric value.

toString

public String toString(short s)

Parameters

s

The short value to be converted to a string.

Returns

The string representation of the given value.

Description

This method returns a String object that contains the decimal representation of the given value.

This method returns a string that begins with `-' if the given value is negative. The rest of the string is a sequence
of one or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if its argument
is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

valueOf

public static Short valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into a Short object.

Returns

The Short object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a short or the value represented by the
String is less than Short.MIN_VALUE or greater than Short.MAX_VALUE.

Description

Constructs a Short object with the value specified by the given string. The string should consist of one or more
digit characters. The digit characters can be preceded by a single `-'. If the string contains any other characters,
the method throws a NumberFormatException.

 public static Short valueOf(String s, int radix) throws NumberFormatException

Parameters

s

The string to be made into a Short object.

radix

The radix used in converting the string to a value. This value must be in the range
Character.MIN_RADIX to Character.MAX_RADIX.

Returns

The Short object constructed from the string.

Throws

NumberFormatException

If the String does not contain a valid representation of a short, radix is not in the appropriate range,
or the value represented by the String is less than Short.MIN_VALUE or greater than
Short.MAX_VALUE.

Description

Constructs a Short object with the value specified by the given string in the specified radix. The string should
consist of one or more digit characters or characters in the range `A' to `Z' or `a' to `z' that are considered digits in
the given radix. The digit characters can be preceded by a single `-' character. If the string contains any other
characters, the method throws a NumberFormatException.

Instance Methods

byteValue

public byte byteValue()

Returns

The value of this object as a byte. The high order bits of the value are discarded.

Overrides

Number.byteValue()

Description

This method returns the value of this object as a byte.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Short and it contains the same value as the object this
method is associated with.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this object as a float.

hashCode

public int hashCode()

Returns

A hashcode based on the short value of the object.

Overrides

Object.hashCode()

Description

This method returns a hash code computed from the value of this object.

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the value of this object as an int.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the value of this object as a long.

shortValue

public short shortValue()

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the value of this object as a short.

toString

public String toString()

Returns

The string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains the decimal representation of the value of this object.

This method returns a string that begins with `-' if the value is negative. The rest of the string is a sequence of one
or more of the characters `0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. This method returns "0" if the value of the
object is 0. Otherwise, the string returned by this method does not begin with "0" or "-0".

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Byte; Character; Class; Double; Exceptions; Float; Integer literals; Integer types; Integer; Long; Number; String

SecurityManager String

Chapter 4
Expressions

4.4 Unary Operators

Unary operators are operators that take exactly one argument. Unary operators may appear in a unary
expression:

[Graphic: Figure from the text]

The unary plus and minus operators, a Boolean negation operator (!), a bitwise negation operator (~),
and the cast construct comprise the unary operators in Java. The unary operators are equal in precedence
and are evaluated from right to left.

References Order of Operations; Postfix Increment/Decrement Operators; Prefix Increment/Decrement
Operators; Primary Expressions; Type 3

Unary Plus Operator +

The unary plus operator (+) can appear as part of a unary expression. The operator does no explicit
computation; it produces the same pure value that is produced by its operand. However, the unary +
operator may perform a type conversion on its operand. The type of the operand must be an arithmetic
data type, or a compile-time error occurs. If the type of the operand is byte, short, or char, the
unary + operator produces an int value; otherwise the operator produces a value of the same type as its
operand.

References Arithmetic Types

Unary Minus Operator -

The unary minus operator (-) can appear as part of a unary expression. The type of the operand of the
unary - operator must be an arithmetic data type, or a compile-time error occurs. The operator produces
a pure value that is the arithmetic negation (i.e., additive inverse) of the value of its operand.

The unary - operator may perform a type conversion. If the type of the operand is byte, short, or
char, the operation converts the operand to an int before computing the value's arithmetic negation
and producing an int value. Otherwise, unary - produces a value of the same type as its operand.

For integer data types, the unary - operator produces a value equivalent to subtracting its operand from
zero. There are, however, negative values for which the unary - operator cannot produce a positive
value; in these cases it produces the same negative value as its operand. This behavior results from the
two's complement representation Java uses for integer values. The magnitude of the most negative
number that can be represented using two's complement notation cannot be represented as a positive
number. No exception is thrown when the unary - operator is given a value that cannot be negated.
However, you can detect this situation by explicitly testing for these special values. The most negative
int value is available as the predefined constant Integer.MIN_VALUE and the most negative long
value is available as the predefined constant Long.MIN_VALUE.

For floating-point data types, the unary - operator changes the sign of its operand from + to - or from -
to +, for both regular values, positive and negative zero, and positive and negative infinity. The only case
where this is not true occurs when the operand is not-a-number (NaN). Given the value NaN, the unary -
operator produces NaN.

References Arithmetic Types; Integer; Long

Boolean Negation Operator !

The Boolean negation operator (!) may appear as part of a unary expression. The type of the operand of
the ! operator must be boolean, or a compile-time error occurs. If the value of its operand is false,
the ! operator produces the pure boolean value true. If the value of its operand is true, the operator
produces the pure boolean value false.

Here is an example that uses the Boolean negation operator:

public void paint(Graphics g) {
 if (!loaded) {
 //The next 2 lines are executed if loaded is false
 g.drawString("Loading data", 25, 25);
 return;

 }
 g.drawImage(img, 25, 25, this);
}

References Boolean Type

Bitwise Negation Operator ~

The bitwise negation operator (~) may appear as part of a unary expression. The type of the operand of
the ~ operator must be an integer data type, or a compile-time error occurs. The ~ operator may perform
a type conversion before it performs its computation. If the type of the operand is byte, short, or
char, the operator converts its operand to int before producing a value. Otherwise the ~ operator
produces a value of the same type as its operand.

After type conversion, the bitwise negation operator produces a pure value that is the bitwise
complement of its operand. In other words, if a bit in the converted operand contains a one, the
corresponding bit in the result contains a zero. If a bit in the converted operand contains a zero, the
corresponding bit in the result contains a one.

Here's an example that shows the use of the bitwise negation operator:

// zero low order four bits
int getNibble(int x) {
 return x & ~0xf;
}

References Integer types

Casts

A Type enclosed in parentheses specifies a type cast operation. A cast may appear as part of a unary
expression. A cast operation always produces a pure value of the specified type, by converting its
operand to that type if necessary. This is different from a type cast in C/C++, which can produce garbage
if it is given a pointer to a data type different than that implied by the pointer's declaration. If the actual
data type of the operand of a cast cannot be guaranteed at compile-time, the Java compiler must produce
code to check the type of the operand at runtime. In Java, any value that gets past all of the type-checking
done on a cast is guaranteed to be compatible with the type specified by the cast.

A cast can convert between certain primitive types. A cast between object reference types never alters the
type or content of the object, but may alter the type of the reference to the object.

Because it is not possible to convert between all types, some cast operations are permitted and others are
not. Here are the rules governing casts:

● A value of any data type can be cast to its own type.

● A value of any arithmetic data type can be cast to any other arithmetic data type. Casting a
floating-point value to an integer data type rounds toward zero.

● A value of the boolean data type cannot be cast to any other data type, nor can a value of any
other data type be cast to boolean.

● A value of any primitive data type cannot be cast to a reference data type, nor can a reference be
cast to any primitive data type.

● A reference to a class type can be cast to the type of the superclass of that class.

● A reference to a class type can be cast to the type of a subclass of that class if the reference
actually refers to an object of the specified class or any of its subclasses. Unless the Java compiler
can prove that the object actually referenced is of the specified class or any of its subclasses, the
compiler must generate a runtime test to verify that the object is of an appropriate type. At
runtime, if the object actually referenced is not of an appropriate type, a
ClassCastException is thrown. Consider the following example:

Object o = "ABC";
String s = (String)o; // This is okay
Double d = (Double)o; // Throws an exception

The cast of o to String is fine because o is really a reference to a String object. The cast of o
to Double throws an exception at runtime because the object that o references is not an instance
of Double.

● A reference to a class type can be cast to an interface type if the reference actually refers to an
object of a class that implements the specified interface. If the class of the reference being cast is a
final class, the compiler can determine if the reference actually refers to an object of a class
that implements the specified interface, because a final class cannot have any subclasses.
Otherwise, the compiler must generate a runtime test to determine if the reference actually refers
to an object of a class that implements the specified interface. At runtime, if the object actually
referenced is not of a class that implements the interface, a ClassCastException is thrown.
Here is an example that illustrates the rules governing casts to interface types:

interface Weber { double flux(double x); }
class B {}

final class C {}
class D implements Weber {
 public double flux(double x) {
 return Math.PI*x*x;
 }
}
class Intercast {
 public void main(String[] argv) {
 B b = new B();
 C c = new C();
 D d = new D();
 Weber w;
 w = (Weber)b; // Throws an exception
 w = (Weber)c; // Compiler complains
 w = (Weber)d; // Okay, D implements Weber
 }
}

The cast of b to Weber is fine with the compiler because the class B might have a subclass that
implements Weber. At runtime, however, this cast throws an exception because B does not
implement Weber. The cast of c to Weber produces an error message from the compiler, as the
C class does not implement Weber. Because C is final, it will not have any subclasses and
therefore there is no possibility of c containing a reference to an object that implements the
Weber interface. The cast of d to Weber is fine because the D class implements the Weber
interface.

● A reference to the class Object can be cast to an array type if the reference actually refers to an
array object of the specified type. The compiler generates a runtime test to determine if the
reference actually refers to the specified type of array object. At runtime, if the object actually
referenced is not the specified type of array, a ClassCastException is thrown.

● A reference to an interface type can be cast to a class type if the reference actually refers to an
instance of the specified class or any of its subclasses. If the specified class is a final class that
does not implement the referenced interface, the compiler can reject the cast because a final
class cannot have any subclasses. Otherwise, the compiler generates a runtime test to determine if
the reference actually refers to an object of the appropriate type. At runtime, if the object actually
referenced is not of the appropriate type, a ClassCastException is thrown.

Here is an example to illustrate these points:

interface Weber { double flux(double x); }
class B {}

final class C {}
class D implements Weber {
 public double flux(double x) {
 return Math.PI*x*x;
 }
}
class Intercast {
 public void doit(Weber w) {
 B b = (B)w; // May throw an exception
 C c = (C)w; // Compiler complains
 D d = (D)w; // Okay
 }
}

The cast of w to class B is fine with the compiler even though B does not implement Weber. The
compiler lets it pass because B might have a subclass that implements Weber and w could contain
a reference to that class. However, at runtime, the cast will throw an exception if the object
actually referenced is not an instance of B or a subclass of B. The cast of w to class C produces an
error message from the compiler. C does not implement Weber and C cannot have any subclasses
because it is final; any object that implements Weber cannot be an instance of C. The cast of w
to class D is fine at compile-time because D implements Weber. At runtime, if w references an
object that is not an instance of D, a ClassCastException is thrown.

● A reference to an interface type can be cast to another interface type if the reference actually
refers to an object of a class that implements the specified interface. If the referenced interface
extends the specified interface, the compiler knows that the cast is legal. Otherwise, the compiler
generates a runtime test to determine if the reference actually refers to an object that implements
the specified interface. At runtime, if the object actually referenced does not implement the
specified interface, a ClassCastException is thrown.

Here is an example to illustrate these points:

interface Weber { double flux(double x); }
interface Dyn { double squeeze(); }
interface Press extends Dyn {
 double squeeze(double theta);
}
class D implements Press {
 public double squeeze() { return Math.PI; }
 public double squeeze(double theta) {
 return Math.PI*Math.sin(theta);
 }
}

class Interinter {
 public static void doit(D d) {
 Dyn dyn = d; // Okay
 Weber w = (Weber)d; // May throw exception
 }
}

The assignment of d to dyn works because d is of class D, D implements Press, and Press
extends Dyn. Therefore, d refers to an object that implements Dyn and we have assignment
compatibility. The compiler lets the cast of d to Weber pass because there may be a subclass of D
that implements Weber. At runtime, the cast will throw an exception if D does not implement
Weber.

● A reference to an array object can be cast to the class type Object.

● A reference to an array object can be cast to another array type if either of the following is true:

❍ The elements of the referenced array and the elements of the specified array type are of the
same primitive type.

❍ The elements of the referenced array are of a type that can be cast to the type of the
elements of the specified array type.

Any cast operation not covered by the preceding rules is not allowed and the Java compiler issues an
error message.

References Arithmetic Types; Array Types; Boolean Type; Class Types; Interface Types; Runtime
exceptions

Increment/Decrement
Operators

Multiplicative Operators

Chapter 10
The java.lang Package

Double

Name

Double

Synopsis

Class Name:

java.lang.Double

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Double class provides an object wrapper for a double value. This is useful when you need to
treat a double value as an object. For example, there are a number of utility methods that take a
reference to an Object as one of their arguments. You cannot specify a double value for one of these
arguments, but you can provide a reference to a Double object that encapsulates the double value.
Furthermore, as of JDK 1.1, the Double class is necessary to support the Reflection API and class
literals.

In Java, double values are represented using the IEEE 754 format. The Double class provides
constants for the three special values that are mandated by this format: POSITIVE_INFINITY,
NEGATIVE_INFINITY, and NaN (not-a-number).

The Double class also provides some utility methods, such as methods for determining whether a
double value is an infinity value or NaN, for converting double values to other primitive types, and
for converting a double to a String and vice versa.

Class Summary

public final class java.lang.Double extends java.lang.Number {
 // Constants
 public final static double MAX_VALUE;
 public final static double MIN_VALUE;
 public final static double NaN;
 public final static double NEGATIVE_INFINITY;
 public final static double POSITIVE_INFINITY;
 public final static Class TYPE; // New in 1.1
 // Constructors
 public Double(double value);
 public Double(String s);
 // Class Methods
 public static native long doubleToLongBits(double value);
 public static boolean isInfinite(double v);
 public static boolean isNaN(double v);
 public static native double longBitsToDouble(long bits);
 public static String toString(double d);
 public static Double valueOf(String s);
 // Instance Methods
 public byte byteValue(); // New in 1.1
 public double doubleValue();
 public boolean equals(Object obj);

 public float floatValue();
 public int hashCode();
 public int intValue();
 public boolean isInfinite();
 public boolean isNaN();
 public long longValue();
 public short shortValue(); // New in 1.1
 public String toString();
}

Constants

MAX_VALUE

 public static final double MAX_VALUE = 1.79769313486231570e+308

Description

The largest value that can be represented by a double.

MIN_VALUE

 public static final double MIN_VALUE = 4.94065645841246544e-324

Description

The smallest value that can be represented by a double.

NaN

public static final double NaN = 0.0 / 0.0

Description

This variable represents the value not-a-number (NaN), which is a special value produced by
double operations such as division of zero by zero. When NaN is one of the operands, most
arithmetic operations return NaN as the result.

Most comparison operators (<, <=, ==, >=, >) return false when one of their arguments is
NaN. The exception is !=, which returns true when one of its arguments is NaN.

NEGATIVE_INFINITY

public static final double NEGATIVE_INFINITY = -1.0 / 0.0

Description

This variable represents the value negative infinity, which is produced when a double operation
underflows or a negative double value is divided by zero. Negative infinity is by definition less
than any other double value.

POSITIVE_INFINITY

public static final double POSITIVE_INFINITY = 1.0 / 0.0

Description

This variable represents the value positive infinity, which is produced when a double operation
overflows or a positive double value is divided by zero. Positive infinity is by definition greater
than any other double value.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type double. It is always true that Double.TYPE ==
double.class.

Constructors

Double

public Double(double value)

Parameters

value

The double value to be encapsulated by this object.

Description

Creates a Double object with the specified double value.

public Double(String s) throws NumberFormatException

Parameters

s

The string to be made into a Double object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid double literal.

Description

Constructs a Double object with the value specified by the given string. The string must contain
a sequence of characters that forms a legal double literal.

Class Methods

doubleToLongBits

public static native long doubleToLongBits(double value)

Parameters

value

The double value to be converted.

Returns

The long value that contains the same sequence of bits as the representation of the given
double value.

Description

This method returns the long value that contains the same sequence of bits as the representation
of the given double value. The meaning of the bits in the result is defined by the IEEE 754
floating-point format: bit 63 is the sign bit, bits 62-52 are the exponent, and bits 51-0 are the
mantissa.

An argument of POSITIVE_INFINITY produces the result 0x7ff0000000000000L, an
argument of NEGATIVE_INFINITY produces the result 0xfff0000000000000L, and an
argument of NaN produces the result 0x7ff8000000000000L.

The value returned by this method can be converted back to the original double value by the
longBitsToDouble() method.

isInfinite

static public boolean isInfinite(double v)

Parameters

v

The double value to be tested.

Returns

true if the specified value is equal to POSITIVE_INFINITY or NEGATIVE_INFINITY;
otherwise false.

Description

This method determines whether or not the specified value is an infinity value.

isNaN

public static boolean isNaN(double v)

Parameters

v

The double value to be tested.

Returns

true if the specified value is equal to NaN; otherwise false.

Description

This method determines whether or not the specified value is NaN.

longBitsToDouble

public static native double longBitsToDouble(long bits)

Parameters

bits

The long value to be converted.

Returns

The double value whose representation is the same as the bits in the given long value.

Description

This method returns the double value whose representation is the same as the bits in the given
double value. The meaning of the bits in the long value is defined by the IEEE 754 floating-
point format: bit 63 is the sign bit, bits 62-52 are the exponent, and bits 51-0 are the mantissa. The
argument 0x7f80000000000000L produces the result POSITIVE_INFINITY and the
argument 0xff80000000000000L produces the result NEGATIVE_INFINITY. Arguments
in the ranges 0x7ff0000000000001L through 0x7fffffffffffffffL and

0xfff0000000000001L through 0xffffffffffffffffL all produce the result NaN.

Except for NaN values not normally used by Java, this method is the inverse of the
doubleToLongBits() method.

toString

public static String toString(double d)

Parameters

d

The double value to be converted.

Returns

A string representation of the given value.

Description

This method returns a String object that contains a representation of the given double value.

The values NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY, -0.0, and +0.0 are
represented by the strings "NaN", "--Infinity", "Infinity", "--0.0", and "0.0",
respectively.

For other values, the exact string representation depends on the value being converted. If the
absolute value of d is greater than or equal to 10^-3 or less than or equal to 10^7, it is converted to
a string with an optional minus sign (if the value is negative) followed by up to eight digits before
the decimal point, a decimal point, and the necessary number of digits after the decimal point (but
no trailing zero if there is more than one significant digit). There is always a minimum of one
digit after the decimal point.

Otherwise, the value is converted to a string with an optional minus sign (if the value is negative),
followed by a single digit, a decimal point, the necessary number of digits after the decimal point
(but no trailing zero if there is more than one significant digit), and the letter E followed by a plus
or a minus sign and a base 10 exponent of at least one digit. Again, there is always a minimum of
one digit after the decimal point.

Note that the definition of this method has changed as of JDK 1.1. Prior to that release, the

method provided a string representation that was equivalent to the %g format of the printf
function in C.

valueOf

 public static Double valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into a Double object.

Returns

The Double object constructed from the string.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid double literal.

Description

Constructs a Double object with the value specified by the given string. The string must contain
a sequence of characters that forms a legal double literal. This method ignores leading and
trailing white space in the string.

Instance Methods

byteValue

public byte byteValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a byte.

Overrides

Number.byteValue()

Description

This method returns the truncated value of this object as a byte. More specifically, if the value of
the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an byte, the method returns Byte.MAX_VALUE. If
the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by an
byte, the method returns Byte.MIN_VALUE. Otherwise, the value is rounded toward zero and
returned.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Double and it contains the same value as the
object this method is associated with. More specifically, the method returns true if the
doubleToLongBits() method returns the same result for the values of both objects.

This method produces a different result than the == operator when both values are NaN. In this
case, the == operator produces false, while this method returns true. By the same token, the
method also produces a different result when the two values are +0.0 and -0.0. In this case, the
== operator produces true, while this method returns false.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns this object value as a float. Rounding may occur.

hashCode

public int hashCode()

Returns

A hashcode based on the double value of the object.

Overrides

Object.hashCode()

Description

This method returns a hashcode computed from the value of this object. More specifically, if d is
the value of the object, and bitValue is defined as:

long bitValue = Double.doubleToLongBits(d)

then the hashcode returned by this method is computed as follows:

(int)(bitValue ^ (bitValue>>>32))

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the truncated value of this object as an int. More specifically, if the value of
the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an int, the method returns Integer.MAX_VALUE.
If the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by
an int, the method returns Integer.MIN_VALUE. Otherwise, the value is rounded toward
zero and returned.

isInfinite

public boolean isInfinite()

Returns

true if the value of this object is equal to POSITIVE_INFINITY or NEGATIVE_INFINITY;
otherwise false.

Description

This method determines whether or not the value of this object is an infinity value.

isNaN

public boolean isNaN()

Returns

true if the value of this object is equal to NaN; otherwise false.

Description

This method determines whether or not the value of this object is NaN.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the truncated value of this object as a long. More specifically, if the value of

the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value too large to be represented by a long, the method returns Long.MAX_VALUE. If the value
is NEGATIVE_INFINITY, or any other value too small to be represented by a long, the
method returns Long.MIN_VALUE. Otherwise, the value is rounded toward zero and returned.

shortValue

public short shortValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the truncated value of this object as a short. More specifically, if the value
of the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an short, the method returns Short.MAX_VALUE.
If the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by
an short, the method returns Short.MIN_VALUE. Otherwise, the value is rounded toward
zero and returned.

toString

public String toString()

Returns

A string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains a representation of the value of this object.

The values NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY, -0.0, and +0.0 are
represented by the strings "NaN", "--Infinity", "Infinity", "--0.0", and "0.0",
respectively.

For other values, the exact string representation depends on the value being converted. If the
absolute value of this object is greater than or equal to 10^-3 or less than or equal to 10^7, it is
converted to a string with an optional minus sign (if the value is negative) followed by up to eight
digits before the decimal point, a decimal point, and the necessary number of digits after the
decimal point (but no trailing zero if there is more than one significant digit). There is always a
minimum of one digit after the decimal point.

Otherwise, the value is converted to a string with an optional minus sign (if the value is negative),
followed by a single digit, a decimal point, the necessary number of digits after the decimal point
(but no trailing zero if there is more than one significant digit), and the letter E followed by a plus
or a minus sign and a base 10 exponent of at least one digit. Again, there is always a minimum of
one digit after the decimal point.

Note that the definition of this method has changed as of JDK 1.1. Prior to that release, the
method provided a string representation that was equivalent to the %g format of the printf
function in C.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Class; Exceptions; Float; Floating-point literals; Floating-point types; Number; String

Compiler Float

Chapter 10
The java.lang Package

Float

Name

Float

Synopsis

Class Name:

java.lang.Float

Superclass:

java.lang.Number

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Float class provides an object wrapper for a float value. This is useful when you need to treat a
float value as an object. For example, there are a number of utility methods that take a reference to an
Object as one of their arguments. You cannot specify a float value for one of these arguments, but
you can provide a reference to a Float object that encapsulates the float value. Furthermore, as of
JDK 1.1, the Float class is necessary to support the Reflection API and class literals.

In Java, float values are represented using the IEEE 754 format. The Float class provides constants
for the three special values that are mandated by this format: POSITIVE_INFINITY,
NEGATIVE_INFINITY, and NaN (not-a-number).

The Float class also provides some utility methods, such as methods for determining whether a
floatx value is an infinity value or NaN, for converting float values to other primitive types, and for
converting a float to a String and vice versa.

Class Summary

public final class java.lang.Float extends java.lang.Number {
 // Constants
 public static final float MIN_VALUE;
 public static final float MAX_VALUE;
 public static final float NaN;
 public static final float NEGATIVE_INFINITY;
 public static final float POSITIVE_INFINITY;
 public final static Class TYPE; // New in 1.1
 // Constructors
 public Float(double value);
 public Float(float value);
 public Float(String s);
 // Class Methods
 public static native int floatToIntBits(float value);
 public static native float intBitsToFloat(int bits);
 public static boolean isInfinite(float v);
 public static boolean isNaN(float v);
 public static String toString(float f);
 public static Float valueOf(String s);
 // Instance Methods
 public byte byteValue(); // New in 1.1
 public double doubleValue();
 public boolean equals(Object obj);

 public float floatValue();
 public int hashCode();
 public int intValue();
 public boolean isInfinite();
 public boolean isNaN();
 public long longValue();
 public short shortValue(); // New in 1.1
 public String toString();
}

Constants

MAX_VALUE

public static final float MAX_VALUE = 3.40282346638528860e+38f

Description

The largest value that can be represented by a float.

MIN_VALUE

public static final float MIN_VALUE = 1.40129846432481707e-45f

Description

The smallest value that can be represented by a float.

NaN

public static final float NaN = 0.0f / 0.0f

Description

This variable represents the value NaN, a special value produced by float operations such as
division of zero by zero. When NaN is one of the operands, most arithmetic operations return
NaN as the result. Most comparison operators (<, <=, ==, >=, >) return false when one of their
arguments is NaN. The exception is !=, which returns true when one of its arguments is NaN.

NEGATIVE_INFINITY

public static final float NEGATIVE_INFINITY = -1.0f / 0.0f

Description

This variable represents the value negative infinity, which is produced when a float operation
underflows or a negative float value is divided by zero. Negative infinity is by definition less
than any other float value.

POSITIVE_INFINITY

public static final float POSITIVE_INFINITY = 1.0f / 0.0f

Description

This variable represents the value positive infinity, which is produced when a float operation
overflows or a positive float value is divided by zero. Positive infinity is by definition greater
than any other float value.

TYPE

public static final Class TYPE

Availability

New as of JDK 1.1

Description

The Class object that represents the type float. It is always true that Float.TYPE ==
float.class.

Constructors

Float

public Float(double value)

Parameters

value

The double value to be encapsulated by this object.

Description

Creates a Float object with the specified double value. The value is rounded to float
precision.

public Float(float value)

Parameters

value

The float value to be encapsulated by this object.

Description

Creates a Float object with the specified float value.

public Float(String s) throws NumberFormatException

Parameters

s

The string to be made into a Float object.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid float literal.

Description

Constructs a Float object with the value specified by the given string. The string must contain a
sequence of characters that forms a legal float literal.

Class Methods

floatToIntBits

public static native int floatToIntBits(float value)

Parameters

value

The float value to be converted.

Returns

The int value that contains the same sequence of bits as the representation of the given float
value.

Description

This method returns the int value that contains the same sequence of bits as the representation of
the given float value. The meaning of the bits in the result is defined by the IEEE 754 floating-
point format: bit 31 is the sign bit, bits 30-23 are the exponent, and bits 22-0 are the mantissa. An
argument of POSITIVE_INFINITY produces the result 0x7f800000, an argument of
NEGATIVE_INFINITY produces the result 0xff800000, and an argument of NaN produces
the result 0x7fc00000.

The value returned by this method can be converted back to the original float value by the
intBitsToFloat() method.

intBitsToFloat

public static native float intBitsToFloat(int bits)

Parameters

bits

The int value to be converted.

Returns

The float value whose representation is the same as the bits in the given int value.

Description

This method returns the float value whose representation is the same as the bits in the given
int value. The meaning of the bits in the int value is defined by the IEEE 754 floating-point
format: bit 31 is the sign bit, bits 30-23 are the exponent, and bits 22-0 are the mantissa. The
argument 0x7f800000 produces the result POSITIVE_INFINITY, and the argument
0xff800000 produces the result NEGATIVE_INFINITY. Arguments in the ranges
0x7f800001 through 0x7f8fffff and 0xff800001 through 0xff8fffffL all produce
the result NaN.

Except for NaN values not normally used by Java, this method is the inverse of the
floatToIntBits() method.

isInfinite

public static boolean isInfinite(float v)

Parameters

v

The float value to be tested.

Returns

true if the specified value is equal to POSITIVE_INFINITY or NEGATIVE_INFINITY;
otherwise false.

Description

This method determines whether or not the specified value is an infinity value.

isNaN

public static boolean isNaN(float v)

Parameters

v

The float value to be tested.

Returns

true if the specified value is equal to NaN; otherwise false.

Description

This method determines whether or not the specified value is NaN.

toString

public static String toString(float f)

Parameters

f

The float value to be converted.

Returns

A string representation of the given value.

Description

This method returns a String object that contains a representation of the given float value.

The values NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY, -0.0, and +0.0 are
represented by the strings "NaN", "--Infinity", "Infinity", "--0.0", and "0.0",
respectively.

For other values, the exact string representation depends on the value being converted. If the
absolute value of f is greater than or equal to 10^-3 or less than or equal to 10^7, it is converted to
a string with an optional minus sign (if the value is negative) followed by up to eight digits before
the decimal point, a decimal point, and the necessary number of digits after the decimal point (but
no trailing zero if there is more than one significant digit). There is always a minimum of one

digit after the decimal point.

Otherwise, the value is converted to a string with an optional minus sign (if the value is negative),
followed by a single digit, a decimal point, the necessary number of digits after the decimal point
(but no trailing zero if there is more than one significant digit), and the letter E followed by a plus
or a minus sign and a base 10 exponent of at least one digit. Again, there is always a minimum of
one digit after the decimal point.

Note that the definition of this method has changed as of JDK 1.1. Prior to that release, the
method provided a string representation that was equivalent to the %g format of the printf
function in C.

valueOf

 public static Float valueOf(String s) throws NumberFormatException

Parameters

s

The string to be made into a Float object.

Returns

The Float object constructed from the string.

Throws

NumberFormatException

If the sequence of characters in the given String does not form a valid float literal.

Description

Constructs a Float object with the value specified by the given string. The string must contain a
sequence of characters that forms a legal float literal. This method ignores leading and trailing
whitespace in the string.

Instance Methods

byteValue

public byte byteValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a byte.

Overrides

Number.byteValue()

Description

This method returns the truncated value of this object as a byte. More specifically, if the value of
the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an byte, the method returns Byte.MAX_VALUE. If
the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by an
byte, the method returns Byte.MIN_VALUE. Otherwise, the value is rounded toward zero and
returned.

doubleValue

public double doubleValue()

Returns

The value of this object as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this object as a double.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of Float and it contains the same value as the
object this method is associated with. More specifically, the method returns true if the
floatToIntBits() method returns the same result for the values of both objects.

This method produces a different result than the == operator when both values are NaN. In this
case, the == operator produces false, while this method returns true. By the same token, the
method also produces a different result when the two values are +0.0 and -0.0. In this case, the
== operator produces true, while this method returns false.

floatValue

public float floatValue()

Returns

The value of this object as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this object as a float.

hashCode

public int hashCode()

Returns

A hashcode based on the float value of the object.

Overrides

Object.hashCode()

Description

This method returns a hashcode computed from the value of this object. More specifically, if f is
the value of the object, this method returns Float.floatToIntBits(f).

intValue

public int intValue()

Returns

The value of this object as an int.

Overrides

Number.intValue()

Description

This method returns the truncated value of this object as an int. More specifically, if the value of
the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an int, the method returns Integer.MAX_VALUE.
If the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by

an int, the method returns Integer.MIN_VALUE. Otherwise, the value is rounded toward
zero and returned.

isInfinite

public boolean isInfinite(float v)

Returns

true if the value of this object is equal to POSITIVE_INFINITY or NEGATIVE_INFINITY;
otherwise false.

Description

This method determines whether or not the value of this object is an infinity value.

isNaN

public boolean isNaN()

Returns

true if the value of this object is equal to NaN; otherwise false.

Description

This method determines whether or not the value of this object is NaN.

longValue

public long longValue()

Returns

The value of this object as a long.

Overrides

Number.longValue()

Description

This method returns the truncated value of this object as a long. More specifically, if the value of
the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by a long, the method returns Long.MAX_VALUE. If
the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by a
long, the method returns Long.MIN_VALUE. Otherwise, the value is rounded toward zero and
returned.

shortValue

public short shortValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a short.

Overrides

Number.shortValue()

Description

This method returns the truncated value of this object as a short. More specifically, if the value
of the object is NaN, the method returns 0. If the value is POSITIVE_INFINITY, or any other
value that is too large to be represented by an short, the method returns Short.MAX_VALUE.
If the value is NEGATIVE_INFINITY, or any other value that is too small to be represented by
an short, the method returns Short.MIN_VALUE. Otherwise, the value is rounded toward
zero and returned.

toString

public String toString()

Returns

A string representation of the value of this object.

Overrides

Object.toString()

Description

This method returns a String object that contains a representation of the value of this object.

The values NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY, -0.0, and +0.0 are
represented by the strings "NaN", "--Infinity", "Infinity", "--0.0", and "0.0",
respectively.

For other values, the exact string representation depends on the value being converted. If the
absolute value of this object is greater than or equal to 10^-3 or less than or equal to 10^7, it is
converted to a string with an optional minus sign (if the value is negative) followed by up to eight
digits before the decimal point, a decimal point, and the necessary number of digits after the
decimal point (but no trailing zero if there is more than one significant digit). There is always a
minimum of one digit after the decimal point.

Otherwise, the value is converted to a string with an optional minus sign (if the value is negative),
followed by a single digit, a decimal point, the necessary number of digits after the decimal point
(but no trailing zero if there is more than one significant digit), and the letter E followed by a plus
or a minus sign and a base 10 exponent of at least one digit. Again, there is always a minimum of
one digit after the decimal point.

Note that the definition of this method has changed as of JDK 1.1. Prior to that release, the
method provided a string representation that was equivalent to the %g format of the printf
function in C.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Class; Double; Exceptions; Floating-point literals; Floating-point types; Number; String

Double Integer

Chapter 4
Expressions

4.11 Boolean Operators

The Boolean operators in Java are used for conditional AND (&&) and conditional OR (||) operations.
These operators have different precedence; the && operator has the higher precedence and || the lower
precedence. Both of the operators are evaluated from left to right.

The unary operator ! provides a Boolean negation operation.

References Boolean Negation Operator !; Order of Operations

Boolean AND Operator &&

The conditional AND operator && produces a pure boolean value that is the conditional AND of its
operands. The && operator may appear in a conditional AND expression:

[Graphic: Figure from the text]

The conditional AND operator is evaluated from left to right. The operator never throws an exception.

Here is a code example that shows the use of the conditional AND operator:

public final short readShort() throws IOException {
 int ch1, ch2;
 if ((ch1 = in.read()) >= 0 && (ch2 = in.read()) >= 0)
 return (short)((ch1 << 8) + ch2);
 throw new EOFException();
}

The operands of the conditional AND operator must both be of type boolean, or a compile-time error
occurs.

The operands of the conditional AND operator are evaluated in a different way from the operands for
most other operators in Java. Most other operators evaluate all of their operands before performing their
operation; the conditional AND operator does not necessarily evaluate both of its operands.

As with all binary operators, the left operand of && is evaluated first. If the left operand evaluates to
true, the conditional AND operator evaluates its right operand and produces a pure value that has the
same value as its right operand. However, if the left operand evaluates to false, the right operand is not
evaluated and the operator produces the pure value false.

In the above example, the expression (ch2 = in.read()) is evaluated only if the expression (ch1
= in.read()) produces a value that is greater than or equal to zero.

References Bitwise/Logical AND Operator &; Boolean Type; Bitwise/Logical Inclusive OR Operator |;
Order of Operations

Boolean OR Operator ||

The conditional OR operator || produces a pure boolean value that is the conditional OR of its
operands. The || operator may appear in a conditional OR expression:

[Graphic: Figure from the text]

The conditional OR operator is evaluated from left to right. The operator never throws an exception.

Here is a code example that shows the use of the conditional OR operator:

public final short readShort() throws IOException {
 int ch1, ch2;
 if ((ch1 = in.read()) < 0 || (ch2 = in.read()) < 0)
 throw new EOFException();
 return (short)((ch1 << 8) + ch2);
}

The operands of the conditional OR operator must both be of type boolean, or a compile-time error
occurs.

The operands of the conditional OR operator are evaluated in a different way from the operands for most
other operators in Java. Most other operators evaluate all of their operands before performing their
operation; the conditional OR operator does not necessarily evaluate both of its operands.

As with all binary operators, the left operand of || is evaluated first. If the left operand evaluates to
false, the conditional OR operator evaluates its right operand and produces a pure value that has the
same value as its right operand. However, if the left operand evaluates to true, the right operand is not
evaluated and the operator produces the pure value true.

References Bitwise/Logical Inclusive OR Operator |; Boolean Type; Boolean AND Operator &&; Order
of Operations

Bitwise/Logical Operators Conditional Operator

Chapter 6
Statements and Control

Structures

6.7 Iteration Statements

Iteration statements are used to specify the logic of a loop. Java has three varieties of iteration statement:
while, do, and for.

[Graphic: Figure from the text]

References The do Statement; The for Statement; The while Statement

The while Statement

A while statement evaluates a Boolean expression. If the expression is true, a given statement is
repeatedly executed for as long as the expression continues to evaluate to true.

[Graphic: Figure from the text]

In Java, the expression in parentheses must produce a boolean value. This is different from C/C++,
which allows any type of expression.

If the expression in parentheses evaluates to true, the statement contained in the while statement is
executed and the expression in parentheses is evaluated again. This process continues until the
expression evaluates to false.

If the expression in parentheses evaluates to false, the statement following the while statement is the
next statement to be executed. The expression in parentheses is evaluated before the contained statement
is executed, so it is possible for the contained statement not to be executed even once.

Here is an example of a while statement:

while ((c = in.read()) >= 0) {
 out.write(c);
}

References Boolean Type; Expression 4; Statement 6

The do Statement

A do statement executes a given statement and then evaluates a Boolean expression. If the expression
evaluates to true, the statement is executed repeatedly as long as the expression continues to evaluate to
true:

[Graphic: Figure from the text]

In Java, the expression in parentheses must produce a boolean value. This is unlike C/C++, which
allows any type of expression.

The statement contained in the do statement is executed and then the expression in parentheses is
evaluated. If the expression evaluates to true, the process is repeated.

If the expression evaluates to false, the statement following the do statement is the next statement to be
executed. Because the expression is evaluated after the contained statement is executed, the statement is
always executed at least once.

Here's an example of a do statement:

do {
 c = in.read();
 out.write(c);
} while (c != ';');

References Boolean Type; Expression 4; Statement 6

The for Statement

A for statement is a more structured form of a while statement. A for statement performs an
initialization step and then evaluates a Boolean expression. If the expression evaluates to true, a given
statement is executed and an increment expression is evaluated repeatedly as long as the expression
continues to evaluate to true:

[Graphic: Figure from the text]

[Graphic: Figure from the text]

[Graphic: Figure from the text]

Here is an example of a for statement:

for (i = 0; i < a.length; i++) {
 a[i] = i;
}

The initialization part of the for statement is executed first. If the initialization part contains nothing, no
initialization is performed. The expression that follows must produce a boolean value. Before the body
of the for statement is executed, the expression is evaluated. If the expression portion of the for
statement is omitted, the default expression true is used. If the expression evaluates to true, the body
of the for statement is executed and then the increment portion of the for statement is evaluated.
Finally, the expression is evaluated again to determine if there should be another iteration. This process
continues until the expression evaluates to false, at which point the statement following the for
statement is the next statement to be executed. The for statement in the above example can be rewritten
as a while statement as follows:

i = 0;
while (i < a.length) {
 a[i] = i;
 i++;
}

One difference between comparable for and while loops is that a continue statement in the body of
a for statement causes the increment portion of the statement to be evaluated. However, this may not be

the case in a comparable while statement.

Here's a new version of our for example:

for (i = 0; i < a.length; i++) {
 a[i] = i;
 continue;
}

The added continue statement at the end of the for loop does not change the behavior of the loop. In
particular, i++ is still evaluated after each iteration through the body of the loop. Now let's add a
continue statement at the equivalent place in our while example:

i = 0;
while (i < a.length) {
 a[i] = i;
 continue;
 i++;
}

The continue statement in this while loop prevents the statement i++ from being executed. The
continue statement would have to be moved after the increment operation to match the logic of the
for statement.

If the expression portion of a for statement is omitted, the default expression true is supplied. Take,
for example, the following for statement:

for (FileInputStream in = new FileInputStream(fname);;) {
 c = in.read();
 if (c < 0)
 return;
 System.out.print((char)c);
}

This example uses a local variable declaration in the initialization portion of the for statement. Local
variable declarations in a for statement are subject to the same restrictions as local variable declarations
in a block. In particular, a for statement cannot declare a local variable with the same name as a local
variable or formal parameter that is defined in an enclosing block.

The above for statement is equivalent to the following while statement:

{

 FileInputStream in = new FileInputStream(fname);
 while (true) {
 c = in.read();
 if (c < 0)
 return;
 System.out.print((char)c);
 }
}

The enclosing block in the above example is provided to limit the scope of the local variable in to just
the while statement.

The initialization portion of a for statement can also be empty. The following statement is a legal way
of specifying an infinite loop:

for (;;) {...}

This is equivalent to the following while statement:

while (true) {...}

Unlike C/C++, there is no comma operator in Java. However, commas are explicitly allowed in the
initialization portion of a for statement. For example, a for initialization can consist of multiple
expressions separated by commas:

i=2, j=5, k=44

When the initialization portion of a for statement contains local variable declarations, commas are also
allowed because the syntax for declarations allows multiple variables, separated by commas, to be
declared in one declaration. For example:

int i=2, j=5, k=44

References Boolean Type; Expression 4; Statement 6; Local Variables; TopLevelExpression 6.4; The
continue Statement; The while Statement

The switch Statement The break Statement

Chapter 6
Statements and Control

Structures

6.5 The if Statement

An if statement determines which of two statements is executed, based on the value of a Boolean
expression:

[Graphic: Figure from the text]

In Java, the expression in parentheses must produce a boolean value. This is different from C/C++,
which allows any type of expression.

If the expression in parentheses evaluates to true, the statement after the parentheses is executed. After
that statement has been executed, the statement following the entire if statement is executed. If the
expression between the parentheses evaluates to false, the next statement to be executed depends on
whether or not the if statement has an else clause. If there is an else clause, the statement after the
else is executed. Otherwise, the statement after the entire if statement is executed.

When if statements are nested, each else clause is matched with the last preceding if statement in the
same block that has not yet been matched with an if statement.

Here is an example of an if statement:

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_04.htm

if (j == 4) {
 if (x > 0) {
 x *= 7;
 } else {
 x *= -7;
 }
}
return;

The outer if statement has no else clause. If j is not 4, the return statement is executed. Otherwise,
the inner if statement is executed. This if statement does have an else clause. If x is greater than
zero, the value of x is multiplied by 7. Otherwise, the value of x is multiplied by -7. Regardless of the
value of x, the return statement is executed.

References Boolean Type; Expression 4; Statement 6

Expression Statements The switch Statement

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_04.htm

Chapter 4
Expressions

4.2 Allocation Expressions

An allocation expression is a primary expression that creates an object or an array. An allocation
expression also produces a reference to the newly created object or array:

[Graphic: Figure from the text]

[Graphic: Figure from the text]

When AllocationExpression contains parentheses, the allocation expression creates a non-array object.
When AllocationExpression contains square brackets, the allocation expression creates an array.

An object created by an allocation expression continues to exist until the program terminates or it is freed
by the garbage collector (see Object Destruction). Consider the following code:

class X {
 Double perm;
 void foo() {
 Double d = new Double(8.9473);
 int a[] = new int [2];
 d = new Double(3.1415926);
 a[0] = d.intValue();
 perm = d;
 }
}

The first line of foo() creates a Double object and uses it as the initial value of the variable d. The

second line creates an array of integers and uses it as the initial value of the variable a. At this point,
neither of the two objects that has been created is a candidate for garbage collection because there is a
variable referencing each of them.

The third line of foo creates another Double object and assigns it to the variable d. Now there is
nothing that refers to the first Double object that we created, so that object can now be garbage
collected at any time.

When the block in this example finishes executing, the variables declared inside of the block, a and d,
pass out of scope. Now there is nothing referring to the array object that we created; now that object can
be garbage-collected at any time. However, because the variable perm now refers to the second
Double object we created, that object is not a candidate for garbage collection.

References ArgumentList 4.1.8; ClassBody 5.4; Variable initializers; Expression 4; Identifiers; Object
Creation; Object Destruction; Primary Expressions; Type 3

Object Allocation Expressions

An allocation expression that contains parentheses creates a non-array object; that is, an instance of a
class. For example:

new Double(93.1872)

The Type in an object allocation expression must be a class or interface type. The argument list supplied
between the parentheses provides the actual arguments to be passed to the object's constructor. However,
if a ClassBody follows the parentheses, no arguments may appear between the parentheses, and different
rules apply. (These rules are discussed in Allocating instances of anonymous classes.)

If new is preceded by a PrimaryExpression and a dot, the PrimaryExpression must produce a reference
to an object. Furthermore, the object's class must be an inner or nested top-level class that is named by
the identifier that follows new. If the specified class is a non-static inner class, the object created by
the allocation expression has the object referenced by the PrimaryExpression as its enclosing instance.
For example:

class Z {
 class Y {
 ...
 }
 public static void main(String[] argv) {
 Z myZ = new Z();
 Z.Y myY = myZ.new Y();

 }
}

In the preceding example, we must supply an explicit enclosing instance of Z to create a Z.Y object
because main() is a static method. A non-static method of Z could create an instance of Z.Y
without supplying an explicit enclosing instance of Z because the method itself is associated with an
instance of Z. However, because a static method is not associated with an instance of its class, it must
supply an explicit enclosing instance when creating an instance of an inner class.

The syntax that allows new to be preceded by a PrimaryExpression and a dot is not supported prior to
Java 1.1.

The remainder of this section applies only to allocation expressions that contain parentheses but no
ClassBody. Allocation expressions that contain a ClassBody are described in Allocating instances of
anonymous classes.

An object allocation expression performs the following steps:

1. Creates a new object with all of its instance variables set to their default values. The default
values for these variables are determined by their types.

2. Calls the constructor that matches the given argument list.

3. Produces a reference to the initialized object.

The process of selecting the appropriate constructor to call is similar to the process used to select the
method invoked by a method call expression. The compiler determines which constructors have formal
parameters compatible with the given arguments. If there is more than one suitable constructor, the
compiler must select the constructor that most closely matches the given arguments. If the compiler
cannot select one constructor as a better match than the others, the constructor selection process fails and
an error message is issued.

Here are the details of the constructor selection process:

Step One

The constructor definitions are searched for constructors that, taken in isolation, could be called
by the allocation expression. A constructor is a candidate if it meets the following criteria:

❍ The constructor is accessible to the allocation expression, based on any access modifiers
specified in the constructor's declaration.

❍ The number of formal parameters declared for the constructor is the same as the number of
actual arguments provided in the allocation expression.

❍ The data type of each actual parameter is assignment-compatible with the corresponding
formal parameter.

Step Two

If more than one constructor meets the criteria in Step One, the Java compiler tries to determine if
one constructor is a more specific match than the others. If there is no constructor that matches
more specifically, the constructor selection process fails and an error message is issued.

Given two constructors that are both candidates to be invoked by the same object allocation
expression, one constructor is more specific than another constructor if each parameter of the first
constructor is assignment-compatible with the corresponding parameter of the second constructor.

When an object allocation expression is evaluated, the constructor selected in Step Two is invoked. This
constructor returns a reference to the newly created object.

Here's an example that shows how the constructor selection process works:

class Consel {
 Consel() { }
 Consel(Object o, double d) {}
 Consel(String s, int i) {}
 Consel(int i, int j) {}
 public void main(String[] argv) {
 Consel c = new Consel("abc",4);
 }
}

The main() method in the Consel class creates a new Consel object. The process of selecting which
constructor to call proceeds as follows:

1. The compiler finds all of the constructors that are accessible to the new operator. Since all of the
constructors are accessible, the compiler then narrows its choices to those constructors that have
the same number of formal parameters as the number of actual arguments in the allocation
expression. This step eliminates the constructor with no formal parameters, so now there are three
choices. The compiler again narrows its choices to those constructors with formal parameters that
are assignment-compatible with the actual values. Because a String is not assignment-
compatible with an int variable, the compiler eliminates the constructor that takes two int

parameters.

2. Now the compiler must choose which of the two remaining constructors is more specific than the
other. Because a String object reference can be assigned to an Object variable and an int
value can be assigned to a double variable, the constructor Consel(String s, int i) is
the more specific of the two. This constructor is the one that is invoked to create the Consel
object.

References Allocating instances of anonymous classes; Assignment Compatibility; ClassBody 5.4; Class
Types; Constructors; Interface Types; Primary Expressions

Allocating instances of anonymous classes

An allocation expression that contains a ClassBody creates an instance of an anonymous class. It is called
an anonymous class because it has no name of its own. The variables and methods of an anonymous
class are defined in the ClassBody. If the type specified after new is a class, the anonymous class is a
subclass of that class. If the type specified after new is an interface, the anonymous class implements that
interface and is a subclass of Object. For example:

public class MainFrame extends Frame {
...
 public MainFrame(String title) {
 super(title);
 WindowAdapter listener;
 listener = new WindowAdapter() {
 public void windowClosing(WindowEvent evt) {
 exit();
 }
 };
 addWindowListener(listener);
 }
...
}

The example creates an instance of an anonymous subclass of the WindowAdapter class. If an
allocation expression contains a ClassBody, it cannot contain any arguments between the parentheses
because an anonymous class cannot declare any constructors. Instead, an anonymous class must use
instance initializers to handle any complex initialization.

The body of an anonymous class cannot declare any static variables, static methods, static
classes, or static initializers. Anonymous classes are not supported prior to Java 1.1.

References Anonymous classes; ClassBody 5.4; Constructors; Instance Initializers; Methods; Nested
Top-Level and Member Classes; Static Initializers; Variables

Array Allocation Expressions

An allocation expression that contains square brackets creates an array, such as:

new int[10]

An array allocation expression performs the following steps:

1. Allocates storage for the array

2. Sets the length variable of the array and initializes the array elements to their default values

3. Produces a reference to the initialized array

Although Java does not support multi-dimensional arrays, it does support arrays of arrays. The most
important distinction between a multi-dimensional array and an array of arrays is that in an array of
arrays, each array need not be of the same length. Because arrays of arrays are most often used to
represent multi-dimensional arrays, this book refers to them as multi-dimensional arrays, even though
that is not precisely correct.

The type of the array created by an array allocation expression can be expressed by removing both the
word new and the expressions from within the square brackets. For example, here is an allocation
expression:

new int[3][4][5]

The type of the array produced by that expression is:

int[][][]

This means that the number of dimensions in the array produced by an allocation expression is the same
as the number of pairs of square brackets in the allocation expression.

The expressions that appear in the square brackets must be of type int, short, char, or byte. Each
of the expressions specifies the length of a single dimension of the array that is being created. For
example, the allocation expression above creates an array of 3 arrays of 4 arrays of 5 int values. The
length supplied for an array must not be negative. At runtime, if an expression in square brackets
produces a negative array length, a NegativeArraySizeException is thrown.

The syntax of an array allocation expression specifies that the first pair of square brackets must contain
an expression, while the trailing square brackets do not need to. This means that an array allocation
expression can be written to build fewer dimensions of an array than there are dimensions in the array's
type. For example, consider this allocation expression:

new char [10][]

The array produced by this allocation expression is an array of arrays of char. The allocation expression
creates a single array of 10 elements, where each of those elements is a char array of unspecified
length.

Array allocation expressions are often used to initialize array variables. Here are some examples:

int j[] = new int[10]; // array of 10 ints
ing k[][] = new float[3][4]; // array of 3 arrays
 // of 4 floats

Here's an example that builds an array of different length arrays, or in other words a non-rectangular
array of arrays:

int a[][] = new int [3][];
a[0] = new int [5];
a[1] = new int [6];
a[2] = new int [7];

None of the array allocation expressions presented so far have used array initializers. When an array
allocation expression does not include an array initializer, the array is created with all of its elements set
to a default value. The default value is based on the type of the array. Table 4-1 shows the default values
used for the various types in Java.

Table 4.1: Default Values for
Array Elements

Array Type Default Value

byte 0

char '\u0000'

short 0

int 0

long 0L

float 0.0F

double 0.0

Boolean false

Object reference null

If you want to create an array that contains elements with different initial values, you can include an
ArrayInitializer at the end of the allocation expression. For example:

new int [] { 4,7,9 }

Notice that there is no expression between the square brackets. If an allocation expression contains
square brackets and no ArrayInitializer, at least the first pair of square brackets must contain an
expression. However, if an allocation expression does contain an ArrayInitializer, there cannot be any
expressions between any of the square brackets. An allocation expression that contains an
ArrayInitializer can be used to create an anonymous array: one that is created and initialized without
using a variable initializer.

The syntax that allows an ArrayInitializer in an allocation expression is not supported prior to Java 1.1.

References Array Types; Variable initializers; Index Expressions

Primary Expressions Increment/Decrement
Operators

Chapter 4
Expressions

4.14 Order of Operations

In an expression that contains multiple operators, Java uses a number of rules to decide the order in
which the operators are evaluated. The first and most important rule is called operator precedence.
Operators in an expression that have higher precedence are executed before operators with lower
precedence. For example, multiplication has a higher precedence than addition. In the expression
2+3*4, the multiplication is done before the addition, producing a result of 14.

If consecutive operators in an expression have the same precedence, a rule called associativity is used to
decide the order in which those operators are evaluated. An operator can be left-associative, right-
associative, or non-associative:

● Left-associative operators of the same precedence are evaluated in order from left to right. For
example, addition and subtraction have the same precedence and they are left-associative. In the
expression 10-4+2, the subtraction is done first because it is to the left of the addition, producing
a value of 8.

● Right-associative operators of the same precedence are evaluated in order from right to left. For
example, assignment is right-associative. Consider the following code fragment:

int a = 3;
int b = 4;
a = b = 5;

After the code has been evaluated, both a and b contain 5 because the assignments are evaluated
from right to left.

● A non-associative operator cannot be combined with other operators of the same precedence.

Table 4-2 shows the precedence and associativity of all the operators in Java.[7]

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch04_15.htm

[7] Although the precedence of operators in Java is similar to that in C++, there are some
differences. For example, new has a higher precedence in Java than it does in C++.
Another difference is that the ++ and - - operators are effectively non-associative in
Java.

Table 4.2: Precedence and Associativity of Operators in Java

Precedence Operator Associativity

1 (), [] non-associative

2 new non-associative

3 . left-associative

4 ++, - - non-associative

5 - (unary), + (unary), !, ~, ++, - -, (type) right-associative

6 *, /, % left-associative

7 +, - left-associative

8 <<, >>, >>> left-associative

9 <, >, <=, >=, instanceof non-associative

10 ==, != left-associative

11 & left-associative

12 ^ left-associative

13 | left-associative

14 && left-associative

15 || left-associative

16 ?: right-associative

17 =, *=, /=, %=, -=, <<=, >>=, >>>=, &=, ^=, |= right-associative

As in C/C++, the order in which operators are evaluated can be modified by the use of parentheses.

The rest of the rules that concern order of operations have to do with the evaluation of operands or
arguments in a single expression.

● The left operand of a binary operator is evaluated before its right operand.

● The operands of an operator are evaluated before the operator is evaluated. Consider the following
expression:

((x=4) * x)

First, the left operand of * is evaluated; it produces the value 4. Then the right operand of * is
evaluated. Since evaluation of the left operand set x to 4, evaluation of the right operand produces
4. Finally, the * operator itself is evaluated, producing the value 16.

● In an index expression, the expression to the left of the square brackets is evaluated before the
expression inside the square brackets.

● In an expression that calls a method through an object reference, the object reference is evaluated
before the argument expressions.

● In any expression that calls a method or constructor, the expressions supplied as the actual
arguments are evaluated from left to right.

● In an array allocation expression, the expressions that appear in square brackets and provide the
dimensions of the array are evaluated from left to right.

The intent of all of these rules is to guarantee that every implementation of Java evaluates any given
expression in the same way.[8] In order to produce optimized code, a Java compiler is allowed to deviate
from the rules governing the order in which operations are performed, provided that the result is the same
as if it had followed the rules.

[8] This is different than C/C++, which leaves a number of details of expression evaluation
up to an implementation, such as the order in which the actual parameters of a function call
are evaluated.

References Array Allocation Expressions; Index Expressions; Method Call Expression; Object
Allocation Expressions

Assignment Operators Data Type of an Expression

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch04_15.htm

Chapter 4
Expressions

4.16 Constant Expressions

A constant expression is an expression that always produces the same result. More precisely, a constant
expression is an expression that produces a pure value of a primitive data type and is only composed of
the following:

● Literals of primitive data types

● String literals

● Variables that are declared final and are initialized by constant expressions

● Type casts to primitive data types or the type String

● The unary operators + -, ~, and !

● The binary operators *, /, %, +, -, <<, >>, >>>, <, <=, >=, >, ==, !=, &, ^, |, &&, and ||

● The ternary operator ?:

Note that expressions that use ++, - -, and instanceof are not constant expressions. Also note that
expressions that produce or contain references to objects that are not String objects are never constant
expressions.

The compiler generally evaluates a constant expression and substitutes the result for the expression
during the compilation process.

References Additive Operators; Bitwise/Logical Operators; Boolean Operators; Casts; Conditional
Operator; Equality Comparison Operators; Interface Variables; Local Variables; Literals; Multiplicative
Operators; Relational Comparison Operators; Shift Operators; Unary Operators; Variables

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch04_15.htm

Data Type of an Expression Declarations

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch04_15.htm

Chapter 5
Declarations

5.3 Object-Orientation Java Style

Before considering class and interface declarations in Java, it is essential that you understand the object-
oriented model used by the language. No useful programs can be written in Java without using objects.
Java deliberately omits certain C++ features that promote a less object-oriented style of programming.
Thus, all executable code in a Java program must be part of an object (or a class to be more precise).

The two main characteristics of objects in Java are:

● Objects are always dynamically allocated. The lifetime of the storage occupied by an object is
determined by the program's logic, not by the lifetime of a procedure call or the boundaries of a
block. The lifetime of the storage occupied by an object refers to the span of time that begins
when the object is created and ends at the earliest time it can be freed by the garbage collector.

● Objects are not contained by variables. Instead, a variable contains a reference to an object. A
reference is similar to what is called a pointer in some other languages. If there are two variables
of the same reference type and one of the variables is assigned to the other, both variables refer to
the same object. If the information in that object is changed, the change is visible through both
variables.

Classes

An object is a collection of variables, associated methods, and other associated classes. Objects in Java
are described by classes; a particular object is an instance of a particular class. A class describes the data
an object can contain by defining variables to contain the data in each instance of the class. A class
describes the behavior of an object by defining methods for the class and possibly other auxiliary classes.
Methods are named pieces of executable code; they are similar to what other programming languages
call functions or procedures. Collectively, the variables, methods, and auxiliary classes of a class are
called its members.

A class can define multiple methods with the same name if the number or type of parameters for each

method is different. Multiple methods with the same name are called overloaded methods. Like C++,
Java supports overloaded methods, but unlike C++, Java does not support overloaded operators.
Overloaded methods are useful when you want to describe similar operations on different types of data.
For example, Java provides a class called java.io.OutputStream that is used to write data. The
OutputStream class defines three different write() methods: one to write a single byte of data,
another to write some of the bytes in an array, and another to write all of the bytes in an array.

References Class Declarations

Encapsulation

Encapsulation is the technique of hiding the details of the implementation of an object, while making its
functionality available to other objects. When encapsulation is used properly, you can change an object's
implementation without worrying that any other object can see, and therefore depend on, the
implementation details.

The portion of an object that is accessible to other types of objects is called the object's interface.[1] For
example, consider a class called Square. The interface for this class might consist of:

[1] The notion of an object's interface is a commonly accepted concept in the object-
oriented community. Later in this chapter, a Java construct called an interface is described.
A Java interface is not the same thing as the interface of an object, so there is some
potential for confusion. Outside of this section, the term "interface" is only used to mean
the Java interface construct.

● Methods to get and set the size of a square.

● A method to tell a square to draw itself at a particular location on the screen.

The implementation of this Square class would include executable code that implements the various
methods, as well as an internal variable that an object would use to remember its size. Variables that an
object uses to remember things about itself are called state variables.

The point of the distinction between the interface and the implementation of a class is that it makes
programs easier to maintain. The implementation of a class may change, but as long as the interface
remains the same, these changes do not require changes to any other classes that may use the class.

In Java, encapsulation is implemented using the public, protected, and private access
modifiers. If a field of a class is part of the interface for the class, the field should be declared with the
public modifier or with no access modifier. The private and protected modifiers limit the
accessibility of a field, so these modifiers should be used for state variables and other implementation-

specific functionality.

Here's a partial definition of a Square class that has the interface just described:

class Square {
 private int sideLength;
 public void setSideLength(int len) {
 sideLength = len;
 }
 public int getSideLength() {
 return sideLength;
 }
 public void draw(int x, int y) {
 // code to draw the square
 ...
 }
}

References Method modifiers; Inner class modifiers; Variable modifiers

Object Creation

An object is typically created using an allocation expression. The newInstance() methods of the
Class or java.lang.reflect.Contructor class can also be used to create an instance of a
class. In either case, the storage needed for the object is allocated by the system.

When a class is instantiated, a special kind of method called a constructor is invoked. A constructor for a
class does not have its own name; instead it has the same name as the class of which it is a part.
Constructors can have parameters, just like regular methods, and they can be overloaded, so a class can
have multiple constructors. A constructor does not have a return type. The main purpose of a constructor
is to do any initialization that is necessary for an object.

If a class declaration does not define any constructors, Java supplies a default public constructor that
takes no parameters. You can prevent a class from being instantiated by methods in other classes by
defining at least one private constructor for the class without defining any public constructors.

References Class; Constructors; Object Allocation Expressions

Object Destruction

Java does not provide any way to explicitly destroy an object. Instead, an object is automatically

destroyed when the garbage collector detects that it is safe to do so. The idea behind garbage collection
is that if it is possible to prove that a piece of storage will never be accessed again, that piece of storage
can be freed for reuse. This is a more reliable way of managing storage than having a program explicitly
deallocate its own storage. Explicit memory allocation and deallocation is the single largest source of
programming errors in C/C++. Java eliminates this source of errors by handling the deallocation of
memory for you.

Java's garbage collector runs continuously in a low priority thread. You can cause the garbage collector
to take a single pass through allocated storage by calling System.gc().

Garbage collection will never free storage before it is safe to do so. However, garbage collection usually
does not free storage as soon as it would be freed using explicit deallocation. The logic of a program can
sometimes help the garbage collector recognize that it is safe to free some storage sooner rather than
later. Consider the following code:

class G {
 byte[] buf;
 String readIt(FileInputStream f) throws IOException {
 buf = new byte[20000];
 int length = f.read(buf);
 return new String(buf, 0, 0, length);
 }
}

The first time readIt() is called, it allocates an array that is referenced by the instance variable buf.
The variable buf continues to refer to the array until the next time that readIt() is called, when buf
is set to a new array. Since there is no longer any reference to the old array, the garbage collector will
free the storage on its next pass. This situation is less than optimal. It would be better if the garbage
collector could recognize that the array is no longer needed once a call to readIt() returns. Defining
the variable buf as a local variable in readIt() solves this problem:

class G {
 String readIt(FileInputStream f) throws IOException {
 byte[] buf;
 buf = new byte[20000];
 int length = f.read(buf);
 return new String(buf, 0, 0, length);
 }
}

Now the reference to the array is in a local variable that disappears when readIt() returns. After
readIt() returns, there is no longer any reference to the array, so the garbage collector will free the

storage on its next pass.

Just as a constructor is called when an object is created, there is a special method that is called before an
object is destroyed by the garbage collector. This method is called a finalizer ; it has the name
finalize(). A finalize() method is similar to a destructor in C++. The finalize() method
for a class must be declared with no parameters, the void return type, and no modifiers. A finalizer can
be used to clean up after a class, by doing such things as closing files and terminating network
connections.

If an object has a finalize() method, it is normally called by the garbage collector before the object
is destroyed. A program can also explicitly call an object's finalize() method, but in this case, the
garbage collector does not call the method during the object destruction process. If the garbage collector
does call an object's finalize() method, the garbage collector does not immediately destroy the
object because the finalize() method might do something that causes a variable to refer to the object
again.[2] Thus the garbage collector waits to destroy the object until it can again prove it is safe to do so.
The next time the garbage collector decides it is safe to destroy the object, it does so without calling the
finalizer again. In any case, a finalize() method is never called more than once for a particular
object.

[2] A finalize() method should not normally do something that results in a reference
to the object being destroyed, but Java does not do anything to prevent this situation from
happening.

The garbage collector guarantees that the thread it uses to call a finalize() method will not be
holding any programmer-visible synchronization locks when the method is called. This means that a
finalize() method never has to wait for the garbage collector to release a lock. If the garbage
collector calls a finalize() method and the finalize() method throws any kind of exception, the
garbage collector catches and ignores the exception.

References System; The finalize method

Inheritance

One of the most important benefits of object-oriented programming is that it promotes the reuse of code,
particularly by means of inheritance. Inheritance is a way of organizing related classes so that they can
share common code and state information. Given an existing class declaration, you can create a similar
class by having it inherit all of the fields in the existing definition. Then you can add any fields that are
needed in the new class. In addition, you can replace any methods that need to behave differently in the
new class.

To illustrate the way that inheritance works, let's start with the following class definition:

class RegularPolygon {
 private int numberOfSides;
 private int sideLength;
 RegularPolygon(int n, int len) {
 numberOfSides = n;
 sideLength = len;
 }
 public void setSideLength(int len) {
 sideLength = len;
 }
 public int getSideLength() {
 return sideLength;
 }
 public void draw(int x, int y) {
 // code to draw the regular polygon
 ...
 }
}

The RegularPolygon class defines a constructor, methods to set and get the side length of the regular
polygon, and a method to draw the regular polygon. Suppose that after writing this class you realize that
you have been using it to draw a lot of squares. You can use inheritance to build a more specific
Square class from the existing RegularPolygon class as follows:

class Square extends RegularPolygon {
 Square(int len) {
 super(4,len);
 }
}

The extends clause indicates that the Square class is a subclass of the RegularPolygon class, or
looked at another way, RegularPolygon is a superclass of Square. When one class is a subclass of
another class, the subclass inherits all of the fields of its superclass that are not private. Thus Square
inherits setSideLength(), getSideLength(), and draw() methods from RegularPolygon.
These methods work fine without any modification, which is why the definition of Square is so short.
All the Square class needs to do is define a constructor, since constructors are not inherited.

There is no limit to the depth to which you can carry subclassing. For example, you could choose to write
a class called ColoredSquare that is a subclass of the Square class. The ColoredSquare class
would inherit the public methods from both Square and RegularPolygon. However,
ColoredSquare would need to override the draw() method with an implementation that handles
drawing in color.

Having defined the three classes RegularPolygon, Square, and ColoredSquare, it is correct to
say that RegularPolygon and Square are superclasses of ColoredSquare and
ColoredSquare and Square are subclasses of RegularPolygon. To describe a relationship
between classes that extends through exactly one level of inheritance, you can use the terms immediate
superclass and immediate subclass. For example, Square is an immediate subclass of
RegularPolygon, while ColoredSquare is an immediate subclass of Square. By the same
token, RegularPolygon is the immediate superclass of Square, while Square is the immediate
superclass of ColoredSquare.

A class can have any number of subclasses or superclasses. However, a class can only have one
immediate superclass. This constraint is enforced by the syntax of the extends clause; it can only
specify the name of one superclass. This style of inheritance is called single inheritance ; it is different
from the multiple inheritance scheme that is used in C++.

Every class in Java (except Object) has the class Object as its ultimate superclass. The class
Object has no superclass. The subclass relationships between all of the Java classes can be drawn as a
tree that has the Object class as its root. Another important difference between Java and C++ is that
C++ does not have a class that is the ultimate superclass of all of its classes.

References Class Inheritance; Interfaces; Object

Abstract classes

If a class is declared with the abstract modifier, the class cannot be instantiated. This is different than
C++, which has no way of explicitly specifying that a class cannot be instantiated. An abstract class
is typically used to declare a common set of methods for a group of classes when there are no reasonable
or useful implementations of the methods at that level of abstraction.

For example, the java.lang package includes classes called Byte, Short, Integer, Long,
Float, and Double. These classes are subclasses of the abstract class Number, which declares the
following methods: byteValue(), shortValue(), intValue(), longValue(),
floatValue(), and doubleValue(). The purpose of these methods is to return the value of an
object converted to the type implied by the method's name. Every subclass of Number implements all of
these methods. The advantage of the abstraction is that it allows you to write code to extract whatever
type of value you need from a Number object, without knowing the actual type of the underlying object.

Methods defined in an abstract class can be declared abstract. An abstract method is
declared without any implementation; it must be overridden in a subclass to provide an implementation.

References Class Modifiers; Inner class modifiers; Local class modifiers; Method modifiers; Number

Final classes

If a class is declared with the final modifier, the class cannot be subclassed. Declaring a class final
is useful if you need to ensure the exact properties and behavior of that class. Many of the classes in the
java.lang package are declared final for that reason.

Methods defined in a non-abstract class can be declared final. A final method cannot be
overridden by any subclasses of the class in which it appears.

References Class Modifiers; Inner class modifiers; Local class modifiers; Method modifiers

Interfaces

Java provides a construct called an interface to support certain multiple inheritance features that are
desirable in an object-oriented language. An interface is similar to a class, in that an interface declaration
can define both variables and methods. But unlike a class, an interface cannot provide implementations
for its methods.

A class declaration can include an implements clause that specifies the name of an interface. When a
class declaration specifies that it implements an interface, the class inherits all of the variables and
methods declared in that interface. The class declaration must then provide implementations for all of the
methods declared in the interface, unless the class is declared as an abstract class. Unlike the
extends clause, which can only specify one class, the implements clause can specify any number of
interfaces. Thus a class can implement an unlimited number of interfaces.

Interfaces are most useful for declaring that an otherwise unrelated set of classes have a common set of
methods, without needing to provide a common implementation. For example, if you want to store a
variety of objects in a database, you might want all of the those objects to have a common set of methods
for storing and fetching. Since the fetch and store methods for each object need to be different, it is
appropriate to declare these methods in an interface. Then any class that needs fetch and store methods
can implement the interface.

Here is a simplistic example that illustrates such an interface:

public interface Db {
 void dbStore(Database d, Object key);
 Object dbFetch(Database d, Object key);
}

The Db interface declaration contains two methods, dbStore() and dbFetch(). Here is a partial
class definition for a class that implements the Db interface:

class DbSquare extends Square implements Db {
 public void dbStore(Database d, Object key) {
 // Perform database operation to store Square
 ...
 }
 public Square dbFetch(Database d, Object key) {
 // Perform database operation to fetch Square
 ...
 }
 ...
}

The DbSquare class defines implementations for both of the methods declared in the Db interface. The
point of this interface is that it provides a uniform way for unrelated objects to arrange to be stored in a
database. The following code shows part of a class that encapsulates database operations:

class Database {
 ...
 public void store(Object o, Object key) {
 if (o instanceof Db)
 ((Db)o).dbStore(this, key);
 }
 ...
}

When the database is asked to store an object, it does so only if the object implements the Db interface,
in which case it can call the dbStore() of the object.

References Interface Declarations

Inner Classes

Java 1.1 provides a new feature that allows programmers to encapsulate even more functionality within
objects. With the addition of inner classes to the Java language, classes can be defined as members of
other classes, just like variables and methods. Classes can also be defined within blocks of Java code, just
like local variables. The ability to declare a class inside of another class allows you to encapsulate
auxiliary classes inside of a class, thereby limiting access to the auxiliary classes. A class that is declared
inside of another class may have access to the instance variables of the enclosing class; a class declared
within a block may have access to the local variable and/or formal parameters of that block.

Nested top-level classes and interfaces

A nested top-level class or interface is declared as a static member of an enclosing top-level class or
interface. The declaration of a nested top-level class uses the static modifier, so you may also see
these classes called static classes. A nested interface is implicitly static, but you can declare it to be
static to make it explicit. Nested top-level classes and interfaces are typically used to group related
classes in a convenient way.

A nested top-level class or interface functions like a normal top-level class or interface, except that the
name of the nested entity includes the name of the class in which it is defined. For example, consider the
following declaration:

public class Queue {
 ...
 public static class EmptyQueueException extends Exception {
 }
 ...
}

Code that calls a method in Queue that throws an EmptyQueueException can catch that exception
with a try statement like this:

try {
 ...
} catch (Queue.EmptyQueueException e) {
 ...
}

A nested top-level class cannot access the instance variables of its enclosing class. It also cannot call any
non-static methods of the enclosing class without an explicit reference to an instance of that class.
However, a nested top-level class can use any of the static variables and methods of its enclosing
class without qualification.

Only top-level classes in Java can contain nested top-level classes. In other words, a static class can
only be declared as a direct member of a class that is declared at the top level, directly as a member of a
package. In addition, a nested top-level class cannot declare any static variables, static methods,
or static initializers.

References Class Declarations; Methods; Nested Top-Level and Member Classes; Variables

Member classes

A member class is an inner class that is declared within an enclosing class without the static modifier.

Member classes are analogous to the other members of a class, namely the instance variables and
methods. The code within a member class can refer to any of the variables and methods of its enclosing
class, including private variables and methods.

Here is a partial definition of a Queue class that uses a member class:

public class Queue {
 private QueueNode queue;
 ...
 public Enumeration elements() {
 return new QueueEnumerator();
 }
 ...
 private class QueueEnumerator implements Enumeration {
 private QueueNode start, end;
 QueueEnumerator() {
 synchronized (Queue.this) {
 if (queue != null) {
 start = queue.next;
 end = queue;
 }
 }
 }
 public boolean hasMoreElements() {
 return start != null;
 }
 public synchronized Object nextElement() {
 ...
 }
 }
 private static class QueueNode {
 private Object obj;
 QueueNode next;
 QueueNode(Object obj) {
 this.obj = obj;
 }
 Object getObject() {
 return obj;
 }
 }
}

The QueueEnumerator class is a private member class that implements the

java.util.Enumeration interface. The advantage of this approach is that the
QueueEnumerator class can access the private instance variable queue of the enclosing Queue
class. If QueueEnumerator were declared outside of the Queue class, this queue variable would
need to be public, which would compromise the encapsulation of the Queue class. Using a member
class that implements the Enumeration interface provides a means to offer controlled access to the
data in a Queue without exposing the internal data structure of the class.

An instance of a member class has access to the instance variables of exactly one instance of its
enclosing class. That instance of the enclosing class is called the enclosing instance. Thus, every
QueueEnumerator object has exactly one Queue object that is its enclosing instance. To access an
enclosing instance, you use the construct ClassName.this. The QueueEnumerator class uses this
construct in the synchronized statement in its constructor to synchronize on its enclosing instance.
This synchronization is necessary to ensure that the newly created QueueEnumerator object has
exclusive access to the internal data of the Queue object.

The Queue class also contains a nested top-level, or static, class, QueueNode. However, this class
is also declared private, so it is not accessible outside of Queue. The main difference between
QueueEnumerator and QueueNode is that QueueNode does not need access to any instance data
of Queue.

A member class cannot declare any static variables, static methods, static classes, or static
initializers.

Although member classes are often declared private, they can also be public or protected or
have the default accessibility. To refer to a class declared inside of another class from outside of that
class, you prefix the class name with the names of the enclosing classes, separated by dots. For example,
consider the following declaration:

public class A {
 public class B {
 public class C {
 ...
 }
 ...
 }
 ...
}

Outside of the class named A, you can refer to the class named C as A.B.C.

References Class Declarations; Field Expressions; Methods; Nested Top-Level and Member Classes;
Variables

Local classes

A local class is an inner class that is declared inside of a block of Java code. A local class is only visible
within the block in which it is declared, so it is analogous to a local variable. However, a local class can
access the variables and methods of any enclosing classes. In addition, a local class can access any
final local variables or method parameters that are in the scope of the block that declares the class.

Local classes are most often used for adapter classes. An adapter class is a class that implements a
particular interface, so that another class can call a particular method in the adapter class when a certain
event occurs. In other words, an adapter class is Java's way of implementing a "callback" mechanism.
Adapter classes are commonly used with the new event-handling model required by the Java 1.1 AWT
and by the JavaBeans API.

Here is an example of a local class functioning as an adapter class:

public class Z extends Applet {
 public void init() {
 final Button b = new Button("Press Me");
 add(b);
 class ButtonNotifier implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 b.setLabel("Press Me Again");
 doIt();
 }
 }
 b.addActionListener(new ButtonNotifier());
 }
 ...
}

The above example is from an applet that has a Button in its user interface. To tell a Button object
that you want to be notified when it is pressed, you pass an instance of an adapter class that implements
the ActionListener interface to its addActionListener() method. A class that implements
the ActionListener interface is required to implement the actionPerformed() method. When
the Button is pressed, it calls the adapter object's actionPerformed() method. The main
advantage of declaring the ButtonNotifier class in the method that creates the Button is that it
puts all of the code related to creating and setting up the Button in one place.

As the preceding example shows, a local class can access local variables of the block in which it is
declared. However, any local variables that are accessed by a local class must be declared final. A
local class can also access method parameters and the exception parameter of a catch statement that are

accessible within the scope of its block, as long as the parameter is declared final. The Java compiler
complains if a local class uses a non-final local variable or parameter. The lifetime of a parameter or
local variable is extended indefinitely, as long as there is an instance of a local class that refers to it.

References Blocks; Class Declarations; Local Classes; Local Variables; Method formal parameters;
Methods; The try Statement; Variables

Anonymous classes

An anonymous class is a kind of local class that does not have a name and is declared inside of an
allocation expression. As such, an anonymous class is a more concise declaration of a local class that
combines the declaration of the class with its instantiation.

Here is how you can rewrite the previous adapter class example to use an anonymous class instead of a
local class:

public class Z extends Applet {
 public void init() {
 final Button b = new Button("Press Me");
 add(b);
 b.addActionListener(new ActionListener () {
 public void actionPerformed(ActionEvent e) {
 b.setLabel("Press Me Again");
 }
 });
 }
 ...
}

As you can see, an anonymous class is declared as part of an allocation expression. If the name after new
is the name of an interface, as is the case in the preceding example, the anonymous class is an immediate
subclass of Object that implements the given interface. If the name after new is the name of a class,
the anonymous class is an immediate subclass of the named class.

Obviously, an anonymous class doesn't have a name. The other restriction on an anonymous class is it
can't have any constructors other than the default constructor. Any constructor-like initialization must be
done using an instance initializer. Other than these differences, anonymous classes function just like local
classes.

References Allocation Expressions; Class Declarations; Instance Initializers; Object

Implementation of inner classes

It is possible to use inner classes without knowing anything about how they are implemented. However, a
high-level understanding can help you comprehend the filenames that the compiler produces, and also
some of the restrictions associated with inner classes. The implementation of inner classes is less than
transparent in a number of ways, primarily because the Java virtual machine does not know about inner
classes. Instead, the Java compiler implements inner classes by rewriting them in a form that does not use
inner classes. The advantage of this approach is that the Java virtual machine does not require any new
features to be able to run programs that use inner classes.

Since a class declared inside another class is rewritten by the compiler as an external class, the compiler
must give it a name unique outside of the class in which it is declared. The unique name is formed by
prefixing the name of the inner class with the name of the class in which it is declared and a dollar sign
($). Thus, when the Queue class is compiled, the Java compiler produces four .class files:

● Queue.class

● Queue$EmptyQueueException.class

● Queue$QueueEnumerator.class

● Queue$QueueNode.class

Because anonymous classes do not have names, the Java compiler gives each anonymous class a number
for a name; the numbers start at 1. When the version of the Z applet that uses an anonymous class is
compiled, the Java compiler produces two .class files:

● Z.class

● Z$1.class

In order to give an inner class access to the variables of its enclosing instance, the compiler adds a
private variable to the inner class that references the enclosing instance. The compiler also inserts a
formal parameter into each constructor of the inner class and passes the reference to the enclosing
instance using this parameter. Therefore, the QueueEnumerator class is rewritten as follows:

class Queue$QueueEnumerator implements Enumeration {
 private Queue this$0;
 private QueueNode start, end;
 QueueEnumerator(Queue this$0) {
 this.this$0 = this$0;
 synchronized (this$0) {
 if (queue != null) {

 start = queue.next;
 end = queue;
 }
 }
 }
 ...
}

As you can see, the compiler rewrites all references to the enclosing instance as this$0. One
implication of this implementation is that you cannot pass the enclosing instance as an argument to its
superclass's constructor because this$0 is not available until after the superclass's constructor returns.

Lexical Scope of Declarations Class Declarations

Chapter 7
Program Structure

7.2 Packages

A package is a group of classes. If a class is not declared as public, it can only be referenced by other
classes in the same package. A class is specified as being part of a particular package by a package
directive at the beginning of its compilation unit:

[Graphic: Figure from the text]

[Graphic: Figure from the text]

A package directive can only occur at the beginning of a compilation unit (ignoring comments and
white space). If there is no package directive in a compilation unit, the compilation unit is part of the
default package. A package is identified by its name. However, the default package has no name. Here
are some examples of package directives:

package tools.text;
package COM.geomaker;

A class or interface definition can refer to class and interface definitions in a different package by
qualifying the class or interface name with the package name and a period. For example, you can refer to
the Socket class as follows:

java.net.Socket

However, if you attempt to use a non-public class or interface defined in another package, the Java
compiler issues an error message.

An import directive, described in the next section, makes the class and interface definitions in another

package available by their simple names. In other words, if you use an import directive, you do not
have to qualify the names of the classes and interfaces in the package with the package name.

In Sun's implementation of Java, the name of the package for a given compilation unit is used to
determine the directories that the Java interpreter searches to find the compiled Java code (i.e., the .class
file) for the compilation unit. The Java interpreter uses a two-step process to find the compiled code for a
class in a named package:

● The name of the package is converted into a relative path. Each identifier in the package name
becomes the name of a directory in this relative path. (This scheme assumes that the Java
interpreter is operating in an environment that supports a hierarchical file system.)

● The relative path is appended to the directories specified in the CLASSPATH environment
variable and the resulting paths are searched for the .class file.

If the Java interpreter is searching for the compiled code for a class that is in the default package, it
simply searches the directories specified in the CLASSPATH environment variable.

For example, say that the value of the CLASSPATH environment variable is as follows:[1]

[1] This example uses Windows syntax for directory names. The syntax for directory
names is different in other environments. In particular, the character used to separate
directory names varies in other environments.

\java\classes;.\;

In this case, the Java interpreter searches for the .class files for classes in the package named
COM.geomaker in the following directories:

\java\classes\COM\geomaker
.\COM\geomaker

If a package name contains a Unicode character that cannot directly appear in a directory name, the
character is represented in the directory name by an "at" sign (@) followed by one to four hexadecimal
digits. For example, the package name:

COM.geomaker.hg\u00f8

becomes the relative path:

\COM\geomaker\hg@f8

Java classes can also be retrieved out of a .zip file if the file is specified as part of the CLASSPATH. For
instance, the value of CLASSPATH could be set as follows:

\java\classes;\java\classes.zip;.\;

When the Java interpreter finds a .zip file in the CLASSPATH, it searches the .zip file for the appropriate
.class file. The core classes in the Java API are supplied in a file that is typically named something like
jdk1.1/lib/classes.zip. As of Java 1.1, you do not normally need to put that .zip file in CLASSPATH
because the Java interpreter automatically puts startDir/../classes.zip on the end of CLASSPATH (where
startDir is the directory that contains the interpreter's executable file).

The Java language specification defines a scheme for creating package names that should be globally
unique. Since Internet domain names are globally unique, the idea is to incorporate them into package
names. This is done by reversing the order of the components of the domain name, capitalizing the top-
level component of the domain name, and using the result as a prefix for the descriptive portion of a
package name. For example, if different organizations were to create packages that they all wanted to call
opinion_poll, they could use this scheme to ensure global uniqueness. The resulting package names
might be:

COM.cnn.opinion_poll
GOV.whitehouse.opinion_poll
EDU.syracuse.newhouse.opinion_poll

Package names that begin with an identifier that does not contain all uppercase letters are reserved for
use as local package names. The one exception is package names that begin with the identifier java,
which are reserved for packages that are part of the standard Java distribution.

References Class Declarations; Identifiers; Interface Declarations; The import Directive

Compilation Units The import Directive

Chapter 10
The java.lang Package

Class

Name

Class

Synopsis

Class Name:

java.lang.Class

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Seriablizable

Availability:

JDK 1.0 or later

Description

As of Java 1.1, instances of the Class class are used as run-time descriptions of all Java data types, both reference types
and primitive types. The Class class has also been greatly expanded in 1.1 to provide support for the Reflection API.
Prior to 1.1, Class just provided run-time descriptions of reference types.

A Class object provides considerable information about the data type. You can use the isPrimitive() method to

find out if a Class object describes a primitive type, while isArray() indicates if the object describes an array type. If
a Class object describes a class or interface type, there are numerous methods that return information about the fields,
methods, and constructors of the type. This information is returned as java.lang.reflect.Field,
java.lang.reflect.Method, and java.lang.reflect.Constructor objects.

There are a number of ways that you can get a Class object for a particular data type:

● If you have an object, you can get the Class object that describes the class of that object by calling the object's
getClass()method. Every class inherits this method from the Object class.

● As of Java 1.1, you can get the Class object that describes any Java type using the new class literal syntax. A
class literal is simply the name of a type (a class name or a primitive type name) followed by a period and the
class keyword. For example:

Class s = String.class;
Class i = int.class;
Class v = java.util.Vector.class;

● In Java 1.0, you can get the Class object from the name of a data type using the forName() class method of
Class. For example:

Class v = Class.forName("java.util.Vector");

This technique still works in Java 1.1, but it is more cumbersome (and less efficient) than using a class literal.

You can create an instance of a class using the newInstance() method of a Class object, if the class has a
constructor that takes no arguments.

The Class class has no public constructors; it cannot be explicitly instantiated. Class objects are normally created
by the ClassLoader class or a ClassLoader object.

Class Summary

public final class java.lang.Class extends java.lang.Object
 implements java.io.Serializable {
 // Class Methods
 public static native Class forName(String className);
 // Instance Methods
 public Class[] getClasses(); // New in 1.1
 public native ClassLoader getClassLoader();
 public native Class getComponentType(); // New in 1.1
 public Constructor
 getConstructor(Class[] parameterTypes); // New in 1.1
 public Constructor[] getConstructors(); // New in 1.1
 public Class[] getDeclaredClasses(); // New in 1.1
 public Constructor
 getDeclaredConstructor(Class[] parameterTypes); // New in 1.1
 public Constructor[] getDeclaredConstructors(); // New in 1.1

 public Field getDeclaredField(String name); // New in 1.1
 public Field[] getDeclaredFields(); // New in 1.1
 public Method getDeclaredMethod(String name,
 Class[] parameterTypes) // New in 1.1
 public Method[] getDeclaredMethods() // New in 1.1
 public Class getDeclaringClass(); // New in 1.1
 public Field getField(String name); // New in 1.1
 public Field[] getFields(); // New in 1.1
 public native Class[] getInterfaces();
 public Method getMethod(String name,
 Class[] parameterTypes); // New in 1.1
 public Method[] getMethods(); // New in 1.1
 public native int getModifiers(); // New in 1.1
 public native String getName();
 public URL getResource(String name); // New in 1.1
 public InputStream getResourceAsStream(String name); // New in 1.1
 public native Object[] getSigners(); // New in 1.1
 public native Class getSuperclass();
 public native boolean isArray(); // New in 1.1
 public native boolean isAssignableFrom(Class cls); // New in 1.1
 public native boolean isInstance(Object obj); // New in 1.1
 public native boolean isInterface();
 public native boolean isPrimitive(); // New in 1.1
 public native Object newInstance();
 public String toString();
}

Class Methods

forName

 public static Class forName(String className) throws ClassNotFoundException

Parameters

className

Name of a class qualified by the name of its package. If the class is defined inside of another class, all dots
(.) that separate the top-level class name from the class to load must be changed to dollar signs ($) for the
name to be recognized.

Returns

A Class object that describes the named class.

Throws

ClassNotFoundException

If the class cannot be loaded because it cannot be found.

Description

This method dynamically loads a class if it has not already been loaded. The method returns a Class object that
describes the named class.

The most common use of forName() is for loading classes on the fly when an application wants to use classes it
wasn't built with. For example, a web browser uses this technique. When a browser needs to load an applet, the
browser calls Class.forName() for the applet. The method loads the class if it has not already been loaded and
returns the Class object that encapsulates the class. The browser then creates an instance of the applet by calling
the Class object's newInstance() method.

When a class is loaded using a ClassLoader object, any classes loaded at the instigation of that class are also
loaded using the same ClassLoader object. This method implements that security policy by trying to find a
ClassLoader object to load the named class. The method searches the stack for the most recently invoked
method associated with a class that was loaded using a ClassLoader object. If such a class is found, the
ClassLoader object associated with that class is used.

Instance Methods

getClasses

public Class[] getClasses()

Availability

New as of JDK 1.1

Returns

An array of Class objects that contains the public classes and interfaces that are members of this class.

Description

If this Class object represents a reference type, this method returns an array of Class objects that lists all of the
public classes and interfaces that are members of this class or interface. The list includes public classes and
interfaces that are inherited from superclasses and that are defined by this class or interface. If there are no
public member classes or interfaces, or if this Class represents a primitive type, the method returns an array of
length 0.

As of Java 1.1.1, this method always returns an array of length 0, no matter how many public member classes
this class or interface actually declares.

getClassLoader

public native ClassLoader getClassLoader()

Returns

The ClassLoader object used to load this class or null if this class was not loaded with a ClassLoader.

Description

This method returns the ClassLoader object that was used to load this class. If this class was not loaded with a
ClassLoader, null is returned.

This method is useful for making sure that a class gets loaded with the same class loader as was used for loading
this Class object.

getComponentType

public native Class getComponentType()

Availability

New as of JDK 1.1

Returns

A Class object that describes the component type of this class if it is an array type.

Description

If this Class object represents an array type, this method returns a Class object that describes the component
type of the array. If this Class does not represent an array type, the method returns null.

getConstructor

 public Constructor getConstructor(Class[] parameterTypes) throws
NoSuchMethodException, SecurityException

Availability

New as of JDK 1.1

Parameters

parameterTypes

An array of Class objects that describes the parameter types, in declared order, of the constructor.

Returns

A Constructor object that reflects the specified public constructor of this class.

Throws

NoSuchMethodException

If the specified constructor does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class, this method returns a Constructor object that reflects the specified
public constructor of this class. The constructor is located by searching all of the constructors of the class for a
public constructor that has exactly the same formal parameters as specified. If this Class does not represent a
class, the method returns null.

getConstructors

 public Constructor[] getConstructors() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Constructor objects that reflect the public constructors of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class, this method returns an array of Constructor objects that reflect the
public constructors of this class. If there are no public constructors, or if this Class does not represent a
class, the method returns an array of length 0.

getDeclaredClasses

public Class[] getDeclaredClasses() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Class objects that contains all of the declared classes and interfaces that are members of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a reference type, this method returns an array of Class objects that lists all of the
classes and interfaces that are members of this class or interface. The list includes public, protected, default
access, and private classes and interfaces that are defined by this class or interface, but it excludes classes and
interfaces inherited from superclasses. If there are no such member classes or interfaces, or if this Class
represents a primitive type, the method returns an array of length 0.

As of Java 1.1.1, this method always returns an array of length 0, no matter how many member classes this class or
interface declares.

getDeclaredConstructor

 public Constructor getDeclaredConstructor(Class[] parameterTypes) throws
NoSuchMethodException, SecurityException

Availability

New as of JDK 1.1

Parameters

parameterTypes

An array of Class objects that describes the parameter types, in declared order, of the constructor.

Returns

A Constructor object that reflects the specified declared constructor of this class.

Throws

NoSuchMethodException

If the specified constructor does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class, this method returns a Constructor object that reflects the specified
declared constructor of this class. The constructor is located by searching all of the constructors of the class for a
public, protected, default access, or private constructor that has exactly the same formal parameters as
specified. If this Class does not represent a class, the method returns null.

getDeclaredConstructors

 public Constructor[] getDeclaredConstructors() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Constructor objects that reflect the declared constructors of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class, this method returns an array of Constructor objects that reflect the
public, protected, default access, and private constructors of this class. If there are no declared
constructors, or if this Class does not represent a class, the method returns an array of length 0.

getDeclaredField

 public Field getDeclaredField(String name) throws NoSuchFieldException,
SecurityException

Availability

New as of JDK 1.1

Parameters

name

The simple name of the field.

Returns

A Field object that reflects the specified declared field of this class.

Throws

NoSuchFieldException

If the specified field does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns a Field object that reflects the specified
declared field of this class. The field is located by searching all of the fields of the class (but not inherited fields)
for a public, protected, default access, or private field that has the specified simple name. If this Class
does not represent a class or interface, the method returns null.

getDeclaredFields

public Field[] getDeclaredFields() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Field objects that reflect the declared fields of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns an array of Field objects that reflect the
public, protected, default access, and private fields declared by this class, but excludes inherited fields. If

there are no declared fields, or if this Class does not represent a class or interface, the method returns an array of
length 0.

This method does not reflect the implicit length field for array types. The methods of the class Array should be
used to manipulate array types.

getDeclaredMethod

 public Method getDeclaredMethod(String name, Class[] parameterTypes) throws
NoSuchMethodException, SecurityException

Availability

New as of JDK 1.1

Parameters

name

The simple name of the method.

parameterTypes

An array of Class objects that describes the parameter types, in declared order, of the method.

Returns

A Method object that reflects the specified declared method of this class.

Throws

NoSuchMethodException

If the specified method does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns a Method object that reflects the specified
declared method of this class. The method is located by searching all of the methods of the class (but not inherited
methods) for a public, protected, default access, or private method that has the specified simple name
and exactly the same formal parameters as specified. If this Class does not represent a class or interface, the
method returns null.

getDeclaredMethods

public Method[] getDeclaredMethods() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Method objects that reflect the declared methods of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns an array of Method objects that reflect the
public, protected, default access, and private methods declared by this class, but excludes inherited
methods. If there are no declared methods, or if this Class does not represent a class or interface, the method
returns an array of length 0.

getDeclaringClass

public Class getDeclaringClass()

Availability

New as of JDK 1.1

Returns

A Class object that represents the declaring class if this class is a member of another class.

Description

If this Class object represents a class or interface that is a member of another class or interface, this method
returns a Class object that describes the declaring class or interface. If this class or interface is not a member of
another class or interface, or if it represents a primitive type, the method returns null.

getField

 public Field getField(String name) throws NoSuchFieldException, SecurityException

Availability

New as of JDK 1.1

Parameters

name

The simple name of the field.

Returns

A Field object that reflects the specified public field of this class.

Throws

NoSuchFieldException

If the specified field does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns a Field object that reflects the specified
public field of this class. The field is located by searching all of the fields of the class, including any inherited
fields, for a public field that has the specified simple name. If this Class does not represent a class or interface,
the method returns null.

getFields

public Field[] getFields() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Field objects that reflect the public fields of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns an array of Field objects that reflect the
public fields declared by this class and any inherited public fields. If there are no public fields, or if this
Class does not represent a class or interface, the method returns an array of length 0.

This method does not reflect the implicit length field for array types. The methods of the class Array should be
used to manipulate array types.

getInterfaces

public native Class[] getInterfaces()

Returns

An array of the interfaces implemented by this class or extended by this interface.

Description

If the Class object represents a class, this method returns an array that refers to all of the interfaces that the class
implements. The order of the interfaces referred to in the array is the same as the order in the class declaration's
implements clause. If the class does not implement any interfaces, the length of the returned array is 0.

If the object represents an interface, this method returns an array that refers to all of the interfaces that this interface
extends. The interfaces occur in the order they appear in the interface declaration's extends clause. If the
interface does not extend any interfaces, the length of the returned array is 0.

If the object represents a primitive or array type, the method returns an array of length 0.

getMethod

 public Method getMethod(String name, Class[] parameterTypes) throws
NoSuchMethodException, SecurityException

Availability

New as of JDK 1.1

Parameters

name

The simple name of the method.

parameterTypes

An array of Class objects that describes the parameter types, in declared order, of the method.

Returns

A Method object that reflects the specified public method of this class.

Throws

NoSuchMethodException

If the specified method does not exist.

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns a Method object that reflects the specified
public method of this class. The method is located by searching all of the methods of the class, including any
inherited methods, for a public method that has the specified simple name and exactly the same formal
parameters as specified. If this Class does not represent a class or interface, the method returns null.

getMethods

public Method[] getMethods() throws SecurityException

Availability

New as of JDK 1.1

Returns

An array of Method objects that reflect the public methods of this class.

Throws

SecurityException

If the checkMemberAccess() method of the SecurityManager throws a SecurityException.

Description

If this Class object represents a class or interface, this method returns an array of Method objects that reflect the
public methods declared by this class and any inherited public methods. If there are no public methods or if
this Class doesn't represent a class or interface, the method returns an array of length 0.

getModifiers

public native int getModifiers()

Availability

New as of JDK 1.1

Returns

An integer that represents the modifier keywords used to declare this class.

Description

If this Class object represents a class or interface, this method returns an integer value that represents the
modifiers used to declare the class or interface. The Modifier class should be used to decode the returned value.

getName

public native String getName()

Returns

The fully qualified name of this class or interface.

Description

This method returns the fully qualified name of the type represented by this Class object.

If the object represents the class of an array, the method returns a String that contains as many left square
brackets as there are dimensions in the array, followed by a code that indicates the type of element contained in the
base array. Consider the following:

(new int [3][4][5]).getClass().getName()

This code returns "[[[I". The codes used to indicate the element type are as follows:

Code Type

[array

B byte

C char

d double

F float

I int

J long

L fully_qualified_class_name class or interface

S short

Z boolean

getResource

public URL getResource(String name)

Availability

New as of JDK 1.1

Parameters

name

A resource name.

Returns

A URL object that is connected to the specified resource or null if the resource cannot be found.

Description

This method finds a resource with the given name for this Class object and returns a URL object that is connected
to the resource. The rules for searching for a resource associated with a class are implemented by the
ClassLoader for the class; this method simply calls the getResource() method of the ClassLoader. If
this class does not have a ClassLoader (i.e., it is a system class), the method calls the
ClassLoader.getSystemResource() method.

getResourceAsStream

public InputStream getResourceAsStream(String name)

Availability

New as of JDK 1.1

Parameters

name

A resource name.

Returns

An InputStream object that is connected to the specified resource or null if the resource cannot be found.

Description

This method finds a resource with the given name for this Class object and returns an InputStream object that
is connected to the resource. The rules for searching for a resource associated with a class are implemented by the
ClassLoader for the class; this method simply calls the getResourceAsStream() method of the
ClassLoader. If this class does not have a ClassLoader (i.e., it is a system class), the method calls the
ClassLoader.getSystemResourceAsStream() method.

getSigners

public native Object[] getSigners()

Availability

New as of JDK 1.1

Returns

An array of Objects that represents the signers of this class.

Description

This method returns an array of objects that represents the digital signatures for this class.

getSuperclass

public native Class getSuperclass()

Returns

The superclass of this class or null if there is no superclass.

Description

If the Class object represents a class other than Object, this method returns the Class object that represents its
superclass. If the object represents an interface, the Object class, or a primitive type, the method returns null.

isArray

public native boolean isArray()

Availability

New as of JDK 1.1

Returns

true if this object describes an array type; otherwise false.

isAssignableFrom

public native boolean isAssignableFrom(Class cls)

Availability

New as of JDK 1.1

Parameters

cls

A Class object to be tested.

Returns

true if the type represented by cls is assignable to the type of this class: otherwise false.

Throws

NullPointerException

If cls is null.

Description

This method determines whether or not the type represented by cls is assignable to the type of this class. If this
class represents a class, this class must be the same as cls or a superclass of cls. If this class represents an
interface, this class must be the same as cls or a superinterface of cls. If this class represents a primitive type,
this class must be the same as cls.

isInstance

public native boolean isInstance(Object obj)

Availability

New as of JDK 1.1

Parameters

obj

An Object to be tested.

Returns

true if obj can be cast to the reference type specified by this class; otherwise false.

Throws

NullPointerException

If obj is null.

Description

This method determines whether or not the object represented by obj can be cast to the type of this class object
without causing a ClassCastException. This method is the dynamic equivalent of the instanceof
operator.

isInterface

public native boolean isInterface()

Returns

true if this object describes an interface; otherwise false.

isPrimitive

public native boolean isPrimitive()

Availability

New as of JDK 1.1

Returns

true if this object describes a primitive type; otherwise false.

newInstance

 public native Object newInstance () throws InstantiationException,
IllegalAccessException

Returns

A reference to a new instance of this class.

Throws

InstantiationException

If the Class object represents an interface or an abstract class.

IllegalAccessException

If the class or an initializer is not accessible.

Description

This method creates a new instance of this class by performing these steps:

1. It creates a new object of the class represented by the Class object.

2. It calls the constructor for the class that takes no arguments.

3. It returns a reference to the initialized object.

The newInstance() method is useful for creating an instance of a class that has been dynamically loaded using
the forName() method.

The reference returned by this method is usually cast to the type of object that is instantiated.

The newInstance() method can throw objects that are not instances of the classes it is declared to throw. If the
constructor invoked by newInstance() throws an exception, the exception is thrown by newInstance()
regardless of the class of the object.

toString

public String toString()

Returns

A String that contains the name of the class with either 'class' or 'interface' prepended as appropriate.

Overrides

Object.toString()

Description

This method returns a string representation of the Class object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals() Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

ClassLoader; Class Declarations; Constructors; Exceptions; Interface Declarations; Methods; Nested Top-Level and
Member Classes; Object; Object Creation; Reference Types; SecurityManager; Variables

Character ClassLoader

Chapter 10
The java.lang Package

Void

Name

Void

Synopsis

Class Name:

java.lang.Void

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability

New as of JDK 1.1

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm

Description

The Void class is an uninstantiable wrapper for the primitive type void. The class contains simply a
reference to the Class object that represents the primitive type void. The Void class is necessary as
of JDK 1.1 to support the Reflection API and class literals.

Class Summary

public final class java.lang.Void extends java.lang.Object {
 // Constants
 public static final Class TYPE;
}

Constants

TYPE

public static final Class TYPE

The Class object that represents the primitive type void. It is always true that Void.TYPE ==
void.class.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Byte; Character; Class; Double; Float; Integer; Long; Short

Throwable The Unicode 2.0 Character
Set

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm

Chapter 5
Declarations

5.2 Lexical Scope of Declarations

The lexical scope of a declaration determines where the named entity is a valid identifier. Every
declaration is associated with a lexical level that corresponds to one of the following Java constructs:

Package

The names at this level include all of the non-nested, outer-level class and interface declarations
in files that belong to the same package as the file that is being compiled. This level also includes
non-nested, outer-level class and interface declarations that are declared public in other
packages.

.java file

The names at this level include all of the class and interface declarations in the file, as well as all
of the classes and interfaces that are imported by the file. The names declared directly in a file are
defined from the beginning to the end of the file. An import statement defines simple identifiers
as synonyms for names that are only fully qualified with the name of a package. These synonyms
for fully qualified names are defined from the import statement that defines them to the end of
the file.

Class or interface declaration

The names at this level include the names of methods, variables, and classes or interfaces that are
declared directly in the class or interface declaration, as well as names inherited from superclasses
or super interfaces. The names declared in a class or interface are defined throughout the class or
interface.

Method declaration

The names at this level include the formal parameters of the method. The formal parameters are
defined throughout the method.

Block

The names at this level include the local variables, local classes, and statement labels declared in
the block. Statement labels are defined throughout a block, while local variables and classes are
defined from their declaration to the end of the block.

A nested block or a for statement

The names at this level include local variables declared in the initialization of the for statement
or the local variables, classes, and statement labels declared in a nested block. Local variables
declared in the initialization of a for statement are defined from their declaration to the end of
the for statement. Statement labels are defined throughout a nested block, while local variables
and classes are defined from their declaration to the end of the nested block.

These lexical levels correspond to nested constructs. When the Java compiler encounters a name in a
program, it finds the declaration for that name by first looking in the lexical level where the name is
encountered. If the compiler does not find the name in that lexical level, it searches progressively higher
lexical levels until it finds the declaration. If all of the lexical levels are exhausted, the compiler issues an
error message.

If, however, an identifier is qualified by a class or package name, the compiler only searches that lexical
level for a declaration.

References Blocks; Class Declarations; Interface Declarations; Packages; Methods; The for Statement

Naming Conventions Object-Orientation Java Style

Chapter 6
Statements and Control

Structures

6.2 Labeled Statements

Zero or more labels can appear before a statement:

[Graphic: Figure from the text]

A label is defined throughout the block in which it occurs. The names of labels are independent of all
other kinds of names. In other words, if a label has the same name as a local variable, formal parameter,
class, interface, field variable, or method, there is never any confusion or interaction between those
names.[1] For example, the following code works even though it contains a label and formal parameter
with the same name:

[1] Prior to version 1.0.2, Java required labels to have names that did not conflict with the
names of local variables or formal parameters.

public static void main (String[] argv) {
 argv:
 while (true) {
 System.out.println(argv[0]);
 if (Math.random() >.4)
 break argv;
 System.out.println("Again");
 }
}

Labels are used to mark statements, but a labeled statement does not affect the order of execution when it
is defined. The statement following the label is executed as if the label were not present. However, a
label can be used in a break or continue statement to transfer control to a labeled statement. Unlike
C/C++, Java does not have a goto statement.

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_03.htm

References Identifiers; Statement 6; The break Statement; The continue Statement

Blocks The Empty Statement

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_03.htm

Chapter 6
Statements and Control

Structures

6.6 The switch Statement

A switch statement selects a specially labeled statement in its block as the next statement to be
executed, based on the value of an expression:

[Graphic: Figure from the text]

In Java, the type of the expression in parentheses must be byte, char, short, or int. This is unlike
C/C++, which allows the type of a switch statement to be any integer type, including long.

The body of a switch statement must be a block. The top-level statements inside a switch may
contain case labels. The expression following a case label must be a constant expression that is
assignable to the type of the switch expression. No two case labels in a switch can contain the
same value. At most one of the top-level statements in a switch can contain a default label.

A switch statement does the following:

● Evaluates the expression in parentheses. If the type of the expression is not int, the value
produced by the expression is converted to int.

● Compares the value produced by the expression to the values in the case labels. Prior to
comparison, the value in the case label is converted to int if it is not already int.

● If a case label is found that has the same value as the expression, that label's statement is the
next statement to be executed.

● If no case label is found with the same value as the expression, and a statement in the block has
a default label, that statement is the next one to be executed.

● If there is no statement in the block that has a default label, the statement after the switch
statement is the next statement to be executed.

Here's an example of a switch statement:

switch (rc) {
 case 1:
 msg = "Syntax error";
 break;
 case 2:
 msg = "Undefined variable";
 break;
 default:
 msg = "Unknown error";
 break;
}

After the switch statement has transferred control to a case-labeled statement, statements are
executed sequentially in the normal manner. Any case labels and the default label have no further
effect on the flow of control. If no statement inside the block alters the flow of control, each statement is
executed in sequence with control flowing past each case label and out the bottom of the block. The
following example illustrates this behavior:

void doInNTimes(int n){
 switch (n > 5 ? 5 : n) {
 case 5:
 doIt();
 case 4:
 doIt();
 case 3:
 doIt();
 case 2:
 doIt();
 case 1:
 doIt();
 }
}

The above method calls the doIt() method up to 5 times.

To prevent control from flowing through case labels, it is common to end each case with a flow-
altering statement such as a break statement. Other statements used for this purpose include the
continue statement and the return statement.

References Constant Expressions; Expression 4; Identifiers; Integer types; Local Classes; Local
Variables; Statement 6; The break Statement; The continue Statement; The return Statement

The if Statement Iteration Statements

Chapter 6
Statements and Control

Structures

6.8 The break Statement

A break statement transfers control out of an enclosing statement:

If a break statement does not contain an identifier, the statement attempts to transfer control to the
statement that follows the innermost enclosing while, for, do, or switch statement. The Java
compiler issues an error message if a break statement without an identifier occurs without an enclosing
while, for, do, or switch statement. Here is an example of a break statement that contains no
identifier:

while (true) {
 c = in.read();
 if (Character.isSpace(c)
 break;
 s += (char)c;
}

In this example, the break statement is used to exit from the while loop.

The innermost while, for, do, or switch statement that encloses the break statement must be in
the immediately enclosing method or initializer block. In other words, a break statement cannot be used
to leave a method or initializer block. The break statement in the following example is used incorrectly
and generates an error:

while (true) {
 class X {
 void doIt() {

 break;
 }
 }
 new X().doIt();
}

If a break statement contains an identifier, the identifier must be defined as the label of an enclosing
statement. A break statement that contains an identifier attempts to transfer control to the statement that
immediately follows the statement labeled with that identifier. Here's an example of a break statement
that contains an identifier:

foo:{
 doIt();
 if (n > 4) break foo;
 doIt();
}

In this example, the break statement transfers control to the statement following the block labeled foo.

The label used in a break statement must be in the immediately enclosing method or initializer block.
The break statement in the following example is used incorrectly and generates an error:

foo: {
 class X {
 void doIt() {
 break foo;
 }
 }
 new X().doIt();
}

The statement to which a break statement attempts to transfer control is called the target statement. If a
break statement occurs inside a try statement, control may not immediately transfer to the target
statement. If a try statement has a finally clause, the finally block is executed before control
leaves the try statement for any reason. This means that if a break statement occurs inside a try
statement (but not in its finally block) and the target statement is outside of the try statement, the
finally block is executed first, before the control transfer can take place.

If the finally block contains a break, continue, return, or throw statement, the pending
control transfer for the previously executed break statement is forgotten. Instead, control is transferred
to the target of the break, continue, return, or throw statement in the finally block.

If the finally block does not contain a break, continue, return, or throw statement, the
pending control transfer happens after the finally block is done executing, unless the target statement
is enclosed by another try statement. If there is another enclosing try statement and it has a finally
clause, that finally block is also executed before the control transfer can take place. Execution
proceeds in this manner until the target statement of the break is executed.

Here is an example that illustrates a simple scenario:

ll:{
 try {
 f = new FileInputStream(fname);
 i = f.read();
 if (i != ' ')
 break ll;
 i = f.read();
 } catch (IOException e) {
 System.out.println("Got an IO Exception!");
 break ll;
 } finally {
 f.close(); // Always executed
 }
 // Only reached if we don't break out of the try
 System.out.println("No breaks");
}

In this example, a break statement is executed if one of two things happens. First, if an IOException
is thrown, the catch clause prints a message and then executes a break statement. Otherwise, if the
first call to read() does not return a space, a break statement is executed. In either case, the
finally clause is executed before control is transferred to the statement following the statement
labeled with ll.

References Identifiers; Labeled Statements; The continue Statement; The do Statement; The for
Statement; The return Statement; The throw Statement; The try Statement; The while Statement

Iteration Statements The continue Statement

Chapter 6
Statements and Control

Structures

6.9 The continue Statement

A continue statement stops the current iteration of an iteration statement and transfers control to the
start of the next iteration:

[Graphic: Figure from the text]

A continue statement must occur within a while, for, or do statement or the compiler issues an
error message.

If a continue statement does not contain an identifier, the statement stops the current iteration in the
innermost enclosing while, for, or do statement and attempts to transfer control to the start of the next
iteration. This means that in a while or do statement, the continue statement transfers control to just
after the contained statement of the while or do statement. In a for statement, the continue
statement transfers control to the increment portion of the for statement. Here is an example of a
continue statement that contains no identifier:

public static void main (String[] argv) {
 for (int i=0; i<=15; i++) {
 System.out.println(i);
 if ((i&1) == 0)
 continue;
 System.out.println("That's odd");
 }
}

The above example outputs the numbers 0 through 15, printing "That's odd" after each odd number.

The innermost while, for, do, or switch statement that encloses the continue statement must be
in the immediately enclosing method or initializer block. The continue statement in the following
example is used incorrectly and generates an error:

while (true) {
 class X {
 void doIt() {
 continue;
 }
 }
 new X().doIt();
}

If a continue statement contains an identifier, the identifier must be defined as the label of an
enclosing while, for, or do statement. A continue statement that contains an identifier stops the
current iteration of the labeled iteration statement and attempts to transfer control to the start of the next
iteration of that loop. Here is an example of a continue statement that contains an identifier:

public boolean search(int x, int a[][]) {
 int count = 0;
 top:
 for (int i=0; i<a.length; i++) {
 int b[] = a[i];
 for (int j=0; j < b.length; j++) {
 if (x == b[j])
 return true;
 if (x < b[j])
 continue top;
 } // for j
 count++;
 if (count > 100)
 return false;
 } // for i
 return false;
} // search()

The above method searches an array of arrays of integers for a specified value. The method assumes that
the values in the sub-arrays are in descending order. The method gives up after checking 100 values.

The label used in a continue statement must be in the immediately enclosing method or initializer
block.

The statement to which a continue statement attempts to transfer control is called the target statement.
If a continue statement occurs inside a try statement, control may not immediately transfer to the
target statement. If a try statement has a finally clause, the finally block is executed before
control leaves the try statement for any reason. This means that if a continue statement occurs inside
a try statement (but not in its finally block) and the target statement is outside of the try statement,
the finally block is executed first, before the control transfer can take place.

If the finally block contains a break, continue, return, or throw statement, the pending
control transfer for the previously executed continue statement is forgotten. Instead, control is
transferred to the target of the break, continue, return, or throw statement in the finally
block.

If the finally block does not contain a break, continue, return, or throw statement, the
pending control transfer happens after the finally block is done executing, unless the target statement
is enclosed by another try statement. If there is another enclosing try statement and it has a finally
clause, that finally block is also executed before the control transfer can take place. Execution
proceeds in this manner until the target statement of the continue is executed.

References Identifiers; Labeled Statements; The break Statement; The do Statement; The for Statement;
The return Statement; The throw Statement; The try Statement; The while Statement

The break Statement The return Statement

Chapter 6
Statements and Control

Structures

6.10 The return Statement

A return statement returns control of the current method or constructor to the caller:

[Graphic: Figure from the text]

If a return statement does not contain an expression, the statement must be in a method declared with
the void return type or in a constructor. Otherwise, the compiler issues an error message. When a
return statement does not contain an expression, the statement simply attempts to transfer control back
to the method or constructor that invoked the current method or constructor.

If a return statement contains an expression, it must be in a method that returns a value or the compiler
issues an error message. The type of the expression must be assignment-compatible with the declared
return type of the method. The return statement attempts to transfer control back to the method or
constructor that invoked the current method. The value produced by the expression is the return value of
the current method.

Here's an example of a return statement:

int doubleIt (int k) {
 return k*2;
}

If a return statement occurs inside a try statement, control may not immediately transfer to the
invoking method or constructor. If a try statement has a finally clause, the finally block is
executed before control leaves the try statement for any reason. This means that if a return statement
occurs inside a try statement (but not in its finally block), the finally block is executed first,
before the control transfer can take place.

If the finally block contains a break, continue, return, or throw statement, the pending

control transfer for the previously executed return statement is forgotten. Instead, control is
transferred to the target of the break, continue, return, or throw statement in the finally
block.

If the finally block does not contain a break, continue, return, or throw statement, the
pending control transfer happens after the finally block is done executing, unless there is another
enclosing try statement. If there is such a try statement and it has a finally clause, that finally
block is also executed before the control transfer can take place. Execution proceeds in this manner until
control is transferred to the invoking method or constructor.

References Constructors; Expression 4; Identifiers; Methods; The break Statement; The continue
Statement; The throw Statement; The try Statement

The continue Statement The throw Statement

Chapter 6
Statements and Control

Structures

6.11 The throw Statement

A throw statement is used to cause an exception to be thrown:

[Graphic: Figure from the text]

The expression in a throw statement must produce a reference to an object that is an instance of the
Throwable class or one of its subclasses. Otherwise, the compiler issues an error message. You
typically want the expression in a throw statement to produce an object that is an instance of a subclass
of the Exception class.

Here is an example of a throw statement:

throw new ProtocolException();

A throw statement causes normal program execution to stop. Control is immediately transferred to the
innermost enclosing try statement in the search for a catch clause that can handle the exception. If the
innermost try statement cannot handle the exception, the exception propagates up through enclosing
statements in the current method. If the current method does not contain a try statement that can handle
the exception, the exception propagates up to the invoking method. If this method does not contain an
appropriate try statement, the exception propagates up again, and so on. Finally, if no try statement is
found to handle the exception, the currently running thread terminates. The termination of a thread is
described in Stopping a thread.

As an exception propagates through enclosing try statements, any finally blocks associated with
those try statements are executed until the exception is caught. If a finally block contains a break,

continue, return, or throw statement, the pending control transfer initiated by the throw
statement is forgotten. Instead, control is transferred to the target of the break, continue, return,
or throw statement in the finally block.

References Exception Handling 9; Expression 4; The break Statement; The continue Statement; The
return Statement; The try Statement; Throwable

The return Statement The try Statement

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm

Chapter 6
Statements and Control

Structures

6.12 The try Statement

A try statement provides a way to catch exceptions and execute clean-up code for a block:

[Graphic: Figure from the text]

[Graphic: Figure from the text]

A try statement contains a block of code to be executed. A try statement can have any number of
optional catch clauses; these clauses act as exception handlers for the try block. A try statement can
also have a finally clause. If present, the finally block is always executed before control leaves
the try statement, so it is a good place to supply clean-up code for the try block. Note that a try
statement must have either a catch clause or a finally clause.

Here is an example of a try statement that includes a catch clause and a finally clause:

try {
 out.write(b);
} catch (IOException e) {
 System.out.println("Output Error");
} finally {
 out.close();
}

If out.write() throws an IOException, the exception is caught by the catch clause. Regardless
of whether out.write() returns normally or throws an exception, the finally block is executed,
which ensures that out.close() is always called.

A try statement begins by executing the block that follows the keyword try. If an exception is thrown

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_13.htm

from within the try block and the try statement has any catch clauses, those clauses are searched in
order for one that can handle the exception. A catch clause can handle an exception if the
ClassOrInterfaceName specified in the clause is the same class as or a superclass of the object specified
in the throw statement that caused the exception. The ClassOrInterfaceName specified in a catch clause
must be Throwable or be one of its subclasses. If a catch clause handles an exception, that catch
block is executed.

If an exception is thrown from within the try block and the try statement does not have any catch
clauses that can handle the exception, the exception propagates up to the next enclosing try statement.
An exception also propagates up if it is thrown from within a catchblock in a try statement.

The identifier specified in parentheses for the catch clause is defined as a local variable within the
catch block. The local variable is initialized to refer to the thrown object, in a manner that is similar to
the way it which formal parameters for a method are handled. This means that an identifier in a catch
clause cannot have the same name as a local variable or formal parameter that is defined in an enclosing
block. If the catch parameter is declared as final, any assignment to that parameter in the catch
block generates an error. The syntax for specifying final catch parameters is not supported prior to
Java 1.1.

Any catch clauses in a try statement are checked in sequence to see if they can handle a given
exception. Thus, the order in which catch clauses appear is important. In essence, more specific
catch clauses should appear before more general catch clauses. Figure 6.1 shows the inheritance
hierarchy for a few of the classes of objects that can be thrown in Java.

Figure 6.1: Some exception classes in Java

[Graphic: Figure 6-1]

Based on the classes shown in Figure 6.1, consider the following example:

try {
 System.out.write(b);
} catch (InterruptedIOException e) { ...

} catch (IOException e) { ...
} catch (Exception e) { ...
}

The catch clauses in this example appear in order from most specific to least specific. That means that
if an InterruptedIOException were thrown, it would be caught by the first catch clause.
Similarly, an IOException would be caught by the second catch clause and an Exception would
be caught by the third clause. If, however, the catch clause for Exception appeared first, neither of
the other catch clauses would ever be executed because the catch clause for Exception would
catch all of the exceptions.

If a try statement includes a finally clause, the finally block is always executed before control
leaves the try statement. There are two different ways that control can leave a try statement:

● The try statement completes normally. Normal completion occurs when all of the statements in
the try block have been executed, so that control falls out of the bottom of the try block.
Normal completion can also occur when an exception is thrown in the try block, as long as the
exception is handled by a catch clause in the try statement.

● The try statement completes abruptly, due to an attempted control transfer out of the try block.
A break, continue, or return statement in the try block causes an abrupt completion. In
addition, abrupt completion can occur when an exception occurs and is not handled by a catch
clause in the try statement, since the exception propagates out of the try block.

If a try statement completes normally and it does not have a finally clause, the statement following
the try statement is the next statement to be executed. However, if the try statement does have a
finally clause, the finally block is executed first, before control can be transferred to the
statement following the try statement. If the finally block contains a break, continue,
return, or throw statement, the pending control transfer is forgotten and control is instead transferred
to the target of the break, continue, return, or throw statement in the finally block.

If a try statement completes abruptly and it does not have a finally clause, the control transfer out of
the try block takes place immediately. However, if the try statement does have a finally clause,
the finally block is executed first, before the control transfer can take place. If the finally block
contains a break, continue, return, or throw statement, the pending control transfer is forgotten
and control is instead transferred to the target of the break, continue, return, or throw statement
in the finally block.

References Blocks; Exception Handling 9; Expression 4; Identifiers; The break Statement; The continue
Statement; The return Statement; The throw Statement; Throwable Type 3;

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm

The throw Statement The synchronized Statement

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_13.htm

Chapter 7
Program Structure

7.3 The import Directive

You can refer to classes and interfaces defined in a particular package by qualifying their names with the
package name and a period. For example, you can refer to the Socket class as java.net.Socket.
Using this notation, you could write a declaration like the following:

java.net.Socket s = new java.net.Socket();

This declaration is rather verbose. As you can imagine, it would quickly become cumbersome to refer to
classes this way in all of your programs.

The import directive provides an alternative to prefixing the names of classes and interfaces defined in
particular packages with their package names. An import directive makes definitions from another
package available by their simple names:

[Graphic: Figure from the text]

An import directive can only occur after the package directive in a compilation unit (if there is one)
and before any class or interface declarations.

An import directive with an identifier after the package name defines that identifier to have the same
meaning as the fully qualified class or interface name. When an identifier is defined using an import
directive, the definition exists only from the import directive that defines it to the end of the
compilation unit.

For example, you could use the following import directive:

import java.net.Socket;

Now the identifier Socket is defined to mean java.net.Socket. With the above import directive
at the beginning of a compilation unit, you can rewrite the previous declaration as follows:

Socket s = new Socket();

If more than one import directive provides a definition for the same identifier, the compiler issues an
error message.

An import directive can also be used to define an identifier as a synonym for the fully qualified name
of a class that is declared inside of another class. For example, consider the following class declaration:

package COM.geomaker;
...
public class z {
 ...
 class zz {
 ...
 }
}

A class in another file can refer to the class COM.geomaker.z.zz as just zz if the file contains the
following import directive:

import COM.geomaker.z.zz;

An import directive with an asterisk (*) after the package name tells the compiler to search the
specified package when it cannot find a definition for an identifier. In other words, this type of import
directive makes all of the classes and interfaces in the package available by their simple names. Here's an
example of such an import directive:

import java.awt.*;

When the compiler is searching packages specified by this type of import directive, it issues an error
message if it finds the same name defined in two different packages.

Every package in Java is considered separate and distinct, even if the name of a package begins with the
name of another package. For example, the package java.awt is separate and distinct from the
package java.awt.image. Even though the names imply a parent-child relationship, Java recognizes
no such relationship between packages. Consider the following directive:

import java.awt.*;

This tells the Java compiler to search the java.awt package for class and interface names; it does not,
however, tell the compiler to search java.awt.image for such names. For that to happen, a
compilation unit must also include the following directive:

import Java.awt.image.*;

It is important to understand that an import directive does not cause the Java compiler to read any class
or interface definitions. An import directive simply defines an identifier as a synonym for a fully
qualified class or interface name or directs the compiler to search a package when it needs to find a
definition. The compiler only reads a class or interface definition when its finds an actual reference to the
class or interface.

References Compilation Units; Identifiers; Packages

Packages Documentation Comments

Chapter 7
Program Structure

7.4 Documentation Comments

Documentation comments are used to create stand-alone documentation for classes. Documentation
comments are processed into Web pages by the javadoc program that is part of Sun's Java Development
Kit (JDK). The javadoc program and the way that it processes .java files into Web pages is fully
described in the documentation for javadoc provided by Sun. The remainder of this section describes the
special formatting information that can be embedded in documentation comments.

Documentation comments are comments that begin with /**. If a documentation comment immediately
precedes the declaration of a class, interface, method, or field variable, it is assumed to describe that
class, interface, method, or field variable.

HTML tags can be included in a documentation comment; they are passed directly to the generated Web
page. In addition to passing HTML tags, javadoc recognizes special tags that start with an "at" sign (@).
These tags must appear as the first word on a line in order to be recognized. Here is an example of a
documentation comment that includes these special javadoc tags:

/**
 * RomanNumeral is a class similar to Integer, except that
 * it uses roman numerals for its string based
 * representation. It only represents positive numbers.
 *
 * @see Integer
 * @see Number
 * @see Float
 * @see Double
 * @version 1.1, 9/27/96
 * @author Mark Grand
 */

Here are the special documentation comment tags recognized by javadoc :

@author author-name

Formats the given author name. This tag can only be used in a class or interface documentation
comment.

@exception name description

Formats the given exception name and its description in the throws section of a method
description. The name should be the fully qualified class name of the exception. This tag can only
be used in a method documentation comment.

@param name description

Formats the given parameter name and its description in the parameters section of a method
description. This tag can only be used in a method documentation comment.

@return description

Formats the given description in the returns section of a method description. This tag can only be
used in a method documentation comment.

@see classname

Generates a hypertext link to the specified class. The class name may be qualified by its package
name.

@see classname#method-name

Generates a hypertext link to the specified method in the specified class. The class name may be
qualified by its package name.

@version text

Formats the given text as version information. This tag can only be used in a class or interface
documentation comment.

@deprecated

Indicates that a class, method, or variable is deprecated, which means that it has been superceded
by a newer, preferred class, method, or variable. Deprecated features should not be used in new
Java programs. In addition, you should try to update existing code so that it does not rely on
deprecated features. While the deprecated features in Java 1.1 are still supported, there is no

guarantee that they will be supported in future releases. The @deprecated tag is new as of Java
1.1.

The documentation comment that immediately precedes a declaration is associated with the declaration.
If two comments precede a declaration, only the one immediately preceding the declaration is processed
by javadoc. The first comment is not considered to be associated with a declaration, so it is ignored. If
there is anything but white space between a documentation comment and a declaration, the
documentation comment is not considered to be associated with the declaration.

References Comments

The import Directive Applications

Chapter 7
Program Structure

7.5 Applications

For a Java program to run as an application, it must have at least one public class that contains a
public static method called main() that takes exactly one parameter, an array of String
objects.

Here is a very simple sample application that outputs "Hello World!" and then exits:

class DoIt {
 public static void main (String argv[]){
 System.out.println ("Hello World!");
 }
}

The main() method must be public so that the Java virtual machine can find it. If the method is not
public, its name is not included in the compiler's output. The system does not create any objects prior
to the start of the application's main() method, so the main() method must be static because it
cannot be associated with an object.

If an application has a graphical user interface, then it typically creates a java.awt.Frame object in
main(). The Frame object acts as the top-level window for the application.

In Sun's implementation of Java, you run a Java application by running the Java interpreter with a
command-line argument that specifies the name of the class that contains the main(). The name of the
Java interpreter is java. Here's the command-line for our sample application:

C:\> java DoIt

The capitalization of the class name on the command line must match the capitalization of the class name
within the program. If the class is part of a named package, the name of the class must be qualified with
the package name. For example, if you have a package called COM.geomaker and it contains the class

called DoIt, you would use the following command to run the application:

C:\> java COM.geomaker.DoIt

Any additional information that you provide on the command line is passed to the application as
command line arguments. These arguments are passed to the application using the String array passed
to main(). The number of elements in the array is equal to the number of arguments passed to the
application. If there are no arguments to the application, the length of the array passed to main() is
zero.

References Methods; Packages

Documentation Comments Applets

Chapter 7
Program Structure

7.6 Applets

A Java applet must be run from within another program, called a host application. At this point, most
host applications are Web browsers. The interaction between an applet and its host application is rather
involved.

From the viewpoint of an applet, the interaction involves defining a subclass of the
java.applet.Applet class. The Applet class defines a number of methods that control the applet.
A subclass of Applet overrides one or more of the methods:

init()

The init() method is called to initialize the applet. Most initialization of an applet is done here
instead of in a constructor because the constructor may be called before the hosting program is
ready to provide all of the services needed for initialization.

start()

The start() method is called in a separate thread to tell the applet to start doing whatever it is
supposed to do.

paint()

The paint() method is called at unpredictable times to draw the applet onto the screen.

stop()

The stop() method is called to tell the applet to stop doing whatever it does.

destroy()

The destroy() method is called to tell the applet to release any resources that it holds.

From the viewpoint of the host application, the interaction typically follows a standard sequence of
events. The host application usually does the following:

1. Installs a SecurityManager object to implement a security policy.

2. Creates a ClassLoader object to load the applet.

3. Loads the applet and calls its default constructor.

4. Passes an AppletStub object to the applet's setStub() method.

5. Calls the applet's init() method in a separate thread.

6. Marks the applet as active.

7. Starts a new thread to run the applet's start() method.

8. Calls the applet's show() method, which makes the applet visible and causes the applet's
paint() method to be called for the first time.

9. Calls the applet's paint() method whenever the applet needs to be refreshed.

10. Calls the applet's start() and stop() methods when the host wants the applet to start or stop.
These methods are typically called when the applet is exposed or hidden.

11. Calls the applet's hide() method followed by its destroy() method when the host wants to
shut down the applet.

Embedding an Applet in a Web Page

Web pages are written in a language called HTML. This explanation of how to embed an applet in a Web
page assumes that you have some knowledge of basic HTML. An applet is embedded in a Web page
using an <applet> tag. A minimal <applet> tag looks as follows:

<applet code=Clock height=300 width=350>
</applet>

The code attribute of this sample <applet> tag specifies that the applet to be run is a class named
Clock. The width and height attributes specify that the applet should be given a screen area that is

300 pixels high and 350 pixels wide.

The following list shows all of the attributes that can be specified in an <applet> tag. The attributes
should be specified in the order in which they are listed. The code, height, and width attributes are
required in an <applet> tag; the other attributes are optional:

codebase

The codebase attribute should specify a URL that identifies the directory used to find the .class
files needed for the applet. Files for classes that belong to the default package should be in this
directory. Files for classes that belong to named packages should be in subdirectories of this
directory, where the relative path is specified by individual identifiers in the package name. If
codebase is not specified, the <applet> tag uses the directory that contains the HTML file as
a default.

code

The code attribute specifies the name of the class that implements the applet. If the applet is part
of a named package, you must specify the fully qualified class name. So, if the name of the class
is DataPlot and it is part of a package called COM.geomaker.graph, the value of the code
attribute should be:

code=COM.geomaker.graph.DataPlot.class

The browser locates the compiled code for the class by appending .class to the filename and
searching the directory specified by the base URL for the document.

object

The object attribute specifies the name of a file that contains a serialized representation of an
applet. If this attribute is specified, the applet is created by deserialization, rather than by calling
its default constructor. The serialization is assumed to have occurred after the applet's init()
method has been invoked, so the start() method is called instead of the init() method. Any
attributes specified when the applet was serialized are not restored; the applet sees the attributes
specified for this invocation.

The object attribute is new as of Java 1.1. An <applet> tag must include either the code
attribute or the object attribute, but it cannot include both.

archive

The archive attribute specifies a list of one or more archives that contain classes or other
resources for an applet. Archives can be JAR or ZIP files. If this attribute is specified, the

resources in the archives are loaded before the applet is run. If multiple archives are listed, they
should be separated by commas. The archive attribute is new for Java 1.1.

alt

The alt attribute specifies the text that should be displayed by Web browsers that understand the
<applet> tag but cannot run Java applets. If the text contains space characters, it should be
enclosed in quotation marks.

name

The name attribute specifies a name for a particular instance of an applet. An applet can get a
reference to another applet on the same Web page using the getApplet() method.

width

The width attribute specifies the width of the applet in pixels.

height

The height attribute specifies the height of the applet in pixels.

align

The align attribute specifies the positioning of the applet. The possible values are: left,
right, top, texttop, middle, absmiddle, baseline, bottom, or absbottom.

vspace

The vspace attribute specifies the amount of vertical space above and below the applet in pixels.

hspace

The hspace attribute specifies the amount of horizontal space to the left and right of the applet
in pixels.

Applet-specific parameters can be provided to an applet using <param> tags inside the <applet> tag.
A <param> tag must specify name and value attributes. For example:

<param name=speed value=65>

If a Web browser does not support the <applet> tag, it ignores the tag and simply displays any HTML
content provided inside the tag. However, if the browser understands the <applet> tag, this HTML
content is ignored. This means that you can provide HTML content inside an <applet> tag to inform
users of non-Java-enabled browsers about what they are missing.

Here is an example that combines all of these elements:

<applet code=Compass height=400 width=300>
<param name=direction value=north>
<param name=speed value=65>
<p>
<i>If you can see this message, your Web browser is not Java enabled.
There is a Java applet on this Web page that you are not seeing.</i>
<p>
</applet>

If a non-Java-enabled browser is used to view this HTML file, the following text is displayed:

If you can see this message, your Web browser is not Java-enabled. There is a Java applet
on this Web page that you are not seeing.

Applications Threads

Chapter 8
Threads

8.2 Synchronizing Multiple Threads

The correct behavior of a multithreaded program generally depends on multiple threads cooperating with
each other. This often involves threads not doing certain things at the same time or waiting for each other
to perform certain tasks. This type of cooperation is called synchronization. This section discusses some
common strategies for synchronization and how they can be implemented in Java.

The simplest strategy for ensuring that threads are correctly synchronized is to write code that works
correctly when executed concurrently by any number of threads. However, this is more easily said than
done. Most useful computations involve doing some activity, such as updating an instance variable or
updating a display, that must be synchronized in order to happen correctly.

If a method only updates its local variables and calls other methods that only modify their local variables,
the method can be invoked by multiple threads without any need for synchronization. Math.sqrt()
and the length() method of the String class are examples of such methods.

A method that creates objects and meets the above criterion may not require synchronization. If the
constructors invoked by the method do not modify anything but their own local variables and instance
variables of the object they are constructing, and they only call methods that do not need to be
synchronized, the method itself does not need to be synchronized. An example of such a method is the
substring() in the String class.

Beyond these two simple cases, it is impossible to give an exhaustive list of rules that can tell you
whether or not a method needs to be synchronized. You need to consider what the method is doing and
think about any ill effects of concurrent execution in order to decide if synchronization is necessary.

Single-Threaded Execution

When more than one thread is trying to update the same data at the same time, the result may be wrong or
inconsistent. Consider the following example:

class CountIt {
 int i = 0;
 void count() {
 i = i + 1;
 }
}

The method count() is supposed to increment the variable i by one. However, suppose that there are
two threads, A and B, that call count() at the same time. In this case, it is possible that i could be
incremented only once, instead of twice. Say the value of i is 7. Thread A calls the count() method
and computes i+1 as 8. Then thread B calls the count() method and computes i+1 as 8 because
thread A has not yet assigned the new value to i. Next, thread A assigns the value 8 to the variable i.
Finally, thread B assigns the value 8 to the variable i. Thus, even though the count() method is called
twice, the variable has only been incremented once when the sequence is finished.

Clearly, this code can fail to produce its intended result when it is executed concurrently by more than
one thread. A piece of code that can fail to produce its intended result when executed concurrently is
called a critical section. However, a critical section does behave correctly when it is executed by only
one thread at a time. The strategy of single-threaded execution is to allow only one thread to execute a
critical section of code at a time. If a thread wants to execute a critical section that another thread is
already executing, the thread has to wait until the first thread is done and no other thread is executing that
code before it can proceed.

Java provides the synchronized statement and the synchronized method modifier for
implementing single-threaded execution. Before executing the block in a synchronized statement,
the current thread must obtain a lock for the object referenced by the expression. If a method is declared
with the synchronized modifer, the current thread must obtain a lock before it can invoke the
method. If the method is not declared static, the thread must obtain a lock associated with the object
used to access the method. If the method is declared static, the thread must obtain a lock associated
with the class in which the method is declared. Because a thread must obtain a lock before executing a
synchronized method, Java guarantees that synchronized methods are executed by only one
thread at a time.

Modifying the count() method to make it a synchronized method ensures that it works as
intended.

class CountIt {
 int i = 0;
 synchronized void count() {
 i = i + 1;
 }
}

The strategy of single-threaded execution can also be used when multiple methods update the same data.
Consider the following example:

class CountIt2 {
 int i = 0;
 void count() {
 i = i + 1;
 }
 void count2() {
 i = i + 2;
 }
}

By the same logic used above, if the count() and count2() methods are executed concurrently, the
result could be to increment i by 1, 2, or 3. Both the count() and count2() methods can be declared
as synchronized to ensure that they are not executed concurrently with themselves or each other:

class CountIt2 {
 int i = 0;
 synchronized void count() {
 i = i + 1;
 }
 synchronized void count2() {
 i = i + 2;
 }
}

Sometimes it's necessary for a thread to make multiple method calls to manipulate an object without
another thread calling that object's methods at the same time. Consider the following example:

System.out.print(new Date());
System.out.print(" : ");
System.out.println(foo());

If the code in the example is executed concurrently by multiple threads, the output from the two threads
will be interleaved. The synchronized keyword provides a way to ensure that only one thread at a
time can execute a block of code. Before executing the block in a synchronized statement, the
current thread must obtain a lock for the object referenced by the expression. The above code can be
modified to give a thread exclusive access to the OutputStream object referenced by System.out:

synchronized (System.out) {
 System.out.print(new Date());

 System.out.print(" : ");
 System.out.println(foo());
}

Note that this approach only works if other code that wants to call methods in the same object also uses
similar synchronized statements, or if the methods in question are all synchronized methods. In
this case, the print() and println() methods are synchronized, so other pieces of code that
need to use these methods do not need to use a synchronized statement.

When an inner class is updating fields in its enclosing instance, simply making a method
synchronized does not provide the needed single-threaded execution. Consider the following code:

public class Z extends Frame {
 int pressCount = 0;
 ...
 private class CountButton extends Button
 implements ActionListener {
 public void actionPerformed(ActionEvent evt) {
 pressCount ++;
 }
 }
 ...
}

If a Z object instantiates more than one instance of CountButton, you need to use single-threaded
execution to ensure that updates to pressCount are done correctly. Unfortunately, declaring the
actionPerformed() method of CountButton to be synchronized does not accomplish that
goal because it only forces the method to acquire a lock on the instance of CountButton it is
associated with before it executes. The object you need to acquire a lock for is the enclosing instance of
Z.

One way to have a CountButton object capture a lock on its enclosing instance of Z is to update
pressCount inside of a synchronized statement. For example:

synchronized (Z.this) {
 pressCount ++;
}

The drawback to this approach is that every piece of code that accesses pressCount in any inner class
of Z must be in a similar synchronized statement. Otherwise, it is possible for pressCount to be
updated incorrectly. The more pieces of code that need to be inside of synchronized statements, the
more places there are to introduce bugs in your program.

A more robust approach is to have the inner class update a field in its enclosing instance by calling a
synchronized method in the enclosing instance. For example:

public class Z extends Frame {
 int pressCount = 0;
 synchronized incrementPressCount() {
 pressCount++;
 }
 ...
 private class CountButton extends Button
 implements ActionListener {
 public void actionPerformed(ActionEvent evt) {
 incrementPressCount();
 }
 }
 ...
}

References Inner Classes; Method modifiers; The synchronized Statement

Optimistic Single-Threaded Execution

When multiple threads are updating a data structure, single-threaded execution is the obvious strategy to
use to ensure correctness of the operations on the data structure. However, single-threaded execution can
cause some problems of its own. Consider the following example:

public class Queue extends java.util.Vector {
 synchronized public void put(Object obj) {
 addElement(obj);
 }
 synchronized public Object get() throws EmptyQueueException {
 if (size() == 0)
 throw new EmptyQueueException();
 Object obj = elementAt(0);
 removeElementAt(0);
 return obj;
 }
}

This example implements a first-in, first-out (FIFO) queue. If the get() method of a Queue object is
called when the queue is empty, the method throws an exception. Now suppose that you want to write the

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_13.htm#JLR2-CH-6-SECT-13

get() method so that when the queue is empty, the method waits for an item to be put in the queue,
rather than throwing an exception. In order for an item to be put in the queue, the put() method of the
queue must be invoked. But using the single-threaded execution strategy, the put() method will never
be able to run while the get() method is waiting for the queue to receive an item. A good way to solve
this dilemma is to use a strategy called optimistic single-threaded execution.

The optimistic single-threaded execution strategy is similar to the single-threaded execution strategy.
They both begin by getting a lock on an object to ensure that the currently executing thread is the only
thread that can execute a piece of code, and they both end by releasing that lock. The difference is what
happens in between. Using the optimistic single-threaded execution strategy, if a piece of code discovers
that conditions are not right to proceed, the code releases the lock it has on the object that enforces single-
threaded execution and waits. When another piece of code changes things in such a way that might allow
the first piece of code to proceed, it notifies the first piece of code that it should try to regain the lock and
proceed.

To implement this strategy, the Object class provides methods called wait(), notify(), and
notifyAll(). These methods are inherited by every other class in Java. The following example shows
how to implement a queue that uses the optimistic single-threaded execution strategy, so that when the
queue is empty, its get() method waits for the queue to have an item put in it:

public class Queue extends java.util.Vector {
 synchronized public void put(Object obj) {
 addElement(obj);
 notify();
 }
 synchronized public Object get() throws EmptyQueueException {
 while (size() == 0)
 wait();
 Object obj = elementAt(0);
 removeElementAt(0);
 return obj;
 }
}

In the above implementation of the Queue class, the get() method calls wait() when the queue is
empty. The wait() method releases the lock that excludes other threads from executing methods in the
Queue object, and then waits until another thread calls the put() method. When put() is called, it
adds an item to the queue and calls notify(). The notify() method tells a thread that is waiting to
return from a wait() method that it should attempt to regain its lock and proceed. If there is more than
one thread waiting to regain the lock on the object, notify() chooses one of the threads arbitrarily.
The notifyAll() method is similar to notify(), but instead of choosing one thread to notify, it
notifies all of the threads that are waiting to regain the lock on the object.

Notice that the get() method calls wait() inside a while loop. Between the time that wait() is
notified that it should try to regain its lock and the time it actually does regain the lock, another thread
may have called the get() method and emptied the queue. The while loop guards against this
situation.

References Method modifiers; Object; The synchronized Statement

Rendezvous

Sometimes it is necessary to have a thread wait to continue until another thread has completed its work
and died. This type of synchronization uses the rendezvous strategy. The Thread class provides the
join() method for implementing this strategy. When the join() method is called on a Thread
object, the method returns immediately if the thread is dead. Otherwise, the method waits until the thread
dies and then returns.

References Thread

Balking

Some methods should not be executed concurrently, and have a time-sensitive nature that makes
postponing calls to them a bad idea. This is a common situation when software is controlling real-world
devices. Suppose you have a Java program that is embedded in an electronic control for a toilet. There is
a method called flush() that is responsible for flushing a toilet, and flush() can be called from
more than one thread. If a thread calls flush() while another thread is already executing flush(),
the second call should do nothing. A toilet is capable of only one flush at a time, and having a concurrent
call to the flush() method result in a second flush would only waste water.

This scenario suggests the use of the balking strategy. The balking strategy allows no more than one
thread to execute a method at a time. If another thread attempts to execute the method, the method simply
returns without doing anything. Here is an example that shows what such a flush() method might look
like:

boolean busy;
void flush() {
 synchronized (this) {
 if (busy)
 return;
 busy = true;
 }
 // code to make flush happen goes here
 busy = false;

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_13.htm#JLR2-CH-6-SECT-13

}

Explicit Synchronization

When the synchronization needs of a thread are not known in advance, you can use a strategy called
explicit synchronization. The explicit synchronization strategy allows you to explicitly tell a thread when
it can and cannot run. For example, you may want an animation to start and stop in response to external
events that happen at unpredictable times, so you need to be able to tell the animation when it can run.

To implement this strategy, the Thread class provides methods called suspend() and resume().
You can suspend the execution of a thread by calling the suspend() method of the Thread object
that controls the thread. You can later resume execution of the thread by calling the resume() method
on the Thread object.

References Thread

Using Thread Objects Exception Handling

Chapter 10
The java.lang Package

Thread

Name

Thread

Synopsis

Class Name:

java.lang.Thread

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Runnable

Availability:

JDK 1.0 or later

Description

The Thread class encapsulates all of the information about a single thread of control running in a Java
environment. Thread objects are used to control threads in a multithreaded program.

The execution of Java code is always under the control of a Thread object. The Thread class provides
a static method called currentThread() that can be used to get a reference to the Thread
object that controls the current thread of execution.

In order for a Thread object to be useful, it must be associated with a method that it is supposed to run.
Java provides two ways of associating a Thread object with a method:

● Declare a subclass of Thread that defines a run() method. When such a class is instantiated
and the object's start() method is called, the thread invokes this run() method.

● Pass a reference to an object that implements the Runnable interface to a Thread constructor.
When the start() method of such a Thread object is called, the thread invokes the run()
method of the Runnable object.

After a thread is started, it dies when one of the following things happens:

● The run() method called by the Thread returns.

● An exception is thrown that causes the run() method to be exited.

● The stop() method of the Thread is called.

Class Summary

public class java.lang.Thread extends java.lang.Object
 implements java.lang.Runnable {
 // Constants
 public final static int MAX_PRIORITY;
 public final static int MIN_PRIORITY;
 public final static int NORM_PRIORITY;
 // Constructors
 public Thread();
 public Thread(Runnable target);
 public Thread(Runnable target, String name);
 public Thread(String name);

 public Thread(ThreadGroup group, Runnable target);
 public Thread(ThreadGroup group, Runnable target, String name);
 public Thread(ThreadGroup group, String name);
 // Class Methods
 public static int activeCount();
 public static native Thread currentThread();
 public static void dumpStack();
 public static int enumerate(Thread tarray[]);
 public static boolean interrupted();
 public static native void sleep(long millis);
 public static void sleep(long millis, int nanos);
 public static native void yield();
 // Instance Methods
 public void checkAccess();
 public native int countStackFrames();
 public void destroy();
 public final String getName();
 public final int getPriority();
 public final ThreadGroup getThreadGroup();
 public void interrupt();
 public final native boolean isAlive();
 public final boolean isDaemon();
 public boolean isInterrupted();
 public final void join();
 public final synchronized void join(long millis);
 public final synchronized void join(long millis, int nanos);
 public final void resume();
 public void run();
 public final void setDaemon(boolean on);
 public final void setName(String name);
 public final void setPriority(int newPriority);
 public synchronized native void start();
 public final void stop();
 public final synchronized void stop(Throwable o);
 public final void suspend();
 public String toString();
}

Constants

MAX_PRIORITY

public final static int MAX_PRIORITY = 10

Description

The highest priority a thread can have.

MIN_PRIORITY

public final static int MIN_PRIORITY = 1

Description

The lowest priority a thread can have.

NORM_PRIORITY

public final static int NORM_PRIORITY = 5

Description

The default priority assigned to a thread.

Constructors

Thread

public Thread()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a Thread object that belongs to the same ThreadGroup object as the current thread,
has the same daemon attribute as the current thread, has the same priority as the current thread,

and has a default name.

A Thread object created with this constructor invokes its own run() method when the
Thread object's start() method is called. This is not useful unless the object belongs to a
subclass of the Thread class that overrides the run() method.

Calling this constructor is equivalent to:

Thread(null, null, genName)

genName is an automatically generated name of the form "Thread-"+n, where n is an
integer incremented each time a Thread object is created.

public Thread(String name)

Parameters

name

The name of this Thread object.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a Thread object that belongs to the same ThreadGroup object as the current thread,
has the same daemon attribute as the current thread, has the same priority as the current thread,
and has the specified name.

A Thread object created with this constructor invokes its own run() method when the
Thread object's start() method is called. This is not useful unless the object belongs to a
subclass of the Thread class that overrides the run() method.

Calling this constructor is equivalent to:

Thread(null, null, name)

The uniqueness of the specified Thread object's name is not checked, which may be a problem
for programs that attempt to identify Thread objects by their name.

public Thread(ThreadGroup group, Runnable target)

Parameters

group

The ThreadGroup object that this Thread object is to be added to.

target

A reference to an object that implements the Runnable interface.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a Thread object that belongs to the specified ThreadGroup object, has the same
daemon attribute as the current thread, has the same priority as the current thread, and has a
default name.

A Thread object created with this constructor invokes the run() method of the specified
Runnable object when the Thread object's start() method is called.

Calling this constructor is equivalent to:

Thread(group, target, genName)

genName is an automatically generated name of the form "Thread-"+n, where n is an
integer that is incremented each time a Thread object is created.

public Thread(ThreadGroup group, Runnable target, String name)

Parameters

group

The ThreadGroup object that this Thread object is to be added to.

target

A reference to an object that implements the Runnable interface.

name

The name of this Thread object.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a Thread object that belongs to the specified ThreadGroup object, has the same
daemon attribute as the current thread, has the same priority as the current thread, and has the
specified name.

A Thread object created with this constructor invokes the run() method of the specified
Runnable object when the Thread object's start() method is called.

The uniqueness of the specified Thread object's name is not checked, which may be a problem
for programs that attempt to identify Thread objects by their names.

public Thread(ThreadGroup group, String name)

Parameters

group

The ThreadGroup object that this Thread object is to be added to.

name

The name of this Thread object.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a Thread object that belongs to the specified ThreadGroup object, has the same
daemon attribute as the current thread, has the same priority as the current thread, and has the
specified name.

A Thread object created with this constructor invokes its own run() method when the
Thread object's start() method is called. This is not useful unless the object belongs to a
subclass of the Thread class that overrides the run() method. Calling this constructor is
equivalent to:

Thread(group, null, name)

The uniqueness of the specified Thread object's name is not checked, which may be a problem
for programs that attempt to identify Thread objects by their name.

Class Methods

activeCount

public static int activeCount()

Returns

The current number of threads in the ThreadGroup of the currently running thread.

Description

This method returns the number of threads in the ThreadGroup of the currently running thread

for which the isAlive() method returns true.

currentThread

public static native Thread currentThread()

Returns

A reference to the Thread object that controls the currently executing thread.

Description

This method returns a reference to the Thread object that controls the currently executing
thread.

dumpStack

public static void dumpStack()

Description

This method outputs a stack trace of the currently running thread.

enumerate

public static int enumerate(Thread tarray[])

Parameters

tarray

A reference to an array of Thread objects.

Returns

The number of Thread objects stored in the array.

Description

This method stores a reference in the array for each of the Thread objects in the ThreadGroup

of the currently running thread for which the isAlive() method returns true.

Calling this method is equivalent to:

currentThread().getThreadGroup().enumerate(tarray)

If the array is not big enough to contain references to all the Thread objects, only as many
references as will fit are put into the array. No indication is given that some Thread objects were
left out, so it is a good idea to call activeCount() before calling this method, to get an idea of
how large to make the array.

interrupted

public static boolean interrupted()

Returns

true if the currently running thread has been interrupted; otherwise false.

Description

This method determines whether or not the currently running thread has been interrupted.

sleep

public static native void sleep(long millis)

Parameters

millis

The number of milliseconds that the currently running thread should sleep.

Throws

InterruptedException

If another thread interrupts the currently running thread.

Description

This method causes the currently running thread to sleep. The method does not return until at least
the specified number of milliseconds have elapsed.

While a thread is sleeping, it retains ownership of all locks. The Object class defines a method
called wait() that is similar to sleep() but causes the currently running thread to temporarily
relinquish its locks.

public static void sleep(long millis, int nanos)

Parameters

millis

The number of milliseconds that the currently running thread should sleep.

nanos

An additional number of nanoseconds to sleep.

Throws

InterruptedException

If another thread interrupts the currently running thread.

Description

This method causes the currently running thread to sleep. The method does not return until at least
the specified number of milliseconds have elapsed.

While a thread is sleeping, it retains ownership of all locks. The Object class defines a method
called wait() that is similar to sleep() but causes the currently running thread to temporarily
relinquish its locks.

Note that Sun's reference implementation of Java does not attempt to implement the precision
implied by this method. Instead, it rounds to the nearest millisecond (unless millis is 0, in
which case it rounds up to 1 millisecond) and calls sleep(long).

yield

public static native void yield()

Description

This method causes the currently running thread to yield control of the processor so that another
thread can be scheduled.

Instance Methods

checkAccess

public void checkAccess()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method determines if the currently running thread has permission to modify this Thread
object.

countStackFrames

public native int countStackFrames()

Returns

The number of pending method invocations on this thread's stack.

Description

This method returns the number of pending method invocations on this thread's stack.

destroy

public void destroy()

Description

This method is meant to terminate this thread without any of the usual cleanup (i.e., any locks
held by the thread are not released). This method provides a last-resort way to terminate a thread.
While a thread can defeat its stop() method by catching objects thrown from it, there is nothing
that a thread can do to stop itself from being destroyed.

Note that Sun's reference implementation of Java does not implement the documented
functionality of this method. Instead, the implementation of this method just throws a
NoSuchMethodError.

getName

public final String getName()

Returns

The name of this thread.

Description

This method returns the name of this Thread object.

getPriority

public final int getPriority()

Returns

The priority of this thread.

Description

This method returns the priority of this Thread object.

getThreadGroup

public final ThreadGroup getThreadGroup()

Returns

The ThreadGroup of this thread.

Description

This method returns a reference to the ThreadGroup that this Thread object belongs to.

interrupt

public void interrupt()

Description

This method interrupts this Thread object.

Note that prior to version 1.1, Sun's reference implementation of Java does not implement the
documented functionality of this method. Instead, the method just sets a private flag that
indicates that an interrupt has been requested. None of the methods that should throw an
InterruptedException currently do. However, the interrupted() and
isInterrupted() methods do return true after this method has been called.

isAlive

public final native boolean isAlive()

Returns

true if this thread is alive; otherwise false.

Description

This method determines whether or not this Thread object is alive. A Thread object is alive if
it has been started and has not yet died. In other words, it has been scheduled to run before and
can still be scheduled to run again. A thread is generally alive after its start() method is called
and until its stop() method is called.

isDaemon

public final boolean isDaemon()

Returns

true if the thread is a daemon thread; otherwise false.

Description

This method determines whether or not this thread is a daemon thread, based on the value of the
daemon attribute of this Thread object.

isInterrupted

public boolean isInterrupted()

Returns

true if this thread has been interrupted; otherwise false.

Description

This method determines whether or not this Thread object has been interrupted.

join

public final void join()

Throws

InterruptedException

If another thread interrupts this thread.

Description

This method allows the thread that calls it to wait for the Thread associated with this method to
die. The method returns when the Thread dies. If this thread is already dead, then this method
returns immediately.

public final synchronized void join(long millis)

Parameters

millis

The maximum number of milliseconds to wait for this thread to die.

Throws

InterruptedException

If another thread interrupts this thread.

Description

This method causes a thread to wait to die. The method returns when this Thread object dies or
after the specified number of milliseconds has elapsed, whichever comes first. However, if the
specified number of milliseconds is zero, the method will wait forever for this thread to die. If this
thread is already dead, the method returns immediately.

public final synchronized void join(long millis, int nanos)

Parameters

millis

The maximum number of milliseconds to wait for this thread to die.

nanos

An additional number of nanoseconds to wait.

Throws

InterruptedException

If another thread interrupts this thread.

Description

This method causes a thread to wait to die. The method returns when this Thread object dies or

after the specified amount of time has elapsed, whichever comes first. However, if millis and
nanos are zero, the method will wait forever for this thread to die. If this thread is already dead,
the method returns immediately.

Note that Sun's reference implementation of Java does not attempt to implement the precision
implied by this method. Instead, it rounds to the nearest millisecond (unless millis is 0, in
which case it rounds up to 1 millisecond) and calls join(long).

resume

public final void resume()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method resumes a suspended thread. The method causes this Thread object to once again
be eligible to be run. Calling this method for a thread that is not suspended has no effect.

run

public void run()

Implements

Runnable.run()

Description

A Thread object's start() method causes the thread to invoke a run() method. If this
Thread object was created without a specified Runnable object, the Thread object's own
run() method is executed. This behavior is only useful in a subclass of Thread that overrides
this run() method, since the run() method of the Thread class does not do anything.

setDaemon

public final void setDaemon(boolean on)

Parameters

on

The new value for this thread's daemon attribute.

Throws

IllegalThreadStateException

If this method is called after this thread has been started and while it is still alive.

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method sets the daemon attribute of this Thread object to the given value. This method
must be called before the thread is started. If a thread dies and there are no other threads except
daemon threads alive, the Java virtual machine stops.

setName

public final void setName(String name)

Parameters

name

The new name for this thread.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a

SecurityException.

Description

This method sets the name of this Thread object to the given value. The uniqueness of the
specified Thread object's name is not checked, which may be a problem for programs that
attempt to identify Thread objects by their name.

setPriority

public final void setPriority(int newPriority)

Parameters

newPriority

The new priority for this thread.

Throws

IllegalArgumentException

If the given priority is less than MIN_PRIORITY or greater than MAX_PRIORITY.

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method sets the priority of this Thread to the given value.

start

public synchronized native void start()

Throws

IllegalThreadStateException

If this Thread object's start() method has been called before.

Description

This method starts this Thread object, allowing it to be scheduled for execution. The top-level
code that is executed by the thread is the run() method of the Runnable object specified in the
constructor that was used to create this object. If no such object was specified, the top-level code
executed by the thread is this object's run() method.

It is not permitted to start a thread more than once.

stop

public final void stop()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method causes this Thread object to stop executing by throwing a ThreadDeath object.
The object is thrown in this thread, even if the method is called from a different thread. This
thread is forced to stop whatever it is doing and throw a newly created ThreadDeath object. If
this thread was suspended, it is resumed; if it was sleeping, it is awakened. Normally, you should
not catch ThreadDeath objects in a try statement. If you need to catch ThreadDeath
objects to detect a Thread is about to die, the try statement that catches ThreadDeath
objects should rethrow them.

When an object is thrown out of the run() method associated with a Thread, the
uncaughtException() method of the ThreadGroup for that Thread is called. The
uncaughtException() method normally outputs a stack trace. However,
uncaughtException() treats a ThreadDeath object as a special case by not outputting a
stack trace. When the uncaughtException() method returns, the thread is dead. The thread
is never scheduled to run again.

If this Thread object's stop() method is called before this thread is started, the
ThreadDeath object is thrown as soon as the thread is started.

public final synchronized void stop(Throwable o)

Parameters

o

The object to be thrown.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method causes this Thread object to stop executing by throwing the given object.
Normally, the stop() method that takes no arguments and throws a ThreadDeath object
should be called instead of this method. However, if it is necessary to stop a thread by throwing
some other type of object, this method can be used.

The object is thrown in this thread, even if the method is called from a different thread. This
thread is forced to stop whatever it is doing and throw the Throwable object o. If this thread
was suspended, it is resumed; if it was sleeping, it is awakened.

When an object is thrown out of the run() method associated with a Thread, the
uncaughtException() method of the ThreadGroup for that Thread is called. If the
thrown object is not an instance of the ThreadDeath class, uncaughtException() calls
the thrown object's printStackTrace() method and then the thread dies. The thread is never
scheduled to run again.

If this Thread object's stop() method is called before this thread is started, the
ThreadDeath object is thrown as soon as the thread is started.

suspend

public final void suspend()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method suspends a thread. The method causes this Thread object to temporarily be
ineligible to be run. The thread becomes eligible to be run again after its resume() method is
called. Calling this method for a thread that is already suspended has no effect.

toString

public String toString()

Returns

A string representation of this Thread object.

Overrides

Object.toString()

Description

This method returns a string representation of this Thread object.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Exceptions; Object; Runnable; SecurityManager; ThreadGroup; Threads 8

System ThreadGroup

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_16.htm

Chapter 10
The java.lang Package

ThreadGroup

Name

ThreadGroup

Synopsis

Class Name:

java.lang.ThreadGroup

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm

The ThreadGroup class implements a grouping scheme for threads. A ThreadGroup object can own
Thread objects and other ThreadGroup objects. The ThreadGroup class provides methods that
allow a ThreadGroup object to control its Thread and ThreadGroup objects as a group. For
example, suspend() and resume() methods of a ThreadGroup object call the suspend() and
resume() methods of each of the Thread and ThreadGroup objects that belong to the particular
ThreadGroup.

When a Java program starts, a ThreadGroup object is created to own the first Thread. Any additional
ThreadGroup objects are explicitly created by the program.

Class Summary

public class java.lang.ThreadGroup extends java.lang.Object {
 // Constructors
 public ThreadGroup(String name);
 public ThreadGroup(ThreadGroup parent, String name;
 // Instance Methods
 public int activeCount();
 public int activeGroupCount();
 public boolean allowThreadSuspension(boolean b); // New in 1.1
 public final void checkAccess();
 public final void destroy();
 public int enumerate(Thread list[]);
 public int enumerate(Thread list[], boolean recurse);
 public int enumerate(ThreadGroup list[]);
 public int enumerate(ThreadGroup list[], boolean recurse);
 public final int getMaxPriority();
 public final String getName();
 public final ThreadGroup getParent();
 public final boolean isDaemon();
 public synchronized boolean isDestroyed(); // New in 1.1
 public void list();
 public final boolean parentOf(ThreadGroup g);
 public final void resume();
 public final void setDaemon(boolean daemon);
 public final void setMaxPriority(int pri);
 public final void stop();
 public final void suspend();
 public String toString();
 public void uncaughtException(Thread t, Throwable e);
}

Constructors

ThreadGroup

public ThreadGroup(String name)

Parameters

name

The name of this ThreadGroup object.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

Creates a ThreadGroup object that has the specified name and the same parent ThreadGroup
as the current thread.

public ThreadGroup(ThreadGroup parent, String name)

Parameters

parent

The ThreadGroup object that this ThreadGroup object is to be added to.

name

The name of this ThreadGroup object.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a

SecurityException.

Description

Creates a ThreadGroup object with the specified name and parent ThreadGroup object.

Instance Methods

activeCount

public int activeCount()

Returns

An approximation of the current number of threads in this ThreadGroup object and any child
ThreadGroup objects.

Description

This method returns an approximation of the number of threads that belong to this ThreadGroup
object and any child ThreadGroup objects. The count is approximate because a thread can die
after it is counted, but before the complete count is returned. Also, after a child ThreadGroup is
counted but before the total count is returned, additional Thread and ThreadGroup objects can
be added to a child ThreadGroup.

activeGroupCount

public int activeGroupCount()

Returns

An approximation of the current number of child ThreadGroup objects in this ThreadGroup
object.

Description

This method returns an approximation of the number of child ThreadGroup objects that belong to
this ThreadGroup object. The count is approximate because after a child ThreadGroup is
counted but before the total count is returned, additional ThreadGroup objects can be added to a
child ThreadGroup.

allowThreadSuspension

public boolean allowThreadSuspension(boolean b)

Availability

New as of JDK 1.1

Parameters

b

A boolean value that specifies whether or not the run-time system is allowed to suspend
threads due to low memory.

Returns

The boolean value true.

Description

This method specifies whether or not the Java virtual machine is allowed to suspend threads due to
low memory.

checkAccess

public final void checkAccess()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method determines if the currently running thread has permission to modify this
ThreadGroup object.

destroy

public final void destroy()

Throws

IllegalThreadStateException

If this ThreadGroup object is not empty, or if it has already been destroyed.

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method destroys this ThreadGroup object and any child ThreadGroup objects. The
ThreadGroup must not contain any Thread objects. This method also removes the
ThreadGroup object from its parent ThreadGroup object.

enumerate

public int enumerate(Thread list[])

Parameters

list

A reference to an array of Thread objects.

Returns

The number of Thread objects stored in the array.

Description

This method stores a reference in the array for each of the Thread objects that belongs to this
ThreadGroup or any of its child ThreadGroup objects.

If the array is not big enough to contain references to all the Thread objects, only as many
references as will fit are put into the array. No indication is given that some Thread objects were
left out, so it is a good idea to call activeCount() before calling this method, to get an idea of

how large to make the array.

public int enumerate(Thread list[], boolean recurse)

Parameters

list

A reference to an array of Thread objects.

recurse

A boolean value that specifies whether or not to include Thread objects that belong to
child ThreadGroup objects of this ThreadGroup object.

Returns

The number of Thread objects stored in the array.

Description

This method stores a reference in the array for each of the Thread objects that belongs to this
ThreadGroup object. If recurse is true, the method also stores a reference for each of the
Thread objects that belongs to a child ThreadGroup object of this ThreadGroup.

If the array is not big enough to contain references to all the Thread objects, only as many
references as will fit are put into the array. No indication is given that some Thread objects were
left out, so it is a good idea to call activeCount() before calling this method, to get an idea of
how large to make the array.

public int enumerate(ThreadGroup list[])

Parameters

list

A reference to an array of ThreadGroup objects.

Returns

The number of ThreadGroup objects stored in the array.

Description

This method stores a reference in the array for each ThreadGroup object that belongs to this
ThreadGroup or any of its child ThreadGroup objects.

If the array is not big enough to contain references to all the ThreadGroup objects, only as many
references as will fit are put into the array. No indication is given that some ThreadGroup objects
were left out, so it is a good idea to call activeGroupCount() before calling this method, to get
an idea of how large to make the array.

public int enumerate(Thread list[], boolean recurse)

Parameters

list

A reference to an array of ThreadGroup objects.

recurse

A boolean value that specifies whether or not to include ThreadGroup objects that
belong to child ThreadGroup objects of this ThreadGroup object.

Returns

The number of ThreadGroup objects stored in the array.

Description

This method stores a reference in the array for each of the ThreadGroup objects that belongs to
this ThreadGroup object. If recurse is true, the method also stores a reference for each of the
ThreadGroup objects that belongs to a child ThreadGroup object of this ThreadGroup.

If the array is not big enough to contain references to all the ThreadGroup objects, only as many
references as will fit are put into the array. No indication is given that some ThreadGroup objects
were left out, so it is a good idea to call activeGroupCount() before calling this method, to get
an idea of how large to make the array.

getMaxPriority

public final int getMaxPriority()

Returns

The maximum priority that can be assigned to Thread objects that belong to this ThreadGroup
object.

Description

This method returns the maximum priority that can be assigned to Thread objects that belong to
this ThreadGroup object.

It is possible for a ThreadGroup to contain Thread objects that have higher priorities than this
maximum, if they were given that higher priority before the maximum was set to a lower value.

getName

public final String getName()

Returns

The name of this ThreadGroup object.

Description

This method returns the name of this ThreadGroup object.

getParent

public final ThreadGroup getParent()

Returns

The parent ThreadGroup object of this ThreadGroup, or null if this ThreadGroup is the
root of the thread group hierarchy.

Description

This method returns the parent ThreadGroup object of this ThreadGroup object. If this
ThreadGroup is at the root of the thread group hierarchy and has no parent, the method returns
null.

isDaemon

public final boolean isDaemon()

Returns

true if this ThreadGroup is a daemon thread group; otherwise false.

Description

This method determines whether or not this ThreadGroup is a daemon thread group, based on the
value of daemon attribute of this ThreadGroup object. A daemon thread group is destroyed when
the last Thread in it is stopped, or the last ThreadGroup in it is destroyed.

isDestroyed

public synchronized boolean isDestroyed()

Availability

New as of JDK 1.1

Returns

true if this ThreadGroup has been destroyed; otherwise false.

Description

This method determines whether or not this ThreadGroup has been destroyed.

list

public void list()

Description

This method outputs a listing of the contents of this ThreadGroup object to System.out.

parentOf

public final boolean parentOf(ThreadGroup g)

Parameters

g

A ThreadGroup object.

Returns

true if this ThreadGroup object is the same ThreadGroup, or a direct or indirect parent of the
specified ThreadGroup; otherwise false.

Description

This method determines if this ThreadGroup object is the same as the specified ThreadGroup
or one of its ancestors in the thread-group hierarchy.

resume

public final void resume()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method resumes each Thread object that directly or indirectly belongs to this ThreadGroup
object by calling its resume() method.

setDaemon

public final void setDaemon(boolean daemon)

Parameters

daemon

The new value for this ThreadGroup object's daemon attribute.

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method sets the daemon attribute of this ThreadGroup object to the given value. A daemon
thread group is destroyed when the last Thread in it is stopped, or the last ThreadGroup in it is
destroyed.

setMaxPriority

public final void setMaxPriority(int pri)

Parameters

pri

The new maximum priority for Thread objects that belong to this ThreadGroup object.

Description

This method sets the maximum priority that can be assigned to Thread objects that belong to this
ThreadGroup object.

It is possible for a ThreadGroup to contain Thread objects that have higher priorities than this
maximum, if they were given that higher priority before the maximum was set to a lower value.

stop

public final void stop()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method stops each Thread object that directly or indirectly belongs to this ThreadGroup
object by calling its stop() method.

suspend

public final void suspend()

Throws

SecurityException

If the checkAccess() method of the SecurityManager throws a
SecurityException.

Description

This method suspends each Thread object that directly or indirectly belongs to this
ThreadGroup object by calling its suspend() method.

toString

public String toString()

Returns

A string representation of this ThreadGroup object.

Overrides

Object.toString()

Description

This method returns a string representation of this ThreadGroup object.

uncaughtException

public void uncaughtException(Thread t, Throwable e)

Parameters

t

A reference to a Thread that just died because of an uncaught exception.

e

The uncaught exception.

Description

This method is called when a Thread object that belongs to this ThreadGroup object dies
because of an uncaught exception. If this ThreadGroup object has a parent ThreadGroup
object, this method just calls the parent's uncaughtException() method. Otherwise, this
method must determine whether the uncaught exception is an instance of ThreadDeath. If it is,
nothing is done. If it is not, the method calls the printStackTrace() method of the exception
object.

If this method is overridden, the overriding method should end with a call to
super.uncaughtException().

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Exceptions; Object; Runnable; SecurityManager; Thread; Threads 8; Throwable

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_16.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm

Thread Throwable

Chapter 10
The java.lang Package

Object

Name

Object

Synopsis

Class Name:

java.lang.Object

Superclass:

None

Immediate Subclasses:

Too many to be listed here

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Object class is the ultimate superclass of all other classes in Java. Because every other class is a subclass of Object,
all of the methods accessible from Object are inherited by every other class. In other words, all objects in Java, including
arrays, have access to implementations of the methods in Object.

The methods of Object provide some basic object functionality. The equals() method compares two objects for
equality, while the hashCode() method returns a hashcode for an object. The getClass() method returns the Class

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_15.htm

object associated with an object. The wait(), notify(), and notifyAll() methods support thread synchronization
for an object. The toString() method provides a string representation of an object.

Some of these methods should be overridden by subclasses of Object. For example, every class should provide its own
implementation of the toString() method, so that it can provide an appropriate string representation.

Although it is possible to create an instance of the Object class, this is rarely done because it is more useful to create
specialized objects. However, it is often useful to declare a variable that contains a reference to an Object because such a
variable can contain a reference to an object of any other class.

Class Summary

public class java.lang.Object {
 // Constructors
 public Object();
 // Public Instance Methods
 public boolean equals(Object obj);
 public final native Class getClass();
 public native int hashCode();
 public final native void notify();
 public final native void notifyAll();
 public String toString();
 public final native void wait();
 public final native void wait(long millis);
 public final native void wait(long millis, int nanos);
 // Protected Instance Methods
 protected native Object clone();
 protected void finalize() throws Throwable;
}

Constructors

Object

public Object()

Description

Creates an instance of the Object class.

Public Instance Methods

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Description

The equals() method of Object returns true if the obj parameter refers to the same object as the object this
method is associated with. This is equivalent to using the == operator to compare two objects.

Some classes, such as String, override the equals() method to provide a comparison based on the contents of
the two objects, rather than on the strict equality of the references. Any subclass can override the equals()
method to implement an appropriate comparison, as long as the overriding method satisfies the following rules for an
equivalence relation:

❍ The method is reflexive : given a reference x, x.equals(x) returns true.

❍ The method is symmetric : given references x and y, x.equals(y) returns true if and only if
y.equals(x) returns true.

❍ The method is transitive : given references x, y, and z, if x.equals(y) returns true and y.equals(z)
returns true, then x.equals(z) returns true.

❍ The method is consistent : given references x and y, multiple invocations of x.equals(y) consistently
return true or consistently return false, provided that no information contained by the objects referenced
by x or y changes.

❍ A comparison with null returns false: given a reference x that is non-null, x.equals(null) returns
false.

getClass

public final native Class getClass()

Returns

A reference to the Class object that describes the class of this object.

Description

The getClass() method of Object returns the Class object that describes the class of this object. This method
is final, so it cannot be overridden by subclasses.

hashCode

public native int hashCode()

Returns

A relatively unique value that should be the same for all objects that are considered equal.

Description

The hashCode() method of Object calculates a hashcode value for this object. The method returns an integer
value that should be relatively unique to the object. If the equals() method for the object bases its result on the
contents of the object, the hashcode() method should also base its result on the contents. The hashCode()
method is provided for the benefit of hashtables, which store and retrieve elements using key values called
hashcodes. The internal placement of a particular piece of data is determined by its hashcode; hashtables are
designed to use hashcodes to provide efficient retrieval.

The java.util.Hashtable class provides an implementation of a hashtable that stores values of type Object.
Each object is stored in the hashtable based on the hash code of its key object. It is important that each object have
the most unique hash code possible. If two objects have the same hash code but they are not equal (as determined by
equals()), a Hashtable that stores these two objects may need to spend additional time searching when it is
trying to retrieve objects. The implementation of hashCode() in Object tries to make sure that every object has
a distinct hash code by basing its result on the internal representation of a reference to the object.

Some classes, such as String, override the hashCode() method to produce values based on the contents of
individual objects, instead of the objects themselves. In other words, two String objects that contain the exact
same strings have the same hash code. If String did not override the hashCode() method inherited from
Object, these two String objects would have different hash code values and it would be impossible to use
String objects as keys for hashtables.

Any subclass can override the hashCode() method to implement an appropriate way of producing hash code
values, as long as the overriding method satisfies the following rules:

❍ If the hashCode() method is called on the same object more than once during the execution of a Java
application, it must consistently return the same integer value. The integer does not, however, need to be
consistent between Java applications, or from one execution of an application to another execution of the
same application.

❍ If two objects compare as equal according to their equals() methods, calls to the hashCode() methods
for the objects must produce the same result.

❍ If two objects compare as not equal according to their equals() methods, calls to the hashCode()
methods for the two objects are not required to produce distinct results. However, implementations of
hashCode() that produce distinct results for unequal objects may improve the performance of hashtables.

In general, if a subclass overrides the equals() method of Object, it should also override the hashCode()
method.

notify

public final native void notify()

Throws

IllegalMonitorStateException

If the method is called from a thread that does not hold this object's lock.

Description

The notify() method wakes up a thread that is waiting to return from a call to this object's wait() method. The
awakened thread can resume executing as soon as it regains this object's lock. If more than one thread is waiting, the
notify() method arbitrarily awakens just one of the threads.

The notify() method can be called only by a thread that is the current owner of this object's lock. A thread holds
the lock on this object while it is executing a synchronized instance method of the object or executing the body
of a synchronized statement that synchronizes on the object. A thread can also hold the lock for a Class object
if it is executing a synchronized static method of that class.

This method is final, so it cannot be overridden by subclasses.

notifyAll

public final native void notifyAll()

Throws

IllegalMonitorStateException

If the method is called from a thread that does not hold this object's lock.

Description

The notifyAll() method wakes up all the threads that are waiting to return from a call to this object's wait()
method. Each awakened thread can resume executing as soon as it regains this object's lock.

The notifyAll() method can be called only by a thread that is the current owner of this object's lock. A thread
holds the lock on this object while it is executing a synchronized instance method of the object or executing the
body of a synchronized statement that synchronizes on the object. A thread can also hold the lock for a Class
object if it is executing a synchronized static method of that class.

This method is final, so it cannot be overridden by subclasses.

toString

public String toString()

Returns

The string representation of this object.

Description

The toString() method of Object returns a generic string representation of this object. The method returns a
String that consists of the object's class name, an "at" sign, and the unsigned hexadecimal representation of the
value returned by the object's hashCode() method.

Many classes override the toString() method to provide a string representation that is specific to that type of
object. Any subclass can override the toString() method; the overriding method should simply return a String
that represents the contents of the object with which it is associated.

wait

public final native void wait() throws InterruptedException

Throws

IllegalMonitorStateException

If the method is called from a thread that does not hold this object's lock.

InterruptedException

If another thread interrupted this thread.

Description

The wait() method causes a thread to wait until it is notified by another thread to stop waiting. When wait() is
called, the thread releases its lock on this object and waits until another thread notifies it to wake up through a call to
either notify() or notifyAll(). After the thread is awakened, it has to regain the lock on this object before it
can resume executing.

The wait() method can be called only by a thread that is the current owner of this object's lock. A thread holds the
lock on this object while it is executing a synchronized instance method of the object or executing the body of a
synchronized statement that synchronizes on the object. A thread can also hold the lock for a Class object if it
is executing a synchronized static method of that class.

This method is final, so it cannot be overridden by subclasses.

 public final native void wait(long timeout) throws InterruptedException

Parameters

timeout

The maximum number of milliseconds to wait.

Throws

IllegalMonitorStateException

If the method is called from a thread that does not hold this object's lock.

InterruptedException

If another thread interrupted this thread.

Description

The wait() method causes a thread to wait until it is notified by another thread to stop waiting or until the
specified amount of time has elapsed, whichever comes first. When wait() is called, the thread releases its lock on
this object and waits until another thread notifies it to wake up through a call to either notify() or
notifyAll(). If the thread is not notified within the specified timeout period, it is automatically awakened
when that amount of time has elapsed. If timeout is zero, the thread waits indefinitely, just as if wait() had been
called without a timeout argument. After the thread is awakened, it has to regain the lock on this object before it
can resume executing.

The wait() method can be called only by a thread that is the current owner of this object's lock. A thread holds the
lock on this object while it is executing a synchronized instance method of the object or executing the body of a
synchronized statement that synchronizes on the object. A thread can also hold the lock for a Class object if it
is executing a synchronized static method of that class.

This method is final, so it cannot be overridden by subclasses.

 public final native void wait(long timeout, int nanos) throws InterruptedException

Parameters

timeout

The maximum number of milliseconds to wait.

nanos

An additional number of nanoseconds to wait.

Throws

IllegalMonitorStateException

If the method is called from a thread that does not hold this object's lock.

InterruptedException

If another thread interrupted this thread.

Description

The wait() method causes a thread to wait until it is notified by another thread to stop waiting or until the
specified amount of time has elapsed, whichever comes first. When wait() is called, the thread releases its lock on
this object and waits until another thread notifies it to wake up through a call to either notify() or
notifyAll(). If the thread is not notified within the specified time period, it is automatically awakened when that
amount of time has elapsed. If timeout and nanos are zero, the thread waits indefinitely, just as if wait() had
been called without any arguments. After the thread is awakened, it has to regain the lock on this object before it can
resume executing.

The wait() method can be called only by a thread that is the current owner of this object's lock. A thread holds the
lock on this object while it is executing a synchronized instance method of the object or executing the body of a
synchronized statement that synchronizes on the object. A thread can also hold the lock for a Class object if it
is executing a synchronized static method of that class.

Note that Sun's reference implementation of Java does not attempt to implement the precision implied by this
method. Instead, it rounds to the nearest millisecond (unless timeout is 0, in which case it rounds up to 1
millisecond) and calls wait(long).

This method is final, so it cannot be overridden by subclasses.

Protected Instance Methods

clone

protected native Object clone() throws CloneNotSupportedException

Returns

A clone of this object.

Throws

OutOfMemoryError

If there is not enough memory to create the new object.

CloneNotSupportedException

If the object is of a class that does not support clone().

Description

A clone of an object is another object of the same type that has all of its instance variables set to the same values as
the object being cloned. In other words, a clone is an exact copy of the original object.

The clone() method of Object creates a new object that is a clone of this object. No constructor is used in
creating the clone. The clone() method only clones an object if the class of that object indicates that its instances

can be cloned. A class indicates that its objects can be cloned by implementing the Cloneable interface.

Although array objects do not implement the Cloneable interface, the clone() method works for arrays. The
clone of an array is an array that has the same number of elements as the original array, and each element in the
clone array has the same value as the corresponding element in the original array. Note that if an array element
contains an object reference, the clone array contains a reference to the same object, not a copy of the object.

A subclass of Object can override the clone() method in Object to provide any additional functionality that is
needed. For example, if an object contains references to other objects, the clone() method should recursively call
the clone() methods of all the referenced objects. An overriding clone() method can throw a
CloneNotSupportedException to indicate that particular objects cannot be cloned.

finalize

protected void finalize() throws Throwable

Throws

Throwable

For any reason that suits an overriding implementation of this method.

Description

The finalize() method is called by the garbage collector when it decides that an object can never be referenced
again. The method gives an object a chance to perform any cleanup operations that are necessary before it is
destroyed by the garbage collector.

The finalize() method of Object does nothing. A subclass overrides the finalize() method to perform
any necessary cleanup operations. The overriding method should call super.finalize() as the very last thing it
does, so that any finalize() method in the superclass is called.

When the garbage collector calls an object's finalize() method, the garbage collector does not immediately
destroy the object because the finalize() method might do something that results in a reference to the object.
Thus the garbage collector waits to destroy the object until it can again prove it is safe to do so. The next time the
garbage collector decides it is safe to destroy the object, it does so without calling finalize() again. In other
words, the garbage collector never calls the finalize() method more than once for a particular object.

A finalize() method can throw any kind of exception. An exception causes the finalize() method to stop
running. The garbage collector then catches and ignores the exception, so it has no further effect on a program.

See Also

Equality Comparison Operators; Exceptions; Object Destruction; The finalize method; String; Threads 8; Throwable

Number Process

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_15.htm

Chapter 10
The java.lang Package

System

Name

System

Synopsis

Class Name:

java.lang.System

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The System class provides access to various information about the operating system environment in which a

program is running. For example, the System class defines variables that allow access to the standard I/O
streams and methods that allow a program to run the garbage collector and stop the Java virtual machine.

All of the variables and methods in the System class are static. In other words, it is not necessary to create
an instance of the System class in order to use its variables and methods. In fact, the System class does not
define any public constructors, so it cannot be instantiated.

The System class supports the concept of system properties that can be queried and set. The following
properties are guaranteed always to be defined:

Property Name Description

file.encoding The character encoding for the default locale (Java 1.1 only)

file.encoding.pkg
The package that contains converters between local encodings and Unicode (Java
1.1 only)

file.separator File separator ('/' on UNIX, ' \' on Windows)

java.class.path The class path

java.class.version Java class version number

java.compiler The just-in-time compiler to use, if any (Java 1.1 only)

java.home Java installation directory

java.vendor Java vendor-specific string

java.vendor.url Java vendor URL

java.version Java version number

line.separator Line separator(' \n' on UNIX, ' \r\n' on Windows)

os.arch Operating system architecture

os.name Operating system name

os.version Operating system version

path.separator Path separator (':' on UNIX, ',' on Windows)

user.dir User's current working directory when the properties were initialized

user.home User's home directory

user.language The two-letter language code of the default locale (Java 1.1 only)

user.name User's account name

user.region The two-letter country code of the default locale (Java 1.1 only)

user.timezone The default time zone (Java 1.1 only)

Additional properties may be defined by the run-time environment. The -D command-line option can be used to
define system properties when a program is run.

The Runtime class is related to the System class; it provides access to information about the environment in
which a program is running.

Class Summary

public final class java.lang.System extends java.lang.Object {
 // Constants
 public static final PrintStream err;
 public static final InputStream in;
 public static final PrintStream out;
 // Class Methods
 public static void arraycopy(Object src, int srcOffset,
 Object dst, int dstOffset, int length);
 public static long currentTimeMillis();
 public static void exit(int status);
 public static void gc();
 public static Properties getProperties();
 public static String getProperty(String key);
 public static String getProperty(String key, String default);
 public static SecurityManager getSecurityManager();
 public static String getenv(String name); // Deprecated in 1.1
 public static native int identityHashCode(Object x); // New in 1.1
 public static void load(String filename);
 public static void loadLibrary(String libname);
 public static void runFinalization();
 public static void runFinalizersOnExit(boolean value); // New in 1.1
 public static void setErr(PrintStream err); // New in 1.1
 public static void setIn(InputStream in); // New in 1.1
 public static void setOut(PrintStream out); // New in 1.1
 public static void setProperties(Properties props);
 public static void setSecurityManager(SecurityManager s);
}

Variables

err

public static final PrintStream err

Description

The standard error stream. In an application environment, this variable refers to a
java.io.PrintStream object that is associated with the standard error output for the process
running the Java virtual machine. In an applet environment, the PrintStream is likely to be associated
with a separate window, although this is not guaranteed.

The value of err can be set using the setErr() method. The value of err can only be set if the

currenly installed SecurityManager does not throw a SecurityException when the request is
made.

Prior to to Java 1.1, err was not final. It has been made final as of Java 1.1 because the unchecked
ability to set err is a security hole.

in

public static final InputStream in

Description

The standard input stream. In an application environment, this variable refers to a
java.io.InputStream object that is associated with the standard input for the process running the
Java virtual machine.

The value of in can be set using the setIn() method. The value of in can only be set if the currenly
installed SecurityManager does not throw a SecurityException when the request is made.

Prior to to Java 1.1, in was not final. It has been made final as of Java 1.1 because the unchecked
ability to set in is a security hole.

out

public static final PrintStream out

Description

The standard output stream. In an application environment, this variable refers to a
java.io.PrintStream object that is associated with the standard output for the process running the
Java virtual machine. In an applet environment, the PrintStream is likely to be associated with a
separate window, although this is not guaranteed.

out is the most commonly used of the three I/O streams provided by the System class. Even in GUI-
based applications, sending output to this stream can be useful for debugging. The usual idiom for sending
output to this stream is:

System.out.println("Some text");

The value of out can be set using the setOut() method. The value of out can only be set if the
currenly installed SecurityManager does not throw a SecurityException when the request is
made.

Prior to to Java 1.1, out was not final. It has been made final as of Java 1.1 because the unchecked

ability to set out is a security hole.

Class Methods

arraycopy

 public static void arraycopy(Object src, int src_position, Object dst, int
dst_position, int length)

Parameters

src

The source array.

src_position

An index into the source array.

dst

The destination array.

dst_position

An index into the destination array.

length

The number of elements to be copied.

Throws

ArrayIndexOutOfBoundsException

If the values of the src_position, dst_position, and length arguments imply accessing
either array with an index that is less than zero or an index greater than or equal to the number of
elements in the array.

ArrayStoreException

If the type of value stored in the src array cannot be stored in the dst array.

NullPointerException

If src or dst is null.

Description

This method copies a range of array elements from the src array to the dst array. The number of
elements that are copied is specified by length. The elements at positions src_position through
src_position+length-1 in src are copied to the positions dst_position through
dst_position+length-1 in dst, respectively.

If src and dst refer to the same array, the copying is done as if the array elements were first copied to a
temporary array and then copied to the destination array.

Before this method does any copying, it performs a number of checks. If either src or dst are null, the
method throws a NullPointerException and dst is not modified.

If any of the following conditions are true, the method throws an ArrayStoreException, and dst is
not modified:

❍ Either src or dst refers to an object that is not an array.

❍ src and dst refer to arrays whose element types are different primitive types.

❍ src refers to an array that has elements that contain a primitive type, while dst refers to an array
that has elements that contain a reference type, or vice versa.

If any of the following conditions are true, the method throws an
ArrayIndexOutOfBoundsException, and dst is not modified:

❍ srcOffset, dstOffset, or length is negative.

❍ srcOffset+length is greater than src.length().

❍ dstOffset+length is greater than dst.length().

Otherwise, if an element in the source array being copied cannot be converted to the type of the
destination array using the rules of the assignment operator, the method throws an
ArrayStoreException when the problem occurs. Since the problem is discovered during the copy
operation, the state of the dst array reflects the incomplete copy operation.

currentTimeMillis

public static native long currentTimeMillis()

Returns

The current time as the number of milliseconds since 00:00:00 UTC, January 1, 1970.

Description

This method returns the current time as the number of milliseconds since 00:00:00 UTC, January 1, 1970.
It will not overflow until the year 292280995.

The java.util.Date class provides more extensive facilities for dealing with times and dates.

exit

public static void exit(int status)

Parameters

status

The exit status code to use.

Throws

SecurityException

If the checkExit() method of the SecurityManager throws a SecurityException.

Description

This method causes the Java virtual machine to exit with the given status code. This method works by
calling the exit() method of the current Runtime object. By convention, a nonzero status code
indicates abnormal termination. This method never returns.

gc

public static void gc()

Description

This method causes the Java virtual machine to run the garbage collector in the current thread. This
method works by calling the gc() method of the current Runtime object.

The garbage collector finds objects that will never be used again because there are no live references to

them. After it finds these objects, the garbage collector frees the storage occupied by these objects.

The garbage collector is normally run continuously in a thread with the lowest possible priority, so that it
works intermittently to reclaim storage. The gc() method allows a program to invoke the garbage
collector explicitly when necessary.

getProperties

public static Properties getProperties()

Returns

A Properties object that contains the values of all the system properies.

Throws

SecurityException

If the checkPropertiesAccess() method of the SecurityManager throws a
SecurityException.

Description

This method returns all of the defined system properties encapsulated in a java.util.Properties
object. If there are no system properties currently defined, a set of default system properties is created and
initialized. As discussed in the description of the System class, some system properties are guaranteed
always to be defined.

getProperty

public static String getProperty(String key)

Parameters

key

The name of a system property.

Returns

The value of the named system property or null if the named property is not defined.

Throws

SecurityException

If the checkPropertyAccess() method of the SecurityManager throws a
SecurityException.

Description

This method returns the value of the named system property. If there is no definition for the named
property, the method returns null. If there are no system properties currently defined, a set of default
system properties is created and initialized. As discussed in the description of the System class, some
system properties are guaranteed always to be defined.

public static String getProperty(String key, String def)

Parameters

key

The name of a system property.

def

A default value for the property.

Returns

The value of the named system property, or the default value if the named property is not defined.

Throws

SecurityException

If the checkPropertyAccess() method of the SecurityManager throws a
SecurityException.

Description

This method returns the value of the named system property. If there is no definition for the named
property, the method returns the default value as specified by the def parameter. If there are no system
properties currently defined, a set of default system properties is created and initialized. As discussed
earlier in the description of the System class, some system properties are guaranteed to always be
defined.

getSecurityManager

public static SecurityManager getSecurityManager()

Returns

A reference to the installed SecurityManager object or null if there is no SecurityManager
object installed.

Description

This method returns a reference to the installed SecurityManager object. If there is no
SecurityManager object installed, the method returns null.

getenv

public static String getenv(String name)

Availability

Deprecated as of JDK 1.1

Parameters

name

The name of a system-dependent environment variable.

Returns

The value of the environment variable or null if the variable is not defined.

Description

This method is obsolete; it always throws an error. Use getProperties() and the -D option instead.

identityHashCode

public static native int identityHashCode(Object x)

Availability

New as of JDK 1.1

Parameters

x

An object.

Returns

The identity hashcode value for the specified object.

Description

This method returns the same hashcode value for the specified object as would be returned by the default
hashCode() method of Object, regardless of whether or not the object's class overrides
hashCode().

load

public void load(String filename)

Parameters

filename

A string that specifies the complete path of the file to be loaded.

Throws

SecurityException

If the checkLink() method of the SecurityManager throws a SecurityException.

UnsatisfiedLinkError

If the method is unsuccessful in loading the specified dynamically linked library.

Description

This method loads the specified dynamically linked library. This method works by calling the load()
method of the current Runtime object.

loadLibrary

public void loadLibrary(String libname)

Parameters

libname

A string that specifies the name of a dynamically linked library.

Throws

SecurityException

If the checkLink() method of the SecurityManager throws a SecurityException.

UnsatisfiedLinkError

If the method is unsuccessful in loading the specified dynamically linked library.

Description

This method loads the specified dynamically linked library. It looks for the specified library in a platform-
specific way. This method works by calling the loadLibrary() method of the current Runtime
object.

runFinalization

public static void runFinalization()

Description

This method causes the Java virtual machine to run the finalize() methods of any objects in the
finalization queue in the current thread. This method works by calling the runFinalization()
method of the current Runtime object.

When the garbage collector discovers that there are no references to an object, it checks to see if the object
has a finalize() method that has never been called. If the object has such a finalize() method,
the object is placed in the finalization queue. While there is a reference to the object in the finalization
queue, the object is no longer considered garbage collectable.

Normally, the objects in the finalization queue are handled by a separate finalization thread that runs
continuously at a very low priority. The finalization thread removes an object from the queue and calls its
finalize() method. As long as the finalize() method does not generate a reference to the object,
the object again becomes available for garbage collection.

Because the finalization thread runs at a very low priority, there may be a long delay from the time that an
object is put on the finalization queue until the time that its finalize() method is called. The

runFinalization() method allows a program to run the finalize() methods explicitly. This can
be useful when there is a shortage of some resource that is released by a finalize() method.

runFinalizersOnExit

public static void runFinalizersOnExit(boolean value)

Availability

New as of JDK 1.1

Parameters

value

A boolean value that specifies whether or not finalization occurs on exit.

Throws

SecurityException

If the checkExit() method of the SecurityManager throws a SecurityException.

Description

This method specifies whether or not the finalize() methods of all objects that have finalize()
methods are run before the Java virtual machine exits. By default, the finalizers are not run on exit. This
method works by calling the runFinalizersOnExit() method of the current Runtime object.

setErr

public static void setErr(PrintStream err)

Availability

New as of JDK 1.1

Parameters

err

A PrintStream object to use for the standard error stream.

Throws

SecurityException

If the checkExec() method of the SecurityManager throws a SecurityException.

Description

This method sets the standard error stream to be this PrintStream object.

setIn

public static void setIn(InputStream in)

Availability

New as of JDK 1.1

Parameters

in

A InputStream object to use for the standard input stream.

Throws

SecurityException

If the checkExec() method of the SecurityManager throws a SecurityException.

Description

This method sets the standard input stream to be this InputStream object.

setOut

public static void setOut(PrintStream out)

Availability

New as of JDK 1.1

Parameters

out

A PrintStream object to use for the standard output stream.

Throws

SecurityException

If the checkExec() method of the SecurityManager throws a SecurityException.

Description

This method sets the standard output stream to be this PrintStream object.

setProperties

public static void setProperties(Properties props)

Parameters

props

A reference to a Properties object.

Throws

SecurityException

If the checkPropertiesAccess() method of the SecurityManager throws a
SecurityException.

Description

This method replaces the current set of system property definitions with a new set of system property
definitions that are encapsulated by the given Properties object. As discussed in the description of the
System class, some system properties are guaranteed to always be defined.

setSecurityManager

public static void setSecurityManager(SecurityManager s)

Parameters

s

A reference to a SecurityManager object.

Throws

SecurityException

If a SecurityManager object has already been installed.

Description

This method installs the given SecurityManager object. If s is null, then no SecurityManager
object is installed. Once a SecurityManager object is installed, any subsequent calls to this method
throw a SecurityException.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Assignment Compatibility; Errors; Exceptions; Object; Object Destruction; Process; Runtime; SecurityManager

StringBuffer Thread

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_15.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm

Chapter 28
The java.net Package

28.22 java.net.URL (JDK 1.0)

This class represents a URL (a Uniform Resource Locator) and allows the data referred to by the URL to be downloaded. A
URL may be specified as a single string or with separate protocol, host, port, and file specifications. Relative URLs may
also be specified with a String and the URL object that it is relative to.

getFile(), getHost(), getPort(), getProtocol(), and getRef() return the various portions of the URL
specified by a URL object. sameFile() determines whether a URL object refers to the same file as this one.

The data or object referred to by a URL may be downloaded from the Internet in three ways: through a URLConnection
created with openConnection(), through an InputStream created by openStream(), or through
getContent(), which returns the URL contents directly, if an appropriate ContentHandler can be found.

public final class URL extends Object implements Serializable {
 // Public Constructors
 public URL(String protocol, String host, int port, String file) throws
MalformedURLException;
 public URL(String protocol, String host, String file) throws
MalformedURLException;
 public URL(String spec) throws MalformedURLException;
 public URL(URL context, String spec) throws MalformedURLException;
 // Class Methods
 public static synchronized void
setURLStreamHandlerFactory(URLStreamHandlerFactory fac);
 // Public Instance Methods
 public boolean equals(Object obj); // Overrides Object
 public final Object getContent() throws IOException;
 public String getFile();
 public String getHost();
 public int getPort();
 public String getProtocol();
 public String getRef();
 public int hashCode(); // Overrides Object
 public URLConnection openConnection() throws IOException;
 public final InputStream openStream() throws IOException;
 public boolean sameFile(URL other);
 public String toExternalForm();
 public String toString(); // Overrides Object
 // Protected Instance Methods
 protected void set(String protocol, String host, int port, String file,

String ref);
}

Passed To:

Applet.getAudioClip(), Applet.getImage(), Applet.play(), AppletContext.getAudioClip(), AppletContext.getImage(),
AppletContext.showDocument(), HttpURLConnection(), Toolkit.getImage(), URL(default.htm), URL.sameFile(),
URLConnection(), URLStreamHandler.openConnection(), URLStreamHandler.parseURL(default.htm),
URLStreamHandler.setURL(default.htm), URLStreamHandler.toExternalForm()

Returned By:

Applet.getCodeBase(), Applet.getDocumentBase(), AppletStub.getCodeBase(), AppletStub.getDocumentBase(),
Class.getResource(), ClassLoader.getResource(), ClassLoader.getSystemResource(), URLConnection.getURL(default.htm)

Type Of:

URLConnection.url

java.net.UnknownServiceException
(JDK 1.0)

java.net.URLConnection
(JDK 1.0)

Chapter 28
The java.net Package

28.26 java.net.URLStreamHandlerFactory (JDK 1.0)

This interface defines a method that creates a URLStreamHandler object for a specified protocol.

Normal applications never need to use or implement this interface.

public abstract interface URLStreamHandlerFactory {
 // Public Instance Methods
 public abstract URLStreamHandler createURLStreamHandler(String protocol);
}

Passed To:

URL.setURLStreamHandlerFactory()

java.net.URLStreamHandler
(JDK 1.0)

The java.text Package

Chapter 13

13. Java Syntax
Contents:
Primitive Data Types
Character Escape Sequences
Operators
Modifiers
Reserved Words
Java Documentation Comment Syntax

13.1 Primitive Data Types

Java supports a complete set of primitive data types, listed in Table 13.1. In Java, the size of each type is
defined by the language, and is not implementation dependent, as it is in C.

Table 13.1: Java Primitive Data Types

 Min Value

Type Contains Default Size Max Value

boolean true or false false 1 bit N.A.

 N.A.

char Unicode character \u0000 16 bits \u0000

 \uFFFF

byte signed integer 0 8 bits -128

 127

short signed integer 0 16 bits -32768

 32767

int signed integer 0 32 bits -2147483648

 2147483647

long signed integer 0 64 bits -9223372036854775808

 9223372036854775807

float IEEE 754 0.0 32 bits +/-3.40282347E+38

 floating-point +/-1.40239846E-45

double IEEE 754 0.0 64 bits +/-1.79769313486231570E+308

 floating-point +/-4.94065645841246544E-324

Invoking a Named Method Character Escape Sequences

Chapter 10
The java.lang Package

String

Name

String

Synopsis

Class Name:

java.lang.String

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The String class represents sequences of characters. Once a String object is created, it is immutable. In other
words, the sequence of characters that a String represents cannot be changed after it is created. The
StringBuffer class, on the other hand, represents a sequence of characters that can be changed. StringBuffer
objects are used to perform computations on String objects.

The String class includes a number of utility methods, such as methods for fetching individual characters or ranges
of contiguous characters, for translating characters to upper- or lowercase, for searching strings, and for parsing
numeric values in strings.

String literals are compiled into String objects. Where a String literal appears in an expression, the compiled
code contains a String object. If s is declared as String, the following two expressions are identical:

s.equals("ABC")
"ABC".equals(s)

The string concatenation operator implicitly creates String objects.

Class Summary

public final class java.lang.String extends java.lang.Object {
 // Constructors
 public String();
 public String(byte[] bytes); // New in 1.1
 public String(byte[] bytes, String enc); // New in 1.1
 public String(byte[] bytes, int offset, int length); // New in 1.1
 public String(byte[] bytes, int offset,
 int length, String enc); // New in 1.1
 public String(byte[] lowbytes, int hibyte); // Deprecated in 1.1
 public String(byte[] lowbytes, int hibyte,
 int offset, int count); // Deprecated in 1.1
 public String(char[] value);
 public String(char[] value, int offset, int;
 public String(String value);
 public String(StringBuffer buffer);
 // Class Methods
 public static String copyValueOf(char data[]);
 public static String copyValueOf(char data[], int offset, int count);
 public static String valueOf(boolean b);
 public static String valueOf(char c);
 public static String valueOf(char[] data);
 public static String valueOf(char[] data, int offset, int count);
 public static String valueOf(double d);
 public static String valueOf(float f);
 public static String valueOf(int i);
 public static String valueOf(long l);
 public static String valueOf(Object obj);
 // Instance Methods
 public char charAt(int index);
 public int compareTo(String anotherString);
 public String concat(String str);
 public boolean endsWith(String suffix);
 public boolean equals(Object anObject);

 public boolean equalsIgnoreCase(String anotherString);
 public byte[] getBytes(); // New in 1.1
 public byte[] getBytes(String enc); // New in 1.1
 public void getBytes(int srcBegin, int srcEnd,
 byte[] dst, int dstBegin); // Deprecated in 1.1
 public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
 public int hashCode();
 public int indexOf(int ch);
 public int indexOf(int ch, int fromIndex);
 public int indexOf(String str);
 public int indexOf(String str, int fromIndex);
 public native String intern();
 public int lastIndexOf(int ch);
 public int lastIndexOf(int ch, int fromIndex);
 public int lastIndexOf(String str);
 public int lastIndexOf(String str, int fromIndex;
 public int length();
 public boolean regionMatches(boolean ignoreCase, int toffset,
 String other, int ooffset, int len);
 public boolean regionMatches(int toffset, String other,
 int ooffset, int len);
 public String replace(char oldChar, char newChar);
 public boolean startsWith(String prefix);
 public boolean startsWith(String prefix, int toffset);
 public String substring(int beginIndex);
 public String substring(int beginIndex, int endIndex);
 public char[] toCharArray();
 public String toLowerCase();
 public String toLowerCase(Locale locale); // New in 1.1
 public String toString();
 public String toUpperCase();
 public String toUpperCase(Locale locale); // New in 1.1
 public String trim();
}

Constructors

String

public String()

Description

Creates a new String object that represents the empty string (i.e., a string with zero characters).

public String(byte[] bytes)

Availability

New as of JDK 1.1

Parameters

bytes

An array of byte values.

Description

Creates a new String object that represents the sequence of characters stored in the given bytes array. The
bytes in the array are converted to characters using the system's default character encoding scheme.

public String(byte[] bytes, String enc)

Availability

New as of JDK 1.1

Parameters

bytes

An array of byte values.

enc

The name of an encoding scheme.

Throws

UnsupportedEncodingException

If enc is not a supported encoding scheme.

Description

Creates a new String object that represents the sequence of characters stored in the given bytes array. The
bytes in the array are converted to characters using the specified character encoding scheme.

public String(byte[] bytes, int offset, int length)

Availability

New as of JDK 1.1

Parameters

bytes

An array of byte values.

offset

An offset into the array.

length

The number of bytes to be included.

Throws

StringIndexOutOfBoundsException

If offset or length indexes an element that is outside the bounds of the bytes array.

Description

Creates a new String object that represents the sequence of characters stored in the specified portion of the
given bytes array. The bytes in the array are converted to characters using the system's default character
encoding scheme.

 public String(byte[] bytes, int offset, int length, String enc)

Availability

New as of JDK 1.1

Parameters

bytes

An array of byte values.

offset

An offset into the array.

length

The number of bytes to be included.

enc

The name of an encoding scheme.

Throws

StringIndexOutOfBoundsException

If offset or length indexes an element that is outside the bounds of the bytes array.

UnsupportedEncodingException

If enc is not a supported encoding scheme.

Description

Creates a new String object that represents the sequence of characters stored in the specified portion of the
given bytes array. The bytes in the array are converted to characters using the specified character encoding
scheme.

public String(byte[] lowbytes, int hibyte)

Availability

Deprecated as of JDK 1.1

Parameters

lowbytes

An array of byte values.

hibyte

The value to be put in the high-order byte of each 16-bit character.

Description

Creates a new String object that represents the sequence of characters stored in the given lowbytes array.
The type of the array elements is byte, which is an 8-bit data type, so each element must be converted to a
char, which is a 16-bit data type. The value of the hibyte argument is used to provide the value of the high-
order byte when the byte values in the array are converted to char values.

More specifically, for each element i in the array lowbytes, the character at position i in the created
String object is:

((hibyte & 0xff)<<8) | lowbytes[i]

This method is deprecated as of JDK 1.1 because it does not convert bytes into characters properly. You should
instead use one of the constructors that takes a specific character encoding argument or that uses the default
encoding.

 public String(byte[] lowbytes, int hibyte, int offset, int count)

Availability

Deprecated as of JDK 1.1

Parameters

lowbytes

An array of byte values.

hibyte

The value to be put in the high-order byte of each 16-bit character.

offset

An offset into the array.

count

The number of bytes from the array to be included in the string.

Throws

StringIndexOutOfBoundsException

If offset or count indexes an element that is outside the bounds of the lowbytes array.

Description

Creates a new String object that represents the sequence of characters stored in the specified portion of the
lowbytes array. That is, the portion of the array that starts at offset elements from the beginning of the
array and is count elements long.

The type of the array elements is byte, which is an 8-bit data type, so each element must be converted to a
char, which is a 16-bit data type. The value of the hibyte argument is used to provide the value of the high-
order byte when the byte values in the array are converted to char values.

More specifically, for each element i in the array lowbytes that is included in the String object, the
character at position i in the created String is:

 ((hibyte & 0xff)<<8) | lowbytes[I]

This method is deprecated as of JDK 1.1 because it does not convert bytes into characters properly. You should
instead use one of the constructors that takes a specific character encoding argument or that uses the default
encoding.

public String(char[] value)

Parameters

value

An array of char values.

Description

Creates a new String object that represents the sequence of characters stored in the given array.

public String(char[] value, int offset, int count)

Parameters

value

An array of char values.

offset

An offset into the array.

count

The number of characters from the array to be included in the string.

Throws

StringIndexOutOfBoundsException

If offset or count indexes an element that is outside the bounds of the value array.

Description

Creates a new String object that represents the sequence of characters stored in the specified portion of the

given array. That is, the portion of the given array that starts at offset elements from the beginning of the
array and is count elements long.

public String(String value)

Parameters

value

A String object.

Description

Creates a new String object that represents the same sequence of characters as the given String object.

public String(StringBuffer value)

Parameters

value

A StringBuffer object.

Description

Creates a new String object that represents the same sequence of characters as the given object.

Class Methods

copyValueOf

public static String copyValueOf(char data[])

Parameters

data

An array of char values.

Returns

A new String object that represents the sequence of characters stored in the given array.

Description

This method returns a new String object that represents the character sequence contained in the given array.
The String object produced by this method is guaranteed not to refer to the given array, but instead to use a
copy. Because the String object uses a copy of the array, subsequent changes to the array do not change the
contents of this String object.

This method is now obsolete. The same result can be obtained using the valueOf() method that takes an
array of char values.

 public static String copyValueOf(char data[], int offset, int count)

Parameters

data

An array of char values.

offset

An offset into the array.

count

The number of characters from the array to be included in the string.

Returns

A new String object that represents the sequence of characters stored in the specified portion of the given
array.

Throws

StringIndexOutOfBoundsException

If offset or count indexes an element that is outside the bounds of the data array.

Description

This method returns a new String object that represents the character sequence contained in the specified
portion of the given array. That is, the portion of the given array that starts at offset elements from the
beginning of the array and is count elements long. The String object produced by this method is guaranteed
not to refer to the given array, but instead to use a copy. Because the String object uses a copy of the array,
subsequent changes to the array do not change the contents of this String object.

This method is obsolete. The same result can be obtained by using the valueOf() method that takes an array
of char values, an offset, and a count.

valueOf

public static String valueOf(boolean b)

Parameters

b

A boolean value.

Returns

A new String object that contains 'true' if b is true or 'false' if b is false.

Description

This method returns a string representation of a boolean value. In other words, it returns 'true' if b is
true or 'false' if b is false.

public static String valueOf(char c)

Parameters

c

A char value.

Returns

A new String object that contains just the given character.

Description

This method returns a string representation of a char value. In other words, it returns a String object that
contains just the given character.

public static String valueOf(char[] data)

Parameters

data

An array of char values.

Returns

A new String object that contains the sequence of characters stored in the given array.

Description

This method returns a string representation of an array of char values. In other words, it returns a String
object that contains the sequence of characters stored in the given array.

 public static String valueOf(char[] data, int offset, int count)

Parameters

data

An array of char values.

offset

An offset into the array.

count

The number of characters from the array to be included in the string.

Returns

A new String object that contains the sequence of characters stored in the specified portion of the given array.

Throws

StringIndexOutOfBoundsException

If offset or count indexes an element that is outside the bounds of the data array.

Description

This method returns a string representation of the specified portion of an array of char values. In other words, it
returns a String object that contains the sequence of characters in the given array that starts offset
elements from the beginning of the array and is count elements long.

public static String valueOf(double d)

Parameters

d

A double value.

Returns

A new String object that contains a string representation of the given double value.

Description

This method returns a string representation of a double value. In other words, it returns the String object
returned by Double.toString(d).

public static String valueOf(float f)

Parameters

f

A float value.

Returns

A new String object that contains a string representation of the given float value.

Description

This method returns a string representation of a float value. In other words, it returns the String object
returned by Float.toString(f).

public static String valueOf(int i)

Parameters

i

An int value.

Returns

A new String object that contains a string representation of the given int value.

Description

This method returns a string representation of an int value. In other words, it returns the String object
returned by Integer.toString(i).

public static String valueOf(long l)

Parameters

l

A long value.

Returns

A new String object that contains a string representation of the given long value.

Description

This method returns a string representation of a long value. In other words, it returns the String object
returned by Long.toString(l).

public static String valueOf (Object obj)

Parameters

obj

A reference to an object.

Returns

A new String that contains a string representation of the given object.

Description

This method returns a string representation of the given object. If obj is null, the method returns'null'.
Otherwise, the method returns the String object returned by the toString() method of the object.

Instance Methods

charAt

public char charAt(int index)

Parameters

index

An index into the string.

Returns

The character at the specified position in this string.

Throws

StringIndexOutOfBoundsException

If index is less than zero or greater than or equal to the length of the string.

Description

This method returns the character at the specified position in the String object; the first character in the string
is at position 0.

compareTo

public int compareTo(String anotherString)

Parameters

anotherString

The String object to be compared.

Returns

A positive value if this string is greater than anotherString, 0 if the two strings are the same, or a negative
value if this string is less than anotherString.

Description

This method lexicographically compares this String object to anotherString.

Here is how the comparison works: the two String objects are compared character-by-character, starting at
index 0 and continuing until a position is found in which the two strings contain different characters or until all
of the characters in the shorter string have been compared. If the characters at k are different, the method
returns:

this.charAt(k)-anotherString.charAt(k)

Otherwise, the comparison is based on the lengths of the strings and the method returns:

this.length()-anotherString.length()

concat

public String concat(String str)

Parameters

str

The String object to be concatenated.

Returns

A new String object that contains the character sequences of this string and str concatenated together.

Description

This method returns a new String object that concatenates the characters from the argument string str onto
the characters from this String object. Although this is a good way to concatenate two strings, concatenating
more than two strings can be done more efficiently using a StringBuffer object.

endsWith

public boolean endsWith(String suffix)

Parameters

suffix

The String object suffix to be tested.

Returns

true if this string ends with the sequence of characters specified by suffix; otherwise false.

Description

This method determines whether or not this String object ends with the specified suffix.

equals

public boolean equals(Object anObject)

Parameters

anObject

The Object to be compared.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if anObject is an instance of String and it contains the same sequence of
characters as this String object.

Note the difference between this method and the == operator, which only returns true if both of its arguments
are references to the same object.

equalsIgnoreCase

public boolean equalsIgnoreCase(String anotherString)

Parameters

anotherString

The String object to be compared.

Returns

true if the strings are equal, ignoring case; otherwise false.

Description

This method determines whether or not this String object contains the same sequence of characters, ignoring
case, as anotherString. More specifically, corresponding characters in the two strings are considered equal
if any of the following conditions are true:

❍ The two characters compare as equal using the == operator.

❍ The Character.toUppercase() method returns the same result for both characters.

❍ The Character.toLowercase() method returns the same result for both characters.

getBytes

 public byte[] getBytes()

Availability

New as of JDK 1.1

Returns

A byte array that contains the characters of this String.

Description

This method converts the characters in this String object to an array of byte values. The characters in the
string are converted to bytes using the system's default character encoding scheme.

 public byte[] getBytes(String enc)

Availability

New as of JDK 1.1

Parameters

enc

The name of an encoding scheme.

Returns

A byte array that contains the characters of this String.

Throws

UnsupportedEncodingException

If enc is not a supported encoding scheme.

Description

This method converts the characters in this String object to an array of byte values. The characters in the
string are converted to bytes using the specified character encoding scheme.

 public void getBytes(int srcBegin, int srcEnd, byte[] dst, int dstBegin)

Availability

Deprecated as of JDK 1.1

Parameters

srcBegin

The index of the first character to be copied.

srcEnd

The index after the last character to be copied.

dst

The destination byte array.

dstBegin

An offset into the destination array.

Throws

StringIndexOutOfBoundsException

If srcBegin, srcEnd, or dstBegin is out of range.

Description

This method copies the low-order byte of each character in the specified range of this String object to the
given array of byte values. More specifically, the first character to be copied is at index srcBegin; the last
character to be copied is at index srcEnd-1. The low-order bytes of these characters are copied into dst,
starting at index dstBegin and ending at index:

dstBegin + (srcEnd-srcBegin) - 1

This method is deprecated as of JDK 1.1 because it does not convert characters into bytes properly. You should
instead use the getBytes() method that takes a specific character encoding argument or the one that uses the
default encoding.

getChars

 public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

Parameters

srcBegin

The index of the first character to be copied.

srcEnd

The index after the last character to be copied.

dst

The destination char array.

dstBegin

An offset into the destination array.

Throws

StringIndexOutOfBoundsException

If srcBegin, srcEnd, or dstBegin is out of range.

Description

This method copies each character in the specified range of this String object to the given array of char
values. More specifically, the first character to be copied is at index srcBegin; the last character to be copied
is at index srcEnd-1. These characters are copied into dst, starting at index dstBegin and ending at index:

dstBegin + (srcEnd-srcBegin) - 1

hashCode

public int hashCode()

Returns

A hashcode based on the sequence of characters in this string.

Overrides

Object.hashCode()

Description

This method returns a hashcode based on the sequence of characters this String object represents.

More specifically, one of two algorithms is used to compute a hash code for the string, depending on its length.
If n is the length of the string and S_i is the character at position i in the string, then if n = 15 the method returns:

If n > 15, the method returns:

indexOf

public int indexOf(int ch)

Parameters

ch

A char value.

Returns

The index of the first occurrence of the given character in this string or -1 if the character does not occur.

Description

This method returns the index of the first occurrence of the given character in this String object. If there is no
such occurrence, the method returns the value -1.

public int indexOf(int ch, int fromIndex)

Parameters

ch

A char value.

fromIndex

The index where the search is to begin.

Returns

The index of the first occurrence of the given character in this string after fromIndex or -1 if the character
does not occur.

Description

This method returns the index of the first occurrence of the given character in this String object after ignoring
the first fromIndex characters. If there is no such occurrence, the method returns the value -1.

public int indexOf(String str)

Parameters

str

A String object.

Returns

The index of the first occurrence of str in this string or -1 if the substring does not occur.

Description

This method returns the index of the first character of the first occurrence of the substring str in this String
object. If there is no such occurrence, the method returns the value -1.

public int indexOf(String str, int fromIndex)

Parameters

str

A String object.

fromIndex

The index where the search is to begin.

Returns

The index of the first occurrence of str in this string after fromIndex or -1 if the substring does not occur.

Description

This method returns the index of the first character of the first occurrence of the substring str in this String
object after ignoring the first fromIndex characters. If there is no such occurrence, the method returns the
value -1.

intern

public native String intern()

Returns

A String object that is guaranteed to be the same object for every String that contains the same character
sequence.

Description

This method returns a canonical representation for this String object. The returned String object is
guaranteed to be the same String object for every String object that contains the same character sequence.
In other words, if:

s1.equals(s2)

then:

s1.intern() == s2.intern()

The intern() method is used by the Java environment to ensure that String literals and constant-value
String expressions that contain the same sequence of characters are all represented by a single String
object.

lastIndexOf

public int lastIndexOf(int ch)

Parameters

ch

A char value.

Returns

The index of the last occurrence of the given character in this string or -1 if the character does not occur.

Description

This method returns the index of the last occurrence of the given character in this String object. If there is no
such occurrence, the method returns the value -1.

public int lastIndexOf(int ch, int fromIndex)

Parameters

ch

A char value.

fromIndex

The index where the search is to begin.

Returns

The index of the last occurrence of the given character in this string after fromIndex or -1 if the character
does not occur.

Description

This method returns the index of the last occurrence of the given character in this String object after ignoring
the first fromIndex characters. If there is no such occurrence, the method returns the value -1.

public int lastIndexOf(String str)

Parameters

str

A String object.

Returns

The index of the last occurrence of str in this string or -1 if the substring does not occur.

Description

This method returns the index of the first character of the last occurrence of the substring str in this String
object. If there is no such occurrence, the method returns the value -1.

public int lastIndexOf(String str, int fromIndex)

Parameters

str

A String object.

fromIndex

The index where the search is to begin.

Returns

The index of the last occurrence of str in this string after fromIndex or -1 if the substring does not occur.

Description

This method returns the index of the first character of the last occurrence of the substring str in this String
object after ignoring the first fromIndex characters. If there is no such occurrence, the method returns the
value -1.

length

public int length()

Returns

The length of the character sequence represented by this string.

Description

This method returns the number of characters in the character sequence represented by this String object.

regionMatches

 public boolean regionMatches(int toffset, String other, int ooffset, int len)

Parameters

toffset

The index of the first character in this string.

other

The String object to be used in the comparison.

ooffset

The index of the first character in other.

len

The length of the sub-sequences to be compared.

Returns

true if the sub-sequences are identical; otherwise false.

Description

This method determines whether or not the specified sub-sequences in this String object and other are
identical. The method returns false if toffset is negative, if ooffset is negative, if toffset+len is
greater than the length of this string, or if ooffset+len is greater than the length of other. Otherwise, the
method returns true if for all nonnegative integers k less than len it is true that:

this.charAt(toffset+k) == other.charAt(ooffset+k)

 public boolean regionMatches(boolean ignoreCase, int toffset, String other, int
ooffset, int len)

Parameters

ignoreCase

A boolean value that indicates whether case should be ignored.

toffset

The index of the first character in this string.

other

The String object to be used in the comparison.

ooffset

The index of the first character in other.

len

The length of the sub-sequences to be compared.

Returns

true if the sub-sequences are identical; otherwise false. The ignoreCase argument controls whether or
not case is ignored in the comparison.

Description

This method determines whether or not the specified sub-sequences in this String object and other are
identical. The method returns false if toffset is negative, if ooffset is negative, if toffset+len is
greater than the length of this string, or if ooffset+len is greater than the length of other. Otherwise, if
ignoreCase is false, the method returns true if for all nonnegative integers k less than len it is true that:

this.charAt(toffset+k) == other.charAt(ooffset+k)

If ignoreCase is true, the method returns true if for all nonnegative integers k less than len it is true
that:

Character.toLowerCase(this.charAt(toffset+k))
== Character.toLowerCase(other.charAt(ooffset+k))

or:

Character.toUpperCase(this.charAt(toffset+k))
== Character.toUpperCase(other.charAt(ooffset+k))

replace

public String replace(char oldChar, char newChar)

Parameters

oldChar

The character to be replaced.

newChar

The replacement character.

Returns

A new String object that results from replacing every occurrence of oldChar in the string with newChar.

Description

This method returns a new String object that results from replacing every occurrence of oldChar in this
String object with newChar. If there are no occurrences of oldChar, the method simply returns this
String object.

startsWith

public boolean startsWith(String prefix)

Parameters

prefix

The String object prefix to be tested.

Returns

true if this string begins with the sequence of characters specified by prefix; otherwise false.

Description

This method determines whether or not this String object begins with the specified prefix.

public boolean startsWith(String prefix, int toffset)

Parameters

prefix

The String object prefix to be tested.

toffset

The index where the search is to begin.

Returns

true if this string contains the sequence of characters specified by prefix starting at the index toffset;
otherwise false.

Description

This method determines whether or not this String object contains the specified prefix at the index
specified by toffset.

substring

public String substring(int beginIndex)

Parameters

beginIndex

The index of the first character in the substring.

Returns

A new String object that contains the sub-sequence of this string that starts at beginIndex and extends to
the end of the string.

Throws

StringIndexOutOfBoundsException

If beginIndex is less than zero or greater than or equal to the length of the string.

Description

This method returns a new String object that represents a sub-sequence of this String object. The sub-
sequence consists of the characters starting at beginIndex and extending through the end of this String
object.

public String substring(int beginIndex, int endIndex)

Parameters

beginIndex

The index of the first character in the substring.

endIndex

The index after the last character in the substring.

Returns

A new String object that contains the sub-sequence of this string that starts at beginIndex and extends to
the character at endindex-1.

Throws

StringIndexOutOfBoundsException

If beginIndex or endIndex is less than zero or greater than or equal to the length of the string.

Description

This method returns a new String object that represents a sub-sequence of this String object. The sub-
sequence consists of the characters starting at beginIndex and extending through endIndex-1 of this
String object.

toCharArray

public char[] toCharArray()

Returns

A new char array that contains the same sequence of characters as this string.

Description

This method returns a new char array that contains the same sequence of characters as this Stringobject.
The length of the array is the same as the length of this String object.

toLowerCase

public String toLowerCase()

Returns

A new String object that contains the characters of this string converted to lowercase.

Description

This method returns a new String that represents a character sequence of the same length as this String
object, but with each character replaced by its lowercase equivalent if it has one. If no character in the string has
a lowercase equivalent, the method returns this String object.

public String toLowerCase(Locale locale)

Availability

New as of JDK 1.1

Parameters

locale

The Locale to use.

Returns

A new String object that contains the characters of this string converted to lowercase using the rules of the
specified locale.

Description

This method returns a new String that represents a character sequence of the same length as this String
object, but with each character replaced by its lowercase equivalent if it has one according to the rules of the
specified locale. If no character in the string has a lowercase equivalent, the method returns this String object.

toString

public String toString()

Returns

This String object.

Overrides

Object.toString()

Description

This method returns this String object.

toUpperCase

public String toUpperCase()

Returns

A new String object that contains the characters of this string converted to uppercase.

Description

This method returns a new String that represents a character sequence of the same length as this String
object, but with each character replaced by its uppercase equivalent if it has one. If no character in the string has
an uppercase equivalent, the method returns this String object.

public String toUpperCase(Locale locale)

Availability

New as of JDK 1.1

Parameters

locale

The Locale to use.

Returns

A new String object that contains the characters of this string converted to uppercase using the rules of the
specified locale.

Description

This method returns a new String that represents a character sequence of the same length as this String
object, but with each character replaced by its uppercase equivalent if it has one according to the rules of the
specified locale. If no character in the string has an uppercase equivalent, the method returns this String
object.

trim

public String trim()

Returns

A new String object that represents the same character sequence as this string, but with leading and trailing
whitespace and control characters removed.

Description

If the first and last character in this String object are greater than '\u0020' (the space character), the
method returns this String object. Otherwise, the method returns a new String object that contains the same
character sequence as this String object, but with leading and trailing characters that are less than
'\u0020'' removed.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object finalize() Object

getClass() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Character; Class; Double; Exceptions; Float; Integer; Long; Object; StringBuffer; String Concatenation Operator +;
String literals

Short StringBuffer

Chapter 10
The java.lang Package

StringBuffer

Name

StringBuffer

Synopsis

Class Name:

java.lang.StringBuffer

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The StringBuffer class represents a variable-length sequence of characters. StringBuffer objects are used
in computations that involve creating new String objects. The StringBuffer class provides a number of

utility methods for working with StringBuffer objects, including append() and insert() methods that
add characters to a StringBuffer and methods that fetch the contents of StringBuffer objects.

When a StringBuffer object is created, the constructor determines the initial contents and capacity of the
StringBuffer. The capacity of a StringBuffer is the number of characters that its internal data structure
can hold. This is distinct from the length of the contents of a StringBuffer, which is the number of characters
that are actually stored in the StringBuffer object. The capacity of a StringBuffer can vary. When a
StringBuffer object is asked to hold more characters than its current capacity allows, the StringBuffer
enlarges its internal data structure. However, it is more costly in terms of execution time and memory when a
StringBuffer has to repeatedly increase its capacity than when a StringBuffer object is created with
sufficient capacity.

Because the intended use of StringBuffer objects involves modifying their contents, all methods of the
StringBuffer class that modify StringBuffer objects are synchronized. This means that is it safe for
multiple threads to try to modify a StringBuffer object at the same time.

StringBuffer objects are used implicitly by the string concatenation operator. Consider the following code:

String s, s1, s2;
s = s1 + s2;

To compute the string concatenation, the Java compiler generates code like:

s = new StringBuffer().append(s1).append(s2).toString();

Class Summary

public class java.lang.StringBuffer extends java.lang.Object {
 // Constructors
 public StringBuffer();
 public StringBuffer(int length);
 public StringBuffer(String str);
 // Instance Methods
 public StringBuffer append(boolean b);
 public synchronized StringBuffer append(char c);
 public synchronized StringBuffer append(char[] str);
 public synchronized StringBuffer append(char[] str, int offset, int len);
 public StringBuffer append(double d);
 public StringBuffer append(float f);
 public StringBuffer append(int i);
 public StringBuffer append(long l);
 public synchronized StringBuffer append(Object obj);
 public synchronized StringBuffer append(String str);
 public int capacity();
 public synchronized char charAt(int index);
 public synchronized void ensureCapacity(int minimumCapacity);

 public synchronized void getChars(int srcBegin, int srcEnd,
 char[] dst, int dstBegin);
 public StringBuffer insert(int offset, boolean b);
 public synchronized StringBuffer insert(int offset, char c);
 public synchronized StringBuffer insert(int offset, char[] str);
 public StringBuffer insert(int offset, double d);
 public StringBuffer insert(int offset, float f);
 public StringBuffer insert(int offset, int i);
 public StringBuffer insert(int offset, long l);
 public synchronized StringBuffer insert(int offset, Object obj);
 public synchronized StringBuffer insert(int offset, String str);
 public int length();
 public synchronized StringBuffer reverse();
 public synchronized void setCharAt(int index, char ch);
 public synchronized void setLength(int newLength);
 public String toString();
}

Constructors

StringBuffer

public StringBuffer()

Description

Creates a StringBuffer object that does not contain any characters and has a capacity of 16 characters.

public StringBuffer(int capacity)

Parameters

capacity

The initial capacity of this StringBufffer object.

Throws

NegativeArraySizeException

If capacity is negative.

Description

Creates a StringBuffer object that does not contain any characters and has the specified capacity.

public StringBuffer(String str)

Parameters

str

A String object.

Description

Creates a StringBuffer object that contains the same sequence of characters as the given String
object and has a capacity 16 greater than the length of the String.

Instance Methods

append

public StringBuffer append(boolean b)

Parameters

b

A boolean value.

Returns

This StringBuffer object.

Description

This method appends either "true" or "false" to the end of the sequence of characters stored in ths
StringBuffer object, depending on the value of b.

public synchronized StringBuffer append(char c)

Parameters

c

A char value.

Returns

This StringBuffer object.

Description

This method appends the given character to the end of the sequence of characters stored in this
StringBuffer object.

public synchronized StringBuffer append(char str[])

Parameters

str

An array of char values.

Returns

This StringBuffer object.

Description

This method appends the characters in the given array to the end of the sequence of characters stored in this
StringBuffer object.

 public synchronized StringBuffer append(char str[], int offset, int len)

Parameters

str

An array of char values.

offset

An offset into the array.

len

The number of characters from the array to be appended.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset or len are out of range.

Description

This method appends the specified portion of the given array to the end of the character sequence stored in
this StringBuffer object. The portion of the array that is appended starts offset elements from the
beginning of the array and is len elements long.

public StringBuffer append(double d)

Parameters

d

A double value.

Returns

This StringBuffer object.

Description

This method converts the given double value to a string using Double.toString(d) and appends the
resulting string to the end of the sequence of characters stored in this StringBuffer object.

public StringBuffer append(float f)

Parameters

f

A float value.

Returns

This StringBuffer object.

Description

This method converts the given float value to a string using Float.toString(f) and appends the
resulting string to the end of the sequence of characters stored in this StringBuffer object.

public StringBuffer append(int i)

Parameters

i

An int value.

Returns

This StringBuffer object.

Description

This method converts the given int value to a string using Integer.toString(i) and appends the
resulting string to the end of the sequence of characters stored in this StringBuffer object.

public StringBuffer append(long l)

Parameters

l

A long value.

Returns

This StringBuffer object.

Description

This method converts the given long value to a string using Long.toString(l) and appends the
resulting string to the end of the sequence of characters stored in this StringBuffer object.

public synchronized StringBuffer append(Object obj)

Parameters

obj

A reference to an object.

Returns

This StringBuffer object.

Description

This method gets the string representation of the given object by calling String.valueOf(obj) and
appends the resulting string to the end of the character sequence stored in this StringBuffer object.

public synchronized StringBuffer append(String str)

Parameters

str

A String object.

Returns

This StringBuffer object.

Description

This method appends the sequence of characters represented by the given String to the characters in this
StringBuffer object. If str is null, the string "null" is appended.

capacity

public int capacity()

Returns

The capacity of this StringBuffer object.

Description

This method returns the current capacity of this object. The capacity of a StringBuffer object is the
number of characters that its internal data structure can hold. A StringBuffer object automatically
increases its capacity when it is asked to hold more characters than its current capacity allows.

charAt

public synchronized char charAt(int index)

Parameters

index

An index into the StringBuffer.

Returns

The character stored at the specified position in this StringBuffer object.

Throws

StringIndexOutOfBoundsException

If index is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method returns the character at the specified position in the StringBuffer object. The first
character in the StringBuffer is at index 0.

ensureCapacity

public synchronized void ensureCapacity(int minimumCapacity)

Parameters

minimumCapacity

The minimum desired capacity.

Description

This method ensures that the capacity of this StringBuffer object is at least the specified number of
characters. If necessary, the capacity of this object is increased to the greater of minimumCapacity or
double its current capacity plus two.

It is more efficient to ensure that the capacity of a StringBuffer object is sufficient to hold all of the
additions that will be made to its contents, rather than let the StringBuffer increase its capacity in
multiple increments.

getChars

 public synchronized void getChars(int srcBegin, int srcEnd, char dst[], int

dstBegin)

Parameters

srcBegin

The index of the first character to be copied.

srcEnd

The index after the last character to be copied.

dst

The destination char array.

dstBegin

An offset into the destination array.

Throws

StringIndexOutOfBoundsException

If srcBegin, srcEnd, or dstBegin is out of range.

Description

This method copies each character in the specified range of this StringBuffer object to the given array
of char values. More specifically, the first character to be copied is at index srcBegin; the last character
to be copied is at index srcEnd-1.

These characters are copied into dst, starting at index dstBegin and ending at index:

dstBegin + (srcEnd-srcBegin) - 1

insert

public StringBuffer insert(int offset, boolean b)

Parameters

offset

An offset into the StringBuffer.

b

A boolean value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is out of range.

Description

This method inserts either "true" or "false" into the sequence of characters stored in this
StringBuffer object, depending on the value of b. The string is inserted at a position offset
characters from the beginning of the sequence. If offset is 0, the string is inserted before the first
character in the StringBuffer.

public synchronized StringBuffer insert(int offset, char c)

Parameters

offset

An offset into the StringBuffer.

c

A char value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method inserts the given character into the sequence of characters stored in this StringBuffer
object. The character is inserted at a position offset characters from the beginning of the sequence. If
offset is 0, the character is inserted before the first character in the StringBuffer.

public synchronized StringBuffer insert(int offset, char str[])

Parameters

offset

An offset into the StringBuffer.

str

An array of char values.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method inserts the characters in the given array into the sequence of characters stored in this
StringBuffer object. The characters are inserted at a position offset characters from the beginning
of the sequence. If offset is 0, the characters are inserted before the first character in the
StringBuffer.

public StringBuffer insert(int offset, double d)

Parameters

offset

An offset into the StringBuffer.

d

A double value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method converts the given double value to a string using Double.toString(d) and inserts the
resulting string into the sequence of characters stored in this StringBuffer object. The string is inserted
at a position offset characters from the beginning of the sequence. If offset is 0, the string is inserted
before the first character in the StringBuffer.

public StringBuffer insert(int offset, float f)

Parameters

offset

An offset into the StringBuffer.

f

A float value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method converts the given float value to a string using Float.toString(f) and inserts the
resulting string into the sequence of characters stored in this StringBuffer object. The string is inserted

at a position offset characters from the beginning of the sequence. If offset is 0, the string is inserted
before the first character in the StringBuffer.

public StringBuffer insert(int offset, int i)

Parameters

offset

An offset into the StringBuffer.

i

An int value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method converts the given int value to a string using Integer.toString(i) and inserts the
resulting string into the sequence of characters stored in this StringBuffer object. The string is inserted
at a position offset characters from the beginning of the sequence. If offset is 0, the string is inserted
before the first character in the StringBuffer.

public StringBuffer insert(int offset, long l)

Parameters

offset

An offset into the StringBuffer.

l

A long value.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method converts the given long value to a string using Long.toString(l) and inserts the
resulting string into the sequence of characters stored in this StringBuffer object. The string is inserted
at a position offset characters from the beginning of the sequence. If offset is 0, the string is inserted
before the first character in the StringBuffer.

public synchronized StringBuffer insert(int offset, Object obj)

Parameters

offset

An offset into the StringBuffer.

obj

A reference to an object.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method gets the string representation of the given object by calling String.valueOf(obj) and
inserts the resulting string into the sequence of characters stored in this StringBuffer object. The string
is inserted at a position offset characters from the beginning of the sequence. If offset is 0, the string
is inserted before the first character in the StringBuffer.

public synchronized StringBuffer insert(int offset, String str)

Parameters

offset

An offset into the StringBuffer.

str

A String object.

Returns

This StringBuffer object.

Throws

StringIndexOutOfBoundsException

If offset is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method inserts the sequence of characters represented by the given String into the sequence of
characters stored in this StringBuffer object. If str is null, the string "null" is inserted. The
string is inserted at a position offset characters from the beginning of the sequence. If offset is 0, the
string is inserted before the first character in the StringBuffer.

length

public int length()

Returns

The number of characters stored in this StringBuffer object.

Description

This method returns the number of characters stored in this StringBuffer object. The length is distinct
from the capacity of a StringBuffer, which is the number of characters that its internal data structure
can hold.

reverse

public synchronized StringBuffer reverse()

Returns

This StringBuffer object.

Description

This method reverses the sequence of characters stored in this StringBuffer object.

setCharAt

public synchronized void setCharAt(int index, char ch)

Parameters

index

The index of the character to be set.

ch

A char value.

Throws

StringIndexOutOfBoundsException

If index is less than zero or greater than or equal to the length of the StringBuffer object.

Description

This method modifies the character located index characters from the beginning of the sequence of
characters stored in this StringBuffer object. The current character at this position is replaced by the
character ch.

setLength

public synchronized void setLength(int newLength)

Parameters

newLength

The new length for this StringBuffer.

Throws

StringIndexOutOfBoundsException

If index is less than zero.

Description

This method sets the length of the sequence of characters stored in this StringBuffer object. If the
length is set to be less than the current length, characters are lost from the end of the character sequence. If
the length is set to be more than the current length, NUL characters (\u0000) are added to the end of the
character sequence.

toString

public String toString()

Returns

A new String object that represents the same sequence of characters as the sequence of characters stored
in this StringBuffer object.

Overrides

Object.toString()

Description

This method returns a new String object that represents the same sequence of characters as the sequence
of characters stored in this StringBuffer object. Note that any subsequent changes to the contents of
this StringBuffer object do not affect the contents of the String object created by this method.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

Character; Double; Exceptions; Float; Integer; Long; Object; String; String Concatenation Operator +

String System

Chapter 10
The java.lang Package

Number

Name

Number

Synopsis

Class Name:

java.lang.Number

Superclass:

java.lang.Object

Immediate Subclasses:

java.lang.Byte, java.lang.Double,

java.lang.Float, java.lang.Integer,

java.lang.Long, java.lang.Short,

java.math.BigDecimal,

java.math.BigInteger

Interfaces Implemented:

java.io.Serializable

Availability:

JDK 1.0 or later

Description

The Number class is an abstract class that serves as the superclass for all of the classes that provide
object wrappers for primitive numeric values: byte, short, int, long, float, and double.
Wrapping a primitive value is useful when you need to treat such a value as an object. For example, there
are a number of utility methods that take a reference to an Object as one of their arguments. You cannot
specify a primitive value for one of these arguments, but you can provide a reference to an object that
encapsulates the primitive value. Furthermore, as of JDK 1.1, these wrapper classes are necessary to
support the Reflection API and class literals.

The Number class defines six methods that must be implemented by its subclasses: byteValue(),
shortValue(), intValue(), longValue(), floatValue(), and doubleValue(). This
means that a Number object can be fetched as an byte, short, int, long, float, or double value,
without regard for its actual class.

Class Summary

public abstract class java.lang.Number extends java.lang.Number
 implements java.io.Serializable {
 // Instance Methods
 public abstract byte byteValue(); // New in 1.1
 public abstract double doubleValue();
 public abstract float floatValue();
 public abstract int intValue();
 public abstract long longValue();
 public abstract short shortValue(); // New in 1.1
}

Instance Methods

byteValue

public abstract byte byteValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a byte.

Description

This method returns the value of this object as a byte. If the data type of the value is not byte,
rounding may occur.

doubleValue

public abstract double doubleValue()

Returns

The value of this object as a double.

Description

This method returns the value of this object as a double. If the data type of the value is not
double, rounding may occur.

floatValue

public abstract float floatValue()

Returns

The value of this object as a float.

Description

This method returns the value of this object as a float. If the data type of the value is not float,
rounding may occur.

intValue

public abstract int intValue()

Returns

The value of this object as an int.

Description

This method returns the value of this object as an int. If the type of value is not an int, rounding
may occur.

longValue

public abstract long longValue()

Returns

The value of this object as a long.

Description

This method returns the value of this object as a long. If the type of value is not a long, rounding
may occur.

shortValue

public abstract short shortValue()

Availability

New as of JDK 1.1

Returns

The value of this object as a short.

Description

This method returns the value of this object as a short. If the type of value is not a short,
rounding may occur.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Byte; Double; Float; Integer; Long; Object; Short

Math Object

Chapter 10
The java.lang Package

Math

Name

Math

Synopsis

Class Name:

java.lang.Math

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Math class contains constants for the mathematical values pi and e. The class also defines methods
that compute various mathematical functions, such as trigonometric and exponential functions. All of
these constants and methods are static. In other words, it is not necessary to create an instance of the
Math class in order to use its constants and methods. In fact, the Math class does not define any
public constructors, so it cannot be instantiated.

To ensure that the methods in this class return consistent results under different implementations of Java,
all of the methods use the algorithms from the well-known Freely-Distributable Math Library package,
fdlibm. This package is part of the network library netlib. The library can be obtained through the URL
http://netlib.att.com. The algorithms used in this class are from the version of fdlibm dated January 4,
1995. fdlibm provides more than one definition for some functions. In those cases, the "IEEE 754 core
function" version is used.

Class Summary

public final class java.lang.Math extends java.lang.Object {
 // Constants
 public static final double E;
 public static final double PI;
 // Class Methods
 public static int abs(int a);
 public static long abs(long a);
 public static float abs(float a);
 public static double abs(double a);
 public static native double acos(double a);
 public static native double asin(double a);
 public static native double atan(double a);
 public static native double atan2(double a, double b);
 public static native double ceil(double a);
 public static native double cos(double a);
 public static native double exp(double a);
 public static native double floor(double a);
 public static native double IEEEremainder(double f1, double f2);
 public static native double log(double a);
 public static int max(int a, int b);
 public static long max(long a, long b);
 public static float max(float a, float b);
 public static double max(double a, double b);
 public static int min(int a, int b);

 public static long min(long a, long b);
 public static float min(float a, float b);
 public static double min(double a, double b);
 public static native double pow(double a, double b);
 public static synchronized double random();
 public static native double rint(double a);
 public static int round(float a);
 public static long round(double a);
 public static native double sin(double a);
 public static native double sqrt(double a);
 public static native double tan(double a);
}

Constants

E

public static final double E = 2.7182818284590452354

Description

The value of this constant is e, the base for natural logarithms.

PI

public static final double PI = 3.14159265358979323846

Description

The value for this constant is pi.

Class Methods

abs

public static double abs(double a)

Parameters

a

A double value.

Returns

The absolute value of its argument.

Description

This method returns the absolute value of its argument.

If the argument to this method is negative or positive zero, the method should return positive zero.
If the argument is positive or negative infinity, the method returns positive infinity. If the
argument is NaN, the method returns NaN.

public static float abs(float a)

Parameters

a

A float value.

Returns

The absolute value of its argument.

Description

This method returns the absolute value of its argument.

If the argument to this method is negative or positive zero, the method should return positive zero.
If the argument is positive or negative infinity, the method returns positive infinity. If the
argument is NaN, the method returns NaN.

public static int abs(int a)

Parameters

a

An int value.

Returns

The absolute value of its argument.

Description

This method returns the absolute value of its argument.

If the argument is Integer.MIN_VALUE, the method actually returns Integer.MIN_VALUE
because the true absolute value of Integer.MIN_VALUE is one greater than the largest positive
value that can be represented by an int.

public static long abs(long a)

Parameters

a

A long value.

Returns

The absolute value of its argument.

Description

This method returns the absolute value of its argument.

If the argument is Long.MIN_VALUE, the method actually returns Long.MIN_VALUE because
the true absolute value of Long.MIN_VALUE is one greater than the largest positive value
represented by a long.

acos

public static native double acos(double a)

Parameters

a

A double value greater than or equal to -1.0 and less than or equal to 1.0.

Returns

The arc cosine measured in radians; the result is greater than or equal to 0.0 and less than or
equal to pi.

Description

This method returns the arc cosine of the given value.

If the value is NaN or its absolute value is greater than 1.0, the method returns NaN.

asin

public static native double asin(double a)

Parameters

a

A double value greater than or equal to -1.0 and less than or equal to 1.0.

Returns

The arc sine measured in radians; the result is greater than or equal to -pi/2 and less than or equal
to pi/2.

Description

This method returns the arc sine of the given value.

If the value is NaN or its absolute value is greater than 1.0, the method returns NaN. If the value
is positive zero, the method returns positive zero. If the value is negative zero, the method returns
negative zero.

atan

public static native double atan(double a)

Parameters

a

A double value greater than or equal to -1.0 and less than or equal to 1.0.

Returns

The arc tangent measured in radians; the result is greater than or equal to -pi/2 and less than or
equal to pi/2.

Description

This method returns the principle value of the arc tangent of the given value.

If the value is NaN, the method returns NaN. If the value is positive zero, the method returns
positive zero. If the value is negative zero, the method returns negative zero.

atan2

public static native double atan2(double a, double b)

Parameters

a

A double value.

b

A double value.

Returns

The theta component of the polar coordinate (r,theta) that corresponds to the cartesian coordinate
(a,b); the result is measured in radians and is greater than or equal to -pi and less than or equal to
pi.

Description

This method returns the theta component of the polar coordinate (r,theta) that corresponds to the
cartesian coordinate (a,b). It computes theta as the principle value of the arc tangent of b/a, using
the signs of both arguments to determine the quadrant (and sign) of the return value.

If either argument is NaN, the method returns NaN.

If the first argument is positive zero and the second argument is positive, then the method returns
positive zero. If the first argument is positive zero and the second argument is negative, then the
method returns the double value closest to pi.

If the first argument is negative zero and the second argument is positive, the method returns
negative zero. If the first argument is negative zero and the second argument is negative, the
method returns the double value closest to -pi.

If the first argument is positive and finite and the second argument is positive infinity, the method
returns positive zero. If the first argument is positive and finite and the second argument is
negative infinity, the method returns the double value closest to pi.

If the first argument is negative and finite and the second argument is positive infinity, the method
returns negative zero. If the first argument is negative and finite and the second argument is
negative infinity, the method returns the double value closest to -pi.

If the first argument is positive and the second argument is positive zero or negative zero, the
method returns the double value closest to pi/2. If the first argument is negative and the second
argument is positive or negative zero, the method returns the double value closest to -pi/2.

If the first argument is positive infinity and the second argument is finite, the method returns the
double value closest to pi/2. If the first argument is negative infinity and the second argument is
finite, the method returns the double value closest to -pi/2.

If both arguments are positive infinity, the method returns the double value closest to pi/4. If the
first argument is positive infinity and the second argument is negative infinity, the method returns
the double value closest to 3pi/4. If the first argument is negative infinity and the second
argument is positive infinity, the method returns the double value closest to -pi/4. If both
arguments are negative infinity, the method returns the double value closest to -3pi/4.

ceil

public static native double ceil(double a)

Parameters

a

A double value.

Returns

The smallest integer greater than or equal to the given value.

Description

This method performs the ceiling operation. It returns the smallest integer that is greater than or
equal to its argument.

If the argument is NaN, an infinity value, or a zero value, the method returns that same value. If
the argument is less than zero but greater than -1.0, the method returns negative zero.

cos

public static native double cos(double a)

Parameters

a

A double value that's an angle measured in radians.

Returns

The cosine of the given angle.

Description

This method returns the cosine of the given angle measured in radians.

If the angle is NaN or an infinity value, the method returns NaN.

exp

public static native double exp(double a)

Parameters

a

A double value.

Returns

e^a

Description

This method returns the exponential function of a. In other words, e is raised to the value
specified by the parameter a, where e is the base of the natural logarithms.

If the value is NaN, the method returns NaN. If the value is positive infinity, the method returns
positive infinity. If the value is negative infinity, the method returns positive zero.

floor

public static native double floor(double a)

Parameters

a

A double value.

Returns

The greatest integer less than or equal to the given value.

Description

This method performs the floor operation. It returns the largest integer that is less than or equal to
its argument.

If the argument is NaN, an infinity value, or a zero value, the method returns that same value.

IEEEremainder

public static native double IEEEremainder(double a, double b)

Parameters

a

A double value.

b

A double value.

Returns

The remainder of a divided by b as defined by the IEEE 754 standard.

Description

This method returns the remainder of a divided by b as defined by the IEEE 754 standard. This
operation involves first determining the mathematical quotient of a/b rounded to the nearest
integer. If the quotient is equally close to two integers, it is rounded to the even integer. The
method then returns a-(b x Q), where Q is the rounded quotient.

If either argument is NaN, the method returns NaN. If the first argument is positive or negative
infinity and the second argument is positive or negative zero, the method also returns NaN. If the
first argument is a finite value and the second argument is positive or negative infinity, the
method returns its first argument.

log

public static native double log(double a)

Parameters

a

A double value that is greater than 0.0.

Returns

The natural logarithm of a.

Description

This method returns the natural logarithm (base e) of its argument.

In particular, if the argument is positive infinity, the method returns positive infinity. If the
argument is positive or negative zero, the method returns negative infinity. If the argument is less
than zero, the method returns NaN. If the argument is NaN, the method returns NaN.

max

public static double max(double a, double b)

Parameters

a

A double value.

b

A double value.

Returns

The greater of a and b.

Description

This method returns the greater of its two arguments. In other words, it returns the one that is
closer to positive infinity.

If one argument is positive zero and the other is negative zero, the method returns positive zero. If
either argument is NaN, the method returns NaN.

public static float max(float a, float b)

Parameters

a

A float value.

b

A float value.

Returns

The greater of a and b.

Description

This method returns the greater of its two arguments. In other words, it returns the one that is
closer to positive infinity.

If one argument is positive zero and the other is negative zero, the method returns positive zero. If
either argument is NaN, the method returns NaN.

public static int max(int a, int b)

Parameters

a

An int value.

b

An int value.

Returns

The greater of a and b.

Description

This method returns the greater of its two arguments. In other words, it returns the one that is

closer to Integer.MAX_VALUE.

public static long max(long a, long b)

Parameters

a

A long value.

b

A long value.

Returns

The greater of a and b.

Description

This method returns the greater of its two arguments. In other words, it returns the one that is
closer to Long.MAX_VALUE.

min

public static double min(double a, double b)

Parameters

a

A double value.

b

A double value.

Returns

The lesser of a and b.

Description

This method returns the lesser of its two arguments. In other words, it returns the one that is closer
to negative infinity.

If one argument is positive zero and the other is negative zero, the method returns negative zero.
If either argument is NaN, the method returns NaN.

public static float min(float a, float b)

Parameters

a

A float value.

b

A float value.

Returns

The lesser of a and b.

Description

This method returns the lesser of its two arguments. In other words, it returns the one that is closer
to negative infinity.

If one argument is positive zero and the other is negative zero, the method returns negative zero.
If either argument is NaN, the method returns NaN.

public static int min(int a, int b)

Parameters

a

An int value.

b

An int value.

Returns

The lesser of a and b.

Description

This method returns the lesser of its two arguments. In other words, it returns the one that is closer
to Integer.MIN_VALUE.

public static long min(long a, long b)

Parameters

a

A long value.

b

A long value.

Returns

The lesser of a and b.

Description

This method returns the lesser of its two arguments. In other words, it returns the one that is closer
to Long.MIN_VALUE.

pow

public static native double pow(double a, double b)

Parameters

a

A double value.

b

A double value.

Returns

a^b

Description

This method computes the value of raising a to the power of b.

If the second argument is positive or negative zero, the method returns 1.0. If the second
argument is 1.0, the method returns its first argument. If the second argument is NaN, the
method returns NaN. If the first argument is NaN and the second argument is nonzero, the method
returns NaN.

If the first argument is positive zero and the second argument is greater than zero, the method
returns positive zero. If the first argument is positive zero and the second argument is less than
zero, the method returns positive infinity.

If the first argument is positive infinity and the second argument is less than zero, the method
returns positive zero. If the first argument is positive infinity and the second argument is greater
than zero, the method returns positive infinity.

If the absolute value of the first argument is greater than 1 and the second argument is positive
infinity, the method returns positive infinity. If the absolute value of the first argument is greater
than 1 and the second argument is negative infinity, the method returns positive zero. If the
absolute value of the first argument is less than 1 and the second argument is negative infinity, the
method returns positive infinity. If the absolute value of the first argument is less than 1 and the
second argument is positive infinity, the method returns positive zero. If the absolute value of the
first argument is 1 and the second argument is positive or negative infinity, the method returns
NaN.

If the first argument is negative zero and the second argument is greater than zero but not a finite
odd integer, the method returns positive zero. If the first argument is negative zero and the second
argument is a positive finite odd integer, the method returns negative zero. If the first argument is
negative zero and the second argument is less than zero but not a finite odd integer, the method

returns positive infinity. If the first argument is negative zero and the second argument is a
negative finite odd integer, the method returns negative infinity.

If the first argument is negative infinity and the second argument is less than zero but not a finite
odd integer, the method returns positive zero. If the first argument is negative infinity and the
second argument is a negative finite odd integer, the method returns negative zero. If the first
argument is negative infinity and the second argument is greater than zero but not a finite odd
integer, the method returns positive infinity. If the first argument is negative infinity and the
second argument is a positive finite odd integer, the method returns negative infinity.

If the first argument is less than zero and the second argument is a finite even integer, the method
returns the result of the absolute value of the first argument raised to the power of the second
argument. If the first argument is less than zero and the second argument is a finite odd integer,
the method returns the negative of the result of the absolute value of the first argument raised to
the power of the second argument. If the first argument is finite and less than zero and the second
argument is finite and not an integer, the method returns NaN.

If both arguments are integer values, the method returns the first argument raised to the power of
the second argument.

random

public static synchronized double random()

Returns

A random number between 0.0 and 1.0.

Description

This method returns a random number greater than or equal to 0.0 and less than 1.0. The
implementation of this method uses the java.util.Random class. You may prefer to use the
Random class directly, in order to gain more control over the distribution, type, and repeatability
of the random numbers you are generating.

rint

public static native double rint(double a)

Parameters

a

A double value.

Returns

The value of its argument rounded to the nearest integer.

Description

This method returns its argument rounded to the nearest integer; the result is returned as a
double value. If the argument is equidistant from two integers (e.g., 1.5), the method returns
the even integer.

If the argument is an infinity value, a zero value, or NaN, the method returns that same value.

round

public static long round(double a)

Parameters

a

A double value.

Returns

The value of its argument rounded to the nearest long.

Description

This method returns its double argument rounded to the nearest integral value and converted to
a long. If the argument is equidistant from two integers, the method returns the greater of the
two integers.

If the argument is positive infinity or any other value greater than Long.MAX_VALUE, the
method returns Long.MAX_VALUE. If the argument is negative infinity or any other value less
than Long.MIN_VALUE, the method returns Long.MIN_VALUE. If the argument is NaN, the
method returns 0.

public static int round(float a)

Parameters

a

A float value.

Returns

The value of its argument rounded to the nearest int.

Description

This method returns its float argument rounded to the nearest integral value and converted to
an int. If the argument is equidistant from two integers, the method returns the greater of the two
integers.

If the argument is positive infinity or any other value greater than the Integer.MAX_VALUE,
the method returns Integer.MAX_VALUE. If the argument is negative infinity or any other
value less than Integer.MIN_VALUE, the method returns Integer.MIN_VALUE. If the
argument is NaN, the method returns 0.

sin

public static native double sin(double a)

Parameters

a

A double value that's an angle measured in radians.

Returns

The sine of the given angle.

Description

This method returns the sine of the given angle measured in radians.

If the angle is NaN or an infinity value, the method returns NaN. If the angle is positive zero, the
method returns positive zero. If the angle is negative zero, the method returns negative zero.

sqrt

public static native double sqrt(double a)

Parameters

a

A double value.

Returns

The square root of its argument.

Description

This method returns the square root of its argument.

If the argument is negative or NaN, the method returns NaN. If the argument is positive infinity,
the method returns positive infinity. If the argument is positive or negative zero, the method
returns that same value.

tan

public static native double tan(double a)

Parameters

a

A double value that is an angle measured in radians.

Returns

The tangent of the given angle.

Description

This method returns the tangent of the given angle measured in radians.

If the angle is NaN or an infinity value, the method returns NaN. If the angle is positive zero, the
method returns positive zero. If the angle is negative zero, the method returns negative zero.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Double; Float; Floating-point literals; Floating-point types; Integer; Integer literals; Integer types; Long;
Object

Long Number

Chapter 10
The java.lang Package

SecurityManager

Name

SecurityManager

Synopsis

Class Name:

java.lang.SecurityManager

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm

The SecurityManager class provides a way of implementing a comprehensive security policy for a Java
program. As of this writing, SecurityManager objects are used primarily by Web browsers to establish
security policies for applets. However, the use of a SecurityManager object is appropriate in any situation
where a hosting environment wants to limit the actions of hosted programs.

The SecurityManager class contains methods that are called by methods in other classes to ask for
permission to do something that can affect the security of the system. These permission methods all have
names that begin with check. If a check method does not permit an action, it throws a
SecurityException or returns a value that indicates the lack of permission. The SecurityManager
class provides default implementations of all of the check methods. These default implementations are the
most restrictive possible implementations; they simply deny permission to do anything that can affect the
security of the system.

The SecurityManager class is an abstract class. A hosting environment should define a subclass of
SecurityManager that implements an appropriate security policy. To give the subclass of
SecurityManager control over security, the hosting environment creates an instance of the class and
installs it by passing it to the setSecurityManager() method of the System class. Once a
SecurityManager object is installed, it cannot be changed. If the setSecurityManager() method is
called any additional times, it throws a SecurityException.

The methods in other classes that want to ask the SecurityManager for permission to do something are
able to access the SecurityManager object by calling the getSecurityManager() method of the
System class. This method returns the SecurityManager object, or null to indicate that there is no
SecurityManager installed.

Class Summary

public abstract class java.lang.SecurityManager extends java.lang.Object {
 // Constructors
 protected SecurityManager();
 // Variables
 protected boolean inCheck;
 // Instance Methods
 public void checkAccept(String host, int port);
 public void checkAccess(Thread t);
 public void checkAccess(ThreadGroup g);
 public void checkAwtEventQueueAccess(); // New in 1.1
 public void checkConnect(String host, int port);
 public void checkConnect(String host, int port, Object context);
 public void checkCreateClassLoader();
 public void checkDelete(String file);
 public void checkExec(String cmd);
 public void checkExit(int status);
 public void checkLink(String libname);

 public void checkListen(int port);
 public void checkMemberAccess(Class clazz, int which); // New in 1.1
 public void checkMulticast(InetAddress maddr); // New in 1.1
 public void checkMulticast(InetAddress maddr, byte ttl); // New in 1.1
 public void checkPackageAccess();
 public void checkPackageDefinition();
 public void checkPrintJobAccess(); // New in 1.1
 public void checkPropertiesAccess();
 public void checkPropertyAccess(String key);
 public void checkRead(int fd);
 public void checkRead(String file);
 public void checkRead(String file, Object context);
 public void checkSecurityAccess(String action); // New in 1.1
 public void checkSetFactory();
 public void checkSystemClipboardAccess(); // New in 1.1
 public boolean checkTopLevelWindow();
 public void checkWrite(int fd);
 public void checkWrite(String file);
 public boolean getInCheck();
 public Object getSecurityContext();
 public ThreadGroup getThreadGroup(); // New in 1.1
 // Protected Instance Methods
 protected int classDepth(String name);
 protected int classLoaderDepth();
 protected ClassLoader currentClassLoader();
 protected Class currentLoadedClass(); // New in 1.1
 protected Class[] getClassContext();
 protected boolean inClass(String name);
 protected boolean inClassLoader();
}

Variables

inCheck

protected boolean inCheck = false

Description

This variable indicates whether or not a security check is in progress. A subclass of
SecurityManager should set this variable to true while a security check is in progress.

This variable can be useful for security checks that require access to resources that a hosted program
may not be permitted to access. For example, a security policy might be based on the contents of a

permissions file. This means that the various check methods need to read information from a file to
decide what to do. Even though a hosted program may not be allowed to read files, the check
methods can allow such reads when inCheck is true to support this style of security policy.

Constructors

SecurityManager

protected SecurityManager()

Throws

SecurityException

If a SecurityManager object already exists. In other words, if
System.getSecurityManager() returns a value other than null.

Description

Creates a new SecurityManager object. This constructor cannot be called if there is already a
current SecurityManager installed for the program.

Public Instance Methods

checkAccept

public void checkAccept(String host, int port)

Parameters

host

The name of the host machine.

port

A port number.

Throws

SecurityException

If the caller does not have permission to accept the connection.

Description

This method decides whether or not to allow a connection from the given host on the given port to be
accepted. An implementation of the method should throw a SecurityException to deny
permission to accept the connection. The method is called by the accept() method of the
java.net.ServerSocket class.

The checkAccept() method of SecurityManager always throws a SecurityException.

checkAccess

public void checkAccess(Thread g)

Parameters

g

A reference to a Thread object.

Throws

SecurityException

If the current thread does not have permission to modify the specified thread.

Description

This method decides whether or not to allow the current thread to modify the specified Thread. An
implementation of the method should throw a SecurityException to deny permission to modify
the thread. Methods of the Thread class that call this method include stop(), suspend(),
resume(), setPriority(), setName(), and setDaemon().

The checkAccess() method of SecurityManager always throws a SecurityException.

public void checkAccess(ThreadGroup g)

Parameters

g

A reference to a ThreadGroup object.

Throws

SecurityException

If the current thread does not have permission to modify the specified thread group.

Description

This method decides whether or not to allow the current thread to modify the specified
ThreadGroup. An implementation of the method should throw a SecurityException to deny
permission to modify the thread group. Methods of the ThreadGroup class that call this method
include setDaemon(), setMaxPriority(), stop(), suspend(), resume(), and
destroy().

The checkAccess() method of SecurityManager always throws a SecurityException.

checkAwtEventQueueAccess

public void checkAwtEventQueueAccess()

Availability

New as of JDK 1.1

Throws

SecurityException

If the caller does not have permission to access the AWT event queue.

Description

This method decides whether or not to allow access to the AWT event queue. An implementation of
the method should throw a SecurityException to deny permission to access the event queue. The
method is called by the getSystemEventQueue() method of the java.awt.Toolkit class.

The checkAwtEventQueueAccess() method of SecurityManager always throws a
SecurityException.

checkConnect

public void checkConnect(String host, int port)

Parameters

host

The name of the host.

port

A port number. A value of -1 indicates an attempt to determine the IP address of given
hostname.

Throws

SecurityException

If the caller does not have permission to open the socket connection.

Description

This method decides whether or not to allow a socket connection to the given host on the given port to
be opened. An implementation of the method should throw a SecurityException to deny
permission to open the connection. The method is called by the constructors of the
java.net.Socket class, the send() and receive() methods of the
java.net.DatagramSocket class, and the getByName() and getAllByName() methods of
the java.net.InetAddress class.

The checkConnect() method of SecurityManager always throws a SecurityException.

 public void checkConnect(String host, int port, Object context)

Parameters

host

The name of the host.

port

A port number. A value of -1 indicates an attempt to determine the IP address of given host
name.

context

A security context object returned by this object's getSecurityContext() method.

Throws

SecurityException

If the specified security context does not have permission to open the socket connection.

Description

This method decides whether or not to allow a socket connection to the given host on the given port to
be opened for the specified security context. An implementation of the method should throw a
SecurityException to deny permission to open the connection.

The checkConnect() method of SecurityManager always throws a SecurityException.

checkCreateClassLoader

public void checkCreateClassLoader()

Throws

SecurityException

If the caller does not have permission to create a ClassLoader object.

Description

This method decides whether or not to allow a ClassLoader object to be created. An
implementation of the method should throw a SecurityException to deny permission to create a
ClassLoader. The method is called by the constructor of the ClassLoader class.

The checkCreateClassLoader() method of SecurityManager always throws a
SecurityException.

checkDelete

public void checkDelete(String file)

Parameters

file

The name of a file.

Throws

SecurityException

If the caller does not have permission to delete the specified file.

Description

This method decides whether or not to allow a file to be deleted. An implementation of the method
should throw a SecurityException to deny permission to delete the specified file. The method is
called by the delete() method of the java.io.File class.

The checkDelete() method of SecurityManager always throws a SecurityException.

checkExec

public void checkExec(String cmd)

Parameters

cmd

The name of an external command.

Throws

SecurityException

If the caller does not have permission to execute the specified command.

Description

This method decides whether or not to allow an external command to be executed. An implementation
of the method should throw a SecurityException to deny permission to execute the specified
command. The method is called by the exec() methods of the Runtime and System classes.

The checkExec() method of SecurityManager always throws a SecurityException.

checkExit

public void checkExit(int status)

Parameters

status

An exit status code.

Throws

SecurityException

If the caller does not have permission to exit the Java virtual machine with the given status code.

Description

This method decides whether or not to allow the Java virtual machine to exit with the given status code.
An implementation of the method should throw a SecurityException to deny permission to exit
with the specified status code. The method is called by the exit() methods of the Runtime and
System classes.

The checkExit() method of SecurityManager always throws a SecurityException.

checkLink

public void checkLink(String lib)

Parameters

lib

The name of a library.

Throws

SecurityException

If the caller does not have permission to load the specified library.

Description

This method decides whether to allow the specified library to be loaded. An implementation of the
method should throw a SecurityException to deny permission to load the specified library. The
method is called by the load() and loadLibrary() methods of the Runtime and System
classes.

The checkLink() method of SecurityManager always throws a SecurityException.

checkListen

public void checkListen(int port)

Parameters

port

A port number.

Throws

SecurityException

If the caller does not have permission to listen on the specified port.

Description

This method decides whether or not to allow the caller to listen on the specified port. An
implementation of the method should throw a SecurityException to deny permission to listen on
the specified port. The method is called by the constructors of the java.net.ServerSocket class
and by the constructor of the java.net.DatagramSocket class that takes one argument.

The checkListen() method of SecurityManager always throws a SecurityException.

checkMemberAccess

public void checkMemberAccess(Class clazz, int which)

Availability

New as of JDK 1.1

Parameters

clazz

A Class object.

which

The value Member.PUBLIC for the set of all public members including inherited members
or the value Member.DECLARED for the set of all declared members of the specified class or
interface.

Throws

SecurityException

If the caller does not have permission to access the members of the specified class or interface.

Description

This method decides whether or not to allow access to the members of the specified Class object. An
implementation of the method should throw a SecurityException to deny permission to access
the members. Methods of the Class class that call this method include getField(),
getFields(), getDeclaredField(), getDeclaredFields(), getMethod(),
getMethods(), getDeclaredMethod(), getDeclaredMethods(),
getConstructor(), getConstructors(), getDeclaredConstructor(),
getDeclaredConstructors(), and getDeclaredClasses().

The checkMemberAccess() method of SecurityManager always throws a
SecurityException.

checkMulticast

public void checkMulticast(InetAddress maddr)

Availability

New as of JDK 1.1

Parameters

maddr

An InetAddress object that represents a multicast address.

Throws

SecurityException

If the current thread does not have permission to use the specified multicast address.

Description

This method decides whether or not to allow the current thread to use the specified multicast
InetAddress. An implementation of the method should throw a SecurityException to deny
permission to use the multicast address. The method is called by the send() method of
java.net.DatagramSocket if the packet is being sent to a multicast address. The method is also
called by the joinGroup() and leaveGroup() methods of java.net.MulticastSocket.

The checkMulticast() method of SecurityManager always throws a
SecurityException.

public void checkMulticast(InetAddress maddr, byte ttl)

Availability

New as of JDK 1.1

Parameters

maddr

An InetAddress object that represents a multicast address.

ttl

The time-to-live (TTL) value.

Throws

SecurityException

If the current thread does not have permission to use the specified multicast address and TTL
value.

Description

This method decides whether or not to allow the current thread to use the specified multicast

InetAddress and TTL value. An implementation of the method should throw a
SecurityException to deny permission to use the multicast address. The method is called by the
send() method of java.net.MulticastSocket.

The checkMulticast() method of SecurityManager always throws a
SecurityException.

checkPackageAccess

public void checkPackageAccess(String pkg)

Parameters

pkg

The name of a package.

Throws

SecurityException

If the caller does not have permission to access the specified package.

Description

This method decides whether or not to allow the specified package to be accessed. An implementation
of the method should throw a SecurityException to deny permission to access the specified
package. The method is intended to be called by implementations of the loadClass() method in
subclasses of the ClassLoader class.

The checkPackageAccess() method of SecurityManager always throws a
SecurityException.

checkPackageDefinition

public void checkPackageDefinition(String pkg)

Parameters

pkg

The name of a package.

Throws

SecurityException

If the caller does not have permission to define classes in the specified package.

Description

This method decides whether or not to allow the caller to define classes in the specified package. An
implementation of the method should throw a SecurityException to deny permission to create
classes in the specified package. The method is intended to be called by implementations of the
loadClass() method in subclasses of the ClassLoader class.

The checkPackageDefinition() method of SecurityManager always throws a
SecurityException.

checkPrintJobAccess

public void checkPrintJobAccess()

Availability

New as of JDK 1.1

Throws

SecurityException

If the caller does not have permission to initiate a print job request.

Description

This method decides whether or not to allow the caller to initiate a print job request. An
implementation of the method should throw a SecurityException to deny permission to initiate
the request.

The checkPrintJobAccess() method of SecurityManager always throws a
SecurityException.

checkPropertiesAccess

public void checkPropertiesAccess()

Throws

SecurityException

If the caller does not have permission to access the system properties.

Description

This method decides whether or not to allow the caller to access and modify the system properties. An
implementation of the method should throw a SecurityException to deny permission to access
and modify the properties. Methods of the System class that call this method include
getProperties() and setProperties().

The checkPropertiesAccess() method of SecurityManager always throws a
SecurityException.

checkPropertyAccess

public void checkPropertyAccess(String key)

Parameters

key

The name of an individual system property.

Throws

SecurityException

If the caller does not have permission to access the specified system property.

Description

This method decides whether or not to allow the caller to access the specified system property. An
implementation of the method should throw a SecurityException to deny permission to access
the property. The method is called by the getProperty() method of the System class.

The checkPropertyAccess() method of SecurityManager always throws a
SecurityException.

checkRead

public void checkRead(FileDescriptor fd)

Parameters

fd

A reference to a FileDescriptor object.

Throws

SecurityException

If the caller does not have permission to read from the given file descriptor.

Description

This method decides whether or not to allow the caller to read from the specified file descriptor. An
implementation of the method should throw a SecurityException to deny permission to read
from the file descriptor. The method is called by the constructor of the
java.io.FileInputStream class that takes a FileDescriptor argument.

The checkRead() method of SecurityManager always throws a SecurityException.

public void checkRead(String file)

Parameters

file

The name of a file.

Throws

SecurityException

If the caller does not have permission to read from the named file.

Description

This method decides whether or not to allow the caller to read from the named file. An implementation
of the method should throw a SecurityException to deny permission to read from the file. The
method is called by constructors of the java.io.FileInputStream and

java.io.RandomAccessFile classes, as well as by the canRead(), exists(),
isDirectory(), isFile(), lastModified(), length(), and list() methods of the
java.io.File class.

The checkRead() method of SecurityManager always throws a SecurityException.

public void checkRead(String file, Object context)

Parameters

file

The name of a file.

context

A security context object returned by this object's getSecurityContext() method.

Throws

SecurityException

If the specified security context does not have permission to read from the named file.

Description

This method decides whether or not to allow the specified security context to read from the named file.
An implementation of the method should throw a SecurityException to deny permission to read
from the file.

The checkRead() method of SecurityManager always throws a SecurityException.

checkSecurityAccess

public void checkSecurityAccess(String action)

Availability

New as of JDK 1.1

Parameters

action

A string that specifies a security action.

Throws

SecurityException

If the caller does not have permission to perform the specified security action.

Description

This method decides whether to allow the caller to perform the specified security action. An
implementation of the method should throw a SecurityException to deny permission to perform
the action. The method is called by many of the methods in the java.security.Identity and
java.security.Security classes.

The checkSecurityAccess() method of SecurityManager always throws a
SecurityException.

checkSetFactory

public void checkSetFactory()

Throws

SecurityException

If the caller does not have permission to set the factory class to be used by another class.

Description

This method decides whether to allow the caller to set the factory class to be used by another class. An
implementation of the method should throw a SecurityException to deny permission to set the
factory class. The method is called by the setSocketFactory() method of the
java.net.ServerSocket class, the setSocketImplFactory() method of the
java.net.Socket class, the setURLStreamHandlerFactory() method of the
java.net.URL class, and the setContentHandlerFactory() method of the
java.net.URLConnection class.

The checkSetFactory() method of SecurityManager always throws a
SecurityException.

checkSystemClipboardAccess

public void checkSystemClipboardAccess()

Availability

New as of JDK 1.1

Throws

SecurityException

If the caller does not have permission to access the system clipboard.

Description

This method decides whether or not to allow the caller to access the system clipboard. An
implementation of the method should throw a SecurityException to deny permission to access
the system clipboard.

The checkSystemClipboardAccess() method of SecurityManager always throws a
SecurityException.

checkTopLevelWindow

public boolean checkTopLevelWindow(Object window)

Parameters

window

A window object.

Returns

true if the caller is trusted to put up the specified top-level window; otherwise false.

Description

This method decides whether or not to trust the caller to put up the specified top-level window. An
implementation of the method should return false to indicate that the caller is not trusted. In this
case, the hosting environment can still decide to display the window, but the window should include a
visual indication that it is not trusted. If the caller is trusted, the method should return true, and the
window can be displayed without any special indication.

The checkTopLevelWindow() method of SecurityManager always returns false.

checkWrite

public void checkWrite(FileDescriptor fd)

Parameters

fd

A FileDescriptor object.

Throws

SecurityException

If the caller does not have permission to write to the given file descriptor.

Description

This method decides whether or not to allow the caller to write to the specified file descriptor. An
implementation of the method should throw a SecurityException to deny permission to write to
the file descriptor. The method is called by the constructor of the java.io.FileOutputStream
class that takes a FileDescriptor argument.

The checkWrite() method of SecurityManager always throws a SecurityException.

public void checkWrite(String file)

Parameters

file

The name of a file.

Throws

SecurityException

If the caller does not have permission to read from the named file.

Description

This method decides whether or not to allow the caller to write to the named file. An implementation of
the method should throw a SecurityException to deny permission to write to the file. The
method is called by constructors of the java.io.FileOutputStream and
java.io.RandomAccessFile classes, as well as by the canWrite(), mkdir(), and
renameTo() methods of the java.io.File class.

The checkWrite() method of SecurityManager always throws a SecurityException.

getInCheck

public boolean getInCheck()

Returns

true if a security check is in progress; otherwise false.

Description

This method returns the value of the SecurityManager object's inCheck variable, which is true
if a security check is in progress and false otherwise.

getSecurityContext

public Object getSecurityContext()

Returns

An implementation-dependent object that contains enough information about the current execution
environment to perform security checks at a later time.

Description

This method is meant to create an object that encapsulates information about the current execution
environment. The resulting security context object is used by specific versions of the
checkConnect() and checkRead() methods. The intent is that such a security context object
can be used by a trusted method to determine whether or not another, untrusted method can perform a
particular operation.

The getSecurityContext() method of SecurityManager simply returns null. This
method should be overridden to return an appropriate security context object for the security policy that
is being implemented.

getThreadGroup

public ThreadGroup getThreadGroup()

Availability

New as of JDK 1.1

Returns

A ThreadGroup in which to place any threads that are created when this method is called.

Description

This method returns the appropriate parent ThreadGroup for any threads that are created when the
method is called. The getThreadGroup() method of SecurityManager simply returns the
ThreadGroup of the current thread. This method should be overridden to return an appropriate
ThreadGroup.

Protected Instance Methods

classDepth

protected native int classDepth(String name)

Parameters

name

The fully qualified name of a class.

Returns

The number of pending method invocations from the top of the stack to a call to a method of the given
class; -1 if no stack frame in the current thread is associated with a call to a method in the given class.

Description

This method returns the number of pending method invocations between this method invocation and an
invocation of a method associated with the named class.

classLoaderDepth

protected native int classLoaderDepth()

Returns

The number of pending method invocations from the top of the stack to a call to a method that is
associated with a class that was loaded by a ClassLoader object; -1 if no stack frame in the current
thread is associated with a call to such a method.

Description

This method returns the number of pending method invocations between this method invocation and an
invocation of a method associated with a class that was loaded by a ClassLoader object.

currentClassLoader

protected native ClassLoader currentClassLoader()

Returns

The most recent ClassLoader object executing on the stack.

Description

This method finds the most recent pending invocation of a method associated with a class that was
loaded by a ClassLoader object. The method then returns the ClassLoader object that loaded
that class.

currentLoadedClass

protected Class currentLoadedClass()

Availability

New as of JDK 1.1

Returns

The most recent Class object loaded by a ClassLoader.

Description

This method finds the most recent pending invocation of a method associated with a class that was
loaded by a ClassLoader object. The method then returns the Class object for that class.

getClassContext

protected native Class[] getClassContext()

Returns

An array of Class objects that represents the current execution stack.

Description

This method returns an array of Class objects that represents the current execution stack. The length
of the array is the number of pending method calls on the current thread's stack, not including the call
to getClassContext(). Each element of the array references a Class object that describes the
class associated with the corresponding method call. The first element of the array corresponds to the
most recently called method, the second element is that method's caller, and so on.

inClass

protected boolean inClass(String name)

Parameters

name

The fully qualified name of a class.

Returns

true if there is a pending method invocation on the stack for a method of the given class; otherwise
false.

Description

This method determines whether or not there is a pending method invocation that is associated with the
named class.

inClassLoader

protected boolean inClassLoader()

Returns

true if there is a pending method invocation on the stack for a method of a class that was loaded by a
ClassLoader object; otherwise false.

Description

This method determines whether or not there is a pending method invocation that is associated with a
class that was loaded by a ClassLoader object. The method returns true only if the
currentClassLoader() method does not return null.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Class; ClassLoader; Exceptions; Object; Runtime; System; Thread; ThreadGroup

Runtime Short

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm

Chapter 10
The java.lang Package

Compiler

Name

Compiler

Synopsis

Class Name:

java.lang.Compiler

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The Compiler class encapsulates a facility for compiling Java classes to native code. As provided by
Sun, the methods of this class do not actually do anything. However, if the system property
java.compiler has been defined and if the method System.loadLibrary() is able to load the
library named by the property, the methods of this class use the implementations provided in the library.

The Compiler class has no public constructors, so it cannot be instantiated.

Class Summary

public final class java.lang.Compiler extends java.lang.Object {
 // Class Methods
 public static native Object command(Object any);
 public static native boolean compileClass(Class clazz);
 public static native boolean compileClasses(String string);
 public static native void disable();
 public static native void enable();
}

Class Methods

command

public static native Object command(Object any)

Parameters

any

The permissible value and its meaning is determined by the compiler library.

Returns

A value determined by the compiler library, or null if no compiler library is loaded.

Description

This method directs the compiler to perform an operation specified by the given argument. The

available operations, if any, are determined by the compiler library.

compileClass

public static native boolean compileClass(Class clazz)

Parameters

clazz

The class to be compiled to native code.

Returns

true if the compilation succeeds, or false if the compilation fails or no compiler library is
loaded.

Description

This method requests the compiler to compile the specified class to native code.

compileClasses

public static native boolean compileClasses(String string)

Parameters

string

A string that specifies the names of the classes to be compiled.

Returns

true if the compilation succeeds or false if the compilation fails or no compiler library is
loaded.

Description

This method requests the compiler to compile all of the classes named in the string.

disable

public static native void disable()

Description

This method disables the compiler if one is loaded.

enable

public static native void enable()

Description

This method enables the compiler if one is loaded.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Object; System

Cloneable Double

Chapter 10
The java.lang Package

ClassLoader

Name

ClassLoader

Synopsis

Class Name:

java.lang.ClassLoader

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

Description

The ClassLoader class provides a mechanism for Java to load classes over a network or from any source other than the
local filesystem. The default class-loading mechanism loads classes from files found relative to directories specified by the
CLASSPATH environment variable. This default mechanism does not use an instance of the ClassLoader class.

An application can implement another mechanism for loading classes by declaring a subclass of the abstract
ClassLoader class. A subclass of ClassLoader must override the loadClass() to define a class-loading policy.

This method implements any sort of security that is necessary for the class-loading mechanism. The other methods of
ClassLoader are final, so they cannot be overridden.

A ClassLoader object is typically used by calling its loadClass() method to explicitly load a top-level class, such as a
subclass of Applet. The ClassLoader that loads the class becomes associated with the class; it can be obtained by
calling the getClassLoader() method of the Class object that represents the class.

Once a class is loaded, it must be resolved before it can be used. Resolving a class means ensuring that all of the other classes
it references are loaded. In addition, all of the classes that they reference must be loaded, and so on, until all of the needed
classes have been loaded. Classes are resolved using the resolveClass() method of the ClassLoader object that
loaded the initial class. This means that when a ClassLoader object is explicitly used to load a class, the same
ClassLoader is used to load all of the classes that it references, directly or indirectly.

Classes loaded using a ClassLoader object may attempt to load additional classes without explicitly using a
ClassLoader object. They can do this by calling the Class class' forName() method. However, in such a situation, a
ClassLoader object is implicitly used. See the description of Class.forName() for more information.

Java identifies a class by a combination of its fully qualified name and the class loader that was used to load the class. If you
write a subclass of ClassLoader, it should not attempt to directly load local classes. Instead, it should call
findSystemClass(). A local class that is loaded directly by a ClassLoader is considered to be a different class than
the same class loaded by findSystemClass(). This can lead to having two copies of the same class loaded, which can
cause a number of inconsistencies. For example, the class' equals() method may decide that the same object is not equal
to itself.

Class Summary

public abstract class java.lang.ClassLoader extends java.lang.Object {
 // Constructors
 protected ClassLoader();
 // Class Methods
 public static final URL
 getSystemResource(String name); // New in 1.1
 public static final InputStream
 getSystemResourceAsStream(String name); // New in 1.1
 // Public Instance Methods
 public URL getResource(String name); // New in 1.1
 public InputStream getResourceAsStream(String name); // New in 1.1
 public Class loadClass(String name); // New in 1.1

 // Protected Instance Methods
 protected final Class defineClass(byte data[],
 int offset, int length); // Deprecated in 1.1
 protected final Class defineClass(String name,
 byte[] data, int offset, int length); // New in 1.1
 protected final Class findLoadedClass(String name); // New in 1.1
 protected final Class findSystemClass(String name);
 protected abstract Class loadClass(String name, boolean resolve);
 protected final void resolveClass(Class c);
 protected final void setSigners(Class cl,
 Object[] signers); // New in 1.1

}

Constructors

ClassLoader

protected ClassLoader()

Throws

SecurityException

If there is a SecurityManager object installed and its checkCreateClassLoader() method throws a
SecurityException when called by this constructor.

Description

Initializes a ClassLoader object. Because ClassLoader is an abstract class, only subclasses of the class can
access this constructor.

Class Methods

getSystemResource

public static final URL getSystemResource(String name)

Availability

New as of JDK 1.1

Parameters

name

A system resource name.

Returns

A URL object that is connected to the specified system resource or null if the resource cannot be found.

Description

This method finds a system resource with the given name and returns a URL object that is connected to the resource.
The resource name can be any system resource.

getSystemResourceAsStream

public static final InputStream getSystemResourceAsStream(String name)

Availability

New as of JDK 1.1

Parameters

name

A system resource name.

Returns

An InputStream object that is connected to the specified system resource or null if the resource cannot be found.

Description

This method finds a system resource with the given name and returns an InputStream object that is connected to
the resource. The resource name can be any system resource.

Public Instance Methods

getResource

public URL getResource(String name)

Availability

New as of JDK 1.1

Parameters

name

A resource name.

Returns

A URL object that is connected to the specified resource or null if the resource cannot be found.

Description

This method finds a resource with the given name and returns a URL object that is connected to the resource.

A resource is a file that contains data (e.g., sound, images, text) and it can be part of a package. The name of a
resource is a sequence of identifiers separated by "/". For example, a resource might have the name
help/american/logon.html . System resources are found on the host machine using the conventions of the host

implementation. For example, the "/" in the resource name may be treated as a path separator, with the entire resource
name treated as a relative path to be found under a directory in CLASSPATH.

The implementation of getResource() in ClassLoader simply returns null. A subclass can override this
method to provide more useful functionality.

getResourceAsStream

public InputStream getResourceAsStream(String name)

Availability

New as of JDK 1.1

Parameters

name

A resource name.

Returns

An InputStream object that is connected to the specified resource or null if the resource cannot be found.

Description

This method finds a resource with the given name and returns an InputStream object that is connected to the
resource.

A resource is a file that contains data (e.g., sound, images, text) and it can be part of a package. The name of a
resource is a sequence of identifiers separated by `/'. For example, a resource might have the name
help/american/logon.html. System resources are found on the host machine using the conventions of the host
implementation. For example, the `/' in the resource name may be treated as a path separator, with the entire resource
name treated as a relative path to be found under a directory in CLASSPATH.

The implementation of getResourceAsStream() in ClassLoader simply returns null. A subclass can
override this method to provide more useful functionality.

loadClass

public Class loadClass(String name) throws ClassNotFoundException

Availability

New as of JDK 1.1

Parameters

name

The name of the class to be returned. The class name should be qualified by its package name. The lack of an
explicit package name specifies that the class is part of the default package.

Returns

The Class object for the specified class.

Throws

ClassNotFoundException

If it cannot find a definition for the named class.

Description

This method loads the named class by calling loadClass(name, true).

Protected Instance Methods

defineClass

 protected final Class defineClass(byte data[], int offset, int length)

Availability

Deprecated as of JDK 1.1

Parameters

data

An array that contains the byte codes that define a class.

offset

The offset in the array of byte codes.

length

The number of byte codes in the array.

Returns

The newly created Class object.

Throws

ClassFormatError

If the data array does not constitute a valid class definition.

Description

This method creates a Class object from the byte codes that define the class. Before the class can be used, it must be
resolved. The method is intended to be called from an implementation of the loadClass() method.

Note that this method is deprecated as of Java 1.1. You should use the version of defineClass() that takes a
name parameter and is therefore more secure.

 protected final Class defineClass(String name, byte data[], int offset, int length)

Availability

New as of JDK 1.1

Parameters

name

The expected name of the class to be defined or null if it is not known. The class name should be qualified by
its package name. The lack of an explicit package name specifies that the class is part of the default package.

data

An array that contains the byte codes that define a class.

offset

The offset in the array of byte codes.

length

The number of byte codes in the array.

Returns

The newly created Class object.

Throws

ClassFormatError

If the data array does not constitute a valid class definition.

Description

This method creates a Class object from the byte codes that define the class. Before the class can be used, it must be
resolved. The method is intended to be called from an implementation of the loadClass() method.

findLoadedClass

 protected final Class findLoadedClass(String name)

Availability

New as of JDK 1.1

Parameters

name

The name of the class to be returned. The class name should be qualified by its package name. The lack of an
explicit package name specifies that the class is part of the default package.

Returns

The Class object for the specified loaded class or null if the class cannot be found.

Description

This method finds the specified class that has already been loaded.

findSystemClass

 protected final Class findSystemClass(String name) throws ClassNotFoundException

Parameters

name

The name of the class to be returned. The class name should be qualified by its package name. The lack of an
explicit package name specifies that the class is part of the default package.

Returns

The Class object for the specified system class.

Throws

ClassNotFoundException

If the default class-loading mechanism cannot find a definition for the class.

NoClassDefFoundError

If the default class-loading mechanism cannot find the class.

Description

This method finds and loads a system class if it has not already been loaded. A system class is a class that is loaded by
the default class-loading mechanism from the local filesystem. An implementation of the loadClass() method
typically calls this method to attempt to load a class from the locations specified by the CLASSPATH environment
variable.

loadClass

 protected abstract Class loadClass(String name, boolean resolve) throws
ClassNotFoundException

Parameters

name

The name of the class to be returned. The class name should be qualified by its package name. The lack of an
explicit package name specifies that the class is part of the default package.

resolve

Specifies whether or not the class should be resolved by calling the resolveClass() method.

Returns

The Class object for the specified class.

Throws

ClassNotFoundException

If it cannot find a definition for the named class.

Description

An implementation of this abstract method loads the named class and returns its Class object. It is permitted and
encouraged for an implementation to cache the classes it loads, rather than load one each time the method is called.
An implementation of this method should do at least the following:

1. Load the byte codes that comprise the class definition into a byte[].

2. Call the defineClass() method to create a Class object to represent the class definition.

3. If the resolve parameter is true, call the resolveClass() method to resolve the class.

If an implementation of this method caches the classes that it loads, it is recommended that it use an instance of the
java.util.Hashtable to implement the cache.

resolveClass

protected final void resolveClass(Class c)

Parameters

c

The Class object for the class to be resolved.

Description

This method resolves the given Class object. Resolving a class means ensuring that all of the other classes that the
Class object references are loaded. In addition, all of the classes that they reference must be loaded, and so on, until
all of the needed classes have been loaded.

The resolveClass() method should be called by an implementation of the loadClass() method when the
value of the loadClass() method's resolve parameter is true.

setSigners

 protected final void setSigners(Class cl, Object[] signers)

Availability

New as of JDK 1.1

Parameters

cl

The Class object for the class to be signed.

signers

An array of Objects that represents the signers of this class.

Description

This method specifies the objects that represent the digital signatures for this class.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Class; Errors; Exceptions; Object; SecurityManager

Class Cloneable

Chapter 8
New AWT Features

8.4 Data Transfer with Cut-and-Paste

Java 1.1 adds cut-and-paste capabilities to Java applications through the classes and interfaces of the
java.awt.datatransfer package. The DataFlavor class is perhaps the most central of these
classes. It represents the type of data to be transferred. Every data flavor consists of a human-readable
name and a data type specification. The data type can be specified in one of two ways: with a Java
Class object or with a MIME type string. These two different ways of specifying the data type reflect
two different ways of transferring the data. When the data type is specified as a class object, objects of
that type are transferred using the object serialization mechanism (which is discussed in Chapter 9,
Object Serialization). In Example 8.1, for example, the DataFlavor is specified using the Class
object for java.util.Vector. This means that data is transferred as a serialized Vector object. It
also means that the DataFlavor object has an implicit MIME type of:

application/x-java-serialized-object; class=java.util.Vector

The data type of a DataFlavor can also be specified as a MIME type. In this case, data is transferred
through a stream--the recipient of the data receives a Reader stream from which it can read textual data.
In this case, the recipient usually has to parse the data according to the rules of the specified MIME type.

The Transferable interface is another important piece of the AWT data transfer picture. This
interface specifies methods that must be implemented by any object that wants to make data available for
transfer. One of its methods returns an array of all the DataFlavor types it can use to transfer its data.
Another method checks whether the Transferable object supports a given method. The most
important method, getTransferData(), actually returns the data in a format appropriate for the
requested DataFlavor.

While DataFlavor and Transferable provide the underlying infrastructure for data transfer, it is
the Clipboard class and ClipboardOwner interface that support the cut-and-paste style of data
transfer. A typical cut-and-paste scenario works like this:

● When the user issues a command to "copy" or "cut" something, the initiating application first

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_05.htm#JNUT2-CH-8-EX-1

obtains the system Clipboard object by calling the getSystemClipboard() method of
the Toolkit object. Next, it creates a Transferable object that represents the data to be
transferred. Finally, it passes this transferable object to the clipboard by calling the
setContents() method of the clipboard. The initiating application must also pass an object
that implements the ClipboardOwner interface to setContents(). By doing so, it
becomes the "clipboard owner" and must maintain its Transferable object until it ceases to
be the clipboard owner.

● When the user issues a command to "paste," the receiving application first obtains the system
Clipboard object in the same way that the initiating application did. Then, it calls the
getContents() method of the system clipboard to receive the Transferable object stored
there. Now it can use the methods defined by the Transferable interface to choose a
DataFlavor for the data transfer and actually transfer the data.

● When the user copies or cuts some other piece of data, a new data transfer is initiated, and the new
initiating application (it may be the same one) becomes the new clipboard owner. The previous
owner is notified that it is no longer the clipboard owner when the system invokes the
lostOwnership() method of the ClipboardOwner object specified in the initiating call to
setContents().

Note that untrusted applets are not allowed to work with the system clipboard because there might be
sensitive data on it from other applications. This means that applets cannot participate in inter-application
cut-and-paste. Instead, an applet must create a private clipboard object that it can use for intra-applet data
transfer.

The cut(), copy(), and paste() methods of Example 8.1 implement cut-and-paste functionality for
scribbled lines. They rely on the nested SimpleSelection class that implements the
Transferable and ClipboardOwner interfaces. Note the definition of a DataFlavor object that
serves to specify the type of data transfer. [1]

[1] Although the example application uses the system clipboard, scribbles can only be
pasted between windows of the same application, not between separate instances of the
application running in separate Java interpreters. In Java 1.1.1, inter-application cut-and-
paste only works with the pre-defined DataFlavor.stringFlavor and
DataFlavor.textFlavor data flavors. Custom types like the one used in the
example do not correctly interface with the system clipboard.

Printing New Feature Demo

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_05.htm#JNUT2-CH-8-EX-1
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_05.htm

Chapter 9

9. Object Serialization
Contents:
Simple Serialization
Custom Serialization
Serialization and Class Versioning
Serialized Applets
Advanced Serialization

Object serialization is one of the important new features of Java 1.1. Despite its importance, however, serialization is
done with a very simple API. This chapter demonstrates several uses of serialization.

9.1 Simple Serialization

Objects are serialized with the ObjectOutputStream and they are deserialized with the
ObjectInputStream. Both of these classes are part of the java.io package, and they function, in many ways,
like DataOutputStream and DataInputStream because they define the same methods for writing and
reading binary representations of Java primitive types to and from streams. What ObjectOutputStream and
ObjectInputStream add, however, is the ability to write and read non-primitive object and array values to and
from a stream.

An object is serialized by passing it to the writeObject() method of an ObjectOutputStream. This writes
out the values of all of its fields, including private fields and fields inherited from superclasses. The values of
primitive fields are simply written to the stream as they would be with a DataOutputStream. When a field in an
object refers to another object, an array, or a string, however, the writeObject() method is invoked recursively
to serialize that object as well. If that object (or an array element) refers to another object, writeObject() is
again invoked recursively. Thus, a single call to writeObject() may result in an entire "object graph" being
serialized. When two or more objects each refer to the other, the serialization algorithm is careful to only output
each object once--writeObject() cannot enter infinite recursion.

Deserializing an object simply follows the reverse of this process. An object is read from a stream of data by calling
the readObject() method of an ObjectInputStream. This re-creates the object in the state it was in when
serialized. If the object refers to other objects, they are recursively deserialized as well.

This ability to serialize an entire graph of objects and read those objects back in later is a very powerful feature that

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch09_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch09_02.htm

hides itself in two simple looking methods. We used object serialization in Example 8.1, but unless you were paying
attention, you might have missed those crucial writeObject() and readObject() calls. Serialization is used
in that Scribble example to give the program an automatic file format for saving the user's scribbles.

To refresh your memory, Example 9.1 shows the save() method of that application. Note the creation of the
ObjectOutputStream and the use of the writeObject() method. The corresponding load() method
simply reverses the streams to read the scribble back in. You may want to refer to the complete example in Chapter
8, New AWT Features to examine the save() and load() methods in context. Also note the use of a
GZIPOutputStream (from java.util.zip) to compress the serialized object data before writing it to disk.

Example 9.1: Using Serialized Objects as an Application File Format

/**
 * Prompt the user for a filename, and save the scribble in that file.
 * Serialize the vector of lines with an ObjectOutputStream.
 * Compress the serialized objects with a GZIPOutputStream.
 * Write the compressed, serialized data to a file with a FileOutputStream.
 * Don't forget to flush and close the stream.
 */
public void save() {
 // Create a file dialog to query the user for a filename.
 FileDialog f = new FileDialog(frame, "Save Scribble", FileDialog.SAVE);
 f.show(); // Display the dialog and block.
 String filename = f.getFile(); // Get the user's response
 if (filename != null) { // If user didn't click "Cancel."
 try {
 // Create the necessary output streams to save the scribble.
 FileOutputStream fos = new FileOutputStream(filename); // Save to file.
 GZIPOutputStream gzos = new GZIPOutputStream(fos); // Compress.
 ObjectOutputStream out = new ObjectOutputStream(gzos); // Save objects
 out.writeObject(lines); // Write the entire Vector of scribbles.
 out.flush(); // Always flush the output.
 out.close(); // And close the stream.
 }
 // Print out exceptions. We should really display them in a dialog...
 catch (IOException e) { System.out.println(e); }
 }
}

New Feature Demo Custom Serialization

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_05.htm#JNUT2-CH-8-EX-1
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch09_02.htm

Chapter 12
Reflection

12.2 Invoking a Named Method

Example 12.2 demonstrates another use of the Reflection API. This UniversalActionListener object uses
reflection to invoke a named method of a specified object, passing another optionally specified object as an argument.
It does this in the framework of the ActionListener interface, so that it can serve as an action listener within a
Java 1.1 GUI. By using the reflection capabilities of the UniversalActionListener, a program can avoid
having to create a lot of trivial ActionListener implementations to handle action events. The main() method at
the end of this example is a simple test GUI that demonstrates how you could use the
UniversalActionListener object. Contrast it with the anonymous class event-handling techniques
demonstrated in Chapter 7, Events.

Java does not allow methods to be passed directly as data values, but the Reflection API makes it possible for
methods passed by name to be invoked indirectly. Note that this technique is not particularly efficient. For
asynchronous event handling in a GUI, though, it is certainly efficient enough: indirect method invocation through the
Reflection API will always be much faster than the response time required by the limits of human perception.
Invoking a method by name is not an appropriate technique, however, when repetitive, synchronous calls are required.
Thus, you should not use this technique for passing a comparison method to a sorting routine or passing a filename
filter to a directory listing method. In cases like these, you should use the standard technique of implementing a class
that contains the desired method and passing an instance of the class to the appropriate routine.

Example 12.2: Invoking a Named Method with Reflection

import java.awt.event.*;
import java.lang.reflect.*;
import java.awt.*; // Only used for the test program below.
public class UniversalActionListener implements ActionListener {
 protected Object target;
 protected Object arg;
 protected Method m;
 public UniversalActionListener(Object target, String methodname, Object arg)
 throws NoSuchMethodException, SecurityException
 {
 this.target = target; // Save the target object.
 this.arg = arg; // And method argument.
 // Now look up and save the Method to invoke on that target object.
 Class c, parameters[];
 c = target.getClass(); // The Class object.

 if (arg == null) parameters = new Class[0]; // Method parameter.
 else parameters = new Class[] { arg.getClass() };
 m = c.getMethod(methodname, parameters); // Find matching method.
 }
 public void actionPerformed(ActionEvent event) {
 Object[] arguments;
 if (arg == null) arguments = new Object[0]; // Set up arguments.
 else arguments = new Object[] { arg };
 try { m.invoke(target, arguments); } // And invoke the method.
 catch (IllegalAccessException e) { // Should never happen.
 System.err.println("UniversalActionListener: " + e);
 } catch (InvocationTargetException e) { // Should never happen.
 System.err.println("UniversalActionListener: " + e);
 }
 }
 // A simple test program for the UniversalActionListener.
 public static void main(String[] args) throws NoSuchMethodException {
 Frame f = new Frame("UniversalActionListener Test");// Create window.
 f.setLayout(new FlowLayout()); // Set layout manager.
 Button b1 = new Button("tick"); // Create buttons.
 Button b2 = new Button("tock");
 Button b3 = new Button("Close Window");
 f.add(b1); f.add(b2); f.add(b3); // Add them to window.
 // Specify what the buttons do. Invoke a named method with
 // the UniversalActionListener object.
 b1.addActionListener(new UniversalActionListener(b1, "setLabel", "tock"));
 b1.addActionListener(new UniversalActionListener(b2, "setLabel", "tick"));
 b1.addActionListener(new UniversalActionListener(b3, "hide", null));
 b2.addActionListener(new UniversalActionListener(b1, "setLabel", "tick"));
 b2.addActionListener(new UniversalActionListener(b2, "setLabel", "tock"));
 b2.addActionListener(new UniversalActionListener(b3, "show", null));
 b3.addActionListener(new UniversalActionListener(f, "dispose", null));
 f.pack(); // Set window size.
 f.show(); // And pop it up.
 }
}

Obtaining Class and Member
Information

Java Syntax

Chapter 32

32. Class, Method, and Field Index
The following index allows you to look up a class or interface and find out what package it is defined in.
It also allows you to look up a method or field and find out what class it is defined in. Use it when you
want to look up a class but don't know its package, or want to look up a method but don't know its class.

A

a

java.awt.AWTEventMulticaster (JDK 1.1)

ABORT

java.awt.image.ImageObserver (JDK 1.0)

ABORTED

java.awt.MediaTracker (JDK 1.0)

abortGrabbing()

java.awt.image.PixelGrabber (JDK 1.0)

abs()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1), java.lang.Math (JDK 1.0)

ABSTRACT

java.lang.reflect.Modifier (JDK 1.1)

AbstractMethodError

The java.lang Package

accept()

java.io.FilenameFilter (JDK 1.0), java.net.ServerSocket (JDK 1.0), java.net.SocketImpl (JDK 1.0)

acos()

java.lang.Math (JDK 1.0)

action()

java.awt.Component (JDK 1.0)

ACTION_EVENT

java.awt.Event (JDK 1.0)

ACTION_EVENT_MASK

java.awt.AWTEvent (JDK 1.1)

ACTION_FIRST

java.awt.event.ActionEvent (JDK 1.1)

ACTION_LAST

java.awt.event.ActionEvent (JDK 1.1)

ACTION_PERFORMED

java.awt.event.ActionEvent (JDK 1.1)

ActionEvent

The java.awt.event Package

ActionListener

The java.awt.event Package

actionPerformed()

java.awt.event.ActionListener (JDK 1.1), java.awt.AWTEventMulticaster (JDK 1.1)

ACTIVE_CAPTION

java.awt.SystemColor (JDK 1.1)

ACTIVE_CAPTION_BORDER

java.awt.SystemColor (JDK 1.1)

ACTIVE_CAPTION_TEXT

java.awt.SystemColor (JDK 1.1)

activeCaption

java.awt.SystemColor (JDK 1.1)

activeCaptionBorder

java.awt.SystemColor (JDK 1.1)

activeCaptionText

java.awt.SystemColor (JDK 1.1)

activeCount()

java.lang.Thread (JDK 1.0), java.lang.ThreadGroup (JDK 1.0)

activeGroupCount()

java.lang.ThreadGroup (JDK 1.0)

AD

java.util.GregorianCalendar (JDK 1.1)

add()

java.awt.AWTEventMulticaster (JDK 1.1), java.math.BigDecimal (JDK 1.1),
java.math.BigInteger (JDK 1.1), java.util.Calendar (JDK 1.1), java.awt.Choice (JDK 1.0),
java.awt.peer.ChoicePeer (JDK 1.0), java.awt.Component (JDK 1.0), java.awt.Container (JDK
1.0), java.util.GregorianCalendar (JDK 1.1), java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK
1.0), java.awt.Menu (JDK 1.0), java.awt.MenuBar (JDK 1.0), java.awt.Rectangle (JDK 1.0)

addActionListener()

java.awt.Button (JDK 1.0), java.awt.List (JDK 1.0), java.awt.MenuItem (JDK 1.0),
java.awt.TextField (JDK 1.0)

addAdjustmentListener()

java.awt.Adjustable (JDK 1.1), java.awt.Scrollbar (JDK 1.0)

addComponentListener()

java.awt.Component (JDK 1.0)

addConsumer()

java.awt.image.FilteredImageSource (JDK 1.0), java.awt.image.ImageProducer (JDK 1.0),
java.awt.image.MemoryImageSource (JDK 1.0)

addContainerListener()

java.awt.Container (JDK 1.0)

addElement()

java.util.Vector (JDK 1.0)

addFocusListener()

java.awt.Component (JDK 1.0)

addHelpMenu()

java.awt.peer.MenuBarPeer (JDK 1.0)

addImage()

java.awt.MediaTracker (JDK 1.0)

addImpl()

java.awt.Container (JDK 1.0), java.awt.ScrollPane (JDK 1.1)

addInternal()

java.awt.AWTEventMulticaster (JDK 1.1)

addItem()

java.awt.Choice (JDK 1.0), java.awt.peer.ChoicePeer (JDK 1.0), java.awt.List (JDK 1.0),
java.awt.peer.ListPeer (JDK 1.0), java.awt.peer.MenuPeer (JDK 1.0)

addItemListener()

java.awt.Checkbox (JDK 1.0), java.awt.CheckboxMenuItem (JDK 1.0), java.awt.Choice (JDK
1.0), java.awt.ItemSelectable (JDK 1.1), java.awt.List (JDK 1.0)

addKeyListener()

java.awt.Component (JDK 1.0)

addLayoutComponent()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.FlowLayout (JDK
1.0), java.awt.GridBagLayout (JDK 1.0), java.awt.GridLayout (JDK 1.0),

java.awt.LayoutManager (JDK 1.0), java.awt.LayoutManager2 (JDK 1.1)

addMenu()

java.awt.peer.MenuBarPeer (JDK 1.0)

addMouseListener()

java.awt.Component (JDK 1.0)

addMouseMotionListener()

java.awt.Component (JDK 1.0)

addNotify()

java.awt.Button (JDK 1.0), java.awt.Canvas (JDK 1.0), java.awt.Checkbox (JDK 1.0),
java.awt.CheckboxMenuItem (JDK 1.0), java.awt.Choice (JDK 1.0), java.awt.Component (JDK
1.0), java.awt.Container (JDK 1.0), java.awt.Dialog (JDK 1.0), java.awt.FileDialog (JDK 1.0),
java.awt.Frame (JDK 1.0), java.awt.Label (JDK 1.0), java.awt.List (JDK 1.0), java.awt.Menu
(JDK 1.0), java.awt.MenuBar (JDK 1.0), java.awt.MenuItem (JDK 1.0), java.awt.Panel (JDK
1.0), java.awt.PopupMenu (JDK 1.1), java.awt.Scrollbar (JDK 1.0), java.awt.ScrollPane (JDK
1.1), java.awt.TextArea (JDK 1.0), java.awt.TextField (JDK 1.0), java.awt.Window (JDK 1.0)

addObserver()

java.util.Observable (JDK 1.0)

addPoint()

java.awt.Polygon (JDK 1.0)

addPropertyChangeListener()

java.beans.Customizer (JDK 1.1), java.beans.PropertyChangeSupport (JDK 1.1),
java.beans.PropertyEditor (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1)

address

java.net.SocketImpl (JDK 1.0)

addSeparator()

java.awt.Menu (JDK 1.0), java.awt.peer.MenuPeer (JDK 1.0)

addTextListener()

java.awt.TextComponent (JDK 1.0)

addVetoableChangeListener()

java.beans.VetoableChangeSupport (JDK 1.1)

addWindowListener()

java.awt.Window (JDK 1.0)

Adjustable

The java.awt Package

AdjustForGravity()

java.awt.GridBagLayout (JDK 1.0)

ADJUSTMENT_EVENT_MASK

java.awt.AWTEvent (JDK 1.1)

ADJUSTMENT_FIRST

java.awt.event.AdjustmentEvent (JDK 1.1)

ADJUSTMENT_LAST

java.awt.event.AdjustmentEvent (JDK 1.1)

ADJUSTMENT_VALUE_CHANGED

java.awt.event.AdjustmentEvent (JDK 1.1)

AdjustmentEvent

The java.awt.event Package

AdjustmentListener

The java.awt.event Package

adjustmentValueChanged()

java.awt.event.AdjustmentListener (JDK 1.1), java.awt.AWTEventMulticaster (JDK 1.1)

Adler32

The java.util.zip Package

after()

java.util.Calendar (JDK 1.1), java.util.Date (JDK 1.0), java.util.GregorianCalendar (JDK 1.1)

ALLBITS

java.awt.image.ImageObserver (JDK 1.0)

allowsMultipleSelections()

java.awt.List (JDK 1.0)

allowThreadSuspension()

java.lang.ThreadGroup (JDK 1.0)

allowUserInteraction

java.net.URLConnection (JDK 1.0)

ALT_MASK

java.awt.event.ActionEvent (JDK 1.1), java.awt.Event (JDK 1.0), java.awt.event.InputEvent (JDK
1.1)

AM

java.util.Calendar (JDK 1.1)

AM_PM

java.util.Calendar (JDK 1.1)

AM_PM_FIELD

java.text.DateFormat (JDK 1.1)

anchor

java.awt.GridBagConstraints (JDK 1.0)

and()

java.math.BigInteger (JDK 1.1), java.util.BitSet (JDK 1.0)

andNot()

java.math.BigInteger (JDK 1.1)

annotateClass()

java.io.ObjectOutputStream (JDK 1.1)

append()

java.lang.StringBuffer (JDK 1.0), java.awt.TextArea (JDK 1.0)

appendText()

java.awt.TextArea (JDK 1.0)

Applet

The java.applet Package

AppletContext

The java.applet Package

appletResize()

java.applet.AppletStub (JDK 1.0)

AppletStub

The java.applet Package

applyLocalizedPattern()

java.text.DecimalFormat (JDK 1.1), java.text.SimpleDateFormat (JDK 1.1)

applyPattern()

java.text.ChoiceFormat (JDK 1.1), java.text.DecimalFormat (JDK 1.1), java.text.MessageFormat
(JDK 1.1), java.text.SimpleDateFormat (JDK 1.1)

APRIL

java.util.Calendar (JDK 1.1)

AreaAveragingScaleFilter

The java.awt.image Package

areFieldsSet

java.util.Calendar (JDK 1.1)

arg

java.awt.Event (JDK 1.0)

ArithmeticException

The java.lang Package

ArrangeGrid()

java.awt.GridBagLayout (JDK 1.0)

Array

The java.lang.reflect Package

arraycopy()

java.lang.System (JDK 1.0)

ArrayIndexOutOfBoundsException

The java.lang Package

ArrayStoreException

The java.lang Package

asin()

java.lang.Math (JDK 1.0)

atan()

java.lang.Math (JDK 1.0)

atan2()

java.lang.Math (JDK 1.0)

attributeNames()

java.beans.FeatureDescriptor (JDK 1.1)

AudioClip

The java.applet Package

AUGUST

java.util.Calendar (JDK 1.1)

available()

java.io.BufferedInputStream (JDK 1.0), java.io.ByteArrayInputStream (JDK 1.0),
java.io.FileInputStream (JDK 1.0), java.io.FilterInputStream (JDK 1.0), java.io.InputStream (JDK
1.0), java.io.LineNumberInputStream (JDK 1.0; Deprecated.), java.io.ObjectInput (JDK 1.1),
java.io.ObjectInputStream (JDK 1.1), java.io.PipedInputStream (JDK 1.0),
java.io.PushbackInputStream (JDK 1.0), java.io.SequenceInputStream (JDK 1.0),
java.net.SocketImpl (JDK 1.0), java.io.StringBufferInputStream (JDK 1.0; Deprecated.)

avoidingGui()

java.beans.Visibility (JDK 1.1)

AWTError

The java.awt Package

AWTEvent

The java.awt Package

AWTEventMulticaster

The java.awt Package

AWTException

The java.awt Package

B

b

java.awt.AWTEventMulticaster (JDK 1.1)

BACK_SPACE

java.awt.Event (JDK 1.0)

BC

java.util.GregorianCalendar (JDK 1.1)

BeanDescriptor

The java.beans Package

BeanInfo

The java.beans Package

Beans

The java.beans Package

beep()

java.awt.Toolkit (JDK 1.0)

before()

java.util.Calendar (JDK 1.1), java.util.Date (JDK 1.0), java.util.GregorianCalendar (JDK 1.1)

beginValidate()

java.awt.peer.ContainerPeer (JDK 1.0)

BEST_COMPRESSION

java.util.zip.Deflater (JDK 1.1)

BEST_SPEED

java.util.zip.Deflater (JDK 1.1)

BigDecimal

The java.math Package

BigInteger

The java.math Package

bind()

java.net.DatagramSocketImpl (JDK 1.1), java.net.SocketImpl (JDK 1.0)

BindException

The java.net Package

bitCount()

java.math.BigInteger (JDK 1.1)

bitLength()

java.math.BigInteger (JDK 1.1)

BitSet

The java.util Package

black

java.awt.Color (JDK 1.0)

BLOCK_DECREMENT

java.awt.event.AdjustmentEvent (JDK 1.1)

BLOCK_INCREMENT

java.awt.event.AdjustmentEvent (JDK 1.1)

blue

java.awt.Color (JDK 1.0)

BOLD

java.awt.Font (JDK 1.0)

Boolean

The java.lang Package

booleanValue()

java.lang.Boolean (JDK 1.0)

BorderLayout

The java.awt Package

BOTH

java.awt.GridBagConstraints (JDK 1.0)

bottom

java.awt.Insets (JDK 1.0)

BOTTOM_ALIGNMENT

java.awt.Component (JDK 1.0)

bounds

java.awt.Polygon (JDK 1.0)

bounds()

java.awt.Component (JDK 1.0)

BreakIterator

The java.text Package

brighter()

java.awt.Color (JDK 1.0)

buf

java.io.BufferedInputStream (JDK 1.0), java.io.BufferedOutputStream (JDK 1.0),
java.io.ByteArrayInputStream (JDK 1.0), java.io.ByteArrayOutputStream (JDK 1.0),
java.io.CharArrayReader (JDK 1.1), java.io.CharArrayWriter (JDK 1.1),
java.util.zip.DeflaterOutputStream (JDK 1.1), java.util.zip.InflaterInputStream (JDK 1.1),
java.io.PushbackInputStream (JDK 1.0)

buffer

java.io.PipedInputStream (JDK 1.0), java.io.StringBufferInputStream (JDK 1.0; Deprecated.)

BufferedInputStream

The java.io Package

BufferedOutputStream

The java.io Package

BufferedReader

The java.io Package

BufferedWriter

The java.io Package

Button

The java.awt Package

BUTTON1_MASK

java.awt.event.InputEvent (JDK 1.1)

BUTTON2_MASK

java.awt.event.InputEvent (JDK 1.1)

BUTTON3_MASK

java.awt.event.InputEvent (JDK 1.1)

ButtonPeer

The java.awt.peer Package

Byte

The java.lang Package

ByteArrayInputStream

The java.io Package

ByteArrayOutputStream

The java.io Package

bytesTransferred

java.io.InterruptedIOException (JDK 1.0)

bytesWidth()

java.awt.FontMetrics (JDK 1.0)

byteValue()

java.lang.Byte (JDK 1.1), java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0),
java.lang.Integer (JDK 1.0), java.lang.Long (JDK 1.0), java.lang.Number (JDK 1.0),
java.lang.Short (JDK 1.1)

C

Calendar

The java.util Package

calendar

java.text.DateFormat (JDK 1.1)

CANADA

java.util.Locale (JDK 1.1)

CANADA_FRENCH

java.util.Locale (JDK 1.1)

canFilterIndexColorModel

java.awt.image.RGBImageFilter (JDK 1.0)

CANONICAL_DECOMPOSITION

java.text.Collator (JDK 1.1)

canRead()

java.io.File (JDK 1.0)

Canvas

The java.awt Package

CanvasPeer

The java.awt.peer Package

canWrite()

java.io.File (JDK 1.0)

capacity()

java.lang.StringBuffer (JDK 1.0), java.util.Vector (JDK 1.0)

capacityIncrement

java.util.Vector (JDK 1.0)

CAPS_LOCK

java.awt.Event (JDK 1.0)

CardLayout

The java.awt Package

ceil()

java.lang.Math (JDK 1.0)

CENTER

java.awt.BorderLayout (JDK 1.0), java.awt.FlowLayout (JDK 1.0), java.awt.GridBagConstraints
(JDK 1.0), java.awt.Label (JDK 1.0)

CENTER_ALIGNMENT

java.awt.Component (JDK 1.0)

CHAR_UNDEFINED

java.awt.event.KeyEvent (JDK 1.1)

Character

The java.lang Package

CharacterIterator

The java.text Package

CharArrayReader

The java.io Package

CharArrayWriter

The java.io Package

charAt()

java.lang.String (JDK 1.0), java.lang.StringBuffer (JDK 1.0)

CharConversionException

The java.io Package

charsWidth()

java.awt.FontMetrics (JDK 1.0)

charValue()

java.lang.Character (JDK 1.0)

charWidth()

java.awt.FontMetrics (JDK 1.0)

checkAccept()

java.lang.SecurityManager (JDK 1.0)

checkAccess()

java.lang.SecurityManager (JDK 1.0), java.lang.Thread (JDK 1.0), java.lang.ThreadGroup (JDK
1.0)

checkAll()

java.awt.MediaTracker (JDK 1.0)

checkAwtEventQueueAccess()

java.lang.SecurityManager (JDK 1.0)

Checkbox

The java.awt Package

CheckboxGroup

The java.awt Package

CheckboxMenuItem

The java.awt Package

CheckboxMenuItemPeer

The java.awt.peer Package

CheckboxPeer

The java.awt.peer Package

checkConnect()

java.lang.SecurityManager (JDK 1.0)

checkCreateClassLoader()

java.lang.SecurityManager (JDK 1.0)

checkDelete()

java.lang.SecurityManager (JDK 1.0)

CheckedInputStream

The java.util.zip Package

CheckedOutputStream

The java.util.zip Package

checkError()

java.io.PrintStream (JDK 1.0), java.io.PrintWriter (JDK 1.1)

checkExec()

java.lang.SecurityManager (JDK 1.0)

checkExit()

java.lang.SecurityManager (JDK 1.0)

checkID()

java.awt.MediaTracker (JDK 1.0)

checkImage()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Toolkit (JDK

1.0)

checkLink()

java.lang.SecurityManager (JDK 1.0)

checkListen()

java.lang.SecurityManager (JDK 1.0)

checkMemberAccess()

java.lang.SecurityManager (JDK 1.0)

checkMulticast()

java.lang.SecurityManager (JDK 1.0)

checkPackageAccess()

java.lang.SecurityManager (JDK 1.0)

checkPackageDefinition()

java.lang.SecurityManager (JDK 1.0)

checkPrintJobAccess()

java.lang.SecurityManager (JDK 1.0)

checkPropertiesAccess()

java.lang.SecurityManager (JDK 1.0)

checkPropertyAccess()

java.lang.SecurityManager (JDK 1.0)

checkRead()

java.lang.SecurityManager (JDK 1.0)

checkSecurityAccess()

java.lang.SecurityManager (JDK 1.0)

checkSetFactory()

java.lang.SecurityManager (JDK 1.0)

Checksum

The java.util.zip Package

checkSystemClipboardAccess()

java.lang.SecurityManager (JDK 1.0)

checkTopLevelWindow()

java.lang.SecurityManager (JDK 1.0)

checkWrite()

java.lang.SecurityManager (JDK 1.0)

childResized()

java.awt.peer.ScrollPanePeer (JDK 1.1)

CHINA

java.util.Locale (JDK 1.1)

CHINESE

java.util.Locale (JDK 1.1)

Choice

The java.awt Package

ChoiceFormat

The java.text Package

ChoicePeer

The java.awt.peer Package

Class

The java.lang Package

ClassCastException

The java.lang Package

ClassCircularityError

The java.lang Package

classDepth()

java.lang.SecurityManager (JDK 1.0)

ClassFormatError

The java.lang Package

ClassLoader

The java.lang Package

classLoaderDepth()

java.lang.SecurityManager (JDK 1.0)

classname

java.io.InvalidClassException (JDK 1.1)

ClassNotFoundException

The java.lang Package

clear()

java.util.BitSet (JDK 1.0), java.util.Calendar (JDK 1.1), java.util.Hashtable (JDK 1.0),
java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK 1.0)

clearBit()

java.math.BigInteger (JDK 1.1)

clearChanged()

java.util.Observable (JDK 1.0)

clearRect()

java.awt.Graphics (JDK 1.0)

clickCount

java.awt.Event (JDK 1.0)

Clipboard

The java.awt.datatransfer Package

ClipboardOwner

The java.awt.datatransfer Package

clipRect()

java.awt.Graphics (JDK 1.0)

clone()

java.util.BitSet (JDK 1.0), java.text.BreakIterator (JDK 1.1), java.util.Calendar (JDK 1.1),
java.text.CharacterIterator (JDK 1.1), java.text.ChoiceFormat (JDK 1.1), java.text.Collator (JDK
1.1), java.text.DateFormat (JDK 1.1), java.text.DateFormatSymbols (JDK 1.1),
java.text.DecimalFormat (JDK 1.1), java.text.DecimalFormatSymbols (JDK 1.1),
java.text.Format (JDK 1.1), java.util.GregorianCalendar (JDK 1.1), java.awt.GridBagConstraints
(JDK 1.0), java.util.Hashtable (JDK 1.0), java.awt.image.ImageFilter (JDK 1.0), java.awt.Insets
(JDK 1.0), java.util.Locale (JDK 1.1), java.text.MessageFormat (JDK 1.1),
java.text.NumberFormat (JDK 1.1), java.lang.Object (JDK 1.0), java.text.RuleBasedCollator
(JDK 1.1), java.text.SimpleDateFormat (JDK 1.1), java.util.SimpleTimeZone (JDK 1.1),
java.text.StringCharacterIterator (JDK 1.1), java.util.TimeZone (JDK 1.1), java.util.Vector (JDK
1.0)

Cloneable

The java.lang Package

CloneNotSupportedException

The java.lang Package

close()

java.io.BufferedReader (JDK 1.1), java.io.BufferedWriter (JDK 1.1), java.io.CharArrayReader
(JDK 1.1), java.io.CharArrayWriter (JDK 1.1), java.net.DatagramSocket (JDK 1.0),
java.net.DatagramSocketImpl (JDK 1.1), java.util.zip.DeflaterOutputStream (JDK 1.1),
java.io.FileInputStream (JDK 1.0), java.io.FileOutputStream (JDK 1.0), java.io.FilterInputStream
(JDK 1.0), java.io.FilterOutputStream (JDK 1.0), java.io.FilterReader (JDK 1.1),
java.io.FilterWriter (JDK 1.1), java.util.zip.GZIPInputStream (JDK 1.1),
java.util.zip.GZIPOutputStream (JDK 1.1), java.io.InputStream (JDK 1.0),
java.io.InputStreamReader (JDK 1.1), java.io.ObjectInput (JDK 1.1), java.io.ObjectInputStream
(JDK 1.1), java.io.ObjectOutput (JDK 1.1), java.io.ObjectOutputStream (JDK 1.1),
java.io.OutputStream (JDK 1.0), java.io.OutputStreamWriter (JDK 1.1), java.io.PipedInputStream
(JDK 1.0), java.io.PipedOutputStream (JDK 1.0), java.io.PipedReader (JDK 1.1),
java.io.PipedWriter (JDK 1.1), java.io.PrintStream (JDK 1.0), java.io.PrintWriter (JDK 1.1),
java.io.PushbackReader (JDK 1.1), java.io.RandomAccessFile (JDK 1.0), java.io.Reader (JDK
1.1), java.io.SequenceInputStream (JDK 1.0), java.net.ServerSocket (JDK 1.0), java.net.Socket

(JDK 1.0), java.net.SocketImpl (JDK 1.0), java.io.StringReader (JDK 1.1), java.io.StringWriter
(JDK 1.1), java.io.Writer (JDK 1.1), java.util.zip.ZipFile (JDK 1.1), java.util.zip.ZipInputStream
(JDK 1.1), java.util.zip.ZipOutputStream (JDK 1.1)

closeEntry()

java.util.zip.ZipInputStream (JDK 1.1), java.util.zip.ZipOutputStream (JDK 1.1)

CollationElementIterator

The java.text Package

CollationKey

The java.text Package

Collator

The java.text Package

Color

The java.awt Package

ColorModel

The java.awt.image Package

columnWeights

java.awt.GridBagLayout (JDK 1.0)

columnWidths

java.awt.GridBagLayout (JDK 1.0)

COMBINING_SPACING_MARK

java.lang.Character (JDK 1.0)

command()

java.lang.Compiler (JDK 1.0)

commentChar()

java.io.StreamTokenizer (JDK 1.0)

compare()

java.text.Collator (JDK 1.1), java.text.RuleBasedCollator (JDK 1.1)

compareTo()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1), java.text.CollationKey (JDK
1.1), java.lang.String (JDK 1.0)

compileClass()

java.lang.Compiler (JDK 1.0)

compileClasses()

java.lang.Compiler (JDK 1.0)

Compiler

The java.lang Package

COMPLETE

java.awt.MediaTracker (JDK 1.0)

complete()

java.util.Calendar (JDK 1.1)

COMPLETESCANLINES

java.awt.image.ImageConsumer (JDK 1.0)

Component

The java.awt Package

COMPONENT_ADDED

java.awt.event.ContainerEvent (JDK 1.1)

COMPONENT_EVENT_MASK

java.awt.AWTEvent (JDK 1.1)

COMPONENT_FIRST

java.awt.event.ComponentEvent (JDK 1.1)

COMPONENT_HIDDEN

java.awt.event.ComponentEvent (JDK 1.1)

COMPONENT_LAST

java.awt.event.ComponentEvent (JDK 1.1)

COMPONENT_MOVED

java.awt.event.ComponentEvent (JDK 1.1)

COMPONENT_REMOVED

java.awt.event.ContainerEvent (JDK 1.1)

COMPONENT_RESIZED

java.awt.event.ComponentEvent (JDK 1.1)

COMPONENT_SHOWN

java.awt.event.ComponentEvent (JDK 1.1)

ComponentAdapter

The java.awt.event Package

componentAdded()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.ContainerAdapter (JDK 1.1),
java.awt.event.ContainerListener (JDK 1.1)

ComponentEvent

The java.awt.event Package

componentHidden()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.ComponentAdapter (JDK 1.1),
java.awt.event.ComponentListener (JDK 1.1)

ComponentListener

The java.awt.event Package

componentMoved()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.ComponentAdapter (JDK 1.1),
java.awt.event.ComponentListener (JDK 1.1)

ComponentPeer

The java.awt.peer Package

componentRemoved()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.ContainerAdapter (JDK 1.1),
java.awt.event.ContainerListener (JDK 1.1)

componentResized()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.ComponentAdapter (JDK 1.1),
java.awt.event.ComponentListener (JDK 1.1)

componentShown()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.ComponentAdapter (JDK 1.1),
java.awt.event.ComponentListener (JDK 1.1)

comptable

java.awt.GridBagLayout (JDK 1.0)

computeFields()

java.util.Calendar (JDK 1.1), java.util.GregorianCalendar (JDK 1.1)

computeTime()

java.util.Calendar (JDK 1.1), java.util.GregorianCalendar (JDK 1.1)

concat()

java.lang.String (JDK 1.0)

connect()

java.io.PipedInputStream (JDK 1.0), java.io.PipedOutputStream (JDK 1.0), java.io.PipedReader
(JDK 1.1), java.io.PipedWriter (JDK 1.1), java.net.SocketImpl (JDK 1.0),
java.net.URLConnection (JDK 1.0)

connected

java.net.URLConnection (JDK 1.0)

ConnectException

The java.net Package

CONNECTOR_PUNCTUATION

java.lang.Character (JDK 1.0)

Constructor

The java.lang.reflect Package

consume()

java.awt.AWTEvent (JDK 1.1), java.awt.event.InputEvent (JDK 1.1)

consumed

java.awt.AWTEvent (JDK 1.1)

consumer

java.awt.image.ImageFilter (JDK 1.0)

Container

The java.awt Package

CONTAINER_EVENT_MASK

java.awt.AWTEvent (JDK 1.1)

CONTAINER_FIRST

java.awt.event.ContainerEvent (JDK 1.1)

CONTAINER_LAST

java.awt.event.ContainerEvent (JDK 1.1)

ContainerAdapter

The java.awt.event Package

ContainerEvent

The java.awt.event Package

ContainerListener

The java.awt.event Package

ContainerPeer

The java.awt.peer Package

contains()

java.awt.Component (JDK 1.0), java.util.Hashtable (JDK 1.0), java.awt.Polygon (JDK 1.0),
java.awt.Rectangle (JDK 1.0), java.util.Vector (JDK 1.0)

containsKey()

java.util.Hashtable (JDK 1.0)

ContentHandler

The java.net Package

ContentHandlerFactory

The java.net Package

contents

java.awt.datatransfer.Clipboard (JDK 1.1)

control

java.awt.SystemColor (JDK 1.1)

CONTROL

java.lang.Character (JDK 1.0), java.awt.SystemColor (JDK 1.1)

CONTROL_DK_SHADOW

java.awt.SystemColor (JDK 1.1)

CONTROL_HIGHLIGHT

java.awt.SystemColor (JDK 1.1)

CONTROL_LT_HIGHLIGHT

java.awt.SystemColor (JDK 1.1)

CONTROL_SHADOW

java.awt.SystemColor (JDK 1.1)

CONTROL_TEXT

java.awt.SystemColor (JDK 1.1)

controlDkShadow

java.awt.SystemColor (JDK 1.1)

controlDown()

java.awt.Event (JDK 1.0)

controlHighlight

java.awt.SystemColor (JDK 1.1)

controlLtHighlight

java.awt.SystemColor (JDK 1.1)

controlShadow

java.awt.SystemColor (JDK 1.1)

controlText

java.awt.SystemColor (JDK 1.1)

copyArea()

java.awt.Graphics (JDK 1.0)

copyInto()

java.util.Vector (JDK 1.0)

copyValueOf()

java.lang.String (JDK 1.0)

cos()

java.lang.Math (JDK 1.0)

count

java.io.BufferedInputStream (JDK 1.0), java.io.BufferedOutputStream (JDK 1.0),
java.io.ByteArrayInputStream (JDK 1.0), java.io.ByteArrayOutputStream (JDK 1.0),
java.io.CharArrayReader (JDK 1.1), java.io.CharArrayWriter (JDK 1.1),
java.io.StringBufferInputStream (JDK 1.0; Deprecated.)

countComponents()

java.awt.Container (JDK 1.0)

countItems()

java.awt.Choice (JDK 1.0), java.awt.List (JDK 1.0), java.awt.Menu (JDK 1.0)

countMenus()

java.awt.MenuBar (JDK 1.0)

countObservers()

java.util.Observable (JDK 1.0)

countStackFrames()

java.lang.Thread (JDK 1.0)

countTokens()

java.util.StringTokenizer (JDK 1.0)

crc

java.util.zip.GZIPInputStream (JDK 1.1), java.util.zip.GZIPOutputStream (JDK 1.1)

CRC32

The java.util.zip Package

create()

java.net.DatagramSocketImpl (JDK 1.1), java.awt.Graphics (JDK 1.0), java.net.SocketImpl (JDK
1.0)

createButton()

java.awt.Toolkit (JDK 1.0)

createCanvas()

java.awt.Toolkit (JDK 1.0)

createCheckbox()

java.awt.Toolkit (JDK 1.0)

createCheckboxMenuItem()

java.awt.Toolkit (JDK 1.0)

createChoice()

java.awt.Toolkit (JDK 1.0)

createComponent()

java.awt.Toolkit (JDK 1.0)

createContentHandler()

java.net.ContentHandlerFactory (JDK 1.0)

createDialog()

java.awt.Toolkit (JDK 1.0)

createFileDialog()

java.awt.Toolkit (JDK 1.0)

createFrame()

java.awt.Toolkit (JDK 1.0)

createImage()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Toolkit (JDK
1.0)

createLabel()

java.awt.Toolkit (JDK 1.0)

createList()

java.awt.Toolkit (JDK 1.0)

createMenu()

java.awt.Toolkit (JDK 1.0)

createMenuBar()

java.awt.Toolkit (JDK 1.0)

createMenuItem()

java.awt.Toolkit (JDK 1.0)

createPanel()

java.awt.Toolkit (JDK 1.0)

createPopupMenu()

java.awt.Toolkit (JDK 1.0)

createScrollbar()

java.awt.Toolkit (JDK 1.0)

createScrollPane()

java.awt.Toolkit (JDK 1.0)

createSocketImpl()

java.net.SocketImplFactory (JDK 1.0)

createTextArea()

java.awt.Toolkit (JDK 1.0)

createTextField()

java.awt.Toolkit (JDK 1.0)

createURLStreamHandler()

java.net.URLStreamHandlerFactory (JDK 1.0)

createWindow()

java.awt.Toolkit (JDK 1.0)

CropImageFilter

The java.awt.image Package

CROSSHAIR_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

CTRL_MASK

java.awt.event.ActionEvent (JDK 1.1), java.awt.Event (JDK 1.0), java.awt.event.InputEvent (JDK
1.1)

CURRENCY_SYMBOL

java.lang.Character (JDK 1.0)

current()

java.text.BreakIterator (JDK 1.1), java.text.CharacterIterator (JDK 1.1),
java.text.StringCharacterIterator (JDK 1.1)

currentClassLoader()

java.lang.SecurityManager (JDK 1.0)

currentLoadedClass()

java.lang.SecurityManager (JDK 1.0)

currentThread()

java.lang.Thread (JDK 1.0)

currentTimeMillis()

java.lang.System (JDK 1.0)

Cursor

The java.awt Package

Customizer

The java.beans Package

cyan

java.awt.Color (JDK 1.0)

D

darker()

java.awt.Color (JDK 1.0)

darkGray

java.awt.Color (JDK 1.0)

DASH_PUNCTUATION

java.lang.Character (JDK 1.0)

DataFlavor

The java.awt.datatransfer Package

DataFormatException

The java.util.zip Package

DatagramPacket

The java.net Package

DatagramSocket

The java.net Package

DatagramSocketImpl

The java.net Package

DataInput

The java.io Package

DataInputStream

The java.io Package

DataOutput

The java.io Package

DataOutputStream

The java.io Package

DATE

java.util.Calendar (JDK 1.1)

Date

The java.util Package

DATE_FIELD

java.text.DateFormat (JDK 1.1)

DateFormat

The java.text Package

DateFormatSymbols

The java.text Package

DAY_OF_MONTH

java.util.Calendar (JDK 1.1)

DAY_OF_WEEK

java.util.Calendar (JDK 1.1)

DAY_OF_WEEK_FIELD

java.text.DateFormat (JDK 1.1)

DAY_OF_WEEK_IN_MONTH

java.util.Calendar (JDK 1.1)

DAY_OF_WEEK_IN_MONTH_FIELD

java.text.DateFormat (JDK 1.1)

DAY_OF_YEAR

java.util.Calendar (JDK 1.1)

DAY_OF_YEAR_FIELD

java.text.DateFormat (JDK 1.1)

decapitalize()

java.beans.Introspector (JDK 1.1)

DECEMBER

java.util.Calendar (JDK 1.1)

DECIMAL_DIGIT_NUMBER

java.lang.Character (JDK 1.0)

DecimalFormat

The java.text Package

DecimalFormatSymbols

The java.text Package

DECLARED

java.lang.reflect.Member (JDK 1.1)

decode()

java.lang.Byte (JDK 1.1), java.awt.Color (JDK 1.0), java.awt.Font (JDK 1.0), java.lang.Integer
(JDK 1.0), java.lang.Short (JDK 1.1)

def

java.util.zip.DeflaterOutputStream (JDK 1.1)

DEFAULT

java.text.DateFormat (JDK 1.1)

DEFAULT_COMPRESSION

java.util.zip.Deflater (JDK 1.1)

DEFAULT_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

DEFAULT_STRATEGY

java.util.zip.Deflater (JDK 1.1)

defaultConstraints

java.awt.GridBagLayout (JDK 1.0)

defaultReadObject()

java.io.ObjectInputStream (JDK 1.1)

defaults

java.util.Properties (JDK 1.0)

defaultWriteObject()

java.io.ObjectOutputStream (JDK 1.1)

defineClass()

java.lang.ClassLoader (JDK 1.0)

deflate()

java.util.zip.Deflater (JDK 1.1), java.util.zip.DeflaterOutputStream (JDK 1.1)

DEFLATED

java.util.zip.Deflater (JDK 1.1), java.util.zip.ZipEntry (JDK 1.1), java.util.zip.ZipOutputStream
(JDK 1.1)

Deflater

The java.util.zip Package

DeflaterOutputStream

The java.util.zip Package

DELETE

java.awt.Event (JDK 1.0)

delete()

java.io.File (JDK 1.0)

deleteObserver()

java.util.Observable (JDK 1.0)

deleteObservers()

java.util.Observable (JDK 1.0)

deleteShortcut()

java.awt.MenuBar (JDK 1.0), java.awt.MenuItem (JDK 1.0)

delItem()

java.awt.List (JDK 1.0), java.awt.peer.MenuPeer (JDK 1.0)

delItems()

java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK 1.0)

deliverEvent()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0)

delMenu()

java.awt.peer.MenuBarPeer (JDK 1.0)

deselect()

java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK 1.0)

DESELECTED

java.awt.event.ItemEvent (JDK 1.1)

desktop

java.awt.SystemColor (JDK 1.1)

DESKTOP

java.awt.SystemColor (JDK 1.1)

destHeight

java.awt.image.ReplicateScaleFilter (JDK 1.1)

destroy()

java.applet.Applet (JDK 1.0), java.lang.Process (JDK 1.0), java.lang.Thread (JDK 1.0),
java.lang.ThreadGroup (JDK 1.0)

destWidth

java.awt.image.ReplicateScaleFilter (JDK 1.1)

detail

java.io.WriteAbortedException (JDK 1.1)

Dialog

The java.awt Package

DialogPeer

The java.awt.peer Package

Dictionary

The java.util Package

digit()

java.lang.Character (JDK 1.0)

Dimension

The java.awt Package

DirectColorModel

The java.awt.image Package

disable()

java.lang.Compiler (JDK 1.0), java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer
(JDK 1.0), java.awt.MenuItem (JDK 1.0), java.awt.peer.MenuItemPeer (JDK 1.0)

disableEvents()

java.awt.Component (JDK 1.0), java.awt.MenuItem (JDK 1.0)

disconnect()

java.net.HttpURLConnection (JDK 1.1)

dispatchEvent()

java.awt.Component (JDK 1.0), java.awt.MenuComponent (JDK 1.0)

dispose()

java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Frame (JDK 1.0), java.awt.Graphics (JDK 1.0),
java.awt.peer.MenuComponentPeer (JDK 1.0), java.awt.Window (JDK 1.0)

divide()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1)

divideAndRemainder()

java.math.BigInteger (JDK 1.1)

doInput

java.net.URLConnection (JDK 1.0)

doLayout()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0), java.awt.ScrollPane (JDK 1.1)

DONE

java.text.BreakIterator (JDK 1.1), java.text.CharacterIterator (JDK 1.1)

dontUseGui()

java.beans.Visibility (JDK 1.1)

doOutput

java.net.URLConnection (JDK 1.0)

Double

The java.lang Package

doubleToLongBits()

java.lang.Double (JDK 1.0)

doubleValue()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1), java.lang.Byte (JDK 1.1),
java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0), java.lang.Integer (JDK 1.0),
java.lang.Long (JDK 1.0), java.lang.Number (JDK 1.0), java.lang.Short (JDK 1.1)

DOWN

java.awt.Event (JDK 1.0)

drain()

java.io.ObjectOutputStream (JDK 1.1)

draw3DRect()

java.awt.Graphics (JDK 1.0)

drawArc()

java.awt.Graphics (JDK 1.0)

drawBytes()

java.awt.Graphics (JDK 1.0)

drawChars()

java.awt.Graphics (JDK 1.0)

drawImage()

java.awt.Graphics (JDK 1.0)

drawLine()

java.awt.Graphics (JDK 1.0)

drawOval()

java.awt.Graphics (JDK 1.0)

drawPolygon()

java.awt.Graphics (JDK 1.0)

drawPolyline()

java.awt.Graphics (JDK 1.0)

drawRect()

java.awt.Graphics (JDK 1.0)

drawRoundRect()

java.awt.Graphics (JDK 1.0)

drawString()

java.awt.Graphics (JDK 1.0)

DST_OFFSET

java.util.Calendar (JDK 1.1)

dumpStack()

java.lang.Thread (JDK 1.0)

E

E

java.lang.Math (JDK 1.0)

E_RESIZE_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

EAST

java.awt.BorderLayout (JDK 1.0), java.awt.GridBagConstraints (JDK 1.0)

echoCharIsSet()

java.awt.TextField (JDK 1.0)

elementAt()

java.util.Vector (JDK 1.0)

elementCount

java.util.Vector (JDK 1.0)

elementData

java.util.Vector (JDK 1.0)

elements()

java.util.Dictionary (JDK 1.0), java.util.Hashtable (JDK 1.0), java.util.Vector (JDK 1.0)

empty()

java.util.Stack (JDK 1.0)

EmptyStackException

The java.util Package

enable()

java.lang.Compiler (JDK 1.0), java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer
(JDK 1.0), java.awt.MenuItem (JDK 1.0), java.awt.peer.MenuItemPeer (JDK 1.0)

enableEvents()

java.awt.Component (JDK 1.0), java.awt.MenuItem (JDK 1.0)

enableReplaceObject()

java.io.ObjectOutputStream (JDK 1.1)

enableResolveObject()

java.io.ObjectInputStream (JDK 1.1)

ENCLOSING_MARK

java.lang.Character (JDK 1.0)

encode()

java.net.URLEncoder (JDK 1.0)

END

java.awt.Event (JDK 1.0)

end()

java.util.zip.Deflater (JDK 1.1), java.util.zip.Inflater (JDK 1.1), java.awt.PrintJob (JDK 1.1)

END_PUNCTUATION

java.lang.Character (JDK 1.0)

endsWith()

java.lang.String (JDK 1.0)

endValidate()

java.awt.peer.ContainerPeer (JDK 1.0)

ENGLISH

java.util.Locale (JDK 1.1)

ensureCapacity()

java.lang.StringBuffer (JDK 1.0), java.util.Vector (JDK 1.0)

ENTER

java.awt.Event (JDK 1.0)

entries()

java.util.zip.ZipFile (JDK 1.1)

enumerate()

java.lang.Thread (JDK 1.0), java.lang.ThreadGroup (JDK 1.0)

Enumeration

The java.util Package

eof

java.io.OptionalDataException (JDK 1.1)

EOFException

The java.io Package

eolIsSignificant()

java.io.StreamTokenizer (JDK 1.0)

eos

java.util.zip.GZIPInputStream (JDK 1.1)

equals()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1), java.util.BitSet (JDK 1.0),
java.lang.Boolean (JDK 1.0), java.lang.Byte (JDK 1.1), java.util.Calendar (JDK 1.1),
java.lang.Character (JDK 1.0), java.text.ChoiceFormat (JDK 1.1), java.text.CollationKey (JDK
1.1), java.text.Collator (JDK 1.1), java.awt.Color (JDK 1.0), java.lang.reflect.Constructor (JDK
1.1), java.awt.datatransfer.DataFlavor (JDK 1.1), java.util.Date (JDK 1.0), java.text.DateFormat
(JDK 1.1), java.text.DateFormatSymbols (JDK 1.1), java.text.DecimalFormat (JDK 1.1),
java.text.DecimalFormatSymbols (JDK 1.1), java.awt.Dimension (JDK 1.0), java.lang.Double
(JDK 1.0), java.lang.reflect.Field (JDK 1.1), java.io.File (JDK 1.0), java.lang.Float (JDK 1.0),
java.awt.Font (JDK 1.0), java.util.GregorianCalendar (JDK 1.1), java.net.InetAddress (JDK 1.0),
java.awt.Insets (JDK 1.0), java.lang.Integer (JDK 1.0), java.util.Locale (JDK 1.1), java.lang.Long
(JDK 1.0), java.awt.MenuShortcut (JDK 1.1), java.text.MessageFormat (JDK 1.1),
java.lang.reflect.Method (JDK 1.1), java.text.NumberFormat (JDK 1.1), java.lang.Object (JDK
1.0), java.awt.Point (JDK 1.0), java.awt.Rectangle (JDK 1.0), java.text.RuleBasedCollator (JDK
1.1), java.lang.Short (JDK 1.1), java.text.SimpleDateFormat (JDK 1.1), java.util.SimpleTimeZone
(JDK 1.1), java.lang.String (JDK 1.0), java.text.StringCharacterIterator (JDK 1.1), java.net.URL
(JDK 1.0)

equalsIgnoreCase()

java.lang.String (JDK 1.0)

ERA

java.util.Calendar (JDK 1.1)

ERA_FIELD

java.text.DateFormat (JDK 1.1)

err

java.io.FileDescriptor (JDK 1.0), java.lang.System (JDK 1.0)

Error

The java.lang Package

ERROR

java.awt.image.ImageObserver (JDK 1.0)

ERRORED

java.awt.MediaTracker (JDK 1.0)

ESCAPE

java.awt.Event (JDK 1.0)

Event

The java.awt Package

EventListener

The java.util Package

EventObject

The java.util Package

EventQueue

The java.awt Package

EventSetDescriptor

The java.beans Package

evt

java.awt.Event (JDK 1.0)

Exception

The java.lang Package

ExceptionInInitializerError

The java.lang Package

exec()

java.lang.Runtime (JDK 1.0)

exists()

java.io.File (JDK 1.0)

exit()

java.lang.Runtime (JDK 1.0), java.lang.System (JDK 1.0)

exitValue()

java.lang.Process (JDK 1.0)

exp()

java.lang.Math (JDK 1.0)

Externalizable

The java.io Package

F

F1

java.awt.Event (JDK 1.0)

F10

java.awt.Event (JDK 1.0)

F11

java.awt.Event (JDK 1.0)

F12

java.awt.Event (JDK 1.0)

F2

java.awt.Event (JDK 1.0)

F3

java.awt.Event (JDK 1.0)

F4

java.awt.Event (JDK 1.0)

F5

java.awt.Event (JDK 1.0)

F6

java.awt.Event (JDK 1.0)

F7

java.awt.Event (JDK 1.0)

F8

java.awt.Event (JDK 1.0)

F9

java.awt.Event (JDK 1.0)

FALSE

java.lang.Boolean (JDK 1.0)

fd

java.net.DatagramSocketImpl (JDK 1.1), java.net.SocketImpl (JDK 1.0)

FeatureDescriptor

The java.beans Package

FEBRUARY

java.util.Calendar (JDK 1.1)

Field

The java.lang.reflect Package

FIELD_COUNT

java.util.Calendar (JDK 1.1)

FieldPosition

The java.text Package

fields

java.util.Calendar (JDK 1.1)

File

The java.io Package

FileDescriptor

The java.io Package

FileDialog

The java.awt Package

FileDialogPeer

The java.awt.peer Package

FileInputStream

The java.io Package

FilenameFilter

The java.io Package

FileNameMap

The java.net Package

fileNameMap

java.net.URLConnection (JDK 1.0)

FileNotFoundException

The java.io Package

FileOutputStream

The java.io Package

FileReader

The java.io Package

FileWriter

The java.io Package

fill

java.awt.GridBagConstraints (JDK 1.0)

fill()

java.util.zip.InflaterInputStream (JDK 1.1)

fill3DRect()

java.awt.Graphics (JDK 1.0)

fillArc()

java.awt.Graphics (JDK 1.0)

fillInStackTrace()

java.lang.Throwable (JDK 1.0)

fillOval()

java.awt.Graphics (JDK 1.0)

fillPolygon()

java.awt.Graphics (JDK 1.0)

fillRect()

java.awt.Graphics (JDK 1.0)

fillRoundRect()

java.awt.Graphics (JDK 1.0)

FILTERED

java.util.zip.Deflater (JDK 1.1)

FilteredImageSource

The java.awt.image Package

filterIndexColorModel()

java.awt.image.RGBImageFilter (JDK 1.0)

FilterInputStream

The java.io Package

FilterOutputStream

The java.io Package

FilterReader

The java.io Package

filterRGB()

java.awt.image.RGBImageFilter (JDK 1.0)

filterRGBPixels()

java.awt.image.RGBImageFilter (JDK 1.0)

FilterWriter

The java.io Package

FINAL

java.lang.reflect.Modifier (JDK 1.1)

finalize()

java.awt.image.ColorModel (JDK 1.0), java.util.zip.Deflater (JDK 1.1), java.io.FileInputStream
(JDK 1.0), java.io.FileOutputStream (JDK 1.0), java.awt.Graphics (JDK 1.0), java.util.zip.Inflater
(JDK 1.1), java.lang.Object (JDK 1.0), java.awt.PrintJob (JDK 1.1)

findEditor()

java.beans.PropertyEditorManager (JDK 1.1)

findLoadedClass()

java.lang.ClassLoader (JDK 1.0)

findSystemClass()

java.lang.ClassLoader (JDK 1.0)

finish()

java.util.zip.Deflater (JDK 1.1), java.util.zip.DeflaterOutputStream (JDK 1.1),
java.util.zip.GZIPOutputStream (JDK 1.1), java.util.zip.ZipOutputStream (JDK 1.1)

finished()

java.util.zip.Deflater (JDK 1.1), java.util.zip.Inflater (JDK 1.1)

firePropertyChange()

java.beans.PropertyChangeSupport (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1)

fireVetoableChange()

java.beans.VetoableChangeSupport (JDK 1.1)

first()

java.text.BreakIterator (JDK 1.1), java.awt.CardLayout (JDK 1.0), java.text.CharacterIterator
(JDK 1.1), java.text.StringCharacterIterator (JDK 1.1)

firstElement()

java.util.Vector (JDK 1.0)

flipBit()

java.math.BigInteger (JDK 1.1)

Float

The java.lang Package

floatToIntBits()

java.lang.Float (JDK 1.0)

floatValue()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1), java.lang.Byte (JDK 1.1),
java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0), java.lang.Integer (JDK 1.0),
java.lang.Long (JDK 1.0), java.lang.Number (JDK 1.0), java.lang.Short (JDK 1.1)

floor()

java.lang.Math (JDK 1.0)

FlowLayout

The java.awt Package

flush()

java.io.BufferedOutputStream (JDK 1.0), java.io.BufferedWriter (JDK 1.1),
java.io.CharArrayWriter (JDK 1.1), java.io.DataOutputStream (JDK 1.0),
java.io.FilterOutputStream (JDK 1.0), java.io.FilterWriter (JDK 1.1), java.awt.Image (JDK 1.0),
java.io.ObjectOutput (JDK 1.1), java.io.ObjectOutputStream (JDK 1.1), java.io.OutputStream
(JDK 1.0), java.io.OutputStreamWriter (JDK 1.1), java.io.PipedOutputStream (JDK 1.0),
java.io.PipedWriter (JDK 1.1), java.io.PrintStream (JDK 1.0), java.io.PrintWriter (JDK 1.1),
java.io.StringWriter (JDK 1.1), java.io.Writer (JDK 1.1)

FOCUS_EVENT_MASK

java.awt.AWTEvent (JDK 1.1)

FOCUS_FIRST

java.awt.event.FocusEvent (JDK 1.1)

FOCUS_GAINED

java.awt.event.FocusEvent (JDK 1.1)

FOCUS_LAST

java.awt.event.FocusEvent (JDK 1.1)

FOCUS_LOST

java.awt.event.FocusEvent (JDK 1.1)

FocusAdapter

The java.awt.event Package

FocusEvent

The java.awt.event Package

focusGained()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.FocusAdapter (JDK 1.1),
java.awt.event.FocusListener (JDK 1.1)

FocusListener

The java.awt.event Package

focusLost()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.FocusAdapter (JDK 1.1),

java.awt.event.FocusListener (JDK 1.1)

following()

java.text.BreakIterator (JDK 1.1)

font

java.awt.FontMetrics (JDK 1.0)

Font

The java.awt Package

FontMetrics

The java.awt Package

FontPeer

The java.awt.peer Package

forClass()

java.io.ObjectStreamClass (JDK 1.1)

forDigit()

java.lang.Character (JDK 1.0)

Format

The java.text Package

FORMAT

java.lang.Character (JDK 1.0)

format()

java.text.ChoiceFormat (JDK 1.1), java.text.DateFormat (JDK 1.1), java.text.DecimalFormat
(JDK 1.1), java.text.Format (JDK 1.1), java.text.MessageFormat (JDK 1.1),
java.text.NumberFormat (JDK 1.1), java.text.SimpleDateFormat (JDK 1.1)

forName()

java.lang.Class (JDK 1.0)

FRACTION_FIELD

java.text.NumberFormat (JDK 1.1)

Frame

The java.awt Package

FRAMEBITS

java.awt.image.ImageObserver (JDK 1.0)

FramePeer

The java.awt.peer Package

FRANCE

java.util.Locale (JDK 1.1)

freeMemory()

java.lang.Runtime (JDK 1.0)

FRENCH

java.util.Locale (JDK 1.1)

FRIDAY

java.util.Calendar (JDK 1.1)

FULL

java.text.DateFormat (JDK 1.1)

FULL_DECOMPOSITION

java.text.Collator (JDK 1.1)

G

gc()

java.lang.Runtime (JDK 1.0), java.lang.System (JDK 1.0)

gcd()

java.math.BigInteger (JDK 1.1)

GERMAN

java.util.Locale (JDK 1.1)

GERMANY

java.util.Locale (JDK 1.1)

get()

java.lang.reflect.Array (JDK 1.1), java.util.BitSet (JDK 1.0), java.util.Calendar (JDK 1.1),
java.util.Dictionary (JDK 1.0), java.lang.reflect.Field (JDK 1.1), java.util.Hashtable (JDK 1.0)

getAbsolutePath()

java.io.File (JDK 1.0)

getActionCommand()

java.awt.event.ActionEvent (JDK 1.1), java.awt.Button (JDK 1.0), java.awt.MenuItem (JDK 1.0)

getAdditionalBeanInfo()

java.beans.BeanInfo (JDK 1.1), java.beans.SimpleBeanInfo (JDK 1.1)

getAddListenerMethod()

java.beans.EventSetDescriptor (JDK 1.1)

getAddress()

java.net.DatagramPacket (JDK 1.0), java.net.InetAddress (JDK 1.0)

getAdjustable()

java.awt.event.AdjustmentEvent (JDK 1.1)

getAdjustmentType()

java.awt.event.AdjustmentEvent (JDK 1.1)

getAdler()

java.util.zip.Deflater (JDK 1.1), java.util.zip.Inflater (JDK 1.1)

getAlignment()

java.awt.FlowLayout (JDK 1.0), java.awt.Label (JDK 1.0)

getAlignmentX()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0)

getAlignmentY()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0)

getAllByName()

java.net.InetAddress (JDK 1.0)

getAllowUserInteraction()

java.net.URLConnection (JDK 1.0)

getAlpha()

java.awt.image.ColorModel (JDK 1.0), java.awt.image.DirectColorModel (JDK 1.0),
java.awt.image.IndexColorModel (JDK 1.0)

getAlphaMask()

java.awt.image.DirectColorModel (JDK 1.0)

getAlphas()

java.awt.image.IndexColorModel (JDK 1.0)

getAmPmStrings()

java.text.DateFormatSymbols (JDK 1.1)

getApplet()

java.applet.AppletContext (JDK 1.0)

getAppletContext()

java.applet.Applet (JDK 1.0), java.applet.AppletStub (JDK 1.0)

getAppletInfo()

java.applet.Applet (JDK 1.0)

getApplets()

java.applet.AppletContext (JDK 1.0)

getAscent()

java.awt.FontMetrics (JDK 1.0)

getAsText()

java.beans.PropertyEditor (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1)

getAudioClip()

java.applet.Applet (JDK 1.0), java.applet.AppletContext (JDK 1.0)

getAvailableIDs()

java.util.TimeZone (JDK 1.1)

getAvailableLocales()

java.text.BreakIterator (JDK 1.1), java.util.Calendar (JDK 1.1), java.text.Collator (JDK 1.1),
java.text.DateFormat (JDK 1.1), java.text.NumberFormat (JDK 1.1)

getBackground()

java.awt.Component (JDK 1.0)

getBeanClass()

java.beans.BeanDescriptor (JDK 1.1)

getBeanDescriptor()

java.beans.BeanInfo (JDK 1.1), java.beans.SimpleBeanInfo (JDK 1.1)

getBeanInfo()

java.beans.Introspector (JDK 1.1)

getBeanInfoSearchPath()

java.beans.Introspector (JDK 1.1)

getBeginIndex()

java.text.CharacterIterator (JDK 1.1), java.text.FieldPosition (JDK 1.1),
java.text.StringCharacterIterator (JDK 1.1)

getBlockIncrement()

java.awt.Adjustable (JDK 1.1), java.awt.Scrollbar (JDK 1.0)

getBlue()

java.awt.Color (JDK 1.0), java.awt.image.ColorModel (JDK 1.0),
java.awt.image.DirectColorModel (JDK 1.0), java.awt.image.IndexColorModel (JDK 1.0)

getBlueMask()

java.awt.image.DirectColorModel (JDK 1.0)

getBlues()

java.awt.image.IndexColorModel (JDK 1.0)

getBoolean()

java.lang.reflect.Array (JDK 1.1), java.lang.Boolean (JDK 1.0), java.lang.reflect.Field (JDK 1.1)

getBoundingBox()

java.awt.Polygon (JDK 1.0)

getBounds()

java.awt.Component (JDK 1.0), java.awt.Polygon (JDK 1.0), java.awt.Rectangle (JDK 1.0),
java.awt.Shape (JDK 1.1)

getBuffer()

java.io.StringWriter (JDK 1.1)

getBundle()

java.util.ResourceBundle (JDK 1.1)

getByName()

java.net.InetAddress (JDK 1.0)

getByte()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

getBytes()

java.lang.String (JDK 1.0)

getCalendar()

java.text.DateFormat (JDK 1.1)

getCanonicalPath()

java.io.File (JDK 1.0)

getCaretPosition()

java.awt.TextComponent (JDK 1.0), java.awt.peer.TextComponentPeer (JDK 1.0)

getChar()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

getCharacterInstance()

java.text.BreakIterator (JDK 1.1)

getChars()

java.lang.String (JDK 1.0), java.lang.StringBuffer (JDK 1.0)

getCheckboxGroup()

java.awt.Checkbox (JDK 1.0)

getChecksum()

java.util.zip.CheckedInputStream (JDK 1.1), java.util.zip.CheckedOutputStream (JDK 1.1)

getChild()

java.awt.event.ContainerEvent (JDK 1.1)

getClass()

java.lang.Object (JDK 1.0)

getClassContext()

java.lang.SecurityManager (JDK 1.0)

getClasses()

java.lang.Class (JDK 1.0)

getClassLoader()

java.lang.Class (JDK 1.0)

getClassName()

java.util.MissingResourceException (JDK 1.1)

getClickCount()

java.awt.event.MouseEvent (JDK 1.1)

getClip()

java.awt.Graphics (JDK 1.0)

getClipBounds()

java.awt.Graphics (JDK 1.0)

getClipRect()

java.awt.Graphics (JDK 1.0)

getCodeBase()

java.applet.Applet (JDK 1.0), java.applet.AppletStub (JDK 1.0)

getCollationElementIterator()

java.text.RuleBasedCollator (JDK 1.1)

getCollationKey()

java.text.Collator (JDK 1.1), java.text.RuleBasedCollator (JDK 1.1)

getColor()

java.awt.Color (JDK 1.0), java.awt.Graphics (JDK 1.0)

getColorModel()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0),
java.awt.image.PixelGrabber (JDK 1.0), java.awt.Toolkit (JDK 1.0)

getColumns()

java.awt.GridLayout (JDK 1.0), java.awt.TextArea (JDK 1.0), java.awt.TextField (JDK 1.0)

getComment()

java.util.zip.ZipEntry (JDK 1.1)

getComponent()

java.awt.event.ComponentEvent (JDK 1.1), java.awt.Container (JDK 1.0)

getComponentAt()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0)

getComponentCount()

java.awt.Container (JDK 1.0)

getComponents()

java.awt.Container (JDK 1.0)

getComponentType()

java.lang.Class (JDK 1.0)

getCompressedSize()

java.util.zip.ZipEntry (JDK 1.1)

getConstraints()

java.awt.GridBagLayout (JDK 1.0)

getConstructor()

java.lang.Class (JDK 1.0)

getConstructors()

java.lang.Class (JDK 1.0)

getContainer()

java.awt.event.ContainerEvent (JDK 1.1)

getContent()

java.net.ContentHandler (JDK 1.0), java.net.URL (JDK 1.0), java.net.URLConnection (JDK 1.0)

getContentEncoding()

java.net.URLConnection (JDK 1.0)

getContentLength()

java.net.URLConnection (JDK 1.0)

getContents()

java.awt.datatransfer.Clipboard (JDK 1.1), java.util.ListResourceBundle (JDK 1.1)

getContentType()

java.net.URLConnection (JDK 1.0)

getContentTypeFor()

java.net.FileNameMap (JDK 1.1)

getCountry()

java.util.Locale (JDK 1.1)

getCrc()

java.util.zip.ZipEntry (JDK 1.1)

getCurrencyInstance()

java.text.NumberFormat (JDK 1.1)

getCurrent()

java.awt.CheckboxGroup (JDK 1.0)

getCursor()

java.awt.Component (JDK 1.0)

getCursorType()

java.awt.Frame (JDK 1.0)

getCustomEditor()

java.beans.PropertyEditor (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1)

getCustomizerClass()

java.beans.BeanDescriptor (JDK 1.1)

getData()

java.net.DatagramPacket (JDK 1.0)

getDate()

java.util.Date (JDK 1.0), java.net.URLConnection (JDK 1.0)

getDateFormatSymbols()

java.text.SimpleDateFormat (JDK 1.1)

getDateInstance()

java.text.DateFormat (JDK 1.1)

getDateTimeInstance()

java.text.DateFormat (JDK 1.1)

getDay()

java.util.Date (JDK 1.0)

getDecimalFormatSymbols()

java.text.DecimalFormat (JDK 1.1)

getDecimalSeparator()

java.text.DecimalFormatSymbols (JDK 1.1)

getDeclaredClasses()

java.lang.Class (JDK 1.0)

getDeclaredConstructor()

java.lang.Class (JDK 1.0)

getDeclaredConstructors()

java.lang.Class (JDK 1.0)

getDeclaredField()

java.lang.Class (JDK 1.0)

getDeclaredFields()

java.lang.Class (JDK 1.0)

getDeclaredMethod()

java.lang.Class (JDK 1.0)

getDeclaredMethods()

java.lang.Class (JDK 1.0)

getDeclaringClass()

java.lang.Class (JDK 1.0), java.lang.reflect.Constructor (JDK 1.1), java.lang.reflect.Field (JDK
1.1), java.lang.reflect.Member (JDK 1.1), java.lang.reflect.Method (JDK 1.1)

getDecomposition()

java.text.Collator (JDK 1.1)

getDefault()

java.util.Locale (JDK 1.1), java.util.TimeZone (JDK 1.1)

getDefaultAllowUserInteraction()

java.net.URLConnection (JDK 1.0)

getDefaultCursor()

java.awt.Cursor (JDK 1.1)

getDefaultEventIndex()

java.beans.BeanInfo (JDK 1.1), java.beans.SimpleBeanInfo (JDK 1.1)

getDefaultPropertyIndex()

java.beans.BeanInfo (JDK 1.1), java.beans.SimpleBeanInfo (JDK 1.1)

getDefaultRequestProperty()

java.net.URLConnection (JDK 1.0)

getDefaultToolkit()

java.awt.Toolkit (JDK 1.0)

getDefaultUseCaches()

java.net.URLConnection (JDK 1.0)

getDescent()

java.awt.FontMetrics (JDK 1.0)

getDigit()

java.text.DecimalFormatSymbols (JDK 1.1)

getDirectory()

java.awt.FileDialog (JDK 1.0)

getDisplayCountry()

java.util.Locale (JDK 1.1)

getDisplayLanguage()

java.util.Locale (JDK 1.1)

getDisplayName()

java.beans.FeatureDescriptor (JDK 1.1), java.util.Locale (JDK 1.1)

getDisplayVariant()

java.util.Locale (JDK 1.1)

getDocumentBase()

java.applet.Applet (JDK 1.0), java.applet.AppletStub (JDK 1.0)

getDoInput()

java.net.URLConnection (JDK 1.0)

getDoOutput()

java.net.URLConnection (JDK 1.0)

getDouble()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

getEchoChar()

java.awt.TextField (JDK 1.0)

getEditorSearchPath()

java.beans.PropertyEditorManager (JDK 1.1)

getEncoding()

java.io.InputStreamReader (JDK 1.1), java.io.OutputStreamWriter (JDK 1.1)

getEndIndex()

java.text.CharacterIterator (JDK 1.1), java.text.FieldPosition (JDK 1.1),
java.text.StringCharacterIterator (JDK 1.1)

getEntry()

java.util.zip.ZipFile (JDK 1.1)

getenv()

java.lang.System (JDK 1.0)

getEras()

java.text.DateFormatSymbols (JDK 1.1)

getErrorOffset()

java.text.ParseException (JDK 1.1)

getErrorsAny()

java.awt.MediaTracker (JDK 1.0)

getErrorsID()

java.awt.MediaTracker (JDK 1.0)

getErrorStream()

java.lang.Process (JDK 1.0)

getEventSetDescriptors()

java.beans.BeanInfo (JDK 1.1), java.beans.SimpleBeanInfo (JDK 1.1)

getException()

java.lang.ExceptionInInitializerError (JDK 1.1)

getExceptionTypes()

java.lang.reflect.Constructor (JDK 1.1), java.lang.reflect.Method (JDK 1.1)

getExpiration()

java.net.URLConnection (JDK 1.0)

getExtra()

java.util.zip.ZipEntry (JDK 1.1)

getFamily()

java.awt.Font (JDK 1.0)

getFD()

java.io.FileInputStream (JDK 1.0), java.io.FileOutputStream (JDK 1.0),
java.io.RandomAccessFile (JDK 1.0)

getField()

java.lang.Class (JDK 1.0), java.text.FieldPosition (JDK 1.1)

getFields()

java.lang.Class (JDK 1.0)

getFile()

java.awt.FileDialog (JDK 1.0), java.net.URL (JDK 1.0)

getFileDescriptor()

java.net.DatagramSocketImpl (JDK 1.1), java.net.SocketImpl (JDK 1.0)

getFilenameFilter()

java.awt.FileDialog (JDK 1.0)

getFilePointer()

java.io.RandomAccessFile (JDK 1.0)

getFilterInstance()

java.awt.image.ImageFilter (JDK 1.0)

getFirstDayOfWeek()

java.util.Calendar (JDK 1.1)

getFloat()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

getFocusOwner()

java.awt.Window (JDK 1.0)

getFollowRedirects()

java.net.HttpURLConnection (JDK 1.1)

getFont()

java.awt.Component (JDK 1.0), java.awt.Font (JDK 1.0), java.awt.FontMetrics (JDK 1.0),
java.awt.Graphics (JDK 1.0), java.awt.MenuComponent (JDK 1.0), java.awt.MenuContainer
(JDK 1.0)

getFontList()

java.awt.Toolkit (JDK 1.0)

getFontMetrics()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Graphics
(JDK 1.0), java.awt.Toolkit (JDK 1.0)

getFontPeer()

java.awt.Toolkit (JDK 1.0)

getForeground()

java.awt.Component (JDK 1.0)

getFormats()

java.text.ChoiceFormat (JDK 1.1), java.text.MessageFormat (JDK 1.1)

getGraphics()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Image (JDK
1.0), java.awt.PrintJob (JDK 1.1)

getGreatestMinimum()

java.util.Calendar (JDK 1.1), java.util.GregorianCalendar (JDK 1.1)

getGreen()

java.awt.Color (JDK 1.0), java.awt.image.ColorModel (JDK 1.0),

java.awt.image.DirectColorModel (JDK 1.0), java.awt.image.IndexColorModel (JDK 1.0)

getGreenMask()

java.awt.image.DirectColorModel (JDK 1.0)

getGreens()

java.awt.image.IndexColorModel (JDK 1.0)

getGregorianChange()

java.util.GregorianCalendar (JDK 1.1)

getGroupingSeparator()

java.text.DecimalFormatSymbols (JDK 1.1)

getGroupingSize()

java.text.DecimalFormat (JDK 1.1)

getHAdjustable()

java.awt.ScrollPane (JDK 1.1)

getHeaderField()

java.net.URLConnection (JDK 1.0)

getHeaderFieldDate()

java.net.URLConnection (JDK 1.0)

getHeaderFieldInt()

java.net.URLConnection (JDK 1.0)

getHeaderFieldKey()

java.net.URLConnection (JDK 1.0)

getHeight()

java.awt.FontMetrics (JDK 1.0), java.awt.Image (JDK 1.0), java.awt.image.PixelGrabber (JDK
1.0)

getHelpMenu()

java.awt.MenuBar (JDK 1.0)

getHgap()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.FlowLayout (JDK
1.0), java.awt.GridLayout (JDK 1.0)

getHost()

java.net.URL (JDK 1.0)

getHostAddress()

java.net.InetAddress (JDK 1.0)

getHostName()

java.net.InetAddress (JDK 1.0)

getHours()

java.util.Date (JDK 1.0)

getHSBColor()

java.awt.Color (JDK 1.0)

getHScrollbarHeight()

java.awt.ScrollPane (JDK 1.1), java.awt.peer.ScrollPanePeer (JDK 1.1)

getHumanPresentableName()

java.awt.datatransfer.DataFlavor (JDK 1.1)

getIcon()

java.beans.BeanInfo (JDK 1.1), java.beans.SimpleBeanInfo (JDK 1.1)

getIconImage()

java.awt.Frame (JDK 1.0)

getID()

java.awt.AWTEvent (JDK 1.1), java.util.TimeZone (JDK 1.1)

getIfModifiedSince()

java.net.URLConnection (JDK 1.0)

getImage()

java.applet.Applet (JDK 1.0), java.applet.AppletContext (JDK 1.0), java.awt.Toolkit (JDK 1.0)

getInCheck()

java.lang.SecurityManager (JDK 1.0)

getIndex()

java.text.CharacterIterator (JDK 1.1), java.text.ParsePosition (JDK 1.1),
java.text.StringCharacterIterator (JDK 1.1)

getIndexedPropertyType()

java.beans.IndexedPropertyDescriptor (JDK 1.1)

getIndexedReadMethod()

java.beans.IndexedPropertyDescriptor (JDK 1.1)

getIndexedWriteMethod()

java.beans.IndexedPropertyDescriptor (JDK 1.1)

getInetAddress()

java.net.ServerSocket (JDK 1.0), java.net.Socket (JDK 1.0), java.net.SocketImpl (JDK 1.0)

getInfinity()

java.text.DecimalFormatSymbols (JDK 1.1)

getInputStream()

java.lang.Process (JDK 1.0), java.net.Socket (JDK 1.0), java.net.SocketImpl (JDK 1.0),
java.net.URLConnection (JDK 1.0), java.util.zip.ZipFile (JDK 1.1)

getInsets()

java.awt.Container (JDK 1.0), java.awt.peer.ContainerPeer (JDK 1.0)

getInstance()

java.util.Calendar (JDK 1.1), java.text.Collator (JDK 1.1), java.text.DateFormat (JDK 1.1),
java.text.NumberFormat (JDK 1.1)

getInstanceOf()

java.beans.Beans (JDK 1.1)

getInt()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

getInteger()

java.lang.Integer (JDK 1.0)

getInterface()

java.net.MulticastSocket (JDK 1.1)

getInterfaces()

java.lang.Class (JDK 1.0)

getISO3Country()

java.util.Locale (JDK 1.1)

getISO3Language()

java.util.Locale (JDK 1.1)

getItem()

java.awt.Choice (JDK 1.0), java.awt.event.ItemEvent (JDK 1.1), java.awt.List (JDK 1.0),
java.awt.Menu (JDK 1.0)

getItemCount()

java.awt.Choice (JDK 1.0), java.awt.List (JDK 1.0), java.awt.Menu (JDK 1.0)

getItems()

java.awt.List (JDK 1.0)

getItemSelectable()

java.awt.event.ItemEvent (JDK 1.1)

getJavaInitializationString()

java.beans.PropertyEditor (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1)

getKey()

java.awt.MenuShortcut (JDK 1.1), java.util.MissingResourceException (JDK 1.1)

getKeyChar()

java.awt.event.KeyEvent (JDK 1.1)

getKeyCode()

java.awt.event.KeyEvent (JDK 1.1)

getKeyModifiersText()

java.awt.event.KeyEvent (JDK 1.1)

getKeys()

java.util.ListResourceBundle (JDK 1.1), java.util.PropertyResourceBundle (JDK 1.1),
java.util.ResourceBundle (JDK 1.1)

getKeyText()

java.awt.event.KeyEvent (JDK 1.1)

getLabel()

java.awt.Button (JDK 1.0), java.awt.Checkbox (JDK 1.0), java.awt.MenuItem (JDK 1.0)

getLanguage()

java.util.Locale (JDK 1.1)

getLastModified()

java.net.URLConnection (JDK 1.0)

getLayout()

java.awt.Container (JDK 1.0)

getLayoutAlignmentX()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.GridBagLayout (JDK
1.0), java.awt.LayoutManager2 (JDK 1.1)

getLayoutAlignmentY()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.GridBagLayout (JDK
1.0), java.awt.LayoutManager2 (JDK 1.1)

getLayoutDimensions()

java.awt.GridBagLayout (JDK 1.0)

GetLayoutInfo()

java.awt.GridBagLayout (JDK 1.0)

getLayoutOrigin()

java.awt.GridBagLayout (JDK 1.0)

getLayoutWeights()

java.awt.GridBagLayout (JDK 1.0)

getLeading()

java.awt.FontMetrics (JDK 1.0)

getLeastMaximum()

java.util.Calendar (JDK 1.1), java.util.GregorianCalendar (JDK 1.1)

getLength()

java.lang.reflect.Array (JDK 1.1), java.net.DatagramPacket (JDK 1.0)

getLimits()

java.text.ChoiceFormat (JDK 1.1)

getLineIncrement()

java.awt.Scrollbar (JDK 1.0)

getLineInstance()

java.text.BreakIterator (JDK 1.1)

getLineNumber()

java.io.LineNumberInputStream (JDK 1.0; Deprecated.), java.io.LineNumberReader (JDK 1.1)

getListenerMethodDescriptors()

java.beans.EventSetDescriptor (JDK 1.1)

getListenerMethods()

java.beans.EventSetDescriptor (JDK 1.1)

getListenerType()

java.beans.EventSetDescriptor (JDK 1.1)

getLocalAddress()

java.net.DatagramSocket (JDK 1.0), java.net.Socket (JDK 1.0)

getLocale()

java.applet.Applet (JDK 1.0), java.awt.Component (JDK 1.0), java.text.MessageFormat (JDK
1.1), java.awt.Window (JDK 1.0)

getLocalHost()

java.net.InetAddress (JDK 1.0)

getLocalizedInputStream()

java.lang.Runtime (JDK 1.0)

getLocalizedMessage()

java.lang.Throwable (JDK 1.0)

getLocalizedOutputStream()

java.lang.Runtime (JDK 1.0)

getLocalPatternChars()

java.text.DateFormatSymbols (JDK 1.1)

getLocalPort()

java.net.DatagramSocket (JDK 1.0), java.net.DatagramSocketImpl (JDK 1.1),
java.net.ServerSocket (JDK 1.0), java.net.Socket (JDK 1.0), java.net.SocketImpl (JDK 1.0)

getLocation()

java.awt.Component (JDK 1.0), java.awt.Point (JDK 1.0), java.awt.Rectangle (JDK 1.0)

getLocationOnScreen()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0)

getLong()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1), java.lang.Long (JDK 1.0)

getLowestSetBit()

java.math.BigInteger (JDK 1.1)

getMapSize()

java.awt.image.IndexColorModel (JDK 1.0)

getMaxAdvance()

java.awt.FontMetrics (JDK 1.0)

getMaxAscent()

java.awt.FontMetrics (JDK 1.0)

getMaxDecent()

java.awt.FontMetrics (JDK 1.0)

getMaxDescent()

java.awt.FontMetrics (JDK 1.0)

getMaximum()

java.awt.Adjustable (JDK 1.1), java.util.Calendar (JDK 1.1), java.util.GregorianCalendar (JDK
1.1), java.awt.Scrollbar (JDK 1.0)

getMaximumFractionDigits()

java.text.NumberFormat (JDK 1.1)

getMaximumIntegerDigits()

java.text.NumberFormat (JDK 1.1)

getMaximumSize()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0)

getMaxPriority()

java.lang.ThreadGroup (JDK 1.0)

getMenu()

java.awt.MenuBar (JDK 1.0), java.util.ResourceBundle (JDK 1.1)

getMenuBar()

java.awt.Frame (JDK 1.0), java.util.ResourceBundle (JDK 1.1)

getMenuCount()

java.awt.MenuBar (JDK 1.0)

getMenuShortcutKeyMask()

java.awt.Toolkit (JDK 1.0)

getMessage()

java.io.InvalidClassException (JDK 1.1), java.lang.Throwable (JDK 1.0),
java.io.WriteAbortedException (JDK 1.1)

getMethod()

java.lang.Class (JDK 1.0), java.beans.MethodDescriptor (JDK 1.1), java.util.zip.ZipEntry (JDK
1.1)

getMethodDescriptors()

java.beans.BeanInfo (JDK 1.1), java.beans.SimpleBeanInfo (JDK 1.1)

getMethods()

java.lang.Class (JDK 1.0)

getMimeType()

java.awt.datatransfer.DataFlavor (JDK 1.1)

getMinimalDaysInFirstWeek()

java.util.Calendar (JDK 1.1)

getMinimum()

java.awt.Adjustable (JDK 1.1), java.util.Calendar (JDK 1.1), java.util.GregorianCalendar (JDK
1.1), java.awt.Scrollbar (JDK 1.0)

getMinimumFractionDigits()

java.text.NumberFormat (JDK 1.1)

getMinimumIntegerDigits()

java.text.NumberFormat (JDK 1.1)

getMinimumSize()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Container
(JDK 1.0), java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK 1.0), java.awt.TextArea (JDK
1.0), java.awt.peer.TextAreaPeer (JDK 1.0), java.awt.TextField (JDK 1.0),
java.awt.peer.TextFieldPeer (JDK 1.0)

GetMinSize()

java.awt.GridBagLayout (JDK 1.0)

getMinusSign()

java.text.DecimalFormatSymbols (JDK 1.1)

getMinutes()

java.util.Date (JDK 1.0)

getMode()

java.awt.FileDialog (JDK 1.0)

getModifiers()

java.awt.event.ActionEvent (JDK 1.1), java.lang.Class (JDK 1.0), java.lang.reflect.Constructor
(JDK 1.1), java.lang.reflect.Field (JDK 1.1), java.awt.event.InputEvent (JDK 1.1),
java.lang.reflect.Member (JDK 1.1), java.lang.reflect.Method (JDK 1.1)

getMonth()

java.util.Date (JDK 1.0)

getMonths()

java.text.DateFormatSymbols (JDK 1.1)

getMultiplier()

java.text.DecimalFormat (JDK 1.1)

getName()

java.lang.Class (JDK 1.0), java.awt.datatransfer.Clipboard (JDK 1.1), java.awt.Component (JDK
1.0), java.lang.reflect.Constructor (JDK 1.1), java.beans.FeatureDescriptor (JDK 1.1),
java.lang.reflect.Field (JDK 1.1), java.io.File (JDK 1.0), java.awt.Font (JDK 1.0),
java.lang.reflect.Member (JDK 1.1), java.awt.MenuComponent (JDK 1.0),
java.lang.reflect.Method (JDK 1.1), java.io.ObjectStreamClass (JDK 1.1), java.lang.Thread (JDK
1.0), java.lang.ThreadGroup (JDK 1.0), java.util.zip.ZipEntry (JDK 1.1), java.util.zip.ZipFile
(JDK 1.1)

getNaN()

java.text.DecimalFormatSymbols (JDK 1.1)

getNativeContainer()

java.awt.Toolkit (JDK 1.0)

getNegativePrefix()

java.text.DecimalFormat (JDK 1.1)

getNegativeSuffix()

java.text.DecimalFormat (JDK 1.1)

getNewValue()

java.beans.PropertyChangeEvent (JDK 1.1)

getNextEntry()

java.util.zip.ZipInputStream (JDK 1.1)

getNextEvent()

java.awt.EventQueue (JDK 1.1)

getNumberFormat()

java.text.DateFormat (JDK 1.1)

getNumberInstance()

java.text.NumberFormat (JDK 1.1)

getNumericValue()

java.lang.Character (JDK 1.0)

getObject()

java.util.ResourceBundle (JDK 1.1)

getOffset()

java.util.SimpleTimeZone (JDK 1.1), java.util.TimeZone (JDK 1.1)

getOldValue()

java.beans.PropertyChangeEvent (JDK 1.1)

getOption()

java.net.DatagramSocketImpl (JDK 1.1), java.net.SocketImpl (JDK 1.0)

getOrientation()

java.awt.Adjustable (JDK 1.1), java.awt.Scrollbar (JDK 1.0)

getOutputStream()

java.lang.Process (JDK 1.0), java.net.Socket (JDK 1.0), java.net.SocketImpl (JDK 1.0),
java.net.URLConnection (JDK 1.0)

getPageDimension()

java.awt.PrintJob (JDK 1.1)

getPageIncrement()

java.awt.Scrollbar (JDK 1.0)

getPageResolution()

java.awt.PrintJob (JDK 1.1)

getParameter()

java.applet.Applet (JDK 1.0), java.applet.AppletStub (JDK 1.0)

getParameterDescriptors()

java.beans.MethodDescriptor (JDK 1.1)

getParameterInfo()

java.applet.Applet (JDK 1.0)

getParameterTypes()

java.lang.reflect.Constructor (JDK 1.1), java.lang.reflect.Method (JDK 1.1)

getParent()

java.awt.Component (JDK 1.0), java.io.File (JDK 1.0), java.awt.MenuComponent (JDK 1.0),
java.lang.ThreadGroup (JDK 1.0)

getPath()

java.io.File (JDK 1.0)

getPatternSeparator()

java.text.DecimalFormatSymbols (JDK 1.1)

getPeer()

java.awt.Component (JDK 1.0), java.awt.Font (JDK 1.0), java.awt.MenuComponent (JDK 1.0)

getPercent()

java.text.DecimalFormatSymbols (JDK 1.1)

getPercentInstance()

java.text.NumberFormat (JDK 1.1)

getPerMill()

java.text.DecimalFormatSymbols (JDK 1.1)

getPixels()

java.awt.image.PixelGrabber (JDK 1.0)

getPixelSize()

java.awt.image.ColorModel (JDK 1.0)

getPoint()

java.awt.event.MouseEvent (JDK 1.1)

getPort()

java.net.DatagramPacket (JDK 1.0), java.net.Socket (JDK 1.0), java.net.SocketImpl (JDK 1.0),
java.net.URL (JDK 1.0)

getPositivePrefix()

java.text.DecimalFormat (JDK 1.1)

getPositiveSuffix()

java.text.DecimalFormat (JDK 1.1)

getPredefinedCursor()

java.awt.Cursor (JDK 1.1)

getPreferredSize()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Container
(JDK 1.0), java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK 1.0), java.awt.TextArea (JDK
1.0), java.awt.peer.TextAreaPeer (JDK 1.0), java.awt.TextField (JDK 1.0),
java.awt.peer.TextFieldPeer (JDK 1.0)

getPrintJob()

java.awt.PrintGraphics (JDK 1.1), java.awt.Toolkit (JDK 1.0)

getPriority()

java.lang.Thread (JDK 1.0)

getPropagationId()

java.beans.PropertyChangeEvent (JDK 1.1)

getProperties()

java.lang.System (JDK 1.0)

getProperty()

java.awt.Image (JDK 1.0), java.util.Properties (JDK 1.0), java.lang.System (JDK 1.0),
java.awt.Toolkit (JDK 1.0)

getPropertyChangeEvent()

java.beans.PropertyVetoException (JDK 1.1)

getPropertyDescriptors()

java.beans.BeanInfo (JDK 1.1), java.beans.SimpleBeanInfo (JDK 1.1)

getPropertyEditorClass()

java.beans.PropertyDescriptor (JDK 1.1)

getPropertyName()

java.beans.PropertyChangeEvent (JDK 1.1)

getPropertyType()

java.beans.PropertyDescriptor (JDK 1.1)

getProtocol()

java.net.URL (JDK 1.0)

getRawOffset()

java.util.SimpleTimeZone (JDK 1.1), java.util.TimeZone (JDK 1.1)

getReadMethod()

java.beans.PropertyDescriptor (JDK 1.1)

getRed()

java.awt.Color (JDK 1.0), java.awt.image.ColorModel (JDK 1.0),
java.awt.image.DirectColorModel (JDK 1.0), java.awt.image.IndexColorModel (JDK 1.0)

getRedMask()

java.awt.image.DirectColorModel (JDK 1.0)

getReds()

java.awt.image.IndexColorModel (JDK 1.0)

getRef()

java.net.URL (JDK 1.0)

getRemaining()

java.util.zip.Inflater (JDK 1.1)

getRemoveListenerMethod()

java.beans.EventSetDescriptor (JDK 1.1)

getRepresentationClass()

java.awt.datatransfer.DataFlavor (JDK 1.1)

getRequestMethod()

java.net.HttpURLConnection (JDK 1.1)

getRequestProperty()

java.net.URLConnection (JDK 1.0)

getResource()

java.lang.Class (JDK 1.0), java.lang.ClassLoader (JDK 1.0)

getResourceAsStream()

java.lang.Class (JDK 1.0), java.lang.ClassLoader (JDK 1.0)

getResponseCode()

java.net.HttpURLConnection (JDK 1.1)

getResponseMessage()

java.net.HttpURLConnection (JDK 1.1)

getReturnType()

java.lang.reflect.Method (JDK 1.1)

getRGB()

java.awt.Color (JDK 1.0), java.awt.image.ColorModel (JDK 1.0),
java.awt.image.DirectColorModel (JDK 1.0), java.awt.image.IndexColorModel (JDK 1.0),
java.awt.SystemColor (JDK 1.1)

getRGBdefault()

java.awt.image.ColorModel (JDK 1.0)

getRows()

java.awt.GridLayout (JDK 1.0), java.awt.List (JDK 1.0), java.awt.TextArea (JDK 1.0)

getRules()

java.text.RuleBasedCollator (JDK 1.1)

getRuntime()

java.lang.Runtime (JDK 1.0)

getScaledInstance()

java.awt.Image (JDK 1.0)

getScreenResolution()

java.awt.Toolkit (JDK 1.0)

getScreenSize()

java.awt.Toolkit (JDK 1.0)

getScrollbarDisplayPolicy()

java.awt.ScrollPane (JDK 1.1)

getScrollbarVisibility()

java.awt.TextArea (JDK 1.0)

getScrollPosition()

java.awt.ScrollPane (JDK 1.1)

getSeconds()

java.util.Date (JDK 1.0)

getSecurityContext()

java.lang.SecurityManager (JDK 1.0)

getSecurityManager()

java.lang.System (JDK 1.0)

getSelectedCheckbox()

java.awt.CheckboxGroup (JDK 1.0)

getSelectedIndex()

java.awt.Choice (JDK 1.0), java.awt.List (JDK 1.0)

getSelectedIndexes()

java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK 1.0)

getSelectedItem()

java.awt.Choice (JDK 1.0), java.awt.List (JDK 1.0)

getSelectedItems()

java.awt.List (JDK 1.0)

getSelectedObjects()

java.awt.Checkbox (JDK 1.0), java.awt.CheckboxMenuItem (JDK 1.0), java.awt.Choice (JDK
1.0), java.awt.ItemSelectable (JDK 1.1), java.awt.List (JDK 1.0)

getSelectedText()

java.awt.TextComponent (JDK 1.0)

getSelectionEnd()

java.awt.TextComponent (JDK 1.0), java.awt.peer.TextComponentPeer (JDK 1.0)

getSelectionStart()

java.awt.TextComponent (JDK 1.0), java.awt.peer.TextComponentPeer (JDK 1.0)

getSentenceInstance()

java.text.BreakIterator (JDK 1.1)

getSerialVersionUID()

java.io.ObjectStreamClass (JDK 1.1)

getShort()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

getShortcut()

java.awt.MenuItem (JDK 1.0)

getShortcutMenuItem()

java.awt.MenuBar (JDK 1.0)

getShortDescription()

java.beans.FeatureDescriptor (JDK 1.1)

getShortMonths()

java.text.DateFormatSymbols (JDK 1.1)

getShortWeekdays()

java.text.DateFormatSymbols (JDK 1.1)

getSigners()

java.lang.Class (JDK 1.0)

getSize()

java.awt.Component (JDK 1.0), java.awt.Dimension (JDK 1.0), java.awt.Font (JDK 1.0),
java.awt.Rectangle (JDK 1.0), java.util.zip.ZipEntry (JDK 1.1)

getSoLinger()

java.net.Socket (JDK 1.0)

getSoTimeout()

java.net.DatagramSocket (JDK 1.0), java.net.ServerSocket (JDK 1.0), java.net.Socket (JDK 1.0)

getSource()

java.util.EventObject (JDK 1.1), java.awt.Image (JDK 1.0)

getSourceString()

java.text.CollationKey (JDK 1.1)

getState()

java.awt.Checkbox (JDK 1.0), java.awt.CheckboxMenuItem (JDK 1.0)

getStateChange()

java.awt.event.ItemEvent (JDK 1.1)

getStatus()

java.awt.image.PixelGrabber (JDK 1.0)

getStrength()

java.text.Collator (JDK 1.1)

getString()

java.util.ResourceBundle (JDK 1.1)

getStringArray()

java.util.ResourceBundle (JDK 1.1)

getStyle()

java.awt.Font (JDK 1.0)

getSuperclass()

java.lang.Class (JDK 1.0)

getSystemClipboard()

java.awt.Toolkit (JDK 1.0)

getSystemEventQueue()

java.awt.Toolkit (JDK 1.0)

getSystemEventQueueImpl()

java.awt.Toolkit (JDK 1.0)

getSystemResource()

java.lang.ClassLoader (JDK 1.0)

getSystemResourceAsStream()

java.lang.ClassLoader (JDK 1.0)

getTags()

java.beans.PropertyEditor (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1)

getTargetException()

java.lang.reflect.InvocationTargetException (JDK 1.1)

getTcpNoDelay()

java.net.Socket (JDK 1.0)

getText()

java.text.BreakIterator (JDK 1.1), java.awt.Label (JDK 1.0), java.awt.TextComponent (JDK 1.0),
java.awt.peer.TextComponentPeer (JDK 1.0)

getThreadGroup()

java.lang.SecurityManager (JDK 1.0), java.lang.Thread (JDK 1.0)

getTime()

java.util.Calendar (JDK 1.1), java.util.Date (JDK 1.0), java.util.zip.ZipEntry (JDK 1.1)

getTimeInMillis()

java.util.Calendar (JDK 1.1)

getTimeInstance()

java.text.DateFormat (JDK 1.1)

getTimeZone()

java.util.Calendar (JDK 1.1), java.text.DateFormat (JDK 1.1), java.util.TimeZone (JDK 1.1)

getTimezoneOffset()

java.util.Date (JDK 1.0)

getTitle()

java.awt.Dialog (JDK 1.0), java.awt.Frame (JDK 1.0)

getToolkit()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Window (JDK
1.0)

getTotalIn()

java.util.zip.Deflater (JDK 1.1), java.util.zip.Inflater (JDK 1.1)

getTotalOut()

java.util.zip.Deflater (JDK 1.1), java.util.zip.Inflater (JDK 1.1)

getTransferData()

java.awt.datatransfer.StringSelection (JDK 1.1), java.awt.datatransfer.Transferable (JDK 1.1)

getTransferDataFlavors()

java.awt.datatransfer.StringSelection (JDK 1.1), java.awt.datatransfer.Transferable (JDK 1.1)

getTransparentPixel()

java.awt.image.IndexColorModel (JDK 1.0)

getTreeLock()

java.awt.Component (JDK 1.0)

getTTL()

java.net.DatagramSocketImpl (JDK 1.1), java.net.MulticastSocket (JDK 1.1)

getType()

java.lang.Character (JDK 1.0), java.awt.Cursor (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

getUnitIncrement()

java.awt.Adjustable (JDK 1.1), java.awt.Scrollbar (JDK 1.0)

getUpdateRect()

java.awt.event.PaintEvent (JDK 1.1)

getURL()

java.net.URLConnection (JDK 1.0)

getUseCaches()

java.net.URLConnection (JDK 1.0)

getVAdjustable()

java.awt.ScrollPane (JDK 1.1)

getValue()

java.awt.Adjustable (JDK 1.1), java.awt.event.AdjustmentEvent (JDK 1.1), java.util.zip.Adler32
(JDK 1.1), java.util.zip.Checksum (JDK 1.1), java.util.zip.CRC32 (JDK 1.1),
java.beans.FeatureDescriptor (JDK 1.1), java.beans.PropertyEditor (JDK 1.1),
java.beans.PropertyEditorSupport (JDK 1.1), java.awt.Scrollbar (JDK 1.0)

getVariant()

java.util.Locale (JDK 1.1)

getVgap()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.FlowLayout (JDK
1.0), java.awt.GridLayout (JDK 1.0)

getViewportSize()

java.awt.ScrollPane (JDK 1.1)

getVisible()

java.awt.Scrollbar (JDK 1.0)

getVisibleAmount()

java.awt.Adjustable (JDK 1.1), java.awt.Scrollbar (JDK 1.0)

getVisibleIndex()

java.awt.List (JDK 1.0)

getVScrollbarWidth()

java.awt.ScrollPane (JDK 1.1), java.awt.peer.ScrollPanePeer (JDK 1.1)

getWarningString()

java.awt.Window (JDK 1.0)

getWeekdays()

java.text.DateFormatSymbols (JDK 1.1)

getWhen()

java.awt.event.InputEvent (JDK 1.1)

getWidth()

java.awt.Image (JDK 1.0), java.awt.image.PixelGrabber (JDK 1.0)

getWidths()

java.awt.FontMetrics (JDK 1.0)

getWindow()

java.awt.event.WindowEvent (JDK 1.1)

getWordInstance()

java.text.BreakIterator (JDK 1.1)

getWriteMethod()

java.beans.PropertyDescriptor (JDK 1.1)

getX()

java.awt.event.MouseEvent (JDK 1.1)

getY()

java.awt.event.MouseEvent (JDK 1.1)

getYear()

java.util.Date (JDK 1.0)

getZeroDigit()

java.text.DecimalFormatSymbols (JDK 1.1)

getZoneStrings()

java.text.DateFormatSymbols (JDK 1.1)

GOT_FOCUS

java.awt.Event (JDK 1.0)

gotFocus()

java.awt.Component (JDK 1.0)

grabPixels()

java.awt.image.PixelGrabber (JDK 1.0)

Graphics

The java.awt Package

gray

java.awt.Color (JDK 1.0)

green

java.awt.Color (JDK 1.0)

GregorianCalendar

The java.util Package

GridBagConstraints

The java.awt Package

GridBagLayout

The java.awt Package

gridheight

java.awt.GridBagConstraints (JDK 1.0)

GridLayout

The java.awt Package

gridwidth

java.awt.GridBagConstraints (JDK 1.0)

gridx

java.awt.GridBagConstraints (JDK 1.0)

gridy

java.awt.GridBagConstraints (JDK 1.0)

grow()

java.awt.Rectangle (JDK 1.0)

guessContentTypeFromName()

java.net.URLConnection (JDK 1.0)

guessContentTypeFromStream()

java.net.URLConnection (JDK 1.0)

GZIP_MAGIC

java.util.zip.GZIPInputStream (JDK 1.1)

GZIPInputStream

The java.util.zip Package

GZIPOutputStream

The java.util.zip Package

H

HAND_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

handleEvent()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0)

handleGetObject()

java.util.ListResourceBundle (JDK 1.1), java.util.PropertyResourceBundle (JDK 1.1),
java.util.ResourceBundle (JDK 1.1)

hasChanged()

java.util.Observable (JDK 1.0)

hashCode()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1), java.util.BitSet (JDK 1.0),
java.lang.Boolean (JDK 1.0), java.lang.Byte (JDK 1.1), java.lang.Character (JDK 1.0),
java.text.ChoiceFormat (JDK 1.1), java.text.CollationKey (JDK 1.1), java.text.Collator (JDK 1.1),
java.awt.Color (JDK 1.0), java.lang.reflect.Constructor (JDK 1.1), java.util.Date (JDK 1.0),
java.text.DateFormat (JDK 1.1), java.text.DateFormatSymbols (JDK 1.1),
java.text.DecimalFormat (JDK 1.1), java.text.DecimalFormatSymbols (JDK 1.1),
java.lang.Double (JDK 1.0), java.lang.reflect.Field (JDK 1.1), java.io.File (JDK 1.0),
java.lang.Float (JDK 1.0), java.awt.Font (JDK 1.0), java.util.GregorianCalendar (JDK 1.1),
java.net.InetAddress (JDK 1.0), java.lang.Integer (JDK 1.0), java.util.Locale (JDK 1.1),
java.lang.Long (JDK 1.0), java.text.MessageFormat (JDK 1.1), java.lang.reflect.Method (JDK
1.1), java.text.NumberFormat (JDK 1.1), java.lang.Object (JDK 1.0), java.awt.Point (JDK 1.0),
java.awt.Rectangle (JDK 1.0), java.text.RuleBasedCollator (JDK 1.1), java.lang.Short (JDK 1.1),
java.text.SimpleDateFormat (JDK 1.1), java.util.SimpleTimeZone (JDK 1.1), java.lang.String
(JDK 1.0), java.text.StringCharacterIterator (JDK 1.1), java.net.URL (JDK 1.0)

Hashtable

The java.util Package

hasMoreElements()

java.util.Enumeration (JDK 1.0), java.util.StringTokenizer (JDK 1.0)

hasMoreTokens()

java.util.StringTokenizer (JDK 1.0)

HEIGHT

java.awt.image.ImageObserver (JDK 1.0)

height

java.awt.Dimension (JDK 1.0), java.awt.Rectangle (JDK 1.0)

hide()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0)

HOME

java.awt.Event (JDK 1.0)

HORIZONTAL

java.awt.Adjustable (JDK 1.1), java.awt.GridBagConstraints (JDK 1.0), java.awt.Scrollbar (JDK
1.0)

HOUR

java.util.Calendar (JDK 1.1)

HOUR0_FIELD

java.text.DateFormat (JDK 1.1)

HOUR1_FIELD

java.text.DateFormat (JDK 1.1)

HOUR_OF_DAY

java.util.Calendar (JDK 1.1)

HOUR_OF_DAY0_FIELD

java.text.DateFormat (JDK 1.1)

HOUR_OF_DAY1_FIELD

java.text.DateFormat (JDK 1.1)

HSBtoRGB()

java.awt.Color (JDK 1.0)

HTTP_ACCEPTED

java.net.HttpURLConnection (JDK 1.1)

HTTP_BAD_GATEWAY

java.net.HttpURLConnection (JDK 1.1)

HTTP_BAD_METHOD

java.net.HttpURLConnection (JDK 1.1)

HTTP_BAD_REQUEST

java.net.HttpURLConnection (JDK 1.1)

HTTP_CLIENT_TIMEOUT

java.net.HttpURLConnection (JDK 1.1)

HTTP_CONFLICT

java.net.HttpURLConnection (JDK 1.1)

HTTP_CREATED

java.net.HttpURLConnection (JDK 1.1)

HTTP_ENTITY_TOO_LARGE

java.net.HttpURLConnection (JDK 1.1)

HTTP_FORBIDDEN

java.net.HttpURLConnection (JDK 1.1)

HTTP_GATEWAY_TIMEOUT

java.net.HttpURLConnection (JDK 1.1)

HTTP_GONE

java.net.HttpURLConnection (JDK 1.1)

HTTP_INTERNAL_ERROR

java.net.HttpURLConnection (JDK 1.1)

HTTP_LENGTH_REQUIRED

java.net.HttpURLConnection (JDK 1.1)

HTTP_MOVED_PERM

java.net.HttpURLConnection (JDK 1.1)

HTTP_MOVED_TEMP

java.net.HttpURLConnection (JDK 1.1)

HTTP_MULT_CHOICE

java.net.HttpURLConnection (JDK 1.1)

HTTP_NO_CONTENT

java.net.HttpURLConnection (JDK 1.1)

HTTP_NOT_ACCEPTABLE

java.net.HttpURLConnection (JDK 1.1)

HTTP_NOT_AUTHORITATIVE

java.net.HttpURLConnection (JDK 1.1)

HTTP_NOT_FOUND

java.net.HttpURLConnection (JDK 1.1)

HTTP_NOT_MODIFIED

java.net.HttpURLConnection (JDK 1.1)

HTTP_OK

java.net.HttpURLConnection (JDK 1.1)

HTTP_PARTIAL

java.net.HttpURLConnection (JDK 1.1)

HTTP_PAYMENT_REQUIRED

java.net.HttpURLConnection (JDK 1.1)

HTTP_PRECON_FAILED

java.net.HttpURLConnection (JDK 1.1)

HTTP_PROXY_AUTH

java.net.HttpURLConnection (JDK 1.1)

HTTP_REQ_TOO_LONG

java.net.HttpURLConnection (JDK 1.1)

HTTP_RESET

java.net.HttpURLConnection (JDK 1.1)

HTTP_SEE_OTHER

java.net.HttpURLConnection (JDK 1.1)

HTTP_SERVER_ERROR

java.net.HttpURLConnection (JDK 1.1)

HTTP_UNAUTHORIZED

java.net.HttpURLConnection (JDK 1.1)

HTTP_UNAVAILABLE

java.net.HttpURLConnection (JDK 1.1)

HTTP_UNSUPPORTED_TYPE

java.net.HttpURLConnection (JDK 1.1)

HTTP_USE_PROXY

java.net.HttpURLConnection (JDK 1.1)

HTTP_VERSION

java.net.HttpURLConnection (JDK 1.1)

HttpURLConnection

The java.net Package

HUFFMAN_ONLY

java.util.zip.Deflater (JDK 1.1)

I

ICON_COLOR_16x16

java.beans.BeanInfo (JDK 1.1)

ICON_COLOR_32x32

java.beans.BeanInfo (JDK 1.1)

ICON_MONO_16x16

java.beans.BeanInfo (JDK 1.1)

ICON_MONO_32x32

java.beans.BeanInfo (JDK 1.1)

id

java.awt.AWTEvent (JDK 1.1), java.awt.Event (JDK 1.0)

IDENTICAL

java.text.Collator (JDK 1.1)

identityHashCode()

java.lang.System (JDK 1.0)

IEEEremainder()

java.lang.Math (JDK 1.0)

ifModifiedSince

java.net.URLConnection (JDK 1.0)

IllegalAccessError

The java.lang Package

IllegalAccessException

The java.lang Package

IllegalArgumentException

The java.lang Package

IllegalComponentStateException

The java.awt Package

IllegalMonitorStateException

The java.lang Package

IllegalStateException

The java.lang Package

IllegalThreadStateException

The java.lang Package

Image

The java.awt Package

IMAGEABORTED

java.awt.image.ImageConsumer (JDK 1.0)

imageComplete()

java.awt.image.ImageConsumer (JDK 1.0), java.awt.image.ImageFilter (JDK 1.0),
java.awt.image.PixelGrabber (JDK 1.0)

ImageConsumer

The java.awt.image Package

IMAGEERROR

java.awt.image.ImageConsumer (JDK 1.0)

ImageFilter

The java.awt.image Package

ImageObserver

The java.awt.image Package

ImageProducer

The java.awt.image Package

imageUpdate()

java.awt.Component (JDK 1.0), java.awt.image.ImageObserver (JDK 1.0)

implAccept()

java.net.ServerSocket (JDK 1.0)

in

java.io.FileDescriptor (JDK 1.0), java.io.FilterInputStream (JDK 1.0), java.io.FilterReader (JDK
1.1), java.io.PipedInputStream (JDK 1.0), java.lang.System (JDK 1.0)

INACTIVE_CAPTION

java.awt.SystemColor (JDK 1.1)

INACTIVE_CAPTION_BORDER

java.awt.SystemColor (JDK 1.1)

INACTIVE_CAPTION_TEXT

java.awt.SystemColor (JDK 1.1)

inactiveCaption

java.awt.SystemColor (JDK 1.1)

inactiveCaptionBorder

java.awt.SystemColor (JDK 1.1)

inactiveCaptionText

java.awt.SystemColor (JDK 1.1)

inCheck

java.lang.SecurityManager (JDK 1.0)

inClass()

java.lang.SecurityManager (JDK 1.0)

inClassLoader()

java.lang.SecurityManager (JDK 1.0)

IncompatibleClassChangeError

The java.lang Package

inDaylightTime()

java.util.SimpleTimeZone (JDK 1.1), java.util.TimeZone (JDK 1.1)

IndexColorModel

The java.awt.image Package

IndexedPropertyDescriptor

The java.beans Package

indexOf()

java.lang.String (JDK 1.0), java.util.Vector (JDK 1.0)

IndexOutOfBoundsException

The java.lang Package

InetAddress

The java.net Package

inf

java.util.zip.InflaterInputStream (JDK 1.1)

inflate()

java.util.zip.Inflater (JDK 1.1)

Inflater

The java.util.zip Package

InflaterInputStream

The java.util.zip Package

info

java.awt.SystemColor (JDK 1.1)

INFO

java.awt.SystemColor (JDK 1.1)

INFO_TEXT

java.awt.SystemColor (JDK 1.1)

infoText

java.awt.SystemColor (JDK 1.1)

init()

java.applet.Applet (JDK 1.0)

InputEvent

The java.awt.event Package

InputStream

The java.io Package

InputStreamReader

The java.io Package

INSERT

java.awt.Event (JDK 1.0)

insert()

java.awt.Choice (JDK 1.0), java.awt.Menu (JDK 1.0), java.lang.StringBuffer (JDK 1.0),
java.awt.TextArea (JDK 1.0), java.awt.peer.TextAreaPeer (JDK 1.0)

insertElementAt()

java.util.Vector (JDK 1.0)

insertSeparator()

java.awt.Menu (JDK 1.0)

insertText()

java.awt.TextArea (JDK 1.0), java.awt.peer.TextAreaPeer (JDK 1.0)

Insets

The java.awt Package

insets

java.awt.GridBagConstraints (JDK 1.0)

insets()

java.awt.Container (JDK 1.0), java.awt.peer.ContainerPeer (JDK 1.0)

inside()

java.awt.Component (JDK 1.0), java.awt.Polygon (JDK 1.0), java.awt.Rectangle (JDK 1.0)

instantiate()

java.beans.Beans (JDK 1.1)

InstantiationError

The java.lang Package

InstantiationException

The java.lang Package

intBitsToFloat()

java.lang.Float (JDK 1.0)

Integer

The java.lang Package

INTEGER_FIELD

java.text.NumberFormat (JDK 1.1)

INTERFACE

java.lang.reflect.Modifier (JDK 1.1)

intern()

java.lang.String (JDK 1.0)

InternalError

The java.lang Package

internalGet()

java.util.Calendar (JDK 1.1)

interrupt()

java.lang.Thread (JDK 1.0)

interrupted()

java.lang.Thread (JDK 1.0)

InterruptedException

The java.lang Package

InterruptedIOException

The java.io Package

intersection()

java.awt.Rectangle (JDK 1.0)

intersects()

java.awt.Rectangle (JDK 1.0)

IntrospectionException

The java.beans Package

Introspector

The java.beans Package

intValue()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1), java.lang.Byte (JDK 1.1),
java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0), java.lang.Integer (JDK 1.0),
java.lang.Long (JDK 1.0), java.lang.Number (JDK 1.0), java.lang.Short (JDK 1.1)

invalidate()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0)

invalidateLayout()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.GridBagLayout (JDK
1.0), java.awt.LayoutManager2 (JDK 1.1)

InvalidClassException

The java.io Package

InvalidObjectException

The java.io Package

InvocationTargetException

The java.lang.reflect Package

invoke()

java.lang.reflect.Method (JDK 1.1)

IOException

The java.io Package

ipadx

java.awt.GridBagConstraints (JDK 1.0)

ipady

java.awt.GridBagConstraints (JDK 1.0)

isAbsolute()

java.io.File (JDK 1.0)

isAbstract()

java.lang.reflect.Modifier (JDK 1.1)

isActionKey()

java.awt.event.KeyEvent (JDK 1.1)

isActive()

java.applet.Applet (JDK 1.0), java.applet.AppletStub (JDK 1.0)

isAlive()

java.lang.Thread (JDK 1.0)

isAltDown()

java.awt.event.InputEvent (JDK 1.1)

isAncestorOf()

java.awt.Container (JDK 1.0)

isArray()

java.lang.Class (JDK 1.0)

isAssignableFrom()

java.lang.Class (JDK 1.0)

isBold()

java.awt.Font (JDK 1.0)

isBound()

java.beans.PropertyDescriptor (JDK 1.1)

isConstrained()

java.beans.PropertyDescriptor (JDK 1.1)

isConsumed()

java.awt.AWTEvent (JDK 1.1), java.awt.event.InputEvent (JDK 1.1)

isConsumer()

java.awt.image.FilteredImageSource (JDK 1.0), java.awt.image.ImageProducer (JDK 1.0),
java.awt.image.MemoryImageSource (JDK 1.0)

isControlDown()

java.awt.event.InputEvent (JDK 1.1)

isDaemon()

java.lang.Thread (JDK 1.0), java.lang.ThreadGroup (JDK 1.0)

isDataFlavorSupported()

java.awt.datatransfer.StringSelection (JDK 1.1), java.awt.datatransfer.Transferable (JDK 1.1)

isDecimalSeparatorAlwaysShown()

java.text.DecimalFormat (JDK 1.1)

isDefined()

java.lang.Character (JDK 1.0)

isDesignTime()

java.beans.Beans (JDK 1.1)

isDestroyed()

java.lang.ThreadGroup (JDK 1.0)

isDigit()

java.lang.Character (JDK 1.0)

isDirectory()

java.io.File (JDK 1.0), java.util.zip.ZipEntry (JDK 1.1)

isEditable()

java.awt.TextComponent (JDK 1.0)

isEmpty()

java.util.Dictionary (JDK 1.0), java.util.Hashtable (JDK 1.0), java.awt.Rectangle (JDK 1.0),
java.util.Vector (JDK 1.0)

isEnabled()

java.awt.Component (JDK 1.0), java.awt.MenuItem (JDK 1.0)

isErrorAny()

java.awt.MediaTracker (JDK 1.0)

isErrorID()

java.awt.MediaTracker (JDK 1.0)

isExpert()

java.beans.FeatureDescriptor (JDK 1.1)

isFile()

java.io.File (JDK 1.0)

isFinal()

java.lang.reflect.Modifier (JDK 1.1)

isFocusTraversable()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0)

isGroupingUsed()

java.text.NumberFormat (JDK 1.1)

isGuiAvailable()

java.beans.Beans (JDK 1.1)

isHidden()

java.beans.FeatureDescriptor (JDK 1.1)

isIdentifierIgnorable()

java.lang.Character (JDK 1.0)

isInDefaultEventSet()

java.beans.EventSetDescriptor (JDK 1.1)

isIndexSelected()

java.awt.List (JDK 1.0)

isInfinite()

java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0)

isInstance()

java.lang.Class (JDK 1.0)

isInstanceOf()

java.beans.Beans (JDK 1.1)

isInterface()

java.lang.Class (JDK 1.0), java.lang.reflect.Modifier (JDK 1.1)

isInterrupted()

java.lang.Thread (JDK 1.0)

isISOControl()

java.lang.Character (JDK 1.0)

isItalic()

java.awt.Font (JDK 1.0)

isJavaIdentifierPart()

java.lang.Character (JDK 1.0)

isJavaIdentifierStart()

java.lang.Character (JDK 1.0)

isJavaLetter()

java.lang.Character (JDK 1.0)

isJavaLetterOrDigit()

java.lang.Character (JDK 1.0)

isLeapYear()

java.util.GregorianCalendar (JDK 1.1)

isLenient()

java.util.Calendar (JDK 1.1), java.text.DateFormat (JDK 1.1)

isLetter()

java.lang.Character (JDK 1.0)

isLetterOrDigit()

java.lang.Character (JDK 1.0)

isLowerCase()

java.lang.Character (JDK 1.0)

isMetaDown()

java.awt.event.InputEvent (JDK 1.1)

isMimeTypeEqual()

java.awt.datatransfer.DataFlavor (JDK 1.1)

isModal()

java.awt.Dialog (JDK 1.0)

isMulticastAddress()

java.net.InetAddress (JDK 1.0)

isMultipleMode()

java.awt.List (JDK 1.0)

isNaN()

java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0)

isNative()

java.lang.reflect.Modifier (JDK 1.1)

isPaintable()

java.beans.PropertyEditor (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1)

isParseIntegerOnly()

java.text.NumberFormat (JDK 1.1)

isPlain()

java.awt.Font (JDK 1.0)

isPopupTrigger()

java.awt.event.MouseEvent (JDK 1.1)

isPrimitive()

java.lang.Class (JDK 1.0)

isPrivate()

java.lang.reflect.Modifier (JDK 1.1)

isProbablePrime()

java.math.BigInteger (JDK 1.1)

isProtected()

java.lang.reflect.Modifier (JDK 1.1)

isPublic()

java.lang.reflect.Modifier (JDK 1.1)

isResizable()

java.awt.Dialog (JDK 1.0), java.awt.Frame (JDK 1.0)

isSelected()

java.awt.List (JDK 1.0)

isSet

java.util.Calendar (JDK 1.1)

isSet()

java.util.Calendar (JDK 1.1)

isShiftDown()

java.awt.event.InputEvent (JDK 1.1)

isShowing()

java.awt.Component (JDK 1.0), java.awt.Window (JDK 1.0)

isSpace()

java.lang.Character (JDK 1.0)

isSpaceChar()

java.lang.Character (JDK 1.0)

isStatic()

java.lang.reflect.Modifier (JDK 1.1)

isSynchronized()

java.lang.reflect.Modifier (JDK 1.1)

isTearOff()

java.awt.Menu (JDK 1.0)

isTemporary()

java.awt.event.FocusEvent (JDK 1.1)

isTimeSet

java.util.Calendar (JDK 1.1)

isTitleCase()

java.lang.Character (JDK 1.0)

isTransient()

java.lang.reflect.Modifier (JDK 1.1)

isUnicast()

java.beans.EventSetDescriptor (JDK 1.1)

isUnicodeIdentifierPart()

java.lang.Character (JDK 1.0)

isUnicodeIdentifierStart()

java.lang.Character (JDK 1.0)

isUpperCase()

java.lang.Character (JDK 1.0)

isValid()

java.awt.Component (JDK 1.0)

isVisible()

java.awt.Component (JDK 1.0)

isVolatile()

java.lang.reflect.Modifier (JDK 1.1)

isWhitespace()

java.lang.Character (JDK 1.0)

ITALIAN

java.util.Locale (JDK 1.1)

ITALIC

java.awt.Font (JDK 1.0)

ITALY

java.util.Locale (JDK 1.1)

ITEM_EVENT_MASK

java.awt.AWTEvent (JDK 1.1)

ITEM_FIRST

java.awt.event.ItemEvent (JDK 1.1)

ITEM_LAST

java.awt.event.ItemEvent (JDK 1.1)

ITEM_STATE_CHANGED

java.awt.event.ItemEvent (JDK 1.1)

ItemEvent

The java.awt.event Package

ItemListener

The java.awt.event Package

ItemSelectable

The java.awt Package

itemStateChanged()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.ItemListener (JDK 1.1)

J

JANUARY

java.util.Calendar (JDK 1.1)

JAPAN

java.util.Locale (JDK 1.1)

JAPANESE

java.util.Locale (JDK 1.1)

join()

java.net.DatagramSocketImpl (JDK 1.1), java.lang.Thread (JDK 1.0)

joinGroup()

java.net.MulticastSocket (JDK 1.1)

JULY

java.util.Calendar (JDK 1.1)

JUNE

java.util.Calendar (JDK 1.1)

K

key

java.awt.Event (JDK 1.0)

KEY_ACTION

java.awt.Event (JDK 1.0)

KEY_ACTION_RELEASE

java.awt.Event (JDK 1.0)

KEY_EVENT_MASK

java.awt.AWTEvent (JDK 1.1)

KEY_FIRST

java.awt.event.KeyEvent (JDK 1.1)

KEY_LAST

java.awt.event.KeyEvent (JDK 1.1)

KEY_PRESS

java.awt.Event (JDK 1.0)

KEY_PRESSED

java.awt.event.KeyEvent (JDK 1.1)

KEY_RELEASE

java.awt.Event (JDK 1.0)

KEY_RELEASED

java.awt.event.KeyEvent (JDK 1.1)

KEY_TYPED

java.awt.event.KeyEvent (JDK 1.1)

KeyAdapter

The java.awt.event Package

keyDown()

java.awt.Component (JDK 1.0)

KeyEvent

The java.awt.event Package

KeyListener

The java.awt.event Package

keyPressed()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.KeyAdapter (JDK 1.1),
java.awt.event.KeyListener (JDK 1.1)

keyReleased()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.KeyAdapter (JDK 1.1),
java.awt.event.KeyListener (JDK 1.1)

keys()

java.util.Dictionary (JDK 1.0), java.util.Hashtable (JDK 1.0)

keyTyped()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.KeyAdapter (JDK 1.1),
java.awt.event.KeyListener (JDK 1.1)

keyUp()

java.awt.Component (JDK 1.0)

KOREA

java.util.Locale (JDK 1.1)

KOREAN

java.util.Locale (JDK 1.1)

L

Label

The java.awt Package

LabelPeer

The java.awt.peer Package

last()

java.text.BreakIterator (JDK 1.1), java.awt.CardLayout (JDK 1.0), java.text.CharacterIterator
(JDK 1.1), java.text.StringCharacterIterator (JDK 1.1)

lastElement()

java.util.Vector (JDK 1.0)

lastIndexOf()

java.lang.String (JDK 1.0), java.util.Vector (JDK 1.0)

lastModified()

java.io.File (JDK 1.0)

lastPageFirst()

java.awt.PrintJob (JDK 1.1)

layout()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0), java.awt.ScrollPane (JDK 1.1)

layoutContainer()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.FlowLayout (JDK
1.0), java.awt.GridBagLayout (JDK 1.0), java.awt.GridLayout (JDK 1.0),
java.awt.LayoutManager (JDK 1.0)

layoutInfo

java.awt.GridBagLayout (JDK 1.0)

LayoutManager

The java.awt Package

LayoutManager2

The java.awt Package

leave()

java.net.DatagramSocketImpl (JDK 1.1)

leaveGroup()

java.net.MulticastSocket (JDK 1.1)

left

java.awt.Insets (JDK 1.0)

LEFT

java.awt.Event (JDK 1.0), java.awt.FlowLayout (JDK 1.0), java.awt.Label (JDK 1.0)

LEFT_ALIGNMENT

java.awt.Component (JDK 1.0)

len

java.util.zip.InflaterInputStream (JDK 1.1)

length

java.io.OptionalDataException (JDK 1.1)

length()

java.io.File (JDK 1.0), java.io.RandomAccessFile (JDK 1.0), java.lang.String (JDK 1.0),
java.lang.StringBuffer (JDK 1.0)

LETTER_NUMBER

java.lang.Character (JDK 1.0)

lightGray

java.awt.Color (JDK 1.0)

LightweightPeer

The java.awt.peer Package

LINE_SEPARATOR

java.lang.Character (JDK 1.0)

lineno()

java.io.StreamTokenizer (JDK 1.0)

LineNumberInputStream

The java.io Package

LineNumberReader

The java.io Package

LinkageError

The java.lang Package

List

The java.awt Package

list()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0), java.io.File (JDK 1.0),
java.util.Properties (JDK 1.0), java.lang.ThreadGroup (JDK 1.0)

LIST_DESELECT

java.awt.Event (JDK 1.0)

LIST_SELECT

java.awt.Event (JDK 1.0)

listen()

java.net.SocketImpl (JDK 1.0)

ListPeer

The java.awt.peer Package

ListResourceBundle

The java.util Package

LOAD

java.awt.FileDialog (JDK 1.0)

load()

java.util.Properties (JDK 1.0), java.lang.Runtime (JDK 1.0), java.lang.System (JDK 1.0)

LOAD_FILE

java.awt.Event (JDK 1.0)

loadClass()

java.lang.ClassLoader (JDK 1.0)

loadImage()

java.beans.SimpleBeanInfo (JDK 1.1)

LOADING

java.awt.MediaTracker (JDK 1.0)

loadLibrary()

java.lang.Runtime (JDK 1.0), java.lang.System (JDK 1.0)

loadSystemColors()

java.awt.Toolkit (JDK 1.0)

Locale

The java.util Package

locale

java.awt.Component (JDK 1.0)

localPort

java.net.DatagramSocketImpl (JDK 1.1)

localport

java.net.SocketImpl (JDK 1.0)

locate()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0)

location()

java.awt.Component (JDK 1.0), java.awt.GridBagLayout (JDK 1.0)

lock

java.io.Reader (JDK 1.1), java.io.Writer (JDK 1.1)

log()

java.lang.Math (JDK 1.0)

LONG

java.text.DateFormat (JDK 1.1)

Long

The java.lang Package

longBitsToDouble()

java.lang.Double (JDK 1.0)

longValue()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1), java.lang.Byte (JDK 1.1),
java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0), java.lang.Integer (JDK 1.0),
java.lang.Long (JDK 1.0), java.lang.Number (JDK 1.0), java.lang.Short (JDK 1.1)

lookup()

java.io.ObjectStreamClass (JDK 1.1)

lookupConstraints()

java.awt.GridBagLayout (JDK 1.0)

loop()

java.applet.AudioClip (JDK 1.0)

LOST_FOCUS

java.awt.Event (JDK 1.0)

lostFocus()

java.awt.Component (JDK 1.0)

lostOwnership()

java.awt.datatransfer.ClipboardOwner (JDK 1.1), java.awt.datatransfer.StringSelection (JDK 1.1)

LOWERCASE_LETTER

java.lang.Character (JDK 1.0)

lowerCaseMode()

java.io.StreamTokenizer (JDK 1.0)

M

magenta

java.awt.Color (JDK 1.0)

makeVisible()

java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK 1.0)

MalformedURLException

The java.net Package

MARCH

java.util.Calendar (JDK 1.1)

mark

java.io.ByteArrayInputStream (JDK 1.0)

mark()

java.io.BufferedInputStream (JDK 1.0), java.io.BufferedReader (JDK 1.1),
java.io.ByteArrayInputStream (JDK 1.0), java.io.CharArrayReader (JDK 1.1),
java.io.FilterInputStream (JDK 1.0), java.io.FilterReader (JDK 1.1), java.io.InputStream (JDK
1.0), java.io.LineNumberInputStream (JDK 1.0; Deprecated.), java.io.LineNumberReader (JDK
1.1), java.io.Reader (JDK 1.1), java.io.StringReader (JDK 1.1)

markedPos

java.io.CharArrayReader (JDK 1.1)

marklimit

java.io.BufferedInputStream (JDK 1.0)

markpos

java.io.BufferedInputStream (JDK 1.0)

markSupported()

java.io.BufferedInputStream (JDK 1.0), java.io.BufferedReader (JDK 1.1),
java.io.ByteArrayInputStream (JDK 1.0), java.io.CharArrayReader (JDK 1.1),
java.io.FilterInputStream (JDK 1.0), java.io.FilterReader (JDK 1.1), java.io.InputStream (JDK
1.0), java.io.PushbackInputStream (JDK 1.0), java.io.PushbackReader (JDK 1.1), java.io.Reader
(JDK 1.1), java.io.StringReader (JDK 1.1)

Math

The java.lang Package

MATH_SYMBOL

java.lang.Character (JDK 1.0)

max()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1), java.lang.Math (JDK 1.0)

MAX_PRIORITY

java.lang.Thread (JDK 1.0)

MAX_RADIX

java.lang.Character (JDK 1.0)

MAX_VALUE

java.lang.Byte (JDK 1.1), java.lang.Character (JDK 1.0), java.lang.Double (JDK 1.0),
java.lang.Float (JDK 1.0), java.lang.Integer (JDK 1.0), java.lang.Long (JDK 1.0), java.lang.Short
(JDK 1.1)

MAXGRIDSIZE

java.awt.GridBagLayout (JDK 1.0)

maximumLayoutSize()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.GridBagLayout (JDK
1.0), java.awt.LayoutManager2 (JDK 1.1)

MAY

java.util.Calendar (JDK 1.1)

MediaTracker

The java.awt Package

MEDIUM

java.text.DateFormat (JDK 1.1)

Member

The java.lang.reflect Package

MemoryImageSource

The java.awt.image Package

menu

java.awt.SystemColor (JDK 1.1)

MENU

java.awt.SystemColor (JDK 1.1)

Menu

The java.awt Package

MENU_TEXT

java.awt.SystemColor (JDK 1.1)

MenuBar

The java.awt Package

MenuBarPeer

The java.awt.peer Package

MenuComponent

The java.awt Package

MenuComponentPeer

The java.awt.peer Package

MenuContainer

The java.awt Package

MenuItem

The java.awt Package

MenuItemPeer

The java.awt.peer Package

MenuPeer

The java.awt.peer Package

MenuShortcut

The java.awt Package

menuText

java.awt.SystemColor (JDK 1.1)

MessageFormat

The java.text Package

META_MASK

java.awt.event.ActionEvent (JDK 1.1), java.awt.Event (JDK 1.0), java.awt.event.InputEvent (JDK
1.1)

metaDown()

java.awt.Event (JDK 1.0)

method

java.net.HttpURLConnection (JDK 1.1)

Method

The java.lang.reflect Package

MethodDescriptor

The java.beans Package

MILLISECOND

java.util.Calendar (JDK 1.1)

MILLISECOND_FIELD

java.text.DateFormat (JDK 1.1)

min()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1), java.lang.Math (JDK 1.0)

MIN_PRIORITY

java.lang.Thread (JDK 1.0)

MIN_RADIX

java.lang.Character (JDK 1.0)

MIN_VALUE

java.lang.Byte (JDK 1.1), java.lang.Character (JDK 1.0), java.lang.Double (JDK 1.0),
java.lang.Float (JDK 1.0), java.lang.Integer (JDK 1.0), java.lang.Long (JDK 1.0), java.lang.Short
(JDK 1.1)

minimumLayoutSize()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.FlowLayout (JDK
1.0), java.awt.GridBagLayout (JDK 1.0), java.awt.GridLayout (JDK 1.0),
java.awt.LayoutManager (JDK 1.0)

minimumSize()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Container
(JDK 1.0), java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK 1.0), java.awt.TextArea (JDK
1.0), java.awt.peer.TextAreaPeer (JDK 1.0), java.awt.TextField (JDK 1.0),
java.awt.peer.TextFieldPeer (JDK 1.0)

MINSIZE

java.awt.GridBagLayout (JDK 1.0)

MINUTE

java.util.Calendar (JDK 1.1)

MINUTE_FIELD

java.text.DateFormat (JDK 1.1)

MissingResourceException

The java.util Package

mkdir()

java.io.File (JDK 1.0)

mkdirs()

java.io.File (JDK 1.0)

mod()

java.math.BigInteger (JDK 1.1)

Modifier

The java.lang.reflect Package

MODIFIER_LETTER

java.lang.Character (JDK 1.0)

MODIFIER_SYMBOL

java.lang.Character (JDK 1.0)

modifiers

java.awt.Event (JDK 1.0)

modInverse()

java.math.BigInteger (JDK 1.1)

modPow()

java.math.BigInteger (JDK 1.1)

MONDAY

java.util.Calendar (JDK 1.1)

MONTH

java.util.Calendar (JDK 1.1)

MONTH_FIELD

java.text.DateFormat (JDK 1.1)

MOUSE_CLICKED

java.awt.event.MouseEvent (JDK 1.1)

MOUSE_DOWN

java.awt.Event (JDK 1.0)

MOUSE_DRAG

java.awt.Event (JDK 1.0)

MOUSE_DRAGGED

java.awt.event.MouseEvent (JDK 1.1)

MOUSE_ENTER

java.awt.Event (JDK 1.0)

MOUSE_ENTERED

java.awt.event.MouseEvent (JDK 1.1)

MOUSE_EVENT_MASK

java.awt.AWTEvent (JDK 1.1)

MOUSE_EXIT

java.awt.Event (JDK 1.0)

MOUSE_EXITED

java.awt.event.MouseEvent (JDK 1.1)

MOUSE_FIRST

java.awt.event.MouseEvent (JDK 1.1)

MOUSE_LAST

java.awt.event.MouseEvent (JDK 1.1)

MOUSE_MOTION_EVENT_MASK

java.awt.AWTEvent (JDK 1.1)

MOUSE_MOVE

java.awt.Event (JDK 1.0)

MOUSE_MOVED

java.awt.event.MouseEvent (JDK 1.1)

MOUSE_PRESSED

java.awt.event.MouseEvent (JDK 1.1)

MOUSE_RELEASED

java.awt.event.MouseEvent (JDK 1.1)

MOUSE_UP

java.awt.Event (JDK 1.0)

MouseAdapter

The java.awt.event Package

mouseClicked()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.MouseAdapter (JDK 1.1),
java.awt.event.MouseListener (JDK 1.1)

mouseDown()

java.awt.Component (JDK 1.0)

mouseDrag()

java.awt.Component (JDK 1.0)

mouseDragged()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.MouseMotionAdapter (JDK 1.1),
java.awt.event.MouseMotionListener (JDK 1.1)

mouseEnter()

java.awt.Component (JDK 1.0)

mouseEntered()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.MouseAdapter (JDK 1.1),
java.awt.event.MouseListener (JDK 1.1)

MouseEvent

The java.awt.event Package

mouseExit()

java.awt.Component (JDK 1.0)

mouseExited()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.MouseAdapter (JDK 1.1),
java.awt.event.MouseListener (JDK 1.1)

MouseListener

The java.awt.event Package

MouseMotionAdapter

The java.awt.event Package

MouseMotionListener

The java.awt.event Package

mouseMove()

java.awt.Component (JDK 1.0)

mouseMoved()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.MouseMotionAdapter (JDK 1.1),
java.awt.event.MouseMotionListener (JDK 1.1)

mousePressed()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.MouseAdapter (JDK 1.1),
java.awt.event.MouseListener (JDK 1.1)

mouseReleased()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.MouseAdapter (JDK 1.1),
java.awt.event.MouseListener (JDK 1.1)

mouseUp()

java.awt.Component (JDK 1.0)

move()

java.awt.Component (JDK 1.0), java.awt.Point (JDK 1.0), java.awt.Rectangle (JDK 1.0)

MOVE_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

movePointLeft()

java.math.BigDecimal (JDK 1.1)

movePointRight()

java.math.BigDecimal (JDK 1.1)

MulticastSocket

The java.net Package

multiply()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1)

N

N_RESIZE_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

name

java.awt.Font (JDK 1.0)

NaN

java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0)

NATIVE

java.lang.reflect.Modifier (JDK 1.1)

NE_RESIZE_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

needsDictionary()

java.util.zip.Inflater (JDK 1.1)

needsGui()

java.beans.Visibility (JDK 1.1)

needsInput()

java.util.zip.Deflater (JDK 1.1), java.util.zip.Inflater (JDK 1.1)

negate()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1)

NEGATIVE_INFINITY

java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0)

NegativeArraySizeException

The java.lang Package

newInstance()

java.lang.reflect.Array (JDK 1.1), java.lang.Class (JDK 1.0), java.lang.reflect.Constructor (JDK
1.1)

newLine()

java.io.BufferedWriter (JDK 1.1)

newmodel

java.awt.image.RGBImageFilter (JDK 1.0)

newPixels()

java.awt.image.MemoryImageSource (JDK 1.0)

next()

java.text.BreakIterator (JDK 1.1), java.awt.CardLayout (JDK 1.0), CharacterIterator,
CollationElementIterator, Random, java.text.StringCharacterIterator (JDK 1.1)

nextBytes()

java.util.Random (JDK 1.0)

nextDouble()

java.text.ChoiceFormat (JDK 1.1), java.util.Random (JDK 1.0)

nextElement()

java.util.Enumeration (JDK 1.0), java.util.StringTokenizer (JDK 1.0)

nextFloat()

java.util.Random (JDK 1.0)

nextFocus()

java.awt.Component (JDK 1.0)

nextGaussian()

java.util.Random (JDK 1.0)

nextInt()

java.util.Random (JDK 1.0)

nextLong()

java.util.Random (JDK 1.0)

nextToken()

java.io.StreamTokenizer (JDK 1.0), java.util.StringTokenizer (JDK 1.0)

NO_COMPRESSION

java.util.zip.Deflater (JDK 1.1)

NO_DECOMPOSITION

java.text.Collator (JDK 1.1)

NoClassDefFoundError

The java.lang Package

NON_SPACING_MARK

java.lang.Character (JDK 1.0)

NONE

java.awt.GridBagConstraints (JDK 1.0)

NORM_PRIORITY

java.lang.Thread (JDK 1.0)

normalizeMimeType()

java.awt.datatransfer.DataFlavor (JDK 1.1)

normalizeMimeTypeParameter()

java.awt.datatransfer.DataFlavor (JDK 1.1)

NoRouteToHostException

The java.net Package

NORTH

java.awt.BorderLayout (JDK 1.0), java.awt.GridBagConstraints (JDK 1.0)

NORTHEAST

java.awt.GridBagConstraints (JDK 1.0)

NORTHWEST

java.awt.GridBagConstraints (JDK 1.0)

NoSuchElementException

The java.util Package

NoSuchFieldError

The java.lang Package

NoSuchFieldException

The java.lang Package

NoSuchMethodError

The java.lang Package

NoSuchMethodException

The java.lang Package

not()

java.math.BigInteger (JDK 1.1)

NotActiveException

The java.io Package

notify()

java.lang.Object (JDK 1.0)

notifyAll()

java.lang.Object (JDK 1.0)

notifyObservers()

java.util.Observable (JDK 1.0)

NotSerializableException

The java.io Package

NOVEMBER

java.util.Calendar (JDK 1.1)

npoints

java.awt.Polygon (JDK 1.0)

NULLORDER

java.text.CollationElementIterator (JDK 1.1)

NullPointerException

The java.lang Package

NUM_COLORS

java.awt.SystemColor (JDK 1.1)

NUM_LOCK

java.awt.Event (JDK 1.0)

Number

The java.lang Package

NumberFormat

The java.text Package

numberFormat

java.text.DateFormat (JDK 1.1)

NumberFormatException

The java.lang Package

nval

java.io.StreamTokenizer (JDK 1.0)

NW_RESIZE_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

O

Object

The java.lang Package

ObjectInput

The java.io Package

ObjectInputStream

The java.io Package

ObjectInputValidation

The java.io Package

ObjectOutput

The java.io Package

ObjectOutputStream

The java.io Package

ObjectStreamClass

The java.io Package

ObjectStreamException

The java.io Package

Observable

The java.util Package

Observer

The java.util Package

OCTOBER

java.util.Calendar (JDK 1.1)

okToUseGui()

java.beans.Visibility (JDK 1.1)

openConnection()

java.net.URL (JDK 1.0), java.net.URLStreamHandler (JDK 1.0)

openStream()

java.net.URL (JDK 1.0)

OptionalDataException

The java.io Package

or()

java.math.BigInteger (JDK 1.1), java.util.BitSet (JDK 1.0)

orange

java.awt.Color (JDK 1.0)

ordinaryChar()

java.io.StreamTokenizer (JDK 1.0)

ordinaryChars()

java.io.StreamTokenizer (JDK 1.0)

origmodel

java.awt.image.RGBImageFilter (JDK 1.0)

OTHER_LETTER

java.lang.Character (JDK 1.0)

OTHER_NUMBER

java.lang.Character (JDK 1.0)

OTHER_PUNCTUATION

java.lang.Character (JDK 1.0)

OTHER_SYMBOL

java.lang.Character (JDK 1.0)

out

java.io.FileDescriptor (JDK 1.0), java.io.FilterOutputStream (JDK 1.0), java.io.FilterWriter (JDK

1.1), java.io.PipedInputStream (JDK 1.0), java.lang.System (JDK 1.0)

OutOfMemoryError

The java.lang Package

outpixbuf

java.awt.image.ReplicateScaleFilter (JDK 1.1)

OutputStream

The java.io Package

OutputStreamWriter

The java.io Package

owner

java.awt.datatransfer.Clipboard (JDK 1.1)

P

pack()

java.awt.Window (JDK 1.0)

PAINT

java.awt.event.PaintEvent (JDK 1.1)

paint()

java.awt.Canvas (JDK 1.0), java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK
1.0), java.awt.Container (JDK 1.0)

PAINT_FIRST

java.awt.event.PaintEvent (JDK 1.1)

PAINT_LAST

java.awt.event.PaintEvent (JDK 1.1)

paintAll()

java.awt.Component (JDK 1.0)

paintComponents()

java.awt.Container (JDK 1.0)

PaintEvent

The java.awt.event Package

paintValue()

java.beans.PropertyEditor (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1)

Panel

The java.awt Package

PanelPeer

The java.awt.peer Package

PARAGRAPH_SEPARATOR

java.lang.Character (JDK 1.0)

ParameterDescriptor

The java.beans Package

paramString()

java.awt.event.ActionEvent (JDK 1.1), java.awt.event.AdjustmentEvent (JDK 1.1),
java.awt.AWTEvent (JDK 1.1), java.awt.Button (JDK 1.0), java.awt.Checkbox (JDK 1.0),
java.awt.CheckboxMenuItem (JDK 1.0), java.awt.Choice (JDK 1.0), java.awt.Component (JDK
1.0), java.awt.event.ComponentEvent (JDK 1.1), java.awt.Container (JDK 1.0),
java.awt.event.ContainerEvent (JDK 1.1), java.awt.Dialog (JDK 1.0), java.awt.Event (JDK 1.0),
java.awt.FileDialog (JDK 1.0), java.awt.event.FocusEvent (JDK 1.1), java.awt.Frame (JDK 1.0),
java.awt.event.ItemEvent (JDK 1.1), java.awt.event.KeyEvent (JDK 1.1), java.awt.Label (JDK
1.0), java.awt.List (JDK 1.0), java.awt.Menu (JDK 1.0), java.awt.MenuComponent (JDK 1.0),
java.awt.MenuItem (JDK 1.0), java.awt.MenuShortcut (JDK 1.1), java.awt.event.MouseEvent
(JDK 1.1), java.awt.event.PaintEvent (JDK 1.1), java.awt.Scrollbar (JDK 1.0), ScrollPane,
TextArea, java.awt.TextComponent (JDK 1.0), java.awt.event.TextEvent (JDK 1.1),
java.awt.TextField (JDK 1.0), java.awt.event.WindowEvent (JDK 1.1)

parent

java.util.ResourceBundle (JDK 1.1)

parentOf()

java.lang.ThreadGroup (JDK 1.0)

parse()

java.text.ChoiceFormat (JDK 1.1), java.util.Date (JDK 1.0), java.text.DateFormat (JDK 1.1),
java.text.DecimalFormat (JDK 1.1), java.text.MessageFormat (JDK 1.1), java.text.NumberFormat
(JDK 1.1), java.text.SimpleDateFormat (JDK 1.1)

parseByte()

java.lang.Byte (JDK 1.1)

ParseException

The java.text Package

parseInt()

java.lang.Integer (JDK 1.0)

parseLong()

java.lang.Long (JDK 1.0)

parseNumbers()

java.io.StreamTokenizer (JDK 1.0)

parseObject()

java.text.DateFormat (JDK 1.1), java.text.Format (JDK 1.1), java.text.MessageFormat (JDK 1.1),
java.text.NumberFormat (JDK 1.1)

ParsePosition

The java.text Package

parseShort()

java.lang.Short (JDK 1.1)

parseURL()

java.net.URLStreamHandler (JDK 1.0)

pathSeparator

java.io.File (JDK 1.0)

pathSeparatorChar

java.io.File (JDK 1.0)

PAUSE

java.awt.Event (JDK 1.0)

peek()

java.net.DatagramSocketImpl (JDK 1.1), java.util.Stack (JDK 1.0)

peekEvent()

java.awt.EventQueue (JDK 1.1)

PGDN

java.awt.Event (JDK 1.0)

PGUP

java.awt.Event (JDK 1.0)

PI

java.lang.Math (JDK 1.0)

pink

java.awt.Color (JDK 1.0)

PIPE_SIZE

java.io.PipedInputStream (JDK 1.0)

PipedInputStream

The java.io Package

PipedOutputStream

The java.io Package

PipedReader

The java.io Package

PipedWriter

The java.io Package

pixel_bits

java.awt.image.ColorModel (JDK 1.0)

PixelGrabber

The java.awt.image Package

PLAIN

java.awt.Font (JDK 1.0)

plainTextFlavor

java.awt.datatransfer.DataFlavor (JDK 1.1)

play()

java.applet.Applet (JDK 1.0), java.applet.AudioClip (JDK 1.0)

PM

java.util.Calendar (JDK 1.1)

Point

The java.awt Package

Polygon

The java.awt Package

pop()

java.util.Stack (JDK 1.0)

PopupMenu

The java.awt Package

PopupMenuPeer

The java.awt.peer Package

port

java.net.SocketImpl (JDK 1.0)

pos

java.io.BufferedInputStream (JDK 1.0), java.io.ByteArrayInputStream (JDK 1.0),
java.io.CharArrayReader (JDK 1.1), java.io.PushbackInputStream (JDK 1.0),
java.io.StringBufferInputStream (JDK 1.0; Deprecated.)

POSITIVE_INFINITY

java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0)

postEvent()

java.awt.Component (JDK 1.0), java.awt.EventQueue (JDK 1.1), java.awt.MenuComponent (JDK
1.0), java.awt.MenuContainer (JDK 1.0), java.awt.Window (JDK 1.0)

pow()

java.math.BigInteger (JDK 1.1), java.lang.Math (JDK 1.0)

PRC

java.util.Locale (JDK 1.1)

predefined

java.awt.Cursor (JDK 1.1)

preferredLayoutSize()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.FlowLayout (JDK
1.0), java.awt.GridBagLayout (JDK 1.0), java.awt.GridLayout (JDK 1.0),
java.awt.LayoutManager (JDK 1.0)

PREFERREDSIZE

java.awt.GridBagLayout (JDK 1.0)

preferredSize()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Container
(JDK 1.0), java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK 1.0), java.awt.TextArea (JDK
1.0), java.awt.peer.TextAreaPeer (JDK 1.0), java.awt.TextField (JDK 1.0),
java.awt.peer.TextFieldPeer (JDK 1.0)

prepareImage()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Toolkit (JDK
1.0)

previous()

java.text.BreakIterator (JDK 1.1), java.awt.CardLayout (JDK 1.0), java.text.CharacterIterator
(JDK 1.1), java.text.StringCharacterIterator (JDK 1.1)

previousDouble()

java.text.ChoiceFormat (JDK 1.1)

PRIMARY

java.text.Collator (JDK 1.1)

primaryOrder()

java.text.CollationElementIterator (JDK 1.1)

print()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Container
(JDK 1.0), java.io.PrintStream (JDK 1.0), java.io.PrintWriter (JDK 1.1)

PRINT_SCREEN

java.awt.Event (JDK 1.0)

printAll()

java.awt.Component (JDK 1.0)

printComponents()

java.awt.Container (JDK 1.0), java.awt.ScrollPane (JDK 1.1)

PrintGraphics

The java.awt Package

PrintJob

The java.awt Package

println()

java.io.PrintStream (JDK 1.0), java.io.PrintWriter (JDK 1.1)

printStackTrace()

java.lang.Throwable (JDK 1.0)

PrintStream

The java.io Package

PrintWriter

The java.io Package

PRIVATE

java.lang.reflect.Modifier (JDK 1.1)

PRIVATE_USE

java.lang.Character (JDK 1.0)

Process

The java.lang Package

processActionEvent()

java.awt.Button (JDK 1.0), java.awt.List (JDK 1.0), java.awt.MenuItem (JDK 1.0),
java.awt.TextField (JDK 1.0)

processAdjustmentEvent()

java.awt.Scrollbar (JDK 1.0)

processComponentEvent()

java.awt.Component (JDK 1.0)

processContainerEvent()

java.awt.Container (JDK 1.0)

processEvent()

java.awt.Button (JDK 1.0), java.awt.Checkbox (JDK 1.0), java.awt.CheckboxMenuItem (JDK
1.0), java.awt.Choice (JDK 1.0), java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0),
java.awt.List (JDK 1.0), java.awt.MenuComponent (JDK 1.0), java.awt.MenuItem (JDK 1.0),
java.awt.Scrollbar (JDK 1.0), java.awt.TextComponent (JDK 1.0), java.awt.TextField (JDK 1.0),
java.awt.Window (JDK 1.0)

processFocusEvent()

java.awt.Component (JDK 1.0)

processItemEvent()

java.awt.Checkbox (JDK 1.0), java.awt.CheckboxMenuItem (JDK 1.0), java.awt.Choice (JDK
1.0), java.awt.List (JDK 1.0)

processKeyEvent()

java.awt.Component (JDK 1.0)

processMouseEvent()

java.awt.Component (JDK 1.0)

processMouseMotionEvent()

java.awt.Component (JDK 1.0)

processTextEvent()

java.awt.TextComponent (JDK 1.0)

processWindowEvent()

java.awt.Window (JDK 1.0)

Properties

The java.util Package

PROPERTIES

java.awt.image.ImageObserver (JDK 1.0)

propertyChange()

java.beans.PropertyChangeListener (JDK 1.1)

PropertyChangeEvent

The java.beans Package

PropertyChangeListener

The java.beans Package

PropertyChangeSupport

The java.beans Package

PropertyDescriptor

The java.beans Package

PropertyEditor

The java.beans Package

PropertyEditorManager

The java.beans Package

PropertyEditorSupport

The java.beans Package

propertyNames()

java.util.Properties (JDK 1.0)

PropertyResourceBundle

The java.util Package

PropertyVetoException

The java.beans Package

PROTECTED

java.lang.reflect.Modifier (JDK 1.1)

ProtocolException

The java.net Package

PUBLIC

java.lang.reflect.Member (JDK 1.1), java.lang.reflect.Modifier (JDK 1.1)

push()

java.util.Stack (JDK 1.0)

pushBack()

java.io.StreamTokenizer (JDK 1.0)

PushbackInputStream

The java.io Package

PushbackReader

The java.io Package

put()

java.util.Dictionary (JDK 1.0), java.util.Hashtable (JDK 1.0)

putNextEntry()

java.util.zip.ZipOutputStream (JDK 1.1)

Q

quoteChar()

java.io.StreamTokenizer (JDK 1.0)

R

Random

The java.util Package

random()

java.lang.Math (JDK 1.0)

RandomAccessFile

The java.io Package

RANDOMPIXELORDER

java.awt.image.ImageConsumer (JDK 1.0)

read()

java.io.BufferedInputStream (JDK 1.0), java.io.BufferedReader (JDK 1.1),
java.io.ByteArrayInputStream (JDK 1.0), java.io.CharArrayReader (JDK 1.1),
java.util.zip.CheckedInputStream (JDK 1.1), java.io.DataInputStream (JDK 1.0),
java.io.FileInputStream (JDK 1.0), java.io.FilterInputStream (JDK 1.0), java.io.FilterReader (JDK
1.1), java.util.zip.GZIPInputStream (JDK 1.1), java.util.zip.InflaterInputStream (JDK 1.1),
java.io.InputStream (JDK 1.0), java.io.InputStreamReader (JDK 1.1),
java.io.LineNumberInputStream (JDK 1.0; Deprecated.), java.io.LineNumberReader (JDK 1.1),
java.io.ObjectInput (JDK 1.1), java.io.ObjectInputStream (JDK 1.1), java.io.PipedInputStream
(JDK 1.0), java.io.PipedReader (JDK 1.1), java.io.PushbackInputStream (JDK 1.0),
java.io.PushbackReader (JDK 1.1), java.io.RandomAccessFile (JDK 1.0), java.io.Reader (JDK
1.1), java.io.SequenceInputStream (JDK 1.0), java.io.StringBufferInputStream (JDK 1.0;
Deprecated.), java.io.StringReader (JDK 1.1), java.util.zip.ZipInputStream (JDK 1.1)

readBoolean()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

readByte()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

readChar()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

readDouble()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

Reader

The java.io Package

readExternal()

java.io.Externalizable (JDK 1.1)

readFloat()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

readFully()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

readInt()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

readLine()

java.io.BufferedReader (JDK 1.1), java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK
1.0), java.io.LineNumberReader (JDK 1.1), java.io.ObjectInputStream (JDK 1.1),
java.io.RandomAccessFile (JDK 1.0)

readLong()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

readObject()

java.io.ObjectInput (JDK 1.1), java.io.ObjectInputStream (JDK 1.1)

readShort()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

readStreamHeader()

java.io.ObjectInputStream (JDK 1.1)

readUnsignedByte()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

readUnsignedShort()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

readUTF()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

ready()

java.io.BufferedReader (JDK 1.1), java.io.CharArrayReader (JDK 1.1), java.io.FilterReader (JDK
1.1), java.io.InputStreamReader (JDK 1.1), java.io.PushbackReader (JDK 1.1), java.io.Reader
(JDK 1.1), java.io.StringReader (JDK 1.1)

receive()

java.net.DatagramSocket (JDK 1.0), java.net.DatagramSocketImpl (JDK 1.1),
java.io.PipedInputStream (JDK 1.0)

Rectangle

The java.awt Package

red

java.awt.Color (JDK 1.0)

regionMatches()

java.lang.String (JDK 1.0)

registerEditor()

java.beans.PropertyEditorManager (JDK 1.1)

registerValidation()

java.io.ObjectInputStream (JDK 1.1)

rehash()

java.util.Hashtable (JDK 1.0)

RELATIVE

java.awt.GridBagConstraints (JDK 1.0)

REMAINDER

java.awt.GridBagConstraints (JDK 1.0)

remainder()

java.math.BigInteger (JDK 1.1)

remove()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.Choice (JDK 1.0), java.awt.peer.ChoicePeer
(JDK 1.0), java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0), java.util.Dictionary
(JDK 1.0), java.awt.Frame (JDK 1.0), java.util.Hashtable (JDK 1.0), java.awt.List (JDK 1.0),
java.awt.Menu (JDK 1.0), java.awt.MenuBar (JDK 1.0), java.awt.MenuContainer (JDK 1.0)

removeActionListener()

java.awt.Button (JDK 1.0), java.awt.List (JDK 1.0), java.awt.MenuItem (JDK 1.0),
java.awt.TextField (JDK 1.0)

removeAdjustmentListener()

java.awt.Adjustable (JDK 1.1), java.awt.Scrollbar (JDK 1.0)

removeAll()

java.awt.Choice (JDK 1.0), java.awt.Container (JDK 1.0), java.awt.List (JDK 1.0),
java.awt.peer.ListPeer (JDK 1.0), java.awt.Menu (JDK 1.0)

removeAllElements()

java.util.Vector (JDK 1.0)

removeComponentListener()

java.awt.Component (JDK 1.0)

removeConsumer()

java.awt.image.FilteredImageSource (JDK 1.0), java.awt.image.ImageProducer (JDK 1.0),
java.awt.image.MemoryImageSource (JDK 1.0)

removeContainerListener()

java.awt.Container (JDK 1.0)

removeElement()

java.util.Vector (JDK 1.0)

removeElementAt()

java.util.Vector (JDK 1.0)

removeFocusListener()

java.awt.Component (JDK 1.0)

removeImage()

java.awt.MediaTracker (JDK 1.0)

removeInternal()

java.awt.AWTEventMulticaster (JDK 1.1)

removeItemListener()

java.awt.Checkbox (JDK 1.0), java.awt.CheckboxMenuItem (JDK 1.0), java.awt.Choice (JDK
1.0), java.awt.ItemSelectable (JDK 1.1), java.awt.List (JDK 1.0)

removeKeyListener()

java.awt.Component (JDK 1.0)

removeLayoutComponent()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.FlowLayout (JDK

1.0), java.awt.GridBagLayout (JDK 1.0), java.awt.GridLayout (JDK 1.0),
java.awt.LayoutManager (JDK 1.0)

removeMouseListener()

java.awt.Component (JDK 1.0)

removeMouseMotionListener()

java.awt.Component (JDK 1.0)

removeNotify()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0), java.awt.List (JDK 1.0),
java.awt.Menu (JDK 1.0), java.awt.MenuBar (JDK 1.0), java.awt.MenuComponent (JDK 1.0),
java.awt.TextComponent (JDK 1.0)

removePropertyChangeListener()

java.beans.Customizer (JDK 1.1), java.beans.PropertyChangeSupport (JDK 1.1),
java.beans.PropertyEditor (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1)

removeTextListener()

java.awt.TextComponent (JDK 1.0)

removeVetoableChangeListener()

java.beans.VetoableChangeSupport (JDK 1.1)

removeWindowListener()

java.awt.Window (JDK 1.0)

renameTo()

java.io.File (JDK 1.0)

repaint()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0)

replace()

java.lang.String (JDK 1.0)

replaceItem()

java.awt.List (JDK 1.0)

replaceObject()

java.io.ObjectOutputStream (JDK 1.1)

replaceRange()

java.awt.TextArea (JDK 1.0), java.awt.peer.TextAreaPeer (JDK 1.0)

replaceText()

java.awt.TextArea (JDK 1.0), java.awt.peer.TextAreaPeer (JDK 1.0)

ReplicateScaleFilter

The java.awt.image Package

requestFocus()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0)

requestTopDownLeftRightResend()

java.awt.image.FilteredImageSource (JDK 1.0), java.awt.image.ImageProducer (JDK 1.0),
java.awt.image.MemoryImageSource (JDK 1.0)

resendTopDownLeftRight()

java.awt.image.ImageFilter (JDK 1.0)

RESERVED_ID_MAX

java.awt.AWTEvent (JDK 1.1)

reset()

java.util.zip.Adler32 (JDK 1.1), java.io.BufferedInputStream (JDK 1.0), java.io.BufferedReader
(JDK 1.1), java.io.ByteArrayInputStream (JDK 1.0), java.io.ByteArrayOutputStream (JDK 1.0),
java.io.CharArrayReader (JDK 1.1), java.io.CharArrayWriter (JDK 1.1), java.util.zip.Checksum
(JDK 1.1), java.text.CollationElementIterator (JDK 1.1), java.util.zip.CRC32 (JDK 1.1),
java.util.zip.Deflater (JDK 1.1), java.io.FilterInputStream (JDK 1.0), java.io.FilterReader (JDK
1.1), java.util.zip.Inflater (JDK 1.1), java.io.InputStream (JDK 1.0),
java.io.LineNumberInputStream (JDK 1.0; Deprecated.), java.io.LineNumberReader (JDK 1.1),
java.io.ObjectOutputStream (JDK 1.1), java.io.Reader (JDK 1.1),
java.io.StringBufferInputStream (JDK 1.0; Deprecated.), java.io.StringReader (JDK 1.1)

resetSyntax()

java.io.StreamTokenizer (JDK 1.0)

reshape()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Rectangle
(JDK 1.0)

resize()

java.applet.Applet (JDK 1.0), java.awt.Component (JDK 1.0), java.awt.Rectangle (JDK 1.0)

resolveClass()

java.lang.ClassLoader (JDK 1.0), java.io.ObjectInputStream (JDK 1.1)

resolveObject()

java.io.ObjectInputStream (JDK 1.1)

ResourceBundle

The java.util Package

responseCode

java.net.HttpURLConnection (JDK 1.1)

responseMessage

java.net.HttpURLConnection (JDK 1.1)

resume()

java.lang.Thread (JDK 1.0), java.lang.ThreadGroup (JDK 1.0)

reverse()

java.lang.StringBuffer (JDK 1.0)

RGBImageFilter

The java.awt.image Package

RGBtoHSB()

java.awt.Color (JDK 1.0)

right

java.awt.Insets (JDK 1.0)

RIGHT

java.awt.Event (JDK 1.0), java.awt.FlowLayout (JDK 1.0), java.awt.Label (JDK 1.0)

RIGHT_ALIGNMENT

java.awt.Component (JDK 1.0)

rint()

java.lang.Math (JDK 1.0)

roll()

java.util.Calendar (JDK 1.1), java.util.GregorianCalendar (JDK 1.1)

round()

java.lang.Math (JDK 1.0)

ROUND_CEILING

java.math.BigDecimal (JDK 1.1)

ROUND_DOWN

java.math.BigDecimal (JDK 1.1)

ROUND_FLOOR

java.math.BigDecimal (JDK 1.1)

ROUND_HALF_DOWN

java.math.BigDecimal (JDK 1.1)

ROUND_HALF_EVEN

java.math.BigDecimal (JDK 1.1)

ROUND_HALF_UP

java.math.BigDecimal (JDK 1.1)

ROUND_UNNECESSARY

java.math.BigDecimal (JDK 1.1)

ROUND_UP

java.math.BigDecimal (JDK 1.1)

rowHeights

java.awt.GridBagLayout (JDK 1.0)

rowWeights

java.awt.GridBagLayout (JDK 1.0)

RuleBasedCollator

The java.text Package

run()

java.lang.Runnable (JDK 1.0), java.lang.Thread (JDK 1.0)

runFinalization()

java.lang.Runtime (JDK 1.0), java.lang.System (JDK 1.0)

runFinalizersOnExit()

java.lang.Runtime (JDK 1.0), java.lang.System (JDK 1.0)

Runnable

The java.lang Package

Runtime

The java.lang Package

RuntimeException

The java.lang Package

S

S_RESIZE_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

sameFile()

java.net.URL (JDK 1.0)

SATURDAY

java.util.Calendar (JDK 1.1)

SAVE

java.awt.FileDialog (JDK 1.0)

save()

java.util.Properties (JDK 1.0)

SAVE_FILE

java.awt.Event (JDK 1.0)

saveInternal()

java.awt.AWTEventMulticaster (JDK 1.1)

scale()

java.math.BigDecimal (JDK 1.1)

SCALE_AREA_AVERAGING

java.awt.Image (JDK 1.0)

SCALE_DEFAULT

java.awt.Image (JDK 1.0)

SCALE_FAST

java.awt.Image (JDK 1.0)

SCALE_REPLICATE

java.awt.Image (JDK 1.0)

SCALE_SMOOTH

java.awt.Image (JDK 1.0)

SCROLL_ABSOLUTE

java.awt.Event (JDK 1.0)

SCROLL_BEGIN

java.awt.Event (JDK 1.0)

SCROLL_END

java.awt.Event (JDK 1.0)

SCROLL_LINE_DOWN

java.awt.Event (JDK 1.0)

SCROLL_LINE_UP

java.awt.Event (JDK 1.0)

SCROLL_LOCK

java.awt.Event (JDK 1.0)

SCROLL_PAGE_DOWN

java.awt.Event (JDK 1.0)

SCROLL_PAGE_UP

java.awt.Event (JDK 1.0)

scrollbar

java.awt.SystemColor (JDK 1.1)

SCROLLBAR

java.awt.SystemColor (JDK 1.1)

Scrollbar

The java.awt Package

ScrollbarPeer

The java.awt.peer Package

SCROLLBARS_ALWAYS

java.awt.ScrollPane (JDK 1.1)

SCROLLBARS_AS_NEEDED

java.awt.ScrollPane (JDK 1.1)

SCROLLBARS_BOTH

java.awt.TextArea (JDK 1.0)

SCROLLBARS_HORIZONTAL_ONLY

java.awt.TextArea (JDK 1.0)

SCROLLBARS_NEVER

java.awt.ScrollPane (JDK 1.1)

SCROLLBARS_NONE

java.awt.TextArea (JDK 1.0)

SCROLLBARS_VERTICAL_ONLY

java.awt.TextArea (JDK 1.0)

ScrollPane

The java.awt Package

ScrollPanePeer

The java.awt.peer Package

SE_RESIZE_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

search()

java.util.Stack (JDK 1.0)

SECOND

java.util.Calendar (JDK 1.1)

SECOND_FIELD

java.text.DateFormat (JDK 1.1)

SECONDARY

java.text.Collator (JDK 1.1)

secondaryOrder()

java.text.CollationElementIterator (JDK 1.1)

SecurityException

The java.lang Package

SecurityManager

The java.lang Package

seek()

java.io.RandomAccessFile (JDK 1.0)

select()

java.awt.Choice (JDK 1.0), java.awt.peer.ChoicePeer (JDK 1.0), java.awt.List (JDK 1.0),
java.awt.peer.ListPeer (JDK 1.0), java.awt.TextComponent (JDK 1.0),
java.awt.peer.TextComponentPeer (JDK 1.0)

selectAll()

java.awt.TextComponent (JDK 1.0)

SELECTED

java.awt.event.ItemEvent (JDK 1.1)

send()

java.net.DatagramSocket (JDK 1.0), java.net.DatagramSocketImpl (JDK 1.1),
java.net.MulticastSocket (JDK 1.1)

separator

java.io.File (JDK 1.0)

separatorChar

java.io.File (JDK 1.0)

SEPTEMBER

java.util.Calendar (JDK 1.1)

SequenceInputStream

The java.io Package

Serializable

The java.io Package

ServerSocket

The java.net Package

set()

java.lang.reflect.Array (JDK 1.1), java.util.BitSet (JDK 1.0), java.util.Calendar (JDK 1.1),
java.lang.reflect.Field (JDK 1.1), java.net.URL (JDK 1.0)

setActionCommand()

java.awt.Button (JDK 1.0), java.awt.MenuItem (JDK 1.0)

setAddress()

java.net.DatagramPacket (JDK 1.0)

setAlignment()

java.awt.FlowLayout (JDK 1.0), java.awt.Label (JDK 1.0), java.awt.peer.LabelPeer (JDK 1.0)

setAllowUserInteraction()

java.net.URLConnection (JDK 1.0)

setAmPmStrings()

java.text.DateFormatSymbols (JDK 1.1)

setAnimated()

java.awt.image.MemoryImageSource (JDK 1.0)

setAsText()

java.beans.PropertyEditor (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1)

setBackground()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0)

setBeanInfoSearchPath()

java.beans.Introspector (JDK 1.1)

setBit()

java.math.BigInteger (JDK 1.1)

setBlockIncrement()

java.awt.Adjustable (JDK 1.1), java.awt.Scrollbar (JDK 1.0)

setBoolean()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

setBound()

java.beans.PropertyDescriptor (JDK 1.1)

setBounds()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Rectangle

(JDK 1.0)

setByte()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

setCalendar()

java.text.DateFormat (JDK 1.1)

setCaretPosition()

java.awt.TextComponent (JDK 1.0), java.awt.peer.TextComponentPeer (JDK 1.0)

setChanged()

java.util.Observable (JDK 1.0)

setChar()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

setCharAt()

java.lang.StringBuffer (JDK 1.0)

setCheckboxGroup()

java.awt.Checkbox (JDK 1.0), java.awt.peer.CheckboxPeer (JDK 1.0)

setChoices()

java.text.ChoiceFormat (JDK 1.1)

setClip()

java.awt.Graphics (JDK 1.0)

setColor()

java.awt.Graphics (JDK 1.0)

setColorModel()

java.awt.image.ImageConsumer (JDK 1.0), java.awt.image.ImageFilter (JDK 1.0),
java.awt.image.PixelGrabber (JDK 1.0), java.awt.image.RGBImageFilter (JDK 1.0)

setColumns()

java.awt.GridLayout (JDK 1.0), java.awt.TextArea (JDK 1.0), java.awt.TextField (JDK 1.0)

setComment()

java.util.zip.ZipEntry (JDK 1.1), java.util.zip.ZipOutputStream (JDK 1.1)

setConstrained()

java.beans.PropertyDescriptor (JDK 1.1)

setConstraints()

java.awt.GridBagLayout (JDK 1.0)

setContentHandlerFactory()

java.net.URLConnection (JDK 1.0)

setContents()

java.awt.datatransfer.Clipboard (JDK 1.1)

setCrc()

java.util.zip.ZipEntry (JDK 1.1)

setCurrent()

java.awt.CheckboxGroup (JDK 1.0)

setCursor()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Frame (JDK
1.0)

setDaemon()

java.lang.Thread (JDK 1.0), java.lang.ThreadGroup (JDK 1.0)

setData()

java.net.DatagramPacket (JDK 1.0)

setDate()

java.util.Date (JDK 1.0)

setDateFormatSymbols()

java.text.SimpleDateFormat (JDK 1.1)

setDecimalFormatSymbols()

java.text.DecimalFormat (JDK 1.1)

setDecimalSeparator()

java.text.DecimalFormatSymbols (JDK 1.1)

setDecimalSeparatorAlwaysShown()

java.text.DecimalFormat (JDK 1.1)

setDecomposition()

java.text.Collator (JDK 1.1)

setDefault()

java.util.Locale (JDK 1.1), java.util.TimeZone (JDK 1.1)

setDefaultAllowUserInteraction()

java.net.URLConnection (JDK 1.0)

setDefaultRequestProperty()

java.net.URLConnection (JDK 1.0)

setDefaultUseCaches()

java.net.URLConnection (JDK 1.0)

setDesignTime()

java.beans.Beans (JDK 1.1)

setDictionary()

java.util.zip.Deflater (JDK 1.1), java.util.zip.Inflater (JDK 1.1)

setDigit()

java.text.DecimalFormatSymbols (JDK 1.1)

setDimensions()

java.awt.image.CropImageFilter (JDK 1.0), java.awt.image.ImageConsumer (JDK 1.0),
java.awt.image.ImageFilter (JDK 1.0), java.awt.image.PixelGrabber (JDK 1.0),
java.awt.image.ReplicateScaleFilter (JDK 1.1)

setDirectory()

java.awt.FileDialog (JDK 1.0), java.awt.peer.FileDialogPeer (JDK 1.0)

setDisplayName()

java.beans.FeatureDescriptor (JDK 1.1)

setDoInput()

java.net.URLConnection (JDK 1.0)

setDoOutput()

java.net.URLConnection (JDK 1.0)

setDouble()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

setEchoChar()

java.awt.TextField (JDK 1.0), java.awt.peer.TextFieldPeer (JDK 1.0)

setEchoCharacter()

java.awt.TextField (JDK 1.0), java.awt.peer.TextFieldPeer (JDK 1.0)

setEditable()

java.awt.TextComponent (JDK 1.0), java.awt.peer.TextComponentPeer (JDK 1.0)

setEditorSearchPath()

java.beans.PropertyEditorManager (JDK 1.1)

setElementAt()

java.util.Vector (JDK 1.0)

setEnabled()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.MenuItem
(JDK 1.0), java.awt.peer.MenuItemPeer (JDK 1.0)

setEndRule()

java.util.SimpleTimeZone (JDK 1.1)

setEras()

java.text.DateFormatSymbols (JDK 1.1)

setErr()

java.lang.System (JDK 1.0)

setError()

java.io.PrintStream (JDK 1.0), java.io.PrintWriter (JDK 1.1)

setExpert()

java.beans.FeatureDescriptor (JDK 1.1)

setExtra()

java.util.zip.ZipEntry (JDK 1.1)

setFile()

java.awt.FileDialog (JDK 1.0), java.awt.peer.FileDialogPeer (JDK 1.0)

setFilenameFilter()

java.awt.FileDialog (JDK 1.0), java.awt.peer.FileDialogPeer (JDK 1.0)

setFirstDayOfWeek()

java.util.Calendar (JDK 1.1)

setFloat()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

setFollowRedirects()

java.net.HttpURLConnection (JDK 1.1)

setFont()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0), java.awt.Graphics
(JDK 1.0), java.awt.MenuComponent (JDK 1.0)

setForeground()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0)

setFormat()

java.text.MessageFormat (JDK 1.1)

setFormats()

java.text.MessageFormat (JDK 1.1)

setFullBufferUpdates()

java.awt.image.MemoryImageSource (JDK 1.0)

setGregorianChange()

java.util.GregorianCalendar (JDK 1.1)

setGroupingSeparator()

java.text.DecimalFormatSymbols (JDK 1.1)

setGroupingSize()

java.text.DecimalFormat (JDK 1.1)

setGroupingUsed()

java.text.NumberFormat (JDK 1.1)

setGuiAvailable()

java.beans.Beans (JDK 1.1)

setHelpMenu()

java.awt.MenuBar (JDK 1.0)

setHgap()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.FlowLayout (JDK
1.0), java.awt.GridLayout (JDK 1.0)

setHidden()

java.beans.FeatureDescriptor (JDK 1.1)

setHints()

java.awt.image.AreaAveragingScaleFilter (JDK 1.1), java.awt.image.ImageConsumer (JDK 1.0),
java.awt.image.ImageFilter (JDK 1.0), java.awt.image.PixelGrabber (JDK 1.0)

setHours()

java.util.Date (JDK 1.0)

setHumanPresentableName()

java.awt.datatransfer.DataFlavor (JDK 1.1)

setIconImage()

java.awt.Frame (JDK 1.0), java.awt.peer.FramePeer (JDK 1.0)

setID()

java.util.TimeZone (JDK 1.1)

setIfModifiedSince()

java.net.URLConnection (JDK 1.0)

setIn()

java.lang.System (JDK 1.0)

setInDefaultEventSet()

java.beans.EventSetDescriptor (JDK 1.1)

setIndex()

java.text.CharacterIterator (JDK 1.1), java.text.ParsePosition (JDK 1.1),
java.text.StringCharacterIterator (JDK 1.1)

setInfinity()

java.text.DecimalFormatSymbols (JDK 1.1)

setInput()

java.util.zip.Deflater (JDK 1.1), java.util.zip.Inflater (JDK 1.1)

setInt()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

setInterface()

java.net.MulticastSocket (JDK 1.1)

setKeyChar()

java.awt.event.KeyEvent (JDK 1.1)

setKeyCode()

java.awt.event.KeyEvent (JDK 1.1)

setLabel()

java.awt.Button (JDK 1.0), java.awt.peer.ButtonPeer (JDK 1.0), java.awt.Checkbox (JDK 1.0),
java.awt.peer.CheckboxPeer (JDK 1.0), java.awt.MenuItem (JDK 1.0),
java.awt.peer.MenuItemPeer (JDK 1.0)

setLayout()

java.awt.Container (JDK 1.0), java.awt.ScrollPane (JDK 1.1)

setLength()

java.net.DatagramPacket (JDK 1.0), java.lang.StringBuffer (JDK 1.0)

setLenient()

java.util.Calendar (JDK 1.1), java.text.DateFormat (JDK 1.1)

setLevel()

java.util.zip.Deflater (JDK 1.1), java.util.zip.ZipOutputStream (JDK 1.1)

setLineIncrement()

java.awt.Scrollbar (JDK 1.0), java.awt.peer.ScrollbarPeer (JDK 1.0)

setLineNumber()

java.io.LineNumberInputStream (JDK 1.0; Deprecated.), java.io.LineNumberReader (JDK 1.1)

setLocale()

java.awt.Component (JDK 1.0), java.text.MessageFormat (JDK 1.1)

setLocalPatternChars()

java.text.DateFormatSymbols (JDK 1.1)

setLocation()

java.awt.Component (JDK 1.0), java.awt.Point (JDK 1.0), java.awt.Rectangle (JDK 1.0)

setLong()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

setMaximum()

java.awt.Adjustable (JDK 1.1), java.awt.Scrollbar (JDK 1.0)

setMaximumFractionDigits()

java.text.NumberFormat (JDK 1.1)

setMaximumIntegerDigits()

java.text.NumberFormat (JDK 1.1)

setMaxPriority()

java.lang.ThreadGroup (JDK 1.0)

setMenuBar()

java.awt.Frame (JDK 1.0), java.awt.peer.FramePeer (JDK 1.0)

setMethod()

java.util.zip.ZipEntry (JDK 1.1), java.util.zip.ZipOutputStream (JDK 1.1)

setMinimalDaysInFirstWeek()

java.util.Calendar (JDK 1.1)

setMinimum()

java.awt.Adjustable (JDK 1.1), java.awt.Scrollbar (JDK 1.0)

setMinimumFractionDigits()

java.text.NumberFormat (JDK 1.1)

setMinimumIntegerDigits()

java.text.NumberFormat (JDK 1.1)

setMinusSign()

java.text.DecimalFormatSymbols (JDK 1.1)

setMinutes()

java.util.Date (JDK 1.0)

setModal()

java.awt.Dialog (JDK 1.0)

setMode()

java.awt.FileDialog (JDK 1.0)

setModifiers()

java.awt.event.KeyEvent (JDK 1.1)

setMonth()

java.util.Date (JDK 1.0)

setMonths()

java.text.DateFormatSymbols (JDK 1.1)

setMultipleMode()

java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK 1.0)

setMultipleSelections()

java.awt.List (JDK 1.0), java.awt.peer.ListPeer (JDK 1.0)

setMultiplier()

java.text.DecimalFormat (JDK 1.1)

setName()

java.awt.Component (JDK 1.0), java.beans.FeatureDescriptor (JDK 1.1),
java.awt.MenuComponent (JDK 1.0), java.lang.Thread (JDK 1.0)

setNaN()

java.text.DecimalFormatSymbols (JDK 1.1)

setNegativePrefix()

java.text.DecimalFormat (JDK 1.1)

setNegativeSuffix()

java.text.DecimalFormat (JDK 1.1)

setNumberFormat()

java.text.DateFormat (JDK 1.1)

setObject()

java.beans.Customizer (JDK 1.1)

setOption()

java.net.DatagramSocketImpl (JDK 1.1), java.net.SocketImpl (JDK 1.0)

setOrientation()

java.awt.Scrollbar (JDK 1.0)

setOut()

java.lang.System (JDK 1.0)

setPageIncrement()

java.awt.Scrollbar (JDK 1.0), java.awt.peer.ScrollbarPeer (JDK 1.0)

setPaintMode()

java.awt.Graphics (JDK 1.0)

setParent()

java.util.ResourceBundle (JDK 1.1)

setParseIntegerOnly()

java.text.NumberFormat (JDK 1.1)

setPatternSeparator()

java.text.DecimalFormatSymbols (JDK 1.1)

setPercent()

java.text.DecimalFormatSymbols (JDK 1.1)

setPerMill()

java.text.DecimalFormatSymbols (JDK 1.1)

setPixels()

java.awt.image.AreaAveragingScaleFilter (JDK 1.1), java.awt.image.CropImageFilter (JDK 1.0),
java.awt.image.ImageConsumer (JDK 1.0), java.awt.image.ImageFilter (JDK 1.0),
java.awt.image.PixelGrabber (JDK 1.0), java.awt.image.ReplicateScaleFilter (JDK 1.1),
java.awt.image.RGBImageFilter (JDK 1.0)

setPort()

java.net.DatagramPacket (JDK 1.0)

setPositivePrefix()

java.text.DecimalFormat (JDK 1.1)

setPositiveSuffix()

java.text.DecimalFormat (JDK 1.1)

setPriority()

java.lang.Thread (JDK 1.0)

setPropagationId()

java.beans.PropertyChangeEvent (JDK 1.1)

setProperties()

java.awt.image.CropImageFilter (JDK 1.0), java.awt.image.ImageConsumer (JDK 1.0),
java.awt.image.ImageFilter (JDK 1.0), java.awt.image.PixelGrabber (JDK 1.0),
java.awt.image.ReplicateScaleFilter (JDK 1.1), java.lang.System (JDK 1.0)

setPropertyEditorClass()

java.beans.PropertyDescriptor (JDK 1.1)

setRawOffset()

java.util.SimpleTimeZone (JDK 1.1), java.util.TimeZone (JDK 1.1)

setRequestMethod()

java.net.HttpURLConnection (JDK 1.1)

setRequestProperty()

java.net.URLConnection (JDK 1.0)

setResizable()

java.awt.Dialog (JDK 1.0), java.awt.peer.DialogPeer (JDK 1.0), java.awt.Frame (JDK 1.0),
java.awt.peer.FramePeer (JDK 1.0)

setRows()

java.awt.GridLayout (JDK 1.0), java.awt.TextArea (JDK 1.0)

setScale()

java.math.BigDecimal (JDK 1.1)

setScrollPosition()

java.awt.ScrollPane (JDK 1.1), java.awt.peer.ScrollPanePeer (JDK 1.1)

setSeconds()

java.util.Date (JDK 1.0)

setSecurityManager()

java.lang.System (JDK 1.0)

setSeed()

java.util.Random (JDK 1.0)

setSelectedCheckbox()

java.awt.CheckboxGroup (JDK 1.0)

setSelectionEnd()

java.awt.TextComponent (JDK 1.0)

setSelectionStart()

java.awt.TextComponent (JDK 1.0)

setShort()

java.lang.reflect.Array (JDK 1.1), java.lang.reflect.Field (JDK 1.1)

setShortcut()

java.awt.MenuItem (JDK 1.0)

setShortDescription()

java.beans.FeatureDescriptor (JDK 1.1)

setShortMonths()

java.text.DateFormatSymbols (JDK 1.1)

setShortWeekdays()

java.text.DateFormatSymbols (JDK 1.1)

setSigners()

java.lang.ClassLoader (JDK 1.0)

setSize()

java.awt.Component (JDK 1.0), java.awt.Dimension (JDK 1.0), java.awt.Rectangle (JDK 1.0),
java.util.Vector (JDK 1.0), java.util.zip.ZipEntry (JDK 1.1)

setSocketFactory()

java.net.ServerSocket (JDK 1.0)

setSocketImplFactory()

java.net.Socket (JDK 1.0)

setSoLinger()

java.net.Socket (JDK 1.0)

setSoTimeout()

java.net.DatagramSocket (JDK 1.0), java.net.ServerSocket (JDK 1.0), java.net.Socket (JDK 1.0)

setStartRule()

java.util.SimpleTimeZone (JDK 1.1)

setStartYear()

java.util.SimpleTimeZone (JDK 1.1)

setState()

java.awt.Checkbox (JDK 1.0), java.awt.CheckboxMenuItem (JDK 1.0),
java.awt.peer.CheckboxMenuItemPeer (JDK 1.0), java.awt.peer.CheckboxPeer (JDK 1.0)

setStrategy()

java.util.zip.Deflater (JDK 1.1)

setStrength()

java.text.Collator (JDK 1.1)

setStub()

java.applet.Applet (JDK 1.0)

setTcpNoDelay()

java.net.Socket (JDK 1.0)

setText()

java.text.BreakIterator (JDK 1.1), java.awt.Label (JDK 1.0), java.awt.peer.LabelPeer (JDK 1.0),
java.awt.TextComponent (JDK 1.0), java.awt.peer.TextComponentPeer (JDK 1.0)

setTime()

java.util.Calendar (JDK 1.1), java.util.Date (JDK 1.0), java.util.zip.ZipEntry (JDK 1.1)

setTimeInMillis()

java.util.Calendar (JDK 1.1)

setTimeZone()

java.util.Calendar (JDK 1.1), java.text.DateFormat (JDK 1.1)

setTitle()

java.awt.Dialog (JDK 1.0), java.awt.peer.DialogPeer (JDK 1.0), java.awt.Frame (JDK 1.0),
java.awt.peer.FramePeer (JDK 1.0)

setTTL()

java.net.DatagramSocketImpl (JDK 1.1), java.net.MulticastSocket (JDK 1.1)

setUnicast()

java.beans.EventSetDescriptor (JDK 1.1)

setUnitIncrement()

java.awt.Adjustable (JDK 1.1), java.awt.Scrollbar (JDK 1.0), java.awt.peer.ScrollPanePeer (JDK
1.1)

setUpdateRect()

java.awt.event.PaintEvent (JDK 1.1)

setURL()

java.net.URLStreamHandler (JDK 1.0)

setURLStreamHandlerFactory()

java.net.URL (JDK 1.0)

setUseCaches()

java.net.URLConnection (JDK 1.0)

setValue()

java.awt.Adjustable (JDK 1.1), java.beans.FeatureDescriptor (JDK 1.1),
java.beans.PropertyEditor (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1),
java.awt.Scrollbar (JDK 1.0), java.awt.peer.ScrollPanePeer (JDK 1.1)

setValues()

java.awt.Scrollbar (JDK 1.0), java.awt.peer.ScrollbarPeer (JDK 1.0)

setVgap()

java.awt.BorderLayout (JDK 1.0), java.awt.CardLayout (JDK 1.0), java.awt.FlowLayout (JDK
1.0), java.awt.GridLayout (JDK 1.0)

setVisible()

java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer (JDK 1.0)

setVisibleAmount()

java.awt.Adjustable (JDK 1.1), java.awt.Scrollbar (JDK 1.0)

setWeekdays()

java.text.DateFormatSymbols (JDK 1.1)

setXORMode()

java.awt.Graphics (JDK 1.0)

setYear()

java.util.Date (JDK 1.0)

setZeroDigit()

java.text.DecimalFormatSymbols (JDK 1.1)

setZoneStrings()

java.text.DateFormatSymbols (JDK 1.1)

Shape

The java.awt Package

SHIFT_MASK

java.awt.event.ActionEvent (JDK 1.1), java.awt.Event (JDK 1.0), java.awt.event.InputEvent (JDK
1.1)

shiftDown()

java.awt.Event (JDK 1.0)

shiftLeft()

java.math.BigInteger (JDK 1.1)

shiftRight()

java.math.BigInteger (JDK 1.1)

SHORT

java.text.DateFormat (JDK 1.1)

Short

The java.lang Package

shortcuts()

java.awt.MenuBar (JDK 1.0)

shortValue()

java.lang.Byte (JDK 1.1), java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0),
java.lang.Integer (JDK 1.0), java.lang.Long (JDK 1.0), java.lang.Number (JDK 1.0),
java.lang.Short (JDK 1.1)

show()

java.awt.CardLayout (JDK 1.0), java.awt.Component (JDK 1.0), java.awt.peer.ComponentPeer
(JDK 1.0), java.awt.Dialog (JDK 1.0), java.awt.PopupMenu (JDK 1.1),
java.awt.peer.PopupMenuPeer (JDK 1.1), java.awt.Window (JDK 1.0)

showDocument()

java.applet.AppletContext (JDK 1.0)

showStatus()

java.applet.Applet (JDK 1.0), java.applet.AppletContext (JDK 1.0)

signum()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1)

SimpleBeanInfo

The java.beans Package

SimpleDateFormat

The java.text Package

SimpleTimeZone

The java.util Package

SIMPLIFIED_CHINESE

java.util.Locale (JDK 1.1)

sin()

java.lang.Math (JDK 1.0)

SINGLEFRAME

java.awt.image.ImageConsumer (JDK 1.0)

SINGLEFRAMEDONE

java.awt.image.ImageConsumer (JDK 1.0)

SINGLEPASS

java.awt.image.ImageConsumer (JDK 1.0)

size

java.awt.Font (JDK 1.0)

size()

java.util.BitSet (JDK 1.0), java.io.ByteArrayOutputStream (JDK 1.0), java.io.CharArrayWriter
(JDK 1.1), java.awt.Component (JDK 1.0), java.io.DataOutputStream (JDK 1.0),
java.util.Dictionary (JDK 1.0), java.util.Hashtable (JDK 1.0), java.util.Vector (JDK 1.0)

skip()

java.io.BufferedInputStream (JDK 1.0), java.io.BufferedReader (JDK 1.1),

java.io.ByteArrayInputStream (JDK 1.0), java.io.CharArrayReader (JDK 1.1),
java.util.zip.CheckedInputStream (JDK 1.1), java.io.FileInputStream (JDK 1.0),
java.io.FilterInputStream (JDK 1.0), java.io.FilterReader (JDK 1.1),
java.util.zip.InflaterInputStream (JDK 1.1), java.io.InputStream (JDK 1.0),
java.io.LineNumberInputStream (JDK 1.0; Deprecated.), java.io.LineNumberReader (JDK 1.1),
java.io.ObjectInput (JDK 1.1), java.io.Reader (JDK 1.1), java.io.StringBufferInputStream (JDK
1.0; Deprecated.), java.io.StringReader (JDK 1.1), java.util.zip.ZipInputStream (JDK 1.1)

skipBytes()

java.io.DataInput (JDK 1.0), java.io.DataInputStream (JDK 1.0), java.io.ObjectInputStream (JDK
1.1), java.io.RandomAccessFile (JDK 1.0)

slashSlashComments()

java.io.StreamTokenizer (JDK 1.0)

slashStarComments()

java.io.StreamTokenizer (JDK 1.0)

sleep()

java.lang.Thread (JDK 1.0)

Socket

The java.net Package

SocketException

The java.net Package

SocketImpl

The java.net Package

SocketImplFactory

The java.net Package

SOMEBITS

java.awt.image.ImageObserver (JDK 1.0)

source

java.util.EventObject (JDK 1.1)

SOUTH

java.awt.BorderLayout (JDK 1.0), java.awt.GridBagConstraints (JDK 1.0)

SOUTHEAST

java.awt.GridBagConstraints (JDK 1.0)

SOUTHWEST

java.awt.GridBagConstraints (JDK 1.0)

SPACE_SEPARATOR

java.lang.Character (JDK 1.0)

sqrt()

java.lang.Math (JDK 1.0)

srccols

java.awt.image.ReplicateScaleFilter (JDK 1.1)

srcHeight

java.awt.image.ReplicateScaleFilter (JDK 1.1)

srcrows

java.awt.image.ReplicateScaleFilter (JDK 1.1)

srcWidth

java.awt.image.ReplicateScaleFilter (JDK 1.1)

Stack

The java.util Package

StackOverflowError

The java.lang Package

start()

java.applet.Applet (JDK 1.0), java.lang.Thread (JDK 1.0)

START_PUNCTUATION

java.lang.Character (JDK 1.0)

startGrabbing()

java.awt.image.PixelGrabber (JDK 1.0)

startProduction()

java.awt.image.FilteredImageSource (JDK 1.0), java.awt.image.ImageProducer (JDK 1.0),
java.awt.image.MemoryImageSource (JDK 1.0)

startsWith()

java.lang.String (JDK 1.0)

STATIC

java.lang.reflect.Modifier (JDK 1.1)

STATICIMAGEDONE

java.awt.image.ImageConsumer (JDK 1.0)

status()

java.awt.image.PixelGrabber (JDK 1.0)

statusAll()

java.awt.MediaTracker (JDK 1.0)

statusID()

java.awt.MediaTracker (JDK 1.0)

stop()

java.applet.Applet (JDK 1.0), java.applet.AudioClip (JDK 1.0), java.lang.Thread (JDK 1.0),
java.lang.ThreadGroup (JDK 1.0)

STORED

java.util.zip.ZipEntry (JDK 1.1), java.util.zip.ZipOutputStream (JDK 1.1)

StreamCorruptedException

The java.io Package

StreamTokenizer

The java.io Package

String

The java.lang Package

StringBuffer

The java.lang Package

StringBufferInputStream

The java.io Package

StringCharacterIterator

The java.text Package

stringFlavor

java.awt.datatransfer.DataFlavor (JDK 1.1)

StringIndexOutOfBoundsException

The java.lang Package

StringReader

The java.io Package

StringSelection

The java.awt.datatransfer Package

StringTokenizer

The java.util Package

stringWidth()

java.awt.FontMetrics (JDK 1.0)

StringWriter

The java.io Package

style

java.awt.Font (JDK 1.0)

substituteColorModel()

java.awt.image.RGBImageFilter (JDK 1.0)

substring()

java.lang.String (JDK 1.0)

subtract()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1)

SUNDAY

java.util.Calendar (JDK 1.1)

supportsCustomEditor()

java.beans.PropertyEditor (JDK 1.1), java.beans.PropertyEditorSupport (JDK 1.1)

SURROGATE

java.lang.Character (JDK 1.0)

suspend()

java.lang.Thread (JDK 1.0), java.lang.ThreadGroup (JDK 1.0)

sval

java.io.StreamTokenizer (JDK 1.0)

SW_RESIZE_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

sync()

java.io.FileDescriptor (JDK 1.0), java.awt.Toolkit (JDK 1.0)

SyncFailedException

The java.io Package

SYNCHRONIZED

java.lang.reflect.Modifier (JDK 1.1)

System

The java.lang Package

SystemColor

The java.awt Package

T

TAB

java.awt.Event (JDK 1.0)

TAIWAN

java.util.Locale (JDK 1.1)

tan()

java.lang.Math (JDK 1.0)

target

java.awt.Event (JDK 1.0)

TERTIARY

java.text.Collator (JDK 1.1)

tertiaryOrder()

java.text.CollationElementIterator (JDK 1.1)

testBit()

java.math.BigInteger (JDK 1.1)

text

java.awt.SystemColor (JDK 1.1)

TEXT

java.awt.SystemColor (JDK 1.1)

TEXT_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

TEXT_EVENT_MASK

java.awt.AWTEvent (JDK 1.1)

TEXT_FIRST

java.awt.event.TextEvent (JDK 1.1)

TEXT_HIGHLIGHT

java.awt.SystemColor (JDK 1.1)

TEXT_HIGHLIGHT_TEXT

java.awt.SystemColor (JDK 1.1)

TEXT_INACTIVE_TEXT

java.awt.SystemColor (JDK 1.1)

TEXT_LAST

java.awt.event.TextEvent (JDK 1.1)

TEXT_TEXT

java.awt.SystemColor (JDK 1.1)

TEXT_VALUE_CHANGED

java.awt.event.TextEvent (JDK 1.1)

TextArea

The java.awt Package

TextAreaPeer

The java.awt.peer Package

TextComponent

The java.awt Package

TextComponentPeer

The java.awt.peer Package

TextEvent

The java.awt.event Package

TextField

The java.awt Package

TextFieldPeer

The java.awt.peer Package

textHighlight

java.awt.SystemColor (JDK 1.1)

textHighlightText

java.awt.SystemColor (JDK 1.1)

textInactiveText

java.awt.SystemColor (JDK 1.1)

TextListener

The java.awt.event Package

textListener

java.awt.TextComponent (JDK 1.0)

textText

java.awt.SystemColor (JDK 1.1)

textValueChanged()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.TextListener (JDK 1.1)

Thread

The java.lang Package

ThreadDeath

The java.lang Package

ThreadGroup

The java.lang Package

Throwable

The java.lang Package

THURSDAY

java.util.Calendar (JDK 1.1)

time

java.util.Calendar (JDK 1.1)

TimeZone

The java.util Package

TIMEZONE_FIELD

java.text.DateFormat (JDK 1.1)

TITLECASE_LETTER

java.lang.Character (JDK 1.0)

toBack()

java.awt.Window (JDK 1.0), java.awt.peer.WindowPeer (JDK 1.0)

toBigInteger()

java.math.BigDecimal (JDK 1.1)

toBinaryString()

java.lang.Integer (JDK 1.0), java.lang.Long (JDK 1.0)

toByteArray()

java.math.BigInteger (JDK 1.1), java.io.ByteArrayOutputStream (JDK 1.0),
java.text.CollationKey (JDK 1.1)

toCharArray()

java.io.CharArrayWriter (JDK 1.1), java.lang.String (JDK 1.0)

toExternalForm()

java.net.URL (JDK 1.0), java.net.URLStreamHandler (JDK 1.0)

toFront()

java.awt.Window (JDK 1.0), java.awt.peer.WindowPeer (JDK 1.0)

toGMTString()

java.util.Date (JDK 1.0)

toHexString()

java.lang.Integer (JDK 1.0), java.lang.Long (JDK 1.0)

toLocaleString()

java.util.Date (JDK 1.0)

toLocalizedPattern()

java.text.DecimalFormat (JDK 1.1), java.text.SimpleDateFormat (JDK 1.1)

toLowerCase()

java.lang.Character (JDK 1.0), java.lang.String (JDK 1.0)

toOctalString()

java.lang.Integer (JDK 1.0), java.lang.Long (JDK 1.0)

Toolkit

The java.awt Package

TooManyListenersException

The java.util Package

top

java.awt.Insets (JDK 1.0)

TOP_ALIGNMENT

java.awt.Component (JDK 1.0)

toPattern()

java.text.ChoiceFormat (JDK 1.1), java.text.DecimalFormat (JDK 1.1), java.text.MessageFormat
(JDK 1.1), java.text.SimpleDateFormat (JDK 1.1)

TOPDOWNLEFTRIGHT

java.awt.image.ImageConsumer (JDK 1.0)

toString()

java.awt.AWTEvent (JDK 1.1), java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK
1.1), java.util.BitSet (JDK 1.0), java.lang.Boolean (JDK 1.0), java.awt.BorderLayout (JDK 1.0),
java.lang.Byte (JDK 1.1), java.io.ByteArrayOutputStream (JDK 1.0), java.awt.CardLayout (JDK
1.0), java.lang.Character (JDK 1.0), java.io.CharArrayWriter (JDK 1.1), java.awt.CheckboxGroup
(JDK 1.0), java.lang.Class (JDK 1.0), java.awt.Color (JDK 1.0), java.awt.Component (JDK 1.0),
java.lang.reflect.Constructor (JDK 1.1), java.util.Date (JDK 1.0), java.awt.Dimension (JDK 1.0),
java.lang.Double (JDK 1.0), java.awt.Event (JDK 1.0), java.util.EventObject (JDK 1.1),
java.lang.reflect.Field (JDK 1.1), java.io.File (JDK 1.0), java.lang.Float (JDK 1.0),
java.awt.FlowLayout (JDK 1.0), java.awt.Font (JDK 1.0), java.awt.FontMetrics (JDK 1.0),
java.awt.Graphics (JDK 1.0), java.awt.GridBagLayout (JDK 1.0), java.awt.GridLayout (JDK 1.0),
java.util.Hashtable (JDK 1.0), java.net.InetAddress (JDK 1.0), java.awt.Insets (JDK 1.0),
java.lang.Integer (JDK 1.0), java.util.Locale (JDK 1.1), java.lang.Long (JDK 1.0),

java.awt.MenuComponent (JDK 1.0), java.awt.MenuShortcut (JDK 1.1), java.lang.reflect.Method
(JDK 1.1), java.lang.reflect.Modifier (JDK 1.1), java.lang.Object (JDK 1.0),
java.io.ObjectStreamClass (JDK 1.1), java.awt.Point (JDK 1.0), java.awt.Rectangle (JDK 1.0),
java.net.ServerSocket (JDK 1.0), java.lang.Short (JDK 1.1), java.net.Socket (JDK 1.0),
java.net.SocketImpl (JDK 1.0), java.io.StreamTokenizer (JDK 1.0), java.lang.String (JDK 1.0),
java.lang.StringBuffer (JDK 1.0), java.io.StringWriter (JDK 1.1), java.awt.SystemColor (JDK
1.1), java.lang.Thread (JDK 1.0), java.lang.ThreadGroup (JDK 1.0), java.lang.Throwable (JDK
1.0), java.net.URL (JDK 1.0), java.net.URLConnection (JDK 1.0), java.util.Vector (JDK 1.0),
java.util.zip.ZipEntry (JDK 1.1)

totalMemory()

java.lang.Runtime (JDK 1.0)

toTitleCase()

java.lang.Character (JDK 1.0)

toUpperCase()

java.lang.Character (JDK 1.0), java.lang.String (JDK 1.0)

traceInstructions()

java.lang.Runtime (JDK 1.0)

traceMethodCalls()

java.lang.Runtime (JDK 1.0)

TRACK

java.awt.event.AdjustmentEvent (JDK 1.1)

TRADITIONAL_CHINESE

java.util.Locale (JDK 1.1)

Transferable

The java.awt.datatransfer Package

transferFocus()

java.awt.Component (JDK 1.0)

TRANSIENT

java.lang.reflect.Modifier (JDK 1.1)

translate()

java.awt.Event (JDK 1.0), java.awt.Graphics (JDK 1.0), java.awt.Point (JDK 1.0),
java.awt.Polygon (JDK 1.0), java.awt.Rectangle (JDK 1.0)

translatePoint()

java.awt.event.MouseEvent (JDK 1.1)

trim()

java.lang.String (JDK 1.0)

trimToSize()

java.util.Vector (JDK 1.0)

TRUE

java.lang.Boolean (JDK 1.0)

TT_EOF

java.io.StreamTokenizer (JDK 1.0)

TT_EOL

java.io.StreamTokenizer (JDK 1.0)

TT_NUMBER

java.io.StreamTokenizer (JDK 1.0)

TT_WORD

java.io.StreamTokenizer (JDK 1.0)

ttype

java.io.StreamTokenizer (JDK 1.0)

TUESDAY

java.util.Calendar (JDK 1.1)

TYPE

java.lang.Boolean (JDK 1.0), java.lang.Byte (JDK 1.1), java.lang.Character (JDK 1.0),
java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0), java.lang.Integer (JDK 1.0),
java.lang.Long (JDK 1.0), java.lang.Short (JDK 1.1), java.lang.Void (JDK 1.1)

U

UK

java.util.Locale (JDK 1.1)

UNASSIGNED

java.lang.Character (JDK 1.0)

uncaughtException()

java.lang.ThreadGroup (JDK 1.0)

UNDECIMBER

java.util.Calendar (JDK 1.1)

UndefinedProperty

java.awt.Image (JDK 1.0)

union()

java.awt.Rectangle (JDK 1.0)

UNIT_DECREMENT

java.awt.event.AdjustmentEvent (JDK 1.1)

UNIT_INCREMENT

java.awt.event.AdjustmentEvent (JDK 1.1)

UnknownError

The java.lang Package

UnknownHostException

The java.net Package

UnknownServiceException

The java.net Package

unread()

java.io.PushbackInputStream (JDK 1.0), java.io.PushbackReader (JDK 1.1)

UnsatisfiedLinkError

The java.lang Package

UnsupportedEncodingException

The java.io Package

UnsupportedFlavorException

The java.awt.datatransfer Package

UP

java.awt.Event (JDK 1.0)

UPDATE

java.awt.event.PaintEvent (JDK 1.1)

update()

java.util.zip.Adler32 (JDK 1.1), java.util.zip.Checksum (JDK 1.1), java.awt.Component (JDK
1.0), java.util.zip.CRC32 (JDK 1.1), java.util.Observer (JDK 1.0)

UPPERCASE_LETTER

java.lang.Character (JDK 1.0)

url

java.net.URLConnection (JDK 1.0)

URL

The java.net Package

URLConnection

The java.net Package

URLEncoder

The java.net Package

URLStreamHandler

The java.net Package

URLStreamHandlerFactory

The java.net Package

US

java.util.Locale (JDK 1.1)

useCaches

java.net.URLConnection (JDK 1.0)

useDaylightTime()

java.util.SimpleTimeZone (JDK 1.1), java.util.TimeZone (JDK 1.1)

usesShiftModifier()

java.awt.MenuShortcut (JDK 1.1)

usingProxy()

java.net.HttpURLConnection (JDK 1.1)

UTC()

java.util.Date (JDK 1.0)

UTFDataFormatException

The java.io Package

V

valid()

java.io.FileDescriptor (JDK 1.0)

validate()

java.awt.Component (JDK 1.0), java.awt.Container (JDK 1.0)

validateObject()

java.io.ObjectInputValidation (JDK 1.1)

validateTree()

java.awt.Container (JDK 1.0)

valueOf()

java.math.BigDecimal (JDK 1.1), java.math.BigInteger (JDK 1.1), java.lang.Boolean (JDK 1.0),
java.lang.Byte (JDK 1.1), java.lang.Double (JDK 1.0), java.lang.Float (JDK 1.0),
java.lang.Integer (JDK 1.0), java.lang.Long (JDK 1.0), java.lang.Short (JDK 1.1), java.lang.String
(JDK 1.0)

Vector

The java.util Package

VerifyError

The java.lang Package

VERTICAL

java.awt.Adjustable (JDK 1.1), java.awt.GridBagConstraints (JDK 1.0), java.awt.Scrollbar (JDK
1.0)

vetoableChange()

java.beans.VetoableChangeListener (JDK 1.1)

VetoableChangeListener

The java.beans Package

VetoableChangeSupport

The java.beans Package

VirtualMachineError

The java.lang Package

Visibility

The java.beans Package

VK_0

java.awt.event.KeyEvent (JDK 1.1)

VK_1

java.awt.event.KeyEvent (JDK 1.1)

VK_2

java.awt.event.KeyEvent (JDK 1.1)

VK_3

java.awt.event.KeyEvent (JDK 1.1)

VK_4

java.awt.event.KeyEvent (JDK 1.1)

VK_5

java.awt.event.KeyEvent (JDK 1.1)

VK_6

java.awt.event.KeyEvent (JDK 1.1)

VK_7

java.awt.event.KeyEvent (JDK 1.1)

VK_8

java.awt.event.KeyEvent (JDK 1.1)

VK_9

java.awt.event.KeyEvent (JDK 1.1)

VK_A

java.awt.event.KeyEvent (JDK 1.1)

VK_ACCEPT

java.awt.event.KeyEvent (JDK 1.1)

VK_ADD

java.awt.event.KeyEvent (JDK 1.1)

VK_ALT

java.awt.event.KeyEvent (JDK 1.1)

VK_B

java.awt.event.KeyEvent (JDK 1.1)

VK_BACK_QUOTE

java.awt.event.KeyEvent (JDK 1.1)

VK_BACK_SLASH

java.awt.event.KeyEvent (JDK 1.1)

VK_BACK_SPACE

java.awt.event.KeyEvent (JDK 1.1)

VK_C

java.awt.event.KeyEvent (JDK 1.1)

VK_CANCEL

java.awt.event.KeyEvent (JDK 1.1)

VK_CAPS_LOCK

java.awt.event.KeyEvent (JDK 1.1)

VK_CLEAR

java.awt.event.KeyEvent (JDK 1.1)

VK_CLOSE_BRACKET

java.awt.event.KeyEvent (JDK 1.1)

VK_COMMA

java.awt.event.KeyEvent (JDK 1.1)

VK_CONTROL

java.awt.event.KeyEvent (JDK 1.1)

VK_CONVERT

java.awt.event.KeyEvent (JDK 1.1)

VK_D

java.awt.event.KeyEvent (JDK 1.1)

VK_DECIMAL

java.awt.event.KeyEvent (JDK 1.1)

VK_DELETE

java.awt.event.KeyEvent (JDK 1.1)

VK_DIVIDE

java.awt.event.KeyEvent (JDK 1.1)

VK_DOWN

java.awt.event.KeyEvent (JDK 1.1)

VK_E

java.awt.event.KeyEvent (JDK 1.1)

VK_END

java.awt.event.KeyEvent (JDK 1.1)

VK_ENTER

java.awt.event.KeyEvent (JDK 1.1)

VK_EQUALS

java.awt.event.KeyEvent (JDK 1.1)

VK_ESCAPE

java.awt.event.KeyEvent (JDK 1.1)

VK_F

java.awt.event.KeyEvent (JDK 1.1)

VK_F1

java.awt.event.KeyEvent (JDK 1.1)

VK_F10

java.awt.event.KeyEvent (JDK 1.1)

VK_F11

java.awt.event.KeyEvent (JDK 1.1)

VK_F12

java.awt.event.KeyEvent (JDK 1.1)

VK_F2

java.awt.event.KeyEvent (JDK 1.1)

VK_F3

java.awt.event.KeyEvent (JDK 1.1)

VK_F4

java.awt.event.KeyEvent (JDK 1.1)

VK_F5

java.awt.event.KeyEvent (JDK 1.1)

VK_F6

java.awt.event.KeyEvent (JDK 1.1)

VK_F7

java.awt.event.KeyEvent (JDK 1.1)

VK_F8

java.awt.event.KeyEvent (JDK 1.1)

VK_F9

java.awt.event.KeyEvent (JDK 1.1)

VK_FINAL

java.awt.event.KeyEvent (JDK 1.1)

VK_G

java.awt.event.KeyEvent (JDK 1.1)

VK_H

java.awt.event.KeyEvent (JDK 1.1)

VK_HELP

java.awt.event.KeyEvent (JDK 1.1)

VK_HOME

java.awt.event.KeyEvent (JDK 1.1)

VK_I

java.awt.event.KeyEvent (JDK 1.1)

VK_INSERT

java.awt.event.KeyEvent (JDK 1.1)

VK_J

java.awt.event.KeyEvent (JDK 1.1)

VK_K

java.awt.event.KeyEvent (JDK 1.1)

VK_KANA

java.awt.event.KeyEvent (JDK 1.1)

VK_KANJI

java.awt.event.KeyEvent (JDK 1.1)

VK_L

java.awt.event.KeyEvent (JDK 1.1)

VK_LEFT

java.awt.event.KeyEvent (JDK 1.1)

VK_M

java.awt.event.KeyEvent (JDK 1.1)

VK_META

java.awt.event.KeyEvent (JDK 1.1)

VK_MODECHANGE

java.awt.event.KeyEvent (JDK 1.1)

VK_MULTIPLY

java.awt.event.KeyEvent (JDK 1.1)

VK_N

java.awt.event.KeyEvent (JDK 1.1)

VK_NONCONVERT

java.awt.event.KeyEvent (JDK 1.1)

VK_NUM_LOCK

java.awt.event.KeyEvent (JDK 1.1)

VK_NUMPAD0

java.awt.event.KeyEvent (JDK 1.1)

VK_NUMPAD1

java.awt.event.KeyEvent (JDK 1.1)

VK_NUMPAD2

java.awt.event.KeyEvent (JDK 1.1)

VK_NUMPAD3

java.awt.event.KeyEvent (JDK 1.1)

VK_NUMPAD4

java.awt.event.KeyEvent (JDK 1.1)

VK_NUMPAD5

java.awt.event.KeyEvent (JDK 1.1)

VK_NUMPAD6

java.awt.event.KeyEvent (JDK 1.1)

VK_NUMPAD7

java.awt.event.KeyEvent (JDK 1.1)

VK_NUMPAD8

java.awt.event.KeyEvent (JDK 1.1)

VK_NUMPAD9

java.awt.event.KeyEvent (JDK 1.1)

VK_O

java.awt.event.KeyEvent (JDK 1.1)

VK_OPEN_BRACKET

java.awt.event.KeyEvent (JDK 1.1)

VK_P

java.awt.event.KeyEvent (JDK 1.1)

VK_PAGE_DOWN

java.awt.event.KeyEvent (JDK 1.1)

VK_PAGE_UP

java.awt.event.KeyEvent (JDK 1.1)

VK_PAUSE

java.awt.event.KeyEvent (JDK 1.1)

VK_PERIOD

java.awt.event.KeyEvent (JDK 1.1)

VK_PRINTSCREEN

java.awt.event.KeyEvent (JDK 1.1)

VK_Q

java.awt.event.KeyEvent (JDK 1.1)

VK_QUOTE

java.awt.event.KeyEvent (JDK 1.1)

VK_R

java.awt.event.KeyEvent (JDK 1.1)

VK_RIGHT

java.awt.event.KeyEvent (JDK 1.1)

VK_S

java.awt.event.KeyEvent (JDK 1.1)

VK_SCROLL_LOCK

java.awt.event.KeyEvent (JDK 1.1)

VK_SEMICOLON

java.awt.event.KeyEvent (JDK 1.1)

VK_SEPARATER

java.awt.event.KeyEvent (JDK 1.1)

VK_SHIFT

java.awt.event.KeyEvent (JDK 1.1)

VK_SLASH

java.awt.event.KeyEvent (JDK 1.1)

VK_SPACE

java.awt.event.KeyEvent (JDK 1.1)

VK_SUBTRACT

java.awt.event.KeyEvent (JDK 1.1)

VK_T

java.awt.event.KeyEvent (JDK 1.1)

VK_TAB

java.awt.event.KeyEvent (JDK 1.1)

VK_U

java.awt.event.KeyEvent (JDK 1.1)

VK_UNDEFINED

java.awt.event.KeyEvent (JDK 1.1)

VK_UP

java.awt.event.KeyEvent (JDK 1.1)

VK_V

java.awt.event.KeyEvent (JDK 1.1)

VK_W

java.awt.event.KeyEvent (JDK 1.1)

VK_X

java.awt.event.KeyEvent (JDK 1.1)

VK_Y

java.awt.event.KeyEvent (JDK 1.1)

VK_Z

java.awt.event.KeyEvent (JDK 1.1)

Void

The java.lang Package

VOLATILE

java.lang.reflect.Modifier (JDK 1.1)

W

W_RESIZE_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

wait()

java.lang.Object (JDK 1.0)

WAIT_CURSOR

java.awt.Cursor (JDK 1.1), java.awt.Frame (JDK 1.0)

waitFor()

java.lang.Process (JDK 1.0)

waitForAll()

java.awt.MediaTracker (JDK 1.0)

waitForID()

java.awt.MediaTracker (JDK 1.0)

WEDNESDAY

java.util.Calendar (JDK 1.1)

WEEK_OF_MONTH

java.util.Calendar (JDK 1.1)

WEEK_OF_MONTH_FIELD

java.text.DateFormat (JDK 1.1)

WEEK_OF_YEAR

java.util.Calendar (JDK 1.1)

WEEK_OF_YEAR_FIELD

java.text.DateFormat (JDK 1.1)

weightx

java.awt.GridBagConstraints (JDK 1.0)

weighty

java.awt.GridBagConstraints (JDK 1.0)

WEST

java.awt.BorderLayout (JDK 1.0), java.awt.GridBagConstraints (JDK 1.0)

when

java.awt.Event (JDK 1.0)

white

java.awt.Color (JDK 1.0)

whitespaceChars()

java.io.StreamTokenizer (JDK 1.0)

WIDTH

java.awt.image.ImageObserver (JDK 1.0)

width

java.awt.Dimension (JDK 1.0), java.awt.Rectangle (JDK 1.0)

window

java.awt.SystemColor (JDK 1.1)

WINDOW

java.awt.SystemColor (JDK 1.1)

Window

The java.awt Package

WINDOW_ACTIVATED

java.awt.event.WindowEvent (JDK 1.1)

WINDOW_BORDER

java.awt.SystemColor (JDK 1.1)

WINDOW_CLOSED

java.awt.event.WindowEvent (JDK 1.1)

WINDOW_CLOSING

java.awt.event.WindowEvent (JDK 1.1)

WINDOW_DEACTIVATED

java.awt.event.WindowEvent (JDK 1.1)

WINDOW_DEICONIFIED

java.awt.event.WindowEvent (JDK 1.1)

WINDOW_DEICONIFY

java.awt.Event (JDK 1.0)

WINDOW_DESTROY

java.awt.Event (JDK 1.0)

WINDOW_EVENT_MASK

java.awt.AWTEvent (JDK 1.1)

WINDOW_EXPOSE

java.awt.Event (JDK 1.0)

WINDOW_FIRST

java.awt.event.WindowEvent (JDK 1.1)

WINDOW_ICONIFIED

java.awt.event.WindowEvent (JDK 1.1)

WINDOW_ICONIFY

java.awt.Event (JDK 1.0)

WINDOW_LAST

java.awt.event.WindowEvent (JDK 1.1)

WINDOW_MOVED

java.awt.Event (JDK 1.0)

WINDOW_OPENED

java.awt.event.WindowEvent (JDK 1.1)

WINDOW_TEXT

java.awt.SystemColor (JDK 1.1)

windowActivated()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.WindowAdapter (JDK 1.1),
java.awt.event.WindowListener (JDK 1.1)

WindowAdapter

The java.awt.event Package

windowBorder

java.awt.SystemColor (JDK 1.1)

windowClosed()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.WindowAdapter (JDK 1.1),
java.awt.event.WindowListener (JDK 1.1)

windowClosing()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.WindowAdapter (JDK 1.1),
java.awt.event.WindowListener (JDK 1.1)

windowDeactivated()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.WindowAdapter (JDK 1.1),
java.awt.event.WindowListener (JDK 1.1)

windowDeiconified()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.WindowAdapter (JDK 1.1),
java.awt.event.WindowListener (JDK 1.1)

WindowEvent

The java.awt.event Package

windowIconified()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.WindowAdapter (JDK 1.1),
java.awt.event.WindowListener (JDK 1.1)

WindowListener

The java.awt.event Package

windowOpened()

java.awt.AWTEventMulticaster (JDK 1.1), java.awt.event.WindowAdapter (JDK 1.1),
java.awt.event.WindowListener (JDK 1.1)

WindowPeer

The java.awt.peer Package

windowText

java.awt.SystemColor (JDK 1.1)

wordChars()

java.io.StreamTokenizer (JDK 1.0)

write()

java.io.BufferedOutputStream (JDK 1.0), java.io.BufferedWriter (JDK 1.1),
java.io.ByteArrayOutputStream (JDK 1.0), java.io.CharArrayWriter (JDK 1.1),
java.util.zip.CheckedOutputStream (JDK 1.1), java.io.DataOutput (JDK 1.0),
java.io.DataOutputStream (JDK 1.0), java.util.zip.DeflaterOutputStream (JDK 1.1),
java.io.FileOutputStream (JDK 1.0), java.io.FilterOutputStream (JDK 1.0), java.io.FilterWriter
(JDK 1.1), java.util.zip.GZIPOutputStream (JDK 1.1), java.io.ObjectOutput (JDK 1.1),
java.io.ObjectOutputStream (JDK 1.1), java.io.OutputStream (JDK 1.0),
java.io.OutputStreamWriter (JDK 1.1), java.io.PipedOutputStream (JDK 1.0), java.io.PipedWriter
(JDK 1.1), java.io.PrintStream (JDK 1.0), java.io.PrintWriter (JDK 1.1),
java.io.RandomAccessFile (JDK 1.0), java.io.StringWriter (JDK 1.1), java.io.Writer (JDK 1.1),
java.util.zip.ZipOutputStream (JDK 1.1)

WriteAbortedException

The java.io Package

writeBoolean()

java.io.DataOutput (JDK 1.0), java.io.DataOutputStream (JDK 1.0), java.io.ObjectOutputStream
(JDK 1.1), java.io.RandomAccessFile (JDK 1.0)

writeByte()

java.io.DataOutput (JDK 1.0), java.io.DataOutputStream (JDK 1.0), java.io.ObjectOutputStream
(JDK 1.1), java.io.RandomAccessFile (JDK 1.0)

writeBytes()

java.io.DataOutput (JDK 1.0), java.io.DataOutputStream (JDK 1.0), java.io.ObjectOutputStream
(JDK 1.1), java.io.RandomAccessFile (JDK 1.0)

writeChar()

java.io.DataOutput (JDK 1.0), java.io.DataOutputStream (JDK 1.0), java.io.ObjectOutputStream
(JDK 1.1), java.io.RandomAccessFile (JDK 1.0)

writeChars()

java.io.DataOutput (JDK 1.0), java.io.DataOutputStream (JDK 1.0), java.io.ObjectOutputStream
(JDK 1.1), java.io.RandomAccessFile (JDK 1.0)

writeDouble()

java.io.DataOutput (JDK 1.0), java.io.DataOutputStream (JDK 1.0), java.io.ObjectOutputStream
(JDK 1.1), java.io.RandomAccessFile (JDK 1.0)

writeExternal()

java.io.Externalizable (JDK 1.1)

writeFloat()

java.io.DataOutput (JDK 1.0), java.io.DataOutputStream (JDK 1.0), java.io.ObjectOutputStream
(JDK 1.1), java.io.RandomAccessFile (JDK 1.0)

writeInt()

java.io.DataOutput (JDK 1.0), java.io.DataOutputStream (JDK 1.0), java.io.ObjectOutputStream
(JDK 1.1), java.io.RandomAccessFile (JDK 1.0)

writeLong()

java.io.DataOutput (JDK 1.0), java.io.DataOutputStream (JDK 1.0), java.io.ObjectOutputStream
(JDK 1.1), java.io.RandomAccessFile (JDK 1.0)

writeObject()

java.io.ObjectOutput (JDK 1.1), java.io.ObjectOutputStream (JDK 1.1)

Writer

The java.io Package

writeShort()

java.io.DataOutput (JDK 1.0), java.io.DataOutputStream (JDK 1.0), java.io.ObjectOutputStream
(JDK 1.1), java.io.RandomAccessFile (JDK 1.0)

writeStreamHeader()

java.io.ObjectOutputStream (JDK 1.1)

writeTo()

java.io.ByteArrayOutputStream (JDK 1.0), java.io.CharArrayWriter (JDK 1.1)

writeUTF()

java.io.DataOutput (JDK 1.0), java.io.DataOutputStream (JDK 1.0), java.io.ObjectOutputStream
(JDK 1.1), java.io.RandomAccessFile (JDK 1.0)

written

java.io.DataOutputStream (JDK 1.0)

X

x

java.awt.Event (JDK 1.0), java.awt.Point (JDK 1.0), java.awt.Rectangle (JDK 1.0)

xor()

java.math.BigInteger (JDK 1.1), java.util.BitSet (JDK 1.0)

xpoints

java.awt.Polygon (JDK 1.0)

Y

y

java.awt.Event (JDK 1.0), java.awt.Point (JDK 1.0), java.awt.Rectangle (JDK 1.0)

YEAR

java.util.Calendar (JDK 1.1)

YEAR_FIELD

java.text.DateFormat (JDK 1.1)

yellow

java.awt.Color (JDK 1.0)

yield()

java.lang.Thread (JDK 1.0)

ypoints

java.awt.Polygon (JDK 1.0)

Z

ZipEntry

The java.util.zip Package

ZipException

The java.util.zip Package

ZipFile

The java.util.zip Package

ZipInputStream

The java.util.zip Package

ZipOutputStream

The java.util.zip Package

ZONE_OFFSET

java.util.Calendar (JDK 1.1)

java.util.zip.ZipOutputStream
(JDK 1.1)

Chapter 31
The java.util.zip Package

31.17 java.util.zip.ZipOutputStream (JDK 1.1)

This class is a subclass of DeflaterOutputStream that writes data in ZIP file format to an output stream.
Before writing any data to the ZipOutputStream, you must begin an entry within the ZIP file with
putNextEntry(). The ZipEntry object passed to this method should specify at least a name for the entry.
Once you have begun an entry with putNextEntry(), you can write the contents of that entry with the
write() methods. When you reach the end of an entry, you can begin a new one by calling putNextEntry()
again, or you can close the current entry with closeEntry(), or you can close the stream itself with close().

Before beginning an entry with putNextEntry(), you can set the compression method and level with
setMethod() and setLevel(). The constants DEFLATED and STORED are the two legal values for
setMethod(). If you use STORED, the entry is stored in the ZIP file without any compression. If you use
DEFLATED, you can also specify the compression speed/strength trade-off by passing a number from 1 to 9 to
setLevel(), where 9 gives the strongest and slowest level of compression. You can also use the constants
Deflater.BEST_SPEED, Deflater.BEST_COMPRESSION, and Deflater.DEFAULT_COMPRESSION
with the setLevel() method.

Note that if you are simply storing an entry without compression, the ZIP file format requires that you specify, in
advance, the entry size and CRC-32 checksum in the ZipEntry object for the entry. An exception is thrown if
these values are not specified or are incorrectly specified.

public class ZipOutputStream extends DeflaterOutputStream {
 // Public Constructor
 public ZipOutputStream(OutputStream out);
 // Constants
 public static final int DEFLATED;
 public static final int STORED;
 // Public Instance Methods
 public void close() throws IOException; // Overrides
DeflaterOutputStream
 public void closeEntry() throws IOException;
 public void finish() throws IOException; // Overrides
DeflaterOutputStream
 public void putNextEntry(ZipEntry e) throws IOException;
 public void setComment(String comment);
 public void setLevel(int level);

 public void setMethod(int method);
 public synchronized void write(byte[] b, int off, int len) throws
IOException; // Overrides DeflaterOutputStream
}

Hierarchy:

Object->OutputStream->FilterOutputStream->DeflaterOutputStream->ZipOutputStream

java.util.zip.ZipInputStream
(JDK 1.1)

Class, Method, and Field
Index

Chapter 18
The java.awt Package

18.3 java.awt.AWTEventMulticaster (JDK 1.1)

AWTEventMulticaster is a convenience class used when writing a custom AWT component. It provides an easy way to
maintain a list of AWT EventListener objects, and to notify the listeners on that list when an event occurs.

AWTEventMulticaster implements each of the event listener interfaces defined in the java.awt.event package,
which means that an AWTEventMulticaster object can serve as any desired type of event listener. (It also means, as you
can see below, that the class defines quite a few methods.) AWTEventMulticaster implements what amounts to a linked
list of EventListener objects. When you invoke one of the EventListener methods of an
AWTEventMulticaster, it invokes the same method on all of the EventListener objects in the linked list.

Rather than instantiate an AWTEventMulticaster object directly, you use the static add() and remove() methods of
the class to add and remove EventListener objects from the linked list. Doing so returns an AWTEventMulticaster
with the appropriate EventListener object registered. The API for using an AWTEventMulticaster is somewhat non-
intuitive. Here is some example code that shows its use:

public class MyList extends Component { // a class that sends ItemEvents
 // this will be the head of a linked list of AWTEventMulticaster objects
 protected ItemListener listener = null;
 public void addItemListener(ItemListener l) { // add a listener
 listener = AWTEventMulticaster.add(listener, l);
 }
 public void removeItemListener(ItemListener l) { // remove a listener
 listener = AWTEventMulticaster.remove(listener, l);
 }
 protected void fireItemEvent(ItemEvent e) { // notify all listeners
 if (listener != null) listener.itemStateChanged(e);
 }
 // The rest of the class goes here
}

public class AWTEvent Multicaster extends Object
 implements ComponentListener, ContainerListener,
FocusListener, KeyListener, MouseListener, MouseMotionListener, WindowListener,
ActionListener,ItemListener, AdjustmentListener, TextListener {
 // Protected Constructor
 protected AWTEventMulticaster(EventListener a, EventListener b);
 // Protected Instance Variables
 protected EventListener a;
 protected EventListener b;
 // Class Methods

 public static ComponentListener add(ComponentListener a,
ComponentListener b);
 public static ContainerListener add(ContainerListener a,
ContainerListener b);
 public static FocusListener add(FocusListener a, FocusListener b);
 public static KeyListener add(KeyListener a, KeyListener b);
 public static MouseListener add(MouseListener a, MouseListener b);
 public static MouseMotionListener add(MouseMotionListener a,
MouseMotionListener b);
 public static WindowListener add(WindowListener a, WindowListener b);
 public static ActionListener add(ActionListener a, ActionListener b);
 public static ItemListener add(ItemListener a, ItemListener b);
 public static AdjustmentListener add(AdjustmentListener a,
AdjustmentListener b);
 public static TextListener add(TextListener a, TextListener b);
 protected static EventListener addInternal(EventListener a, EventListener
b);
 public static ComponentListener remove(ComponentListener l,
ComponentListener oldl);
 public static ContainerListener remove(ContainerListener l,
ContainerListener oldl);
 public static FocusListener remove(FocusListener l, FocusListener oldl);
 public static KeyListener remove(KeyListener l, KeyListener oldl);
 public static MouseListener remove(MouseListener l, MouseListener oldl);
 public static MouseMotionListener remove(MouseMotionListener l,
MouseMotionListener oldl);
 public static WindowListener remove(WindowListener l, WindowListener
oldl);
 public static ActionListener remove(ActionListener l, ActionListener
oldl);
 public static ItemListener remove(ItemListener l, ItemListener oldl);
 public static AdjustmentListener remove(AdjustmentListener l,
AdjustmentListener oldl);
 public static TextListener remove(TextListener l, TextListener oldl);
 protected static EventListener removeInternal(EventListener l,
EventListener oldl);
 protected static void save(ObjectOutputStream s, String k, EventListener
l) throws IOException;
 // Public Instance Methods
 public void actionPerformed(ActionEvent e); // From ActionListener
 public void adjustmentValueChanged(AdjustmentEvent e); // From
AdjustmentListener
 public void componentAdded(ContainerEvent e); // From ContainerListener
 public void componentHidden(ComponentEvent e); // From ComponentListener
 public void componentMoved(ComponentEvent e); // From ComponentListener
 public void componentRemoved(ContainerEvent e); // From
ContainerListener
 public void componentResized(ComponentEvent e); // From
ComponentListener
 public void componentShown(ComponentEvent e); // From ComponentListener
 public void focusGained(FocusEvent e); // From FocusListener
 public void focusLost(FocusEvent e); // From FocusListener
 public void itemStateChanged(ItemEvent e); // From ItemListener

 public void keyPressed(KeyEvent e); // From KeyListener
 public void keyReleased(KeyEvent e); // From KeyListener
 public void keyTyped(KeyEvent e); // From KeyListener
 public void mouseClicked(MouseEvent e); // From MouseListener
 public void mouseDragged(MouseEvent e); // From MouseMotionListener
 public void mouseEntered(MouseEvent e); // From MouseListener
 public void mouseExited(MouseEvent e); // From MouseListener
 public void mouseMoved(MouseEvent e); // From MouseMotionListener
 public void mousePressed(MouseEvent e); // From MouseListener
 public void mouseReleased(MouseEvent e); // From MouseListener
 public void textValueChanged(TextEvent e); // From TextListener
 public void windowActivated(WindowEvent e); // From WindowListener
 public void windowClosed(WindowEvent e); // From WindowListener
 public void windowClosing(WindowEvent e); // From WindowListener
 public void windowDeactivated(WindowEvent e); // From WindowListener
 public void windowDeiconified(WindowEvent e); // From WindowListener
 public void windowIconified(WindowEvent e); // From WindowListener
 public void windowOpened(WindowEvent e); // From WindowListener
 // Protected Instance Methods
 protected EventListener remove(EventListener oldl);
 protected void saveInternal(ObjectOutputStream s, String k) throws
IOException;
}

Hierarchy:

Object->AWTEventMulticaster(ComponentListener(EventListener),
ContainerListener(EventListener), FocusListener(EventListener),
KeyListener(EventListener), MouseListener(EventListener),
MouseMotionListener(EventListener), WindowListener(EventListener),
ActionListener(EventListener), ItemListener(EventListener),
AdjustmentListener(EventListener), TextListener(EventListener))

java.awt.AWTEvent (JDK
1.1)

java.awt.AWTException
(JDK 1.0)

Chapter 21
The java.awt.image Package

21.8 java.awt.image.ImageObserver (JDK 1.0)

This interface defines a method and associated constants used by classes that want to receive information asynchronously
about the status of an image. Many methods that query information about an image take an ImageObserver as an
argument. If the specified information is not available when requested, it is passed to the ImageObserver when it
becomes available. Component implements this interface, and components are the most commonly used image observers.

public abstract interface ImageObserver {
 // Constants
 public static final int ABORT;
 public static final int ALLBITS;
 public static final int ERROR;
 public static final int FRAMEBITS;
 public static final int HEIGHT;
 public static final int PROPERTIES;
 public static final int SOMEBITS;
 public static final int WIDTH;
 // Public Instance Methods
 public abstract boolean imageUpdate(Image img, int infoflags, int x, int
y, int width, int height);
}

Implemented By:

Component

Passed To:

Component.checkImage(), Component.prepareImage(), ComponentPeer.checkImage(),
ComponentPeer.prepareImage(), Graphics.drawImage(), Image.getHeight(),
Image.getProperty(), Image.getWidth(), Toolkit.checkImage(), Toolkit.prepareImage()

java.awt.image.ImageFilter
(JDK 1.0)

java.awt.image.ImageProducer
(JDK 1.0)

Chapter 18
The java.awt Package

18.39 java.awt.MediaTracker (JDK 1.0)

This class provides a very convenient way to asynchronously load and keep track of the status of any number of Image
objects. You can use it to load one or more images and to wait until those images have been completely loaded and are ready
to be used.

The addImage() method registers an image to be loaded and tracked and assigns it a specified identifier value.
waitForID() loads all images that have been assigned the specified identifier and returns when they have all finished
loading or it has received an error. isErrorAny() and isErrorID() check whether any errors have occurred while
loading images. statusAll() and statusID() return the status of all images or of all images with the specified
identifier. The return value of these two methods is one of the defined constants.

public class MediaTracker extends Object implements Serializable {
 // Public Constructor
 public MediaTracker(Component comp);
 // Constants
 public static final int ABORTED;
 public static final int COMPLETE;
 public static final int ERRORED;
 public static final int LOADING;
 // Public Instance Methods
 public void addImage(Image image, int id);
 public synchronized void addImage(Image image, int id, int w, int h);
 public boolean checkAll();
 public boolean checkAll(boolean load);
 public boolean checkID(int id);
 public boolean checkID(int id, boolean load);
 public synchronized Object[] getErrorsAny();
 public synchronized Object[] getErrorsID(int id);
 public synchronized boolean isErrorAny();
 public synchronized boolean isErrorID(int id);
 1.1 public synchronized void removeImage(Image image);
 1.1 public synchronized void removeImage(Image image, int id);
 1.1 public synchronized void removeImage(Image image, int id, int width, int
height);
 public int statusAll(boolean load);
 public int statusID(int id, boolean load);
 public void waitForAll() throws InterruptedException;
 public synchronized boolean waitForAll(long ms) throws
InterruptedException;
 public void waitForID(int id) throws InterruptedException;

 public synchronized boolean waitForID(int id, long ms) throws
InterruptedException;
}

java.awt.List (JDK 1.0) java.awt.Menu (JDK 1.0)

Chapter 21
The java.awt.image Package

21.12 java.awt.image.PixelGrabber (JDK 1.0)

This class is an ImageConsumer that extracts a specified rectangular array of pixels (in the default RGB color model) from
a specified Image or ImageProducer and stores them into a specified array (using the specified offset into the array and
specified scanline size). Use this class when you want to inspect or manipulate the data of an image or some rectangular
portion of an image.

The method grabPixels() makes the PixelGrabber start grabbing pixels. status() returns the status of the pixel-
grabbing process. The return value uses the same flag value constants as the ImageObserver class does. The remaining
methods are the standard ImageConsumer methods and should not be called directly.

public class PixelGrabber extends Object implements ImageConsumer {
 // Public Constructors
 public PixelGrabber(Image img, int x, int y, int w, int h, int[] pix, int
off, int scansize);
 public PixelGrabber(ImageProducer ip, int x, int y, int w, int h, int[]
pix, int off, int scansize);
 1.1 public PixelGrabber(Image img, int x, int y, int w, int h, boolean
forceRGB);
 // Public Instance Methods
 1.1 public synchronized void abortGrabbing();
 1.1 public synchronized ColorModel getColorModel();
 1.1 public synchronized int getHeight();
 1.1 public synchronized Object getPixels();
 1.1 public synchronized int getStatus();
 1.1 public synchronized int getWidth();
 public boolean grabPixels() throws InterruptedException;
 public synchronized boolean grabPixels(long ms) throws
InterruptedException;
 public synchronized void imageComplete(int status); // From
ImageConsumer
 public void setColorModel(ColorModel model); // From ImageConsumer
 public void setDimensions(int width, int height); // From ImageConsumer
 public void setHints(int hints); // From ImageConsumer
 public void setPixels(int srcX, int srcY, int srcW, int srcH, ColorModel
model,
 public void setPixels'u'byte[] pixels, int srcOff, int srcScan); // From
ImageConsumer
 public void setPixels(int srcX, int srcY, int srcW, int srcH, ColorModel
model,
 public void setPixels'u'int[] pixels, int srcOff, int srcScan); // From

ImageConsumer
 public void setProperties(Hashtable props); // From ImageConsumer
 1.1 public synchronized void startGrabbing();
 public synchronized int status();
}

java.awt.image.MemoryImageSource
(JDK 1.0)

java.awt.image.RGBImageFilter
(JDK 1.0)

Chapter 27

27. The java.math Package
Contents:
java.math.BigDecimal (JDK 1.1)
java.math.BigInteger (JDK 1.1)

The java.math package, new in Java 1.1, contains classes for arbitrary-precision integer and floating-point arithmetic.
Arbitrary-length integers are required for cryptography, and arbitrary-precision floating-point values are useful for
financial applications that need to be careful about rounding errors. The class hierarchy of this extremely small package
is shown in Figure 27.1.

Figure 27.1: The java.math package

27.1 java.math.BigDecimal (JDK 1.1)

This subclass of java.lang.Number represents a floating-point number of arbitrary size and precision. Its methods
duplicate the functionality of the standard Java arithmetic operators. The compareTo() method compares the value of
two BigDecimal objects and returns -1, 0, or 1 to indicate the result of the comparison.

BigDecimal objects are represented as an integer of arbitrary size and an integer scale that specifies the number of
decimal places in the value. When working with BigDecimal values, you can explicitly specify the amount of
precision (the number of decimal places) you are interested in. Also, whenever a BigDecimal method may discard
precision (in a division operation, for example), you are required to specify what sort of rounding should be performed
on the digit to the left of the discarded digit or digits. The eight constants defined by this class specify the available
rounding modes. Because the BigDecimal class provides arbitrary precision and gives you explicit control over
rounding and the number of decimal places you are interested in, it can be useful when dealing with quantities that
represent money, or in other circumstances where the tolerance for rounding errors is low.

public class BigDecimal extends Number {
 // Public Constructors
 public BigDecimal(String val) throws NumberFormatException;
 public BigDecimal(double val) throws NumberFormatException;
 public BigDecimal(BigInteger val);
 public BigDecimal(BigInteger val, int scale) throws
NumberFormatException;
 // Constants
 public static final int ROUND_CEILING;
 public static final int ROUND_DOWN;
 public static final int ROUND_FLOOR;
 public static final int ROUND_HALF_DOWN;
 public static final int ROUND_HALF_EVEN;
 public static final int ROUND_HALF_UP;
 public static final int ROUND_UNNECESSARY;
 public static final int ROUND_UP;
 // Class Methods
 public static BigDecimal valueOf(long val, int scale) throws
NumberFormatException;
 public static BigDecimal valueOf(long val);
 // Public Instance Methods
 public BigDecimal abs();
 public BigDecimal add(BigDecimal val);
 public int compareTo(BigDecimal val);
 public BigDecimal divide(BigDecimal val, int scale, int roundingMode)
throws ArithmeticException, IllegalArgumentException;
 public BigDecimal divide(BigDecimal val, int roundingMode) throws
ArithmeticException, IllegalArgumentException;
 public double doubleValue(); // Defines Number
 public boolean equals(Object x); // Overrides Object
 public float floatValue(); // Defines Number
 public int hashCode(); // Overrides Object
 public int intValue(); // Defines Number
 public long longValue(); // Defines Number
 public BigDecimal max(BigDecimal val);
 public BigDecimal min(BigDecimal val);
 public BigDecimal movePointLeft(int n);
 public BigDecimal movePointRight(int n);
 public BigDecimal multiply(BigDecimal val);
 public BigDecimal negate();
 public int scale();
 public BigDecimal setScale(int scale, int roundingMode) throws
ArithmeticException, IllegalArgumentException;
 public BigDecimal setScale(int scale) throws ArithmeticException,
IllegalArgumentException;
 public int signum();
 public BigDecimal subtract(BigDecimal val);
 public BigInteger toBigInteger();
 public String toString(); // Overrides Object

}

Hierarchy:

Object->Number(Serializable)->BigDecimal

java.lang.reflect.Modifier
(JDK 1.1)

java.math.BigInteger (JDK
1.1)

Chapter 27
The java.math Package

27.2 java.math.BigInteger (JDK 1.1)

This subclass of java.lang.Number represents integers that can be arbitrarily large--i.e., integers that are not limited to
the 64 bits available with the long data type. BigInteger defines methods that duplicate the functionality of the
standard Java arithmetic and bit-manipulation operators. The compareTo() method compares two BigInteger
objects, and returns -1, 0, or 1 to indicate the result of the comparison.

The gcd(), modPow(), modInverse(), and isProbablePrime() methods perform advanced operations and are
used primarily in cryptography and related algorithms.

public class BigInteger extends Number {
 // Public Constructors
 public BigInteger(byte[] val) throws NumberFormatException;
 public BigInteger(int signum, byte[] magnitude) throws
NumberFormatException;
 public BigInteger(String val, int radix) throws NumberFormatException;
 public BigInteger(String val) throws NumberFormatException;
 public BigInteger(int numBits, Random rndSrc) throws
IllegalArgumentException;
 public BigInteger(int bitLength, int certainty, Random rnd);
 // Class Methods
 public static BigInteger valueOf(long val);
 // Public Instance Methods
 public BigInteger abs();
 public BigInteger add(BigInteger val) throws ArithmeticException;
 public BigInteger and(BigInteger val);
 public BigInteger andNot(BigInteger val);
 public int bitCount();
 public int bitLength();
 public BigInteger clearBit(int n) throws ArithmeticException;
 public int compareTo(BigInteger val);
 public BigInteger divide(BigInteger val) throws ArithmeticException;
 public BigInteger[] divideAndRemainder(BigInteger val) throws
ArithmeticException;
 public double doubleValue(); // Defines Number
 public boolean equals(Object x); // Overrides Object
 public BigInteger flipBit(int n) throws ArithmeticException;
 public float floatValue(); // Defines Number
 public BigInteger gcd(BigInteger val);
 public int getLowestSetBit();

 public int hashCode(); // Overrides Object
 public int intValue(); // Defines Number
 public boolean isProbablePrime(int certainty);
 public long longValue(); // Defines Number
 public BigInteger max(BigInteger val);
 public BigInteger min(BigInteger val);
 public BigInteger mod(BigInteger m);
 public BigInteger modInverse(BigInteger m) throws ArithmeticException;
 public BigInteger modPow(BigInteger exponent, BigInteger m);
 public BigInteger multiply(BigInteger val);
 public BigInteger negate();
 public BigInteger not();
 public BigInteger or(BigInteger val);
 public BigInteger pow(int exponent) throws ArithmeticException;
 public BigInteger remainder(BigInteger val) throws ArithmeticException;
 public BigInteger setBit(int n) throws ArithmeticException;
 public BigInteger shiftLeft(int n);
 public BigInteger shiftRight(int n);
 public int signum();
 public BigInteger subtract(BigInteger val);
 public boolean testBit(int n) throws ArithmeticException;
 public byte[] toByteArray();
 public String toString(int radix);
 public String toString(); // Overrides Object
 public BigInteger xor(BigInteger val);
}

Hierarchy:

Object->Number(Serializable)->BigInteger

Passed To:

BigDecimal()

Returned By:

BigDecimal.toBigInteger()

java.math.BigDecimal (JDK
1.1)

The java.net Package

Chapter 25
The java.lang Package

25.37 java.lang.Math (JDK 1.0)

This class defines constants for the mathematical values e and pi, and defines static methods for floating-point
trigonometry, exponentiation, and other operations. It is the equivalent of the C <math.h> functions. It also
contains methods for computing minimum and maximum values and for generating pseudo-random numbers.

public final class Math extends Object {
 // No Constructor
 // Constants
 public static final double E;
 public static final double PI;
 // Class Methods
 public static native double IEEEremainder(double f1, double f2);
 public static int abs(int a);
 public static long abs(long a);
 public static float abs(float a);
 public static double abs(double a);
 public static native double acos(double a);
 public static native double asin(double a);
 public static native double atan(double a);
 public static native double atan2(double a, double b);
 public static native double ceil(double a);
 public static native double cos(double a);
 public static native double exp(double a);
 public static native double floor(double a);
 public static native double log(double a);
 public static int max(int a, int b);
 public static long max(long a, long b);
 public static float max(float a, float b);
 public static double max(double a, double b);
 public static int min(int a, int b);
 public static long min(long a, long b);
 public static float min(float a, float b);
 public static double min(double a, double b);
 public static native double pow(double a, double b);
 public static synchronized double random();

 public static native double rint(double a);
 public static int round(float a);
 public static long round(double a);
 public static native double sin(double a);
 public static native double sqrt(double a);
 public static native double tan(double a);
}

java.lang.Long (JDK 1.0) java.lang.NegativeArraySizeException
(JDK 1.0)

Chapter 26
The java.lang.reflect Package

26.7 java.lang.reflect.Modifier (JDK 1.1)

This class defines a number of constants and static methods that are used to interpret the integer values
returned by the getModifiers() methods of the Field, Method, and Constructor classes. The
isPublic(), isAbstract(), and related methods return true if the modifiers value includes the
specified modifier, otherwise they return false.

The constants defined by this class specify the various bit flags used in the modifiers value. You can use
these constants to test for modifiers if you want to perform your own boolean algebra.

public class Modifier extends Object {
 // Default Constructor: public Modifier()
 // Constants
 public static final int ABSTRACT;
 public static final int FINAL;
 public static final int INTERFACE;
 public static final int NATIVE;
 public static final int PRIVATE;
 public static final int PROTECTED;
 public static final int PUBLIC;
 public static final int STATIC;
 public static final int SYNCHRONIZED;
 public static final int TRANSIENT;
 public static final int VOLATILE;
 // Class Methods
 public static boolean isAbstract(int mod);
 public static boolean isFinal(int mod);
 public static boolean isInterface(int mod);
 public static boolean isNative(int mod);
 public static boolean isPrivate(int mod);
 public static boolean isProtected(int mod);
 public static boolean isPublic(int mod);

 public static boolean isStatic(int mod);
 public static boolean isSynchronized(int mod);
 public static boolean isTransient(int mod);
 public static boolean isVolatile(int mod);
 public static String toString(int mod);
}

java.lang.reflect.Method (JDK
1.1)

The java.math Package

Chapter 25

25. The java.lang Package
Contents:
java.lang.ArithmeticException (JDK 1.0)
java.lang.ArrayIndexOutOfBoundsException (JDK 1.0)
java.lang.ArrayStoreException (JDK 1.0)
java.lang.Boolean (JDK 1.0)
java.lang.Byte (JDK 1.1)
java.lang.Character (JDK 1.0)
java.lang.Class (JDK 1.0)
java.lang.ClassCastException (JDK 1.0)
java.lang.ClassCircularityError (JDK 1.0)
java.lang.ClassFormatError (JDK 1.0)
java.lang.ClassLoader (JDK 1.0)
java.lang.ClassNotFoundException (JDK 1.0)
java.lang.CloneNotSupportedException (JDK 1.0)
java.lang.Cloneable (JDK 1.0)
java.lang.Compiler (JDK 1.0)
java.lang.Double (JDK 1.0)
java.lang.Error (JDK 1.0)
java.lang.Exception (JDK 1.0)
java.lang.ExceptionInInitializerError (JDK 1.1)
java.lang.Float (JDK 1.0)
java.lang.IllegalAccessError (JDK 1.0)
java.lang.IllegalAccessException (JDK 1.0)
java.lang.IllegalArgumentException (JDK 1.0)
java.lang.IllegalMonitorStateException (JDK 1.0)
java.lang.IllegalStateException (JDK 1.1)
java.lang.IllegalThreadStateException (JDK 1.0)

java.lang.IncompatibleClassChangeError (JDK 1.0)
java.lang.IndexOutOfBoundsException (JDK 1.0)
java.lang.InstantiationError (JDK 1.0)
java.lang.InstantiationException (JDK 1.0)
java.lang.Integer (JDK 1.0)
java.lang.InternalError (JDK 1.0)
java.lang.InterruptedException (JDK 1.0)
java.lang.LinkageError (JDK 1.0)
java.lang.Long (JDK 1.0)
java.lang.Math (JDK 1.0)
java.lang.NegativeArraySizeException (JDK 1.0)
java.lang.NoClassDefFoundError (JDK 1.0)
java.lang.NoSuchFieldError (JDK 1.0)
java.lang.NoSuchFieldException (JDK 1.1)
java.lang.NoSuchMethodError (JDK 1.0)
java.lang.NoSuchMethodException (JDK 1.0)
java.lang.NullPointerException (JDK 1.0)
java.lang.Number (JDK 1.0)
java.lang.NumberFormatException (JDK 1.0)
java.lang.Object (JDK 1.0)
java.lang.OutOfMemoryError (JDK 1.0)
java.lang.Process (JDK 1.0)
java.lang.Runnable (JDK 1.0)
java.lang.Runtime (JDK 1.0)
java.lang.RuntimeException (JDK 1.0)
java.lang.SecurityException (JDK 1.0)
java.lang.SecurityManager (JDK 1.0)
java.lang.Short (JDK 1.1)
java.lang.StackOverflowError (JDK 1.0)
java.lang.String (JDK 1.0)
java.lang.StringBuffer (JDK 1.0)
java.lang.StringIndexOutOfBoundsException (JDK 1.0)
java.lang.System (JDK 1.0)
java.lang.Thread (JDK 1.0)
java.lang.ThreadDeath (JDK 1.0)
java.lang.ThreadGroup (JDK 1.0)
java.lang.Throwable (JDK 1.0)
java.lang.UnknownError (JDK 1.0)
java.lang.UnsatisfiedLinkError (JDK 1.0)

java.lang.VerifyError (JDK 1.0)
java.lang.VirtualMachineError (JDK 1.0)
java.lang.Void (JDK 1.1)

The java.lang package contains the classes that are most central to the Java language. As you can see
from Figure 25.1, the class hierarchy is broad rather than deep, which means that the classes are
independent of each other.

Figure 25.1: The java.lang package

Object is the ultimate superclass of all Java classes and is therefore at the top of all class hierarchies.
Class is a class that describes a Java class. There is one Class object for each class that is loaded into
Java.

Boolean, Character, Byte, Short, Integer, Long, Float, and Double are immutable class
wrappers around each of the primitive Java data types. These classes are useful when you need to
manipulate primitive types as objects. They also contain useful conversion and utility methods.

String and StringBuffer are objects that represent strings. String is an immutable type;
StringBuffer may have its string changed in place.

Runtime provides a number of low-level methods associated with the Java run-time system. System
provides similar low-level system methods. All the System methods are class methods, and this class
may not be instantiated. Math is a similar class that supports only class methods--its methods provide
floating-point math support.

The Thread class provides support for multiple threads of control running within the same Java
interpreter. Process defines a platform-independent interface to platform-dependent processes running
externally to the Java interpreter.

Throwable is the root class of the exception and error hierarchy. Throwable objects are used with the
Java throw and catch statements. java.lang defines quite a few subclasses of Throwable.
Exception and Error are the superclasses of all exceptions and errors. Figure 25.2 and Figure 25.3
show the class hierarchies for these core Java exceptions and errors.

Figure 25.2: The exception classes in the java.lang package

Figure 25.3: The error classes in the java.lang package

25.1 java.lang.AbstractMethodError (JDK 1.0)

Signals an attempt to invoke an abstract method.

public class AbstractMethodError extends IncompatibleClassChangeError {
 // Public Constructors
 public AbstractMethodError();
 public AbstractMethodError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->IncompatibleClassChangeError-
>AbstractMethodError

java.io.Writer (JDK 1.1) java.lang.ArithmeticException
(JDK 1.0)

Chapter 24
The java.io Package

24.23 java.io.FilenameFilter (JDK 1.0)

This interface defines the accept() method that must be implemented by any object that filters
filenames (i.e., selects a subset of filenames from a list of filenames). There are no standard
FilenameFilter classes implemented by Java, but objects that implement this interface are used by
the java.awt.FileDialog object, and by the File.list() method. A typical
FilenameFilter object might check that the specified File represents a file (not a directory), is
readable (and possibly writable as well), and that its name ends with some desired extension.

public abstract interface FilenameFilter {
 // Public Instance Methods
 public abstract boolean accept(File dir, String name);
}

Passed To:

File.list(), FileDialog.setFilenameFilter(), FileDialogPeer.setFilenameFilter()

Returned By:

FileDialog.getFilenameFilter()

java.io.FileWriter (JDK 1.1) java.io.FilterInputStream
(JDK 1.0)

Chapter 28
The java.net Package

28.15 java.net.ServerSocket (JDK 1.0)

This class is used by servers to listen for connection requests from clients. When you create a ServerSocket, you specify
the port to listen on. The accept() method begins listening on that port, and blocks until a client requests a connection on
that port. At that point, accept() accepts the connection, creating and returning a Socket that the server can use to
communicate with the client.

public class ServerSocket extends Object {
 // Public Constructors
 public ServerSocket(int port) throws IOException;
 public ServerSocket(int port, int backlog) throws IOException;
 1.1public ServerSocket(int port, int backlog, InetAddress bindAddr) throws
IOException;
 // Class Methods
 public static synchronized void setSocketFactory(SocketImplFactory fac)
throws IOException;
 // Public Instance Methods
 public Socket accept() throws IOException;
 public void close() throws IOException;
 public InetAddress getInetAddress();
 public int getLocalPort();
 1.1public synchronized int getSoTimeout() throws IOException;
 1.1public synchronized void setSoTimeout(int timeout) throws SocketException;
 public String toString(); // Overrides Object
 // Protected Instance Methods
 1.1 protected final void implAccept(Socket s) throws IOException;
}

java.net.ProtocolException
(JDK 1.0)

java.net.Socket (JDK 1.0)

Chapter 28
The java.net Package

28.18 java.net.SocketImpl (JDK 1.0)

This abstract class defines the methods necessary to implement communication through sockets. Different subclasses of
this class may provide different implementations suitable in different environments (such as behind firewalls). These
socket implementations are used by the Socket and ServerSocket classes.

Normal applications never need to use or subclass this class.

public abstract class SocketImpl extends Object {
 // Default Constructor: public SocketImpl()
 // Protected Instance Variables
 protected InetAddress address;
 protected FileDescriptor fd;
 protected int localport;
 protected int port;
 // Public Instance Methods
 public String toString(); // Overrides Object
 // Protected Instance Methods
 protected abstract void accept(SocketImpl s) throws IOException;
 protected abstract int available() throws IOException;
 protected abstract void bind(InetAddress host, int port) throws
IOException;
 protected abstract void close() throws IOException;
 protected abstract void connect(String host, int port) throws
IOException;
 protected abstract void connect(InetAddress address, int port) throws
IOException;
 protected abstract void create(boolean stream) throws IOException;
 protected FileDescriptor getFileDescriptor();
 protected InetAddress getInetAddress();
 protected abstract InputStream getInputStream() throws IOException;
 protected int getLocalPort();
 protected abstract OutputStream getOutputStream() throws IOException;
 protected int getPort();
 protected abstract void listen(int backlog) throws IOException;
}

Passed To:

Socket(), SocketImpl.accept()

Returned By:

SocketImplFactory.createSocketImpl()

java.net.SocketException
(JDK 1.0)

java.net.SocketImplFactory
(JDK 1.0)

Chapter 18
The java.awt Package

18.15 java.awt.Component (JDK 1.0)

Component is the superclass of all GUI components (except menu components) in the java.awt package. You may not
instantiate a Component directly; you must use a subclass.

Component defines many methods. Some of these are intended to be implemented by subclasses. Some are used internally
by the AWT. Some are to be implemented to handle events. And many are useful utility methods for working with GUI
components. getParent() returns the Container that a Component is contained in. setBackground(),
setForeground(), and setFont() set the specified display attributes of a component. hide(), show(), enable(),
and disable() perform the specified actions for a component. createImage() creates an Image object from a specified
ImageProducer, or creates an offscreen image that can be draw into and used for double-buffering during animation.
Component also has quite a few deprecated methods as a result of the Java 1.1 event model and the introduction of the
JavaBeans method naming conventions. The class defines quite a few methods for handling many types of events using the 1.0
model and the 1.1 model in both its high-level and low-level forms.

public abstract class Component extends Object implements ImageObserver,
MenuContainer, Serializable {
 // Protected Constructor
 1.1 protected Component();
 // Constants
 1.1 public static final float BOTTOM_ALIGNMENT;
 1.1 public static final float CENTER_ALIGNMENT;
 1.1 public static final float LEFT_ALIGNMENT;
 1.1 public static final float RIGHT_ALIGNMENT;
 1.1 public static final float TOP_ALIGNMENT;
 // Public Instance Methods
 # public boolean action(Event evt, Object what);
 1.1 public synchronized void add(PopupMenu popup);
 1.1 public synchronized void addComponentListener(ComponentListener l);
 1.1 public synchronized void addFocusListener(FocusListener l);
 1.1 public synchronized void addKeyListener(KeyListener l);
 1.1 public synchronized void addMouseListener(MouseListener l);
 1.1 public synchronized void addMouseMotionListener(MouseMotionListener l);
 public void addNotify();
 # public Rectangle bounds();
 public int checkImage(Image image, ImageObserver observer);
 public int checkImage(Image image, int width, int height, ImageObserver
observer);
 1.1 public boolean contains(int x, int y);
 1.1 public boolean contains(Point p);
 public Image createImage(ImageProducer producer);

 public Image createImage(int width, int height);
 # public void deliverEvent(Event e);
 # public void disable();
 1.1 public final void dispatchEvent(AWTEvent e);
 1.1 public void doLayout();
 # public void enable();
 # public void enable(boolean b);
 1.1 public float getAlignmentX();
 1.1 public float getAlignmentY();
 public Color getBackground();
 1.1 public Rectangle getBounds();
 public ColorModel getColorModel();
 1.1 public Component getComponentAt(int x, int y);
 1.1 public Component getComponentAt(Point p);
 1.1 public Cursor getCursor();
 public Font getFont(); // From MenuContainer
 public FontMetrics getFontMetrics(Font font);
 public Color getForeground();
 public Graphics getGraphics();
 1.1 public Locale getLocale();
 1.1 public Point getLocation();
 1.1 public Point getLocationOnScreen();
 1.1 public Dimension getMaximumSize();
 1.1 public Dimension getMinimumSize();
 1.1 public String getName();
 public Container getParent();
 # public ComponentPeer getPeer();
 1.1 public Dimension getPreferredSize();
 1.1 public Dimension getSize();
 public Toolkit getToolkit();
 1.1 public final Object getTreeLock();
 # public boolean gotFocus(Event evt, Object what);
 # public boolean handleEvent(Event evt);
 # public void hide();
 public boolean imageUpdate(Image img, int flags, int x, int y, int w, int
h); // From ImageObserver
 # public boolean inside(int x, int y);
 public void invalidate();
 public boolean isEnabled();
 1.1 public boolean isFocusTraversable();
 public boolean isShowing();
 public boolean isValid();
 public boolean isVisible();
 # public boolean keyDown(Event evt, int key);
 # public boolean keyUp(Event evt, int key);
 # public void layout();
 public void list();
 public void list(PrintStream out);
 public void list(PrintStream out, int indent);
 1.1 public void list(PrintWriter out);
 1.1 public void list(PrintWriter out, int indent);
 # public Component locate(int x, int y);
 # public Point location();

 # public boolean lostFocus(Event evt, Object what);
 # public Dimension minimumSize();
 # public boolean mouseDown(Event evt, int x, int y);
 # public boolean mouseDrag(Event evt, int x, int y);
 # public boolean mouseEnter(Event evt, int x, int y);
 # public boolean mouseExit(Event evt, int x, int y);
 # public boolean mouseMove(Event evt, int x, int y);
 # public boolean mouseUp(Event evt, int x, int y);
 # public void move(int x, int y);
 # public void nextFocus();
 public void paint(Graphics g);
 public void paintAll(Graphics g);
 # public boolean postEvent(Event e); // From MenuContainer
 # public Dimension preferredSize();
 public boolean prepareImage(Image image, ImageObserver observer);
 public boolean prepareImage(Image image, int width, int height,
ImageObserver observer);
 public void print(Graphics g);
 public void printAll(Graphics g);
 1.1 public synchronized void remove(MenuComponent popup); // From
MenuContainer
 1.1 public synchronized void removeComponentListener(ComponentListener l);
 1.1 public synchronized void removeFocusListener(FocusListener l);
 1.1 public synchronized void removeKeyListener(KeyListener l);
 1.1 public synchronized void removeMouseListener(MouseListener l);
 1.1 public synchronized void removeMouseMotionListener(MouseMotionListener
l);
 public void removeNotify();
 public void repaint();
 public void repaint(long tm);
 public void repaint(int x, int y, int width, int height);
 public void repaint(long tm, int x, int y, int width, int height);
 public void requestFocus();
 # public void reshape(int x, int y, int width, int height);
 # public void resize(int width, int height);
 # public void resize(Dimension d);
 public void setBackground(Color c);
 1.1 public void setBounds(int x, int y, int width, int height);
 1.1 public void setBounds(Rectangle r);
 1.1 public synchronized void setCursor(Cursor cursor);
 1.1 public void setEnabled(boolean b);
 public synchronized void setFont(Font f);
 public void setForeground(Color c);
 1.1 public void setLocale(Locale l);
 1.1 public void setLocation(int x, int y);
 1.1 public void setLocation(Point p);
 1.1 public void setName(String name);
 1.1 public void setSize(int width, int height);
 1.1 public void setSize(Dimension d);
 1.1 public void setVisible(boolean b);
 # public void show();
 # public void show(boolean b);

 # public Dimension size();
 public String toString(); // Overrides Object
 1.1 public void transferFocus();
 public void update(Graphics g);
 public void validate();
 // Protected Instance Methods
 1.1 protected final void disableEvents(long eventsToDisable);
 1.1 protected final void enableEvents(long eventsToEnable);
 protected String paramString();
 1.1 protected void processComponentEvent(ComponentEvent e);
 1.1 protected void processEvent(AWTEvent e);
 1.1 protected void processFocusEvent(FocusEvent e);
 1.1 protected void processKeyEvent(KeyEvent e);
 1.1 protected void processMouseEvent(MouseEvent e);
 1.1 protected void processMouseMotionEvent(MouseEvent e);
}

Extended By:

Button, Canvas, Checkbox, Choice, Container, Label, List, Scrollbar, TextComponent

Passed To:

BorderLayout.addLayoutComponent(), BorderLayout.removeLayoutComponent(),
CardLayout.addLayoutComponent(), CardLayout.removeLayoutComponent(),
ComponentEvent(), Container.add(), Container.addImpl(), Container.isAncestorOf(),
Container.remove(), ContainerEvent(), FlowLayout.addLayoutComponent(),
FlowLayout.removeLayoutComponent(), FocusEvent(), GridBagLayout.addLayoutComponent(),
GridBagLayout.getConstraints(), GridBagLayout.lookupConstraints(),
GridBagLayout.removeLayoutComponent(), GridBagLayout.setConstraints(),
GridLayout.addLayoutComponent(), GridLayout.removeLayoutComponent(), KeyEvent(),
LayoutManager.addLayoutComponent(), LayoutManager.removeLayoutComponent(),
LayoutManager2.addLayoutComponent(), MediaTracker(), MouseEvent(), PaintEvent(),
PopupMenu.show(), ScrollPane.addImpl(), Toolkit.createComponent(),
Toolkit.getNativeContainer()

Returned By:

Component.getComponentAt(), Component.locate(), ComponentEvent.getComponent(),
Container.add(), Container.getComponent(), Container.getComponentAt(),
Container.getComponents(), Container.locate(), ContainerEvent.getChild(),
PropertyEditor.getCustomEditor(), PropertyEditorSupport.getCustomEditor(),
Window.getFocusOwner()

java.awt.Color (JDK 1.0) java.awt.Container (JDK 1.0)

Chapter 18
The java.awt Package

18.20 java.awt.Event (JDK 1.0)

This class contains public instance variables that describe some kind of GUI event. In Java 1.1, this class has been superseded
by AWTEvent and the java.awt.event package.

The class contains a large number of constants. Some of the constants specify the event type and are values for the id variable.
Other constants are values for keys, like the function keys, that do not have ASCII (or Latin-1) values, and are set on the key
field. Other constants are mask values that are ORed into the modifiers field to describe the state of the modifier keys on
the keyboard. The target field is very important--it is the object for which the event occurred. The when field specifies
when the event occurred. The x and y fields specify the mouse coordinates at which it occurred. Finally, the arg field is a
value specific to the type of the event. Not all fields have valid values for all types of events.

public class Event extends Object implements Serializable {
 // Public Constructors
 public Event(Object target, long when, int id, int x, int y, int key, int
modifiers, Object arg);
 public Event(Object target, long when, int id, int x, int y, int key, int
modifiers);
 public Event(Object target, int id, Object arg);
 // Event Type Constants
 public static final int ACTION_EVENT;
 public static final int GOT_FOCUS, LOST_FOCUS;
 public static final int KEY_ACTION, KEY_ACTION_RELEASE;
 public static final int KEY_PRESS, KEY_RELEASE;
 public static final int LIST_SELECT, LIST_DESELECT;
 public static final int LOAD_FILE, SAVE_FILE;
 public static final int MOUSE_DOWN, MOUSE_UP;
 public static final int MOUSE_DRAG, MOUSE_MOVE;
 public static final int MOUSE_ENTER, MOUSE_EXIT;
 public static final int SCROLL_ABSOLUTE;
 1.1 public static final int SCROLL_BEGIN, SCROLL_END;
 public static final int SCROLL_LINE_DOWN, SCROLL_LINE_UP;
 public static final int SCROLL_PAGE_DOWN, SCROLL_PAGE_UP;
 public static final int WINDOW_EXPOSE;
 public static final int WINDOW_ICONIFY, WINDOW_DEICONIFY;
 public static final int WINDOW_DESTROY;
 public static final int WINDOW_MOVED;
 // Keyboard Modifier Constants
 public static final int ALT_MASK;
 public static final int CTRL_MASK;
 public static final int META_MASK;

 public static final int SHIFT_MASK;
 // Function Key Constants
 public static final int F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11,
F12;
 public static final int LEFT, RIGHT, UP, DOWN;
 public static final int PGUP, PGDN;
 public static final int HOME, END;
 1.1 public static final int INSERT, DELETE;
 1.1 public static final int BACK_SPACE;
 1.1 public static final int ENTER;
 1.1 public static final int ESCAPE;
 1.1 public static final int TAB;
 1.1 public static final int CAPS_LOCK, NUM_LOCK, SCROLL_LOCK;
 1.1 public static final int PAUSE, PRINT_SCREEN;
 // Public Instance Variables
 public Object arg;
 public int clickCount;
 public Event evt;
 public int id;
 public int key;
 public int modifiers;
 public Object target;
 public long when;
 public int x;
 public int y;
 // Public Instance Methods
 public boolean controlDown();
 public boolean metaDown();
 public boolean shiftDown();
 public String toString(); // Overrides Object
 public void translate(int x, int y);
 // Protected Instance Methods
 protected String paramString();
}

Passed To:

AWTEvent(), Component.action(), Component.deliverEvent(), Component.gotFocus(),
Component.handleEvent(), Component.keyDown(), Component.keyUp(),
Component.lostFocus(), Component.mouseDown(), Component.mouseDrag(),
Component.mouseEnter(), Component.mouseExit(), Component.mouseMove(),
Component.mouseUp(), Component.postEvent(), Container.deliverEvent(),
MenuComponent.postEvent(), MenuContainer.postEvent(), PopupMenuPeer.show(),
Window.postEvent()

Type Of:

Event.evt

java.awt.Dimension (JDK 1.0) java.awt.EventQueue (JDK
1.1)

Chapter 18
The java.awt Package

18.2 java.awt.AWTEvent (JDK 1.1)

This abstract class serves as the root event type for all AWT events in Java 1.1 and supersedes the
Event class which was used in Java 1.0.

Each AWTEvent has a source object, as all EventObject objects do. You can query the source of an
event with the inherited getSource() method. The AWTEvent class adds an event type, or "id," for
every AWT event. Use getID() to query the type of the event. Subclasses of AWTEvent define
various constants for this type field.

The various _MASK constants defined by this class allow Component.enableEvents() to be
called by applets and custom components that want to receive various event types without having to
register an EventListener object to receive them.

public abstract class AWTEvent extends EventObject {
 // Public Constructors
 public AWTEvent(Event event);
 public AWTEvent(Object source, int id);
 // Constants
 public static final long ACTION_EVENT_MASK;
 public static final long ADJUSTMENT_EVENT_MASK;
 public static final long COMPONENT_EVENT_MASK;
 public static final long CONTAINER_EVENT_MASK;
 public static final long FOCUS_EVENT_MASK;
 public static final long ITEM_EVENT_MASK;
 public static final long KEY_EVENT_MASK;
 public static final long MOUSE_EVENT_MASK;
 public static final long MOUSE_MOTION_EVENT_MASK;
 public static final int RESERVED_ID_MAX;
 public static final long TEXT_EVENT_MASK;
 public static final long WINDOW_EVENT_MASK;
 // Protected Instance Variables

 protected boolean consumed;
 protected int id;
 // Public Instance Methods
 public int getID();
 public String paramString();
 public String toString(); // Overrides EventObject
 // Protected Instance Methods
 protected void consume();
 protected boolean isConsumed();
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent

Extended By:

ActionEvent, AdjustmentEvent, ComponentEvent, ItemEvent, TextEvent

Passed To:

Button.processEvent(), Checkbox.processEvent(),
CheckboxMenuItem.processEvent(), Choice.processEvent(),
Component.dispatchEvent(), Component.processEvent(),
ComponentPeer.handleEvent(), Container.processEvent(),
EventQueue.postEvent(), List.processEvent(),
MenuComponent.dispatchEvent(), MenuComponent.processEvent(),
MenuItem.processEvent(), Scrollbar.processEvent(),
TextComponent.processEvent(), TextField.processEvent(),
Window.processEvent()

Returned By:

EventQueue.getNextEvent(), EventQueue.peekEvent()

java.awt.AWTError (JDK
1.0)

java.awt.AWTEventMulticaster
(JDK 1.1)

Chapter 20

20. The java.awt.event Package
Contents:
java.awt.event.ActionListener (JDK 1.1)
java.awt.event.AdjustmentEvent (JDK 1.1)
java.awt.event.AdjustmentListener (JDK 1.1)
java.awt.event.ComponentAdapter (JDK 1.1)
java.awt.event.ComponentEvent (JDK 1.1)
java.awt.event.ComponentListener (JDK 1.1)
java.awt.event.ContainerAdapter (JDK 1.1)
java.awt.event.ContainerEvent (JDK 1.1)
java.awt.event.ContainerListener (JDK 1.1)
java.awt.event.FocusAdapter (JDK 1.1)
java.awt.event.FocusEvent (JDK 1.1)
java.awt.event.FocusListener (JDK 1.1)
java.awt.event.InputEvent (JDK 1.1)
java.awt.event.ItemEvent (JDK 1.1)
java.awt.event.ItemListener (JDK 1.1)
java.awt.event.KeyAdapter (JDK 1.1)
java.awt.event.KeyEvent (JDK 1.1)
java.awt.event.KeyListener (JDK 1.1)
java.awt.event.MouseAdapter (JDK 1.1)
java.awt.event.MouseEvent (JDK 1.1)
java.awt.event.MouseListener (JDK 1.1)
java.awt.event.MouseMotionAdapter (JDK 1.1)
java.awt.event.MouseMotionListener (JDK 1.1)
java.awt.event.PaintEvent (JDK 1.1)
java.awt.event.TextEvent (JDK 1.1)
java.awt.event.TextListener (JDK 1.1)
java.awt.event.WindowAdapter (JDK 1.1)
java.awt.event.WindowEvent (JDK 1.1)
java.awt.event.WindowListener (JDK 1.1)

This package defines classes and interfaces used for event handling in the AWT. This package, and all of its classes and
interfaces, are new in Java 1.1.

The members of this package fall into three categories:

● Events. The classes with names ending in "Event" represent specific types of events, generated by the AWT or by one
of the AWT components.

● Listeners. The interfaces in this package are all "event listeners"; their names end with "Listener." These interfaces
define the methods that must be implemented by any object that wants to be notified when a particular event occurs.
Note that there is a Listener interface for each Event class.

● Adapters. Each of the classes with a name ending in "Adapter" provides a no-op implementation for an event listener
interface that defines more than one method. When you are only interested in a single method of an event listener
interface, it is easier to subclass an Adapter class than to implement all of the methods of the corresponding
Listener interface.

Figure 20.1 shows the class hierarchy for this package. See Chapter 7, Events, for more information on events and event
handling.

Figure 20.1: The java.awt.event package

20.1 java.awt.event.ActionEvent (JDK 1.1)

An object of this class represents a high-level "action" event generated by an AWT component. Instead of representing a direct

user event, such as a mouse or keyboard event, ActionEvent represents some sort of action performed by the user on an
AWT component.

The getID() method returns the type of action that has occurred. For AWT-generated action events, this type is always
ActionEvent.ACTION_PERFORMED; custom components can generate action events of other types.

The getActionCommand() method returns a String that serves as a kind of name for the action that the event
represents. The Button and MenuItem components have a setActionCommand() method that allows the programmer
to specify an "action command" string to be included with any action events generated by those components. It is this value
that is returned by the getActionCommand() method. When more than one Button or other component notifies the same
ActionListener, you can use getActionCommand() to help determine the appropriate response to the event. This is
generally a better technique than using the source object returned by getSource(). If no action command string is explicitly
set, getActionCommand returns the label of the Button or MenuItem. Note, however, that internationalized programs
should not rely on these labels to be constant.

Finally, getModifiers() returns a value that indicates what keyboard modifiers were in effect when the action event was
triggered. Use the various _MASK constants, along with the & operator to decode this value.

public class ActionEvent extends AWTEvent {
 // Public Constructors
 public ActionEvent(Object source, int id, String command);
 public ActionEvent(Object source, int id, String command, int modifiers);
 // Constants
 public static final int ACTION_FIRST;
 public static final int ACTION_LAST;
 public static final int ACTION_PERFORMED;
 public static final int ALT_MASK;
 public static final int CTRL_MASK;
 public static final int META_MASK;
 public static final int SHIFT_MASK;
 // Public Instance Methods
 public String getActionCommand();
 public int getModifiers();
 public String paramString(); // Overrides AWTEvent
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->ActionEvent

Passed To:

ActionListener.actionPerformed(), AWTEventMulticaster.actionPerformed(),
Button.processActionEvent(), List.processActionEvent(),
MenuItem.processActionEvent(), TextField.processActionEvent()

java.awt.datatransfer.UnsupportedFlavorException
(JDK 1.1)

java.awt.event.ActionListener
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.2 java.awt.event.ActionListener (JDK 1.1)

This interface defines the method that an object must implement to "listen" for action events on AWT
components. When an ActionEvent occurs, an AWT component notifies its registered
ActionListener objects by invoking their actionPerformed() methods.

public abstract interface ActionListener extends EventListener {
 // Public Instance Methods
 public abstract void actionPerformed(ActionEvent e);
}

Implemented By:

AWTEventMulticaster

Passed To:

AWTEventMulticaster.add(), AWTEventMulticaster.remove(),
Button.addActionListener(), Button.removeActionListener(),
List.addActionListener(), List.removeActionListener(),
MenuItem.addActionListener(), MenuItem.removeActionListener(),
TextField.addActionListener(), TextField.removeActionListener()

Returned By:

AWTEventMulticaster.add(), AWTEventMulticaster.remove()

java.awt.event.ActionEvent
(JDK 1.1)

java.awt.event.AdjustmentEvent
(JDK 1.1)

Chapter 18
The java.awt Package

18.56 java.awt.SystemColor (JDK 1.1)

Instances of the SystemColor class represent colors used in the system desktop. You can use these colors to produce
applications and custom components that fit well in the desktop color scheme. On platforms that allow the desktop colors to
be modified dynamically, the actual color represented by these symbolic system colors may be dynamically updated.

The SystemColor class does not have a constructor, but it defines constant SystemColor objects that represent each
of the symbolic colors used by the system desktop.

If you need to compare a SystemColor object to a regular Color object, use the getRGB() method of both objects and
compare the resulting values.

public final class SystemColor extends Color implements Serializable {
 // No Constructor
 // Color Constants
 public static final SystemColor activeCaption, activeCaptionBorder,
activeCaptionText;
 public static final SystemColor control, controlDkShadow,
controlHighlight;
 public static final SystemColor controlLtHighlight, controlShadow,
controlText;
 public static final SystemColor desktop;
 public static final SystemColor inactiveCaption, inactiveCaptionBorder,
inactiveCaptionText;
 public static final SystemColor info, infoText;
 public static final SystemColor menu, menuText;
 public static final SystemColor scrollbar;
 public static final SystemColor text, textHighlight, textHighlightText;
 public static final SystemColor textInactiveText, textText;
 public static final SystemColor window, windowBorder, windowText;
 // Color Index Constants
 public static final int ACTIVE_CAPTION, ACTIVE_CAPTION_BORDER,
ACTIVE_CAPTION_TEXT;
 public static final int CONTROL, CONTROL_DK_SHADOW, CONTROL_HIGHLIGHT;
 public static final int CONTROL_LT_HIGHLIGHT, CONTROL_SHADOW,
CONTROL_TEXT;
 public static final int DESKTOP;
 public static final int INACTIVE_CAPTION, INACTIVE_CAPTION_BORDER,
INACTIVE_CAPTION_TEXT;
 public static final int INFO, INFO_TEXT;

 public static final int MENU, MENU_TEXT;
 public static final int NUM_COLORS;
 public static final int SCROLLBAR;
 public static final int TEXT, TEXT_HIGHLIGHT, TEXT_HIGHLIGHT_TEXT;
 public static final int TEXT_INACTIVE_TEXT, TEXT_TEXT;
 public static final int WINDOW, WINDOW_BORDER, WINDOW_TEXT;
 // Public Instance Methods
 public int getRGB(); // Overrides Color
 public String toString(); // Overrides Color
}

Hierarchy:

Object->Color(Serializable)->SystemColor(Serializable)

java.awt.Shape (JDK 1.1) java.awt.TextArea (JDK 1.0)

Chapter 25
The java.lang Package

25.61 java.lang.Thread (JDK 1.0)

This class encapsulates all the information about a single thread of control running on the Java interpreter. To create a thread,
you must pass a Runnable object (i.e., an object that implements the Runnable interface by defining a run() method) to
the Thread constructor, or you must subclass Thread so that it defines its own run() method.

The run() method of the Thread or of the specified Runnable object is the "body" of the thread. It begins executing when
the start() method of the Thread object is called. The thread runs until the run() method returns or until the stop()
method of its Thread object is called. The static methods of this class operate on the currently running thread. The instance
methods may be called from one thread to operate on a different thread.

start() starts a thread running. stop() stops it by throwing a ThreadDeath error. suspend() temporarily halts a
thread. resume() allows it to resume. sleep() makes the current thread stop for a specified amount of time. yield()
makes the current thread give up control to any other threads of equal priority that are waiting to run. join() waits for a
thread to die. interrupt() wakes up a waiting or sleeping thread (with an InterruptedException) or sets an
"interrupted" flag on a non-sleeping thread. A thread can test its own "interrupted" flag with interrupted() or can test the
flag of another thread with isInterrupted(). The Object wait() method makes the current thread block until the
object's notify() method is called by another thread.

public class Thread extends Object implements Runnable {
 // Public Constructors
 public Thread();
 public Thread(Runnable target);
 public Thread(ThreadGroup group, Runnable target);
 public Thread(String name);
 public Thread(ThreadGroup group, String name);
 public Thread(Runnable target, String name);
 public Thread(ThreadGroup group, Runnable target, String name);
 // Constants
 public static final int MAX_PRIORITY;
 public static final int MIN_PRIORITY;
 public static final int NORM_PRIORITY;
 // Class Methods
 public static int activeCount();
 public static native Thread currentThread();
 public static void dumpStack();
 public static int enumerate(Thread[] tarray);
 public static boolean interrupted();
 public static native void sleep(long millis) throws InterruptedException;
 public static void sleep(long millis, int nanos) throws
InterruptedException;

 public static native void yield();
 // Public Instance Methods
 public void checkAccess();
 public native int countStackFrames();
 public void destroy();
 public final String getName();
 public final int getPriority();
 public final ThreadGroup getThreadGroup();
 public void interrupt();
 public final native boolean isAlive();
 public final boolean isDaemon();
 public boolean isInterrupted();
 public final synchronized void join(long millis) throws
InterruptedException;
 public final synchronized void join(long millis, int nanos) throws
InterruptedException;
 public final void join() throws InterruptedException;
 public final void resume();
 public void run(); // From Runnable
 public final void setDaemon(boolean on);
 public final void setName(String name);
 public final void setPriority(int newPriority);
 public synchronized native void start();
 public final void stop();
 public final synchronized void stop(Throwable o);
 public final void suspend();
 public String toString(); // Overrides Object
}

Passed To:

SecurityManager.checkAccess(), Thread.enumerate(), ThreadGroup.enumerate(), ThreadGroup.uncaughtException()

Returned By:

Thread.currentThread()

java.lang.System (JDK 1.0) java.lang.ThreadDeath (JDK
1.0)

Chapter 25
The java.lang Package

25.63 java.lang.ThreadGroup (JDK 1.0)

This class defines a group of threads and allows operations on the group as a whole. A ThreadGroup
may contain Thread objects, as well as "child" ThreadGroup objects. All ThreadGroup objects
are created as children of some other ThreadGroup, and thus there is a parent/child hierarchy of
ThreadGroup objects.

Some programs may find it convenient to define their own ThreadGroup, but generally thread groups
are only used by system-level applications.

public class ThreadGroup extends Object {
 // Public Constructors
 public ThreadGroup(String name);
 public ThreadGroup(ThreadGroup parent, String name);
 // Public Instance Methods
 public int activeCount();
 public int activeGroupCount();
 1.1public boolean allowThreadSuspension(boolean b);
 public final void checkAccess();
 public final void destroy();
 public int enumerate(Thread[] list);
 public int enumerate(Thread[] list, boolean recurse);
 public int enumerate(ThreadGroup[] list);
 public int enumerate(ThreadGroup[] list, boolean recurse);
 public final int getMaxPriority();
 public final String getName();
 public final ThreadGroup getParent();
 public final boolean isDaemon();
 1.1public synchronized boolean isDestroyed();
 public void list();
 public final boolean parentOf(ThreadGroup g);
 public final void resume();

 public final void setDaemon(boolean daemon);
 public final void setMaxPriority(int pri);
 public final void stop();
 public final void suspend();
 public String toString(); // Overrides Object
 public void uncaughtException(Thread t, Throwable e);
}

Passed To:

SecurityManager.checkAccess(), Thread(), ThreadGroup(), ThreadGroup.enumerate(),
ThreadGroup.parentOf()

Returned By:

SecurityManager.getThreadGroup(), Thread.getThreadGroup(), ThreadGroup.getParent()

java.lang.ThreadDeath (JDK
1.0)

java.lang.Throwable (JDK
1.0)

Chapter 30
The java.util Package

30.9 java.util.GregorianCalendar (JDK 1.1)

This concrete subclass of Calendar implements the "standard" solar calendar with years numbered from the birth of
Christ, which is used in most locales throughout the world. You do not typically use this class directly, but instead obtain
a Calendar object suitable for the default locale by calling Calendar.getInstance(). See Calendar for
details on working with Calendar objects.

There is a discontinuity in the Gregorian calendar that represents the historical switch from the Julian calendar to the
Gregorian calendar. By default GregorianCalendar assumes that this switch occurs on October 15, 1582. Most
programs need not be concerned with this.

public class GregorianCalendar extends Calendar {
 // Public Constructors
 public GregorianCalendar();
 public GregorianCalendar(TimeZone zone);
 public GregorianCalendar(Locale aLocale);
 public GregorianCalendar(TimeZone zone, Locale aLocale);
 public GregorianCalendar(int year, int month, int date);
 public GregorianCalendar(int year, int month, int date, int hour, int
minute);
 public GregorianCalendar(int year, int month, int date, int hour, int
minute, int second);
 // Constants
 public static final int AD;
 public static final int BC;
 // Public Instance Methods
 public void add(int field, int amount); // Defines Calendar
 public boolean after(Object when); // Defines Calendar
 public boolean before(Object when); // Defines Calendar
 public Object clone(); // Overrides Calendar
 public boolean equals(Object obj); // Defines Calendar
 public int getGreatestMinimum(int field); // Defines Calendar
 public final Date getGregorianChange();
 public int getLeastMaximum(int field); // Defines Calendar
 public int getMaximum(int field); // Defines Calendar
 public int getMinimum(int field); // Defines Calendar
 public synchronized int hashCode(); // Overrides Object
 public boolean isLeapYear(int year);
 public void roll(int field, boolean up); // Defines Calendar

 public void setGregorianChange(Date date);
 // Protected Instance Methods
 protected void computeFields(); // Defines Calendar
 protected void computeTime(); // Defines Calendar
}

Hierarchy:

Object->Calendar(Serializable, Cloneable)->GregorianCalendar

java.util.EventObject (JDK
1.1)

java.util.Hashtable (JDK 1.0)

Chapter 30
The java.util Package

30.2 java.util.Calendar (JDK 1.1)

This abstract class defines methods used to perform date and time arithmetic. It also includes methods that convert dates
and times to and from the machine-usable millisecond format used by the Date class and units like minutes, hours, days,
weeks, months, and years that are more useful to humans.

As an abstract class, Calendar cannot be directly instantiated. Instead, it provides static getInstance() methods that
return instances of a Calendar subclass suitable for use in a specified or default locale with a specified or default time
zone.

Calendar defines a number of useful constants. Some of these are values that represent days of the week and months of
the year. Other constants, such as HOUR and DAY_OF_WEEK, represent various fields of date and time information. These
field constants are passed to a number of Calendar methods, such as get() and set(), in order to indicate what
particular date or time field is of interest.

setTime() and the various set() methods set the date represented by a Calendar object. The add() method adds
(or subtracts) values to a calendar field, incrementing the next larger field when the field "rolls over." roll() does the
same, without modifying any but the specified field. before() and after() compare two Calendar objects.

Many of the methods of the Calendar class are replacements for methods of Date that have been deprecated in Java 1.1.
While the Calendar class is used to convert a time value into its various hour, day, month, and other fields, it is not
intended to present those fields into a form suitable for display to the end user. That function is performed by the
DateFormat class in the java.text package, which handles internationalization issues.

See also Date, DateFormat, and TimeZone.

public abstract class Calendar extends Object implements Serializable, Cloneable {
 // Protected Constructors
 protected Calendar();
 protected Calendar(TimeZone zone, Locale aLocale);
 // Constants
 public static final int FIELD_COUNT;
 // Date and Time Field Constants
 public static final int ERA;
 public static final int YEAR;
 public static final int MONTH;
 public static final int WEEK_OF_YEAR, WEEK_OF_MONTH;
 public static final int DATE, DAY_OF_MONTH;
 public static final int DAY_OF_YEAR, DAY_OF_WEEK, DAY_OF_WEEK_IN_MONTH;

 public static final int ZONE_OFFSET, DST_OFFSET;
 public static final int AM_PM;
 public static final int HOUR, HOUR_OF_DAY;
 public static final int MINUTE;
 public static final int SECOND;
 public static final int MILLISECOND;
 // Field Value Constants
 public static final int JANUARY, FEBRUARY, MARCH, APRIL;
 public static final int MAY, JUNE, JULY, AUGUST;
 public static final int SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER;
 public static final int UNDECIMBER;
 public static final int SUNDAY, MONDAY, TUESDAY, WEDNESDAY;
 public static final int THURSDAY, FRIDAY, SATURDAY;
 public static final int AM, PM;
 // Protected Instance Variables
 protected boolean areFieldsSet;
 protected int[] fields;
 protected boolean[] isSet;
 protected boolean isTimeSet;
 protected long time;
 // Class Methods
 public static synchronized Locale[] getAvailableLocales();
 public static synchronized Calendar getInstance();
 public static synchronized Calendar getInstance(TimeZone zone);
 public static synchronized Calendar getInstance(Locale aLocale);
 public static synchronized Calendar getInstance(TimeZone zone, Locale
aLocale);
 // Public Instance Methods
 public abstract void add(int field, int amount);
 public abstract boolean after(Object when);
 public abstract boolean before(Object when);
 public final void clear();
 public final void clear(int field);
 public Object clone(); // Overrides Object
 public abstract boolean equals(Object when); // Overrides Object
 public final int get(int field);
 public int getFirstDayOfWeek();
 public abstract int getGreatestMinimum(int field);
 public abstract int getLeastMaximum(int field);
 public abstract int getMaximum(int field);
 public int getMinimalDaysInFirstWeek();
 public abstract int getMinimum(int field);
 public final Date getTime();
 public TimeZone getTimeZone();
 public boolean isLenient();
 public final boolean isSet(int field);
 public abstract void roll(int field, boolean up);
 public final void set(int field, int value);
 public final void set(int year, int month, int date);
 public final void set(int year, int month, int date, int hour, int
minute);

 public final void set(int year, int month, int date, int hour, int
minute, int second);
 public void setFirstDayOfWeek(int value);
 public void setLenient(boolean lenient);
 public void setMinimalDaysInFirstWeek(int value);
 public final void setTime(Date date);
 public void setTimeZone(TimeZone value);
 // Protected Instance Methods
 protected void complete();
 protected abstract void computeFields();
 protected abstract void computeTime();
 protected long getTimeInMillis();
 protected final int internalGet(int field);
 protected void setTimeInMillis(long millis);
}

Extended By:

GregorianCalendar

Passed To:

DateFormat.setCalendar()

Returned By:

Calendar.getInstance(), DateFormat.getCalendar()

Type Of:

DateFormat.calendar

java.util.BitSet (JDK 1.0) java.util.Date (JDK 1.0)

Chapter 18
The java.awt Package

18.13 java.awt.Choice (JDK 1.0)

This class represents an "option menu" or "dropdown list." The addItem() method adds an item with the specified
label to a Choice menu. getSelectedIndex() returns the numerical position of the selected item in the menu, and
getSelectedItem() returns the label of the selected item.

public class Choice extends Component implements ItemSelectable {
 // Public Constructor
 public Choice();
 // Public Instance Methods
 1.1 public synchronized void add(String item);
 public synchronized void addItem(String item);
 1.1 public synchronized void addItemListener(ItemListener l); // From
ItemSelectable
 public void addNotify(); // Overrides Component
 # public int countItems();
 public String getItem(int index);
 1.1 public int getItemCount();
 public int getSelectedIndex();
 public synchronized String getSelectedItem();
 1.1 public synchronized Object[] getSelectedObjects(); // From
ItemSelectable
 1.1 public synchronized void insert(String item, int index);
 1.1 public synchronized void remove(String item);
 1.1 public synchronized void remove(int position);
 1.1 public synchronized void removeAll();
 1.1 public synchronized void removeItemListener(ItemListener l); // From
ItemSelectable
 public synchronized void select(int pos);
 public synchronized void select(String str);
 // Protected Instance Methods
 protected String paramString(); // Overrides Component
 1.1 protected void processEvent(AWTEvent e); // Overrides Component
 1.1 protected void processItemEvent(ItemEvent e);
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)-
>Choice(ItemSelectable)

Passed To:

Toolkit.createChoice()

java.awt.CheckboxMenuItem
(JDK 1.0)

java.awt.Color (JDK 1.0)

Chapter 22
The java.awt.peer Package

22.5 java.awt.peer.ChoicePeer (JDK 1.0)

public abstract interface ChoicePeer extends ComponentPeer {
 // Public Instance Methods
 1.1 public abstract void add(String item, int index);
 public abstract void addItem(String item, int index);
 1.1 public abstract void remove(int index);
 public abstract void select(int index);
}

Returned By:

Toolkit.createChoice()

java.awt.peer.CheckboxPeer
(JDK 1.0)

java.awt.peer.ComponentPeer
(JDK 1.0)

Chapter 18
The java.awt Package

18.16 java.awt.Container (JDK 1.0)

This class implements a component that can contain other components. You cannot instantiate Container directly, but
must use one of its subclasses, such as Panel, Frame, or Dialog. Once a Container is created, you may set its
LayoutManager with setLayout(), add components to it with add(), and remove them with remove().
getComponents() returns an array of the components contained in a Container. locate() determines within
which contained component a specified point falls. list() produces helpful debugging output.

public abstract class Container extends Component {
 // Protected Constructor
 1.1 protected Container();
 // Public Instance Methods
 public Component add(Component comp);
 public Component add(String name, Component comp);
 public Component add(Component comp, int index);
 1.1 public void add(Component comp, Object constraints);
 1.1 public void add(Component comp, Object constraints, int index);
 1.1 public void addContainerListener(ContainerListener l);
 public void addNotify(); // Overrides Component
 # public int countComponents();
 # public void deliverEvent(Event e); // Overrides Component
 1.1 public void doLayout(); // Overrides Component
 1.1 public float getAlignmentX(); // Overrides Component
 1.1 public float getAlignmentY(); // Overrides Component
 public Component getComponent(int n);
 1.1 public Component getComponentAt(int x, int y); // Overrides Component
 1.1 public Component getComponentAt(Point p); // Overrides Component
 1.1 public int getComponentCount();
 public Component[] getComponents();
 1.1 public Insets getInsets();
 public LayoutManager getLayout();
 1.1 public Dimension getMaximumSize(); // Overrides Component
 1.1 public Dimension getMinimumSize(); // Overrides Component
 1.1 public Dimension getPreferredSize(); // Overrides Component
 # public Insets insets();
 1.1 public void invalidate(); // Overrides Component
 1.1 public boolean isAncestorOf(Component c);
 # public void layout(); // Overrides Component
 public void list(PrintStream out, int indent); // Overrides Component
 1.1 public void list(PrintWriter out, int indent); // Overrides Component

 # public Component locate(int x, int y); // Overrides Component
 # public Dimension minimumSize(); // Overrides Component
 1.1 public void paint(Graphics g); // Overrides Component
 public void paintComponents(Graphics g);
 # public Dimension preferredSize(); // Overrides Component
 1.1 public void print(Graphics g); // Overrides Component
 public void printComponents(Graphics g);
 1.1 public void remove(int index);
 public void remove(Component comp);
 public void removeAll();
 1.1 public void removeContainerListener(ContainerListener l);
 public void removeNotify(); // Overrides Component
 public void setLayout(LayoutManager mgr);
 public void validate(); // Overrides Component
 // Protected Instance Methods
 1.1 protected void addImpl(Component comp, Object constraints, int index);
 protected String paramString(); // Overrides Component
 1.1 protected void processContainerEvent(ContainerEvent e);
 1.1 protected void processEvent(AWTEvent e); // Overrides Component
 1.1 protected void validateTree();
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->Container

Extended By:

Panel, ScrollPane, Window

Passed To:

BorderLayout.getLayoutAlignmentX(), BorderLayout.getLayoutAlignmentY(),
BorderLayout.invalidateLayout(), BorderLayout.layoutContainer(),
BorderLayout.maximumLayoutSize(), BorderLayout.minimumLayoutSize(),
BorderLayout.preferredLayoutSize(), CardLayout.first(),
CardLayout.getLayoutAlignmentX(), CardLayout.getLayoutAlignmentY(),
CardLayout.invalidateLayout(), CardLayout.last(), CardLayout.layoutContainer(),
CardLayout.maximumLayoutSize(), CardLayout.minimumLayoutSize(), CardLayout.next(),
CardLayout.preferredLayoutSize(), CardLayout.previous(), CardLayout.show(),
FlowLayout.layoutContainer(), FlowLayout.minimumLayoutSize(),
FlowLayout.preferredLayoutSize(), GridBagLayout.ArrangeGrid(),
GridBagLayout.getLayoutAlignmentX(), GridBagLayout.getLayoutAlignmentY(),
GridBagLayout.GetLayoutInfo(), GridBagLayout.GetMinSize(),
GridBagLayout.invalidateLayout(), GridBagLayout.layoutContainer(),
GridBagLayout.maximumLayoutSize(), GridBagLayout.minimumLayoutSize(),
GridBagLayout.preferredLayoutSize(), GridLayout.layoutContainer(),
GridLayout.minimumLayoutSize(), GridLayout.preferredLayoutSize(),
LayoutManager.layoutContainer(), LayoutManager.minimumLayoutSize(),
LayoutManager.preferredLayoutSize(), LayoutManager2.getLayoutAlignmentX(),

LayoutManager2.getLayoutAlignmentY(), LayoutManager2.invalidateLayout(),
LayoutManager2.maximumLayoutSize()

Returned By:

Component.getParent(), ContainerEvent.getContainer(), Toolkit.getNativeContainer()

java.awt.Component (JDK
1.0)

java.awt.Cursor (JDK 1.1)

Chapter 18
The java.awt Package

18.38 java.awt.List (JDK 1.0)

This class is a Component that graphically displays a list of strings. The list is scrollable if necessary. The constructor
takes optional arguments that specify the number of visible rows in the list and whether selection of more than one item is
allowed. The various instance methods allow strings to be added and removed from the List, and allow the selected item
or items to be queried.

public class List extends Component implements ItemSelectable {
 // Public Constructors
 public List();
 1.1 public List(int rows);
 public List(int rows, boolean multipleMode);
 // Public Instance Methods
 1.1 public void add(String item);
 1.1 public synchronized void add(String item, int index);
 1.1 public synchronized void addActionListener(ActionListener l);
 public void addItem(String item);
 public synchronized void addItem(String item, int index);
 1.1 public synchronized void addItemListener(ItemListener l); // From
ItemSelectable
 public void addNotify(); // Overrides Component
 # public boolean allowsMultipleSelections();
 # public synchronized void clear();
 # public int countItems();
 public synchronized void delItem(int position);
 # public synchronized void delItems(int start, int end);
 public synchronized void deselect(int index);
 public String getItem(int index);
 1.1 public int getItemCount();
 1.1 public synchronized String[] getItems();
 1.1 public Dimension getMinimumSize(int rows);
 1.1 public Dimension getMinimumSize(); // Overrides Component
 1.1 public Dimension getPreferredSize(int rows);
 1.1 public Dimension getPreferredSize(); // Overrides Component
 public int getRows();
 public synchronized int getSelectedIndex();
 public synchronized int[] getSelectedIndexes();
 public synchronized String getSelectedItem();
 public synchronized String[] getSelectedItems();

 1.1 public Object[] getSelectedObjects(); // From ItemSelectable
 public int getVisibleIndex();
 1.1 public boolean isIndexSelected(int index);
 1.1 public boolean isMultipleMode();
 # public boolean isSelected(int index);
 public synchronized void makeVisible(int index);
 # public Dimension minimumSize(int rows);
 # public Dimension minimumSize(); // Overrides Component
 # public Dimension preferredSize(int rows);
 # public Dimension preferredSize(); // Overrides Component
 1.1 public synchronized void remove(String item);
 1.1 public synchronized void remove(int position);
 1.1 public synchronized void removeActionListener(ActionListener l);
 1.1 public synchronized void removeAll();
 1.1 public synchronized void removeItemListener(ItemListener l); // From
ItemSelectable
 public void removeNotify(); // Overrides Component
 public synchronized void replaceItem(String newValue, int index);
 public synchronized void select(int index);
 1.1 public synchronized void setMultipleMode(boolean b);
 # public synchronized void setMultipleSelections(boolean b);
 // Protected Instance Methods
 protected String paramString(); // Overrides Component
 1.1 protected void processActionEvent(ActionEvent e);
 1.1 protected void processEvent(AWTEvent e); // Overrides Component
 1.1 protected void processItemEvent(ItemEvent e);
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)-
>List(ItemSelectable)

Passed To:

Toolkit.createList()

java.awt.LayoutManager2
(JDK 1.1)

java.awt.MediaTracker (JDK
1.0)

Chapter 22
The java.awt.peer Package

22.14 java.awt.peer.ListPeer (JDK 1.0)

public abstract interface ListPeer extends ComponentPeer {
 // Public Instance Methods
 1.1 public abstract void add(String item, int index);
 public abstract void addItem(String item, int index);
 public abstract void clear();
 public abstract void delItems(int start, int end);
 public abstract void deselect(int index);
 1.1 public abstract Dimension getMinimumSize(int rows);
 1.1 public abstract Dimension getPreferredSize(int rows);
 public abstract int[] getSelectedIndexes();
 public abstract void makeVisible(int index);
 public abstract Dimension minimumSize(int v);
 public abstract Dimension preferredSize(int v);
 1.1 public abstract void removeAll();
 public abstract void select(int index);
 1.1 public abstract void setMultipleMode(boolean b);
 public abstract void setMultipleSelections(boolean v);
}

Returned By:

Toolkit.createList()

java.awt.peer.LightweightPeer
(JDK 1.1)

java.awt.peer.MenuBarPeer
(JDK 1.0)

Chapter 18
The java.awt Package

18.40 java.awt.Menu (JDK 1.0)

This class represents a pulldown menu pane that appears within a MenuBar. Each Menu has a label that
appears in the MenuBar and may optionally be a tear-off menu. The add() and addSeparator() methods
add individual items to a Menu.

public class Menu extends MenuItem implements MenuContainer {
 // Public Constructors
 1.1 public Menu();
 public Menu(String label);
 public Menu(String label, boolean tearOff);
 // Public Instance Methods
 public synchronized MenuItem add(MenuItem mi);
 public void add(String label);
 public void addNotify(); // Overrides MenuItem
 public void addSeparator();
 # public int countItems();
 public MenuItem getItem(int index);
 1.1 public int getItemCount();
 1.1 public synchronized void insert(MenuItem menuitem, int index);
 1.1 public void insert(String label, int index);
 1.1 public void insertSeparator(int index);
 public boolean isTearOff();
 1.1 public String paramString(); // Overrides MenuItem
 public synchronized void remove(int index);
 public synchronized void remove(MenuComponent item); // From
MenuContainer
 1.1 public synchronized void removeAll();
 public void removeNotify(); // Overrides MenuComponent
}

Hierarchy:

Object->MenuComponent(Serializable)->MenuItem->Menu(MenuContainer)

Extended By:

PopupMenu

Passed To:

MenuBar.add(), MenuBar.setHelpMenu(), MenuBarPeer.addHelpMenu(),
MenuBarPeer.addMenu(), Toolkit.createMenu()

Returned By:

MenuBar.add(), MenuBar.getHelpMenu(), MenuBar.getMenu()

java.awt.MediaTracker (JDK
1.0)

java.awt.MenuBar (JDK 1.0)

Chapter 18
The java.awt Package

18.41 java.awt.MenuBar (JDK 1.0)

This class represents a menu bar. add() adds Menu objects to the menu bar, and setHelpMenu() adds a Help menu in a
reserved location of the menu bar. A MenuBar object may be displayed within a Frame by passing it to
Frame.setMenuBar().

public class MenuBar extends MenuComponent implements MenuContainer {
 // Public Constructor
 public MenuBar();
 // Public Instance Methods
 public synchronized Menu add(Menu m);
 public void addNotify();
 # public int countMenus();
 1.1 public void deleteShortcut(MenuShortcut s);
 public Menu getHelpMenu();
 public Menu getMenu(int i);
 1.1 public int getMenuCount();
 1.1 public MenuItem getShortcutMenuItem(MenuShortcut s);
 public synchronized void remove(int index);
 public synchronized void remove(MenuComponent m); // From MenuContainer
 public void removeNotify(); // Overrides MenuComponent
 public synchronized void setHelpMenu(Menu m);
 1.1 public synchronized Enumeration shortcuts();
}

Hierarchy:

Object->MenuComponent(Serializable)->MenuBar(MenuContainer)

Passed To:

Frame.setMenuBar(), FramePeer.setMenuBar(), Toolkit.createMenuBar()

Returned By:

Frame.getMenuBar()

java.awt.Menu (JDK 1.0) java.awt.MenuComponent
(JDK 1.0)

Chapter 18
The java.awt Package

18.52 java.awt.Rectangle (JDK 1.0)

This class defines a rectangle as the X and Y coordinate of its upper-left corner and a width and height. The
instance methods perform various tests and transformations on the rectangle. The x, y, width, and
height variables are public and may thus be manipulated directly. Rectangle objects are used in
several places in the java.awt package to specify clipping rectangles and bounding boxes.

public class Rectangle extends Object implements Shape, Serializable {
 // Public Constructors
 public Rectangle();
 1.1 public Rectangle(Rectangle r);
 public Rectangle(int x, int y, int width, int height);
 public Rectangle(int width, int height);
 public Rectangle(Point p, Dimension d);
 public Rectangle(Point p);
 public Rectangle(Dimension d);
 // Public Instance Variables
 public int height;
 public int width;
 public int x;
 public int y;
 // Public Instance Methods
 public void add(int newx, int newy);
 public void add(Point pt);
 public void add(Rectangle r);
 1.1 public boolean contains(Point p);
 1.1 public boolean contains(int x, int y);
 public boolean equals(Object obj); // Overrides Object
 1.1 public Rectangle getBounds(); // From Shape
 1.1 public Point getLocation();
 1.1 public Dimension getSize();
 public void grow(int h, int v);
 public int hashCode(); // Overrides Object

 # public boolean inside(int x, int y);
 public Rectangle intersection(Rectangle r);
 public boolean intersects(Rectangle r);
 public boolean isEmpty();
 # public void move(int x, int y);
 # public void reshape(int x, int y, int width, int height);
 # public void resize(int width, int height);
 1.1 public void setBounds(Rectangle r);
 1.1 public void setBounds(int x, int y, int width, int height);
 1.1 public void setLocation(Point p);
 1.1 public void setLocation(int x, int y);
 1.1 public void setSize(Dimension d);
 1.1 public void setSize(int width, int height);
 public String toString(); // Overrides Object
 public void translate(int x, int y);
 public Rectangle union(Rectangle r);
}

Passed To:

Component.setBounds(), GridBagLayout.AdjustForGravity(), PaintEvent(),
PaintEvent.setUpdateRect(), PropertyEditor.paintValue(),
PropertyEditorSupport.paintValue(), Rectangle(), Rectangle.add(),
Rectangle.intersection(), Rectangle.intersects(), Rectangle.setBounds(),
Rectangle.union()

Returned By:

Component.bounds(), Component.getBounds(), Graphics.getClipBounds(),
Graphics.getClipRect(), PaintEvent.getUpdateRect(),
Polygon.getBoundingBox(), Polygon.getBounds(), Rectangle.getBounds(),
Rectangle.intersection(), Rectangle.union(), Shape.getBounds()

Type Of:

Polygon.bounds

java.awt.PrintJob (JDK 1.1) java.awt.ScrollPane (JDK 1.1)

Chapter 18
The java.awt Package

18.7 java.awt.Button (JDK 1.0)

This class represents a GUI pushbutton that displays a specified textual label. Use setActionCommand() to
specify an identifying string that is included in the ActionEvent events generated by the button.

public class Button extends Component {
 // Public Constructors
 public Button();
 public Button(String label);
 // Public Instance Methods
 1.1 public synchronized void addActionListener(ActionListener l);
 public void addNotify(); // Overrides Component
 1.1 public String getActionCommand();
 public String getLabel();
 1.1 public synchronized void removeActionListener(ActionListener l);
 1.1 public void setActionCommand(String command);
 public synchronized void setLabel(String label);
 // Protected Instance Methods
 protected String paramString(); // Overrides Component
 1.1 protected void processActionEvent(ActionEvent e);
 1.1 protected void processEvent(AWTEvent e); // Overrides Component
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->Button

Passed To:

Toolkit.createButton()

java.awt.BorderLayout (JDK
1.0)

java.awt.Canvas (JDK 1.0)

Chapter 18
The java.awt Package

18.44 java.awt.MenuItem (JDK 1.0)

This class encapsulates a menu item with a specified textual label. A MenuItem can be added to a menu pane with the
Menu.add() method. The disable() method makes an item non-selectable; you might use it to "gray-out" a menu
item when the command it represents is not valid in the current context. The enable() method makes an item
selectable again. In Java 1.1, use setActionCommand() to specify an identifying string that is included in
ActionEvent events generated by the menu item.

public class MenuItem extends MenuComponent {
 // Public Constructors
 1.1 public MenuItem();
 public MenuItem(String label);
 1.1 public MenuItem(String label, MenuShortcut s);
 // Public Instance Methods
 1.1 public synchronized void addActionListener(ActionListener l);
 public void addNotify();
 1.1 public void deleteShortcut();
 # public synchronized void disable();
 # public synchronized void enable();
 # public void enable(boolean b);
 1.1 public String getActionCommand();
 public String getLabel();
 1.1 public MenuShortcut getShortcut();
 public boolean isEnabled();
 public String paramString(); // Overrides MenuComponent
 1.1 public synchronized void removeActionListener(ActionListener l);
 1.1 public void setActionCommand(String command);
 1.1 public synchronized void setEnabled(boolean b);
 public synchronized void setLabel(String label);
 1.1 public void setShortcut(MenuShortcut s);
 // Protected Instance Methods
 1.1 protected final void disableEvents(long eventsToDisable);
 1.1 protected final void enableEvents(long eventsToEnable);
 1.1 protected void processActionEvent(ActionEvent e);
 1.1 protected void processEvent(AWTEvent e); // Overrides MenuComponent
}

Hierarchy:

Object->MenuComponent(Serializable)->MenuItem

Extended By:

CheckboxMenuItem, Menu

Passed To:

Menu.add(), Menu.insert(), MenuPeer.addItem(), Toolkit.createMenuItem()

Returned By:

Menu.add(), Menu.getItem(), MenuBar.getShortcutMenuItem()

java.awt.MenuContainer
(JDK 1.0)

java.awt.MenuShortcut (JDK
1.1)

Chapter 18
The java.awt Package

18.59 java.awt.TextField (JDK 1.0)

This Component displays a line of optionally editable text. Most of its interesting methods are defined by the
TextComponent superclass. Use setEchoCharacter() to specify a character to be echoed when requesting
sensitive input such as a password.

See also TextComponent and TextArea.

public class TextField extends TextComponent {
 // Public Constructors
 public TextField();
 public TextField(String text);
 public TextField(int columns);
 public TextField(String text, int columns);
 // Public Instance Methods
 1.1 public synchronized void addActionListener(ActionListener l);
 public void addNotify(); // Overrides Component
 public boolean echoCharIsSet();
 public int getColumns();
 public char getEchoChar();
 1.1 public Dimension getMinimumSize(int columns);
 1.1 public Dimension getMinimumSize(); // Overrides Component
 1.1 public Dimension getPreferredSize(int columns);
 1.1 public Dimension getPreferredSize(); // Overrides Component
 # public Dimension minimumSize(int columns);
 # public Dimension minimumSize(); // Overrides Component
 # public Dimension preferredSize(int columns);
 # public Dimension preferredSize(); // Overrides Component
 1.1 public synchronized void removeActionListener(ActionListener l);
 1.1 public void setColumns(int columns);
 1.1 public void setEchoChar(char c);
 # public void setEchoCharacter(char c);
 // Protected Instance Methods
 protected String paramString(); // Overrides TextComponent
 1.1 protected void processActionEvent(ActionEvent e);
 1.1 protected void processEvent(AWTEvent e); // Overrides TextComponent
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->TextComponent-
>TextField

Passed To:

Toolkit.createTextField()

java.awt.TextComponent
(JDK 1.0)

java.awt.Toolkit (JDK 1.0)

Chapter 18
The java.awt Package

18.5 java.awt.Adjustable (JDK 1.1)

This interface defines the methods that should be implemented by an object that maintains a user-adjustable numeric
value. This value has a specified minimum and maximum value, and it may be incremented or decremented either a
unit at a time or a block at a time. An Adjustable object generates an AdjustmentEvent when it is adjusted, and
it maintains a list of AdjustmentListener objects interested in being notified when such an event occurs.

This interface abstracts the essential functionality of the Scrollbar component.

public abstract interface Adjustable {
 // Constants
 public static final int HORIZONTAL;
 public static final int VERTICAL;
 // Public Instance Methods
 public abstract void addAdjustmentListener(AdjustmentListener l);
 public abstract int getBlockIncrement();
 public abstract int getMaximum();
 public abstract int getMinimum();
 public abstract int getOrientation();
 public abstract int getUnitIncrement();
 public abstract int getValue();
 public abstract int getVisibleAmount();
 public abstract void removeAdjustmentListener(AdjustmentListener l);
 public abstract void setBlockIncrement(int b);
 public abstract void setMaximum(int max);
 public abstract void setMinimum(int min);
 public abstract void setUnitIncrement(int u);
 public abstract void setValue(int v);
 public abstract void setVisibleAmount(int v);
}

Implemented By:

Scrollbar

Passed To:

AdjustmentEvent(), ScrollPanePeer.setUnitIncrement(), ScrollPanePeer.setValue()

Returned By:

AdjustmentEvent.getAdjustable(), ScrollPane.getHAdjustable(),
ScrollPane.getVAdjustable()

java.awt.AWTException
(JDK 1.0)

java.awt.BorderLayout (JDK
1.0)

Chapter 18
The java.awt Package

18.54 java.awt.Scrollbar (JDK 1.0)

This Component represents a graphical scrollbar. setValue() sets the displayed value of the scrollbar. setValues()
sets the displayed value, the page size, and the minimum and maximum values. The constants HORIZONTAL and VERTICAL
are legal values for the scrollbar orientation.

public class Scrollbar extends Component implements Adjustable {
 // Public Constructors
 public Scrollbar();
 public Scrollbar(int orientation);
 public Scrollbar(int orientation, int value, int visible, int minimum,
int maximum);
 // Constants
 public static final int HORIZONTAL;
 public static final int VERTICAL;
 // Public Instance Methods
 1.1 public synchronized void addAdjustmentListener(AdjustmentListener l);
// From Adjustable
 public void addNotify(); // Overrides Component
 1.1 public int getBlockIncrement(); // From Adjustable
 # public int getLineIncrement();
 public int getMaximum(); // From Adjustable
 public int getMinimum(); // From Adjustable
 public int getOrientation(); // From Adjustable
 # public int getPageIncrement();
 1.1 public int getUnitIncrement(); // From Adjustable
 public int getValue(); // From Adjustable
 # public int getVisible();
 1.1 public int getVisibleAmount(); // From Adjustable
 1.1 public synchronized void removeAdjustmentListener(AdjustmentListener l);
// From Adjustable
 1.1 public synchronized void setBlockIncrement(int v); // From Adjustable
 # public void setLineIncrement(int v);
 1.1 public synchronized void setMaximum(int newMaximum); // From Adjustable
 1.1 public synchronized void setMinimum(int newMinimum); // From Adjustable
 1.1 public synchronized void setOrientation(int orientation);
 # public void setPageIncrement(int v);
 1.1 public synchronized void setUnitIncrement(int v); // From Adjustable
 public synchronized void setValue(int newValue); // From Adjustable
 public synchronized void setValues(int value, int visible, int minimum,
int maximum);

 1.1 public synchronized void setVisibleAmount(int newAmount); // From
Adjustable
 // Protected Instance Methods
 protected String paramString(); // Overrides Component
 1.1 protected void processAdjustmentEvent(AdjustmentEvent e);
 1.1 protected void processEvent(AWTEvent e); // Overrides Component
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->Scrollbar(Adjustable)

Passed To:

Toolkit.createScrollbar()

java.awt.ScrollPane (JDK 1.1) java.awt.Shape (JDK 1.1)

Chapter 21
The java.awt.image Package

21.5 java.awt.image.FilteredImageSource (JDK 1.0)

This class is an ImageProducer that produces image data filtered from some other ImageProducer. A
FilteredImageSource is created with a specified ImageProducer and a specified ImageFilter. For
example, an applet might use the following code to download and crop an image:

Image full_image = getImage(getDocumentBase(), "images/1.gif");
ImageFilter cropper = new CropImageFilter(10, 10, 100, 100);
ImageProducer prod = new FilteredImageSource(full_image.getSource(), cropper);
Image cropped_image = createImage(prod);

The methods of this class are the standard ImageProducer methods that you can invoke to add and remove
ImageConsumer objects.

public class FilteredImageSource extends Object implements ImageProducer {
 // Public Constructor
 public FilteredImageSource(ImageProducer orig, ImageFilter imgf);
 // Public Instance Methods
 public synchronized void addConsumer(ImageConsumer ic); // From
ImageProducer
 public synchronized boolean isConsumer(ImageConsumer ic); // From
ImageProducer
 public synchronized void removeConsumer(ImageConsumer ic); // From
ImageProducer
 public void requestTopDownLeftRightResend(ImageConsumer ic); // From
ImageProducer
 public void startProduction(ImageConsumer ic); // From ImageProducer
}

java.awt.image.DirectColorModel
(JDK 1.0)

java.awt.image.ImageConsumer
(JDK 1.0)

Chapter 21
The java.awt.image Package

21.9 java.awt.image.ImageProducer (JDK 1.0)

This interface defines the methods that any class that produces image data must define to enable communication with
ImageConsumer classes. An ImageConsumer registers itself as interested in a producer's image by calling the
addConsumer() method.

Most applications never need to use or implement this interface.

public abstract interface ImageProducer {
 // Public Instance Methods
 public abstract void addConsumer(ImageConsumer ic);
 public abstract boolean isConsumer(ImageConsumer ic);
 public abstract void removeConsumer(ImageConsumer ic);
 public abstract void requestTopDownLeftRightResend(ImageConsumer ic);
 public abstract void startProduction(ImageConsumer ic);
}

Implemented By:

FilteredImageSource, MemoryImageSource

Passed To:

Component.createImage(), ComponentPeer.createImage(), FilteredImageSource(),
ImageFilter.resendTopDownLeftRight(), PixelGrabber(), Toolkit.createImage()

Returned By:

Image.getSource()

java.awt.image.ImageObserver
(JDK 1.0)

java.awt.image.IndexColorModel
(JDK 1.0)

Chapter 21
The java.awt.image Package

21.11 java.awt.image.MemoryImageSource (JDK 1.0)

This class is an ImageProducer that produces an image from data stored in memory. The various constructors specify
image data, color model, array offset, scan line length, and properties in slightly different ways. The instance methods
implement the standard ImageProducer interface that allows an ImageConsumer object to register interest in the image.

public class MemoryImageSource extends Object implements ImageProducer {
 // Public Constructors
 public MemoryImageSource(int w, int h, ColorModel cm, byte[] pix, int
off, int scan);
 public MemoryImageSource(int w, int h, ColorModel cm, byte[] pix, int
off, int scan, Hashtable props);
 public MemoryImageSource(int w, int h, ColorModel cm, int[] pix, int off,
int scan);
 public MemoryImageSource(int w, int h, ColorModel cm, int[] pix, int off,
int scan, Hashtable props);
 public MemoryImageSource(int w, int h, int[] pix, int off, int scan);
 public MemoryImageSource(int w, int h, int[] pix, int off, int scan,
Hashtable props);
 // Public Instance Methods
 public synchronized void addConsumer(ImageConsumer ic); // From
ImageProducer
 public synchronized boolean isConsumer(ImageConsumer ic); // From
ImageProducer
 1.1 public void newPixels();
 1.1 public synchronized void newPixels(int x, int y, int w, int h);
 1.1 public synchronized void newPixels(int x, int y, int w, int h, boolean
framenotify);
 1.1 public synchronized void newPixels(byte[] newpix, ColorModel newmodel,
int offset, int scansize);
 1.1 public synchronized void newPixels(int[] newpix, ColorModel newmodel,
int offset, int scansize);
 public synchronized void removeConsumer(ImageConsumer ic); // From
ImageProducer
 public void requestTopDownLeftRightResend(ImageConsumer ic); // From
ImageProducer
 1.1 public synchronized void setAnimated(boolean animated);
 1.1 public synchronized void setFullBufferUpdates(boolean fullbuffers);
 public void startProduction(ImageConsumer ic); // From ImageProducer
}

java.awt.image.IndexColorModel
(JDK 1.0)

java.awt.image.PixelGrabber
(JDK 1.0)

Chapter 30
The java.util Package

30.26 java.util.Vector (JDK 1.0)

This class implements an array of objects that grows in size as necessary. It is useful when you need to keep track of a
number of objects but do not know in advance how many there will be. There are a number of methods for storing objects
in and removing objects from the Vector. Other methods look up the object at specified positions in the Vector, or
search for specified objects within the Vector. elements() returns an Enumeration of the objects stored in the
Vector. size() returns the number of objects currently stored in the Vector. capacity() returns the number of
elements that may be stored before the vector's internal storage must be reallocated.

public class Vector extends Object implements Cloneable, Serializable {
 // Public Constructors
 public Vector(int initialCapacity, int capacityIncrement);
 public Vector(int initialCapacity);
 public Vector();
 // Protected Instance Variables
 protected int capacityIncrement;
 protected int elementCount;
 protected Object[] elementData;
 // Public Instance Methods
 public final synchronized void addElement(Object obj);
 public final int capacity();
 public synchronized Object clone(); // Overrides Object
 public final boolean contains(Object elem);
 public final synchronized void copyInto(Object[] anArray);
 public final synchronized Object elementAt(int index);
 public final synchronized Enumeration elements();
 public final synchronized void ensureCapacity(int minCapacity);
 public final synchronized Object firstElement();
 public final int indexOf(Object elem);
 public final synchronized int indexOf(Object elem, int index);
 public final synchronized void insertElementAt(Object obj, int index);
 public final boolean isEmpty();
 public final synchronized Object lastElement();
 public final int lastIndexOf(Object elem);
 public final synchronized int lastIndexOf(Object elem, int index);
 public final synchronized void removeAllElements();
 public final synchronized boolean removeElement(Object obj);
 public final synchronized void removeElementAt(int index);
 public final synchronized void setElementAt(Object obj, int index);

 public final synchronized void setSize(int newSize);
 public final int size();
 public final synchronized String toString(); // Overrides Object
 public final synchronized void trimToSize();
}

Extended By:

Stack

java.util.TooManyListenersException
(JDK 1.1)

The java.util.zip Package

Chapter 22
The java.awt.peer Package

22.15 java.awt.peer.MenuBarPeer (JDK 1.0)

public abstract interface MenuBarPeer extends MenuComponentPeer {
 // Public Instance Methods
 public abstract void addHelpMenu(Menu m);
 public abstract void addMenu(Menu m);
 public abstract void delMenu(int index);
}

Returned By:

Toolkit.createMenuBar()

java.awt.peer.ListPeer
(JDK 1.0)

java.awt.peer.MenuComponentPeer
(JDK 1.0)

Chapter 18
The java.awt Package

18.53 java.awt.ScrollPane (JDK 1.1)

This Container class creates horizontal and vertical scrollbars surrounding a "viewport" and allows a single child
component to be displayed and scrolled within this viewport. Typically the child of the ScrollPane is larger than the
ScrollPane itself, so scrollbars allow the user to select the currently visible portion.

When you call the ScrollPane() constructor, you may optionally specify a scrollbar display policy, which should be
one of the three constants defined by this class. If you do not specify a policy, ScrollPane uses the
SCROLLBARS_AS_NEEDED policy.

A program can programmatically scroll the child within the viewport by calling setScrollPosition().
getHAdjustable() and getVAdjustable() return the horizontal and vertical Adjustable objects that control
scrolling (typically these are not actually instances of Scrollbar). You can use these Adjustable objects to specify
the unit and block increment values for the scrollbars. You can also directly set the Adjustable value, as an alternative
to setScrollPosition(), but should not set other values of the Adjustable objects.

Use setSize() to set the size of the ScrollPane container. You may want to take the size of the scrollbars into
account when computing the overall container size--use getHScrollbarHeight() and getVScrollbarWidth()
to obtain these values.

ScrollPane overrides the printComponents() method of Container so that when a ScrollPane is printed,
the entire child component is printed, rather than only the currently visible portion.

public class ScrollPane extends Container {
 // Public Constructors
 public ScrollPane();
 public ScrollPane(int scrollbarDisplayPolicy);
 // Constants
 public static final int SCROLLBARS_ALWAYS;
 public static final int SCROLLBARS_AS_NEEDED;
 public static final int SCROLLBARS_NEVER;
 // Public Instance Methods
 public void addNotify(); // Overrides Container
 public void doLayout(); // Overrides Container
 public Adjustable getHAdjustable();
 public int getHScrollbarHeight();
 public Point getScrollPosition();
 public int getScrollbarDisplayPolicy();
 public Adjustable getVAdjustable();

 public int getVScrollbarWidth();
 public Dimension getViewportSize();
 # public void layout(); // Overrides Container
 public String paramString(); // Overrides Container
 public void printComponents(Graphics g); // Overrides Container
 public final void setLayout(LayoutManager mgr); // Overrides Container
 public void setScrollPosition(int x, int y);
 public void setScrollPosition(Point p);
 // Protected Instance Methods
 protected final void addImpl(Component comp, Object constraints, int
index); // Overrides Container
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->Container-
>ScrollPane

Passed To:

Toolkit.createScrollPane()

java.awt.Rectangle (JDK 1.0) java.awt.Scrollbar (JDK 1.0)

Chapter 22
The java.awt.peer Package

22.18 java.awt.peer.MenuPeer (JDK 1.0)

public abstract interface MenuPeer extends MenuItemPeer {
 // Public Instance Methods
 public abstract void addItem(MenuItem item);
 public abstract void addSeparator();
 public abstract void delItem(int index);
}

Hierarchy:

(MenuPeer(MenuItemPeer(MenuComponentPeer)))

Extended By:

PopupMenuPeer

Returned By:

Toolkit.createMenu()

java.awt.peer.MenuItemPeer
(JDK 1.0)

java.awt.peer.PanelPeer (JDK
1.0)

Chapter 18
The java.awt Package

18.10 java.awt.Checkbox (JDK 1.0)

This class represents a GUI checkbox with a textual label. The Checkbox maintains a boolean state--whether it is
checked or not. The checkbox may optionally be part of a CheckboxGroup which enforces "radio button" behavior.

public class Checkbox extends Component implements ItemSelectable {
 // Public Constructors
 public Checkbox();
 public Checkbox(String label);
 1.1 public Checkbox(String label, boolean state);
 1.1 public Checkbox(String label, boolean state, CheckboxGroup group);
 public Checkbox(String label, CheckboxGroup group, boolean state);
 // Public Instance Methods
 1.1 public synchronized void addItemListener(ItemListener l); // From
ItemSelectable
 public void addNotify(); // Overrides Component
 public CheckboxGroup getCheckboxGroup();
 public String getLabel();
 1.1 public Object[] getSelectedObjects(); // From ItemSelectable
 public boolean getState();
 1.1 public synchronized void removeItemListener(ItemListener l); // From
ItemSelectable
 public void setCheckboxGroup(CheckboxGroup g);
 public synchronized void setLabel(String label);
 public void setState(boolean state);
 // Protected Instance Methods
 protected String paramString(); // Overrides Component
 1.1 protected void processEvent(AWTEvent e); // Overrides Component
 1.1 protected void processItemEvent(ItemEvent e);
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)-
>Checkbox(ItemSelectable)

Passed To:

CheckboxGroup.setCurrent(), CheckboxGroup.setSelectedCheckbox(),
Toolkit.createCheckbox()

Returned By:

CheckboxGroup.getCurrent(), CheckboxGroup.getSelectedCheckbox()

java.awt.CardLayout (JDK
1.0)

java.awt.CheckboxGroup
(JDK 1.0)

Chapter 18
The java.awt Package

18.12 java.awt.CheckboxMenuItem (JDK 1.0)

This class represents a checkbox with a textual label in a GUI menu. It maintains a boolean state--whether it is
checked or not. See also MenuItem.

public class CheckboxMenuItem extends MenuItem implements ItemSelectable {
 // Public Constructors
 1.1 public CheckboxMenuItem();
 public CheckboxMenuItem(String label);
 1.1 public CheckboxMenuItem(String label, boolean state);
 // Public Instance Methods
 1.1 public synchronized void addItemListener(ItemListener l); // From
ItemSelectable
 public void addNotify(); // Overrides MenuItem
 1.1 public synchronized Object[] getSelectedObjects(); // From
ItemSelectable
 public boolean getState();
 public String paramString(); // Overrides MenuItem
 1.1 public synchronized void removeItemListener(ItemListener l); // From
ItemSelectable
 public synchronized void setState(boolean b);
 // Protected Instance Methods
 1.1 protected void processEvent(AWTEvent e); // Overrides MenuItem
 1.1 protected void processItemEvent(ItemEvent e);
}

Hierarchy:

Object->MenuComponent(Serializable)->MenuItem->CheckboxMenuItem(ItemSelectable)

Passed To:

Toolkit.createCheckboxMenuItem()

java.awt.CheckboxGroup
(JDK 1.0)

java.awt.Choice (JDK 1.0)

Chapter 18
The java.awt Package

18.34 java.awt.ItemSelectable (JDK 1.1)

This interface abstracts the functionality of an AWT component that presents one or more items to the
user and allows the user to select zero or more of them. It is implemented by several components in the
AWT.

getSelectedObjects() returns an array of selected objects, or null, if none are selected.
addItemListener() and removeItemListener() are standard methods for adding and
removing ItemListener objects to be notified when an item is selected.

public abstract interface ItemSelectable {
 // Public Instance Methods
 public abstract void addItemListener(ItemListener l);
 public abstract Object[] getSelectedObjects();
 public abstract void removeItemListener(ItemListener l);
}

Implemented By:

Checkbox, CheckboxMenuItem, Choice, List

Passed To:

ItemEvent()

Returned By:

ItemEvent.getItemSelectable()

java.awt.Insets (JDK 1.0) java.awt.Label (JDK 1.0)

Chapter 18
The java.awt Package

18.6 java.awt.BorderLayout (JDK 1.0)

This class implements the LayoutManager interface to lay out Component objects in a Container. The
BorderLayout arranges components that have been added to their Container (using the Container.add() method)
with the names "North," "South," "East," "West," and "Center." These named components are arranged along the edges and in
the center of the container. The hgap and vgap arguments to the BorderLayout constructor specify the desired horizontal
and vertical spacing between adjacent components.

Note that applications should never call the LayoutManager methods of this class directly; the Container for which the
BorderLayout is registered does this.

public class BorderLayout extends Object implements LayoutManager2, Serializable {
 // Public Constructors
 public BorderLayout();
 public BorderLayout(int hgap, int vgap);
 // Constants
 1.1 public static final String CENTER;
 1.1 public static final String EAST;
 1.1 public static final String NORTH;
 1.1 public static final String SOUTH;
 1.1 public static final String WEST;
 // Public Instance Methods
 1.1 public void addLayoutComponent(Component comp, Object constraints); //
From LayoutManager2
 # public void addLayoutComponent(String name, Component comp); // From
LayoutManager
 1.1 public int getHgap();
 1.1 public float getLayoutAlignmentX(Container parent); // From
LayoutManager2
 1.1 public float getLayoutAlignmentY(Container parent); // From
LayoutManager2
 1.1 public int getVgap();
 1.1 public void invalidateLayout(Container target); // From LayoutManager2
 public void layoutContainer(Container target); // From LayoutManager
 1.1 public Dimension maximumLayoutSize(Container target); // From
LayoutManager2
 public Dimension minimumLayoutSize(Container target); // From LayoutManager
 public Dimension preferredLayoutSize(Container target); // From
LayoutManager
 public void removeLayoutComponent(Component comp); // From LayoutManager
 1.1 public void setHgap(int hgap);

 1.1 public void setVgap(int vgap);
 public String toString(); // Overrides Object
}

Hierarchy:

Object->BorderLayout(LayoutManager2(LayoutManager), Serializable)

java.awt.Adjustable (JDK 1.1) java.awt.Button (JDK 1.0)

Chapter 18
The java.awt Package

18.9 java.awt.CardLayout (JDK 1.0)

This class is a LayoutManager that makes each of the components it manages as large as the container and ensures that
only one is visible at a time. The standard LayoutManager methods are called by the Container object, and should not
be called directly by applet or application code. first(), last(), next(), previous(), and show() make a
particular Component in the Container visible. The names with which the components are added to the container are used
only by the show() method.

public class CardLayout extends Object implements LayoutManager2, Serializable {
 // Public Constructors
 public CardLayout();
 public CardLayout(int hgap, int vgap);
 // Public Instance Methods
 1.1 public void addLayoutComponent(Component comp, Object constraints); //
From LayoutManager2
 # public void addLayoutComponent(String name, Component comp); // From
LayoutManager
 public void first(Container parent);
 1.1 public int getHgap();
 1.1 public float getLayoutAlignmentX(Container parent); // From
LayoutManager2
 1.1 public float getLayoutAlignmentY(Container parent); // From
LayoutManager2
 1.1 public int getVgap();
 1.1 public void invalidateLayout(Container target); // From LayoutManager2
 public void last(Container parent);
 public void layoutContainer(Container parent); // From LayoutManager
 1.1 public Dimension maximumLayoutSize(Container target); // From
LayoutManager2
 public Dimension minimumLayoutSize(Container parent); // From
LayoutManager
 public void next(Container parent);
 public Dimension preferredLayoutSize(Container parent); // From
LayoutManager
 public void previous(Container parent);
 public void removeLayoutComponent(Component comp); // From LayoutManager
 1.1 public void setHgap(int hgap);
 1.1 public void setVgap(int vgap);
 public void show(Container parent, String name);
 public String toString(); // Overrides Object
}

Hierarchy:

Object->CardLayout(LayoutManager2(LayoutManager), Serializable)

java.awt.Canvas (JDK 1.0) java.awt.Checkbox (JDK 1.0)

Chapter 18
The java.awt Package

18.23 java.awt.FlowLayout (JDK 1.0)

This class implements the LayoutManager interface to lay out Component objects in a Container. FlowLayout
arranges components in a container like words on a page: from left to right and top to bottom. It fits as many components as it
can in a row before moving on to the next row. The constructor allows you to specify one of three constants as an alignment
value for the rows, and also allows you to specify horizontal spacing between components and vertical spacing between rows.

Note that applications should never call the LayoutManager methods of this class directly; the Container for which the
FlowLayout is registered does this.

public class FlowLayout extends Object implements LayoutManager, Serializable {
 // Public Constructors
 public FlowLayout();
 public FlowLayout(int align);
 public FlowLayout(int align, int hgap, int vgap);
 // Constants
 public static final int CENTER;
 public static final int LEFT;
 public static final int RIGHT;
 // Public Instance Methods
 public void addLayoutComponent(String name, Component comp); // From
LayoutManager
 1.1 public int getAlignment();
 1.1 public int getHgap();
 1.1 public int getVgap();
 public void layoutContainer(Container target); // From LayoutManager
 public Dimension minimumLayoutSize(Container target); // From
LayoutManager
 public Dimension preferredLayoutSize(Container target); // From
LayoutManager
 public void removeLayoutComponent(Component comp); // From LayoutManager
 1.1 public void setAlignment(int align);
 1.1 public void setHgap(int hgap);
 1.1 public void setVgap(int vgap);
 public String toString(); // Overrides Object
}

java.awt.FileDialog (JDK 1.0) java.awt.Font (JDK 1.0)

Chapter 18
The java.awt Package

18.29 java.awt.GridBagLayout (JDK 1.0)

This class implements the LayoutManager interface to lay out Component objects in a Container. It is the most
complicated and most powerful LayoutManager in the java.awt package. It divides the container into a grid of rows and
columns (which need not have the same width and height) and places the components into this grid, adjusting the size of the
grid cells as necessary to ensure that components do not overlap. Each component controls how it is positioned within this grid
by specifying a number of variables (or "constraints") in a GridBagConstraints object. Do not confuse this class with the
much simpler GridLayout which arranges components in a grid of equally sized cells.

Use setConstraints() to specify a GridBagConstraints object for each of the components in the container. Or, in
Java 1.1, specify the GridBagConstraints object when adding the component to the container with add(). The
variables in this object specify the position of the component in the grid, the number of horizontal and vertical grid cells that
the component occupies, and also control other important aspects of component layout. See GridBagConstraints for
more information on these "constraint" variables. setConstraints() makes a copy of the constraints object, so you may
reuse a single object in your code.

Note that applications should never call the LayoutManager methods of this class directly; the Container for which the
GridBagLayout is registered does this.

public class GridBagLayout extends Object implements LayoutManager2, Serializable {
 // Public Constructor
 public GridBagLayout();
 // Constants
 protected static final int MAXGRIDSIZE;
 protected static final int MINSIZE;
 protected static final int PREFERREDSIZE;
 // Public Instance Variables
 public double[] columnWeights;
 public int[] columnWidths;
 public int[] rowHeights;
 public double[] rowWeights;
 // Protected Instance Variables
 protected Hashtable comptable;
 protected GridBagConstraints defaultConstraints;
 protected GridBagLayoutInfo layoutInfo;
 // Public Instance Methods
 public void addLayoutComponent(String name, Component comp); // From
LayoutManager
 1.1 public void addLayoutComponent(Component comp, Object constraints); //
From LayoutManager2
 public GridBagConstraints getConstraints(Component comp);

 1.1 public float getLayoutAlignmentX(Container parent); // From
LayoutManager2
 1.1 public float getLayoutAlignmentY(Container parent); // From
LayoutManager2
 public int[][] getLayoutDimensions();
 public Point getLayoutOrigin();
 public double[][] getLayoutWeights();
 1.1 public void invalidateLayout(Container target); // From LayoutManager2
 public void layoutContainer(Container parent); // From LayoutManager
 public Point location(int x, int y);
 1.1 public Dimension maximumLayoutSize(Container target); // From
LayoutManager2
 public Dimension minimumLayoutSize(Container parent); // From
LayoutManager
 public Dimension preferredLayoutSize(Container parent); // From
LayoutManager
 public void removeLayoutComponent(Component comp); // From LayoutManager
 public void setConstraints(Component comp, GridBagConstraints
constraints);
 public String toString(); // Overrides Object
 // Protected Instance Methods
 protected void AdjustForGravity(GridBagConstraints constraints, Rectangle
r);
 protected void ArrangeGrid(Container parent);
 protected GridBagLayoutInfo GetLayoutInfo(Container parent, int
sizeflag);
 protected Dimension GetMinSize(Container parent, GridBagLayoutInfo info);
 protected GridBagConstraints lookupConstraints(Component comp);
}

Hierarchy:

Object->GridBagLayout(LayoutManager2(LayoutManager), Serializable)

java.awt.GridBagConstraints
(JDK 1.0)

java.awt.GridLayout (JDK
1.0)

Chapter 18
The java.awt Package

18.30 java.awt.GridLayout (JDK 1.0)

This class implements the LayoutManager interface to lay out Component objects in a Container. It divides the
Container into a specified number of rows and columns and arranges the components in those rows and columns, left-to-
right and top-to-bottom. If either the number of rows or the number of columns is set to zero, its value is computed from the
other dimension and the total number of components. Do not confuse this class with the more flexible and complicated
GridBagLayout.

Note that applications should never call the LayoutManager methods of this class directly; the Container for which the
GridLayout is registered does this.

public class GridLayout extends Object implements LayoutManager, Serializable {
 // Public Constructors
 1.1 public GridLayout();
 public GridLayout(int rows, int cols);
 public GridLayout(int rows, int cols, int hgap, int vgap);
 // Public Instance Methods
 public void addLayoutComponent(String name, Component comp); // From
LayoutManager
 1.1 public int getColumns();
 1.1 public int getHgap();
 1.1 public int getRows();
 1.1 public int getVgap();
 public void layoutContainer(Container parent); // From LayoutManager
 public Dimension minimumLayoutSize(Container parent); // From
LayoutManager
 public Dimension preferredLayoutSize(Container parent); // From
LayoutManager
 public void removeLayoutComponent(Component comp); // From LayoutManager
 1.1 public void setColumns(int cols);
 1.1 public void setHgap(int hgap);
 1.1 public void setRows(int rows);
 1.1 public void setVgap(int vgap);
 public String toString(); // Overrides Object
}

java.awt.GridBagLayout
(JDK 1.0)

java.awt.IllegalComponentStateException
(JDK 1.1)

Chapter 18
The java.awt Package

18.36 java.awt.LayoutManager (JDK 1.0)

This interface defines the methods necessary for a class to be able to arrange Component objects within a Container
object. Most programs use one of the existing classes that implements this interface: BorderLayout, CardLayout,
FlowLayout, GridBagConstraints, GridBagLayout, or GridLayout.

To define a new class that lays out components, you must implement each of the methods defined by this interface.
addLayoutComponent() is called when a component is added to the container. removeLayoutComponent()
is called when a component is removed. layoutContainer() should perform the actual positioning of components
by setting the size and position of each component in the specified container. minimumLayoutSize() should return
the minimum container width and height that the LayoutManager needs in order to lay out its components.
preferredLayoutSize() should return the optimal container width and height for the LayoutManager to lay
out its components.

In Java 1.1, layout managers should implement the LayoutManager2 interface, which is an extension of this one.
Note that a Java applet or application never directly calls any of these LayoutManager methods--the Container
object for which the LayoutManager is registered does that.

public abstract interface LayoutManager {
 // Public Instance Methods
 public abstract void addLayoutComponent(String name, Component comp);
 public abstract void layoutContainer(Container parent);
 public abstract Dimension minimumLayoutSize(Container parent);
 public abstract Dimension preferredLayoutSize(Container parent);
 public abstract void removeLayoutComponent(Component comp);
}

Extended By:

LayoutManager2

Implemented By:

FlowLayout, GridLayout

Passed To:

Container.setLayout(), Panel(), ScrollPane.setLayout()

Returned By:

Container.getLayout()

java.awt.Label (JDK 1.0) java.awt.LayoutManager2
(JDK 1.1)

Chapter 18
The java.awt Package

18.37 java.awt.LayoutManager2 (JDK 1.1)

This interface is an extension of the LayoutManager interface. It defines additional layout management
methods for layout managers that perform constraint-based layout. GridBagLayout is an example of a
constraint-based layout manager--each component added to the layout is associated with a
GridBagConstraints object that specifies the "constraints" on how the component is to be laid out.

Java programs do not directly invoke the methods of this interface--they are used by the Container object
for which the layout manager is registered.

public abstract interface LayoutManager2 extends LayoutManager {
 // Public Instance Methods
 public abstract void addLayoutComponent(Component comp, Object
constraints);
 public abstract float getLayoutAlignmentX(Container target);
 public abstract float getLayoutAlignmentY(Container target);
 public abstract void invalidateLayout(Container target);
 public abstract Dimension maximumLayoutSize(Container target);
}

Implemented By:

BorderLayout, CardLayout, GridBagLayout

java.awt.LayoutManager
(JDK 1.0)

java.awt.List (JDK 1.0)

Chapter 18
The java.awt Package

18.8 java.awt.Canvas (JDK 1.0)

This class is a Component that does no default drawing or event handling on its own. You can subclass
it to display any kind of drawing or image, and to handle any kind of user input event. Canvas inherits
the event handling methods of its superclass. In Java 1.1, you can also subclass Component directly to
create a "lightweight component," instead of having to subclass Canvas.

public class Canvas extends Component {
 // Public Constructor
 1.1 public Canvas();
 // Public Instance Methods
 public void addNotify(); // Overrides Component
 public void paint(Graphics g); // Overrides Component
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->Canvas

Passed To:

Toolkit.createCanvas()

java.awt.Button (JDK 1.0) java.awt.CardLayout (JDK
1.0)

Chapter 18
The java.awt Package

18.18 java.awt.Dialog (JDK 1.0)

This class represents a dialog box window. A Dialog may be modal so that it blocks user input to all
other windows until dismissed, may optionally have a title, and may be resizable. A Dialog object is a
Container and Component objects can be added to it in the normal way with the add() method.
The default LayoutManager for Dialog is BorderLayout. You may specify a different
LayoutManager object with setLayout(). Call the pack() method of Window to initiate layout
management of the dialog and set its initial size appropriately. Call show() to pop a dialog up, and
hide() to pop it down. For modal dialogs, show() blocks until the dialog is dismissed. Event
handling continues while show() is blocked, using a new event dispatcher thread. In Java 1.0, show()
is inherited from Window. Call the Window.dispose() method when the Dialog is no longer
needed so that its window system resources may be reused.

public class Dialog extends Window {
 // Public Constructors
 1.1 public Dialog(Frame parent);
 public Dialog(Frame parent, boolean modal);
 1.1 public Dialog(Frame parent, String title);
 public Dialog(Frame parent, String title, boolean modal);
 // Public Instance Methods
 public void addNotify(); // Overrides Window
 public String getTitle();
 public boolean isModal();
 public boolean isResizable();
 1.1 public void setModal(boolean b);
 public synchronized void setResizable(boolean resizable);
 public synchronized void setTitle(String title);
 1.1 public void show(); // Overrides Window
 // Protected Instance Methods
 protected String paramString(); // Overrides Container
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->
Container->Window->Dialog

Extended By:

FileDialog

Passed To:

Toolkit.createDialog()

java.awt.Cursor (JDK 1.1) java.awt.Dimension (JDK 1.0)

Chapter 18
The java.awt Package

18.22 java.awt.FileDialog (JDK 1.0)

This class represents a file selection dialog box. The constants LOAD and SAVE are values of an optional constructor
argument that specifies whether the dialog should be an Open File dialog or a Save As dialog. You may specify a
FilenameFilter object to control which files are displayed in the dialog.

The inherited show() method pops the dialog up. For dialogs of this type, show() blocks, not returning until the
user has selected a file and dismissed the dialog (which pops down automatically--you don't have to call hide()).
Once show() has returned, use getFile() to get the name of the file the user selected.

public class FileDialog extends Dialog {
 // Public Constructors
 1.1 public FileDialog(Frame parent);
 public FileDialog(Frame parent, String title);
 public FileDialog(Frame parent, String title, int mode);
 // Constants
 public static final int LOAD;
 public static final int SAVE;
 // Public Instance Methods
 public void addNotify(); // Overrides Dialog
 public String getDirectory();
 public String getFile();
 public FilenameFilter getFilenameFilter();
 public int getMode();
 public synchronized void setDirectory(String dir);
 public synchronized void setFile(String file);
 public synchronized void setFilenameFilter(FilenameFilter filter);
 1.1 public void setMode(int mode);
 // Protected Instance Methods
 protected String paramString(); // Overrides Dialog
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)-> Container-
>Window->Dialog->FileDialog

Passed To:

Toolkit.createFileDialog()

java.awt.EventQueue (JDK
1.1)

java.awt.FlowLayout (JDK
1.0)

Chapter 18
The java.awt Package

18.26 java.awt.Frame (JDK 1.0)

This class represents an optionally resizable top-level application window with a titlebar and other platform-dependent window
decorations. setTitle() specifies a title, setMenuBar() specifies a menu bar, setCursor() specifies a cursor, and
setIconImage() specifies an icon for the window. Call the pack() method of Window to initiate layout management of
the window and set its initial size appropriately. Call the show() method of Window to make a frame appear on the screen or
to bring it to the front of the window stack. Call hide() to remove a frame from the screen. Call the dispose() method
when the Frame is no longer needed so that it can release its window system resources for reuse.

The constants defined by this class specify various cursor types. In Java 1.1, these constants and the cursor methods of Frame
are deprecated in favor of the Cursor class and cursor methods of Component.

public class Frame extends Window implements MenuContainer {
 // Public Constructors
 public Frame();
 public Frame(String title);
 // Constants
 public static final int CROSSHAIR_CURSOR;
 public static final int DEFAULT_CURSOR;
 public static final int E_RESIZE_CURSOR;
 public static final int HAND_CURSOR;
 public static final int MOVE_CURSOR;
 public static final int NE_RESIZE_CURSOR;
 public static final int NW_RESIZE_CURSOR;
 public static final int N_RESIZE_CURSOR;
 public static final int SE_RESIZE_CURSOR;
 public static final int SW_RESIZE_CURSOR;
 public static final int S_RESIZE_CURSOR;
 public static final int TEXT_CURSOR;
 public static final int WAIT_CURSOR;
 public static final int W_RESIZE_CURSOR;
 // Public Instance Methods
 public void addNotify(); // Overrides Window
 public synchronized void dispose(); // Overrides Window
 # public int getCursorType();
 public Image getIconImage();
 public MenuBar getMenuBar();
 public String getTitle();
 public boolean isResizable();
 public synchronized void remove(MenuComponent m); // Overrides Component
 # public synchronized void setCursor(int cursorType);

 public synchronized void setIconImage(Image image);
 public synchronized void setMenuBar(MenuBar mb);
 public synchronized void setResizable(boolean resizable);
 public synchronized void setTitle(String title);
 // Protected Instance Methods
 protected String paramString(); // Overrides Container
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->Container->Window-
>Frame(MenuContainer)

Passed To:

Dialog(), FileDialog(), Toolkit.createFrame(), Toolkit.getPrintJob(), Window()

java.awt.FontMetrics (JDK
1.0)

java.awt.Graphics (JDK 1.0)

Chapter 18
The java.awt Package

18.35 java.awt.Label (JDK 1.0)

This class is a Component that displays a single specified line of read-only text. The constant values
specify the text alignment within the component and may be specified to the constructor or to
setAlignment().

public class Label extends Component {
 // Public Constructors
 public Label();
 public Label(String text);
 public Label(String text, int alignment);
 // Constants
 public static final int CENTER;
 public static final int LEFT;
 public static final int RIGHT;
 // Public Instance Methods
 public void addNotify(); // Overrides Component
 public int getAlignment();
 public String getText();
 public synchronized void setAlignment(int alignment);
 public synchronized void setText(String text);
 // Protected Instance Methods
 protected String paramString(); // Overrides Component
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->Label

Passed To:

Toolkit.createLabel()

java.awt.ItemSelectable (JDK
1.1)

java.awt.LayoutManager
(JDK 1.0)

Chapter 18
The java.awt Package

18.46 java.awt.Panel (JDK 1.0)

This class is a Container that is itself contained within a container. Unlike Frame and Dialog,
Panel is a container that does not create a separate window of its own. Panel is suitable for holding
portions of a larger interface within a parent Frame or Dialog or within another Panel. (Note that
Applet is a subclass of Panel, and thus applets are displayed in a Panel that is contained within a
Web browser or applet viewer.) The default LayoutManager for a Panel is FlowLayout.

public class Panel extends Container {
 // Public Constructors
 public Panel();
 1.1 public Panel(LayoutManager layout);
 // Public Instance Methods
 public void addNotify(); // Overrides Container
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)-
>Container->Panel

Extended By:

Applet

Passed To:

Toolkit.createPanel()

java.awt.MenuShortcut (JDK
1.1)

java.awt.Point (JDK 1.0)

Chapter 18
The java.awt Package

18.49 java.awt.PopupMenu (JDK 1.1)

PopupMenu is a simple subclass of Menu that represents a popup menu rather than a pulldown menu.
You create a PopupMenu just as you would create a Menu object. The main difference is that a popup
menu must be "popped up" in response to a user event by calling its show() method.

Another difference is that, unlike a Menu, which can only appear within a MenuBar or another Menu, a
PopupMenu can be associated with any component in a graphical user interface. A PopupMenu is
associated with a component by calling the add() method of the component.

Popup menus are popped up by the user in different ways on different platforms. In order to hide this
platform-dependency, the MouseEvent class defines the isPopupTrigger() method. If this
method returns true, the specified MouseEvent represents the platform-specific popup menu trigger
event, and you should use the show() method to pop your PopupMenu up. Note that the X and Y
coordinates passed to show() should be in the coordinate system of the specified Component.

public class PopupMenu extends Menu {
 // Public Constructors
 public PopupMenu();
 public PopupMenu(String label);
 // Public Instance Methods
 public synchronized void addNotify(); // Overrides Menu
 public void show(Component origin, int x, int y);
}

Hierarchy:

Object->MenuComponent(Serializable)->MenuItem->Menu(MenuContainer)-
>PopupMenu

Passed To:

Component.add(), Toolkit.createPopupMenu()

java.awt.Polygon (JDK 1.0) java.awt.PrintGraphics (JDK
1.1)

Chapter 18
The java.awt Package

18.57 java.awt.TextArea (JDK 1.0)

This class is a GUI component that displays and optionally edits multi-line text. The appendText(), insertText(),
and replaceText() provide various techniques for specifying text to appear in the TextArea. Many important
TextArea methods are defined by the TextComponent superclass.

See also TextComponent and TextField.

public class TextArea extends TextComponent {
 // Public Constructors
 public TextArea();
 public TextArea(String text);
 public TextArea(int rows, int columns);
 public TextArea(String text, int rows, int columns);
 1.1 public TextArea(String text, int rows, int columns, int scrollbars);
 // Constants
 1.1 public static final int SCROLLBARS_BOTH;
 1.1 public static final int SCROLLBARS_HORIZONTAL_ONLY;
 1.1 public static final int SCROLLBARS_NONE;
 1.1 public static final int SCROLLBARS_VERTICAL_ONLY;
 // Public Instance Methods
 public void addNotify(); // Overrides Component
 1.1 public synchronized void append(String str);
 # public void appendText(String str);
 public int getColumns();
 1.1 public Dimension getMinimumSize(int rows, int columns);
 1.1 public Dimension getMinimumSize(); // Overrides Component
 1.1 public Dimension getPreferredSize(int rows, int columns);
 1.1 public Dimension getPreferredSize(); // Overrides Component
 public int getRows();
 1.1 public int getScrollbarVisibility();
 1.1 public synchronized void insert(String str, int pos);
 # public void insertText(String str, int pos);
 # public Dimension minimumSize(int rows, int columns);
 # public Dimension minimumSize(); // Overrides Component
 # public Dimension preferredSize(int rows, int columns);
 # public Dimension preferredSize(); // Overrides Component
 1.1 public synchronized void replaceRange(String str, int start, int end);
 # public void replaceText(String str, int start, int end);
 1.1 public void setColumns(int columns);

 1.1 public void setRows(int rows);
 // Protected Instance Methods
 protected String paramString(); // Overrides TextComponent
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->TextComponent-
>TextArea

Passed To:

Toolkit.createTextArea()

java.awt.SystemColor (JDK
1.1)

java.awt.TextComponent
(JDK 1.0)

Chapter 18
The java.awt Package

18.61 java.awt.Window (JDK 1.0)

This class represents a top-level window with no borders or menu bar. Window is a Container with
BorderLayout as its default layout manager. Window is rarely used directly; its subclasses Frame and
Dialog are more commonly useful.

show() (which overrides Component.show()) makes a Window visible and brings it to the front of other
windows. toFront() brings a window to the front, and toBack() buries a window beneath others. pack() is
an important method that initiates layout management for the window, and sets the window size to match the
preferred size of the components contained within the window. getToolkit() returns the Toolkit() in use
for this window. Call dispose() when a Window is no longer needed to free its window system resources.

public class Window extends Container {
 // Public Constructor
 public Window(Frame parent);
 // Public Instance Methods
 public void addNotify(); // Overrides Container
 1.1 public synchronized void addWindowListener(WindowListener l);
 public void dispose();
 1.1 public Component getFocusOwner();
 1.1 public Locale getLocale(); // Overrides Component
 public Toolkit getToolkit(); // Overrides Component
 public final String getWarningString();
 1.1 public boolean isShowing(); // Overrides Component
 public void pack();
 1.1 public boolean postEvent(Event e); // Overrides Component
 1.1 public synchronized void removeWindowListener(WindowListener l);
 public void show(); // Overrides Component
 public void toBack();
 public void toFront();
 // Protected Instance Methods
 1.1 protected void processEvent(AWTEvent e); // Overrides Container
 1.1 protected void processWindowEvent(WindowEvent e);
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->Container-
>Window

Extended By:

Dialog, Frame

Passed To:

Toolkit.createWindow(), WindowEvent()

Returned By:

WindowEvent.getWindow()

java.awt.Toolkit (JDK 1.0) The java.awt.datatransfer
Package

Chapter 30
The java.util Package

30.15 java.util.Observable (JDK 1.0)

This class is the superclass of all "observable" objects to be used in an object-oriented model/view
paradigm. The class methods allow you to add and delete Observer objects to and from an
Observable's list, and to notify all of the Observer objects on the list. Observer objects are
"notified" by invoking their update() method. Observable also maintains an internal "changed"
flag, which may be set and cleared by the Observable, and which may be queried with
hasChanged() by any interested observer.

public class Observable extends Object {
 // Public Constructor
 1.1public Observable();
 // Public Instance Methods
 public synchronized void addObserver(Observer o);
 public synchronized int countObservers();
 public synchronized void deleteObserver(Observer o);
 public synchronized void deleteObservers();
 public synchronized boolean hasChanged();
 public void notifyObservers();
 public void notifyObservers(Object arg);
 // Protected Instance Methods
 protected synchronized void clearChanged();
 protected synchronized void setChanged();
}

Passed To:

Observer.update()

java.util.NoSuchElementException
(JDK 1.0)

java.util.Observer (JDK
1.0)

Chapter 18
The java.awt Package

18.48 java.awt.Polygon (JDK 1.0)

This class defines a polygon as an array of points. The points of the polygon may be specified by the
constructor, or with the addPoint() method. getBoundingBox() returns the smallest
Rectangle that contains the polygon, and inside() tests whether a specified point is within the
Polygon. Note that the arrays of X and Y points and the number of points in the polygon (not
necessarily the same as the array size) are defined as public variables. Polygon objects are used when
drawing polygons with the Graphics.drawPolygon() and Graphics.fillPolygon()
methods.

public class Polygon extends Object implements Shape, Serializable {
 // Public Constructors
 public Polygon();
 public Polygon(int[] xpoints, int[] ypoints, int npoints);
 // Public Instance Variables
 public int npoints;
 public int[] xpoints;
 public int[] ypoints;
 // Protected Instance Variables
 1.1 protected Rectangle bounds;
 // Public Instance Methods
 public void addPoint(int x, int y);
 1.1 public boolean contains(Point p);
 1.1 public boolean contains(int x, int y);
 # public Rectangle getBoundingBox();
 1.1 public Rectangle getBounds(); // From Shape
 # public boolean inside(int x, int y);
 1.1 public void translate(int deltaX, int deltaY);
}

Passed To:

Graphics.drawPolygon(), Graphics.fillPolygon()

java.awt.Point (JDK 1.0) java.awt.PopupMenu (JDK
1.1)

Chapter 23
The java.beans Package

23.4 java.beans.Customizer (JDK 1.1)

The Customizer interface specifies the methods that must be defined by any class designed to customize a Java bean. In
addition to implementing this interface, a customizer class must be a subclass of java.awt.Component, and it must have
a constructor that takes no arguments, so that it can be instantiated by an application builder.

Customizer classes are typically used by a complex Java bean to allow the user to easily configure the bean, and to provide
an alternative to a simple list of properties and their values. If a customizer class is defined for a Java bean, it must be
associated with the bean through a BeanDescriptor object returned by a BeanInfo class for the bean. Note that while a
Customizer class is created by the author of a bean, that class is only instantiated and used by application builders and
similar tools.

After a Customizer class is instantiated, its setObject() method is invoked once to specify the bean object that it is to
customize. The addPropertyChangeListener() and removePropertyChangeListener() methods may be
called to register and de-register PropertyChangeListener objects. The Customizer should send a
PropertyChangeEvent to all registered listeners any time it changes a property of the bean it is customizing.

public abstract interface Customizer {
 // Public Instance Methods
 public abstract void addPropertyChangeListener(PropertyChangeListener
listener);
 public abstract void removePropertyChangeListener(PropertyChangeListener
listener);
 public abstract void setObject(Object bean);
}

java.beans.Beans (JDK 1.1) java.beans.EventSetDescriptor
(JDK 1.1)

Chapter 23
The java.beans Package

23.14 java.beans.PropertyChangeSupport (JDK 1.1)

The PropertyChangeSupport class is a convenience class that maintains a list of registered
PropertyChangeListener objects and provides the firePropertyChange() method for sending a
PropertyChangeEvent object to all registered listeners. Because there are some tricky thread synchronization issues
involved in doing this correctly, it is recommended that all Java beans that support "bound" properties either extend this class,
or, more commonly, create an instance of this class to which they can delegate the task of maintaining the list of listeners.

public class PropertyChangeSupport extends Object implements Serializable {
 // Public Constructor
 public PropertyChangeSupport(Object sourceBean);
 // Public Instance Methods
 public synchronized void addPropertyChangeListener(PropertyChangeListener
listener);
 public void firePropertyChange(String propertyName, Object oldValue,
Object newValue);
 public synchronized void
removePropertyChangeListener(PropertyChangeListener listener);
}

java.beans.PropertyChangeListener
(JDK 1.1)

java.beans.PropertyDescriptor
(JDK 1.1)

Chapter 23
The java.beans Package

23.16 java.beans.PropertyEditor (JDK 1.1)

The PropertyEditor interface defines the methods that must be implemented by a Java beans property editor intended
for use within an application builder or similar tool. PropertyEditor is a complex interface because it defines methods
to support several different ways of displaying property values to the user, and it also defines methods to support several
different ways of allowing the user to edit the property value.

For a property of type x, the author of a Java bean typically implements a property editor of class xEditor. While the
editor is implemented by the bean author, it is usually only instantiated or used by application builders or similar tools (or by
a Customizer class for a Bean).

In addition to implementing the PropertyEditor interface, a property editor must have a constructor that expects no
arguments, so that it can be easily instantiated by an application builder. Also, it must accept registration and deregistration of
PropertyChangeListener objects, and it must send a PropertyChangeEvent to all registered listeners when it
changes the value of the property being edited.

The PropertyEditorSupport class is a trivial implementation of PropertyEditor, suitable for subclassing, or for
supporting a list of PropertyChangeListener objects.

public abstract interface PropertyEditor {
 // Public Instance Methods
 public abstract void addPropertyChangeListener(PropertyChangeListener
listener);
 public abstract String getAsText();
 public abstract Component getCustomEditor();
 public abstract String getJavaInitializationString();
 public abstract String[] getTags();
 public abstract Object getValue();
 public abstract boolean isPaintable();
 public abstract void paintValue(Graphics gfx, Rectangle box);
 public abstract void removePropertyChangeListener(PropertyChangeListener
listener);
 public abstract void setAsText(String text) throws
IllegalArgumentException;
 public abstract void setValue(Object value);
 public abstract boolean supportsCustomEditor();
}

Implemented By:

PropertyEditorSupport

Returned By:

PropertyEditorManager.findEditor()

java.beans.PropertyDescriptor
(JDK 1.1)

java.beans.PropertyEditorManager
(JDK 1.1)

Chapter 23
The java.beans Package

23.18 java.beans.PropertyEditorSupport (JDK 1.1)

The PropertyEditorSupport class is a trivial implementation of the PropertyEditor interface. It provides "no-op"
default implementations of most methods, so that you can can define simple PropertyEditor subclasses that only override
a few required methods.

In addition, PropertyEditorSupport defines working versions of addPropertyChangeListener() and
removePropertyChangeListener(), along with a firePropertyChange() method that sends a
PropertyChangeEvent to all registered listeners. PropertyEditor classes may choose to instantiate a
PropertyEditorSupport object simply to handle the job of managing the list of listeners. When used in this way, the
PropertyEditorSupport object should be instantiated with a source object specified, so that that source object can be
used in the PropertyChangeEvent objects that are sent.

public class PropertyEditorSupport extends Object implements PropertyEditor {
 // Protected Constructors
 protected PropertyEditorSupport();
 protected PropertyEditorSupport(Object source);
 // Public Instance Methods
 public synchronized void addPropertyChangeListener(PropertyChangeListener
 public synchronized void addPropertyChangeListener'u'listener); // From
PropertyEditor
 public void firePropertyChange();
 public String getAsText(); // From PropertyEditor
 public Component getCustomEditor(); // From PropertyEditor
 public String getJavaInitializationString(); // From PropertyEditor
 public String[] getTags(); // From PropertyEditor
 public Object getValue(); // From PropertyEditor
 public boolean isPaintable(); // From PropertyEditor
 public void paintValue(Graphics gfx, Rectangle box); // From
PropertyEditor
 public synchronized void
removePropertyChangeListener(PropertyChangeListener
 public synchronized void removePropertyChangeListener'u'listener); //
From PropertyEditor
 public void setAsText(String text) throws IllegalArgumentException; //
From PropertyEditor
 public void setValue(Object value); // From PropertyEditor
 public boolean supportsCustomEditor(); // From PropertyEditor
}

java.beans.PropertyEditorManager
(JDK 1.1)

java.beans.PropertyVetoException
(JDK 1.1)

Chapter 18
The java.awt Package

18.58 java.awt.TextComponent (JDK 1.0)

This class is the superclass of the TextArea and TextField components. It cannot be instantiated itself, but provides
methods that are common to these two component types. setEditable() specifies whether the text in the text
component is editable or not. getText() returns the text in the component, and setText() specifies text to be
displayed. getSelectedText() returns the currently selected text in the text component, and
getSelectionStart() and getSelectionEnd() return the extents of the selected region of text. select()
and selectAll() select some or all of the text displayed in the text component.

See also TextField and TextArea.

public class TextComponent extends Component {
 // No Constructor
 // Protected Instance Variables
 1.1 protected transient TextListener textListener;
 // Public Instance Methods
 1.1 public void addTextListener(TextListener l);
 1.1 public int getCaretPosition();
 public synchronized String getSelectedText();
 public synchronized int getSelectionEnd();
 public synchronized int getSelectionStart();
 public synchronized String getText();
 public boolean isEditable();
 public void removeNotify(); // Overrides Component
 1.1 public void removeTextListener(TextListener l);
 public synchronized void select(int selectionStart, int selectionEnd);
 public synchronized void selectAll();
 1.1 public void setCaretPosition(int position);
 public synchronized void setEditable(boolean b);
 1.1 public synchronized void setSelectionEnd(int selectionEnd);
 1.1 public synchronized void setSelectionStart(int selectionStart);
 public synchronized void setText(String t);
 // Protected Instance Methods
 protected String paramString(); // Overrides Component
 1.1 protected void processEvent(AWTEvent e); // Overrides Component
 1.1 protected void processTextEvent(TextEvent e);
}

Hierarchy:

Object->Component(ImageObserver, MenuContainer, Serializable)->TextComponent

Extended By:

TextArea, TextField

java.awt.TextArea (JDK 1.0) java.awt.TextField (JDK 1.0)

Chapter 23
The java.beans Package

23.22 java.beans.VetoableChangeSupport (JDK 1.1)

VetoableChangeSupport is a convenience class that maintains a list of registered VetoableChangeListener
objects and provides a fireVetoableChange() method for sending a PropertyChangeEvent to all registered
listeners. If any of the registered listeners veto the proposed change, fireVetoableChange() send out another
PropertyChangeEvent notifying previously notified listeners that the property has changed back to its original value.

Because of the extra complexity of correctly handling vetoable changes, and because of some tricky thread synchronization
issues involved in maintaining the list of listeners, it is recommended that all Java beans that support "constrained" events
create a VetoableChangeSupport object to which they can delegate the tasks of maintaining the list of listeners and of
firing events.

public class VetoableChangeSupport extends Object implements Serializable {
 // Public Constructor
 public VetoableChangeSupport(Object sourceBean);
 // Public Instance Methods
 public synchronized void addVetoableChangeListener(VetoableChangeListener
listener);
 public void fireVetoableChange(String propertyName, Object oldValue,
Object newValue)
 public void fireVetoableChange'u'throws PropertyVetoException;
 public synchronized void
removeVetoableChangeListener(VetoableChangeListener listener);
}

java.beans.VetoableChangeListener
(JDK 1.1)

java.beans.Visibility (JDK
1.1)

Chapter 20
The java.awt.event Package

20.3 java.awt.event.AdjustmentEvent (JDK 1.1)

An event of this type indicates that an adjustment has been made to an Adjustable object--usually, this means that the
user has interacted with a Scrollbar component.

The getValue() method returns the new value of the Adjustable object. This is usually the most important piece of
information stored in the event. getAdjustable() returns the Adjustable object that was the source of the event. It
is a convenient alternative to the inherited getSource() method.

The getID() method returns the type of an AdjustmentEvent. The standard AWT components only generate
adjustment events of type AdjustmentEvent.ADJUSTMENT_VALUE_CHANGED. There are several types of
adjustments that can be made to an Adjustable object, however, and the getAdjustmentType() method returns
one of five constants to indicate which type has occurred. UNIT_INCREMENT indicates that the Adjustable value has
been incremented by one unit, as in a scroll-line-down operation. UNIT_DECREMENT indicates the opposite: scroll-line-up.
BLOCK_INCREMENT and BLOCK_DECREMENT indicate that the Adjustable object has been incremented or
decremented by multiple units, as in a scroll-page-down or scroll-page-up operation. Finally, the TRACK constant indicates
that the Adjustable value has been set to an absolute value unrelated to its previous value, as when the user drags a
scrollbar to a new position.

public class AdjustmentEvent extends AWTEvent {
 // Public Constructor
 public AdjustmentEvent(Adjustable source, int id, int type, int value);
 // Constants
 public static final int ADJUSTMENT_FIRST;
 public static final int ADJUSTMENT_LAST;
 public static final int ADJUSTMENT_VALUE_CHANGED;
 public static final int BLOCK_DECREMENT;
 public static final int BLOCK_INCREMENT;
 public static final int TRACK;
 public static final int UNIT_DECREMENT;
 public static final int UNIT_INCREMENT;
 // Public Instance Methods
 public Adjustable getAdjustable();
 public int getAdjustmentType();
 public int getValue();
 public String paramString(); // Overrides AWTEvent
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->AdjustmentEvent

Passed To:

AdjustmentListener.adjustmentValueChanged(),
AWTEventMulticaster.adjustmentValueChanged(), Scrollbar.processAdjustmentEvent()

java.awt.event.ActionListener
(JDK 1.1)

java.awt.event.AdjustmentListener
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.4 java.awt.event.AdjustmentListener (JDK 1.1)

This interface defines the method that an object must implement to "listen" for adjustment events on AWT
components. When an AdjustmentEvent occurs, an AWT component notifies its registered
AdjustmentListener objects by invoking their adjustmentValueChanged() methods.

public abstract interface AdjustmentListener extends EventListener {
 // Public Instance Methods
 public abstract void adjustmentValueChanged(AdjustmentEvent e);
}

Implemented By:

AWTEventMulticaster

Passed To:

Adjustable.addAdjustmentListener(), Adjustable.removeAdjustmentListener(),
AWTEventMulticaster.add(), AWTEventMulticaster.remove(),
Scrollbar.addAdjustmentListener(), Scrollbar.removeAdjustmentListener()

Returned By:

AWTEventMulticaster.add(), AWTEventMulticaster.remove()

java.awt.event.AdjustmentEvent
(JDK 1.1)

java.awt.event.ComponentAdapter
(JDK 1.1)

Chapter 31

31. The java.util.zip Package
Contents:
java.util.zip.CheckedInputStream (JDK 1.1)
java.util.zip.CheckedOutputStream (JDK 1.1)
java.util.zip.Checksum (JDK 1.1)
java.util.zip.CRC32 (JDK 1.1)
java.util.zip.DataFormatException (JDK 1.1)
java.util.zip.Deflater (JDK 1.1)
java.util.zip.DeflaterOutputStream (JDK 1.1)
java.util.zip.GZIPInputStream (JDK 1.1)
java.util.zip.GZIPOutputStream (JDK 1.1)
java.util.zip.Inflater (JDK 1.1)
java.util.zip.InflaterInputStream (JDK 1.1)
java.util.zip.ZipEntry (JDK 1.1)
java.util.zip.ZipException (JDK 1.1)
java.util.zip.ZipFile (JDK 1.1)
java.util.zip.ZipInputStream (JDK 1.1)
java.util.zip.ZipOutputStream (JDK 1.1)

The java.util.zip package contains classes for data compression and decompression. It is new in Java 1.1. Figure 31.1
shows the class hierarchy of the package.

The Deflater and Inflater classes perform data compression and decompression. DeflaterOutputStream and
InflaterInputStream apply that functionality to byte streams; the subclasses of these streams implement both the
GZIP and ZIP compression formats. The Adler32 and CRC32 classes implement the Checksum interface and compute
the checksums required for data compression.

Figure 31.1: The java.util.zip package

[Graphic: Figure 31-1]

31.1 java.util.zip.Adler32 (JDK 1.1)

This class implements the Checksum interface and computes a checksum on a stream of data using the Adler-32 algorithm.
This algorithm is significantly faster than the CRC-32 algorithm and is almost as reliable.

The CheckedInputStream and CheckedOutputStream classes provide a higher-level interface to computing
checksums on streams of data.

public class Adler32 extends Object implements Checksum {
 // Default Constructor: public Adler32()
 // Public Instance Methods
 public long getValue(); // From Checksum
 public void reset(); // From Checksum
 public void update(int b); // From Checksum
 public native void update(byte[] b, int off, int len); // From Checksum
 public void update(byte[] b);
}

java.util.Vector (JDK 1.0) java.util.zip.CheckedInputStream
(JDK 1.1)

Chapter 30
The java.util Package

30.3 java.util.Date (JDK 1.0)

This class represents dates and times. It lets you work with them in a system-independent way. You can create a Date by
specifying the number of milliseconds from the epoch (midnight GMT, January 1st, 1970), or by specifying the year,
month, date, and optionally, the hour, minute, and second. Years are specified as the number of years since 1900. If you call
the Date constructor with no arguments, the Date is initialized to the current time and date. The instance methods of the
class allow you to get and set the various date and time fields, to compare dates and times, and to convert dates to and from
string representations.

In Java 1.1, many of the date methods have been deprecated in favor of the methods of the Calendar class.

public class Date extends Object implements Serializable, Cloneable {
 // Public Constructors
 public Date();
 public Date(long date);
 # public Date(int year, int month, int date);
 # public Date(int year, int month, int date, int hrs, int min);
 # public Date(int year, int month, int date, int hrs, int min, int sec);
 # public Date(String s);
 // Class Methods
 # public static long UTC(int year, int month, int date, int hrs, int min,
int sec);
 # public static long parse(String s);
 // Public Instance Methods
 public boolean after(Date when);
 public boolean before(Date when);
 public boolean equals(Object obj); // Overrides Object
 # public int getDate();
 # public int getDay();
 # public int getHours();
 # public int getMinutes();
 # public int getMonth();
 # public int getSeconds();
 public long getTime();
 # public int getTimezoneOffset();
 # public int getYear();
 public int hashCode(); // Overrides Object
 # public void setDate(int date);
 # public void setHours(int hours);
 # public void setMinutes(int minutes);

 # public void setMonth(int month);
 # public void setSeconds(int seconds);
 public void setTime(long time);
 # public void setYear(int year);
 # public String toGMTString();
 # public String toLocaleString();
 public String toString(); // Overrides Object
}

Passed To:

Calendar.setTime(), Date.after(), Date.before(), DateFormat.format(), GregorianCalendar.setGregorianChange(),
SimpleDateFormat.format(), SimpleTimeZone.inDaylightTime(), TimeZone.inDaylightTime()

Returned By:

Calendar.getTime(), DateFormat.parse(), GregorianCalendar.getGregorianChange(), SimpleDateFormat.parse()

java.util.Calendar (JDK 1.1) java.util.Dictionary (JDK 1.0)

Chapter 20
The java.awt.event Package

20.14 java.awt.event.InputEvent (JDK 1.1)

This abstract class serves as the superclass for the raw user input event types MouseEvent and
KeyEvent.

Use the inherited getComponent() to determine in which component the event occurred. Use
getWhen() to obtain a timestamp for the event. Use getModifiers() to determine which keyboard
modifier keys or mouse buttons were down when the event occurred. You can decode the
getModifiers() return value using the various _MASK constants defined by this class. The class also
defines four convenience methods for determining the state of keyboard modifiers.

In Java 1.1, input events are delivered to the appropriate listener objects before they are delivered to the
AWT components themselves. If a listener calls the consume() method of the event, the event is not
passed on to the component. For example, if a listener registered on a Button "consumes" a mouse
click, it prevents the button itself from responding to that event. You can use isConsumed() to test
whether some other listener object has already consumed the event.

public abstract class InputEvent extends ComponentEvent {
 // No Constructor
 // Constants
 public static final int ALT_MASK;
 public static final int BUTTON1_MASK;
 public static final int BUTTON2_MASK;
 public static final int BUTTON3_MASK;
 public static final int CTRL_MASK;
 public static final int META_MASK;
 public static final int SHIFT_MASK;
 // Public Instance Methods
 public void consume(); // Overrides AWTEvent
 public int getModifiers();
 public long getWhen();
 public boolean isAltDown();

 public boolean isConsumed(); // Overrides AWTEvent
 public boolean isControlDown();
 public boolean isMetaDown();
 public boolean isShiftDown();
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->ComponentEvent-
>InputEvent

Extended By:

KeyEvent, MouseEvent

java.awt.event.FocusListener
(JDK 1.1)

java.awt.event.ItemEvent
(JDK 1.1)

Chapter 29
The java.text Package

29.7 java.text.DateFormat (JDK 1.1)

This class formats and parses dates and times in a locale-specific way. As an abstract class, it cannot be instantiated directly,
but it provides a number of static methods that return instances of a concrete subclass which you can use to format dates in a
variety of ways. The getDateInstance() methods return a DateFormat object suitable for formatting dates in either
the default locale or a specified locale. A formatting style may also optionally be specified--the constants FULL, LONG,
MEDIUM, SHORT, and DEFAULT specify this style. Similarly, the getTimeInstance() methods return a DateFormat
object that formats and parses times, and the getDateTimeInstance() methods return a DateFormat object that
formats both dates and times. These methods also optionally take a format style constant and a Locale. Finally,
getInstance() returns a default DateFormat object that formats both dates and times in the SHORT format.

Once you have created a DateFormat object, you can use the setCalendar() and setTimeZone() methods if you
want to format the date using a calendar or time zone other than the default.

The various format() methods convert java.util.Date objects to strings, using whatever format is encapsulated in
the DateFormat object. The parse() and parseObject() methods perform the reverse operation--they parse a string
formatted according to the rules of the DateFormat object and convert it into a Date object.

The DEFAULT, FULL, MEDIUM, LONG, and SHORT constants are used to specify how verbose or compact the formatted date
or time should be. The remaining constants, which all end with _FIELD, specify various fields of formatted dates and times
and are used with the FieldPosition object that is optionally passed to format().

public abstract class DateFormat extends Format implements Cloneable {
 // Protected Constructor
 protected DateFormat();
 // Format Style Constants
 public static final int DEFAULT;
 public static final int FULL;
 public static final int LONG;
 public static final int MEDIUM;
 public static final int SHORT;
 // Date and Time Field Constants
 public static final int ERA_FIELD;
 public static final int YEAR_FIELD;
 public static final int MONTH_FIELD;
 public static final int WEEK_OF_MONTH_FIELD, WEEK_OF_YEAR_FIELD;
 public static final int DATE_FIELD, DAY_OF_YEAR_FIELD;
 public static final int DAY_OF_WEEK_FIELD, DAY_OF_WEEK_IN_MONTH_FIELD;
 public static final int TIMEZONE_FIELD;
 public static final int AM_PM_FIELD;

 public static final int HOUR0_FIELD, HOUR1_FIELD;
 public static final int HOUR_OF_DAY0_FIELD, HOUR_OF_DAY1_FIELD;
 public static final int MINUTE_FIELD;
 public static final int SECOND_FIELD;
 public static final int MILLISECOND_FIELD;
 // Protected Instance Variables
 protected Calendar calendar;
 protected NumberFormat numberFormat;
 // Class Methods
 public static Locale[] getAvailableLocales();
 public static final DateFormat getDateInstance();
 public static final DateFormat getDateInstance(int style);
 public static final DateFormat getDateInstance(int style, Locale
aLocale);
 public static final DateFormat getDateTimeInstance();
 public static final DateFormat getDateTimeInstance(int dateStyle, int
timeStyle);
 public static final DateFormat getDateTimeInstance(int dateStyle, int
timeStyle, Locale aLocale);
 public static final DateFormat getInstance();
 public static final DateFormat getTimeInstance();
 public static final DateFormat getTimeInstance(int style);
 public static final DateFormat getTimeInstance(int style, Locale
aLocale);
 // Public Instance Methods
 public Object clone(); // Overrides Format
 public boolean equals(Object obj); // Overrides Object
 public final StringBuffer format(Object obj, StringBuffer toAppendTo,
FieldPosition fieldPosition); // Defines Format
 public abstract StringBuffer format(Date date, StringBuffer toAppendTo,
FieldPosition fieldPosition);
 public final String format(Date date);
 public Calendar getCalendar();
 public NumberFormat getNumberFormat();
 public TimeZone getTimeZone();
 public int hashCode(); // Overrides Object
 public boolean isLenient();
 public Date parse(String text) throws ParseException;
 public abstract Date parse(String text, ParsePosition pos);
 public Object parseObject(String source, ParsePosition pos); // Defines
Format
 public void setCalendar(Calendar newCalendar);
 public void setLenient(boolean lenient);
 public void setNumberFormat(NumberFormat newNumberFormat);
 public void setTimeZone(TimeZone zone);
}

Hierarchy:

Object->Format(Serializable, Cloneable)->DateFormat(Cloneable)

Extended By:

SimpleDateFormat

Returned By:

DateFormat.getDateInstance(), DateFormat.getDateTimeInstance(), DateFormat.getInstance(),
DateFormat.getTimeInstance()

java.text.Collator (JDK 1.1) java.text.DateFormatSymbols
(JDK 1.1)

Chapter 18
The java.awt Package

18.28 java.awt.GridBagConstraints (JDK 1.0)

This class encapsulates the instance variables that tell a GridBagLayout how to position a given Component within its
Container.

gridx, gridy

These fields specify the grid position of the component. The RELATIVE constant specifies a position to the right or
below the previous component.

gridwidth, gridheight

These fields specify the height and width of the component in grid cells. The constant REMAINDER specifies that the
component is the last one and should get all remaining cells.

fill

This field specifies which dimensions of a component should grow when the space available for it is larger than its
default size. Legal values are the constants NONE, BOTH, HORIZONTAL, and VERTICAL.

ipadx, ipady

These fields specify internal padding to add on each side of the component in each dimension. They increase the size
of the component beyond its default minimum size.

insets

This Insets object specifies margins to appear on all sides of the component.

anchor

This field specifies how the component should be displayed within its grid cells when it is smaller than those cells.
The CENTER constant and the compass-point constants are legal values.

weightx, weighty

These fields specify how extra space in the container should be distributed among its components in the X and Y
dimensions. Larger weights specify that a component should receive a proportionally larger amount of extra space. A

zero weight specifies that the component should not receive any extra space. These weights specify the resizing
behavior of the component and its container.

See also GridBagLayout.

public class GridBagConstraints extends Object implements Cloneable, Serializable {
 // Public Constructor
 public GridBagConstraints();
 // Constants
 public static final int BOTH;
 public static final int CENTER;
 public static final int EAST;
 public static final int HORIZONTAL;
 public static final int NONE;
 public static final int NORTH;
 public static final int NORTHEAST;
 public static final int NORTHWEST;
 public static final int RELATIVE;
 public static final int REMAINDER;
 public static final int SOUTH;
 public static final int SOUTHEAST;
 public static final int SOUTHWEST;
 public static final int VERTICAL;
 public static final int WEST;
 // Public Instance Variables
 public int anchor;
 public int fill;
 public int gridheight;
 public int gridwidth;
 public int gridx;
 public int gridy;
 public Insets insets;
 public int ipadx;
 public int ipady;
 public double weightx;
 public double weighty;
 // Public Instance Methods
 public Object clone(); // Overrides Object
}

Passed To:

GridBagLayout.AdjustForGravity(), GridBagLayout.setConstraints()

Returned By:

GridBagLayout.getConstraints(), GridBagLayout.lookupConstraints()

Type Of:

GridBagLayout.defaultConstraints

java.awt.Graphics (JDK 1.0) java.awt.GridBagLayout
(JDK 1.0)

Chapter 30

30. The java.util Package
Contents:
java.util.Calendar (JDK 1.1)
java.util.Date (JDK 1.0)
java.util.Dictionary (JDK 1.0)
java.util.EmptyStackException (JDK 1.0)
java.util.Enumeration (JDK 1.0)
java.util.EventListener (JDK 1.1)
java.util.EventObject (JDK 1.1)
java.util.GregorianCalendar (JDK 1.1)
java.util.Hashtable (JDK 1.0)
java.util.ListResourceBundle (JDK 1.1)
java.util.Locale (JDK 1.1)
java.util.MissingResourceException (JDK 1.1)
java.util.NoSuchElementException (JDK 1.0)
java.util.Observable (JDK 1.0)
java.util.Observer (JDK 1.0)
java.util.Properties (JDK 1.0)
java.util.PropertyResourceBundle (JDK 1.1)
java.util.Random (JDK 1.0)
java.util.ResourceBundle (JDK 1.1)
java.util.SimpleTimeZone (JDK 1.1)
java.util.Stack (JDK 1.0)
java.util.StringTokenizer (JDK 1.0)
java.util.TimeZone (JDK 1.1)
java.util.TooManyListenersException (JDK 1.1)
java.util.Vector (JDK 1.0)

The java.util package defines a number of useful classes. This package should not be considered a "utility"
package separate from the rest of the language; in fact, Java depends directly on several of the classes in this
package. Figure 30.1 shows the class hierarchy of this package.

Figure 30.1: The java.util package

[Graphic: Figure 30-1]

The Hashtable class is one of the most useful in the package--it implements a hashtable or associative array. It
allows arbitrary objects to be stored and retrieved by arbitrary keys. The Properties subclass of Hashtable
is used to store the Java system properties list.

Vector is another extremely useful class. It implements an array of objects that grows as needed when objects are
added.

The Enumeration interface provides a simple and consistent way to loop through all the elements contained
within some kind of object or data structure.

The Date class represents a date and time, using a millisecond representation. In Java 1.1, the Calendar class
manipulates dates using more familiar units such as months, days, hours, and minutes. The TimeZone class is
also used in conjunction with dates.

In Java 1.1, ResourceBundle and its subclasses, ListResourceBundle and
PropertyResourceBundle, represent a "bundle" of localized resources that are read in by an
internationalized program at runtime.

The remaining classes are also useful. BitSet implements an arbitrary-size array of bits. Random generates and
returns pseudo-random numbers in a variety of forms. StringTokenizer parses a string into tokens. Stack
implements a last-in-first-out stack on which objects may be pushed, and from which they may be popped. And the
Observer interface and Observable class provide infrastructure for implementing the object-oriented model-
view paradigm in Java.

30.1 java.util.BitSet (JDK 1.0)

This class defines an arbitrarily large set of bits. Instance methods allow you to set, clear, and query individual bits
in the set, and also to perform bitwise boolean arithmetic on the bits in BitSet objects. This class can be used as
an extremely compact array of boolean values, although reading and writing those values is slower than normal
array access.

public final class BitSet extends Object implements Cloneable, Serializable {
 // Public Constructors
 public BitSet();
 public BitSet(int nbits);
 // Public Instance Methods
 public void and(BitSet set);
 public void clear(int bit);
 public Object clone(); // Overrides Object
 public boolean equals(Object obj); // Overrides Object
 public boolean get(int bit);
 public int hashCode(); // Overrides Object
 public void or(BitSet set);
 public void set(int bit);
 public int size();
 public String toString(); // Overrides Object
 public void xor(BitSet set);
}

Passed To:

BitSet.and(), BitSet.or(), BitSet.xor()

java.text.StringCharacterIterator
(JDK 1.1)

java.util.Calendar (JDK 1.1)

Chapter 24
The java.io Package

24.42 java.io.ObjectOutputStream (JDK 1.1)

The ObjectOutputStream is used to serialize objects, arrays, and other values to a stream. The writeObject()
method serializes an object or array, and various other methods are used to write primitive data values to the stream. Note that
only objects that implement the Serializable interface or the Externalizable interface can be serialized.

The defaultWriteObject() may only be called from the writeObject() method of a Serializable object. It
allows an object to perform additional processing before or after serializing itself.

The remaining methods of ObjectOutputStream are miscellaneous stream manipulation methods and protected methods
for use by subclasses that want to customize its serialization behavior.

public class ObjectOutputStream extends OutputStream implements ObjectOutput {
 // Public Constructor
 public ObjectOutputStream(OutputStream out) throws IOException;
 // Public Instance Methods
 public void close() throws IOException; // Overrides OutputStream
 public final void defaultWriteObject() throws IOException;
 public void flush() throws IOException; // Overrides OutputStream
 public void reset() throws IOException;
 public void write(int data) throws IOException; // Defines OutputStream
 public void write(byte[] b) throws IOException; // Overrides
OutputStream
 public void write(byte[] b, int off, int len) throws IOException; //
Overrides OutputStream
 public void writeBoolean(boolean data) throws IOException; // From
DataOutput
 public void writeByte(int data) throws IOException; // From DataOutput
 public void writeBytes(String data) throws IOException; // From
DataOutput
 public void writeChar(int data) throws IOException; // From DataOutput
 public void writeChars(String data) throws IOException; // From
DataOutput
 public void writeDouble(double data) throws IOException; // From
DataOutput
 public void writeFloat(float data) throws IOException; // From
DataOutput
 public void writeInt(int data) throws IOException; // From DataOutput
 public void writeLong(long data) throws IOException; // From DataOutput
 public final void writeObject(Object obj) throws IOException; // From
ObjectOutput

 public void writeShort(int data) throws IOException; // From DataOutput
 public void writeUTF(String data) throws IOException; // From DataOutput
 // Protected Instance Methods
 protected void annotateClass(Class cl) throws IOException;
 protected void drain() throws IOException;
 protected final boolean enableReplaceObject(boolean enable) throws
SecurityException;
 protected Object replaceObject(Object obj) throws IOException;
 protected void writeStreamHeader() throws IOException;
}

Hierarchy:

Object->OutputStream->ObjectOutputStream(ObjectOutput(DataOutput))

Passed To:

AWTEventMulticaster.save(), AWTEventMulticaster.saveInternal()

java.io.ObjectOutput (JDK
1.1)

java.io.ObjectStreamClass
(JDK 1.1)

Chapter 25
The java.lang Package

25.58 java.lang.StringBuffer (JDK 1.0)

This class represents a string of characters. It differs from the String class in that its contents may be modified. A
StringBuffer object grows in length as necessary. The string stored in a StringBuffer object may be modified in
place with the setCharAt(), append(), and insert() methods.

After a string is processed in a StringBuffer object, it may be efficiently converted to a String object for subsequent
use. The StringBuffer.toString() method does not copy the internal array of characters; instead it shares that array
with the new String object, and makes a new copy for itself only when further modifications are made to the
StringBuffer object.

public final class StringBuffer extends Object implements Serializable {
 // Public Constructors
 public StringBuffer();
 public StringBuffer(int length);
 public StringBuffer(String str);
 // Public Instance Methods
 public synchronized StringBuffer append(Object obj);
 public synchronized StringBuffer append(String str);
 public synchronized StringBuffer append(char[] str);
 public synchronized StringBuffer append(char[] str, int offset, int len);
 public StringBuffer append(boolean b);
 public synchronized StringBuffer append(char c);
 public StringBuffer append(int i);
 public StringBuffer append(long l);
 public StringBuffer append(float f);
 public StringBuffer append(double d);
 public int capacity();
 public synchronized char charAt(int index);
 public synchronized void ensureCapacity(int minimumCapacity);
 public synchronized void getChars(int srcBegin, int srcEnd, char[] dst,
int dstBegin);
 public synchronized StringBuffer insert(int offset, Object obj);
 public synchronized StringBuffer insert(int offset, String str);
 public synchronized StringBuffer insert(int offset, char[] str);
 public StringBuffer insert(int offset, boolean b);
 public synchronized StringBuffer insert(int offset, char c);
 public StringBuffer insert(int offset, int i);
 public StringBuffer insert(int offset, long l);
 public StringBuffer insert(int offset, float f);
 public StringBuffer insert(int offset, double d);

 public int length();
 public synchronized StringBuffer reverse();
 public synchronized void setCharAt(int index, char ch);
 public synchronized void setLength(int newLength);
 public String toString(); // Overrides Object
}

Passed To:

ChoiceFormat.format(), DateFormat.format(), DecimalFormat.format(), Format.format(), MessageFormat.format(),
NumberFormat.format(), SimpleDateFormat.format(), String()

Returned By:

ChoiceFormat.format(), DateFormat.format(), DecimalFormat.format(), Format.format(), MessageFormat.format(),
NumberFormat.format(), SimpleDateFormat.format(), StringBuffer.append(), StringBuffer.insert(), StringBuffer.reverse(),
StringWriter.getBuffer()

java.lang.String (JDK
1.0)

java.lang.StringIndexOutOfBoundsException
(JDK 1.0)

Chapter 29
The java.text Package

29.9 java.text.DecimalFormat (JDK 1.1)

This is the concrete Format class used by NumberFormat for all locales that use base 10 numbers. Most applications
do not need to use this class directly--they can use the static methods of NumberFormat to obtain a default
NumberFormat object for a desired locale, and may then perform minor locale-independent customizations on that
object.

Applications that require highly-customized number formatting and parsing may create custom DecimalFormat
objects by passing a suitable pattern to the DecimalFormat() constructor method. The applyPattern() method
can be used to change this pattern. A pattern consists of a string of characters from the following table. For example:
"$#,##0.00;($#,##0.00)".

Character Meaning

A digit; zeros show as absent

0 A digit; zeros show as 0

. The locale-specific decimal separator

, The locale-specific grouping separator

- The locale-specific negative prefix

% Show value as a percentage

; Separates positive number format (on left) from optional negative number format (on right)

' Quote a reserved character, so it appears literally in the output

other Appears literally in output

A DecimalFormatSymbols object may be optionally specified when creating a DecimalFormat object. If one is
not specified, a DecimalFormatSymbols object suitable for the default locale is used.

public class DecimalFormat extends NumberFormat {
 // Public Constructors
 public DecimalFormat();
 public DecimalFormat(String pattern);
 public DecimalFormat(String pattern, DecimalFormatSymbols symbols);
 // Public Instance Methods
 public void applyLocalizedPattern(String pattern);
 public void applyPattern(String pattern);
 public Object clone(); // Overrides NumberFormat
 public boolean equals(Object obj); // Overrides NumberFormat

 public StringBuffer format(double number, StringBuffer result,
FieldPosition fieldPosition); // Defines NumberFormat
 public StringBuffer format(long number, StringBuffer result,
FieldPosition fieldPosition); // Defines NumberFormat
 public DecimalFormatSymbols getDecimalFormatSymbols();
 public int getGroupingSize();
 public int getMultiplier();
 public String getNegativePrefix();
 public String getNegativeSuffix();
 public String getPositivePrefix();
 public String getPositiveSuffix();
 public int hashCode(); // Overrides NumberFormat
 public boolean isDecimalSeparatorAlwaysShown();
 public Number parse(String text, ParsePosition status); // Defines
NumberFormat
 public void setDecimalFormatSymbols(DecimalFormatSymbols newSymbols);
 public void setDecimalSeparatorAlwaysShown(boolean newValue);
 public void setGroupingSize(int newValue);
 public void setMultiplier(int newValue);
 public void setNegativePrefix(String newValue);
 public void setNegativeSuffix(String newValue);
 public void setPositivePrefix(String newValue);
 public void setPositiveSuffix(String newValue);
 public String toLocalizedPattern();
 public String toPattern();
}

Hierarchy:

Object->Format(Serializable, Cloneable)->NumberFormat(Cloneable)->DecimalFormat

java.text.DateFormatSymbols
(JDK 1.1)

java.text.DecimalFormatSymbols
(JDK 1.1)

Chapter 29
The java.text Package

29.18 java.text.SimpleDateFormat (JDK 1.1)

This is the concrete Format subclass used by DateFormat to handle formatting and parsing of dates. Most applications
should not use this class directly--instead, they should obtain a localized DateFormat object by calling one of the static
methods of DateFormat.

SimpleDateFormat formats dates and times according to a pattern, which specifies the positions of the various fields of
the date, and a DateFormatSymbols object, which specifies important auxiliary data, such as the names of months.
Applications that require highly customized date or time formatting can create a custom SimpleDateFormat object by
specifying the desired pattern. This creates a SimpleDateFormat object that uses the DateFormatSymbols object for
the default locale. You may also specify a locale explicitly to use the DateFormatSymbols object for that locale. Or, you
can even provide an explicit DateFormatSymbols object of your own, if you need to format dates and times for an
unsupported locale.

You can use the applyPattern() method of a SimpleDateFormat to change the formatting pattern used by the object.
The syntax of this pattern is described in the following table. Any characters in the format string that do not appear in this table
appear literally in the formatted date.

Field Full Form Short Form

Year yyyy (4 digits) yy (2 digits)

Month MMM (name) MM (2 digits), M (1 or 2 digits)

Day of week EEEE EE

Day of month dd (2 digits) d (1 or 2 digits)

Hour (1-12) hh (2 digits) h (1 or 2 digits)

Hour (0-23) HH (2 digits) H (1 or 2 digits)

Hour (0-11) KK K

Hour (1-24) kk k

Minute mm

Second ss

Millisecond SSS

AM/PM a

Time zone zzzz zz

Day of week in month F (e.g., 3rd Thursday)

Day in year DDD (3 digits) D (1, 2, or 3 digits)

Week in year ww

Era (e.g., BC/AD) G

public class SimpleDateFormat extends DateFormat {
 // Public Constructors
 public SimpleDateFormat();
 public SimpleDateFormat(String pattern);
 public SimpleDateFormat(String pattern, Locale loc);
 public SimpleDateFormat(String pattern, DateFormatSymbols formatData);
 // Public Instance Methods
 public void applyLocalizedPattern(String pattern);
 public void applyPattern(String pattern);
 public Object clone(); // Overrides DateFormat
 public boolean equals(Object obj); // Overrides DateFormat
 public StringBuffer format(Date date, StringBuffer toAppendTo,
FieldPosition pos); // Defines DateFormat
 public DateFormatSymbols getDateFormatSymbols();
 public int hashCode(); // Overrides DateFormat
 public Date parse(String text, ParsePosition pos); // Defines DateFormat
 public void setDateFormatSymbols(DateFormatSymbols newFormatSymbols);
 public String toLocalizedPattern();
 public String toPattern();
}

Hierarchy:

Object->Format(Serializable, Cloneable)->DateFormat(Cloneable)->SimpleDateFormat

java.text.RuleBasedCollator
(JDK 1.1)

java.text.StringCharacterIterator
(JDK 1.1)

Chapter 29
The java.text Package

29.3 java.text.ChoiceFormat (JDK 1.1)

This class is a subclass of Format that converts a number to a String in a way that is reminiscent of a switch
statement or an enumerated type. Each ChoiceFormat object has an array of doubles known as its "limits" and an
array of strings known as its "formats." When the format() method is called to format a number x, the
ChoiceFormat finds an index i such that:

limits[i] <= x < limits[i+1]

If x is less than the first element of the array, the first element is used, and if it is greater than the last, the last element
is used. Once the index i has been determined, it is used as the index into the array of strings, and the indexed string is
returned as the result of the format() method.

A ChoiceFormat object may also be created by encoding its "limits" and "formats" into a single string known as
its "pattern." A typical pattern looks like the one that follows, used to return the singular or plural form of a word,
based on the numeric value passed to the format() method:

ChoiceFormat cf = new ChoiceFormat("0#errors|1#error|2#errors");

A ChoiceFormat object created in this way returns the string "errors" when it formats the number 0, or any
number greater than or equal to 2. It returns "error" when it formats the number 1. In the syntax shown here, note the
pound sign (#) used to separate the limit number from the string that corresponds to that case and the vertical bar (|)
used to separate the individual cases. You can use the applyPattern() method to change the pattern used by a
ChoiceFormat object; use toPattern() to query the pattern it uses.

public class ChoiceFormat extends NumberFormat {
 // Public Constructors
 public ChoiceFormat(String newPattern);
 public ChoiceFormat(double[] limits, String[] formats);
 // Class Methods
 public static final double nextDouble(double d);
 public static double nextDouble(double d, boolean positive);
 public static final double previousDouble(double d);
 // Public Instance Methods
 public void applyPattern(String newPattern);
 public Object clone(); // Overrides NumberFormat
 public boolean equals(Object obj); // Overrides NumberFormat

 public StringBuffer format(long number, StringBuffer toAppendTo,
 FieldPosition status); // Defines NumberFormat
 public StringBuffer format(double number, StringBuffer toAppendTo,
 FieldPosition status); // Defines NumberFormat
 public Object[] getFormats();
 public double[] getLimits();
 public int hashCode(); // Overrides NumberFormat
 public Number parse(String text, ParsePosition status); // Defines
NumberFormat
 public void setChoices(double[] limits, String[] formats);
 public String toPattern();
}

Hierarchy:

Object->Format(Serializable, Cloneable)->NumberFormat(Cloneable)->ChoiceFormat

java.text.CharacterIterator
(JDK 1.1)

java.text.CollationElementIterator
(JDK 1.1)

Chapter 29
The java.text Package

29.13 java.text.MessageFormat (JDK 1.1)

This class formats and substitutes objects into specified positions in a message string (also known as the "pattern" string). It
provides the closest Java equivalent to the printf() function of the C programming language.

If a message is to be displayed only a single time, the simplest way to use the MessageFormat class is through the static
format() method which is passed a message or pattern string and an array of argument objects to be formatted and
substituted into the string. If the message is to be displayed several times, it makes more sense to create a MessageFormat
object, supplying the pattern string, and then to call the format() instance method of this object, supplying the array of
objects to be formatted into the message.

The message or pattern string used by the MessageFormat should contain digits enclosed in curly braces to indicate where
each argument should be substituted. The sequence "{0}" indicates that the first object should be converted to a string (if
necessary) and inserted at that point, while the sequence "{3}" indicates that the fourth object should be inserted, for example.
If the object to be inserted is not a string, MessageFormat checks to see if it is a Date or a subclass of Number. If so, it
uses a default DateFormat or NumberFormat object to convert the value to a string. If not, it simply invokes the object's
toString() method to convert it.

A digit within curly braces in a pattern string may be optionally followed by a comma, and one of the words "date", "time",
"number", or "choice", to indicate that the corresponding argument should be formatted as a date, time, number, or choice
before being substituted into the pattern string. Any of these keywords may additionally be followed by a comma and
additional pattern information to be used in formatting the date, time, number, or choice. (See SimpleDateFormat,
DecimalFormat, and ChoiceFormat for more information.)

You can use the setLocale() method to specify a non-default Locale that the MessageFormat should use when
obtaining DateFormat and NumberFormat objects to format dates, time, and numbers inserted into the pattern.

You can change the Format object used at a particular position in the pattern with the setFormat() method. You can set a
new pattern for the MessageFormat object by calling applyPattern(), and you can obtain a string that represents the
current formatting pattern by calling toPattern().

MessageFormat also supports a parse() method that can parse an array of objects out of a specified string, according to
the specified pattern.

public class MessageFormat extends Format {
 // Public Constructor
 public MessageFormat(String pattern);
 // Class Methods
 public static String format(String pattern, Object[] arguments);
 // Public Instance Methods

 public void applyPattern(String newPattern);
 public Object clone(); // Overrides Format
 public boolean equals(Object obj); // Overrides Object
 public final StringBuffer format(Object[] source, StringBuffer result,
FieldPosition ignore);
 public final StringBuffer format(Object source, StringBuffer result,
FieldPosition ignore); // Defines Format
 public Format[] getFormats();
 public Locale getLocale();
 public int hashCode(); // Overrides Object
 public Object[] parse(String source, ParsePosition status);
 public Object[] parse(String source) throws ParseException;
 public Object parseObject(String text, ParsePosition status); // Defines
Format
 public void setFormat(int variable, Format newFormat);
 public void setFormats(Format[] newFormats);
 public void setLocale(Locale theLocale);
 public String toPattern();
}

Hierarchy:

Object->Format(Serializable, Cloneable)->MessageFormat

java.text.Format (JDK 1.1) java.text.NumberFormat (JDK
1.1)

Chapter 21

21. The java.awt.image Package
Contents:
java.awt.image.ColorModel (JDK 1.0)
java.awt.image.CropImageFilter (JDK 1.0)
java.awt.image.DirectColorModel (JDK 1.0)
java.awt.image.FilteredImageSource (JDK 1.0)
java.awt.image.ImageConsumer (JDK 1.0)
java.awt.image.ImageFilter (JDK 1.0)
java.awt.image.ImageObserver (JDK 1.0)
java.awt.image.ImageProducer (JDK 1.0)
java.awt.image.IndexColorModel (JDK 1.0)
java.awt.image.MemoryImageSource (JDK 1.0)
java.awt.image.PixelGrabber (JDK 1.0)
java.awt.image.RGBImageFilter (JDK 1.0)
java.awt.image.ReplicateScaleFilter (JDK 1.1)

The java.awt.image package is, by any standard, a confusing one. The purpose of the package is to support image
processing, and the classes in the package provide a powerful infrastructure for that purpose. (see Figure 21.1.) Most of the
classes are part of the infrastructure, however, and are not normally used by ordinary applications that have only simple image
manipulation requirements.

To understand this package, it is first important to note that the Image class itself is part of the java.awt package, not the
java.awt.image package. Furthermore, the java.awt.image classes are not the source of images; they simply serve to
manipulate images that come from somewhere else. The Applet.getImage() method is perhaps the most common
method for obtaining an image in Java--it downloads the image from a specified URL. In a stand-alone application, the
URL.getContent() method can be used to obtain an ImageProducer object, which can then be passed to the
Component.createImage() method to obtain an Image object.

Figure 21.1: The java.awt.image package

The ImageProducer interface is one you'll encounter frequently in java.awt.image. It represents an image source. If
you've created an Image object with Applet.getImage(), you can obtain the ImageProducer for that Image (which
has not been downloaded yet) with Image.getSource(). Conversely, given an ImageProducer object, you can create
an Image from it with the createImage() method of any Component (such as an Applet). Once you have an
ImageProducer object, you can manipulate it with the other java.awt.image classes.

FilteredImageSource is the most important class for image manipulation. It is itself a type of ImageProducer that,
when created, applies a specified ImageFilter object to some other specified ImageProducer object. The
FilteredImageSource thus configured can be used as an ImageProducer to display a filtered image.
CropImageFilter is a predefined type of ImageFilter that you can use to extract a specified rectangle out of a larger
image.

RGBImageFilter is another subclass of ImageFilter that makes it easy to filter the colors of an image. To do so, you
must subclass RGBImageFilter and provide the definition of a single simple method that manipulates the image colors. In
order to manipulate image colors, you will probably need to be familiar with the ColorModel class and its two subclasses,
DirectColorModel and IndexColorModel. An instance of ColorModel or of one of its subclasses converts a pixel
value to the red, green, and blue components of the color it represents.

Finally, two other classes in the java.awt.image package are worth noting. MemoryImageSource is a type of
ImageProducer that generates an image from an array of bytes or integers in memory. PixelGrabber does the reverse--
it captures pixels from an ImageProducer and stores them into an array. You can use these classes separately or together to
perform your own custom image manipulation.

21.1 java.awt.image.AreaAveragingScaleFilter (JDK 1.1)

This class implements an ImageFilter that scales an image to a specified pixel size. It uses a scaling algorithm that
averages adjacent pixel values when shrinking an image, which produces relatively smooth scaled images. Its superclass,
ReplicateScaleFilter, implements a faster, less smooth scaling algorithm.

The methods of this class are ImageConsumer methods intended for communication between the image filter and the
FilteredImageSource that uses it. Applications do not usually call these methods directly.

The easiest way to use this filter is to call Image.getScaledInstance(), specifying an appropriate hint constant.

public class AreaAveragingScaleFilter extends ReplicateScaleFilter {
 // Public Constructor
 public AreaAveragingScaleFilter(int width, int height);
 // Public Instance Methods
 public void setHints(int hints); // Overrides ImageFilter
 public void setPixels(int x, int y, int w, int h, ColorModel model,
byte[] pixels, int off, int scansize);
 public void setPixels'u'// Overrides ReplicateScaleFilter
 public void setPixels(int x, int y, int w, int h, ColorModel model, int[]
pixels, int off, int scansize);
 public void setPixels'u'// Overrides ReplicateScaleFilter
}

Hierarchy:

Object->ImageFilter(ImageConsumer, Cloneable)-> ReplicateScaleFilter-
>AreaAveragingScaleFilter

java.awt.event.WindowListener
(JDK 1.1)

java.awt.image.ColorModel
(JDK 1.0)

Chapter 26

26. The java.lang.reflect Package
Contents:
java.lang.reflect.Array (JDK 1.1)
java.lang.reflect.Constructor (JDK 1.1)
java.lang.reflect.Field (JDK 1.1)
java.lang.reflect.InvocationTargetException (JDK 1.1)
java.lang.reflect.Member (JDK 1.1)
java.lang.reflect.Method (JDK 1.1)
java.lang.reflect.Modifier (JDK 1.1)

The java.lang.reflect package contains the classes and interfaces that, along with java.lang.Class, comprise the
Java Reflection API. This package is new in Java 1.1. Figure 26.1 shows the class hierarchy.

The Constructor, Field, and Method classes represent constructors, fields, and methods of a class. Because these types
all represent members of a class, they each implement the Member interface, which defines a simple set of methods that can
be invoked for any class member. These classes allow information about the class members to be obtained, and allow methods
and constructors to be invoked and fields to be queried and set.

Class member modifiers are represented as integers that specify a number of bit flags. The Modifier class defines static
methods that are useful in interpreting the meanings of these flags. The Array class defines static methods for creating arrays
and reading and writing array elements.

See Chapter 12, Reflection for examples of using these classes.

Figure 26.1: The java.lang.reflect package

26.1 java.lang.reflect.Array (JDK 1.1)

This class contains methods that allow you to set and query the values of array elements, to determine the length of an array,
and to create new instances of arrays. Note that the Array class is used for manipulating array values, not array types; Java
data types, including array types, are represented by java.lang.Class. Since the Array class represents a Java value,
unlike the Field, Method, and Constructor classes which represent class members, the Array class is significantly
different (despite some surface similarities) from those other classes in this package. Most notably, all the methods of Array
are static and apply to all array values, rather than applying only to a specific field, method, or constructor.

The get() method returns the value of the specified element of the specified array as an Object. If the array elements are of
a primitive type, the value is converted to a wrapper object before being returned. You can also use getInteger() and
related methods to query array elements and return them as specific primitive types. The set() method and its primitive type
variants perform the opposite operation. Also, the getLength() method returns the length of the array.

The newInstance() methods create new arrays. One version of this method is passed the number of elements in the array
and the type of those elements. The other version of this method creates multidimensional arrays. Besides just specifying the
component type of the array, it is passed an array of numbers. The length of this array specifies the number of dimensions for
the array to be created, and the values of each array element specify the size of each dimension of the created array.

public final class Array extends Object {
 // No Constructor
 // Class Methods
 public static native Object get(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native boolean getBoolean(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native byte getByte(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native char getChar(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native double getDouble(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native float getFloat(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native int getInt(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;

 public static native int getLength(Object array) throws
IllegalArgumentException;
 public static native long getLong(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native short getShort(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static Object newInstance(Class componentType, int length) throws
NegativeArraySizeException;
 public static Object newInstance(Class componentType, int[] dimensions)
throws IllegalArgumentException, NegativeArraySizeException;
 public static native void set(Object array, int index, Object value)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native void setBoolean(Object array, int index, boolean z)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native void setByte(Object array, int index, byte b)
Xsthrows IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native void setChar(Object array, int index, char c) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native void setDouble(Object array, int index, double d)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native void setFloat(Object array, int index, float f)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native void setInt(Object array, int index, int i) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native void setLong(Object array, int index, long l) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException;
 public static native void setShort(Object array, int index, short s)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;
}

java.lang.Void (JDK 1.1) java.lang.reflect.Constructor
(JDK 1.1)

Chapter 25
The java.lang Package

25.60 java.lang.System (JDK 1.0)

This class defines methods that provide a platform-independent interface to system functions. All of the methods and
variables of this class are static. The class may not be instantiated.

getProperty() looks up a named property on the system properties list, returning the optionally specified default value if
no property definition was found. getProperties() returns the entire properties list. setProperties() sets a
Properties object on the properties list.

The in, out, and err variables are the system standard input, output, and error streams. arraycopy() copies an array or
a portion of an array into a destination array. currentTimeMillis() returns the current time in milliseconds since
midnight GMT on January 1, 1970.

exit(), gc(), load(), loadLibrary(), and runFinalization() invoke the methods of the same name in the
Runtime object. See Runtime for details.

public final class System extends Object {
 // No Constructor
 // Constants
 public static final PrintStream err;
 public static final InputStream in;
 public static final PrintStream out;
 // Class Methods
 public static native void arraycopy(Object src, int src_position, Object
dst, int dst_position, int length);
 public static native long currentTimeMillis();
 public static void exit(int status);
 public static void gc();
 public static Properties getProperties();
 public static String getProperty(String key);
 public static String getProperty(String key, String def);
 public static SecurityManager getSecurityManager();
 # public static String getenv(String name);
 1.1public static native int identityHashCode(Object x);
 public static void load(String filename);
 public static void loadLibrary(String libname);
 public static void runFinalization();
 1.1public static void runFinalizersOnExit(boolean value);
 1.1public static void setErr(PrintStream err);
 1.1public static void setIn(InputStream in);

 1.1public static void setOut(PrintStream out);
 public static void setProperties(Properties props);
 public static void setSecurityManager(SecurityManager s);
}

java.lang.StringIndexOutOfBoundsException
(JDK 1.0)

java.lang.Thread (JDK
1.0)

Chapter 23
The java.beans Package

23.6 java.beans.FeatureDescriptor (JDK 1.1)

The FeatureDescriptor class is the base class for MethodDescriptor and
PropertyDescriptor, as well as other classes used by the JavaBeans introspection mechanism. It
provides basic information about a feature (method, property, event, etc.) of a bean. Typically, the
methods that begin with get and is are used by application builders or other tools to query the features
of a bean. The set methods, on the other hand, may be used by bean authors to define information about
the bean.

setName() specifies the locale-independent, programmatic name of the feature.
setDisplayName() specifies a localized, human-readable name. setShortDescription()
specifies a short localized string (about 40 characters) that describes the feature. Both the short
description and the localized name default to the value of the programmatic name. setExpert() and
setHidden() allow you to indicate that the feature is for use only by experts, or for use only by the
builder tool, and should be hidden from users of the builder. Finally, the setValue() method allows
you to associate an arbitrary named value with the feature.

public class FeatureDescriptor extends Object {
 // Public Constructor
 public FeatureDescriptor();
 // Public Instance Methods
 public Enumeration attributeNames();
 public String getDisplayName();
 public String getName();
 public String getShortDescription();
 public Object getValue(String attributeName);
 public boolean isExpert();
 public boolean isHidden();
 public void setDisplayName(String displayName);
 public void setExpert(boolean expert);
 public void setHidden(boolean hidden);
 public void setName(String name);

 public void setShortDescription(String text);
 public void setValue(String attributeName, Object value);
}

Extended By:

BeanDescriptor, EventSetDescriptor, MethodDescriptor, ParameterDescriptor, PropertyDescriptor

java.beans.EventSetDescriptor
(JDK 1.1)

java.beans.IndexedPropertyDescriptor
(JDK 1.1)

Chapter 24

24. The java.io Package
Contents:
java.io.BufferedOutputStream (JDK 1.0)
java.io.BufferedReader (JDK 1.1)
java.io.BufferedWriter (JDK 1.1)
java.io.ByteArrayInputStream (JDK 1.0)
java.io.ByteArrayOutputStream (JDK 1.0)
java.io.CharArrayReader (JDK 1.1)
java.io.CharArrayWriter (JDK 1.1)
java.io.CharConversionException (JDK 1.1)
java.io.DataInput (JDK 1.0)
java.io.DataInputStream (JDK 1.0)
java.io.DataOutput (JDK 1.0)
java.io.DataOutputStream (JDK 1.0)
java.io.EOFException (JDK 1.0)
java.io.Externalizable (JDK 1.1)
java.io.File (JDK 1.0)
java.io.FileDescriptor (JDK 1.0)
java.io.FileInputStream (JDK 1.0)
java.io.FileNotFoundException (JDK 1.0)
java.io.FileOutputStream (JDK 1.0)
java.io.FileReader (JDK 1.1)
java.io.FileWriter (JDK 1.1)
java.io.FilenameFilter (JDK 1.0)
java.io.FilterInputStream (JDK 1.0)
java.io.FilterOutputStream (JDK 1.0)
java.io.FilterReader (JDK 1.1)
java.io.FilterWriter (JDK 1.1)
java.io.InputStream (JDK 1.0)
java.io.InputStreamReader (JDK 1.1)
java.io.InterruptedIOException (JDK 1.0)
java.io.InvalidClassException (JDK 1.1)
java.io.InvalidObjectException (JDK 1.1)
java.io.IOException (JDK 1.0)
java.io.LineNumberInputStream (JDK 1.0; Deprecated.)

java.io.LineNumberReader (JDK 1.1)
java.io.NotActiveException (JDK 1.1)
java.io.NotSerializableException (JDK 1.1)
java.io.ObjectInput (JDK 1.1)
java.io.ObjectInputStream (JDK 1.1)
java.io.ObjectInputValidation (JDK 1.1)
java.io.ObjectOutput (JDK 1.1)
java.io.ObjectOutputStream (JDK 1.1)
java.io.ObjectStreamClass (JDK 1.1)
java.io.ObjectStreamException (JDK 1.1)
java.io.OptionalDataException (JDK 1.1)
java.io.OutputStream (JDK 1.0)
java.io.OutputStreamWriter (JDK 1.1)
java.io.PipedInputStream (JDK 1.0)
java.io.PipedOutputStream (JDK 1.0)
java.io.PipedReader (JDK 1.1)
java.io.PipedWriter (JDK 1.1)
java.io.PrintStream (JDK 1.0)
java.io.PrintWriter (JDK 1.1)
java.io.PushbackInputStream (JDK 1.0)
java.io.PushbackReader (JDK 1.1)
java.io.RandomAccessFile (JDK 1.0)
java.io.Reader (JDK 1.1)
java.io.SequenceInputStream (JDK 1.0)
java.io.Serializable (JDK 1.1)
java.io.StreamCorruptedException (JDK 1.1)
java.io.StreamTokenizer (JDK 1.0)
java.io.StringBufferInputStream (JDK 1.0; Deprecated.)
java.io.StringReader (JDK 1.1)
java.io.StringWriter (JDK 1.1)
java.io.SyncFailedException (JDK 1.1)
java.io.UnsupportedEncodingException (JDK 1.1)
java.io.UTFDataFormatException (JDK 1.0)
java.io.WriteAbortedException (JDK 1.1)
java.io.Writer (JDK 1.1)

The java.io package contains a relatively large number of classes, but, as you can see from Figure 24.1 and Figure 24.2,
the classes form a fairly structured hierarchy. Most of the package consists of byte streams--subclasses of InputStream
or OutputStream--and (in Java 1.1) character streams--subclasses of Reader or Writer. Each of these stream types
has a very specific purpose, and despite its size, java.io is a straightforward package to understand and to use.

Before we consider the stream classes in the package, we'll consider the important non-stream classes. File represents a
file or directory name in a system independent way, and provides methods for listing directories, querying file attributes,
and for renaming and deleting files. FilenameFilter is an interface that defines a method that accepts or rejects
specified filenames. It is used by the java.awt.FileDialog dialog box and by the File class to specify what types of
files should be included in directory listings. RandomAccessFile allows you to read or write from or to arbitrary
locations of a file. Often, though, you'll prefer sequential access to a file and should use one of the stream classes.

InputStream and OutputStream are abstract classes that define methods for reading and writing bytes. Their
subclasses allow bytes to be read from and written to a variety of sources and sinks. FileInputStream and
FileOutputStream read from and write to files. ByteArrayInputStream and ByteArrayOutputStream read
from and write to an array of bytes in memory. PipedInputStream reads bytes from a PipedOutputStream, and
PipedOutputStream writes bytes to a PipedInputStream. These classes work together to implement a "pipe" for
communication between threads.

FilterInputStream and FilterOutputStream are special--they filter input and output bytes. When a
FilterInputStream is created, an InputStream is specified for it to filter. When you call the read() method of a
FilterInputStream, it calls the read() method of its specified stream, processes the bytes it reads somehow, and
then returns the filtered bytes. Similarly, you specify an OutputStream to be filtered when you create a
FilterOutputStream. Calling the write() method of a FilterOutputStream causes it to process your bytes in
some way and then pass those filtered bytes to the write() method of its OutputStream.

Figure 24.1: The java.io package

Figure 24.2: The exception classes of the java.io package

FilterInputStream and FilterOutputStream do not perform any filtering themselves; this is done by their
subclasses. BufferedInputStream and BufferedOutputStream provide input and output buffering and can
increase I/O efficiency. DataInputStream reads raw bytes from a stream and interprets them in various binary formats.
It has various methods to read primitive Java data types in their standard binary formats. DataOutputStream allows
you to write Java primitive data types in binary format.

In Java 1.1, the byte streams just described are complemented by an analogous set of character input and output streams.
Reader is the superclass of all character input streams, and Writer is the superclass of all character output streams.
These character streams supersede the byte streams for all textual I/O. They are more efficient than the byte streams, and
they correctly handle the conversion between local encodings and Unicode text, making them invaluable for
internationalized programs. Most of the Reader and Writer streams have obvious byte stream analogs.
BufferedReader is a commonly used stream. It provides buffering for efficiency, and also has a readLine() method
to read one line of text at a time. PrintWriter is another very common stream--its methods allow output of a textual
representation of any primitive Java type or of any object (via the object's toString() method). See Chapter 11,
Internationalization for a discussion of the use of character streams in internationalized programs.

The ObjectInputStream and ObjectOutputStream classes are special. These byte stream classes are new in Java
1.1 and are part of the Object Serialization API. See Chapter 9, Object Serialization for further details.

24.1 java.io.BufferedInputStream (JDK 1.0)

This class is a FilterInputStream that provides input data buffering--efficiency is increased by reading in large
amounts of data and storing them in an internal buffer. When data is requested, it is usually available from the buffer. Thus,
most calls to read data do not have to make a call to actually read data from a disk, network, or other slow source. Create a
BufferedInputStream by specifying the InputStream that is to have buffering applied in the call to the
constructor. See also BufferedReader.

public class BufferedInputStream extends FilterInputStream {
 // Public Constructors
 public BufferedInputStream(InputStream in);
 public BufferedInputStream(InputStream in, int size);
 // Protected Instance Variables
 protected byte[] buf;
 protected int count;
 protected int marklimit;
 protected int markpos;
 protected int pos;
 // Public Instance Methods
 public synchronized int available() throws IOException; // Overrides
FilterInputStream
 public synchronized void mark(int readlimit); // Overrides
FilterInputStream
 public boolean markSupported(); // Overrides FilterInputStream
 public synchronized int read() throws IOException; // Overrides
FilterInputStream
 public synchronized int read(byte[] b, int off, int len) throws
IOException; // Overrides FilterInputStream
 public synchronized void reset() throws IOException; // Overrides
FilterInputStream
 public synchronized long skip(long n) throws IOException; // Overrides
FilterInputStream
}

Hierarchy:

Object->InputStream->FilterInputStream->BufferedInputStream

java.beans.Visibility (JDK
1.1)

java.io.BufferedOutputStream
(JDK 1.0)

Chapter 24
The java.io Package

24.5 java.io.ByteArrayInputStream (JDK 1.0)

This class is a subclass of InputStream in which input data come from a specified array of byte values. This is useful
when you want to read data in memory as if it were coming from a file or pipe or socket. Note that the specified array of
bytes is not copied when a ByteArrayInputStream is created. See also CharArrayReader.

public class ByteArrayInputStream extends InputStream {
 // Public Constructors
 public ByteArrayInputStream(byte[] buf);
 public ByteArrayInputStream(byte[] buf, int offset, int length);
 // Protected Instance Variables
 protected byte[] buf;
 protected int count;
 1.1 protected int mark;
 protected int pos;
 // Public Instance Methods
 public synchronized int available(); // Overrides InputStream
 1.1 public void mark(int markpos); // Overrides InputStream
 1.1 public boolean markSupported(); // Overrides InputStream
 public synchronized int read(); // Defines InputStream
 public synchronized int read(byte[] b, int off, int len); // Overrides
InputStream
 public synchronized void reset(); // Overrides InputStream
 public synchronized long skip(long n); // Overrides InputStream
}

Hierarchy:

Object->InputStream->ByteArrayInputStream

java.io.BufferedWriter (JDK
1.1)

java.io.ByteArrayOutputStream
(JDK 1.0)

Chapter 24
The java.io Package

24.18 java.io.FileInputStream (JDK 1.0)

This class is a subclass of InputStream that reads bytes from a file specified by name or by a File or
FileDescriptor object. read() reads a byte or array of bytes from the file. It returns -1 when the end of file has been
reached. To read binary data, you typically use this class in conjunction with a BufferedInputStream and
DataInputStream. To read text, you typically use it with an InputStreamReader and BufferedReader. Call
close() to close the file when input is no longer needed.

public class FileInputStream extends InputStream {
 // Public Constructors
 public FileInputStream(String name) throws FileNotFoundException;
 public FileInputStream(File file) throws FileNotFoundException;
 public FileInputStream(FileDescriptor fdObj);
 // Public Instance Methods
 public native int available() throws IOException; // Overrides
InputStream
 public native void close() throws IOException; // Overrides InputStream
 public final FileDescriptor getFD() throws IOException;
 public native int read() throws IOException; // Defines InputStream
 public int read(byte[] b) throws IOException; // Overrides InputStream
 public int read(byte[] b, int off, int len) throws IOException; //
Overrides InputStream
 public native long skip(long n) throws IOException; // Overrides
InputStream
 // Protected Instance Methods
 protected void finalize() throws IOException; // Overrides Object
}

Hierarchy:

Object->InputStream->FileInputStream

java.io.FileDescriptor (JDK
1.0)

java.io.FileNotFoundException
(JDK 1.0)

Chapter 24
The java.io Package

24.24 java.io.FilterInputStream (JDK 1.0)

This class provides method definitions required to filter data obtained from the InputStream specified when the
FilterInputStream is created. It must be subclassed to perform some sort of filtering operation, and may not be
instantiated directly. See the subclasses BufferedInputStream, DataInputStream, and
PushbackInputStream.

public class FilterInputStream extends InputStream {
 // Protected Constructor
 protected FilterInputStream(InputStream in);
 // Protected Instance Variables
 protected InputStream in;
 // Public Instance Methods
 public int available() throws IOException; // Overrides InputStream
 public void close() throws IOException; // Overrides InputStream
 public synchronized void mark(int readlimit); // Overrides InputStream
 public boolean markSupported(); // Overrides InputStream
 public int read() throws IOException; // Defines InputStream
 public int read(byte[] b) throws IOException; // Overrides InputStream
 public int read(byte[] b, int off, int len) throws IOException; //
Overrides InputStream
 public synchronized void reset() throws IOException; // Overrides
InputStream
 public long skip(long n) throws IOException; // Overrides InputStream
}

Hierarchy:

Object->InputStream->FilterInputStream

Extended By:

BufferedInputStream, CheckedInputStream, DataInputStream, InflaterInputStream, LineNumberInputStream,
PushbackInputStream

java.io.FilenameFilter (JDK
1.0)

java.io.FilterOutputStream
(JDK 1.0)

Chapter 24
The java.io Package

24.28 java.io.InputStream (JDK 1.0)

This abstract class is the superclass of all input streams. It defines the basic input methods that all input stream
classes provide.

read() reads a single byte or an array or subarray of bytes. It returns the byte read, or the number of bytes
read, or -1 if the end-of-file has been reached. skip() skips a specified number of bytes of input.
available() returns the number of bytes that can be read without blocking. close() closes the input
stream and frees up any system resources associated with it. The stream should not be used after close() has
been called.

If markSupported() returns true for a given InputStream, that stream supports mark() and
reset() methods. mark() marks the current position in the input stream so that reset() can return to that
position as long as no more than the specified number of bytes have been read between the mark() and
reset(). See also Reader.

public abstract class InputStream extends Object {
 // Default Constructor: public InputStream()
 // Public Instance Methods
 public int available() throws IOException;
 public void close() throws IOException;
 public synchronized void mark(int readlimit);
 public boolean markSupported();
 public abstract int read() throws IOException;
 public int read(byte[] b) throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
 public synchronized void reset() throws IOException;
 public long skip(long n) throws IOException;
}

Extended By:

ByteArrayInputStream, FileInputStream, FilterInputStream, ObjectInputStream, PipedInputStream,
SequenceInputStream, StringBufferInputStream

Passed To:

BufferedInputStream(), CheckedInputStream(), DataInputStream(), FilterInputStream(), GZIPInputStream(),
InflaterInputStream(), InputStreamReader(), LineNumberInputStream(), ObjectInputStream(), Properties.load(),
PropertyResourceBundle(), PushbackInputStream(), Runtime.getLocalizedInputStream(),
SequenceInputStream(), StreamTokenizer(), System.setIn(), URLConnection.guessContentTypeFromStream(),
ZipInputStream()

Returned By:

Class.getResourceAsStream(), ClassLoader.getResourceAsStream(),
ClassLoader.getSystemResourceAsStream(), Process.getErrorStream(), Process.getInputStream(),
Runtime.getLocalizedInputStream(), Socket.getInputStream(), SocketImpl.getInputStream(),
URL.openStream(), URLConnection.getInputStream(), ZipFile.getInputStream()

Type Of:

FilterInputStream.in, System.in

java.io.FilterWriter (JDK 1.1) java.io.InputStreamReader
(JDK 1.1)

Chapter 24
The java.io Package

24.34 java.io.LineNumberInputStream (JDK 1.0; Deprecated.)

This class is a FilterInputStream that keeps track of the number of lines of data that have been read.
getLineNumber() returns the current line number. setLineNumber() sets the line number of the current line.
Subsequent lines are numbered starting from that number.

This class is deprecated in Java 1.1 because it does not properly convert bytes to characters. Use LineNumberReader
instead.

public class LineNumberInputStream extends FilterInputStream {
 // Public Constructor
 public LineNumberInputStream(InputStream in);
 // Public Instance Methods
 public int available() throws IOException; // Overrides
FilterInputStream
 public int getLineNumber();
 public void mark(int readlimit); // Overrides FilterInputStream
 public int read() throws IOException; // Overrides FilterInputStream
 public int read(byte[] b, int off, int len) throws IOException; //
Overrides FilterInputStream
 public void reset() throws IOException; // Overrides FilterInputStream
 public void setLineNumber(int lineNumber);
 public long skip(long n) throws IOException; // Overrides
FilterInputStream
}

Hierarchy:

Object->InputStream->FilterInputStream->LineNumberInputStream

java.io.IOException (JDK
1.0)

java.io.LineNumberReader
(JDK 1.1)

Chapter 24
The java.io Package

24.38 java.io.ObjectInput (JDK 1.1)

This interface extends the DataInput interface and adds methods for deserializing objects and reading bytes and arrays of
bytes.

public abstract interface ObjectInput extends DataInput {
 // Public Instance Methods
 public abstract int available() throws IOException;
 public abstract void close() throws IOException;
 public abstract int read() throws IOException;
 public abstract int read(byte[] b) throws IOException;
 public abstract int read(byte[] b, int off, int len) throws IOException;
 public abstract Object readObject() throws ClassNotFoundException,
IOException;
 public abstract long skip(long n) throws IOException;
}

Implemented By:

ObjectInputStream

Passed To:

Externalizable.readExternal()

java.io.NotSerializableException
(JDK 1.1)

java.io.ObjectInputStream
(JDK 1.1)

Chapter 24
The java.io Package

24.39 java.io.ObjectInputStream (JDK 1.1)

ObjectInputStream is used to deserialize objects, arrays, and other values from a stream that was previously created with
an ObjectOutputStream. The readObject() method deserializes objects and arrays (which should then be cast to the
appropriate type); various other methods are used to read primitive data values from the stream. Note that only objects that
implement the Serializable interface or the Externalizable interface can be serialized and deserialized.

The defaultReadObject() method may only be called from the readObject() method of an object that is currently
being deserialized. It allows an object to perform additional processing after deserializing itself. The
registerValidation() method may also only be called from the readObject() method of an object being
deserialized. It registers an ObjectInputValidation object (typically the object being deserialized) to be notified when
a complete tree of objects has been deserialized and the original call to the readObject() method of the
ObjectInputStream is about to return to its caller.

The remaining methods include miscellaneous stream manipulation methods and several protected methods for use by
subclasses that want to customize the deserialization behavior of ObjectInputStream.

public class ObjectInputStream extends InputStream implements ObjectInput {
 // Public Constructor
 public ObjectInputStream(InputStream in) throws IOException,
StreamCorruptedException;
 // Public Instance Methods
 public int available() throws IOException; // Overrides InputStream
 public void close() throws IOException; // Overrides InputStream
 public final void defaultReadObject() throws IOException,
ClassNotFoundException, NotActiveException;
 public int read() throws IOException; // Defines InputStream
 public int read(byte[] data, int offset, int length) throws IOException;
// Overrides InputStream
 public boolean readBoolean() throws IOException; // From DataInput
 public byte readByte() throws IOException; // From DataInput
 public char readChar() throws IOException; // From DataInput
 public double readDouble() throws IOException; // From DataInput
 public float readFloat() throws IOException; // From DataInput
 public void readFully(byte[] data) throws IOException; // From DataInput
 public void readFully(byte[] data, int offset, int size) throws
IOException; // From DataInput
 public int readInt() throws IOException; // From DataInput
 public String readLine() throws IOException; // From DataInput
 public long readLong() throws IOException; // From DataInput
 public final Object readObject() throws OptionalDataException,

 public final Object readObject() 'u'ClassNotFoundException, IOException;
// From ObjectInput
 public short readShort() throws IOException; // From DataInput
 public String readUTF() throws IOException; // From DataInput
 public int readUnsignedByte() throws IOException; // From DataInput
 public int readUnsignedShort() throws IOException; // From DataInput
 public synchronized void registerValidation(ObjectInputValidation obj,
int prio)
 public synchronized void registerValidation'u'throws NotActiveException,
InvalidObjectException;
 public int skipBytes(int len) throws IOException; // From DataInput
 // Protected Instance Methods
 protected final boolean enableResolveObject(boolean enable) throws
SecurityException;
 protected void readStreamHeader() throws IOException,
StreamCorruptedException;
 protected Class resolveClass(ObjectStreamClass v) throws IOException,
ClassNotFoundException;
 protected Object resolveObject(Object obj) throws IOException;
}

Hierarchy:

Object->InputStream->ObjectInputStream(ObjectInput(DataInput))

java.io.ObjectInput (JDK 1.1) java.io.ObjectInputValidation
(JDK 1.1)

Chapter 24
The java.io Package

24.48 java.io.PipedInputStream (JDK 1.0)

This class is an InputStream that implements one-half of a pipe, and is useful for communication between threads. A
PipedInputStream must be connected to a PipedOutputStream object, which may be specified when the
PipedInputStream is created or with the connect() method. Data read from a PipedInputStream object are
received from the PipedOutputStream to which it is connected.

See InputStream for information on the low-level methods for reading data from a PipedInputStream. A
FilterInputStream may be used to provide a higher-level interface for reading data from a
PipedInputStream.

public class PipedInputStream extends InputStream {
 // Public Constructors
 public PipedInputStream(PipedOutputStream src) throws IOException;
 public PipedInputStream();
 // Constants
 1.1 protected static final int PIPE_SIZE;
 // Protected Instance Variables
 1.1 protected byte[] buffer;
 1.1 protected int in;
 1.1 protected int out;
 // Public Instance Methods
 public synchronized int available() throws IOException; // Overrides
InputStream
 public void close() throws IOException; // Overrides InputStream
 public void connect(PipedOutputStream src) throws IOException;
 public synchronized int read() throws IOException; // Defines
InputStream
 public synchronized int read(byte[] b, int off, int len) throws
IOException; // Overrides InputStream
 // Protected Instance Methods
 1.1 protected synchronized void receive(int b) throws IOException;
}

Hierarchy:

Object->InputStream->PipedInputStream

Passed To:

PipedOutputStream(), PipedOutputStream.connect()

java.io.OutputStreamWriter
(JDK 1.1)

java.io.PipedOutputStream
(JDK 1.0)

Chapter 24
The java.io Package

24.54 java.io.PushbackInputStream (JDK 1.0)

This class is a FilterInputStream that implements a one-byte pushback buffer or, in Java 1.1, a pushback buffer of
a specified length. The unread() methods "push" bytes back into the stream--these bytes are the first ones read by the
next call to a read() method. This class is sometimes useful when writing parsers.

See also PushbackReader.

public class PushbackInputStream extends FilterInputStream {
 // Public Constructors
 1.1 public PushbackInputStream(InputStream in, int size);
 public PushbackInputStream(InputStream in);
 // Protected Instance Variables
 1.1 protected byte[] buf;
 1.1 protected int pos;
 // Public Instance Methods
 public int available() throws IOException; // Overrides
FilterInputStream
 public boolean markSupported(); // Overrides FilterInputStream
 public int read() throws IOException; // Overrides FilterInputStream
 public int read(byte[] b, int off, int len) throws IOException; //
Overrides FilterInputStream
 public void unread(int b) throws IOException;
 1.1 public void unread(byte[] b, int off, int len) throws IOException;
 1.1 public void unread(byte[] b) throws IOException;
}

Hierarchy:

Object->InputStream->FilterInputStream->PushbackInputStream

java.io.PrintWriter (JDK 1.1) java.io.PushbackReader (JDK
1.1)

Chapter 24
The java.io Package

24.58 java.io.SequenceInputStream (JDK 1.0)

This class provides a way of seamlessly concatenating the data from two or more input streams. It provides an
InputStream interface to a sequence of InputStream objects. Data are read from the streams in the order in which
the streams are specified. When the end of one stream is reached, data are automatically read from the next stream. This
class might be useful, for example, when implementing an "include file" facility for a parser of some sort.

public class SequenceInputStream extends InputStream {
 // Public Constructors
 public SequenceInputStream(Enumeration e);
 public SequenceInputStream(InputStream s1, InputStream s2);
 // Public Instance Methods
 1.1 public int available() throws IOException; // Overrides InputStream
 public void close() throws IOException; // Overrides InputStream
 public int read() throws IOException; // Defines InputStream
 public int read(byte[] buf, int pos, int len) throws IOException; //
Overrides InputStream
}

Hierarchy:

Object->InputStream->SequenceInputStream

java.io.Reader (JDK 1.1) java.io.Serializable (JDK 1.1)

Chapter 24
The java.io Package

24.62 java.io.StringBufferInputStream (JDK 1.0; Deprecated.)

This class is a subclass of InputStream in which input bytes come from the characters of a specified String object.

This class does not correctly convert the characters of a StringBuffer into bytes, and is deprecated in Java 1.1. Use
StringReader instead to correctly convert characters into bytes, or use ByteArrayInputStream to read bytes from
an array of bytes.

public class StringBufferInputStream extends InputStream {
 // Public Constructor
 public StringBufferInputStream(String s);
 // Protected Instance Variables
 protected String buffer;
 protected int count;
 protected int pos;
 // Public Instance Methods
 public synchronized int available(); // Overrides InputStream
 public synchronized int read(); // Defines InputStream
 public synchronized int read(byte[] b, int off, int len); // Overrides
InputStream
 public synchronized void reset(); // Overrides InputStream
 public synchronized long skip(long n); // Overrides InputStream
}

Hierarchy:

Object->InputStream->StringBufferInputStream

java.io.StreamTokenizer (JDK
1.0)

java.io.StringReader (JDK
1.1)

Chapter 23
The java.beans Package

23.23 java.beans.Visibility (JDK 1.1)

This interface is intended to be implemented by advanced beans that may run either with or without a
GUI (graphical user interface) present. The methods it defines allow a bean to specify whether it requires
a GUI and allows the environment to notify the bean whether a GUI is available.

If a bean absolutely requires a GUI, it should return true from needsGui(). If a bean is running
without a GUI, it should return true from avoidingGui(). If no GUI is available, the bean may be
notified through a call to dontUseGui(), and if a GUI is available, the bean may be notified through a
call to okToUseGui().

public abstract interface Visibility {
 // Public Instance Methods
 public abstract boolean avoidingGui();
 public abstract void dontUseGui();
 public abstract boolean needsGui();
 public abstract void okToUseGui();
}

java.beans.VetoableChangeSupport
(JDK 1.1)

The java.io Package

Chapter 23

23. The java.beans Package
Contents:
java.beans.BeanInfo (JDK 1.1)
java.beans.Beans (JDK 1.1)
java.beans.Customizer (JDK 1.1)
java.beans.EventSetDescriptor (JDK 1.1)
java.beans.FeatureDescriptor (JDK 1.1)
java.beans.IndexedPropertyDescriptor (JDK 1.1)
java.beans.IntrospectionException (JDK 1.1)
java.beans.Introspector (JDK 1.1)
java.beans.MethodDescriptor (JDK 1.1)
java.beans.ParameterDescriptor (JDK 1.1)
java.beans.PropertyChangeEvent (JDK 1.1)
java.beans.PropertyChangeListener (JDK 1.1)
java.beans.PropertyChangeSupport (JDK 1.1)
java.beans.PropertyDescriptor (JDK 1.1)
java.beans.PropertyEditor (JDK 1.1)
java.beans.PropertyEditorManager (JDK 1.1)
java.beans.PropertyEditorSupport (JDK 1.1)
java.beans.PropertyVetoException (JDK 1.1)
java.beans.SimpleBeanInfo (JDK 1.1)
java.beans.VetoableChangeListener (JDK 1.1)
java.beans.VetoableChangeSupport (JDK 1.1)
java.beans.Visibility (JDK 1.1)

The java.beans package contains the classes and interfaces that constitute the JavaBeans API. It is new in
Java 1.1. Figure 23.1 shows the class hierarchy for this package.

The classes and interfaces in this package are useful to programmers who are developing "beanbox" tools to
manipulate beans, and to programmers who are writing their own beans. Programmers who are building

applications using beans do not have to be familiar with java.beans. See Chapter 10, Java Beans for more
details on writing custom beans.

Figure 23.1: The java.beans package

23.1 java.beans.BeanDescriptor (JDK 1.1)

A BeanDescriptor object is a type of FeatureDescriptor that describes a Java bean. The
BeanInfo class for a Java bean optionally creates and initializes a BeanDescriptor object to describe
the bean. Typically, only application builders and similar tools use the BeanDescriptor.

To create a BeanDescriptor, you must specify the class of the bean, and optionally, the class of a
Customizer for the bean. You can use the methods of FeatureDescriptor to provide additional

information about the bean.

public class BeanDescriptor extends FeatureDescriptor {
 // Public Constructors
 public BeanDescriptor(Class beanClass);
 public BeanDescriptor(Class beanClass, Class customizerClass);
 // Public Instance Methods
 public Class getBeanClass();
 public Class getCustomizerClass();
}

Hierarchy:

Object->FeatureDescriptor->BeanDescriptor

Returned By:

BeanInfo.getBeanDescriptor(), SimpleBeanInfo.getBeanDescriptor()

java.awt.peer.WindowPeer
(JDK 1.0)

java.beans.BeanInfo (JDK
1.1)

Chapter 18
The java.awt Package

18.60 java.awt.Toolkit (JDK 1.0)

This abstract class defines methods that, when implemented, create platform-dependent "peers" for each of the java.awt
Component types. Java supports its platform-independent GUI interface by implementing a subclass of Toolkit for each
platform. Portable programs should never use these methods to create peers directly--they should use the Component classes
themselves. A Toolkit object cannot be instantiated directly. Component.getToolkit() returns the Toolkit being
used for a particular component.

The Toolkit class defines a few methods that you can use directly: the static method getDefaultToolkit() returns the
default Toolkit that is in use. getScreenSize() returns the screen size in pixels, and getScreenResolution()
returns the resolution in dots-per-inch. getFontList() returns the names of supported fonts. sync() flushes all pending
graphics output, which can be useful for animation. In Java 1.1, getPrintJob(), getSystemClipboard(), and
getSystemEventQueue() are also of interest.

public abstract class Toolkit extends Object {
 // Default Constructor: public Toolkit()
 // Class Methods
 public static synchronized Toolkit getDefaultToolkit();
 1.1 protected static Container getNativeContainer(Component c);
 1.1 public static String getProperty(String key, String defaultValue);
 // Public Instance Methods
 1.1 public abstract void beep();
 public abstract int checkImage(Image image, int width, int height,
ImageObserver observer);
 public abstract Image createImage(ImageProducer producer);
 1.1 public Image createImage(byte[] imagedata);
 1.1 public abstract Image createImage(byte[] imagedata, int imageoffset, int
imagelength);
 public abstract ColorModel getColorModel();
 public abstract String[] getFontList();
 public abstract FontMetrics getFontMetrics(Font font);
 public abstract Image getImage(String filename);
 public abstract Image getImage(URL url);
 1.1 public int getMenuShortcutKeyMask();
 1.1 public abstract PrintJob getPrintJob(Frame frame, String jobtitle,
Properties props);
 public abstract int getScreenResolution();
 public abstract Dimension getScreenSize();
 1.1 public abstract Clipboard getSystemClipboard();
 1.1 public final EventQueue getSystemEventQueue();
 public abstract boolean prepareImage(Image image, int width, int height,

ImageObserver observer);
 public abstract void sync();
 // Protected Instance Methods
 protected abstract ButtonPeer createButton(Button target);
 protected abstract CanvasPeer createCanvas(Canvas target);
 protected abstract CheckboxPeer createCheckbox(Checkbox target);
 protected abstract CheckboxMenuItemPeer
createCheckboxMenuItem(CheckboxMenuItem target);
 protected abstract ChoicePeer createChoice(Choice target);
 1.1 protected LightweightPeer createComponent(Component target);
 protected abstract DialogPeer createDialog(Dialog target);
 protected abstract FileDialogPeer createFileDialog(FileDialog target);
 protected abstract FramePeer createFrame(Frame target);
 protected abstract LabelPeer createLabel(Label target);
 protected abstract ListPeer createList(List target);
 protected abstract MenuPeer createMenu(Menu target);
 protected abstract MenuBarPeer createMenuBar(MenuBar target);
 protected abstract MenuItemPeer createMenuItem(MenuItem target);
 protected abstract PanelPeer createPanel(Panel target);
 1.1 protected abstract PopupMenuPeer createPopupMenu(PopupMenu target);
 1.1 protected abstract ScrollPanePeer createScrollPane(ScrollPane target);
 protected abstract ScrollbarPeer createScrollbar(Scrollbar target);
 protected abstract TextAreaPeer createTextArea(TextArea target);
 protected abstract TextFieldPeer createTextField(TextField target);
 protected abstract WindowPeer createWindow(Window target);
 1.1 protected abstract FontPeer getFontPeer(String name, int style);
 1.1 protected abstract EventQueue getSystemEventQueueImpl();
 1.1 protected void loadSystemColors(int[] systemColors);
}

Returned By:

Component.getToolkit(), ComponentPeer.getToolkit(), Toolkit.getDefaultToolkit(),
Window.getToolkit()

java.awt.TextField (JDK 1.0) java.awt.Window (JDK 1.0)

Chapter 22
The java.awt.peer Package

22.7 java.awt.peer.ContainerPeer (JDK 1.0)

public abstract interface ContainerPeer extends ComponentPeer {
 // Public Instance Methods
 1.1 public abstract void beginValidate();
 1.1 public abstract void endValidate();
 1.1 public abstract Insets getInsets();
 public abstract Insets insets();
}

Extended By:

PanelPeer, ScrollPanePeer, WindowPeer

java.awt.peer.ComponentPeer
(JDK 1.0)

java.awt.peer.DialogPeer
(JDK 1.0)

Chapter 31
The java.util.zip Package

31.7 java.util.zip.Deflater (JDK 1.1)

This class implements the general ZLIB data compression algorithm used by the gzip and PKZip compression
programs. The constants defined by this class are used to specify the compression strategy to be used and the
compression speed/strength trade-off level to be used. If you set the nowrap argument to the constructor to true, then
the ZLIB header and checksum data are omitted from the compressed output, which is the format that both gzip and
PKZip use.

The important methods of this class are setInput(), which specifies input data to be compressed, and deflate(),
which compresses the data and returns the compressed output. The remaining methods exist so that Deflater can be
used for stream-based compression, as it is in higher-level classes such as GZIPOutputStream and
ZipOutputStream. These stream classes are sufficient in most cases. Most applications do not need to use
Deflater directly.

The Inflater class uncompresses data compressed with a Deflater object.

public class Deflater extends Object {
 // Public Constructors
 public Deflater(int level, boolean nowrap);
 public Deflater(int level);
 public Deflater();
 // Constants
 public static final int BEST_COMPRESSION;
 public static final int BEST_SPEED;
 public static final int DEFAULT_COMPRESSION;
 public static final int DEFAULT_STRATEGY;
 public static final int DEFLATED;
 public static final int FILTERED;
 public static final int HUFFMAN_ONLY;
 public static final int NO_COMPRESSION;
 // Public Instance Methods
 public synchronized native int deflate(byte[] b, int off, int len);
 public int deflate(byte[] b);
 public synchronized native void end();
 public synchronized void finish();
 public synchronized boolean finished();
 public synchronized native int getAdler();
 public synchronized native int getTotalIn();

 public synchronized native int getTotalOut();
 public boolean needsInput();
 public synchronized native void reset();
 public synchronized native void setDictionary(byte[] b, int off, int
len);
 public void setDictionary(byte[] b);
 public synchronized void setInput(byte[] b, int off, int len);
 public void setInput(byte[] b);
 public synchronized void setLevel(int Level);
 public synchronized void setStrategy(int strategy);
 // Protected Instance Methods
 protected void finalize(); // Overrides Object
}

Passed To:

DeflaterOutputStream()

Type Of:

DeflaterOutputStream.def

java.util.zip.DataFormatException
(JDK 1.1)

java.util.zip.DeflaterOutputStream
(JDK 1.1)

Chapter 28
The java.net Package

28.7 java.net.DatagramSocketImpl (JDK 1.1)

This abstract class defines the methods necessary to implement communication through datagram and multicast sockets.
System programmers may create subclasses of this class when they need to implement datagram or multicast sockets in a
nonstandard network environment, such as behind a firewall or on a network that uses a nonstandard transport protocol.

Normal applications never need to use or subclass this class.

public abstract class DatagramSocketImpl extends Object {
 // Default Constructor: public DatagramSocketImpl()
 // Protected Instance Variables
 protected FileDescriptor fd;
 protected int localPort;
 // Protected Instance Methods
 protected abstract void bind(int lport, InetAddress laddr) throws
SocketException;
 protected abstract void close();
 protected abstract void create() throws SocketException;
 protected FileDescriptor getFileDescriptor();
 protected int getLocalPort();
 protected abstract byte getTTL() throws IOException;
 protected abstract void join(InetAddress inetaddr) throws IOException;
 protected abstract void leave(InetAddress inetaddr) throws IOException;
 protected abstract int peek(InetAddress i) throws IOException;
 protected abstract void receive(DatagramPacket p) throws IOException;
 protected abstract void send(DatagramPacket p) throws IOException;
 protected abstract void setTTL(byte ttl) throws IOException;
}

java.net.DatagramSocket
(JDK 1.0)

java.net.FileNameMap (JDK
1.1)

Chapter 28

28. The java.net Package
Contents:
java.net.ConnectException (JDK 1.1)
java.net.ContentHandler (JDK 1.0)
java.net.ContentHandlerFactory (JDK 1.0)
java.net.DatagramPacket (JDK 1.0)
java.net.DatagramSocket (JDK 1.0)
java.net.DatagramSocketImpl (JDK 1.1)
java.net.FileNameMap (JDK 1.1)
java.net.HttpURLConnection (JDK 1.1)
java.net.InetAddress (JDK 1.0)
java.net.MalformedURLException (JDK 1.0)
java.net.MulticastSocket (JDK 1.1)
java.net.NoRouteToHostException (JDK 1.1)
java.net.ProtocolException (JDK 1.0)
java.net.ServerSocket (JDK 1.0)
java.net.Socket (JDK 1.0)
java.net.SocketException (JDK 1.0)
java.net.SocketImpl (JDK 1.0)
java.net.SocketImplFactory (JDK 1.0)
java.net.UnknownHostException (JDK 1.0)
java.net.UnknownServiceException (JDK 1.0)
java.net.URL (JDK 1.0)
java.net.URLConnection (JDK 1.0)
java.net.URLEncoder (JDK 1.0)
java.net.URLStreamHandler (JDK 1.0)
java.net.URLStreamHandlerFactory (JDK 1.0)

The java.net package provides a powerful and flexible infrastructure for networking. Figure 28.1
shows the class hierarchy for this package. Many of the classes in this package are part of the networking
infrastructure and are not used by normal applications; these complicated classes can make the package a
difficult one to understand. In this overview we describe only the classes that an application might
normally use.

Figure 28.1: The java.net package

The URL class represents an Internet Uniform Resource Locator. It provides a very simple interface to

networking--the object referred to by the URL can be downloaded with a single call, or streams may be
opened to read from or write to the object.

At a slightly more complex level, the URLConnection object may be obtained from a given URL
object. The URLConnection class provides additional methods that allow you to work with URLs in
more sophisticated ways.

If you want to do more than simply download an object referenced by a URL, you can do your own
networking with the Socket class. This class allows you to connect to a specified port on a specified
Internet host and read and write data using the InputStream and OutputStream classes of the
java.io package. If you want to implement a server to accept connections from clients, you can use
the related ServerSocket class. Both Socket and ServerSocket use the InetAddress
address class, which represents an Internet address.

The java.net package allows you to do low-level networking with DatagramPacket objects
which may be sent and received over the network through a DatagramSocket object. In Java 1.1, the
package has been extended to include a MulticastSocket class that supports multicast networking.

28.1 java.net.BindException (JDK 1.1)

This exception signals that a socket could not be bound to a local address and port. This often means that
the port is already in use.

public class BindException extends SocketException {
 // Public Constructors
 public BindException(String msg);
 public BindException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->SocketException->BindException

java.math.BigInteger (JDK
1.1)

java.net.ConnectException
(JDK 1.1)

Chapter 18
The java.awt Package

18.14 java.awt.Color (JDK 1.0)

The Color object describes a color. The Color() constructors describe a color as red, green, and blue components
between 0 and 255, or as floating-point values between 0.0 and 1.0. The class method Color.getHSBColor()
creates a color using the hue/saturation/brightness color model.

brighter() and darker() are useful methods to create shading effects. The getColor() methods look up a
color name in the properties database and convert the resulting integer color value into a Color object. Two of these
methods provide a default value to be used in case the specified color name is not found.

public class Color extends Object implements Serializable {
 // Public Constructors
 public Color(int r, int g, int b);
 public Color(int rgb);
 public Color(float r, float g, float b);
 // Constants
 public static final Color black;
 public static final Color blue;
 public static final Color cyan;
 public static final Color darkGray;
 public static final Color gray;
 public static final Color green;
 public static final Color lightGray;
 public static final Color magenta;
 public static final Color orange;
 public static final Color pink;
 public static final Color red;
 public static final Color white;
 public static final Color yellow;
 // Class Methods
 public static int HSBtoRGB(float hue, float saturation, float
brightness);
 public static float[] RGBtoHSB(int r, int g, int b, float[] hsbvals);
 1.1 public static Color decode(String nm) throws NumberFormatException;
 public static Color getColor(String nm);
 public static Color getColor(String nm, Color v);
 public static Color getColor(String nm, int v);
 public static Color getHSBColor(float h, float s, float b);
 // Public Instance Methods

 public Color brighter();
 public Color darker();
 public boolean equals(Object obj); // Overrides Object
 public int getBlue();
 public int getGreen();
 public int getRGB();
 public int getRed();
 public int hashCode(); // Overrides Object
 public String toString(); // Overrides Object
}

Extended By:

SystemColor

Passed To:

Color.getColor(), Component.setBackground(), Component.setForeground(),
ComponentPeer.setBackground(), ComponentPeer.setForeground(),
Graphics.drawImage(), Graphics.setColor(), Graphics.setXORMode()

Returned By:

Color.brighter(), Color.darker(), Color.decode(), Color.getColor(),
Color.getHSBColor(), Component.getBackground(), Component.getForeground(),
Graphics.getColor()

Type Of:

Color.black, Color.blue, Color.cyan, Color.darkGray, Color.gray, Color.green,
Color.lightGray, Color.magenta, Color.orange, Color.pink, Color.red, Color.white,
Color.yellow

java.awt.Choice (JDK 1.0) java.awt.Component (JDK
1.0)

Chapter 18
The java.awt Package

18.24 java.awt.Font (JDK 1.0)

This class represents a font in a platform-independent way. The constructor accepts a font name, style,
and point size. In Java 1.0, supported font names are: "TimesRoman," "Helvetica," "Courier," "Dialog,"
and "DialogInput." In Java 1.1, "Serif," "SansSerif," and "Monospaced" should be used in preference to
the first three names. The style may be one of the constants PLAIN, BOLD, or ITALIC, or the sum
BOLD+ITALIC.

The class method getFont() looks up the specified name in the system properties list and returns the
font specified as the value of that property. It takes an optional Font default to use if the named font
property is not found. This allows user customizability.

Use the FontMetrics class if you need to know how tall a font is or how wide a string drawn using
that font will be.

public class Font extends Object implements Serializable {
 // Public Constructor
 public Font(String name, int style, int size);
 // Constants
 public static final int BOLD;
 public static final int ITALIC;
 public static final int PLAIN;
 // Protected Instance Variables
 protected String name;
 protected int size;
 protected int style;
 // Class Methods
 1.1 public static Font decode(String str);
 public static Font getFont(String nm);
 public static Font getFont(String nm, Font font);
 // Public Instance Methods
 public boolean equals(Object obj); // Overrides Object

 public String getFamily();
 public String getName();
 1.1 public FontPeer getPeer();
 public int getSize();
 public int getStyle();
 public int hashCode(); // Overrides Object
 public boolean isBold();
 public boolean isItalic();
 public boolean isPlain();
 public String toString(); // Overrides Object
}

Passed To:

Component.getFontMetrics(), Component.setFont(),
ComponentPeer.getFontMetrics(), ComponentPeer.setFont(),
Font.getFont(), FontMetrics(), Graphics.getFontMetrics(),
Graphics.setFont(), MenuComponent.setFont(), Toolkit.getFontMetrics()

Returned By:

Component.getFont(), Font.decode(), Font.getFont(),
FontMetrics.getFont(), Graphics.getFont(), MenuComponent.getFont(),
MenuContainer.getFont()

Type Of:

FontMetrics.font

java.awt.FlowLayout (JDK
1.0)

java.awt.FontMetrics (JDK
1.0)

Chapter 25
The java.lang Package

25.5 java.lang.Boolean (JDK 1.0)

This class provides an immutable object wrapper around the boolean primitive type. Note that the
TRUE and FALSE constants are Boolean objects; they are not the same as the true and false
boolean values. In Java 1.1, this class defines a Class constant that represents the boolean type.

booleanValue() returns the boolean value of a Boolean object. The class method
getBoolean() retrieves the boolean value of a named property from the system property list. The
class method valueOf() parses a string and returns the Boolean value it represents.

public final class Boolean extends Object implements Serializable {
 // Public Constructors
 public Boolean(boolean value);
 public Boolean(String s);
 // Constants
 public static final Boolean FALSE;
 public static final Boolean TRUE;
 1.1public static final Class TYPE;
 // Class Methods
 public static boolean getBoolean(String name);
 public static Boolean valueOf(String s);
 // Public Instance Methods
 public boolean booleanValue();
 public boolean equals(Object obj); // Overrides Object
 public int hashCode(); // Overrides Object
 public String toString(); // Overrides Object
}

Returned By:

Boolean.valueOf()

Type Of:

Boolean.FALSE, Boolean.TRUE

java.lang.ArrayStoreException
(JDK 1.0)

java.lang.Byte (JDK 1.1)

Chapter 18
The java.awt Package

18.33 java.awt.Insets (JDK 1.0)

This class holds four values that represent the top, left, bottom, and right margins, in pixels, of a
Container or other Component. Objects of this type may be specified in a GridBagConstraints
layout object, and are returned by Container.insets(), which queries the margins of a container.

public class Insets extends Object implements Cloneable, Serializable {
 // Public Constructor
 public Insets(int top, int left, int bottom, int right);
 // Public Instance Variables
 public int bottom;
 public int left;
 public int right;
 public int top;
 // Public Instance Methods
 public Object clone(); // Overrides Object
 1.1 public boolean equals(Object obj); // Overrides Object
 public String toString(); // Overrides Object
}

Returned By:

Container.getInsets(), Container.insets(), ContainerPeer.getInsets(),
ContainerPeer.insets()

Type Of:

GridBagConstraints.insets

java.awt.Image (JDK 1.0) java.awt.ItemSelectable (JDK
1.1)

Chapter 29

29. The java.text Package
Contents:
java.text.CharacterIterator (JDK 1.1)
java.text.ChoiceFormat (JDK 1.1)
java.text.CollationElementIterator (JDK 1.1)
java.text.CollationKey (JDK 1.1)
java.text.Collator (JDK 1.1)
java.text.DateFormat (JDK 1.1)
java.text.DateFormatSymbols (JDK 1.1)
java.text.DecimalFormat (JDK 1.1)
java.text.DecimalFormatSymbols (JDK 1.1)
java.text.FieldPosition (JDK 1.1)
java.text.Format (JDK 1.1)
java.text.MessageFormat (JDK 1.1)
java.text.NumberFormat (JDK 1.1)
java.text.ParseException (JDK 1.1)
java.text.ParsePosition (JDK 1.1)
java.text.RuleBasedCollator (JDK 1.1)
java.text.SimpleDateFormat (JDK 1.1)
java.text.StringCharacterIterator (JDK 1.1)

The java.text package consists of classes and interfaces that are useful for writing internationalized programs that handle
local customs, such as date and time formatting and string alphabetization, correctly. This package is new in Java 1.1. Figure
29.1 shows its class hierarchy.

The NumberFormat class formats numbers, monetary quantities, and percentages as appropriate for the default or specified
locale. DateFormat formats dates and times in a locale-specific way. The concrete DecimalFormat and
SimpleDateFormat subclasses of these classes can be used for customized number, date, and time formatting.
MessageFormat allows substitution of dynamic values, including formatted numbers and dates, into static message strings.
ChoiceFormat formats a number using an enumerated set of string values. Collator compares strings according to the
customary sorting order for a locale. BreakIterator scans text to find word, line, and sentence boundaries following
locale-specfic rules.

Figure 29.1: The java.text package

29.1 java.text.BreakIterator (JDK 1.1)

This class is used to determine character, word, sentence, and line breaks in a block of text in a way that is independent of
locale and text-encoding. As an abstract class, BreakIterator cannot be instantiated directly. Instead, you must use one of
the class methods getCharacterInstance(), getWordInstance(), getSentenceInstance(), or
getLineInstance() to return an instance of a nonabstract subclass of BreakIterator. These various "factory"
methods return a BreakIterator object that is configured to locate the requested boundary types, and is localized to work
for the optionally specified locale.

Once you have obtained an appropriate BreakIterator object, you use setText() to specify the text that it is to locate
boundaries in. To locate boundaries in a Java String object, simply specify the string. To locate boundaries in text that uses
some other encoding, you must specify a CharacterIterator object for that text so that the BreakIterator object
can locate the individual characters of the text.

Having set the text to be searched, you can determine the character positions of characters, words, sentences, or line breaks
with the first(), last(), next(), previous(), current(), and following() methods, which perform the
obvious functions. Note that these methods do not return text itself, but merely the position of the appropriate word, sentence,
or line break.

public abstract class BreakIterator extends Object implements Cloneable, Serializable
{
 // Protected Constructor
 protected BreakIterator();
 // Constants
 public static final int DONE;

 // Class Methods
 public static synchronized Locale[] getAvailableLocales();
 public static BreakIterator getCharacterInstance();
 public static BreakIterator getCharacterInstance(Locale where);
 public static BreakIterator getLineInstance();
 public static BreakIterator getLineInstance(Locale where);
 public static BreakIterator getSentenceInstance();
 public static BreakIterator getSentenceInstance(Locale where);
 public static BreakIterator getWordInstance();
 public static BreakIterator getWordInstance(Locale where);
 // Public Instance Methods
 public Object clone(); // Overrides Object
 public abstract int current();
 public abstract int first();
 public abstract int following(int offset);
 public abstract CharacterIterator getText();
 public abstract int last();
 public abstract int next(int n);
 public abstract int next();
 public abstract int previous();
 public void setText(String newText);
 public abstract void setText(CharacterIterator newText);
}

Returned By:

BreakIterator.getCharacterInstance(), BreakIterator.getLineInstance(), BreakIterator.getSentenceInstance(),
BreakIterator.getWordInstance()

java.net.URLStreamHandlerFactory
(JDK 1.0)

java.text.CharacterIterator
(JDK 1.1)

Chapter 24
The java.io Package

24.2 java.io.BufferedOutputStream (JDK 1.0)

This class is a FilterOutputStream that provides output data buffering--output efficiency is increased by storing
values to be written in a buffer and actually writing them out only when the buffer fills up or when the flush() method is
called. Create a BufferedOutputStream by specifying the OutputStream that is to have buffering applied in the
call to the constructor. See also BufferedWriter.

public class BufferedOutputStream extends FilterOutputStream {
 // Public Constructors
 public BufferedOutputStream(OutputStream out);
 public BufferedOutputStream(OutputStream out, int size);
 // Protected Instance Variables
 protected byte[] buf;
 protected int count;
 // Public Instance Methods
 public synchronized void flush() throws IOException; // Overrides
FilterOutputStream
 public synchronized void write(int b) throws IOException; // Overrides
FilterOutputStream
 public synchronized void write(byte[] b, int off, int len) throws
IOException; // Overrides FilterOutputStream
}

Hierarchy:

Object->OutputStream->FilterOutputStream->BufferedOutputStream

java.io.BufferedInputStream
(JDK 1.0)

java.io.BufferedReader (JDK
1.1)

Chapter 24
The java.io Package

24.6 java.io.ByteArrayOutputStream (JDK 1.0)

This class is a subclass of OutputStream in which data that are written are stored in an internal byte array. The internal
array grows as necessary, and can be retrieved with toByteArray() or toString(). The reset() method discards any
data currently stored in the internal array and begins storing data from the beginning again. See also CharArrayWriter.

public class ByteArrayOutputStream extends OutputStream {
 // Public Constructors
 public ByteArrayOutputStream();
 public ByteArrayOutputStream(int size);
 // Protected Instance Variables
 protected byte[] buf;
 protected int count;
 // Public Instance Methods
 public synchronized void reset();
 public int size();
 public synchronized byte[] toByteArray();
 public String toString(); // Overrides Object
 1.1 public String toString(String enc) throws UnsupportedEncodingException;
 # public String toString(int hibyte);
 public synchronized void write(int b); // Defines OutputStream
 public synchronized void write(byte[] b, int off, int len); // Overrides
OutputStream
 public synchronized void writeTo(OutputStream out) throws IOException;
}

Hierarchy:

Object->OutputStream->ByteArrayOutputStream

java.io.ByteArrayInputStream
(JDK 1.0)

java.io.CharArrayReader
(JDK 1.1)

Chapter 24
The java.io Package

24.7 java.io.CharArrayReader (JDK 1.1)

This class is a character input stream that uses a character array as the source of the characters it returns. You create a
CharArrayReader by specifying the character array, or portion of an array, that it is to read from.

CharArrayReader defines the usual Reader methods, and supports the mark() and reset() methods.

Note that the character array you pass to the CharArrayReader is not copied by this class. This means that changes
you make to the elements of the array after you create the input stream do affect the values read from the array.

CharArrayReader() is the character-array analog of ByteArrayInputStream, and is similar to
StringReader.

public class CharArrayReader extends Reader {
 // Public Constructors
 public CharArrayReader(char[] buf);
 public CharArrayReader(char[] buf, int offset, int length);
 // Protected Instance Variables
 protected char[] buf;
 protected int count;
 protected int markedPos;
 protected int pos;
 // Public Instance Methods
 public void close(); // Defines Reader
 public void mark(int readAheadLimit) throws IOException; // Overrides
Reader
 public boolean markSupported(); // Overrides Reader
 public int read() throws IOException; // Overrides Reader
 public int read(char[] b, int off, int len) throws IOException; //
Defines Reader
 public boolean ready() throws IOException; // Overrides Reader
 public void reset() throws IOException; // Overrides Reader
 public long skip(long n) throws IOException; // Overrides Reader
}

Hierarchy:

Object->Reader->CharArrayReader

java.io.ByteArrayOutputStream
(JDK 1.0)

java.io.CharArrayWriter
(JDK 1.1)

Chapter 24
The java.io Package

24.8 java.io.CharArrayWriter (JDK 1.1)

This class is a character output stream that uses an internal character array as the destination of characters written to it.
When you create a CharArrayWriter, you may optionally specify an initial size for the character array, but you do
not specify the character array itself--this array is managed internally by the CharArrayWriter, and grows as
necessary to accommodate all the characters written to it. The toString() and toCharArray() methods return a
copy of all characters written to the stream, either as a string or as an array of characters.

CharArrayWriter defines the standard write(), flush(), and close() methods that all Writer subclasses
do. It also defines a few other useful methods. size() returns the number of characters that have been written to the
stream. reset() resets the stream to its initial state, with an empty character array; this is more efficient than creating a
new CharArrayWriter. Finally, writeTo() writes the contents of the internal character array to some other
specified character stream.

CharArrayWriter is the character-stream analog of ByteArrayOutputStream, and is quite similar to
StringWriter.

public class CharArrayWriter extends Writer {
 // Public Constructors
 public CharArrayWriter();
 public CharArrayWriter(int initialSize);
 // Protected Instance Variables
 protected char[] buf;
 protected int count;
 // Public Instance Methods
 public void close(); // Defines Writer
 public void flush(); // Defines Writer
 public void reset();
 public int size();
 public char[] toCharArray();
 public String toString(); // Overrides Object
 public void write(int c); // Overrides Writer
 public void write(char[] c, int off, int len); // Defines Writer
 public void write(String str, int off, int len); // Overrides Writer
 public void writeTo(Writer out) throws IOException;
}

Hierarchy:

Object->Writer->CharArrayWriter

java.io.CharArrayReader
(JDK 1.1)

java.io.CharConversionException
(JDK 1.1)

Chapter 31
The java.util.zip Package

31.8 java.util.zip.DeflaterOutputStream (JDK 1.1)

This class is a subclass of java.io.FilterOutputStream; it "filters" a stream of data by compressing ("deflating") it
and then writes the compressed data to another output stream. To create a DeflaterOutputStream, you must specify
the stream that it is to write to, and also a Deflater object that is to perform the compression. You can set various options
on the Deflater object to specify just what type of compression is to be performed. Once a DeflaterOutputStream
is created, its write() and close() methods are the same as those of other output streams.

The InflaterInputStream class can be used to read data written with the DeflaterOutputStream.

Note that a DeflaterOutputStream writes raw compressed data; applications often prefer one of its subclasses,
GZIPOutputStream or ZipOutputStream, which wraps the raw compressed data within a standard file format.

public class DeflaterOutputStream extends FilterOutputStream {
 // Public Constructors
 public DeflaterOutputStream(OutputStream out, Deflater def, int size);
 public DeflaterOutputStream(OutputStream out, Deflater def);
 public DeflaterOutputStream(OutputStream out);
 // Protected Instance Variables
 protected byte[] buf;
 protected Deflater def;
 // Public Instance Methods
 public void close() throws IOException; // Overrides FilterOutputStream
 public void finish() throws IOException;
 public void write(int b) throws IOException; // Overrides
FilterOutputStream
 public void write(byte[] b, int off, int len) throws IOException; //
Overrides FilterOutputStream
 // Protected Instance Methods
 protected void deflate() throws IOException;
}

Hierarchy:

Object->OutputStream->FilterOutputStream->DeflaterOutputStream

Extended By:

GZIPOutputStream, ZipOutputStream

java.util.zip.Deflater (JDK
1.1)

java.util.zip.GZIPInputStream
(JDK 1.1)

Chapter 31
The java.util.zip Package

31.12 java.util.zip.InflaterInputStream (JDK 1.1)

This class is a subclass of java.io.FilterInputStream; it reads a specified stream of compressed input data
(typically one that was written with DeflaterOutputStream or a subclass) and "filters" that data by uncompressing
("inflating") it. To create an InflaterInputStream, you must specify the input stream it is to read from, and also
an Inflater object that is to perform the uncompresssion. Once an InflaterInputStream is created, the
read() and skip() methods are the same as those of other input streams.

Note that the InflaterInputStream uncompresses raw data. Applications often prefer one of its subclasses,
GZIPInputStream or ZipInputStream, which work with compressed data written in the standard gzip and PKZip
file formats.

public class InflaterInputStream extends FilterInputStream {
 // Public Constructors
 public InflaterInputStream(InputStream in, Inflater inf, int size);
 public InflaterInputStream(InputStream in, Inflater inf);
 public InflaterInputStream(InputStream in);
 // Protected Instance Variables
 protected byte[] buf;
 protected Inflater inf;
 protected int len;
 // Public Instance Methods
 public int read() throws IOException; // Overrides FilterInputStream
 public int read(byte[] b, int off, int len) throws IOException; //
Overrides FilterInputStream
 public long skip(long n) throws IOException; // Overrides
FilterInputStream
 // Protected Instance Methods
 protected void fill() throws IOException;
}

Hierarchy:

Object->InputStream->FilterInputStream->InflaterInputStream

Extended By:

GZIPInputStream, ZipInputStream

java.util.zip.Inflater (JDK 1.1) java.util.zip.ZipEntry (JDK
1.1)

Chapter 22

22. The java.awt.peer Package
Contents:
java.awt.peer.CanvasPeer (JDK 1.0)
java.awt.peer.CheckboxMenuItemPeer (JDK 1.0)
java.awt.peer.CheckboxPeer (JDK 1.0)
java.awt.peer.ChoicePeer (JDK 1.0)
java.awt.peer.ComponentPeer (JDK 1.0)
java.awt.peer.ContainerPeer (JDK 1.0)
java.awt.peer.DialogPeer (JDK 1.0)
java.awt.peer.FileDialogPeer (JDK 1.0)
java.awt.peer.FontPeer (JDK 1.1)
java.awt.peer.FramePeer (JDK 1.0)
java.awt.peer.LabelPeer (JDK 1.0)
java.awt.peer.LightweightPeer (JDK 1.1)
java.awt.peer.ListPeer (JDK 1.0)
java.awt.peer.MenuBarPeer (JDK 1.0)
java.awt.peer.MenuComponentPeer (JDK 1.0)
java.awt.peer.MenuItemPeer (JDK 1.0)
java.awt.peer.MenuPeer (JDK 1.0)
java.awt.peer.PanelPeer (JDK 1.0)
java.awt.peer.PopupMenuPeer (JDK 1.1)
java.awt.peer.ScrollPanePeer (JDK 1.1)
java.awt.peer.ScrollbarPeer (JDK 1.0)
java.awt.peer.TextAreaPeer (JDK 1.0)
java.awt.peer.TextComponentPeer (JDK 1.0)
java.awt.peer.TextFieldPeer (JDK 1.0)
java.awt.peer.WindowPeer (JDK 1.0)

The java.awt.peer package consists entirely of interface definitions. The hierarchy of these
interfaces is shown in Figure 22.1. Each java.awt.peer interface corresponds to one of the
java.awt Component or MenuComponent classes, and as you can see from the figure, the
hierarchy of this package is identical to the hierarchy of those portions of the java.awt package.

The interfaces in this package define the methods that must be supported by the GUI components on a
specific platform. Porting the java.awt GUI components to a new platform is a matter of
implementing each of the methods in each of the interfaces in this package on top of the native GUI
components of that platform. The Toolkit object in the java.awt package collects the
implementations of these peer interfaces for a given platform. Toolkit contains methods that create
instances of each of the interfaces in this package. Normal applications never need to instantiate these
peers directly; instead they use the java.awt Component classes, which create peers as needed.

Because these peer interfaces are rarely used, and because the methods are quite similar to those of the
corresponding java.awt component, there is no additional commentary for the individual interface
definitions below.

Figure 22.1: The java.awt.peer package

22.1 java.awt.peer.ButtonPeer (JDK 1.0)

public abstract interface ButtonPeer extends ComponentPeer {
 // Public Instance Methods
 public abstract void setLabel(String label);
}

Returned By:

Toolkit.createButton()

java.awt.image.ReplicateScaleFilter
(JDK 1.1)

java.awt.peer.CanvasPeer
(JDK 1.0)

Chapter 24
The java.io Package

24.30 java.io.InterruptedIOException (JDK 1.0)

An IOException that signals that an input or output operation was interrupted. The
bytesTransferred variable contains the number of bytes read or written before the operation was
interrupted.

public class InterruptedIOException extends IOException {
 // Public Constructors
 public InterruptedIOException();
 public InterruptedIOException(String s);
 // Public Instance Variables
 public int bytesTransferred;
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->InterruptedIOException

java.io.InputStreamReader
(JDK 1.1)

java.io.InvalidClassException
(JDK 1.1)

Chapter 18
The java.awt Package

18.25 java.awt.FontMetrics (JDK 1.0)

This class represents font metrics for a specified Font. The methods allow you to determine the overall
metrics for the font (ascent, descent, etc.), and also to compute the width of strings that are to be displayed in a
particular font. You can obtain a FontMetrics object for a font with the getFontMetrics() method of
Component or Toolkit.

public abstract class FontMetrics extends Object implements Serializable {
 // Protected Constructor
 protected FontMetrics(Font font);
 // Protected Instance Variables
 protected Font font;
 // Public Instance Methods
 public int bytesWidth(byte[] data, int off, int len);
 public int charWidth(int ch);
 public int charWidth(char ch);
 public int charsWidth(char[] data, int off, int len);
 public int getAscent();
 public int getDescent();
 public Font getFont();
 public int getHeight();
 public int getLeading();
 public int getMaxAdvance();
 public int getMaxAscent();
 # public int getMaxDecent();
 public int getMaxDescent();
 public int[] getWidths();
 public int stringWidth(String str);
 public String toString(); // Overrides Object
}

Returned By:

Component.getFontMetrics(), ComponentPeer.getFontMetrics(),

Graphics.getFontMetrics(), Toolkit.getFontMetrics()

java.awt.Font (JDK 1.0) java.awt.Frame (JDK 1.0)

Chapter 25
The java.lang Package

25.6 java.lang.Byte (JDK 1.1)

This class provides an object wrapper around the byte primitive type. It defines useful constants for the minimum and
maximum values that can be stored by the byte type, and also a Class object constant that represents the byte type.
It also provides various methods for converting Byte values to and from strings and other numeric types.

Most of the static methods of this class are used to convert a String to a Byte object or a byte value: the four
parseByte() and valueOf() methods parse a number from the specified string, using an optionally specified
radix, and return it in one of these two forms. The decode() method parses a byte specified in base 10, base 8, or
base 16 and returns it as a Byte. If the string begins with "0x" or "#", it is interpreted as a hexadecimal number. If it
begins with "0", it is interpreted as an octal number. Otherwise, it is interpreted as a decimal number.

Note that this class has two different toString() methods. One is static and converts a byte primitive value to a
String. The other is the usual toString() method that converts a Byte object to a string. Most of the remaining
methods convert a Byte to various primitive numeric types.

public final class Byte extends Number {
 // Public Constructors
 public Byte(byte value);
 public Byte(String s) throws NumberFormatException;
 // Constants
 public static final byte MAX_VALUE;
 public static final byte MIN_VALUE;
 public static final Class TYPE;
 // Class Methods
 public static Byte decode(String nm) throws NumberFormatException;
 public static byte parseByte(String s) throws NumberFormatException;
 public static byte parseByte(String s, int radix) throws
NumberFormatException;
 public static String toString(byte b);
 public static Byte valueOf(String s, int radix) throws
NumberFormatException;
 public static Byte valueOf(String s) throws NumberFormatException;
 // Public Instance Methods
 public byte byteValue(); // Overrides Number
 public double doubleValue(); // Defines Number
 public boolean equals(Object obj); // Overrides Object
 public float floatValue(); // Defines Number

 public int hashCode(); // Overrides Object
 public int intValue(); // Defines Number
 public long longValue(); // Defines Number
 public short shortValue(); // Overrides Number
 public String toString(); // Overrides Object
}

Hierarchy:

Object->Number(Serializable)->Byte

Returned By:

Byte.decode(), Byte.valueOf()

java.lang.Boolean (JDK 1.0) java.lang.Character (JDK 1.0)

Chapter 25
The java.lang Package

25.17 java.lang.Double (JDK 1.0)

This class provides an immutable object wrapper around the double primitive data type. valueOf() converts a
string to a Double, doubleValue() returns the primitive double value of a Double object, and there are other
methods for returning a Double value as a variety of other primitive types.

This class also provides some useful constants and static methods for testing double values. MIN_VALUE and
MAX_VALUE are the smallest (closest to zero) and largest representable double values. isInfinite() in class
method and instance method forms tests whether a double or a Double has an infinite value. Similarly, isNaN()
tests whether a double or Double is not-a-number--this is a comparison that cannot be done directly because the
NaN constant never tests equal to any other value, including itself. doubleToLongBits() and
longBitsToDouble() allow you to manipulate the bit representation of a double directly.

public final class Double extends Number {
 // Public Constructors
 public Double(double value);
 public Double(String s) throws NumberFormatException;
 // Constants
 public static final double MAX_VALUE;
 public static final double MIN_VALUE;
 public static final double NEGATIVE_INFINITY;
 public static final double NaN;
 public static final double POSITIVE_INFINITY;
 1.1public static final Class TYPE;
 // Class Methods
 public static native long doubleToLongBits(double value);
 public static boolean isInfinite(double v);
 public static boolean isNaN(double v);
 public static native double longBitsToDouble(long bits);
 public static String toString(double d);
 public static Double valueOf(String s) throws NumberFormatException;
 // Public Instance Methods
 1.1public byte byteValue(); // Overrides Number
 public double doubleValue(); // Defines Number
 public boolean equals(Object obj); // Overrides Object
 public float floatValue(); // Defines Number
 public int hashCode(); // Overrides Object
 public int intValue(); // Defines Number

 public boolean isInfinite();
 public boolean isNaN();
 public long longValue(); // Defines Number
 1.1public short shortValue(); // Overrides Number
 public String toString(); // Overrides Object
}

Hierarchy:

Object->Number(Serializable)->Double

Returned By:

Double.valueOf()

java.lang.Compiler (JDK 1.0) java.lang.Error (JDK 1.0)

Chapter 25
The java.lang Package

25.21 java.lang.Float (JDK 1.0)

This class provides an immutable object wrapper around the float primitive data type. valueOf() converts a
string to a Float, floatValue() returns the primitive float value of a Float object, and there are methods
for returning a Float value as a variety of other primitive types.

This class also provides some useful constants and static methods for testing float values. MIN_VALUE and
MAX_VALUE are the smallest (closest to zero) and largest representable double values. isInfinite() in class
method and instance method forms tests whether a float or a Float has an infinite value. Similarly, isNaN()
tests whether a float or Float is not-a-number--this is a comparison that cannot be done directly because the NaN
constant never tests equal to any other value, including itself. floatToIntBits() and intBitsToFloat()
allow you to manipulate the bit representation of a float directly.

public final class Float extends Number {
 // Public Constructors
 public Float(float value);
 public Float(double value);
 public Float(String s) throws NumberFormatException;
 // Constants
 public static final float MAX_VALUE;
 public static final float MIN_VALUE;
 public static final float NEGATIVE_INFINITY;
 public static final float NaN;
 public static final float POSITIVE_INFINITY;
 1.1public static final Class TYPE;
 // Class Methods
 public static native int floatToIntBits(float value);
 public static native float intBitsToFloat(int bits);
 public static boolean isInfinite(float v);
 public static boolean isNaN(float v);
 public static String toString(float f);
 public static Float valueOf(String s) throws NumberFormatException;
 // Public Instance Methods
 1.1public byte byteValue(); // Overrides Number
 public double doubleValue(); // Defines Number
 public boolean equals(Object obj); // Overrides Object
 public float floatValue(); // Defines Number

 public int hashCode(); // Overrides Object
 public int intValue(); // Defines Number
 public boolean isInfinite();
 public boolean isNaN();
 public long longValue(); // Defines Number
 1.1public short shortValue(); // Overrides Number
 public String toString(); // Overrides Object
}

Hierarchy:

Object->Number(Serializable)->Float

Returned By:

Float.valueOf()

java.lang.ExceptionInInitializerError
(JDK 1.1)

java.lang.IllegalAccessError
(JDK 1.0)

Chapter 25
The java.lang Package

25.32 java.lang.Integer (JDK 1.0)

This class provides an immutable object wrapper around the int primitive data type. This class also contains useful
minimum and maximum constants and useful conversion methods. parseInt() and valueOf() convert a string to
an int or to an Integer, respectively. Each can take a radix argument to specify the base that the value is represented
in. decode() also converts a String to an Integer. It assumes a hexadecimal number if the string begins with
"0X" or "0x," or an octal number if the string begins with "0". Otherwise, a decimal number is assumed.

toString() converts in the other direction, and the static version takes a radix argument. toBinaryString(),
toOctalString(), and toHexString() convert an int to a string using base 2, base 8, and base 16. These
methods treat the integer as an unsigned value.

Other routines return the value of an Integer as various primitive types, and finally, the getInteger() methods
return the integer value of a named property from the system property list or the specified default value.

public final class Integer extends Number {
 // Public Constructors
 public Integer(int value);
 public Integer(String s) throws NumberFormatException;
 // Constants
 public static final int MAX_VALUE;
 public static final int MIN_VALUE;
 1.1public static final Class TYPE;
 // Class Methods
 1.1public static Integer decode(String nm) throws NumberFormatException;
 public static Integer getInteger(String nm);
 public static Integer getInteger(String nm, int val);
 public static Integer getInteger(String nm, Integer val);
 public static int parseInt(String s, int radix) throws
NumberFormatException;
 public static int parseInt(String s) throws NumberFormatException;
 public static String toBinaryString(int i);
 public static String toHexString(int i);
 public static String toOctalString(int i);
 public static String toString(int i, int radix);
 public static String toString(int i);
 public static Integer valueOf(String s, int radix) throws
NumberFormatException;

 public static Integer valueOf(String s) throws NumberFormatException;
 // Public Instance Methods
 1.1public byte byteValue(); // Overrides Number
 public double doubleValue(); // Defines Number
 public boolean equals(Object obj); // Overrides Object
 public float floatValue(); // Defines Number
 public int hashCode(); // Overrides Object
 public int intValue(); // Defines Number
 public long longValue(); // Defines Number
 1.1public short shortValue(); // Overrides Number
 public String toString(); // Overrides Object
}

Hierarchy:

Object->Number(Serializable)->Integer

Passed To:

Integer.getInteger()

Returned By:

Integer.decode(), Integer.getInteger(), Integer.valueOf()

java.lang.InstantiationException
(JDK 1.0)

java.lang.InternalError (JDK
1.0)

Chapter 25
The java.lang Package

25.36 java.lang.Long (JDK 1.0)

This class provides an immutable object wrapper around the long primitive data type. This class also contains useful
minimum and maximum constants and useful conversion methods. parseLong() and valueOf() convert a string
to a long or to a Long, respectively. Each can take a radix argument to specify the base that the value is represented
in. toString() converts in the other direction and may also take a radix argument. toBinaryString(),
toOctalString(), and toHexString() convert a long to a string using base 2, base 8, and base 16. These
methods treat the long as an unsigned value.

Other routines return the value of a Long as various primitive types, and finally, the getLong() methods return the
long value of a named property or the value of the specified default.

public final class Long extends Number {
 // Public Constructors
 public Long(long value);
 public Long(String s) throws NumberFormatException;
 // Constants
 public static final long MAX_VALUE;
 public static final long MIN_VALUE;
 1.1public static final Class TYPE;
 // Class Methods
 public static Long getLong(String nm);
 public static Long getLong(String nm, long val);
 public static Long getLong(String nm, Long val);
 public static long parseLong(String s, int radix) throws
NumberFormatException;
 public static long parseLong(String s) throws NumberFormatException;
 public static String toBinaryString(long i);
 public static String toHexString(long i);
 public static String toOctalString(long i);
 public static String toString(long i, int radix);
 public static String toString(long i);
 public static Long valueOf(String s, int radix) throws
NumberFormatException;
 public static Long valueOf(String s) throws NumberFormatException;
 // Public Instance Methods
 1.1public byte byteValue(); // Overrides Number
 public double doubleValue(); // Defines Number

 public boolean equals(Object obj); // Overrides Object
 public float floatValue(); // Defines Number
 public int hashCode(); // Overrides Object
 public int intValue(); // Defines Number
 public long longValue(); // Defines Number
 1.1public short shortValue(); // Overrides Number
 public String toString(); // Overrides Object
}

Hierarchy:

Object->Number(Serializable)->Long

Passed To:

Long.getLong()

Returned By:

Long.getLong(), Long.valueOf()

java.lang.LinkageError (JDK
1.0)

java.lang.Math (JDK 1.0)

Chapter 25
The java.lang Package

25.45 java.lang.Number (JDK 1.0)

This is an abstract class that is the superclass of Byte, Short, Integer, Long, Float, and
Double. It defines the conversion functions that those types all implement.

public abstract class Number extends Object implements Serializable {
 // Default Constructor: public Number()
 // Public Instance Methods
 1.1public byte byteValue();
 public abstract double doubleValue();
 public abstract float floatValue();
 public abstract int intValue();
 public abstract long longValue();
 1.1public short shortValue();
}

Extended By:

BigDecimal, BigInteger, Byte, Double, Float, Integer, Long, Short

Returned By:

ChoiceFormat.parse(), DecimalFormat.parse(), NumberFormat.parse()

java.lang.NullPointerException
(JDK 1.0)

java.lang.NumberFormatException
(JDK 1.0)

Chapter 25
The java.lang Package

25.55 java.lang.Short (JDK 1.1)

This class provides an object wrapper around the short primitive type. It defines useful constants for the minimum and
maximum values that can be stored by the short type, and also a Class object constant that represents the short type.
It also provides various methods for converting Short values to and from strings and other numeric types.

Most of the static methods of this class are used to convert a String to a Short object or a short value: the four
parseShort() and valueOf() methods parse a number from the specified string, using an optionally specified radix,
and return it in one of these two forms. The decode() method parses a number specified in base 10, base 8, or base 16
and returns it as a Short. If the string begins with "0x" or "#", it is interpreted as a hexadecimal number, or if it begins
with "0", it is interpreted as an octal number. Otherwise, it is interpreted as a decimal number.

Note that this class has two different toString() methods. One is static and converts a short primitive value to a
String. The other is the usual toString() method that converts a Short object to a string. Most of the remaining
methods convert a Short to various primitive numeric types.

public final class Short extends Number {
 // Public Constructors
 public Short(short value);
 public Short(String s) throws NumberFormatException;
 // Constants
 public static final short MAX_VALUE;
 public static final short MIN_VALUE;
 public static final Class TYPE;
 // Class Methods
 public static Short decode(String nm) throws NumberFormatException;
 public static short parseShort(String s) throws NumberFormatException;
 public static short parseShort(String s, int radix) throws
NumberFormatException;
 public static String toString(short s);
 public static Short valueOf(String s, int radix) throws
NumberFormatException;
 public static Short valueOf(String s) throws NumberFormatException;
 // Public Instance Methods
 public byte byteValue(); // Overrides Number
 public double doubleValue(); // Defines Number
 public boolean equals(Object obj); // Overrides Object
 public float floatValue(); // Defines Number
 public int hashCode(); // Overrides Object

 public int intValue(); // Defines Number
 public long longValue(); // Defines Number
 public short shortValue(); // Overrides Number
 public String toString(); // Overrides Object
}

Hierarchy:

Object->Number(Serializable)->Short

Returned By:

Short.decode(), Short.valueOf()

java.lang.SecurityManager
(JDK 1.0)

java.lang.StackOverflowError
(JDK 1.0)

Chapter 30
The java.util Package

30.12 java.util.Locale (JDK 1.1)

The Locale class represents a locale: a political, geographical, or cultural region that typically has a distinct
language and distinct customs and conventions for such things as formatting dates, times, and numbers.

The Locale class defines a number of constants that represent commonly used locales. Locale also defines a
static getDefault() method that returns the default Locale object, which represents a locale value inherited
from the host system. Furthermore, many locale-sensitive classes, such as DateFormat, provide
getAvailableLocales() methods that return a list of supported Locale objects. If none of these methods
for obtaining a Locale object is suitable, you can also explicitly create your own Locale object. To do this, you
must specify a language code, a country code, and an optional variant string.

The Locale class does not implement any internationalization behavior itself; it merely serves as a locale
identifier for those classes that can localize their behavior. Given a Locale object, you can invoke the various
getDisplay methods to obtain a description of the locale suitable for display to a user. Note that these methods
may themselves take a Locale argument so that the names of languages and countries can be localized as
appropriate.

public final class Locale extends Object implements Cloneable, Serializable {
 // Public Constructors
 public Locale(String language, String country, String variant);
 public Locale(String language, String country);
 // Constants
 public static final Locale CANADA;
 public static final Locale CANADA_FRENCH;
 public static final Locale CHINA;
 public static final Locale CHINESE;
 public static final Locale ENGLISH;
 public static final Locale FRANCE;
 public static final Locale FRENCH;
 public static final Locale GERMAN;
 public static final Locale GERMANY;
 public static final Locale ITALIAN;
 public static final Locale ITALY;
 public static final Locale JAPAN;
 public static final Locale JAPANESE;

 public static final Locale KOREA;
 public static final Locale KOREAN;
 public static final Locale PRC;
 public static final Locale SIMPLIFIED_CHINESE;
 public static final Locale TAIWAN;
 public static final Locale TRADITIONAL_CHINESE;
 public static final Locale UK;
 public static final Locale US;
 // Class Methods
 public static synchronized Locale getDefault();
 public static synchronized void setDefault(Locale newLocale);
 // Public Instance Methods
 public Object clone(); // Overrides Object
 public boolean equals(Object obj); // Overrides Object
 public String getCountry();
 public final String getDisplayCountry();
 public String getDisplayCountry(Locale inLocale);
 public final String getDisplayLanguage();
 public String getDisplayLanguage(Locale inLocale);
 public final String getDisplayName();
 public String getDisplayName(Locale inLocale);
 public final String getDisplayVariant();
 public String getDisplayVariant(Locale inLocale);
 public String getISO3Country() throws MissingResourceException;
 public String getISO3Language() throws MissingResourceException;
 public String getLanguage();
 public String getVariant();
 public synchronized int hashCode(); // Overrides Object
 public final String toString(); // Overrides Object
}

Passed To:

BreakIterator.getCharacterInstance(), BreakIterator.getLineInstance(), BreakIterator.getSentenceInstance(),
BreakIterator.getWordInstance(), Calendar(), Calendar.getInstance(), Collator.getInstance(),
Component.setLocale(), DateFormat.getDateInstance(), DateFormat.getDateTimeInstance(),
DateFormat.getTimeInstance(), DateFormatSymbols(), DecimalFormatSymbols(), GregorianCalendar(),
Locale.getDisplayCountry(), Locale.getDisplayLanguage(), Locale.getDisplayName(),
Locale.getDisplayVariant(), Locale.setDefault(), MessageFormat.setLocale(),
NumberFormat.getCurrencyInstance(), NumberFormat.getInstance(), NumberFormat.getNumberInstance(),
NumberFormat.getPercentInstance(), ResourceBundle.getBundle(), SimpleDateFormat(), String.toLowerCase(),
String.toUpperCase()

Returned By:

Applet.getLocale(), BreakIterator.getAvailableLocales(), Calendar.getAvailableLocales(),

Collator.getAvailableLocales(), Component.getLocale(), DateFormat.getAvailableLocales(), Locale.getDefault(),
MessageFormat.getLocale(), NumberFormat.getAvailableLocales(), Window.getLocale()

java.util.ListResourceBundle
(JDK 1.1)

java.util.MissingResourceException
(JDK 1.1)

Chapter 21
The java.awt.image Package

21.13 java.awt.image.RGBImageFilter (JDK 1.0)

This abstract class is an ImageFilter that provides an easy way to implement filters that modify the colors of an image. To
create a color filter that modifies the colors of an image, you should subclass RGBImageFilter and provide a definition of
filterRGB() that converts the input pixel value (in the default RGB color model) to an output value. If the conversion does
not depend on the location of the pixel, set the canFilterIndexColorModel variable to true so that the
RGBImageFilter can save time by filtering the colormap of an image that uses an IndexColorModel instead of
filtering each pixel of the image.

public abstract class RGBImageFilter extends ImageFilter {
 // Default Constructor: public RGBImageFilter()
 // Protected Instance Variables
 protected boolean canFilterIndexColorModel;
 protected ColorModel newmodel;
 protected ColorModel origmodel;
 // Public Instance Methods
 public IndexColorModel filterIndexColorModel(IndexColorModel icm);
 public abstract int filterRGB(int x, int y, int rgb);
 public void filterRGBPixels(int x, int y, int w, int h, int[] pixels, int
off, int scansize);
 public void setColorModel(ColorModel model); // Overrides ImageFilter
 public void setPixels(int x, int y, int w, int h, ColorModel model,
 public void setPixels'u'byte[] pixels, int off, int scansize); //
Overrides ImageFilter
 public void setPixels(int x, int y, int w, int h, ColorModel model,
 public void setPixels'u'int[] pixels, int off, int scansize); //
Overrides ImageFilter
 public void substituteColorModel(ColorModel oldcm, ColorModel newcm);
}

Hierarchy:

Object->ImageFilter(ImageConsumer, Cloneable)->RGBImageFilter

java.awt.image.PixelGrabber
(JDK 1.0)

java.awt.image.ReplicateScaleFilter
(JDK 1.1)

Chapter 29
The java.text Package

29.6 java.text.Collator (JDK 1.1)

This class is used to compare, order, and sort strings in a way that is appropriate for the default locale or some other
specified locale. Because it is an abstract class, it cannot be instantiated directly. Instead, you must use the static
getInstance() method to obtain an instance of a Collator subclass that is appropriate for the default or specified
locale. You can use getAvailableLocales() to determine whether a Collator object is available for a desired
locale.

Once an appropriate Collator object has been obtained, you can use the compare() method to compare strings. The
possible return values of this method are -1, 0, and 1, which indicate, respectively, that the first string is collated before the
second, that the two are equivalent for collation purposes, and that the first string is collated after the second. The
equals() method is a convenient shortcut for testing two strings for collation equivalence.

When sorting an array of strings, each string in the array is typically compared more than once. Using the compare()
method in this case is inefficient. A more efficient method for comparing strings multiple times is to use
getCollationKey() for each string to create CollationKey objects. These objects can then be compared to each
other more quickly than the strings themselves could be compared.

You can customize the way the Collator object performs comparisons by calling setStrength(). If you pass the
constant PRIMARY to this method, the comparison only looks at primary differences in the strings--it compares letters but
ignores accents and case differences. If you pass the constant SECONDARY, it ignores case differences but does not ignore
accents. And if you pass TERTIARY (the default), the Collator object takes both accents and case differences into
account in its comparison.

public abstract class Collator extends Object implements Cloneable, Serializable {
 // Protected Constructor
 protected Collator();
 // Constants
 public static final int CANONICAL_DECOMPOSITION;
 public static final int FULL_DECOMPOSITION;
 public static final int IDENTICAL;
 public static final int NO_DECOMPOSITION;
 public static final int PRIMARY;
 public static final int SECONDARY;
 public static final int TERTIARY;
 // Class Methods
 public static synchronized Locale[] getAvailableLocales();
 public static synchronized Collator getInstance();
 public static synchronized Collator getInstance(Locale desiredLocale);

 // Public Instance Methods
 public Object clone(); // Overrides Object
 public abstract int compare(String source, String target);
 public boolean equals(String source, String target);
 public boolean equals(Object that); // Overrides Object
 public abstract CollationKey getCollationKey(String source);
 public synchronized int getDecomposition();
 public synchronized int getStrength();
 public abstract synchronized int hashCode(); // Overrides Object
 public synchronized void setDecomposition(int decompositionMode);
 public synchronized void setStrength(int newStrength);
}

Extended By:

RuleBasedCollator

Returned By:

Collator.getInstance()

java.text.CollationKey (JDK
1.1)

java.text.DateFormat (JDK
1.1)

Chapter 24
The java.io Package

24.16 java.io.File (JDK 1.0)

This class supports a platform-independent definition of file and directory names. It also provides
methods to list the files in a directory, to check the existence, readability, writeability, type, size, and
modification time of files and directories, to make new directories, to rename files and directories, and to
delete files and directories. The constants defined by this class are the platform-dependent directory and
path separator characters, available as a String or char.

getName() returns the name of the File with any directory names omitted. getPath() returns the
full name of the file, including the directory name. getParent() returns the directory of the File. If
the File is an absolute specification, then getAbsolutePath() returns the complete filename.
Otherwise, if the File is a relative file specification, it returns the relative filename appended to the
current working directory.

isAbsolute() tests whether the File is an absolute specification. exists(), canWrite(),
canRead(), isFile(), and isDirectory() perform the obvious tests on the specified File.
length() returns the length of the file. lastModified() returns the modification time of the file
(which should be used for comparison with other file times only, and not interpreted as any particular
time format).

list() returns the name of all entries in a directory that are not rejected by an optional
FilenameFilter. mkdir() creates a directory. mkdirs() creates all the directories in a File
specification. renameTo() renames a file or directory. delete() deletes a file or directory. Note that
there is no method to create a file; that is done with a FileOutputStream.

public class File extends Object implements Serializable {
 // Public Constructors
 public File(String path);
 public File(String path, String name);
 public File(File dir, String name);
 // Constants

 public static final String pathSeparator;
 public static final char pathSeparatorChar;
 public static final String separator;
 public static final char separatorChar;
 // Public Instance Methods
 public boolean canRead();
 public boolean canWrite();
 public boolean delete();
 public boolean equals(Object obj); // Overrides Object
 public boolean exists();
 public String getAbsolutePath();
 1.1 public String getCanonicalPath() throws IOException;
 public String getName();
 public String getParent();
 public String getPath();
 public int hashCode(); // Overrides Object
 public native boolean isAbsolute();
 public boolean isDirectory();
 public boolean isFile();
 public long lastModified();
 public long length();
 public String[] list();
 public String[] list(FilenameFilter filter);
 public boolean mkdir();
 public boolean mkdirs();
 public boolean renameTo(File dest);
 public String toString(); // Overrides Object
}

Passed To:

File(), File.renameTo(), FileInputStream(), FilenameFilter.accept(), FileOutputStream(), FileReader(),
FileWriter(), RandomAccessFile(), ZipFile()

java.io.Externalizable (JDK
1.1)

java.io.FileDescriptor (JDK
1.0)

Chapter 20
The java.awt.event Package

20.18 java.awt.event.KeyEvent (JDK 1.1)

An event of this type indicates that the user has pressed or released a key or typed a character.

Call getID() to determine the particular type of key event that has occurred. The constant KEY_PRESSED indicates that
a key has been pressed, while the constant KEY_RELEASED indicates that a key has been released. Not all keystrokes
actually correspond to or generate Unicode characters. Modifier keys and function keys, for example, do not correspond to
characters. Furthermore, for internationalized input, multiple keystrokes are sometimes required to generate a single
character of input. Therefore, getID() returns a third constant, KEY_TYPED, to indicate a KeyEvent that actually
contains a character value.

For KEY_PRESSED and KEY_RELEASED key events, use getKeyCode() to obtain the "virtual key code" of the key
that was pressed or released. KeyEvent defines a number of VK_ constants that represent these "virtual keys." Note that
not all keys on all keyboards have corresponding constants in the KeyEvent class, and not all keyboards can generate all
of the virtual key codes defined by the class. In JDK 1.1, the VK_ constants for letter keys, number keys, and some other
keys have the same values as the ASCII encodings of the letters and numbers. You should not rely on this to always be the
case, however. If the key that was pressed or released corresponds directly to a Unicode character, you can obtain that
character by calling getKeyChar(). If there is not a corresponding Unicode character, this method returns the constant
CHAR_UNDEFINED. The isActionKey() method returns true if the key that was pressed or released does not have a
corresponding character.

For KEY_TYPED key events, use getKeyChar() to return the Unicode character that was typed. If you call
getKeyCode() for this type of key event, it returns VK_UNDEFINED.

See InputEvent for information on inherited methods you can use to obtain the keyboard modifiers that were down
during the event and other important methods.

Use getComponent(), inherited from ComponentEvent, to determine what component the event occurred over.

The static method getKeyText() returns a (possibly localized) textual name for a given key code. The static method
getKeyModifiersText() returns a (possibly localized) textual description for a set of modifiers.

The KeyEvent has methods that allow you to change the key code, key character, or modifiers of an event. These
methods, along with the consume() method, allow a KeyListener to perform filtering of key events before they are
passed to the underlying AWT component.

public class KeyEvent extends InputEvent {
 // Public Constructors
 public KeyEvent(Component source, int id, long when, int modifiers, int

keyCode, char keyChar);
 public KeyEvent(Component source, int id, long when, int modifiers, int
keyCode);
 // Constants
 // Event Type Constants
 public static final int KEY_FIRST;
 public static final int KEY_LAST;
 public static final int KEY_PRESSED;
 public static final int KEY_RELEASED;
 public static final int KEY_TYPED;
 // Undefined Key and Character
 public static final int VK_UNDEFINED;
 public static final char CHAR_UNDEFINED;
 // Alphanumeric Keys
 public static final int VK_A, VK_B, VK_C, VK_D, VK_E, VK_F, VK_G, VK_H,
VK_I;
 public static final int VK_J, VK_K, VK_L, VK_M, VK_N, VK_O, VK_P, VK_Q,
VK_R;
 public static final int VK_S, VK_T, VK_U, VK_V, VK_W, VK_X, VK_Y, VK_Z;
 public static final int VK_SPACE;
 public static final int VK_0, VK_1, VK_2, VK_3, VK_4, VK_5, VK_6, VK_7,
VK_8, VK_9;
 public static final int VK_NUMPAD0, VK_NUMPAD1, VK_NUMPAD2, VK_NUMPAD3,
VK_NUMPAD4;
 public static final int VK_NUMPAD5, VK_NUMPAD6, VK_NUMPAD7, VK_NUMPAD8,
VK_NUMPAD9;
 // Control Keys
 public static final int VK_BACK_SPACE, VK_ENTER, VK_ESCAPE, VK_TAB;
 // Modifier Keys
 public static final int VK_ALT, VK_CAPS_LOCK, VK_CONTROL, VK_META,
VK_SHIFT;
 // Function Keys
 public static final int VK_F1, VK_F2, VK_F3, VK_F4, VK_F5, VK_F6;
 public static final int VK_F7, VK_F8, VK_F9, VK_F10, VK_F11, VK_F12;
 public static final int VK_PRINTSCREEN, VK_SCROLL_LOCK, VK_PAUSE;
 public static final int VK_DELETE, VK_INSERT;
 public static final int VK_PAGE_DOWN, VK_PAGE_UP;
 public static final int VK_DOWN, VK_LEFT, VK_RIGHT, VK_UP;
 public static final int VK_END, VK_HOME;
 public static final int VK_ACCEPT, VK_NUM_LOCK, VK_CANCEL;
 public static final int VK_CLEAR, VK_CONVERT, VK_FINAL;
 public static final int VK_HELP, VK_KANA, VK_KANJI;
 public static final int VK_MODECHANGE, VK_NONCONVERT;
 // Punctuation Keys
 public static final int VK_ADD, VK_BACK_QUOTE, VK_BACK_SLASH;
 public static final int VK_CLOSE_BRACKET, VK_COMMA, VK_DECIMAL;
 public static final int VK_DIVIDE, VK_EQUALS, VK_MULTIPLY;
 public static final int VK_OPEN_BRACKET, VK_PERIOD, VK_QUOTE;
 public static final int VK_SEMICOLON, VK_SEPARATER, VK_SLASH;
 public static final int VK_SUBTRACT;
 // Class Methods

 public static String getKeyModifiersText(int modifiers);
 public static String getKeyText(int keyCode);
 // Public Instance Methods
 public char getKeyChar();
 public int getKeyCode();
 public boolean isActionKey();
 public String paramString(); // Overrides ComponentEvent
 public void setKeyChar(char keyChar);
 public void setKeyCode(int keyCode);
 public void setModifiers(int modifiers);
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->ComponentEvent->InputEvent->KeyEvent

Passed To:

AWTEventMulticaster.keyPressed(), AWTEventMulticaster.keyReleased(),
AWTEventMulticaster.keyTyped(), Component.processKeyEvent(),
KeyAdapter.keyPressed(), KeyAdapter.keyReleased(), KeyAdapter.keyTyped(),
KeyListener.keyPressed(), KeyListener.keyReleased(), KeyListener.keyTyped()

java.awt.event.KeyAdapter
(JDK 1.1)

java.awt.event.KeyListener
(JDK 1.1)

Chapter 25
The java.lang Package

25.57 java.lang.String (JDK 1.0)

The String class represents a string of characters. A String object is created by the Java compiler whenever it encounters
a string in doublequotes--this method of creation is usually simpler than using a constructor. A number of the methods of this
class provide useful string manipulation functions. length() returns the number of characters in a string. charAt()
extracts a character from a string. compareTo() compares two strings. equalsIgnoreCase() tests string for equality,
ignoring case. startsWith() and endsWith() compare the start and end of a string to a specified value. indexOf()
and lastIndexOf() search forward and backwards in a string for a specified character or substring. substring()
returns a substring of a string. replace() creates a new copy of the string with one character replaced by another.
toUpperCase() and toLowerCase() convert the case of a string. trim() strips whitespace from the start and end of a
string. concat() concatenates two strings, which can also be done with the + operator.

Note that String objects are immutable--there is no setCharAt() method to change the contents. The methods above that
return a String do not modify the string they are passed, but instead return a modified copy of the string. Use a
StringBuffer if you want to manipulate the contents of a string, or use toCharArray() to convert a string to an array
of char values.

The static valueOf() methods convert various Java primitive types to strings.

public final class String extends Object implements Serializable {
 // Public Constructors
 public String();
 public String(String value);
 public String(char[] value);
 public String(char[] value, int offset, int count);
 # public String(byte[] ascii, int hibyte, int offset, int count);
 # public String(byte[] ascii, int hibyte);
 1.1public String(byte[] bytes, int offset, int length, String enc) throws
UnsupportedEncodingException;
 1.1public String(byte[] bytes, String enc) throws
UnsupportedEncodingException;
 1.1public String(byte[] bytes, int offset, int length);
 1.1public String(byte[] bytes);
 public String(StringBuffer buffer);
 // Class Methods
 public static String copyValueOf(char[] data, int offset, int count);
 public static String copyValueOf(char[] data);
 public static String valueOf(Object obj);
 public static String valueOf(char[] data);
 public static String valueOf(char[] data, int offset, int count);
 public static String valueOf(boolean b);

 public static String valueOf(char c);
 public static String valueOf(int i);
 public static String valueOf(long l);
 public static String valueOf(float f);
 public static String valueOf(double d);
 // Public Instance Methods
 public char charAt(int index);
 public int compareTo(String anotherString);
 public String concat(String str);
 public boolean endsWith(String suffix);
 public boolean equals(Object anObject); // Overrides Object
 public boolean equalsIgnoreCase(String anotherString);
 # public void getBytes(int srcBegin, int srcEnd, byte[] dst, int dstBegin);
 1.1public byte[] getBytes(String enc) throws UnsupportedEncodingException;
 1.1public byte[] getBytes();
 public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
 public int hashCode(); // Overrides Object
 public int indexOf(int ch);
 public int indexOf(int ch, int fromIndex);
 public int indexOf(String str);
 public int indexOf(String str, int fromIndex);
 public native String intern();
 public int lastIndexOf(int ch);
 public int lastIndexOf(int ch, int fromIndex);
 public int lastIndexOf(String str);
 public int lastIndexOf(String str, int fromIndex);
 public int length();
 public boolean regionMatches(int toffset, String other, int ooffset, int
len);
 public boolean regionMatches(boolean ignoreCase, int toffset, String
other, int ooffset, int len);
 public String replace(char oldChar, char newChar);
 public boolean startsWith(String prefix, int toffset);
 public boolean startsWith(String prefix);
 public String substring(int beginIndex);
 public String substring(int beginIndex, int endIndex);
 public char[] toCharArray();
 1.1public String toLowerCase(Locale locale);
 public String toLowerCase();
 public String toString(); // Overrides Object
 1.1public String toUpperCase(Locale locale);
 public String toUpperCase();
 public String trim();
}

Passed To:

Many methods

Returned By:

Many methods

Type Of:

BorderLayout.CENTER, BorderLayout.EAST, BorderLayout.NORTH, BorderLayout.SOUTH, BorderLayout.WEST,
File.pathSeparator, File.separator, Font.name, HttpURLConnection.method, HttpURLConnection.responseMessage,
InvalidClassException.classname, StreamTokenizer.sval, StringBufferInputStream.buffer

java.lang.StackOverflowError
(JDK 1.0)

java.lang.StringBuffer (JDK
1.0)

Chapter 25
The java.lang Package

25.7 java.lang.Character (JDK 1.0)

This class provides an immutable object wrapper around the primitive char data type. charValue() returns the char
value of a Character object. A number of class methods provide the Java/Unicode equivalent of the C <ctype.h>
character macros for checking the type of characters and converting to uppercase and lowercase letters. getType() returns
the character type. The return value is one of the constants defined by the class, which represents a number of broad Unicode
character categories.

digit() returns the integer equivalent of a given character for a given radix (e.g., radix 16 for hexadecimal).
forDigit() returns the character that corresponds to the specified value for the specified radix.

public final class Character extends Object implements Serializable {
 // Public Constructor
 public Character(char value);
 // Constants
 public static final int MAX_RADIX, MIN_RADIX;
 public static final char MAX_VALUE, MIN_VALUE;
 1.1public static final Class TYPE;
 // Character Type Constants
 1.1public static final byte COMBINING_SPACING_MARK, CONNECTOR_PUNCTUATION,
CONTROL;
 1.1public static final byte CURRENCY_SYMBOL, DASH_PUNCTUATION,
DECIMAL_DIGIT_NUMBER;
 1.1public static final byte ENCLOSING_MARK, END_PUNCTUATION, FORMAT;
 1.1public static final byte LETTER_NUMBER, LINE_SEPARATOR, LOWERCASE_LETTER;
 1.1public static final byte MATH_SYMBOL, MODIFIER_LETTER, MODIFIER_SYMBOL;
 1.1public static final byte NON_SPACING_MARK, OTHER_LETTER, OTHER_NUMBER;
 1.1public static final byte OTHER_PUNCTUATION, OTHER_SYMBOL,
PARAGRAPH_SEPARATOR;
 1.1public static final byte PRIVATE_USE, SPACE_SEPARATOR, START_PUNCTUATION;
 1.1public static final byte SURROGATE, TITLECASE_LETTER, UNASSIGNED;
 1.1public static final byte UPPERCASE_LETTER;
 // Class Methods
 public static int digit(char ch, int radix);
 public static char forDigit(int digit, int radix);
 1.1public static int getNumericValue(char ch);
 1.1public static int getType(char ch);
 public static boolean isDefined(char ch);
 public static boolean isDigit(char ch);
 1.1public static boolean isISOControl(char ch);
 1.1public static boolean isIdentifierIgnorable(char ch);

 1.1public static boolean isJavaIdentifierPart(char ch);
 1.1public static boolean isJavaIdentifierStart(char ch);
 # public static boolean isJavaLetter(char ch);
 # public static boolean isJavaLetterOrDigit(char ch);
 public static boolean isLetter(char ch);
 public static boolean isLetterOrDigit(char ch);
 public static boolean isLowerCase(char ch);
 # public static boolean isSpace(char ch);
 1.1public static boolean isSpaceChar(char ch);
 public static boolean isTitleCase(char ch);
 1.1public static boolean isUnicodeIdentifierPart(char ch);
 1.1public static boolean isUnicodeIdentifierStart(char ch);
 public static boolean isUpperCase(char ch);
 1.1public static boolean isWhitespace(char ch);
 public static char toLowerCase(char ch);
 public static char toTitleCase(char ch);
 public static char toUpperCase(char ch);
 // Public Instance Methods
 public char charValue();
 public boolean equals(Object obj); // Overrides Object
 public int hashCode(); // Overrides Object
 public String toString(); // Overrides Object
}

java.lang.Byte (JDK 1.1) java.lang.Class (JDK 1.0)

Chapter 25
The java.lang Package

25.54 java.lang.SecurityManager (JDK 1.0)

This abstract class defines the methods necessary to implement a security policy for the execution of untrusted
code. Before performing potentially sensitive operations, Java calls methods of the SecurityManager object
currently in effect to determine whether the operations are permitted. These methods throw a
SecurityException if the operation is not permitted.

Normal applications do not need to use or subclass the SecurityManager class. It is typically only used by
Web browsers, applet viewers, and other programs that need to run untrusted code in a controlled environment.

public abstract class SecurityManager extends Object {
 // Protected Constructor
 protected SecurityManager();
 // Protected Instance Variables
 protected boolean inCheck;
 // Public Instance Methods
 public void checkAccept(String host, int port);
 public void checkAccess(Thread g);
 public void checkAccess(ThreadGroup g);
 1.1public void checkAwtEventQueueAccess();
 public void checkConnect(String host, int port);
 public void checkConnect(String host, int port, Object context);
 public void checkCreateClassLoader();
 public void checkDelete(String file);
 public void checkExec(String cmd);
 public void checkExit(int status);
 public void checkLink(String lib);
 public void checkListen(int port);
 1.1public void checkMemberAccess(Class clazz, int which);
 1.1public void checkMulticast(InetAddress maddr);
 1.1public void checkMulticast(InetAddress maddr, byte ttl);
 public void checkPackageAccess(String pkg);
 public void checkPackageDefinition(String pkg);
 1.1public void checkPrintJobAccess();
 public void checkPropertiesAccess();

 public void checkPropertyAccess(String key);
 public void checkRead(FileDescriptor fd);
 public void checkRead(String file);
 public void checkRead(String file, Object context);
 1.1public void checkSecurityAccess(String action);
 public void checkSetFactory();
 1.1public void checkSystemClipboardAccess();
 public boolean checkTopLevelWindow(Object window);
 public void checkWrite(FileDescriptor fd);
 public void checkWrite(String file);
 public boolean getInCheck();
 public Object getSecurityContext();
 1.1public ThreadGroup getThreadGroup();
 // Protected Instance Methods
 protected native int classDepth(String name);
 protected native int classLoaderDepth();
 protected native ClassLoader currentClassLoader();
 1.1protected Class currentLoadedClass();
 protected native Class[] getClassContext();
 protected boolean inClass(String name);
 protected boolean inClassLoader();
}

Passed To:

System.setSecurityManager()

Returned By:

System.getSecurityManager()

java.lang.SecurityException
(JDK 1.0)

java.lang.Short (JDK 1.1)

Chapter 24
The java.io Package

24.52 java.io.PrintStream (JDK 1.0)

This class is a FilterOutputStream that implements a number of methods for displaying textual
representation of Java primitive data types. The print() methods output a standard textual representation of
each data type. The println() methods do the same, and follow that representation with a newline. The
methods convert various Java primitive types to String representations and then output the resulting string.
When an Object is passed to a print() or println(), it is converted to a String by calling its
toString() method.

PrintStream is the OutputStream type that makes it easiest to output text. As such, it is the most
commonly used of the output streams. The System.out variable is a PrintStream.

Note that in Java 1.0 this class does not handle Unicode characters correctly--it discards the top 8 bits of all 16-
bit characters, and thus works only with Latin-1 (ISO8859-1) characters. Although this problem has been
fixed in Java 1.1, PrintStream has been superseded in Java 1.1 with PrintWriter. The constructors of
this class have been deprecated, but the class itself has not, because it is still used by the System.out and
System.err standard output streams.

PrintStream and its PrintWriter replacement output textual representations of Java data types. Use
DataOutputStream to output binary representations of data.

public class PrintStream extends FilterOutputStream {
 // Public Constructors
 # public PrintStream(OutputStream out);
 # public PrintStream(OutputStream out, boolean autoFlush);
 // Public Instance Methods
 public boolean checkError();
 public void close(); // Overrides FilterOutputStream
 public void flush(); // Overrides FilterOutputStream
 public void print(boolean b);
 public void print(char c);
 public void print(int i);
 public void print(long l);
 public void print(float f);

 public void print(double d);
 public void print(char[] s);
 public void print(String s);
 public void print(Object obj);
 public void println();
 public void println(boolean x);
 public void println(char x);
 public void println(int x);
 public void println(long x);
 public void println(float x);
 public void println(double x);
 public void println(char[] x);
 public void println(String x);
 public void println(Object x);
 public void write(int b); // Overrides FilterOutputStream
 public void write(byte[] buf, int off, int len); // Overrides
FilterOutputStream
 // Protected Instance Methods
 1.1 protected void setError();
}

Hierarchy:

Object->OutputStream->FilterOutputStream->PrintStream

Passed To:

Component.list(), Container.list(), Properties.list(), System.setErr(), System.setOut(),
Throwable.printStackTrace()

Type Of:

System.err, System.out

java.io.PipedWriter (JDK 1.1) java.io.PrintWriter (JDK 1.1)

Chapter 24
The java.io Package

24.53 java.io.PrintWriter (JDK 1.1)

This class is a character output stream that implements a number of print() and println() methods that output
textual representations of primitive values and objects. When you create a PrintWriter object, you specify a
character or byte output stream that it should write its characters to, and also optionally specify whether the
PrintWriter stream should be automatically flushed whenever println() is called. If you specify a byte output
stream as the destination, the PrintWriter() constructor automatically creates the necessary
OutputStreamWriter object to convert characters to bytes using the default encoding.

PrintWriter implements the normal write(), flush(), and close() methods that all Writer subclasses
do. It is more common to use the higher-level print() and println() methods, each of which converts its
argument to a string before outputting it. println() has the additional behavior of terminating the line (and
optionally flushing the buffer) after printing its argument.

The methods of PrintWriter never throw exceptions. Instead, when errors occur, they set an internal flag that you
can check by calling checkError(). checkError() first flushes the internal stream, and then returns true if
any exception has occurred while writing values to that stream. Once an error has occurred on a PrintWriter
object, all subsequent calls to checkError() return true; there is no way to reset the error flag.

PrintWriter is the character stream analog to PrintStream, which it supersedes. You can usually trivially
replace any PrintStream objects in a program with PrintWriter objects. This is particularly important for
internationalized programs. The only valid remaining use for the PrintStream class is for the System.out and
System.err standard output streams. See PrintStream for details.

public class PrintWriter extends Writer {
 // Public Constructors
 public PrintWriter(Writer out);
 public PrintWriter(Writer out, boolean autoFlush);
 public PrintWriter(OutputStream out);
 public PrintWriter(OutputStream out, boolean autoFlush);
 // Public Instance Methods
 public boolean checkError();
 public void close(); // Defines Writer
 public void flush(); // Defines Writer
 public void print(boolean b);
 public void print(char c);
 public void print(int i);

 public void print(long l);
 public void print(float f);
 public void print(double d);
 public void print(char[] s);
 public void print(String s);
 public void print(Object obj);
 public void println();
 public void println(boolean x);
 public void println(char x);
 public void println(int x);
 public void println(long x);
 public void println(float x);
 public void println(double x);
 public void println(char[] x);
 public void println(String x);
 public void println(Object x);
 public void write(int c); // Overrides Writer
 public void write(char[] buf, int off, int len); // Defines Writer
 public void write(char[] buf); // Overrides Writer
 public void write(String s, int off, int len); // Overrides Writer
 public void write(String s); // Overrides Writer
 // Protected Instance Methods
 protected void setError();
}

Hierarchy:

Object->Writer->PrintWriter

Passed To:

Component.list(), Container.list(), Properties.list(), Throwable.printStackTrace()

java.io.PrintStream (JDK 1.0) java.io.PushbackInputStream
(JDK 1.0)

Chapter 22
The java.awt.peer Package

22.6 java.awt.peer.ComponentPeer (JDK 1.0)

public abstract interface ComponentPeer {
 // Public Instance Methods
 public abstract int checkImage(Image img, int w, int h, ImageObserver o);
 public abstract Image createImage(ImageProducer producer);
 public abstract Image createImage(int width, int height);
 public abstract void disable();
 public abstract void dispose();
 public abstract void enable();
 public abstract ColorModel getColorModel();
 public abstract FontMetrics getFontMetrics(Font font);
 public abstract Graphics getGraphics();
 1.1 public abstract Point getLocationOnScreen();
 1.1 public abstract Dimension getMinimumSize();
 1.1 public abstract Dimension getPreferredSize();
 public abstract Toolkit getToolkit();
 1.1 public abstract void handleEvent(AWTEvent e);
 public abstract void hide();
 1.1 public abstract boolean isFocusTraversable();
 public abstract Dimension minimumSize();
 public abstract void paint(Graphics g);
 public abstract Dimension preferredSize();
 public abstract boolean prepareImage(Image img, int w, int h,
ImageObserver o);
 public abstract void print(Graphics g);
 public abstract void repaint(long tm, int x, int y, int width, int
height);
 public abstract void requestFocus();
 public abstract void reshape(int x, int y, int width, int height);
 public abstract void setBackground(Color c);
 1.1 public abstract void setBounds(int x, int y, int width, int height);
 1.1 public abstract void setCursor(Cursor cursor);
 1.1 public abstract void setEnabled(boolean b);
 public abstract void setFont(Font f);
 public abstract void setForeground(Color c);
 1.1 public abstract void setVisible(boolean b);
 public abstract void show();
}

Extended By:

ButtonPeer, CanvasPeer, CheckboxPeer, ChoicePeer, ContainerPeer, LabelPeer, LightweightPeer, ListPeer, ScrollbarPeer,
TextComponentPeer

Returned By:

Component.getPeer()

java.awt.peer.ChoicePeer
(JDK 1.0)

java.awt.peer.ContainerPeer
(JDK 1.0)

Chapter 22
The java.awt.peer Package

22.21 java.awt.peer.ScrollPanePeer (JDK 1.1)

public abstract interface ScrollPanePeer extends ContainerPeer {
 // Public Instance Methods
 public abstract void childResized(int w, int h);
 public abstract int getHScrollbarHeight();
 public abstract int getVScrollbarWidth();
 public abstract void setScrollPosition(int x, int y);
 public abstract void setUnitIncrement(Adjustable adj, int u);
 public abstract void setValue(Adjustable adj, int v);
}

Hierarchy:

(ScrollPanePeer(ContainerPeer(ComponentPeer)))

Returned By:

Toolkit.createScrollPane()

java.awt.peer.PopupMenuPeer
(JDK 1.1)

java.awt.peer.ScrollbarPeer
(JDK 1.0)

Chapter 24
The java.io Package

24.31 java.io.InvalidClassException (JDK 1.1)

Signals that the serialization mechanism has encountered one of several possible problems with the class
of an object that is being serialized or deserialized. The classname field should contain the name of
the class in question, and the getMessage() method is overridden to return this class name with the
message.

public class InvalidClassException extends ObjectStreamException {
 // Public Constructors
 public InvalidClassException(String reason);
 public InvalidClassException(String cname, String reason);
 // Public Instance Variables
 public String classname;
 // Public Instance Methods
 public String getMessage(); // Overrides Throwable
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->ObjectStreamException-
>InvalidClassException

java.io.InterruptedIOException
(JDK 1.0)

java.io.InvalidObjectException
(JDK 1.1)

Chapter 30
The java.util Package

30.10 java.util.Hashtable (JDK 1.0)

This class implements a hashtable data structure, which allows you to associate values with a key and to efficiently look
up the value associated with a given key. A hashtable is essentially an associative array, which stores objects with non-
numeric array indices.

put() associates a value with a key in a Hashtable. get() retrieves a value for a specified key. remove() deletes
a key/value association. keys() and elements() return Enumeration objects that allow you to iterate through the
complete set of keys and values stored in the table.

public class Hashtable extends Dictionary implements Cloneable, Serializable {
 // Public Constructors
 public Hashtable(int initialCapacity, float loadFactor);
 public Hashtable(int initialCapacity);
 public Hashtable();
 // Public Instance Methods
 public synchronized void clear();
 public synchronized Object clone(); // Overrides Object
 public synchronized boolean contains(Object value);
 public synchronized boolean containsKey(Object key);
 public synchronized Enumeration elements(); // Defines Dictionary
 public synchronized Object get(Object key); // Defines Dictionary
 public boolean isEmpty(); // Defines Dictionary
 public synchronized Enumeration keys(); // Defines Dictionary
 public synchronized Object put(Object key, Object value); // Defines
Dictionary
 public synchronized Object remove(Object key); // Defines Dictionary
 public int size(); // Defines Dictionary
 public synchronized String toString(); // Overrides Object
 // Protected Instance Methods
 protected void rehash();
}

Hierarchy:

Object->Dictionary->Hashtable(Cloneable, Serializable)

Extended By:

Properties

Passed To:

CropImageFilter.setProperties(), ImageConsumer.setProperties(), ImageFilter.setProperties(), MemoryImageSource(),
PixelGrabber.setProperties(), ReplicateScaleFilter.setProperties()

Type Of:

GridBagLayout.comptable

java.util.GregorianCalendar
(JDK 1.1)

java.util.ListResourceBundle
(JDK 1.1)

Chapter 18
The java.awt Package

18.27 java.awt.Graphics (JDK 1.0)

This abstract class defines a device-independent interface to graphics. It specifies methods for doing line drawing, area filling,
image painting, area copying, and graphics output clipping. Specific subclasses of Graphics are implemented for different
platforms and different graphics output devices. A Graphics object cannot be created directly through a constructor--it must
be obtained with the getGraphics() method of a Component or an Image, or copied from an existing Graphics
object with create(). When a Graphics object is no longer needed, you should call dispose() to free up the window
system resources it uses.

public abstract class Graphics extends Object {
 // Protected Constructor
 protected Graphics();
 // Public Instance Methods
 public abstract void clearRect(int x, int y, int width, int height);
 public abstract void clipRect(int x, int y, int width, int height);
 public abstract void copyArea(int x, int y, int width, int height, int
dx, int dy);
 public abstract Graphics create();
 public Graphics create(int x, int y, int width, int height);
 public abstract void dispose();
 public void draw3DRect(int x, int y, int width, int height, boolean
raised);
 public abstract void drawArc(int x, int y, int width, int height, int
startAngle, int arcAngle);
 public void drawBytes(byte[] data, int offset, int length, int x, int y);
 public void drawChars(char[] data, int offset, int length, int x, int y);
 public abstract boolean drawImage(Image img, int x, int y, ImageObserver
observer);
 public abstract boolean drawImage(Image img, int x, int y, int width, int
height, ImageObserver observer);
 public abstract boolean drawImage(Image img, int x, int y, Color bgcolor,
ImageObserver observer);
 public abstract boolean drawImage(Image img, int x, int y, int width, int
height, Color bgcolor,
 public abstract boolean drawImage'u'ImageObserver observer);
 1.1 public abstract boolean drawImage(Image img, int dx1, int dy1, int dx2,
int dy2, int sx1, int sy1,
 1.1 public abstract boolean drawImage'u'int sx2, int sy2, ImageObserver
observer);
 1.1 public abstract boolean drawImage(Image img, int dx1, int dy1, int dx2,
int dy2, int sx1, int sy1,

 1.1 public abstract boolean drawImage'u'int sx2, int sy2, Color bgcolor,
ImageObserver observer);
 public abstract void drawLine(int x1, int y1, int x2, int y2);
 public abstract void drawOval(int x, int y, int width, int height);
 public abstract void drawPolygon(int[] xPoints, int[] yPoints, int
nPoints);
 public void drawPolygon(Polygon p);
 1.1 public abstract void drawPolyline(int[] xPoints, int[] yPoints, int
nPoints);
 public void drawRect(int x, int y, int width, int height);
 public abstract void drawRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight);
 public abstract void drawString(String str, int x, int y);
 public void fill3DRect(int x, int y, int width, int height, boolean
raised);
 public abstract void fillArc(int x, int y, int width, int height, int
startAngle, int arcAngle);
 public abstract void fillOval(int x, int y, int width, int height);
 public abstract void fillPolygon(int[] xPoints, int[] yPoints, int
nPoints);
 public void fillPolygon(Polygon p);
 public abstract void fillRect(int x, int y, int width, int height);
 public abstract void fillRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight);
 public void finalize(); // Overrides Object
 1.1 public abstract Shape getClip();
 1.1 public abstract Rectangle getClipBounds();
 # public Rectangle getClipRect();
 public abstract Color getColor();
 public abstract Font getFont();
 public FontMetrics getFontMetrics();
 public abstract FontMetrics getFontMetrics(Font f);
 1.1 public abstract void setClip(int x, int y, int width, int height);
 1.1 public abstract void setClip(Shape clip);
 public abstract void setColor(Color c);
 public abstract void setFont(Font font);
 public abstract void setPaintMode();
 public abstract void setXORMode(Color c1);
 public String toString(); // Overrides Object
 public abstract void translate(int x, int y);
}

Passed To:

Canvas.paint(), Component.paint(), Component.paintAll(), Component.print(),
Component.printAll(), Component.update(), ComponentPeer.paint(),
ComponentPeer.print(), Container.paint(), Container.paintComponents(),
Container.print(), Container.printComponents(), PropertyEditor.paintValue(),
PropertyEditorSupport.paintValue(), ScrollPane.printComponents()

Returned By:

Component.getGraphics(), ComponentPeer.getGraphics(), Graphics.create(),
Image.getGraphics(), PrintJob.getGraphics()

java.awt.Frame (JDK 1.0) java.awt.GridBagConstraints
(JDK 1.0)

Chapter 19

19. The java.awt.datatransfer Package
Contents:
java.awt.datatransfer.Clipboard (JDK 1.1)
java.awt.datatransfer.ClipboardOwner (JDK 1.1)
java.awt.datatransfer.DataFlavor (JDK 1.1)
java.awt.datatransfer.StringSelection (JDK 1.1)
java.awt.datatransfer.Transferable (JDK 1.1)
java.awt.datatransfer.UnsupportedFlavorException (JDK 1.1)

This small package contains classes and interfaces that support a generic inter-application data transfer
mechanism. It also provides support for cut-and-paste data transfer on top of that mechanism. This package, and
all of its classes and interfaces, are new in Java 1.1. Future releases of Java are likely to extend this package
with support for data transfer through drag-and-drop.

Figure 19.1 shows the class hierarchy for java.datatransfer. DataFlavor and Transferable
define the basic data transfer mechanism. Clipboard and ClipboardOwner provide support for cut-and-
paste. StringSelection is a convenience class that makes it particularly easy to transfer textual data
between applications.

Figure 19.1: The java.awt.datatransfer package

[Graphic: Figure 19-1]

19.1 java.awt.datatransfer.Clipboard (JDK 1.1)

This class represents a clipboard on which data may be transferred using the cut-and-paste metaphor. When data
is "cut," it should be encapsulated in a Transferable object and registered with a Clipboard object by
calling setContents(). A Clipboard can only hold a single piece of data at a time, so a
ClipboardOwner object must be specified when data is placed on the clipboard. This object is notified that
it no longer "owns" the clipboard when the data is replaced by other, more recent, data.

When a "paste" is requested by the user, an application requests the data on the Clipboard by calling
getContents(), which returns a Transferable object. The methods of this object can be used to
negotiate a mutually-compatible data format and to actually transfer the data.

A clipboard name is passed to the Clipboard() constructor, and may be retrieved with getName(). This
name is not actually used in Java 1.1, however.

Note that while applications can create their own private Clipboard objects for intra-application cut-and-
paste, it is more common for them to use the system clipboard to enable cut-and-paste between applications.
You can obtain the system clipboard by calling the getSystemClipboard() method of the current
Toolkit object. Untrusted applet code is not allowed to access the system clipboard, so untrusted applets
cannot participate in inter-application cut-and-paste.

public class Clipboard extends Object {
 // Public Constructor
 public Clipboard(String name);
 // Protected Instance Variables
 protected Transferable contents;
 protected ClipboardOwner owner;
 // Public Instance Methods
 public synchronized Transferable getContents(Object requestor);
 public String getName();
 public synchronized void setContents(Transferable contents,

ClipboardOwner owner);
}

Passed To:

ClipboardOwner.lostOwnership(), StringSelection.lostOwnership()

Returned By:

Toolkit.getSystemClipboard()

java.awt.Window (JDK
1.0)

java.awt.datatransfer.ClipboardOwner
(JDK 1.1)

Chapter 29
The java.text Package

29.2 java.text.CharacterIterator (JDK 1.1)

This interface defines an API for portably iterating through the characters that comprise a string of text,
regardless of the encoding of that text. Such an API is necessary because the number of bytes per
character is different for different encodings, and some encodings even use variable-width characters
within the same string of text. In addition to allowing iteration, a class that implements the
CharacterIterator interface for non-Unicode text also performs translation of characters from
their native encoding to standard Java Unicode characters.

CharacterIterator is similar to java.util.Enumeration, but is somewhat more complex
than that interface. The first() and last() methods return the first and last characters in the text,
and the next() and prev() methods allow you to loop forward or backwards through the characters
of the text. These methods return the DONE constant when they go beyond the first or last character in the
text--a test for this constant can be used to terminate a loop.

The CharacterIterator interface also allows random access to the characters in a string of text.
The getBeginIndex() and getEndIndex() methods return the character positions for the start
and end of the string, and setIndex() sets the current position. getIndex() returns the index of the
current position, and current() returns the character at that position.

public abstract interface CharacterIterator extends Cloneable {
 // Constants
 public static final char DONE;
 // Public Instance Methods
 public abstract Object clone(); // Overrides Object
 public abstract char current();
 public abstract char first();
 public abstract int getBeginIndex();
 public abstract int getEndIndex();
 public abstract int getIndex();
 public abstract char last();
 public abstract char next();

 public abstract char previous();
 public abstract char setIndex(int position);
}

Implemented By:

StringCharacterIterator

Passed To:

BreakIterator.setText()

Returned By:

BreakIterator.getText()

java.text.BreakIterator (JDK
1.1)

java.text.ChoiceFormat (JDK
1.1)

Chapter 29
The java.text Package

29.8 java.text.DateFormatSymbols (JDK 1.1)

This class defines accessor methods for the various pieces of data, such as names of months and days, used by
SimpleDateFormat to format and parse dates and times. You do not typically use this class unless you are formatting
dates for an unsupported locale or in some highly customized way.

public class DateFormatSymbols extends Object implements Serializable, Cloneable {
 // Public Constructors
 public DateFormatSymbols();
 public DateFormatSymbols(Locale locale);
 // Public Instance Methods
 public Object clone(); // Overrides Object
 public boolean equals(Object obj); // Overrides Object
 public String[] getAmPmStrings();
 public String[] getEras();
 public String getLocalPatternChars();
 public String[] getMonths();
 public String[] getShortMonths();
 public String[] getShortWeekdays();
 public String[] getWeekdays();
 public String[][] getZoneStrings();
 public int hashCode(); // Overrides Object
 public void setAmPmStrings(String[] newAmpms);
 public void setEras(String[] newEras);
 public void setLocalPatternChars(String newLocalPatternChars);
 public void setMonths(String[] newMonths);
 public void setShortMonths(String[] newShortMonths);
 public void setShortWeekdays(String[] newShortWeekdays);
 public void setWeekdays(String[] newWeekdays);
 public void setZoneStrings(String[][] newZoneStrings);
}

Passed To:

SimpleDateFormat(), SimpleDateFormat.setDateFormatSymbols()

Returned By:

SimpleDateFormat.getDateFormatSymbols()

java.text.DateFormat (JDK
1.1)

java.text.DecimalFormat
(JDK 1.1)

Chapter 29
The java.text Package

29.10 java.text.DecimalFormatSymbols (JDK 1.1)

This class defines the various characters and strings, such as the decimal point, percent sign, and thousands
separator, used by DecimalFormat when formatting numbers. You do not typically use this class directly
unless you are formatting dates for an unsupported locale or in some highly customized way.

public final class DecimalFormatSymbols extends Object implements Cloneable,
Serializable {
 // Public Constructors
 public DecimalFormatSymbols();
 public DecimalFormatSymbols(Locale locale);
 // Public Instance Methods
 public Object clone(); // Overrides Object
 public boolean equals(Object obj); // Overrides Object
 public char getDecimalSeparator();
 public char getDigit();
 public char getGroupingSeparator();
 public String getInfinity();
 public char getMinusSign();
 public String getNaN();
 public char getPatternSeparator();
 public char getPerMill();
 public char getPercent();
 public char getZeroDigit();
 public int hashCode(); // Overrides Object
 public void setDecimalSeparator(char decimalSeparator);
 public void setDigit(char digit);
 public void setGroupingSeparator(char groupingSeparator);
 public void setInfinity(String infinity);
 public void setMinusSign(char minusSign);
 public void setNaN(String NaN);
 public void setPatternSeparator(char patternSeparator);
 public void setPerMill(char perMill);
 public void setPercent(char percent);
 public void setZeroDigit(char zeroDigit);

}

Passed To:

DecimalFormat(), DecimalFormat.setDecimalFormatSymbols()

Returned By:

DecimalFormat.getDecimalFormatSymbols()

java.text.DecimalFormat
(JDK 1.1)

java.text.FieldPosition (JDK
1.1)

Chapter 29
The java.text Package

29.12 java.text.Format (JDK 1.1)

This abstract class is the base class for all number, date, and string formatting classes in the java.text package. It defines
two abstract methods that are implemented by subclasses. format() converts an object to a string using the formatting
rules encapsulated by the Format subclass and optionally appends the resulting string to an existing StringBuffer.
parseObject() performs the reverse operation--it parses a formatted string and returns the corresponding object. Status
information for these two operations is returned in FieldPosition and ParsePosition objects. The non-abstract
methods of this class are simple shortcuts that rely on implementations of the abstract methods.

See ChoiceFormat, DateFormat, MessageFormat, and NumberFormat.

public abstract class Format extends Object implements Serializable, Cloneable {
 // Default Constructor: public Format()
 // Public Instance Methods
 public Object clone(); // Overrides Object
 public final String format(Object obj);
 public abstract StringBuffer format(Object obj, StringBuffer toAppendTo,
FieldPosition pos);
 public abstract Object parseObject(String source, ParsePosition status);
 public Object parseObject(String source) throws ParseException;
}

Extended By:

DateFormat, MessageFormat, NumberFormat

Passed To:

MessageFormat.setFormat(), MessageFormat.setFormats()

Returned By:

MessageFormat.getFormats()

java.text.FieldPosition (JDK
1.1)

java.text.MessageFormat
(JDK 1.1)

Chapter 21
The java.awt.image Package

21.7 java.awt.image.ImageFilter (JDK 1.0)

This class is used in conjunction with a FilteredImageSource. It accepts image data through the ImageConsumer
interface and passes it on to an ImageConsumer specified by the controlling FilteredImageSource. ImageFilter
is the superclass of all image filters, and performs no filtering itself. You must subclass it to perform the desired filtering. See
CropImageFilter and RGBImageFilter. The ImageFilter methods are the ImageConsumer methods invoked
by an ImageProducer. You should not call them directly.

See FilteredImageSource for an example of using an ImageFilter.

public class ImageFilter extends Object implements ImageConsumer, Cloneable {
 // Default Constructor: public ImageFilter()
 // Protected Instance Variables
 protected ImageConsumer consumer;
 // Public Instance Methods
 public Object clone(); // Overrides Object
 public ImageFilter getFilterInstance(ImageConsumer ic);
 public void imageComplete(int status); // From ImageConsumer
 public void resendTopDownLeftRight(ImageProducer ip);
 public void setColorModel(ColorModel model); // From ImageConsumer
 public void setDimensions(int width, int height); // From ImageConsumer
 public void setHints(int hints); // From ImageConsumer
 public void setPixels(int x, int y, int w, int h, ColorModel model,
 public void setPixels'u'byte[] pixels, int off, int scansize); // From
ImageConsumer
 public void setPixels(int x, int y, int w, int h, ColorModel model,
 public void setPixels'u'int[] pixels, int off, int scansize); // From
ImageConsumer
 public void setProperties(Hashtable props); // From ImageConsumer
}

Extended By:

CropImageFilter, ReplicateScaleFilter, RGBImageFilter

Passed To:

FilteredImageSource()

Returned By:

ImageFilter.getFilterInstance()

java.awt.image.ImageConsumer
(JDK 1.0)

java.awt.image.ImageObserver
(JDK 1.0)

Chapter 29
The java.text Package

29.14 java.text.NumberFormat (JDK 1.1)

This class formats and parses numbers in a locale-specific way. As an abstract class, it cannot be instantiated directly, but it
provides a number of static methods that return instances of a concrete subclass which you can use for formatting. The
getInstance() method returns a NumberFormat object suitable for normal formatting of numbers in either the default
locale or in a specified locale. getCurrencyInstance() and getPercentInstance() return NumberFormat
objects for formatting numbers that represent monetary amounts and percentages in either the default locale or in a specified
locale. getAvailableLocales() returns an array of locales for which NumberFormat objects are available.

Once you have created a suitable NumberFormat object, you may customize its locale-independent behavior with
setMaximumFractionDigits(), setGroupingUsed() and similar set methods. In order to customize the locale-
dependent behavior, you can use instanceof to test if the NumberFormat object is an instance of DecimalFormat,
and if so, cast it to that type. The DecimalFormat class provides complete control over number formatting. Note, however,
that a NumberFormat customized in this way may no longer be appropriate for the desired locale.

After creating and customizing a NumberFormat object, you can use the various format() methods to convert numbers to
strings or string buffers, and you can use the parse() or parseObject() methods to convert strings to numbers.

The constants defined by this class are intended to be used by the FieldPosition object.

The NumberFormat class in not intended for the display of very large or very small numbers that require exponential
notation, and it may not gracefully handle infinite or NaN (not-a-number) values.

public abstract class NumberFormat extends Format implements Cloneable {
 // Default Constructor: public NumberFormat()
 // Constants
 public static final int FRACTION_FIELD;
 public static final int INTEGER_FIELD;
 // Class Methods
 public static Locale[] getAvailableLocales();
 public static final NumberFormat getCurrencyInstance();
 public static NumberFormat getCurrencyInstance(Locale inLocale);
 public static final NumberFormat getInstance();
 public static NumberFormat getInstance(Locale inLocale);
 public static final NumberFormat getNumberInstance();
 public static NumberFormat getNumberInstance(Locale inLocale);
 public static final NumberFormat getPercentInstance();
 public static NumberFormat getPercentInstance(Locale inLocale);
 // Public Instance Methods
 public Object clone(); // Overrides Format
 public boolean equals(Object obj); // Overrides Object

 public final StringBuffer format(Object number, StringBuffer toAppendTo,
FieldPosition pos); // Defines Format
 public final String format(double number);
 public final String format(long number);
 public abstract StringBuffer format(double number, StringBuffer
toAppendTo, FieldPosition pos);
 public abstract StringBuffer format(long number, StringBuffer toAppendTo,
FieldPosition pos);
 public int getMaximumFractionDigits();
 public int getMaximumIntegerDigits();
 public int getMinimumFractionDigits();
 public int getMinimumIntegerDigits();
 public int hashCode(); // Overrides Object
 public boolean isGroupingUsed();
 public boolean isParseIntegerOnly();
 public abstract Number parse(String text, ParsePosition parsePosition);
 public Number parse(String text) throws ParseException;
 public final Object parseObject(String source, ParsePosition
parsePosition); // Defines Format
 public void setGroupingUsed(boolean newValue);
 public void setMaximumFractionDigits(int newValue);
 public void setMaximumIntegerDigits(int newValue);
 public void setMinimumFractionDigits(int newValue);
 public void setMinimumIntegerDigits(int newValue);
 public void setParseIntegerOnly(boolean value);
}

Hierarchy:

Object->Format(Serializable, Cloneable)->NumberFormat(Cloneable)

Extended By:

ChoiceFormat, DecimalFormat

Passed To:

DateFormat.setNumberFormat()

Returned By:

DateFormat.getNumberFormat(), NumberFormat.getCurrencyInstance(), NumberFormat.getInstance(),
NumberFormat.getNumberInstance(), NumberFormat.getPercentInstance()

Type Of:

DateFormat.numberFormat

java.text.MessageFormat
(JDK 1.1)

java.text.ParseException
(JDK 1.1)

Chapter 25
The java.lang Package

25.47 java.lang.Object (JDK 1.0)

This is the root class in Java. All classes are subclasses of Object, and thus all objects can invoke the public and
protected methods of this class. equals() tests whether two objects have the same value (i.e., not whether two
variables refer to the same object, but whether two distinct objects have byte-for-byte equivalence). For classes that
implement the Cloneable interface, clone() makes a byte-for-byte copy of an Object. getClass() returns the
Class object associated with any Object, and the notify(), notifyAll(), and wait() methods are used for thread
synchronization on a given Object.

A number of these Object methods should be overridden by subclasses of Object. Subclasses should provide their own
definition of the toString() method so that they can be used with the string concatenation operator and with the
PrintWriter.println() methods. Defining the toString() method for all objects also helps with debugging.

Classes that contain references to other objects may want to override the equals() and clone() methods (for
Cloneable objects) so that they recursively call the equals() and clone() methods of the objects referred to within
the original object. Some classes, particularly those that override equals(), may also want to override the hashCode()
method to provide an appropriate hashcode to be used when storing instances in a Hashtable data structure.

Classes that allocate system resources other than memory (such as file descriptors or windowing system graphic contexts)
should override the finalize() method to release these resources when the object is no longer referred to and is about to
be garbage collected.

public class Object {
 // Default Constructor: public Object()
 // Public Instance Methods
 public boolean equals(Object obj);
 public final native Class getClass();
 public native int hashCode();
 public final native void notify();
 public final native void notifyAll();
 public String toString();
 public final native void wait(long timeout) throws InterruptedException;
 public final void wait(long timeout, int nanos) throws
InterruptedException;
 public final void wait() throws InterruptedException;
 // Protected Instance Methods
 protected native Object clone() throws CloneNotSupportedException;
 protected void finalize() throws Throwable;
}

Extended By:

Many classes

Passed To:

Many methods

Returned By:

Many methods

Type Of:

Event.arg, Event.target, EventObject.source, Image.UndefinedProperty, Reader.lock, ReplicateScaleFilter.outpixbuf,
Vector.elementData, Writer.lock

java.lang.NumberFormatException
(JDK 1.0)

java.lang.OutOfMemoryError
(JDK 1.0)

Chapter 29
The java.text Package

29.17 java.text.RuleBasedCollator (JDK 1.1)

This class is a concrete subclass of the abstract Collator class. It performs collations using a table of rules that are
specified in textual form. Most applications do not use this class directly; instead they call Collator.getInstance()
to obtain a Collator object (typically a RuleBasedCollator object) that implements the default collation order for a
specified or default locale. You should only need to use this class if you are collating strings for a locale that is not supported
by default, or if you need to implement a highly customized collation order.

public class RuleBasedCollator extends Collator {
 // Public Constructor
 public RuleBasedCollator(String rules) throws ParseException;
 // Public Instance Methods
 public Object clone(); // Overrides Collator
 public int compare(String source, String target); // Defines Collator
 public boolean equals(Object obj); // Overrides Collator
 public CollationElementIterator getCollationElementIterator(String
source);
 public CollationKey getCollationKey(String source); // Defines Collator
 public String getRules();
 public int hashCode(); // Defines Collator
}

Hierarchy:

Object->Collator(Cloneable, Serializable)->RuleBasedCollator

java.text.ParsePosition (JDK
1.1)

java.text.SimpleDateFormat
(JDK 1.1)

Chapter 30
The java.util Package

30.21 java.util.SimpleTimeZone (JDK 1.1)

This concrete subclass of TimeZone is a simple implementation of that abstract class, and is suitable for use in locales that
use the Gregorian calendar. Programs do not usually need to instantiate this class directly; instead, they use one of the static
"factory" methods of TimeZone to obtain a suitable TimeZone subclass.

You would instantiate this class directly only if you needed to support a time zone with nonstandard daylight savings time
rules. In that case, you would use call setStartRule() and setEndRule() to specify the starting and ending dates of
daylight savings time for the time zone.

public class SimpleTimeZone extends TimeZone {
 // Public Constructors
 public SimpleTimeZone(int rawOffset, String ID);
 public SimpleTimeZone(int rawOffset, String ID, int startMonth, int
startDayOfWeekInMonth, int startDayOfWeek, int startTime, int endMonth, int
endDayOfWeekInMonth, int endDayOfWeek, int endTime);
 // Public Instance Methods
 public Object clone(); // Overrides TimeZone
 public boolean equals(Object obj); // Overrides Object
 public int getOffset(int era, int year, int month, int day, int
dayOfWeek, int millis); // Defines TimeZone
 public int getRawOffset(); // Defines TimeZone
 public synchronized int hashCode(); // Overrides Object
 public boolean inDaylightTime(Date date); // Defines TimeZone
 public void setEndRule(int month, int dayOfWeekInMonth, int dayOfWeek,
int time);
 public void setRawOffset(int offsetMillis); // Defines TimeZone
 public void setStartRule(int month, int dayOfWeekInMonth, int dayOfWeek,
int time);
 public void setStartYear(int year);
 public boolean useDaylightTime(); // Defines TimeZone
}

Hierarchy:

Object->TimeZone(Serializable, Cloneable)->SimpleTimeZone

java.util.ResourceBundle
(JDK 1.1)

java.util.Stack (JDK 1.0)

Chapter 29
The java.text Package

29.19 java.text.StringCharacterIterator (JDK 1.1)

This class is a trivial implementation of the CharacterIterator interface that works for text stored in Java String
objects. See CharacterIterator for details.

public final class StringCharacterIterator extends Object implements
CharacterIterator {
 // Public Constructors
 public StringCharacterIterator(String text);
 public StringCharacterIterator(String text, int pos);
 public StringCharacterIterator(String text, int begin, int end, int pos);
 // Public Instance Methods
 public Object clone(); // Overrides Object
 public char current(); // From CharacterIterator
 public boolean equals(Object obj); // Overrides Object
 public char first(); // From CharacterIterator
 public int getBeginIndex(); // From CharacterIterator
 public int getEndIndex(); // From CharacterIterator
 public int getIndex(); // From CharacterIterator
 public int hashCode(); // Overrides Object
 public char last(); // From CharacterIterator
 public char next(); // From CharacterIterator
 public char previous(); // From CharacterIterator
 public char setIndex(int p); // From CharacterIterator
}

Hierarchy:

Object->StringCharacterIterator(CharacterIterator(Cloneable))

java.text.SimpleDateFormat
(JDK 1.1)

The java.util Package

Chapter 30
The java.util Package

30.24 java.util.TimeZone (JDK 1.1)

The TimeZone class represents a time zone; it is used with the Calendar and DateFormat classes.

As an abstract class, TimeZone cannot be directly instantiated. Instead, you should call the static getDefault() method
to obtain a TimeZone object that represents the time zone inherited from the host operating system. Or, you should call
getTimeZone() (also static), passing the name of the desired zone. You can obtain a list of the supported time zone
names by calling the static getAvailableIDs() method.

Once you have a TimeZone object, you can call inDaylightTime() to determine whether, for a given Date, daylight
savings time is in effect for that time zone. Call getID() to obtain the name of the time zone, and call getOffset() for
a given date to determine the number of milliseconds to add to GMT to convert to the time zone.

public abstract class TimeZone extends Object implements Serializable, Cloneable {
 // Default Constructor: public TimeZone()
 // Class Methods
 public static synchronized String[] getAvailableIDs(int rawOffset);
 public static synchronized String[] getAvailableIDs();
 public static synchronized TimeZone getDefault();
 public static synchronized TimeZone getTimeZone(String ID);
 public static synchronized void setDefault(TimeZone zone);
 // Public Instance Methods
 public Object clone(); // Overrides Object
 public String getID();
 public abstract int getOffset(int era, int year, int month, int day, int
dayOfWeek, int milliseconds);
 public abstract int getRawOffset();
 public abstract boolean inDaylightTime(Date date);
 public void setID(String ID);
 public abstract void setRawOffset(int offsetMillis);
 public abstract boolean useDaylightTime();
}

Extended By:

SimpleTimeZone

Passed To:

Calendar(), Calendar.getInstance(), Calendar.setTimeZone(), DateFormat.setTimeZone(), GregorianCalendar(),
TimeZone.setDefault()

Returned By:

Calendar.getTimeZone(), DateFormat.getTimeZone(), TimeZone.getDefault(), TimeZone.getTimeZone()

java.util.StringTokenizer
(JDK 1.0)

java.util.TooManyListenersException
(JDK 1.1)

Chapter 24
The java.io Package

24.3 java.io.BufferedReader (JDK 1.1)

This class applies buffering to a character input stream, thereby improving the efficiency of character input. You create a
BufferedReader by specifying some other character input stream that it is to buffer input from. (You can also specify
a buffer size at this time, although the default size is usually fine.) Typically you use this sort of buffering when you are
using a FileReader or InputStreamReader.

BufferedReader defines the standard set of Reader methods, and also provides a readLine() method that reads a
line of text (not including the line-terminators) and returns it as a String.

BufferedReader is the character-stream analog of BufferedInputStream. It also provides a replacement for the
deprecated readLine() method of DataInputStream, which did not properly convert bytes into characters.

public class BufferedReader extends Reader {
 // Public Constructors
 public BufferedReader(Reader in, int sz);
 public BufferedReader(Reader in);
 // Public Instance Methods
 public void close() throws IOException; // Defines Reader
 public void mark(int readAheadLimit) throws IOException; // Overrides
Reader
 public boolean markSupported(); // Overrides Reader
 public int read() throws IOException; // Overrides Reader
 public int read(char[] cbuf, int off, int len) throws IOException; //
Defines Reader
 public String readLine() throws IOException;
 public boolean ready() throws IOException; // Overrides Reader
 public void reset() throws IOException; // Overrides Reader
 public long skip(long n) throws IOException; // Overrides Reader
}

Hierarchy:

Object->Reader->BufferedReader

Extended By:

LineNumberReader

java.io.BufferedOutputStream
(JDK 1.0)

java.io.BufferedWriter (JDK
1.1)

Chapter 24
The java.io Package

24.4 java.io.BufferedWriter (JDK 1.1)

This class applies buffering to a character output stream, improving output efficiency by coalescing many small write
requests into a single larger request. You create a BufferedWriter by specifying some other character output stream to
which it sends its buffered and coalesced output. (You can also specify a buffer size at this time, although the default size is
usually satisfactory.) Typically you use this sort of buffering when you are using a FileWriter or
OutputStreamWriter.

BufferedWriter defines the standard write(), flush(), and close() methods that all output streams define, but it
also adds a newLine() method, which outputs the platform-dependent line separator (usually a newline character, a
carriage return character, or both) to the stream.

BufferedWriter is the character-stream analog of BufferedOutputStream.

public class BufferedWriter extends Writer {
 // Public Constructors
 public BufferedWriter(Writer out);
 public BufferedWriter(Writer out, int sz);
 // Public Instance Methods
 public void close() throws IOException; // Defines Writer
 public void flush() throws IOException; // Defines Writer
 public void newLine() throws IOException;
 public void write(int c) throws IOException; // Overrides Writer
 public void write(char[] cbuf, int off, int len) throws IOException; //
Defines Writer
 public void write(String s, int off, int len) throws IOException; //
Overrides Writer
}

Hierarchy:

Object->Writer->BufferedWriter

java.io.BufferedReader (JDK
1.1)

java.io.ByteArrayInputStream
(JDK 1.0)

Chapter 28
The java.net Package

28.6 java.net.DatagramSocket (JDK 1.0)

This class defines a socket that can receive and send unreliable datagram packets over the network using the UDP protocol. A
datagram is a very low-level networking interface: it is simply an array of bytes sent over the network. A datagram does not
implement any kind of stream-based communication protocol, and there is no connection established between the sender and
the receiver. Datagram packets are called "unreliable" because the protocol does not make any attempt to ensure that they
arrived or to resend them if they did not. Thus, packets sent through a DatagramSocket are not guaranteed to arrive in the
order sent, or to arrive at all. On the other hand, this low-overhead protocol makes datagram transmission very fast.

If a port is specified when the DatagramSocket is created, that port is used; otherwise, the system assigns a port.
getLocalPort() returns the port number in use. send() sends a DatagramPacket through the socket. The packet
must contain the destination address to which it should be sent. receive() waits for data to arrive at the socket and stores it,
along with the address of the sender, into the specified DatagramPacket. close() closes the socket and frees the port it
used for reuse. Once close() has been called, the DatagramSocket should not be used again.

See Socket and URL for higher-level interfaces to networking.

public class DatagramSocket extends Object {
 // Public Constructors
 public DatagramSocket() throws SocketException;
 public DatagramSocket(int port) throws SocketException;
 1.1public DatagramSocket(int port, InetAddress laddr) throws SocketException;
 // Public Instance Methods
 public void close();
 1.1public InetAddress getLocalAddress();
 public int getLocalPort();
 1.1public synchronized int getSoTimeout() throws SocketException;
 public synchronized void receive(DatagramPacket p) throws IOException;
 public void send(DatagramPacket p) throws IOException;
 1.1public synchronized void setSoTimeout(int timeout) throws SocketException;
}

Extended By:

MulticastSocket

java.net.DatagramPacket
(JDK 1.0)

java.net.DatagramSocketImpl
(JDK 1.1)

Chapter 24
The java.io Package

24.20 java.io.FileOutputStream (JDK 1.0)

This class is a subclass of OutputStream that writes data to a file specified by name, or by a File or FileDescriptor
object. write() writes a byte or array of bytes to the file. To write binary data, you typically use this class in conjunction
with a BufferedOutputStream and a DataOutputStream. To write text, you typically use it with a PrintWriter,
BufferedWriter, and an OutputStreamWriter. Use close() to close a FileOutputStream when no further
output will be written to it.

public class FileOutputStream extends OutputStream {
 // Public Constructors
 public FileOutputStream(String name) throws IOException;
 1.1 public FileOutputStream(String name, boolean append) throws IOException;
 public FileOutputStream(File file) throws IOException;
 public FileOutputStream(FileDescriptor fdObj);
 // Public Instance Methods
 public native void close() throws IOException; // Overrides OutputStream
 public final FileDescriptor getFD() throws IOException;
 public native void write(int b) throws IOException; // Defines
OutputStream
 public void write(byte[] b) throws IOException; // Overrides
OutputStream
 public void write(byte[] b, int off, int len) throws IOException; //
Overrides OutputStream
 // Protected Instance Methods
 protected void finalize() throws IOException; // Overrides Object
}

Hierarchy:

Object->OutputStream->FileOutputStream

java.io.FileNotFoundException
(JDK 1.0)

java.io.FileReader (JDK 1.1)

Chapter 24
The java.io Package

24.25 java.io.FilterOutputStream (JDK 1.0)

This class provides method definitions required to filter the data to be written to the OutputStream specified when
the FilterOutputStream is created. It must be subclassed to perform some sort of filtering operation and may not
be instantiated directly. See the subclasses BufferedOutputStream and DataOutputStream.

public class FilterOutputStream extends OutputStream {
 // Public Constructor
 public FilterOutputStream(OutputStream out);
 // Protected Instance Variables
 protected OutputStream out;
 // Public Instance Methods
 public void close() throws IOException; // Overrides OutputStream
 public void flush() throws IOException; // Overrides OutputStream
 public void write(int b) throws IOException; // Defines OutputStream
 public void write(byte[] b) throws IOException; // Overrides
OutputStream
 public void write(byte[] b, int off, int len) throws IOException; //
Overrides OutputStream
}

Hierarchy:

Object->OutputStream->FilterOutputStream

Extended By:

BufferedOutputStream, CheckedOutputStream, DataOutputStream, DeflaterOutputStream, PrintStream

java.io.FilterInputStream
(JDK 1.0)

java.io.FilterReader (JDK 1.1)

Chapter 24
The java.io Package

24.26 java.io.FilterReader (JDK 1.1)

This abstract class is intended to act as a superclass for character input streams that read data from some other character
input stream, filter it in some way, and then return the filtered data when their own read() methods are called.

FilterReader is declared abstract, so that it cannot be instantiated. But none of its methods are themselves
abstract: they all simply call the requested operation on the input stream passed to the FilterReader() constructor. If
you were allowed to instantiate a FilterReader, you'd find that it is a "null filter"--i.e., it simply reads characters from
the specified input stream and returns them without filtering of any kind.

Because FilterReader implements a "null filter," it is an ideal superclass for classes that want to implement simple
filters, but do not want to override all of the methods of Reader. In order to create your own filtered character input
stream, you should subclass FilterReader and override both of its read() methods to perform the desired filtering
operation. Note that you can implement one of the read() methods in terms of the other, and thus only implement the
filtration once. Recall that the other read() methods defined by Reader are implemented in terms of these methods, so
you do not need to override those. In some cases, you may also need to override other methods of FilterReader as
well, and you may want to provide methods or constructors that are specific to your subclass.

FilterReader is the character-stream analog to FilterInputStream.

public abstract class FilterReader extends Reader {
 // Protected Constructor
 protected FilterReader(Reader in);
 // Protected Instance Variables
 protected Reader in;
 // Public Instance Methods
 public void close() throws IOException; // Defines Reader
 public void mark(int readAheadLimit) throws IOException; // Overrides
Reader
 public boolean markSupported(); // Overrides Reader
 public int read() throws IOException; // Overrides Reader
 public int read(char[] cbuf, int off, int len) throws IOException; //
Defines Reader
 public boolean ready() throws IOException; // Overrides Reader
 public void reset() throws IOException; // Overrides Reader
 public long skip(long n) throws IOException; // Overrides Reader
}

Hierarchy:

Object->Reader->FilterReader

Extended By:

PushbackReader

java.io.FilterOutputStream
(JDK 1.0)

java.io.FilterWriter (JDK 1.1)

Chapter 24
The java.io Package

24.27 java.io.FilterWriter (JDK 1.1)

This abstract class is intended to act as a superclass for character output streams that filter the data written to them before
writing it to some other character output stream.

FilterWriter is declared abstract, so that it cannot be instantiated. But none of its methods are themselves abstract:
they all simply invoke the corresponding method on the output stream that was passed to the FilterWriter constructor. If
you were allowed to instantiate a FilterWriter object, you'd find that it acts as a "null filter"--that it simply passes the
characters written to it along, without any filtration.

Because FilterWriter implements a "null filter," it is an ideal superclass for classes that want to implement simple filters
without having to override all of the methods of Writer. In order to create your own filtered character output stream, you
should subclass FilterWriter and override all of its write() methods to perform the desired filtering operation. Note
that you can implement two of the write() methods in terms of the third, and thus only implement your filtering algorithm
once. In some cases, you may want to override other Writer methods as well, and you may often want to add other methods
or constructors that are specific to your subclass.

FilterWriter is the character-stream analog of FilterOutputStream.

public abstract class FilterWriter extends Writer {
 // Protected Constructor
 protected FilterWriter(Writer out);
 // Protected Instance Variables
 protected Writer out;
 // Public Instance Methods
 public void close() throws IOException; // Defines Writer
 public void flush() throws IOException; // Defines Writer
 public void write(int c) throws IOException; // Overrides Writer
 public void write(char[] cbuf, int off, int len) throws IOException; //
Defines Writer
 public void write(String str, int off, int len) throws IOException; //
Overrides Writer
}

Hierarchy:

Object->Writer->FilterWriter

java.io.FilterReader (JDK 1.1) java.io.InputStream (JDK 1.0)

Chapter 31
The java.util.zip Package

31.9 java.util.zip.GZIPInputStream (JDK 1.1)

This class is a subclass of InflaterInputStream that reads and uncompresses data compressed in gzip format. To
create a GZIPInputStream, you must simply specify the InputStream it is to read compressed data from, and
optionally specify a buffer size for the internal decompression buffer. Once a GZIPInputStream is created, you can use
the read() and close() methods as you would with any input stream.

public class GZIPInputStream extends InflaterInputStream {
 // Public Constructors
 public GZIPInputStream(InputStream in, int size) throws IOException;
 public GZIPInputStream(InputStream in) throws IOException;
 // Constants
 public static final int GZIP_MAGIC;
 // Protected Instance Variables
 protected CRC32 crc;
 protected boolean eos;
 // Public Instance Methods
 public void close() throws IOException; // Overrides FilterInputStream
 public int read(byte[] buf, int off, int len) throws IOException; //
Overrides InflaterInputStream
}

Hierarchy:

Object->InputStream->FilterInputStream->InflaterInputStream->GZIPInputStream

java.util.zip.DeflaterOutputStream
(JDK 1.1)

java.util.zip.GZIPOutputStream
(JDK 1.1)

Chapter 31
The java.util.zip Package

31.10 java.util.zip.GZIPOutputStream (JDK 1.1)

This class is a subclass of DeflaterOutputStream that compresses and writes data using the gzip file format. To
create a GZIPOutputStream, you must specify the OutputStream that it is to write to, and may optionally specify a
size for the internal compression buffer. Once the GZIPOutputStream is created, you can use the write() and
close() methods as you would any other output stream.

public class GZIPOutputStream extends DeflaterOutputStream {
 // Public Constructors
 public GZIPOutputStream(OutputStream out, int size) throws IOException;
 public GZIPOutputStream(OutputStream out) throws IOException;
 // Protected Instance Variables
 protected CRC32 crc;
 // Public Instance Methods
 public void close() throws IOException; // Overrides
DeflaterOutputStream
 public void finish() throws IOException; // Overrides
DeflaterOutputStream
 public synchronized void write(byte[] buf, int off, int len) throws
IOException; // Overrides DeflaterOutputStream
}

Hierarchy:

Object->OutputStream->FilterOutputStream->DeflaterOutputStream->GZIPOutputStream

java.util.zip.GZIPInputStream
(JDK 1.1)

java.util.zip.Inflater (JDK 1.1)

Chapter 24
The java.io Package

24.29 java.io.InputStreamReader (JDK 1.1)

This class is a character input stream that uses a byte input stream as its data source: it reads bytes from a specified
InputStream and translates them into Unicode characters according to a particular platform- and locale-dependent
character encoding. This is a very important internationalization feature in Java 1.1.

When you create an InputStreamReader, you specify an InputStream from which the InputStreamReader
is to read bytes, and you also optionally specify the name of the character encoding used by those bytes. If you do not
specify an encoding name, the InputStreamReader uses the default encoding for the default locale, which is usually
the correct thing to do.

The InputStreamReader supports the standard Reader methods. It also has a getEncoding() method that
returns the name of the encoding being used to convert bytes to characters.

public class InputStreamReader extends Reader {
 // Public Constructors
 public InputStreamReader(InputStream in);
 public InputStreamReader(InputStream in, String enc) throws
UnsupportedEncodingException;
 // Public Instance Methods
 public void close() throws IOException; // Defines Reader
 public String getEncoding();
 public int read() throws IOException; // Overrides Reader
 public int read(char[] cbuf, int off, int len) throws IOException; //
Defines Reader
 public boolean ready() throws IOException; // Overrides Reader
}

Hierarchy:

Object->Reader->InputStreamReader

Extended By:

FileReader

java.io.InputStream (JDK 1.0) java.io.InterruptedIOException
(JDK 1.0)

Chapter 24
The java.io Package

24.41 java.io.ObjectOutput (JDK 1.1)

This interface extends the DataOutput interface and adds methods for serializing objects and writing bytes and
arrays of bytes.

public abstract interface ObjectOutput extends DataOutput {
 // Public Instance Methods
 public abstract void close() throws IOException;
 public abstract void flush() throws IOException;
 public abstract void write(int b) throws IOException; // From
DataOutput
 public abstract void write(byte[] b) throws IOException; // From
DataOutput
 public abstract void write(byte[] b, int off, int len) throws
IOException; // From DataOutput
 public abstract void writeObject(Object obj) throws IOException;
}

Implemented By:

ObjectOutputStream

Passed To:

Externalizable.writeExternal()

java.io.ObjectInputValidation
(JDK 1.1)

java.io.ObjectOutputStream
(JDK 1.1)

Chapter 24
The java.io Package

24.46 java.io.OutputStream (JDK 1.0)

This abstract class is the superclass of all output streams. It defines the basic output methods that all output stream
classes provide.

write() writes a single byte or an array or subarray of bytes. flush() forces any buffered output to be written.
close() closes the stream and frees up any system resources associated with it. The stream may not be used
once close() has been called.

See also Writer.

public abstract class OutputStream extends Object {
 // Default Constructor: public OutputStream()
 // Public Instance Methods
 public void close() throws IOException;
 public void flush() throws IOException;
 public abstract void write(int b) throws IOException;
 public void write(byte[] b) throws IOException;
 public void write(byte[] b, int off, int len) throws IOException;
}

Extended By:

ByteArrayOutputStream, FileOutputStream, FilterOutputStream, ObjectOutputStream, PipedOutputStream

Passed To:

BufferedOutputStream(), ByteArrayOutputStream.writeTo(), CheckedOutputStream(), DataOutputStream(),
DeflaterOutputStream(), FilterOutputStream(), GZIPOutputStream(), ObjectOutputStream(),
OutputStreamWriter(), PrintStream(), PrintWriter(), Properties.save(), Runtime.getLocalizedOutputStream(),
ZipOutputStream()

Returned By:

Process.getOutputStream(), Runtime.getLocalizedOutputStream(), Socket.getOutputStream(),
SocketImpl.getOutputStream(), URLConnection.getOutputStream()

Type Of:

FilterOutputStream.out

java.io.OptionalDataException
(JDK 1.1)

java.io.OutputStreamWriter
(JDK 1.1)

Chapter 24
The java.io Package

24.47 java.io.OutputStreamWriter (JDK 1.1)

This class is a character output stream that uses a byte output stream as the destination for its data: when characters are
written to an OutputStreamWriter, it translates them into bytes according to a particular locale- and/or platform-
specific character encoding, and writes those bytes to the specified OutputStream. This is a very important
internationalization feature in Java 1.1.

When you create an OutputStreamWriter, you specify the OutputStream to which it writes bytes, and you
optionally specify the name of the character encoding that should be used to convert characters to bytes. If you do not specify
an encoding name, the OutputStreamWriter uses the default encoding of the default locale, which is usually the correct
thing to do.

OutputStreamWriter supports the usual Writer methods. It also has a getEncoding() method which returns the
name of the encoding being used to convert characters to bytes.

public class OutputStreamWriter extends Writer {
 // Public Constructors
 public OutputStreamWriter(OutputStream out, String enc) throws
UnsupportedEncodingException;
 public OutputStreamWriter(OutputStream out);
 // Public Instance Methods
 public void close() throws IOException; // Defines Writer
 public void flush() throws IOException; // Defines Writer
 public String getEncoding();
 public void write(int c) throws IOException; // Overrides Writer
 public void write(char[] cbuf, int off, int len) throws IOException; //
Defines Writer
 public void write(String str, int off, int len) throws IOException; //
Overrides Writer
}

Hierarchy:

Object->Writer->OutputStreamWriter

Extended By:

FileWriter

java.io.OutputStream (JDK
1.0)

java.io.PipedInputStream
(JDK 1.0)

Chapter 24
The java.io Package

24.49 java.io.PipedOutputStream (JDK 1.0)

This class is an OutputStream that implements one half of a pipe, and is useful for communication between threads.
A PipedOutputStream must be connected to a PipedInputStream, which may be specified when the
PipedOutputStream is created or with the connect() method. Data written to the PipedOutputStream are
available for reading on the PipedInputStream.

See OutputStream for information on the low-level methods for writing data to a PipedOutputStream. A
FilterOutputStream may be used to provide a higher-level interface for writing data to a
PipedOutputStream.

public class PipedOutputStream extends OutputStream {
 // Public Constructors
 public PipedOutputStream(PipedInputStream snk) throws IOException;
 public PipedOutputStream();
 // Public Instance Methods
 public void close() throws IOException; // Overrides OutputStream
 public void connect(PipedInputStream snk) throws IOException;
 public synchronized void flush() throws IOException; // Overrides
OutputStream
 public void write(int b) throws IOException; // Defines OutputStream
 public void write(byte[] b, int off, int len) throws IOException; //
Overrides OutputStream
}

Hierarchy:

Object->OutputStream->PipedOutputStream

Passed To:

PipedInputStream(), PipedInputStream.connect()

java.io.PipedInputStream
(JDK 1.0)

java.io.PipedReader (JDK
1.1)

Chapter 24
The java.io Package

24.50 java.io.PipedReader (JDK 1.1)

PipedReader is a character input stream that reads characters from a PipedWriter character output stream to which
it is connected. PipedReader implements one-half of a pipe, and is useful for communication between two threads of
an application.

A PipedReader cannot be used until it is connected to a PipedWriter object, which may be passed to the
PipedReader() constructor or to the connect() method.

PipedReader inherits most of the methods of its superclass. See Reader for more information.

PipedReader is the character stream analog of PipedInputStream.

public class PipedReader extends Reader {
 // Public Constructors
 public PipedReader();
 public PipedReader(PipedWriter src) throws IOException;
 // Public Instance Methods
 public void close() throws IOException; // Defines Reader
 public void connect(PipedWriter src) throws IOException;
 public int read(char[] cbuf, int off, int len) throws IOException; //
Defines Reader
}

Hierarchy:

Object->Reader->PipedReader

Passed To:

PipedWriter(), PipedWriter.connect()

java.io.PipedOutputStream
(JDK 1.0)

java.io.PipedWriter (JDK 1.1)

Chapter 24
The java.io Package

24.51 java.io.PipedWriter (JDK 1.1)

PipedWriter is a character output stream that writes characters to the PipedReader character input stream to which it
is connected. PipedWriter implements one half of a pipe, and is useful for communication between two threads of an
application.

A PipedWriter cannot be used until it is connected to a PipedReader object, which may be passed to the
PipedWriter() constructor, or to the connect() method.

PipedWriter inherits most of the methods of its superclass. See Writer for more information.

PipedWriter is the character stream analog of PipedOutputStream.

public class PipedWriter extends Writer {
 // Public Constructors
 public PipedWriter();
 public PipedWriter(PipedReader sink) throws IOException;
 // Public Instance Methods
 public void close() throws IOException; // Defines Writer
 public void connect(PipedReader sink) throws IOException;
 public void flush() throws IOException; // Defines Writer
 public void write(char[] cbuf, int off, int len) throws IOException; //
Defines Writer
}

Hierarchy:

Object->Writer->PipedWriter

Passed To:

PipedReader(), PipedReader.connect()

java.io.PipedReader (JDK
1.1)

java.io.PrintStream (JDK 1.0)

Chapter 24
The java.io Package

24.55 java.io.PushbackReader (JDK 1.1)

This class is a character input stream that uses another input stream as its input source, and adds the ability to push
characters back onto the stream. This feature is often useful when writing parsers.

When you create a PushbackReader stream, you specify the stream to be read from, and may optionally specify the
size of the pushback buffer--i.e., the number of characters that may be pushed back onto the stream or "unread." If you do
not specify a size for this buffer, the default size is one character.

PushbackReader inherits or overrides all the standard Reader methods, and also adds three unread() methods that
are used to push a single character, an array of characters, or a portion of an array of characters back onto the stream.

This class is the character stream analog of PushbackInputStream.

public class PushbackReader extends FilterReader {
 // Public Constructors
 public PushbackReader(Reader in, int size);
 public PushbackReader(Reader in);
 // Public Instance Methods
 public void close() throws IOException; // Overrides FilterReader
 public boolean markSupported(); // Overrides FilterReader
 public int read() throws IOException; // Overrides FilterReader
 public int read(char[] cbuf, int off, int len) throws IOException; //
Overrides FilterReader
 public boolean ready() throws IOException; // Overrides FilterReader
 public void unread(int c) throws IOException;
 public void unread(char[] cbuf, int off, int len) throws IOException;
 public void unread(char[] cbuf) throws IOException;
}

Hierarchy:

Object->Reader->FilterReader->PushbackReader

java.io.PushbackInputStream
(JDK 1.0)

java.io.RandomAccessFile
(JDK 1.0)

Chapter 24
The java.io Package

24.56 java.io.RandomAccessFile (JDK 1.0)

This class allows reading and writing of arbitrary bytes, text, and primitive Java data types from or to any specified location in
a file. Because this class provides random, rather than sequential, access to files, it is neither a subclass of InputStream nor
of OutputStream, but provides an entirely independent method for reading and writing data from or to files.
RandomAccessFile implements the same interfaces as DataInputStream and DataOutputStream, and thus
defines the same methods for reading and writing data as those classes do.

The seek() method provides random access to the file--it is used to select the position in the file from which, or to which,
data should be read or written. The mode argument to the constructor methods should be "r" for a file that is to be read-only,
and "rw" for a file that is to be written (and perhaps read as well).

public class RandomAccessFile extends Object implements DataOutput, DataInput {
 // Public Constructors
 public RandomAccessFile(String name, String mode) throws IOException;
 public RandomAccessFile(File file, String mode) throws IOException;
 // Public Instance Methods
 public native void close() throws IOException;
 public final FileDescriptor getFD() throws IOException;
 public native long getFilePointer() throws IOException;
 public native long length() throws IOException;
 public native int read() throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
 public int read(byte[] b) throws IOException;
 public final boolean readBoolean() throws IOException; // From DataInput
 public final byte readByte() throws IOException; // From DataInput
 public final char readChar() throws IOException; // From DataInput
 public final double readDouble() throws IOException; // From DataInput
 public final float readFloat() throws IOException; // From DataInput
 public final void readFully(byte[] b) throws IOException; // From
DataInput
 public final void readFully(byte[] b, int off, int len) throws
IOException; // From DataInput
 public final int readInt() throws IOException; // From DataInput
 public final String readLine() throws IOException; // From DataInput
 public final long readLong() throws IOException; // From DataInput
 public final short readShort() throws IOException; // From DataInput
 public final String readUTF() throws IOException; // From DataInput
 public final int readUnsignedByte() throws IOException; // From
DataInput
 public final int readUnsignedShort() throws IOException; // From

DataInput
 public native void seek(long pos) throws IOException;
 public int skipBytes(int n) throws IOException; // From DataInput
 public native void write(int b) throws IOException; // From DataOutput
 public void write(byte[] b) throws IOException; // From DataOutput
 public void write(byte[] b, int off, int len) throws IOException; //
From DataOutput
 public final void writeBoolean(boolean v) throws IOException; // From
DataOutput
 public final void writeByte(int v) throws IOException; // From
DataOutput
 public final void writeBytes(String s) throws IOException; // From
DataOutput
 public final void writeChar(int v) throws IOException; // From
DataOutput
 public final void writeChars(String s) throws IOException; // From
DataOutput
 public final void writeDouble(double v) throws IOException; // From
DataOutput
 public final void writeFloat(float v) throws IOException; // From
DataOutput
 public final void writeInt(int v) throws IOException; // From DataOutput
 public final void writeLong(long v) throws IOException; // From
DataOutput
 public final void writeShort(int v) throws IOException; // From
DataOutput
 public final void writeUTF(String str) throws IOException; // From
DataOutput
}

java.io.PushbackReader (JDK
1.1)

java.io.Reader (JDK 1.1)

Chapter 24
The java.io Package

24.57 java.io.Reader (JDK 1.1)

This abstract class is the superclass of all character input streams. It is an analog to InputStream, which is
the superclass of all byte input streams. Reader defines the basic methods that all character output streams
provide.

read() returns a single character or an array (or subarray) of characters, blocking if necessary. It returns -1
if the end of the stream has been reached. ready() returns true if there are characters available for reading.
If ready() returns true, the next call to read() is guaranteed not to block. close() closes the
character input stream. skip() skips a specified number of characters in the input stream. If
markSupported() returns true, then mark() "marks" a position in the stream and, if necessary, creates
a look-ahead buffer of the specified size. Future calls to reset() restore the stream to the marked position,
if they occur within the specified look-ahead limit. Note that not all stream types support this mark-and-reset
functionality.

To create a subclass of Reader, you need only implement the three-argument version of read() and
close(). Most subclasses implement additional methods as well, however.

public abstract class Reader extends Object {
 // Protected Constructors
 protected Reader();
 protected Reader(Object lock);
 // Protected Instance Variables
 protected Object lock;
 // Public Instance Methods
 public abstract void close() throws IOException;
 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported();
 public int read() throws IOException;
 public int read(char[] cbuf) throws IOException;
 public abstract int read(char[] cbuf, int off, int len) throws
IOException;
 public boolean ready() throws IOException;
 public void reset() throws IOException;

 public long skip(long n) throws IOException;
}

Extended By:

BufferedReader, CharArrayReader, FilterReader, InputStreamReader, PipedReader, StringReader

Passed To:

BufferedReader(), FilterReader(), LineNumberReader(), PushbackReader(), StreamTokenizer()

Type Of:

FilterReader.in

java.io.RandomAccessFile
(JDK 1.0)

java.io.SequenceInputStream
(JDK 1.0)

Chapter 28
The java.net Package

28.16 java.net.Socket (JDK 1.0)

This class implements a socket for interprocess communication over the network. The constructor methods create the socket
and connect it to the specified host and port. You may also optionally specify whether communication through the socket
should be based on an underlying reliable connection-based stream protocol, or on an underlying unreliable (but faster)
datagram protocol. A stream protocol is the default.

Once the socket is created, getInputStream() and getOutputStream() return InputStream and
OutputStream objects that you can use just as you would for file input and output. getInetAddress() and
getPort() return the address and port that the socket is connected to. getLocalPort() returns the local port that the
socket is using.

public class Socket extends Object {
 // Public Constructors
 public Socket(String host, int port) throws UnknownHostException,
IOException;
 public Socket(InetAddress address, int port) throws IOException;
 1.1public Socket(String host, int port, InetAddress localAddr, int localPort)
throws IOException;
 1.1public Socket(InetAddress address, int port, InetAddress localAddr, int
localPort) throws IOException;
 # public Socket(String host, int port, boolean stream) throws IOException;
 # public Socket(InetAddress host, int port, boolean stream) throws
IOException;
 // Protected Constructors
 1.1protected Socket();
 1.1protected Socket(SocketImpl impl) throws SocketException;
 // Class Methods
 public static synchronized void setSocketImplFactory(SocketImplFactory
fac) throws IOException;
 // Public Instance Methods
 public synchronized void close() throws IOException;
 public InetAddress getInetAddress();
 public InputStream getInputStream() throws IOException;
 1.1public InetAddress getLocalAddress();
 public int getLocalPort();
 public OutputStream getOutputStream() throws IOException;
 public int getPort();
 1.1public int getSoLinger() throws SocketException;
 1.1public synchronized int getSoTimeout() throws SocketException;
 1.1public boolean getTcpNoDelay() throws SocketException;

 1.1public void setSoLinger(boolean on, int val) throws SocketException;
 1.1public synchronized void setSoTimeout(int timeout) throws SocketException;
 1.1public void setTcpNoDelay(boolean on) throws SocketException;
 public String toString(); // Overrides Object
}

Passed To:

ServerSocket.implAccept()

Returned By:

ServerSocket.accept()

java.net.ServerSocket (JDK
1.0)

java.net.SocketException
(JDK 1.0)

Chapter 24
The java.io Package

24.63 java.io.StringReader (JDK 1.1)

This class is a character input stream that uses a String object as the source of the characters it returns. When you create
a StringReader, you must specify the String that it is to read from.

StringReader defines the normal Reader methods, and supports mark() and reset(). If reset() is called
before mark() has been called, the stream is reset to the beginning of the specified string.

StringReader is a character stream analog to StringBufferInputStream, which is deprecated in Java 1.1.
StringReader is also similar to CharArrayReader.

public class StringReader extends Reader {
 // Public Constructor
 public StringReader(String s);
 // Public Instance Methods
 public void close(); // Defines Reader
 public void mark(int readAheadLimit) throws IOException; // Overrides
Reader
 public boolean markSupported(); // Overrides Reader
 public int read() throws IOException; // Overrides Reader
 public int read(char[] cbuf, int off, int len) throws IOException; //
Defines Reader
 public boolean ready(); // Overrides Reader
 public void reset() throws IOException; // Overrides Reader
 public long skip(long ns) throws IOException; // Overrides Reader
}

Hierarchy:

Object->Reader->StringReader

java.io.StringBufferInputStream
(JDK 1.0; Deprecated.)

java.io.StringWriter (JDK
1.1)

Chapter 24
The java.io Package

24.64 java.io.StringWriter (JDK 1.1)

This class is a character output stream that uses an internal StringBuffer object as the destination of the characters
written to the stream. When you create a StringWriter, you may optionally specify an initial size for the
StringBuffer, but you do not specify the StringBuffer itself--it is managed internally by the StringWriter,
and grows as necessary to accommodate the characters written to it.

StringWriter defines the standard write(), flush(), and close() methods that all Writer subclasses do,
and also defines two methods to obtain the characters that have been written into the stream's internal buffer.
toString() returns the contents of the internal buffer as a String, and getBuffer() returns the buffer itself.
Note that getBuffer() returns a reference to the actual internal buffer, not a copy of it, so any changes you make to
the buffer are reflected in subsequent calls to toString().

StringWriter is quite similar to CharArrayWriter, but does not have a byte stream analog.

public class StringWriter extends Writer {
 // Public Constructor
 public StringWriter();
 // Protected Constructor
 protected StringWriter(int initialSize);
 // Public Instance Methods
 public void close(); // Defines Writer
 public void flush(); // Defines Writer
 public StringBuffer getBuffer();
 public String toString(); // Overrides Object
 public void write(int c); // Overrides Writer
 public void write(char[] cbuf, int off, int len); // Defines Writer
 public void write(String str); // Overrides Writer
 public void write(String str, int off, int len); // Overrides Writer
}

Hierarchy:

Object->Writer->StringWriter

java.io.StringReader (JDK
1.1)

java.io.SyncFailedException
(JDK 1.1)

Chapter 24
The java.io Package

24.69 java.io.Writer (JDK 1.1)

This abstract class is the superclass of all character output streams. It is an analog to OutputStream, which is the
superclass of all byte output streams. Writer defines the basic write(), flush(), and close() methods that
all character output streams provide.

The five versions of the write() method write a single character, a character array or subarray, or a string or
substring to the destination of the stream. The most general version of this method--the one that writes a specified
portion of a character array--is abstract and must be implemented by all subclasses. By default, the other write()
methods are implemented in terms of this abstract one.

The flush() method is another abstract method that all subclasses must implement. It should force any output
buffered by the stream to be written to its destination. If that destination is itself a character or byte output stream, it
should invoke the flush() method of the destination stream as well.

The close() method is also abstract. Subclasses must implement this method so that it flushes and then closes the
current stream, and also closes whatever destination stream it is connected to. Once the stream has been closed, any
future calls to write() or flush() should throw an IOException.

public abstract class Writer extends Object {
 // Protected Constructors
 protected Writer();
 protected Writer(Object lock);
 // Protected Instance Variables
 protected Object lock;
 // Public Instance Methods
 public abstract void close() throws IOException;
 public abstract void flush() throws IOException;
 public void write(int c) throws IOException;
 public void write(char[] cbuf) throws IOException;
 public abstract void write(char[] cbuf, int off, int len) throws
IOException;
 public void write(String str) throws IOException;
 public void write(String str, int off, int len) throws IOException;
}

Extended By:

BufferedWriter, CharArrayWriter, FilterWriter, OutputStreamWriter, PipedWriter, PrintWriter, StringWriter

Passed To:

BufferedWriter(), CharArrayWriter.writeTo(), FilterWriter(), PrintWriter()

Type Of:

FilterWriter.out

java.io.WriteAbortedException
(JDK 1.1)

The java.lang Package

Chapter 31
The java.util.zip Package

31.15 java.util.zip.ZipFile (JDK 1.1)

This class reads the contents of ZIP files. It uses a random access file internally so that the entries of the ZIP file do
not have to be read sequentially as they do with the ZipInputStream class.

A ZipFile object can be created by specifying the ZIP file to be read either as a String filename or as a File
object. Once created, the getEntry() method returns a ZipEntry object for a named entry, and the
entries() method returns an Enumeration object that allows you to loop through all the ZipEntry objects
for the file. To read the contents of a specific ZipEntry within the ZIP file, pass the ZipEntry to
getInputStream()--this returns an InputStream object from which you can read the entry's contents.

public class ZipFile extends Object {
 // Public Constructors
 public ZipFile(String name) throws IOException;
 public ZipFile(File file) throws ZipException, IOException;
 // Public Instance Methods
 public void close() throws IOException;
 public Enumeration entries();
 public ZipEntry getEntry(String name);
 public InputStream getInputStream(ZipEntry ze) throws IOException;
 public String getName();
}

java.util.zip.ZipException
(JDK 1.1)

java.util.zip.ZipInputStream
(JDK 1.1)

Chapter 31
The java.util.zip Package

31.16 java.util.zip.ZipInputStream (JDK 1.1)

This class is a subclass of InflaterInputStream that reads the entries of a ZIP file in sequential order. A
ZipInputStream is created by specifying the InputStream from which it is to read the contents of the ZIP file. Once
the ZipInputStream is created, the getNextEntry() method is used to begin reading of data from the next entry in
the ZIP file. This method must be called before read() is called to begin reading of the first entry. Note that
getNextEntry() returns a ZipEntry object that describes the entry being read. Also note that getNextEntry()
returns null when there are no more entries to be read from the ZIP file.

The read() methods of ZipInputStream read until the end of the current entry and then return -1 indicating that
there are no more data to read. To continue with the next entry in the ZIP file, you must call getNextEntry() again.
Similarly, the skip() method only skips bytes within the current entry. closeEntry() can be called to skip the
remaining data in the current entry, but it is usually easier simply to call getNextEntry() to begin the next entry.

public class ZipInputStream extends InflaterInputStream {
 // Public Constructor
 public ZipInputStream(InputStream in);
 // Public Instance Methods
 public void close() throws IOException; // Overrides FilterInputStream
 public void closeEntry() throws IOException;
 public ZipEntry getNextEntry() throws IOException;
 public int read(byte[] b, int off, int len) throws IOException; //
Overrides InflaterInputStream
 public long skip(long n) throws IOException; // Overrides
InflaterInputStream
}

Hierarchy:

Object->InputStream->FilterInputStream->InflaterInputStream->ZipInputStream

java.util.zip.ZipFile (JDK 1.1) java.util.zip.ZipOutputStream
(JDK 1.1)

Chapter 25
The java.lang Package

25.16 java.lang.Compiler (JDK 1.0)

The static methods of this class provide an interface to the just-in-time (JIT) byte-code to native code
compiler in use by the Java interpreter. If no JIT compiler is in use by the VM, these methods do nothing.

compileClass() asks the JIT compiler to compile the specified class. compileClasses() asks
the JIT compiler to compile all classes that match the specified name. These methods return true if the
compilation was successful, or false if it failed or if there is no JIT compiler on the system. enable()
and disable() turn just-in-time compilation on and off. command() asks the JIT compiler to perform
some compiler-specific operation. This is a hook for vendor extensions. No standard operations have been
defined.

public final class Compiler extends Object {
 // No Constructor
 // Class Methods
 public static native Object command(Object any);
 public static native boolean compileClass(Class clazz);
 public static native boolean compileClasses(String string);
 public static native void disable();
 public static native void enable();
}

java.lang.Cloneable (JDK 1.0) java.lang.Double (JDK 1.0)

Chapter 24
The java.io Package

24.61 java.io.StreamTokenizer (JDK 1.0)

This class performs lexical analysis of a specified input stream and breaks the input up into tokens. It can
be extremely useful when writing simple parsers.

nextToken() returns the next token in the stream--this is either one of the constants defined by the
class (which represent end-of-file, end-of-line, a parsed floating-point number, and a parsed word) or a
character value. pushBack() "pushes" the token back onto the stream, so that it is returned by the next
call to nextToken(). The public variables sval and nval contain the string and numeric values (if
applicable) of the most recently read token. They are applicable when the returned token is TT_WORD
and TT_NUMBER. lineno() returns the current line number.

The remaining methods allow you to specify how tokens are recognized. wordChars() specifies a
range of characters that should be treated as parts of words. whitespaceChars() specifies a range of
characters that serve to delimit tokens. ordinaryChars() and ordinaryChar() specify
characters that are never part of tokens and should be returned as-is. resetSyntax() makes all
characters "ordinary." eolIsSignificant() specifies whether end-of-line is significant. If so, the
TT_EOL constant is returned for end-of-lines. Otherwise they are treated as whitespace.

commentChar() specifies a character that begins a comment that lasts until the end of the line. No
characters in the comment are returned. slashStarComments() and slashSlashComments()
specify whether the StreamTokenizer should recognize C and C++-style comments. If so, no parts
of the comments are returned as tokens. quoteChar() specifies a character used to delimit strings.
When a string token is parsed, the quote character is returned as the token value, and the body of the
string is stored in the sval variable. lowerCaseMode() specifies whether TT_WORD tokens should
be converted to all lowercase characters before being stored in sval. parseNumbers() specifies that
the StreamTokenizer should recognize and return double-precision floating-point number tokens.

public class StreamTokenizer extends Object {
 // Public Constructors
 # public StreamTokenizer(InputStream is);

 1.1 public StreamTokenizer(Reader r);
 // Constants
 public static final int TT_EOF;
 public static final int TT_EOL;
 public static final int TT_NUMBER;
 public static final int TT_WORD;
 // Public Instance Variables
 public double nval;
 public String sval;
 public int ttype;
 // Public Instance Methods
 public void commentChar(int ch);
 public void eolIsSignificant(boolean flag);
 public int lineno();
 public void lowerCaseMode(boolean fl);
 public int nextToken() throws IOException;
 public void ordinaryChar(int ch);
 public void ordinaryChars(int low, int hi);
 public void parseNumbers();
 public void pushBack();
 public void quoteChar(int ch);
 public void resetSyntax();
 public void slashSlashComments(boolean flag);
 public void slashStarComments(boolean flag);
 public String toString(); // Overrides Object
 public void whitespaceChars(int low, int hi);
 public void wordChars(int low, int hi);
}

java.io.StreamCorruptedException
(JDK 1.1)

java.io.StringBufferInputStream
(JDK 1.0; Deprecated.)

Chapter 29
The java.text Package

29.5 java.text.CollationKey (JDK 1.1)

CollationKey objects are used to compare strings more quickly than is possible with
Collation.compare(). Objects of this class are returned by
Collation.getCollationKey(). To compare two CollationKey objects, invoke the
compareTo() method of key A, passing the key B as an argument (both CollationKey objects
must be created through the same Collation object). The return value of this method is less than zero
if the key A is collated before the key B. It is equal to zero if they are equivalent for the purposes of
collation, and it is greater than zero if the key A is collated after the key B.

Use getSourceString() to obtain the string represented by a CollationKey.

public final class CollationKey extends Object {
 // No Constructor
 // Public Instance Methods
 public int compareTo(CollationKey target);
 public boolean equals(Object target); // Overrides Object
 public String getSourceString();
 public int hashCode(); // Overrides Object
 public byte[] toByteArray();
}

Passed To:

CollationKey.compareTo()

Returned By:

Collator.getCollationKey(), RuleBasedCollator.getCollationKey()

java.text.CollationElementIterator
(JDK 1.1)

java.text.Collator (JDK 1.1)

Chapter 21
The java.awt.image Package

21.6 java.awt.image.ImageConsumer (JDK 1.0)

This interface defines the methods necessary for a class that consumes image data to communicate with a class that
produces image data. The methods defined by this interface should never be called by a program directly; instead, they
are invoked by an ImageProducer to pass the image data and other information about the image to the
ImageConsumer. The constants defined by this interface are values passed to the setHints() and
imageComplete() methods.

Unless you want to do low-level manipulation of image data, you never need to use or implement an ImageConsumer.

public abstract interface ImageConsumer {
 // Constants
 public static final int COMPLETESCANLINES;
 public static final int IMAGEABORTED;
 public static final int IMAGEERROR;
 public static final int RANDOMPIXELORDER;
 public static final int SINGLEFRAME;
 public static final int SINGLEFRAMEDONE;
 public static final int SINGLEPASS;
 public static final int STATICIMAGEDONE;
 public static final int TOPDOWNLEFTRIGHT;
 // Public Instance Methods
 public abstract void imageComplete(int status);
 public abstract void setColorModel(ColorModel model);
 public abstract void setDimensions(int width, int height);
 public abstract void setHints(int hintflags);
 public abstract void setPixels(int x, int y, int w, int h, ColorModel
model, byte[] pixels, int off, int scansize);
 public abstract void setPixels(int x, int y, int w, int h, ColorModel
model, int[] pixels, int off, int scansize);
 public abstract void setProperties(Hashtable props);
}

Implemented By:

ImageFilter, PixelGrabber

Passed To:

FilteredImageSource.addConsumer(), FilteredImageSource.isConsumer(),
FilteredImageSource.removeConsumer(),
FilteredImageSource.requestTopDownLeftRightResend(),
FilteredImageSource.startProduction(), ImageFilter.getFilterInstance(),
ImageProducer.addConsumer(), ImageProducer.isConsumer(),
ImageProducer.removeConsumer(), ImageProducer.requestTopDownLeftRightResend(),
ImageProducer.startProduction(), MemoryImageSource.addConsumer(),
MemoryImageSource.isConsumer(), MemoryImageSource.removeConsumer(),
MemoryImageSource.requestTopDownLeftRightResend(),
MemoryImageSource.startProduction()

Type Of:

ImageFilter.consumer

java.awt.image.FilteredImageSource
(JDK 1.0)

java.awt.image.ImageFilter
(JDK 1.0)

Chapter 20
The java.awt.event Package

20.9 java.awt.event.ContainerEvent (JDK 1.1)

An event of this type serves as notification that the source Container has had a child added to it or removed
from it. Note that this event is a notification only; the AWT adds or removes the child internally, and the recipient
of this event need take no action itself.

getChild() returns the child Component that was added or removed, and getContainer() returns the
Container that it was added to or removed from. getContainer() is simply a convenient alternative to
getSource().

getID() returns the constant COMPONENT_ADDED or COMPONENT_REMOVED to indicate whether the
specified child was added or removed.

public class ContainerEvent extends ComponentEvent {
 // Public Constructor
 public ContainerEvent(Component source, int id, Component child);
 // Constants
 public static final int COMPONENT_ADDED;
 public static final int COMPONENT_REMOVED;
 public static final int CONTAINER_FIRST;
 public static final int CONTAINER_LAST;
 // Public Instance Methods
 public Component getChild();
 public Container getContainer();
 public String paramString(); // Overrides ComponentEvent
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->ComponentEvent->ContainerEvent

Passed To:

AWTEventMulticaster.componentAdded(), AWTEventMulticaster.componentRemoved(),
Container.processContainerEvent(), ContainerAdapter.componentAdded(),

ContainerAdapter.componentRemoved(), ContainerListener.componentAdded(),
ContainerListener.componentRemoved()

java.awt.event.ContainerAdapter
(JDK 1.1)

java.awt.event.ContainerListener
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.6 java.awt.event.ComponentEvent (JDK 1.1)

An event of this type serves as notification that the source Component has been moved, resized, shown,
or hidden. Note that this event is a notification only: the AWT handles these Component operations
internally, and the recipient of the event need take no action itself.

getComponent() returns the component that was moved, resized, shown or hidden. It is simply a
convenient alternative to getSource().

getID() returns one of four COMPONENT_ constants to indicate what operation was performed on the
Component.

public class ComponentEvent extends AWTEvent {
 // Public Constructor
 public ComponentEvent(Component source, int id);
 // Constants
 public static final int COMPONENT_FIRST;
 public static final int COMPONENT_HIDDEN;
 public static final int COMPONENT_LAST;
 public static final int COMPONENT_MOVED;
 public static final int COMPONENT_RESIZED;
 public static final int COMPONENT_SHOWN;
 // Public Instance Methods
 public Component getComponent();
 public String paramString(); // Overrides AWTEvent
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->ComponentEvent

Extended By:

ContainerEvent, FocusEvent, InputEvent, PaintEvent, WindowEvent

Passed To:

AWTEventMulticaster.componentHidden(),
AWTEventMulticaster.componentMoved(),
AWTEventMulticaster.componentResized(),
AWTEventMulticaster.componentShown(),
Component.processComponentEvent(), ComponentAdapter.componentHidden(),
ComponentAdapter.componentMoved(),
ComponentAdapter.componentResized(),
ComponentAdapter.componentShown(),
ComponentListener.componentHidden(),
ComponentListener.componentMoved(),
ComponentListener.componentResized(),
ComponentListener.componentShown()

java.awt.event.ComponentAdapter
(JDK 1.1)

java.awt.event.ComponentListener
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.8 java.awt.event.ContainerAdapter (JDK 1.1)

This class is a trivial implementation of ContainerListener; it provides empty bodies for each of the methods of that
interface. When you are not interested in all of these methods, it is often easier to subclass ContainerAdapter than it is
to implement ContainerListener from scratch.

public abstract class ContainerAdapter extends Object implements ContainerListener {
 // Default Constructor: public ContainerAdapter()
 // Public Instance Methods
 public void componentAdded(ContainerEvent e); // From ContainerListener
 public void componentRemoved(ContainerEvent e); // From
ContainerListener
}

Hierarchy:

Object->ContainerAdapter(ContainerListener(EventListener))

java.awt.event.ComponentListener
(JDK 1.1)

java.awt.event.ContainerEvent
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.10 java.awt.event.ContainerListener (JDK 1.1)

This interface defines the methods that an object must implement to "listen" for container events on
AWT components. When a ContainerEvent occurs, an AWT component notifies its registered
ContainerListener objects by invoking one of their methods.

An easy way to implement this interface is by subclassing the ContainerAdapter class.

public abstract interface ContainerListener extends EventListener {
 // Public Instance Methods
 public abstract void componentAdded(ContainerEvent e);
 public abstract void componentRemoved(ContainerEvent e);
}

Implemented By:

AWTEventMulticaster, ContainerAdapter

Passed To:

AWTEventMulticaster.add(), AWTEventMulticaster.remove(), Container.addContainerListener(),
Container.removeContainerListener()

Returned By:

AWTEventMulticaster.add(), AWTEventMulticaster.remove()

java.awt.event.ContainerEvent
(JDK 1.1)

java.awt.event.FocusAdapter
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.5 java.awt.event.ComponentAdapter (JDK 1.1)

This class is a trivial implementation of ComponentListener; it provides empty bodies for each of the methods of that
interface. When you are not interested in all of these methods, it is often easier to subclass ComponentAdapter than it is to
implement ComponentListener from scratch.

public abstract class ComponentAdapter extends Object implements ComponentListener {
 // Default Constructor: public ComponentAdapter()
 // Public Instance Methods
 public void componentHidden(ComponentEvent e); // From ComponentListener
 public void componentMoved(ComponentEvent e); // From ComponentListener
 public void componentResized(ComponentEvent e); // From
ComponentListener
 public void componentShown(ComponentEvent e); // From ComponentListener
}

Hierarchy:

Object->ComponentAdapter(ComponentListener(EventListener))

java.awt.event.AdjustmentListener
(JDK 1.1)

java.awt.event.ComponentEvent
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.7 java.awt.event.ComponentListener (JDK 1.1)

This interface defines the methods that an object must implement to "listen" for component events on
AWT components. When a ComponentEvent occurs, an AWT component notifies its registered
ComponentListener objects by invoking one of their methods.

An easy way to implement this interface is by subclassing the ComponentAdapter class.

public abstract interface ComponentListener extends EventListener {
 // Public Instance Methods
 public abstract void componentHidden(ComponentEvent e);
 public abstract void componentMoved(ComponentEvent e);
 public abstract void componentResized(ComponentEvent e);
 public abstract void componentShown(ComponentEvent e);
}

Implemented By:

AWTEventMulticaster, ComponentAdapter

Passed To:

AWTEventMulticaster.add(), AWTEventMulticaster.remove(),
Component.addComponentListener(), Component.removeComponentListener()

Returned By:

AWTEventMulticaster.add(), AWTEventMulticaster.remove()

java.awt.event.ComponentEvent
(JDK 1.1)

java.awt.event.ContainerAdapter
(JDK 1.1)

Chapter 30
The java.util Package

30.23 java.util.StringTokenizer (JDK 1.0)

This class, when instantiated with a String, breaks the string up into tokens separated by any of the characters in the
specified string of delimiters. (For example, words separated by space and tab characters are tokens.) The
hasMoreTokens() and nextToken() methods can be used to obtain the tokens in order. countTokens() returns
the number of tokens in the string. Note that StringTokenizer implements the Enumeration interface, so you may
also access the tokens with the familiar hasMoreElements() and nextElement() methods.

When you create a StringTokenizer you may specify a string of delimiter characters to use for the entire string, or you
may rely on the default whitespace delimiters. You may also specify whether the delimiters themselves should be returned
as tokens. You may optionally specify a new string of delimiter characters when you call nextToken().

public class StringTokenizer extends Object implements Enumeration {
 // Public Constructors
 public StringTokenizer(String str, String delim, boolean returnTokens);
 public StringTokenizer(String str, String delim);
 public StringTokenizer(String str);
 // Public Instance Methods
 public int countTokens();
 public boolean hasMoreElements(); // From Enumeration
 public boolean hasMoreTokens();
 public Object nextElement(); // From Enumeration
 public String nextToken();
 public String nextToken(String delim);
}

java.util.Stack (JDK 1.0) java.util.TimeZone (JDK 1.1)

Chapter 28
The java.net Package

28.4 java.net.ContentHandlerFactory (JDK 1.0)

This interface defines a method that creates and returns an appropriate ContentHandler object for a specified MIME
type. A system-wide ContentHandlerFactory interface may be specified by using the
URLConnection.setContentHandlerFactory() method.

Normal applications never need to use or implement this interface.

public abstract interface ContentHandlerFactory {
 // Public Instance Methods
 public abstract ContentHandler createContentHandler(String mimetype);
}

Passed To:

URLConnection.setContentHandlerFactory()

java.net.ContentHandler (JDK
1.0)

java.net.DatagramPacket
(JDK 1.0)

Chapter 28
The java.net Package

28.19 java.net.SocketImplFactory (JDK 1.0)

This interface defines a method that creates SocketImpl objects. SocketImplFactory objects
may be registered to create SocketImpl objects for the Socket and ServerSocket classes.

Normal applications never need to use or implement this interface.

public abstract interface SocketImplFactory {
 // Public Instance Methods
 public abstract SocketImpl createSocketImpl();
}

Passed To:

ServerSocket.setSocketFactory(), Socket.setSocketImplFactory()

java.net.SocketImpl (JDK
1.0)

java.net.UnknownHostException
(JDK 1.0)

Chapter 18
The java.awt Package

18.17 java.awt.Cursor (JDK 1.1)

This class represents a mouse cursor. It defines a number of constants, each of which specify one of the supported
cursor images. Pass one of these constants to the constructor to create a cursor of the specified type, and call
getType() to determine the type of an existing Cursor object.

Since there are only a fixed number of available cursors, the static method getPredefinedCursor() is more
efficient than the Cursor() constructor--it maintains a cache of Cursor objects that can be reused. The static
getDefaultCursor() method returns the system default cursor.

public class Cursor extends Object implements Serializable {
 // Public Constructor
 public Cursor(int type);
 // Cursor Constants
 public static final int DEFAULT_CURSOR;
 public static final int CROSSHAIR_CURSOR, HAND_CURSOR, MOVE_CURSOR;
 public static final int TEXT_CURSOR, WAIT_CURSOR;
 public static final int N_RESIZE_CURSOR, S_RESIZE_CURSOR;
 public static final int E_RESIZE_CURSOR, W_RESIZE_CURSOR;
 public static final int NE_RESIZE_CURSOR, NW_RESIZE_CURSOR;
 public static final int SE_RESIZE_CURSOR, SW_RESIZE_CURSOR;
 // Class Variables
 protected static Cursor[] predefined;
 // Class Methods
 public static Cursor getDefaultCursor();
 public static Cursor getPredefinedCursor(int type);
 // Public Instance Methods
 public int getType();
}

Passed To:

Component.setCursor(), ComponentPeer.setCursor()

Returned By:

Component.getCursor(), Cursor.getDefaultCursor(), Cursor.getPredefinedCursor()

Type Of:

Cursor.predefined

java.awt.Container (JDK 1.0) java.awt.Dialog (JDK 1.0)

Chapter 23
The java.beans Package

23.9 java.beans.Introspector (JDK 1.1)

The Introspector is a class that is never instantiated. Its static getBeanInfo() methods provide a way to
obtain information about a Java bean, and are typically only invoked by application builders or similar tools.
getBeanInfo() first looks for a BeanInfo class for the specified Java bean class. For a class named x, it looks for
a BeanInfo class named xBeanInfo, first in the current package, and then in each of the packages in the
BeanInfo search path.

If no BeanInfo class is found, or if the BeanInfo class found does not provide complete information about the
bean properties, events, and methods, getBeanInfo() "introspects" on the bean class by using the
java.lang.reflect package to fill in the missing information. When explicit information is provided by a
BeanInfo class, getBeanInfo() treats it as definitive. When determining information through introspection,
however, it examines each of the bean's superclasses in turn, looking for a BeanInfo class at that level or using
introspection. When calling getBeanInfo(), you may optionally specify a second class argument that specifies a
superclass for which, and above which, getBeanInfo() does not introspect.

public class Introspector extends Object {
 // No Constructor
 // Class Methods
 public static String decapitalize(String name);
 public static BeanInfo getBeanInfo(Class beanClass) throws
IntrospectionException;
 public static BeanInfo getBeanInfo(Class beanClass, Class stopClass)
throws IntrospectionException;
 public static String[] getBeanInfoSearchPath();
 public static void setBeanInfoSearchPath(String[] path);
}

java.beans.IntrospectionException
(JDK 1.1)

java.beans.MethodDescriptor
(JDK 1.1)

Chapter 26
The java.lang.reflect Package

26.5 java.lang.reflect.Member (JDK 1.1)

This interface defines the methods shared by all members (fields, methods, and constructors) of a class.
getName() returns the name of the member, getModifiers() returns its modifiers, and
getDeclaringClass() returns the Class object that represents the class of which the member is a
part.

public abstract interface Member {
 // Constants
 public static final int DECLARED;
 public static final int PUBLIC;
 // Public Instance Methods
 public abstract Class getDeclaringClass();
 public abstract int getModifiers();
 public abstract String getName();
}

Implemented By:

Constructor, Field, Method

java.lang.reflect.InvocationTargetException
(JDK 1.1)

java.lang.reflect.Method
(JDK 1.1)

Chapter 30
The java.util Package

30.17 java.util.Properties (JDK 1.0)

This class is an extension of Hashtable that allows key/value pairs to be read from and written to a stream. The
Properties class is used to implement the system properties list, which supports user customization by
allowing programs to look up the value of named resources.

When you create a Properties object, you may specify another Properties object that contains default
values. Keys (property names) and values are associated in a Properties object with the Hashtable method
put(). Values are looked up with getProperty()--if this method does not find the key in the current
Properties object, it looks in the default Properties object that was passed to the constructor method. A
default value may also be specified in case the key is not found at all.

propertyNames() returns an enumeration of all property names (keys) stored in the Properties object and
(recursively) also all property names stored in the default Properties object associated with it. list() prints
the properties stored in a Properties object. It is useful for debugging. save() writes a Properties object
to a stream. load() reads key/value pairs from a stream and stores them in a Properties object.

public class Properties extends Hashtable {
 // Public Constructors
 public Properties();
 public Properties(Properties defaults);
 // Protected Instance Variables
 protected Properties defaults;
 // Public Instance Methods
 public String getProperty(String key);
 public String getProperty(String key, String defaultValue);
 public void list(PrintStream out);
 1.1public void list(PrintWriter out);
 public synchronized void load(InputStream in) throws IOException;
 public Enumeration propertyNames();
 public synchronized void save(OutputStream out, String header);
}

Hierarchy:

Object->Dictionary->Hashtable(Cloneable, Serializable)->Properties

Passed To:

Properties(), System.setProperties(), Toolkit.getPrintJob()

Returned By:

System.getProperties()

Type Of:

Properties.defaults

java.util.Observer (JDK 1.0) java.util.PropertyResourceBundle
(JDK 1.1)

Chapter 25
The java.lang Package

25.12 java.lang.ClassLoader (JDK 1.0)

This abstract class defines the necessary hook for Java to load classes over the network, or from other sources. Normal
applications do not need to use or subclass this class.

public abstract class ClassLoader extends Object {
 // Protected Constructor
 protected ClassLoader();
 // Class Methods
 1.1public static final URL getSystemResource(String name);
 1.1public static final InputStream getSystemResourceAsStream(String name);
 // Public Instance Methods
 1.1public URL getResource(String name);
 1.1public InputStream getResourceAsStream(String name);
 1.1public Class loadClass(String name) throws ClassNotFoundException;
 // Protected Instance Methods
 # protected final Class defineClass(byte[] data, int offset, int length);
 1.1protected final Class defineClass(String name, byte[] data, int offset,
int length);
 1.1protected final Class findLoadedClass(String name);
 protected final Class findSystemClass(String name) throws
ClassNotFoundException;
 protected abstract Class loadClass(String name, boolean resolve) throws
ClassNotFoundException;
 protected final void resolveClass(Class c);
 1.1protected final void setSigners(Class cl, Object[] signers);
}

Passed To:

Beans.instantiate()

Returned By:

Class.getClassLoader(), SecurityManager.currentClassLoader()

java.lang.ClassFormatError
(JDK 1.0)

java.lang.ClassNotFoundException
(JDK 1.0)

Chapter 31
The java.util.zip Package

31.13 java.util.zip.ZipEntry (JDK 1.1)

This class describes a single entry (typically a compressed file) stored within a ZIP file. The various
methods get and set various pieces of information about the entry. The ZipEntry class is used by the
ZipFile and ZipInputStream, which read ZIP files, and by the ZipOutputStream, which
writes ZIP files.

When reading a ZIP file, the ZipEntry objects returned by the ZipFile or ZipInputStream
contain the name, size, modification time, and other information about each entry in the file. When
writing a ZIP file, on the other hand, you must create your own ZipEntry objects, and initialize them
to contain the entry name and other appropriate information before writing the contents of the entry.

public class ZipEntry extends Object {
 // Public Constructor
 public ZipEntry(String name);
 // Constants
 public static final int DEFLATED;
 public static final int STORED;
 // Public Instance Methods
 public String getComment();
 public long getCompressedSize();
 public long getCrc();
 public byte[] getExtra();
 public int getMethod();
 public String getName();
 public long getSize();
 public long getTime();
 public boolean isDirectory();
 public void setComment(String comment);
 public void setCrc(long crc);
 public void setExtra(byte[] extra);
 public void setMethod(int method);

 public void setSize(long size);
 public void setTime(long time);
 public String toString(); // Overrides Object
}

Passed To:

ZipFile.getInputStream(), ZipOutputStream.putNextEntry()

Returned By:

ZipFile.getEntry(), ZipInputStream.getNextEntry()

java.util.zip.InflaterInputStream
(JDK 1.1)

java.util.zip.ZipException
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.15 java.awt.event.ItemEvent (JDK 1.1)

An event of this type indicates that an item within an ItemSelectable component has had its selection state
changed.

getItemSelectable() is a convenient alternative to getSource() that returns the ItemSelectable
object that originated the event. getItem() returns an object that represents the item that was selected or
deselected.

getID() returns the type of the ItemEvent. The standard AWT components always generate item events of
type ITEM_STATE_CHANGED. The getStateChange() method returns the new selection state of the item:
it returns one of the constants SELECTED or DESELECTED. (This value can be misleading for Checkbox
components that are part of a CheckboxGroup. If the user attempts to deselect a selected component, a
DESELECTED event is delivered, but the CheckboxGroup immediately re-selects the component to enforce its
requirement that at least one Checkbox be selected at all times.)

public class ItemEvent extends AWTEvent {
 // Public Constructor
 public ItemEvent(ItemSelectable source, int id, Object item, int
stateChange);
 // Constants
 public static final int DESELECTED;
 public static final int ITEM_FIRST;
 public static final int ITEM_LAST;
 public static final int ITEM_STATE_CHANGED;
 public static final int SELECTED;
 // Public Instance Methods
 public Object getItem();
 public ItemSelectable getItemSelectable();
 public int getStateChange();
 public String paramString(); // Overrides AWTEvent
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->ItemEvent

Passed To:

AWTEventMulticaster.itemStateChanged(), Checkbox.processItemEvent(),
CheckboxMenuItem.processItemEvent(), Choice.processItemEvent(),
ItemListener.itemStateChanged(), List.processItemEvent()

java.awt.event.InputEvent
(JDK 1.1)

java.awt.event.ItemListener
(JDK 1.1)

Chapter 21
The java.awt.image Package

21.14 java.awt.image.ReplicateScaleFilter (JDK 1.1)

This class implements an ImageFilter that scales an image to a specified pixel size. It uses a very simple scaling
algorithm in which rows and columns of image pixels are duplicated or omitted as necessary to achieve the desired size.
See AreaAveragingScaleFilter for a scaling filter that results in smoother images.

The methods of this class are ImageConsumer methods used for communication between the image filter and the
FilteredImageSource that uses it. Applications do not usually call these methods directly.

The easiest way to use this filter is to call Image.getScaledInstance(), specifying an appropriate hint constant.

public class ReplicateScaleFilter extends ImageFilter {
 // Public Constructor
 public ReplicateScaleFilter(int width, int height);
 // Protected Instance Variables
 protected int destHeight;
 protected int destWidth;
 protected Object outpixbuf;
 protected int srcHeight;
 protected int srcWidth;
 protected int[] srccols;
 protected int[] srcrows;
 // Public Instance Methods
 public void setDimensions(int w, int h); // Overrides ImageFilter
 public void setPixels(int x, int y, int w, int h, ColorModel model,
 public void setPixels'u'byte[] pixels, int off, int scansize); //
Overrides ImageFilter
 public void setPixels(int x, int y, int w, int h, ColorModel model,
 public void setPixels'u'int[] pixels, int off, int scansize); //
Overrides ImageFilter
 public void setProperties(Hashtable props); // Overrides ImageFilter
}

Hierarchy:

Object->ImageFilter(ImageConsumer, Cloneable)->ReplicateScaleFilter

Extended By:

AreaAveragingScaleFilter

java.awt.image.RGBImageFilter
(JDK 1.0)

The java.awt.peer Package

Chapter 25
The java.lang Package

25.49 java.lang.Process (JDK 1.0)

This class describes a process that is running externally to the Java interpreter. Note that a Process is a
very different thing than a Thread. The Process class is abstract and may not be instantiated. Call
one of the Runtime.exec() methods to start a process and return a corresponding Process object.

waitFor() blocks until the Process exits. exitValue() returns the exit code of the process.
destroy() kills the process. getInputStream() returns an InputStream from which you can
read any bytes the process sends to its standard error stream. getErrorStream() returns an
InputStream from which you can read any bytes the process sends to its standard output stream.
getOutputStream() returns an OutputStream that you can use to send bytes to the standard
input stream of the process.

public abstract class Process extends Object {
 // Default Constructor: public Process()
 // Public Instance Methods
 public abstract void destroy();
 public abstract int exitValue();
 public abstract InputStream getErrorStream();
 public abstract InputStream getInputStream();
 public abstract OutputStream getOutputStream();
 public abstract int waitFor() throws InterruptedException;
}

Returned By:

Runtime.exec()

java.lang.OutOfMemoryError
(JDK 1.0)

java.lang.Runnable (JDK 1.0)

Chapter 24
The java.io Package

24.68 java.io.WriteAbortedException (JDK 1.1)

This exception is thrown when reading a stream of data that is incomplete because an exception was
thrown while it was being written. The detail field may contain the exception that terminated the
output stream. The getMessage() method has been overridden to include the message of this
detail exception, if any.

public class WriteAbortedException extends ObjectStreamException {
 // Public Constructor
 public WriteAbortedException(String s, Exception ex);
 // Public Instance Variables
 public Exception detail;
 // Public Instance Methods
 public String getMessage(); // Overrides Throwable
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->ObjectStreamException-
>WriteAbortedException

java.io.UTFDataFormatException
(JDK 1.0)

java.io.Writer (JDK 1.1)

Chapter 22
The java.awt.peer Package

22.17 java.awt.peer.MenuItemPeer (JDK 1.0)

public abstract interface MenuItemPeer extends MenuComponentPeer {
 // Public Instance Methods
 public abstract void disable();
 public abstract void enable();
 1.1 public abstract void setEnabled(boolean b);
 public abstract void setLabel(String label);
}

Extended By:

CheckboxMenuItemPeer, MenuPeer

Returned By:

Toolkit.createMenuItem()

java.awt.peer.MenuComponentPeer
(JDK 1.0)

java.awt.peer.MenuPeer
(JDK 1.0)

Chapter 28
The java.net Package

28.9 java.net.HttpURLConnection (JDK 1.1)

This class is a specialization of URLConnection. An instance of this class is returned when the openConnection()
method is called for a URL object that uses the HTTP protocol.

The many constants defined by this class are the status codes returned by HTTP servers. setRequestMethod() specifies
what kind of HTTP request is made. The contents of this request must be sent through the OutputStream returned by the
getOutputStream() method of the superclass. Once an HTTP request has been sent, getResponseCode() returns the
HTTP server's response code as an integer, and getResponseMessage() returns the server's response message. The
disconnect() method closes the connection, and the static setFollowRedirects() specifies whether URL
connections that use the HTTP protocol should automatically follow redirect responses sent by HTTP servers.

In order to successfully use this class, you need to understand the details of the HTTP protocol.

public abstract class HttpURLConnection extends URLConnection {
 // Protected Constructor
 protected HttpURLConnection(URL u);
 // Response Code Constants
 public static final int HTTP_ACCEPTED, HTTP_BAD_GATEWAY, HTTP_BAD_METHOD;
 public static final int HTTP_BAD_REQUEST, HTTP_CLIENT_TIMEOUT,
HTTP_CONFLICT;
 public static final int HTTP_CREATED, HTTP_ENTITY_TOO_LARGE,
HTTP_FORBIDDEN;
 public static final int HTTP_GATEWAY_TIMEOUT, HTTP_GONE,
HTTP_INTERNAL_ERROR;
 public static final int HTTP_LENGTH_REQUIRED, HTTP_MOVED_PERM,
HTTP_MOVED_TEMP;
 public static final int HTTP_MULT_CHOICE, HTTP_NOT_ACCEPTABLE,
HTTP_NOT_AUTHORITATIVE;
 public static final int HTTP_NOT_FOUND, HTTP_NOT_MODIFIED,
HTTP_NO_CONTENT;
 public static final int HTTP_OK, HTTP_PARTIAL, HTTP_PAYMENT_REQUIRED;
 public static final int HTTP_PRECON_FAILED, HTTP_PROXY_AUTH,
HTTP_REQ_TOO_LONG;
 public static final int HTTP_RESET, HTTP_SEE_OTHER, HTTP_SERVER_ERROR;
 public static final int HTTP_UNAUTHORIZED, HTTP_UNAVAILABLE,
HTTP_UNSUPPORTED_TYPE;
 public static final int HTTP_USE_PROXY, HTTP_VERSION;
 // Protected Instance Variables
 protected String method;
 protected int responseCode;

 protected String responseMessage;
 // Class Methods
 public static boolean getFollowRedirects();
 public static void setFollowRedirects(boolean set);
 // Public Instance Methods
 public abstract void disconnect();
 public String getRequestMethod();
 public int getResponseCode() throws IOException;
 public String getResponseMessage() throws IOException;
 public void setRequestMethod(String method) throws ProtocolException;
 public abstract boolean usingProxy();
}

Hierarchy:

Object->URLConnection->HttpURLConnection

java.net.FileNameMap (JDK
1.1)

java.net.InetAddress (JDK
1.0)

Chapter 18
The java.awt Package

18.42 java.awt.MenuComponent (JDK 1.0)

This class is the superclass of all menu-related classes: You never need to instantiate a MenuComponent
directly. setFont() specifies the font to be used for all text within the menu component.

public abstract class MenuComponent extends Object implements Serializable {
 // Default Constructor: public MenuComponent()
 // Public Instance Methods
 1.1 public final void dispatchEvent(AWTEvent e);
 public Font getFont();
 1.1 public String getName();
 public MenuContainer getParent();
 # public MenuComponentPeer getPeer();
 public boolean postEvent(Event evt);
 public void removeNotify();
 public void setFont(Font f);
 1.1 public void setName(String name);
 public String toString(); // Overrides Object
 // Protected Instance Methods
 protected String paramString();
 1.1 protected void processEvent(AWTEvent e);
}

Extended By:

MenuBar, MenuItem

Passed To:

Component.remove(), Frame.remove(), Menu.remove(), MenuBar.remove(),
MenuContainer.remove()

java.awt.MenuBar (JDK 1.0) java.awt.MenuContainer
(JDK 1.0)

Chapter 22
The java.awt.peer Package

22.16 java.awt.peer.MenuComponentPeer (JDK 1.0)

public abstract interface MenuComponentPeer {
 // Public Instance Methods
 public abstract void dispose();
}

Extended By:

MenuBarPeer, MenuItemPeer

Returned By:

MenuComponent.getPeer()

java.awt.peer.MenuBarPeer
(JDK 1.0)

java.awt.peer.MenuItemPeer
(JDK 1.0)

Chapter 30
The java.util Package

30.4 java.util.Dictionary (JDK 1.0)

This abstract class is the superclass of Hashtable. Other hashtable-like data structures might also
extend this class. See Hashtable for more information.

public abstract class Dictionary extends Object {
 // Default Constructor: public Dictionary()
 // Public Instance Methods
 public abstract Enumeration elements();
 public abstract Object get(Object key);
 public abstract boolean isEmpty();
 public abstract Enumeration keys();
 public abstract Object put(Object key, Object value);
 public abstract Object remove(Object key);
 public abstract int size();
}

Extended By:

Hashtable

java.util.Date (JDK 1.0) java.util.EmptyStackException
(JDK 1.0)

Chapter 30
The java.util Package

30.22 java.util.Stack (JDK 1.0)

This class implements a last-in-first-out stack of objects. push() puts an object on the top of the stack.
pop() removes and returns the top object from the stack. peek() returns the top object without
removing it.

public class Stack extends Vector {
 // Default Constructor: public Stack()
 // Public Instance Methods
 public boolean empty();
 public synchronized Object peek();
 public synchronized Object pop();
 public Object push(Object item);
 public synchronized int search(Object o);
}

Hierarchy:

Object->Vector(Cloneable, Serializable)->Stack

java.util.SimpleTimeZone
(JDK 1.1)

java.util.StringTokenizer
(JDK 1.0)

Chapter 31
The java.util.zip Package

31.11 java.util.zip.Inflater (JDK 1.1)

This class implements the general ZLIB data decompression algorithm used by gzip, PKZip, and other data compression
applications. It decompresses or "inflates" data compressed through the Deflater class.

The important methods of this class are setInput(), which specifies input data to be decompressed, and inflate(),
which decompresses the input data into an output buffer. A number of other methods exist so that this class can be used for
stream-based decompression, as it is in the higher-level classes such as GZIPInputStream and ZipInputStream. These
stream-based classes are sufficient in most cases. Most applications do not need to use Inflater directly.

public class Inflater extends Object {
 // Public Constructors
 public Inflater(boolean nowrap);
 public Inflater();
 // Public Instance Methods
 public synchronized native void end();
 public synchronized boolean finished();
 public synchronized native int getAdler();
 public synchronized int getRemaining();
 public synchronized native int getTotalIn();
 public synchronized native int getTotalOut();
 public synchronized native int inflate(byte[] b, int off, int len) throws
DataFormatException;
 public int inflate(byte[] b) throws DataFormatException;
 public synchronized boolean needsDictionary();
 public synchronized boolean needsInput();
 public synchronized native void reset();
 public synchronized native void setDictionary(byte[] b, int off, int
len);
 public void setDictionary(byte[] b);
 public synchronized void setInput(byte[] b, int off, int len);
 public void setInput(byte[] b);
 // Protected Instance Methods
 protected void finalize(); // Overrides Object
}

Passed To:

InflaterInputStream()

Type Of:

InflaterInputStream.inf

java.util.zip.GZIPOutputStream
(JDK 1.1)

java.util.zip.InflaterInputStream
(JDK 1.1)

Chapter 18
The java.awt Package

18.51 java.awt.PrintJob (JDK 1.1)

A PrintJob object represents a single printing session or "job." The job may consist of one or more
individual pages.

PrintJob is abstract so it cannot be instantiated directly. Instead, you must call the getPrintJob()
method of the Toolkit object. Calling this method posts an appropriate print dialog box to request
information from the user, such as which printer should be used. An application has no control over this
process, but may pass a Properties object in which the dialog stores the user's printing preferences.
This Properties object can then be reused when initiating subsequent print jobs.

Once a PrintJob object has been obtained from the Toolkit object, you call the getGraphics()
method of PrintJob to obtain a Graphics object. Any drawing done with this Graphics object is
printed rather than being displayed on-screen. The object returned by getGraphics() implements the
PrintGraphics interface. Do not make any assumptions about the initial state of the Graphics
object; in particular note that you must specify a font before you can draw any text.

When you are done drawing all the desired output on a page, call the dispose() method of the
Graphics object to force the current page to be printed. You can call PrintJob.getGraphics()
and Graphics.dispose() repeatedly to print any number of pages required by your application.
Note, however, that if the lastPageFirst() method returns true, the user has requested that pages
be printed in reverse order. It is up to your application to implement this feature.

The getPageDimension() method returns the size of the page in pixels.
getPageResolution() returns the resolution of the page in pixels per inch. This resolution is closer
to a screen resolution (70 to 100 pixels per inch) rather than a typical printer resolution (300 to 600 pixels
per inch). This means that on-screen drawings can be drawn directly to the printer without scaling. It also
means, however, that you cannot take full advantage of the extra resolution provided by printers.

When you are done with a PrintJob, and you have called dispose() on the Graphics object
returned by getGraphics(), you should call end() to terminate the job.

public abstract class PrintJob extends Object {
 // Default Constructor: public PrintJob()
 // Public Instance Methods
 public abstract void end();
 public void finalize(); // Overrides Object
 public abstract Graphics getGraphics();
 public abstract Dimension getPageDimension();
 public abstract int getPageResolution();
 public abstract boolean lastPageFirst();
}

Returned By:

PrintGraphics.getPrintJob(), Toolkit.getPrintJob()

java.awt.PrintGraphics (JDK
1.1)

java.awt.Rectangle (JDK 1.0)

Chapter 24
The java.io Package

24.45 java.io.OptionalDataException (JDK 1.1)

This exception is thrown by the readObject() method of an ObjectInputStream when it
encounters primitive type data where it expects object data. Despite the exception name, this data is not
"optional," and object deserialization is aborted.

public class OptionalDataException extends ObjectStreamException {
 // No Constructor
 // Public Instance Variables
 public boolean eof;
 public int length;
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->ObjectStreamException-
>OptionalDataException

Thrown By:

ObjectInputStream.readObject()

java.io.ObjectStreamException
(JDK 1.1)

java.io.OutputStream (JDK
1.0)

Chapter 26
The java.lang.reflect Package

26.2 java.lang.reflect.Constructor (JDK 1.1)

This class represents a constructor method of a class. Instances of Constructor are obtained by calling
getConstructor() and related methods of java.lang.Class. Constructor implements the
Member interface, so you can use the methods of that interface to obtain the constructor name, modifiers,
and declaring class. In addition, getParameterTypes() and getExceptionTypes() also return
important information about the represented constructor.

In addition to these methods that return information about the constructor, the newInstance() method
allows the constructor to be invoked with an array of arguments in order to create a new instance of the class
that declares the constructor. If any of the arguments to the constructor are of primitive types, they must be
converted to their corresponding wrapper object types in order to be passed to newInstance(). If the
constructor causes an exception, the Throwable object it throws is wrapped within the
InvocationTargetException that is thrown by newInstance(). Note that newInstance() is
much more useful than the newInstance() method of java.lang.Class because it can pass
arguments to the constructor.

public final class Constructor extends Object implements Member {
 // No Constructor
 // Public Instance Methods
 public boolean equals(Object obj); // Overrides Object
 public Class getDeclaringClass(); // From Member
 public Class[] getExceptionTypes();
 public native int getModifiers(); // From Member
 public String getName(); // From Member
 public Class[] getParameterTypes();
 public int hashCode(); // Overrides Object
 public native Object newInstance(Object[] initargs) throws
InstantiationException, IllegalAccessException, IllegalArgumentException,
InvocationTargetException;
 public String toString(); // Overrides Object
}

Returned By:

Class.getConstructor(), Class.getConstructors(), Class.getDeclaredConstructor(),
Class.getDeclaredConstructors()

java.lang.reflect.Array (JDK
1.1)

java.lang.reflect.Field (JDK
1.1)

Chapter 19
The java.awt.datatransfer

Package

19.3 java.awt.datatransfer.DataFlavor (JDK 1.1)

Objects of this type define a data type or format for the purposes of data transfer. A DataFlavor is characterized by two
values. The first is a descriptive human-readable name, passed to a DataFlavor() constructor or set with
setHumanPresentableName().

The second component of a DataFlavor specifies the type of data to be transferred in a more machine-readable way. The
two DataFlavor() constructors allow two distinct ways to specify this data type. One way is by directly specifying the
representation class of the data. This is a Class object that defines the Java type that the recipient of a data transfer is
passed. The other way to specify the data type represented by a DataFlavor is to pass a string that specifies the MIME
type of the data to be transferred.

When you construct a DataFlavor object by specifying the representation type of the data, the MIME type of the
DataFlavor is automatically set to:

application/x-java-serialized-object class=classname

This indicates that the object is to be transferred using the data format of the Java object serialization protocol. When you
pass a MIME type string to the DataFlavor() constructor, on the other hand, the representation class of the
DataFlavor is automatically set to the Class object for java.io.InputStream. This means that the recipient of the
data transfer is given an InputStream object from which it can read and parse data in the specified MIME format.

Because the same MIME type can be specified with a number of slightly different strings, the DataFlavor class converts
the MIME type to a canonical form so that it can be uniquely identified and compared. Use isMimeTypeEqual() to
compare the MIME type of a DataFlavor object with another MIME type, or with the MIME type of another
DataFlavor.

Because textual data is so often transferred, the DataFlavor class defines constants for two commonly-used data flavors.
stringFlavor represents text transferred as a String object, while plainTextFlavor represents text transferred
through an InputStream, using the text/plain MIME type.

public class DataFlavor extends Object {
 // Public Constructors
 public DataFlavor(Class representationClass, String
humanPresentableName);
 public DataFlavor(String mimeType, String humanPresentableName);
 // Class Variables
 public static DataFlavor plainTextFlavor;
 public static DataFlavor stringFlavor;

 // Public Instance Methods
 public boolean equals(DataFlavor dataFlavor);
 public String getHumanPresentableName();
 public String getMimeType();
 public Class getRepresentationClass();
 public boolean isMimeTypeEqual(String mimeType);
 public final boolean isMimeTypeEqual(DataFlavor dataFlavor);
 public void setHumanPresentableName(String humanPresentableName);
 // Protected Instance Methods
 protected String normalizeMimeType(String mimeType);
 protected String normalizeMimeTypeParameter(String parameterName, String
parameterValue);
}

Passed To:

DataFlavor.equals(), DataFlavor.isMimeTypeEqual(),
StringSelection.getTransferData(), StringSelection.isDataFlavorSupported(),
Transferable.getTransferData(), Transferable.isDataFlavorSupported(),
UnsupportedFlavorException()

Returned By:

StringSelection.getTransferDataFlavors(), Transferable.getTransferDataFlavors()

Type Of:

DataFlavor.plainTextFlavor, DataFlavor.stringFlavor

java.awt.datatransfer.ClipboardOwner
(JDK 1.1)

java.awt.datatransfer.StringSelection
(JDK 1.1)

Chapter 18
The java.awt Package

18.19 java.awt.Dimension (JDK 1.0)

This class has two public instance variables that describe the width and height of something. The width
and height fields are public and may be manipulated directly.

public class Dimension extends Object implements Serializable {
 // Public Constructors
 public Dimension();
 public Dimension(Dimension d);
 public Dimension(int width, int height);
 // Public Instance Variables
 public int height;
 public int width;
 // Public Instance Methods
 1.1 public boolean equals(Object obj); // Overrides Object
 1.1 public Dimension getSize();
 1.1 public void setSize(Dimension d);
 1.1 public void setSize(int width, int height);
 public String toString(); // Overrides Object
}

Passed To:

Applet.resize(), Component.resize(), Component.setSize(), Dimension(),
Dimension.setSize(), Rectangle(), Rectangle.setSize()

Returned By:

Many methods

java.awt.Dialog (JDK 1.0) java.awt.Event (JDK 1.0)

Chapter 26
The java.lang.reflect Package

26.3 java.lang.reflect.Field (JDK 1.1)

This class represents a field of a class. Instances of Field are obtained by calling the getField() and related methods of
java.lang.Class. Field implements the Member interface, so once you have obtained a Field object, you can use
getName(), getModifiers(), and getDeclaringClass() to determine the name, modifiers, and class of the field.
Additionally, getType() returns the type of the field.

The set() method sets the value of the represented field for a specified object to a given value. (If the represented field is
static, then no object need be specified for it to be set upon, of course.) If the field is of a primitive type, its value can be
specified using a wrapper object of type Boolean, Integer, and so on, or it can be set using the setBoolean(),
setInt(), and related methods.

Similarly, the get() method queries the value of the represented field for a specified object and returns the field value as an
Object. Various other methods query the field value and return it as various primitive types.

public final class Field extends Object implements Member {
 // No Constructor
 // Public Instance Methods
 public boolean equals(Object obj); // Overrides Object
 public native Object get(Object obj) throws IllegalArgumentException,
IllegalAccessException;
 public native boolean getBoolean(Object obj) throws
IllegalArgumentException, IllegalAccessException;
 public native byte getByte(Object obj) throws IllegalArgumentException,
IllegalAccessException;
 public native char getChar(Object obj) throws IllegalArgumentException,
IllegalAccessException;
 public Class getDeclaringClass(); // From Member
 public native double getDouble(Object obj) throws
IllegalArgumentException, IllegalAccessException;
 public native float getFloat(Object obj) throws IllegalArgumentException,
IllegalAccessException;
 public native int getInt(Object obj) throws IllegalArgumentException,
IllegalAccessException;
 public native long getLong(Object obj) throws IllegalArgumentException,
IllegalAccessException;
 public native int getModifiers(); // From Member
 public String getName(); // From Member
 public native short getShort(Object obj) throws IllegalArgumentException,
IllegalAccessException;
 public Class getType();

 public int hashCode(); // Overrides Object
 public native void set(Object obj, Object value) throws
IllegalArgumentException, IllegalAccessException;
 public native void setBoolean(Object obj, boolean z) throws
IllegalArgumentException, IllegalAccessException;
 public native void setByte(Object obj, byte b) throws
IllegalArgumentException, IllegalAccessException;
 public native void setChar(Object obj, char c) throws
IllegalArgumentException, IllegalAccessException;
 public native void setDouble(Object obj, double d) throws
IllegalArgumentException, IllegalAccessException;
 public native void setFloat(Object obj, float f) throws
IllegalArgumentException, IllegalAccessException;
 public native void setInt(Object obj, int i) throws
IllegalArgumentException, IllegalAccessException;
 public native void setLong(Object obj, long l) throws
IllegalArgumentException, IllegalAccessException;
 public native void setShort(Object obj, short s) throws
IllegalArgumentException, IllegalAccessException;
 public String toString(); // Overrides Object
}

Returned By:

Class.getDeclaredField(), Class.getDeclaredFields(), Class.getField(), Class.getFields()

java.lang.reflect.Constructor
(JDK 1.1)

java.lang.reflect.InvocationTargetException
(JDK 1.1)

Chapter 28
The java.net Package

28.10 java.net.InetAddress (JDK 1.0)

This class represents an Internet address, and is used when creating DatagramPacket or Socket objects. The class
does not have a public constructor function, but instead supports three static methods which return one or more instances
of InetAddress. getLocalHost() returns an InetAddress for the local host. getByName() returns the
InetAddress of a host specified by name. getAllByName() returns an array of InetAddress that represents all
of the available addresses for a host specified by name. Instance methods are getHostName(), which returns the
hostname of an InetAddress, and getAddress(), which returns the Internet IP address as an array of bytes, with
the highest-order byte as the first element of the array.

public final class InetAddress extends Object implements Serializable {
 // No Constructor
 // Class Methods
 public static InetAddress[] getAllByName(String host) throws
UnknownHostException;
 public static InetAddress getByName(String host) throws
UnknownHostException;
 public static InetAddress getLocalHost() throws UnknownHostException;
 // Public Instance Methods
 public boolean equals(Object obj); // Overrides Object
 public byte[] getAddress();
 public String getHostAddress();
 public String getHostName();
 public int hashCode(); // Overrides Object
 1.1public boolean isMulticastAddress();
 public String toString(); // Overrides Object
}

Passed To:

DatagramPacket(), DatagramPacket.setAddress(), DatagramSocket(), DatagramSocketImpl.bind(),
DatagramSocketImpl.join(), DatagramSocketImpl.leave(), DatagramSocketImpl.peek(), MulticastSocket.joinGroup(),
MulticastSocket.leaveGroup(), MulticastSocket.setInterface(), SecurityManager.checkMulticast(), ServerSocket(),
Socket(), SocketImpl.bind(), SocketImpl.connect()

Returned By:

DatagramPacket.getAddress(), DatagramSocket.getLocalAddress(), InetAddress.getAllByName(),

InetAddress.getByName(), InetAddress.getLocalHost(), MulticastSocket.getInterface(), ServerSocket.getInetAddress(),
Socket.getInetAddress(), Socket.getLocalAddress(), SocketImpl.getInetAddress()

Type Of:

SocketImpl.address

java.net.HttpURLConnection
(JDK 1.1)

java.net.MalformedURLException
(JDK 1.0)

Chapter 18
The java.awt Package

18.45 java.awt.MenuShortcut (JDK 1.1)

This class represents a keystroke used to select a MenuItem without actually pulling down the menu. A
MenuShortcut object can be specified for a MenuItem when the MenuItem is created or by calling
the item's setShortcut() method. The keystroke sequence for the menu shortcut automatically
appears in the label for the menu item, so you need not add this information yourself.

When you create a MenuShortcut, you specify the key code of the shortcut--this is one of the VK_
constants defined by java.awt.event.KeyEvent, and is not always the same as a corresponding
character code. You may also optionally specify a boolean value that, if true, indicates that the
MenuShortcut requires the Shift key to be held down.

Note that menu shortcuts are triggered in a platform-dependent way. When you create a shortcut, you
specify only the keycode and an optional Shift modifier. The shortcut is not triggered, however, unless
an additional modifier key is held down. On Windows platforms, for example, the Ctrl key is used for
menu shortcuts. You can query the platform-specific menu shortcut key with
Toolkit.getMenuShortcutKeyMask().

public class MenuShortcut extends Object implements Serializable {
 // Public Constructors
 public MenuShortcut(int key);
 public MenuShortcut(int key, boolean useShiftModifier);
 // Public Instance Methods
 public boolean equals(MenuShortcut s);
 public int getKey();
 public String toString(); // Overrides Object
 public boolean usesShiftModifier();
 // Protected Instance Methods
 protected String paramString();
}

Passed To:

MenuBar.deleteShortcut(), MenuBar.getShortcutMenuItem(), MenuItem(),
MenuItem.setShortcut(), MenuShortcut.equals()

Returned By:

MenuItem.getShortcut()

java.awt.MenuItem (JDK 1.0) java.awt.Panel (JDK 1.0)

Chapter 26
The java.lang.reflect Package

26.6 java.lang.reflect.Method (JDK 1.1)

This class represents a method. Instances of Method are obtained by calling the getMethod() and related
methods of java.lang.Class. Method implements the Member interface, so you can use the methods of
that interface to obtain the method name, modifiers, and declaring class. In addition, getReturnType(),
getParameterTypes(), and getExceptionTypes() also return important information about the
represented method.

Perhaps most important, the invoke() method allows the method represented by the Method object to be
invoked with a specified array of argument values. If any of the arguments are of primitive types, they must be
converted to their corresponding wrapper object types in order to be passed to invoke(). If the represented
method is an instance method (i.e., if it is not static), the instance on which it should be invoked must also be
passed to invoke(). The return value of the represented method is returned by invoke(). If the return value
is a primitive value, it is first converted to the corresponding wrapper type. If the invoked method causes an
exception, the Throwable object it throws is wrapped within the InvocationTargetException that is
thrown by invoke().

public final class Method extends Object implements Member {
 // No Constructor
 // Public Instance Methods
 public boolean equals(Object obj); // Overrides Object
 public Class getDeclaringClass(); // From Member
 public Class[] getExceptionTypes();
 public native int getModifiers(); // From Member
 public String getName(); // From Member
 public Class[] getParameterTypes();
 public Class getReturnType();
 public int hashCode(); // Overrides Object
 public native Object invoke(Object obj, Object[] args) throws
IllegalAccessException, IllegalArgumentException, InvocationTargetException;
 public String toString(); // Overrides Object
}

Passed To:

EventSetDescriptor(), IndexedPropertyDescriptor(), MethodDescriptor(), PropertyDescriptor()

Returned By:

Class.getDeclaredMethod(), Class.getDeclaredMethods(), Class.getMethod(), Class.getMethods(),
EventSetDescriptor.getAddListenerMethod(), EventSetDescriptor.getListenerMethods(),
EventSetDescriptor.getRemoveListenerMethod(), IndexedPropertyDescriptor.getIndexedReadMethod(),
IndexedPropertyDescriptor.getIndexedWriteMethod(), MethodDescriptor.getMethod(),
PropertyDescriptor.getReadMethod(), PropertyDescriptor.getWriteMethod()

java.lang.reflect.Member
(JDK 1.1)

java.lang.reflect.Modifier
(JDK 1.1)

Chapter 18
The java.awt Package

18.47 java.awt.Point (JDK 1.0)

This class holds the X and Y coordinates of a two-dimensional point. The move() method sets the
coordinates, and the translate() method adds the specified values to the coordinates. The x and y
fields are public and may be manipulated directly.

public class Point extends Object implements Serializable {
 // Public Constructors
 1.1 public Point();
 1.1 public Point(Point p);
 public Point(int x, int y);
 // Public Instance Variables
 public int x;
 public int y;
 // Public Instance Methods
 public boolean equals(Object obj); // Overrides Object
 1.1 public Point getLocation();
 public int hashCode(); // Overrides Object
 public void move(int x, int y);
 1.1 public void setLocation(Point p);
 1.1 public void setLocation(int x, int y);
 public String toString(); // Overrides Object
 public void translate(int x, int y);
}

Passed To:

Component.contains(), Component.getComponentAt(),
Component.setLocation(), Container.getComponentAt(), Point(),
Point.setLocation(), Polygon.contains(), Rectangle(), Rectangle.add(),
Rectangle.contains(), Rectangle.setLocation(),

ScrollPane.setScrollPosition()

Returned By:

Component.getLocation(), Component.getLocationOnScreen(),
Component.location(), ComponentPeer.getLocationOnScreen(),
GridBagLayout.getLayoutOrigin(), GridBagLayout.location(),
MouseEvent.getPoint(), Point.getLocation(), Rectangle.getLocation(),
ScrollPane.getScrollPosition()

java.awt.Panel (JDK 1.0) java.awt.Polygon (JDK 1.0)

Chapter 24
The java.io Package

24.17 java.io.FileDescriptor (JDK 1.0)

This class is a platform-independent representation of a low-level handle to an open file or an open
socket. The static in, out, and err variables are FileDescriptor objects that represent the system
standard input, output, and error streams, respectively. There is no public constructor method to create a
FileDescriptor object. You can obtain one with the getFD() method of FileInputStream,
FileOutputStream, and RandomAccessFile.

public final class FileDescriptor extends Object {
 // Default Constructor: public FileDescriptor()
 // Constants
 public static final FileDescriptor err;
 public static final FileDescriptor in;
 public static final FileDescriptor out;
 // Public Instance Methods
 1.1 public native void sync() throws SyncFailedException;
 public native boolean valid();
}

Passed To:

FileInputStream(), FileOutputStream(), FileReader(), FileWriter(), SecurityManager.checkRead(),
SecurityManager.checkWrite()

Returned By:

DatagramSocketImpl.getFileDescriptor(), FileInputStream.getFD(), FileOutputStream.getFD(),
RandomAccessFile.getFD(), SocketImpl.getFileDescriptor()

Type Of:

DatagramSocketImpl.fd, FileDescriptor.err, FileDescriptor.in, FileDescriptor.out, SocketImpl.fd

java.io.File (JDK 1.0) java.io.FileInputStream (JDK
1.0)

Chapter 25
The java.lang Package

25.51 java.lang.Runtime (JDK 1.0)

This class encapsulates a number of platform-dependent system functions. The static method getRuntime() returns the
Runtime object for the current platform, and this object can be used to perform system functions in a platform-independent
way.

exec() starts a new process running externally to the interpreter. Note that any processes run outside of Java may be system-
dependent.

exit() causes the Java interpreter to exit and return a specified return code.

freeMemory() returns the approximate amount of free memory. totalMemory() returns the total amount of memory
available to the Java interpreter. gc() forces the garbage collector to run synchronously, which may free up more memory.
Similarly, runFinalization() forces the finalize() methods of unreferenced objects to be run immediately. This
may free up system resources that those objects were holding.

load() loads a dynamic library with a fully specified path name. loadLibrary() loads a dynamic library with only the
library name specified; it looks in platform-dependent locations for the specified library. These libraries generally contain
native code definitions for native methods.

traceInstructions() and traceMethodCalls() enable and disable tracing by the interpreter.

Note that some of the Runtime methods are more commonly called via the static methods of the System class.

public class Runtime extends Object {
 // No Constructor
 // Class Methods
 public static Runtime getRuntime();
 1.1public static void runFinalizersOnExit(boolean value);
 // Public Instance Methods
 public Process exec(String command) throws IOException;
 public Process exec(String command, String[] envp) throws IOException;
 public Process exec(String[] cmdarray) throws IOException;
 public Process exec(String[] cmdarray, String[] envp) throws IOException;
 public void exit(int status);
 public native long freeMemory();
 public native void gc();
 # public InputStream getLocalizedInputStream(InputStream in);
 # public OutputStream getLocalizedOutputStream(OutputStream out);
 public synchronized void load(String filename);
 public synchronized void loadLibrary(String libname);

 public native void runFinalization();
 public native long totalMemory();
 public native void traceInstructions(boolean on);
 public native void traceMethodCalls(boolean on);
}

Returned By:

Runtime.getRuntime()

java.lang.Runnable (JDK 1.0) java.lang.RuntimeException
(JDK 1.0)

Chapter 25
The java.lang Package

25.64 java.lang.Throwable (JDK 1.0)

This is the root class of the Java exception and error hierarchy. All exceptions and errors are subclasses
of Throwable. The getMessage() method retrieves any error message associated with the
exception or error. printStackTrace() prints a stack trace that shows where the exception
occurred. fillInStackTrace() extends the stack trace when the exception is partially handled, and
then re-thrown.

public class Throwable extends Object implements Serializable {
 // Public Constructors
 public Throwable();
 public Throwable(String message);
 // Public Instance Methods
 public native Throwable fillInStackTrace();
 1.1public String getLocalizedMessage();
 public String getMessage();
 public void printStackTrace();
 public void printStackTrace(PrintStream s);
 1.1public void printStackTrace(PrintWriter s);
 public String toString(); // Overrides Object
}

Extended By:

Error, Exception

Passed To:

ExceptionInInitializerError(), InvocationTargetException(), Thread.stop(),
ThreadGroup.uncaughtException()

Returned By:

ExceptionInInitializerError.getException(), InvocationTargetException.getTargetException(),
Throwable.fillInStackTrace()

Thrown By:

Object.finalize()

java.lang.ThreadGroup (JDK
1.0)

java.lang.UnknownError
(JDK 1.0)

Chapter 21
The java.awt.image Package

21.2 java.awt.image.ColorModel (JDK 1.0)

This abstract class defines a color model--i.e., a scheme for representing a color. Subclasses implement
the methods of this interface to convert their particular representation of a pixel value into the default
RGB color model. The static method getRGBDefault() returns a ColorModel object that
implements the default color model--RGB plus alpha transparency. You generally never need to call the
instance methods of a ColorModel--they are called internally by other image manipulation classes.

See also DirectColorModel and IndexColorModel.

public abstract class ColorModel extends Object {
 // Public Constructor
 public ColorModel(int bits);
 // Protected Instance Variables
 protected int pixel_bits;
 // Class Methods
 public static ColorModel getRGBdefault();
 // Public Instance Methods
 public void finalize(); // Overrides Object
 public abstract int getAlpha(int pixel);
 public abstract int getBlue(int pixel);
 public abstract int getGreen(int pixel);
 public int getPixelSize();
 public int getRGB(int pixel);
 public abstract int getRed(int pixel);
}

Extended By:

DirectColorModel, IndexColorModel

Passed To:

AreaAveragingScaleFilter.setPixels(), CropImageFilter.setPixels(),
ImageConsumer.setColorModel(), ImageConsumer.setPixels(),
ImageFilter.setColorModel(), ImageFilter.setPixels(),
MemoryImageSource(), MemoryImageSource.newPixels(),
PixelGrabber.setColorModel(), PixelGrabber.setPixels(),
ReplicateScaleFilter.setPixels(), RGBImageFilter.setColorModel(),
RGBImageFilter.setPixels(), RGBImageFilter.substituteColorModel()

Returned By:

ColorModel.getRGBdefault(), Component.getColorModel(),
ComponentPeer.getColorModel(), PixelGrabber.getColorModel(),
Toolkit.getColorModel()

Type Of:

RGBImageFilter.newmodel, RGBImageFilter.origmodel

java.awt.image.AreaAveragingScaleFilter
(JDK 1.1)

java.awt.image.CropImageFilter
(JDK 1.0)

Chapter 23
The java.beans Package

23.17 java.beans.PropertyEditorManager (JDK 1.1)

The PropertyEditorManager class is never meant to be instantiated; it defines static methods for registering and
looking up PropertyEditor classes for a specified property type.

A Java bean may specify a particular PropertyEditor class for a given property by specifying it in a
PropertyDescriptor object for the property. If it does not do this, the PropertyEditorManager is used to
register and look up editors. A bean or an application builder tool may call the registerEditor() method to register a
PropertyEditor for properties of a specified type. Application builders and bean Customizer classes may call the
findEditor() method to obtain a PropertyEditor for a given property type.

If no editor has been registered for a given type, the PropertyEditorManager attempts to locate one. For a type x, it
looks for a class xEditor first in the same package as x, and then in each package listed in the property editor search path.

public class PropertyEditorManager extends Object {
 // Default Constructor: public PropertyEditorManager()
 // Class Methods
 public static PropertyEditor findEditor(Class targetType);
 public static String[] getEditorSearchPath();
 public static void registerEditor(Class targetType, Class editorClass);
 public static void setEditorSearchPath(String[] path);
}

java.beans.PropertyEditor
(JDK 1.1)

java.beans.PropertyEditorSupport
(JDK 1.1)

Chapter 24
The java.io Package

24.13 java.io.DataOutputStream (JDK 1.0)

This class is a subclass of FilterOutputStream that allows you to write Java primitive data types in a portable binary
format. Create a DataOutputStream by specifying the OutputStream that is to be filtered in the call to the constructor.

Many of this class's methods write a single Java primitive type, in binary format to the output stream. write() writes a
single byte, an array, or a subarray of bytes. flush() forces any buffered data to be output. size() returns the number of
bytes written so far.

writeUTF() outputs a Java string of Unicode characters using a slightly modified version of the UTF-8 "transformation
format." UTF-8 is an ASCII-compatible encoding of Unicode characters that is often used for the transmission and storage of
Unicode text. Except for the writeUTF() method, this class is used for binary output of data. Textual output should be done
with PrintWriter, or PrintStream in Java 1.0.

DataOutputStream only has methods to output primitive types. Use ObjectOutputStream to output object values.

public class DataOutputStream extends FilterOutputStream implements DataOutput {
 // Public Constructor
 public DataOutputStream(OutputStream out);
 // Protected Instance Variables
 protected int written;
 // Public Instance Methods
 public void flush() throws IOException; // Overrides FilterOutputStream
 public final int size();
 public synchronized void write(int b) throws IOException; // Overrides
FilterOutputStream
 public synchronized void write(byte[] b, int off, int len) throws
IOException; // Overrides FilterOutputStream
 public final void writeBoolean(boolean v) throws IOException; // From
DataOutput
 public final void writeByte(int v) throws IOException; // From
DataOutput
 public final void writeBytes(String s) throws IOException; // From
DataOutput
 public final void writeChar(int v) throws IOException; // From
DataOutput
 public final void writeChars(String s) throws IOException; // From
DataOutput
 public final void writeDouble(double v) throws IOException; // From
DataOutput
 public final void writeFloat(float v) throws IOException; // From

DataOutput
 public final void writeInt(int v) throws IOException; // From DataOutput
 public final void writeLong(long v) throws IOException; // From
DataOutput
 public final void writeShort(int v) throws IOException; // From
DataOutput
 public final void writeUTF(String str) throws IOException; // From
DataOutput
}

Hierarchy:

Object->OutputStream->FilterOutputStream->DataOutputStream(DataOutput)

java.io.DataOutput (JDK 1.0) java.io.EOFException (JDK
1.0)

Chapter 18
The java.awt Package

18.32 java.awt.Image (JDK 1.0)

This abstract class represents a displayable image in a platform-independent way. An Image object may not be instantiated
directly through a constructor; it must be obtained through a call like Applet.getImage() or
Component.createImage(). getSource() method returns the ImageProducer object that produces the image
data. getGraphics() returns a Graphics object that can be used for drawing into offscreen images (but not images that
are downloaded or generated by an ImageProducer).

public abstract class Image extends Object {
 // Default Constructor: public Image()
 // Constants
 1.1 public static final int SCALE_AREA_AVERAGING;
 1.1 public static final int SCALE_DEFAULT;
 1.1 public static final int SCALE_FAST;
 1.1 public static final int SCALE_REPLICATE;
 1.1 public static final int SCALE_SMOOTH;
 public static final Object UndefinedProperty;
 // Public Instance Methods
 public abstract void flush();
 public abstract Graphics getGraphics();
 public abstract int getHeight(ImageObserver observer);
 public abstract Object getProperty(String name, ImageObserver observer);
 1.1 public Image getScaledInstance(int width, int height, int hints);
 public abstract ImageProducer getSource();
 public abstract int getWidth(ImageObserver observer);
}

Passed To:

Component.checkImage(), Component.imageUpdate(), Component.prepareImage(),
ComponentPeer.checkImage(), ComponentPeer.prepareImage(), Frame.setIconImage(),
FramePeer.setIconImage(), Graphics.drawImage(), ImageObserver.imageUpdate(),
MediaTracker.addImage(), MediaTracker.removeImage(), PixelGrabber(),
Toolkit.checkImage(), Toolkit.prepareImage()

Returned By:

Applet.getImage(), AppletContext.getImage(), BeanInfo.getIcon(),
Component.createImage(), ComponentPeer.createImage(), Frame.getIconImage(),
Image.getScaledInstance(), SimpleBeanInfo.getIcon(), SimpleBeanInfo.loadImage(),

Toolkit.createImage(), Toolkit.getImage()

java.awt.IllegalComponentStateException
(JDK 1.1)

java.awt.Insets (JDK
1.0)

Chapter 20
The java.awt.event Package

20.12 java.awt.event.FocusEvent (JDK 1.1)

An event of this type indicates that a Component has gained or lost focus on a temporary or permanent basis.

Use the inherited getComponent() method to determine which component has gained or lost focus. Use
getID() to determine the type of focus event; it returns FOCUS_GAINED or FOCUS_LOST.

When focus is lost, you can call isTemporary() to determine whether it is a temporary loss of focus.
Temporary focus loss occurs when the window that contains the component loses focus, for example, or when
focus is temporarily diverted to a popup menu or a scrollbar. Similarly, you can also use isTemporary() to
determine whether focus is being granted to a component on a temporary basis.

public class FocusEvent extends ComponentEvent {
 // Public Constructors
 public FocusEvent(Component source, int id, boolean temporary);
 public FocusEvent(Component source, int id);
 // Constants
 public static final int FOCUS_FIRST;
 public static final int FOCUS_GAINED;
 public static final int FOCUS_LAST;
 public static final int FOCUS_LOST;
 // Public Instance Methods
 public boolean isTemporary();
 public String paramString(); // Overrides ComponentEvent
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->ComponentEvent->FocusEvent

Passed To:

AWTEventMulticaster.focusGained(), AWTEventMulticaster.focusLost(),

Component.processFocusEvent(), FocusAdapter.focusGained(),
FocusAdapter.focusLost(), FocusListener.focusGained(),
FocusListener.focusLost()

java.awt.event.FocusAdapter
(JDK 1.1)

java.awt.event.FocusListener
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.11 java.awt.event.FocusAdapter (JDK 1.1)

This class is a trivial implementation of FocusListener; it provides empty bodies for each of the methods of
that interface. When you are not interested in all of these methods, it is often easier to subclass FocusAdapter
than it is to implement FocusListener from scratch.

public abstract class FocusAdapter extends Object implements FocusListener {
 // Default Constructor: public FocusAdapter()
 // Public Instance Methods
 public void focusGained(FocusEvent e); // From FocusListener
 public void focusLost(FocusEvent e); // From FocusListener
}

Hierarchy:

Object->FocusAdapter(FocusListener(EventListener))

java.awt.event.ContainerListener
(JDK 1.1)

java.awt.event.FocusEvent
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.13 java.awt.event.FocusListener (JDK 1.1)

This interface defines the methods that an object must implement to "listen" for focus events on AWT
components. When a FocusEvent occurs, an AWT component notifies its registered
FocusListener objects by invoking one of their methods.

An easy way to implement this interface is by subclassing the FocusAdapter class.

public abstract interface FocusListener extends EventListener {
 // Public Instance Methods
 public abstract void focusGained(FocusEvent e);
 public abstract void focusLost(FocusEvent e);
}

Implemented By:

AWTEventMulticaster, FocusAdapter

Passed To:

AWTEventMulticaster.add(), AWTEventMulticaster.remove(),
Component.addFocusListener(), Component.removeFocusListener()

Returned By:

AWTEventMulticaster.add(), AWTEventMulticaster.remove()

java.awt.event.FocusEvent
(JDK 1.1)

java.awt.event.InputEvent
(JDK 1.1)

Chapter 24
The java.io Package

24.43 java.io.ObjectStreamClass (JDK 1.1)

This class is used to represent a class that is being serialized. An ObjectStreamClass object contains
the name of a class and its unique version identifier. This class does not have a constructor; you should
use the static lookup() method to obtain an ObjectStreamClass object for a given Class object.
The forClass() instance method performs the opposite operation--it returns the Class object that
corresponds to a given ObjectStreamClass.

Most applications never need to use this class.

public class ObjectStreamClass extends Object implements Serializable {
 // No Constructor
 // Class Methods
 public static ObjectStreamClass lookup(Class cl);
 // Public Instance Methods
 public Class forClass();
 public String getName();
 public long getSerialVersionUID();
 public String toString(); // Overrides Object
}

Passed To:

ObjectInputStream.resolveClass()

Returned By:

ObjectStreamClass.lookup()

java.io.ObjectOutputStream
(JDK 1.1)

java.io.ObjectStreamException
(JDK 1.1)

Chapter 25
The java.lang Package

25.8 java.lang.Class (JDK 1.0)

This class represents a Java class or interface, or, in Java 1.1, any Java type. There is one Class object for each class that
is loaded into the Java Virtual Machine, and in Java 1.1 there are special Class objects that represent the Java primitive
types. The TYPE constants defined by Boolean, Integer, and the other primitive "wrapper classes" hold these special
Class objects. Array types are also represented by Class objects in Java 1.1.

There is no constructor for this class. You can obtain a Class object by calling the getClass() method of any instance
of the desired class. In Java 1.1, a Class object may also be referred to by appending .class to the name of a class.
Finally, and most interestingly, a class can be dynamically loaded by passing its fully-qualified name (i.e., package name
plus class name) to the static Class.forName() method. This method loads the named class, if it is not already loaded,
into the Java interpreter, and returns a Class object for it.

The newInstance() method creates an instance of a given class--this allows you to create instances of dynamically
loaded classes for which you cannot use the new keyword. Note that this method only works when the target class has a no-
argument constructor. See newInstance() in java.lang.reflect.Constructor for a more powerful way to
instantiate dynamically loaded classes.

getName() returns the name of the class. getSuperclass() returns its superclass. isInterface() tests whether
the Class object represents an interface, and getInterfaces() returns an array of the interfaces that this class
implements. The various other get and is methods return other information about the represented class, and form part of
the Java Reflection API, along with the classes in java.lang.reflect.

public final class Class extends Object implements Serializable {
 // No Constructor
 // Class Methods
 public static native Class forName(String className) throws
ClassNotFoundException;
 // Public Instance Methods
 public native ClassLoader getClassLoader();
 1.1public Class[] getClasses();
 1.1public native Class getComponentType();
 1.1public Constructor getConstructor(Class[] parameterTypes) throws
NoSuchMethodException, SecurityException;
 1.1public Constructor[] getConstructors() throws SecurityException;
 1.1public Class[] getDeclaredClasses() throws SecurityException;
 1.1public Constructor getDeclaredConstructor(Class[] parameterTypes) throws
NoSuchMethodException, SecurityException;
 1.1public Constructor[] getDeclaredConstructors() throws SecurityException;
 1.1public Field getDeclaredField(String name) throws NoSuchFieldException,

SecurityException;
 1.1public Field[] getDeclaredFields() throws SecurityException;
 1.1public Method getDeclaredMethod(String name, Class[] parameterTypes)
throws NoSuchMethodException, SecurityException;
 1.1public Method[] getDeclaredMethods() throws SecurityException;
 1.1public Class getDeclaringClass();
 1.1public Field getField(String name) throws NoSuchFieldException,
SecurityException;
 1.1public Field[] getFields() throws SecurityException;
 public native Class[] getInterfaces();
 1.1public Method getMethod(String name, Class[] parameterTypes) throws
NoSuchMethodException, SecurityException;
 1.1public Method[] getMethods() throws SecurityException;
 1.1public native int getModifiers();
 public native String getName();
 1.1public URL getResource(String name);
 1.1public InputStream getResourceAsStream(String name);
 1.1public native Object[] getSigners();
 public native Class getSuperclass();
 1.1public native boolean isArray();
 1.1public native boolean isAssignableFrom(Class cls);
 1.1public native boolean isInstance(Object obj);
 public native boolean isInterface();
 1.1public native boolean isPrimitive();
 public native Object newInstance() throws InstantiationException,
IllegalAccessException;
 public String toString(); // Overrides Object
}

Passed To:

Array.newInstance(), BeanDescriptor(), Beans.getInstanceOf(), Beans.isInstanceOf(), Class.getConstructor(),
Class.getDeclaredConstructor(), Class.getDeclaredMethod(), Class.getMethod(), Class.isAssignableFrom(),
ClassLoader.resolveClass(), ClassLoader.setSigners(), Compiler.compileClass(), DataFlavor(), EventSetDescriptor(),
IndexedPropertyDescriptor(), Introspector.getBeanInfo(), ObjectOutputStream.annotateClass(),
ObjectStreamClass.lookup(), PropertyDescriptor(), PropertyDescriptor.setPropertyEditorClass(),
PropertyEditorManager.findEditor(), PropertyEditorManager.registerEditor(), SecurityManager.checkMemberAccess()

Returned By:

BeanDescriptor.getBeanClass(), BeanDescriptor.getCustomizerClass(), Class.forName(), Class.getClasses(),
Class.getComponentType(), Class.getDeclaredClasses(), Class.getDeclaringClass(), Class.getInterfaces(),
Class.getSuperclass(), ClassLoader.defineClass(), ClassLoader.findLoadedClass(), ClassLoader.findSystemClass(),
ClassLoader.loadClass(), Constructor.getDeclaringClass(), Constructor.getExceptionTypes(),
Constructor.getParameterTypes(), DataFlavor.getRepresentationClass(), EventSetDescriptor.getListenerType(),
Field.getDeclaringClass(), Field.getType(), IndexedPropertyDescriptor.getIndexedPropertyType(),
Member.getDeclaringClass(), Method.getDeclaringClass(), Method.getExceptionTypes(), Method.getParameterTypes(),
Method.getReturnType(), Object.getClass(), ObjectInputStream.resolveClass(), ObjectStreamClass.forClass(),
PropertyDescriptor.getPropertyEditorClass(), PropertyDescriptor.getPropertyType(),
SecurityManager.currentLoadedClass(), SecurityManager.getClassContext()

Type Of:

Boolean.TYPE, Byte.TYPE, Character.TYPE, Double.TYPE, Float.TYPE, Integer.TYPE, Long.TYPE, Short.TYPE,
Void.TYPE

java.lang.Character (JDK 1.0) java.lang.ClassCastException
(JDK 1.0)

Chapter 23
The java.beans Package

23.2 java.beans.BeanInfo (JDK 1.1)

The BeanInfo interface defines the methods that a class must implement in order to export information
about a Java bean. The Introspector class knows how to obtain all the basic information required about a
bean. A bean that wants to be more "programmer-friendly" may provide a class that implements this interface,
however, in order to provide additional information about itself (such as an icon and description strings for
each of its properties, events, and methods). Note that a bean developer defines a class that implements the
methods of this interface. Typically only builder applications and similar tools actually invoke the methods
defined here.

The methods getBeanDescriptor(), getEventSetDescriptors(),
getPropertyDescriptors(), and getMethodDescriptors() should return appropriate
descriptor objects for the bean, or null, if the bean does not provide explicit bean, event set, property, or
method descriptor objects. The getDefaultEventIndex() and getDefaultPropertyIndex()
methods return values that specify the "default" event and property--i.e., that are most likely to be of interest to
a programmer using the bean. These methods should return -1 if there are no defaults.

The getIcon() method should return an image object suitable for representing the bean in a palette or menu
of available beans. The argument passed to this method is one of the four constants defined by the class; it
specifies the type and size of icon requested. If the requested icon cannot be provided, getIcon() should
return null.

A BeanInfo class is allowed to return null or -1 if it cannot provide the requested information. In this
case, the Introspector class provides basic values for the omitted information from its own introspection
of the bean. See SimpleBeanInfo for a trivial implementation of this interface, suitable for convenient
subclassing.

public abstract interface BeanInfo {
 // Constants
 public static final int ICON_COLOR_16x16;
 public static final int ICON_COLOR_32x32;
 public static final int ICON_MONO_16x16;
 public static final int ICON_MONO_32x32;
 // Public Instance Methods

 public abstract BeanInfo[] getAdditionalBeanInfo();
 public abstract BeanDescriptor getBeanDescriptor();
 public abstract int getDefaultEventIndex();
 public abstract int getDefaultPropertyIndex();
 public abstract EventSetDescriptor[] getEventSetDescriptors();
 public abstract Image getIcon(int iconKind);
 public abstract MethodDescriptor[] getMethodDescriptors();
 public abstract PropertyDescriptor[] getPropertyDescriptors();
}

Implemented By:

SimpleBeanInfo

Returned By:

BeanInfo.getAdditionalBeanInfo(), Introspector.getBeanInfo(), SimpleBeanInfo.getAdditionalBeanInfo()

java.beans.BeanDescriptor
(JDK 1.1)

java.beans.Beans (JDK 1.1)

Chapter 23
The java.beans Package

23.20 java.beans.SimpleBeanInfo (JDK 1.1)

The SimpleBeanInfo class is a trivial implementation of the BeanInfo interface. The methods of this class all return
null or -1, indicating that no bean information is available. To use this class, you need only to override the method or
methods that return the particular type of bean information you want to provide.

In addition, SimpleBeanInfo provides a convenience method, loadImage(), that takes a resource name as an
argument and returns an Image object. This method is useful when defining the getIcon() method.

public class SimpleBeanInfo extends Object implements BeanInfo {
 // Default Constructor: public SimpleBeanInfo()
 // Public Instance Methods
 public BeanInfo[] getAdditionalBeanInfo(); // From BeanInfo
 public BeanDescriptor getBeanDescriptor(); // From BeanInfo
 public int getDefaultEventIndex(); // From BeanInfo
 public int getDefaultPropertyIndex(); // From BeanInfo
 public EventSetDescriptor[] getEventSetDescriptors(); // From BeanInfo
 public Image getIcon(int iconKind); // From BeanInfo
 public MethodDescriptor[] getMethodDescriptors(); // From BeanInfo
 public PropertyDescriptor[] getPropertyDescriptors(); // From BeanInfo
 public Image loadImage(String resourceName);
}

java.beans.PropertyVetoException
(JDK 1.1)

java.beans.VetoableChangeListener
(JDK 1.1)

Chapter 23
The java.beans Package

23.5 java.beans.EventSetDescriptor (JDK 1.1)

An EventSetDescriptor object is a type of FeatureDescriptor that describes a single set of events supported by a
Java bean. A "set" of events corresponds to the one or more methods supported by a single EventListener interface. The
BeanInfo class for a Java bean optionally creates EventSetDescriptor objects to describe the event sets the bean
supports. Typically, only application builders and similar tools use the get and is methods of EventSetDescriptor
objects to obtain the event-set description information.

To create an EventSetDescriptor object, you must specify the class of the bean that supports the event set, the base
name of the event set, the class of the EventListener interface that corresponds to the event set, and the methods within
this interface that are invoked when particular events within the set occur. Optionally, you may also specify the methods of the
bean class that are used to add and remove EventListener objects. The various constructors allow you to specify methods
by name, as java.lang.reflect.Method objects, or as MethodDescriptor objects.

Once you have created an EventSetDescriptor, you can use setUnicast() to specify whether it represents a unicast
event and setInDefaultEventSet() to specify whether the event set should be treated as the default event set by builder
applications. The methods of the FeatureDescriptor superclass allow additional information about the property to be
specified.

public class EventSetDescriptor extends FeatureDescriptor {
 // Public Constructors
 public EventSetDescriptor(Class sourceClass, String eventSetName, Class
listenerType,
 public EventSetDescriptor'u'String listenerMethodName) throws
IntrospectionException;
 public EventSetDescriptor(Class sourceClass, String eventSetName, Class
listenerType,
 public EventSetDescriptor'u'String[] listenerMethodNames, String
addListenerMethodName
 public EventSetDescriptor'u'String removeListenerMethodName) throws
IntrospectionException;
 public EventSetDescriptor(String eventSetName, Class listenerType,
Method[] listenerMethods,
 public EventSetDescriptor'u'Method addListenerMethod, Method
removeListenerMethod)
 public EventSetDescriptor'u'throws IntrospectionException;
 public EventSetDescriptor(String eventSetName, Class listenerType,
 public EventSetDescriptor'u'MethodDescriptor[] listenerMethodDescriptors,
Method addListenerMethod,
 public EventSetDescriptor'u'Method removeListenerMethod) throws
IntrospectionException;

 // Public Instance Methods
 public Method getAddListenerMethod();
 public MethodDescriptor[] getListenerMethodDescriptors();
 public Method[] getListenerMethods();
 public Class getListenerType();
 public Method getRemoveListenerMethod();
 public boolean isInDefaultEventSet();
 public boolean isUnicast();
 public void setInDefaultEventSet(boolean inDefaultEventSet);
 public void setUnicast(boolean unicast);
}

Hierarchy:

Object->FeatureDescriptor->EventSetDescriptor

Returned By:

BeanInfo.getEventSetDescriptors(), SimpleBeanInfo.getEventSetDescriptors()

java.beans.Customizer (JDK
1.1)

java.beans.FeatureDescriptor
(JDK 1.1)

Chapter 28
The java.net Package

28.5 java.net.DatagramPacket (JDK 1.0)

This class implements a "packet" of data that may be sent or received over the network through a DatagramSocket.
One of the DatagramPacket constructors specifies an array of binary data to be sent with its destination address and
port. A packet created with this constructor may then be sent with the send() method of a DatagramSocket. The
other DatagramPacket constructor specifies an array of bytes into which data should be received. The receive()
method of DatagramSocket waits for data and stores it in a DatagramPacket created in this way. The contents and
sender of a received packet may be queried with the DatagramPacket instance methods.

public final class DatagramPacket extends Object {
 // Public Constructors
 public DatagramPacket(byte[] ibuf, int ilength);
 public DatagramPacket(byte[] ibuf, int ilength, InetAddress iaddr, int
iport);
 // Public Instance Methods
 public synchronized InetAddress getAddress();
 public synchronized byte[] getData();
 public synchronized int getLength();
 public synchronized int getPort();
 1.1public synchronized void setAddress(InetAddress iaddr);
 1.1public synchronized void setData(byte[] ibuf);
 1.1public synchronized void setLength(int ilength);
 1.1public synchronized void setPort(int iport);
}

Passed To:

DatagramSocket.receive(), DatagramSocket.send(), DatagramSocketImpl.receive(), DatagramSocketImpl.send(),
MulticastSocket.send()

java.net.ContentHandlerFactory
(JDK 1.0)

java.net.DatagramSocket
(JDK 1.0)

Chapter 21
The java.awt.image Package

21.4 java.awt.image.DirectColorModel (JDK 1.0)

This class is a ColorModel that extracts the red, green, blue, and alpha values directly from the bits of the pixel. The
arguments to the constructor methods specify the number of significant bits in the pixel and the mask used to extract each
of the color components from the pixel. The default RGB color model is a DirectColorModel.

You should not need to instantiate any kind of ColorModel object unless you are processing image data that does not
use the standard RGB color format.

public class DirectColorModel extends ColorModel {
 // Public Constructors
 public DirectColorModel(int bits, int rmask, int gmask, int bmask);
 public DirectColorModel(int bits, int rmask, int gmask, int bmask, int
amask);
 // Public Instance Methods
 public final int getAlpha(int pixel); // Defines ColorModel
 public final int getAlphaMask();
 public final int getBlue(int pixel); // Defines ColorModel
 public final int getBlueMask();
 public final int getGreen(int pixel); // Defines ColorModel
 public final int getGreenMask();
 public final int getRGB(int pixel); // Overrides ColorModel
 public final int getRed(int pixel); // Defines ColorModel
 public final int getRedMask();
}

Hierarchy:

Object->ColorModel->DirectColorModel

java.awt.image.CropImageFilter
(JDK 1.0)

java.awt.image.FilteredImageSource
(JDK 1.0)

Chapter 21
The java.awt.image Package

21.10 java.awt.image.IndexColorModel (JDK 1.0)

This class is a ColorModel that determines the red, green, blue, and alpha values for a pixel by using the pixel value as an
index into colormap arrays. If no array of alpha values is specified, all pixels are considered fully opaque, except for one
optionally specified reserved value that is fully transparent. This color model is useful when working with image data that is
defined in terms of a color map.

You should not need to instantiate any kind of ColorModel object unless you are processing image data that does not use the
standard RGB color format.

public class IndexColorModel extends ColorModel {
 // Public Constructors
 public IndexColorModel(int bits, int size, byte[] r, byte[] g, byte[] b);
 public IndexColorModel(int bits, int size, byte[] r, byte[] g, byte[] b,
int trans);
 public IndexColorModel(int bits, int size, byte[] r, byte[] g, byte[] b,
byte[] a);
 public IndexColorModel(int bits, int size, byte[] cmap, int start,
boolean hasalpha);
 public IndexColorModel(int bits, int size, byte[] cmap, int start,
boolean hasalpha, int trans);
 // Public Instance Methods
 public final int getAlpha(int pixel); // Defines ColorModel
 public final void getAlphas(byte[] a);
 public final int getBlue(int pixel); // Defines ColorModel
 public final void getBlues(byte[] b);
 public final int getGreen(int pixel); // Defines ColorModel
 public final void getGreens(byte[] g);
 public final int getMapSize();
 public final int getRGB(int pixel); // Overrides ColorModel
 public final int getRed(int pixel); // Defines ColorModel
 public final void getReds(byte[] r);
 public final int getTransparentPixel();
}

Hierarchy:

Object->ColorModel->IndexColorModel

Passed To:

RGBImageFilter.filterIndexColorModel()

Returned By:

RGBImageFilter.filterIndexColorModel()

java.awt.image.ImageProducer
(JDK 1.0)

java.awt.image.MemoryImageSource
(JDK 1.0)

Chapter 29
The java.text Package

29.11 java.text.FieldPosition (JDK 1.1)

FieldPosition objects are optionally passed to the format() methods of the Format class and its
subclasses to return additional information about the formatting that has been performed. The
getBeginIndex() and getEndIndex() methods of this class are used to return the starting and
ending character positions of some field of the formatted string. The integer value passed to the
FieldPosition() constructor specifies what field of the returned string should have its bounds
returned. The NumberFormat and DateFormat classes define various constants (which end with the
string _FIELD) that can be used here. Typically, this bounds information is useful for aligning formatted
strings in columns--for example, aligning the decimal points in a column of numbers.

public class FieldPosition extends Object {
 // Public Constructor
 public FieldPosition(int field);
 // Public Instance Methods
 public int getBeginIndex();
 public int getEndIndex();
 public int getField();
}

Passed To:

ChoiceFormat.format(), DateFormat.format(), DecimalFormat.format(), Format.format(),
MessageFormat.format(), NumberFormat.format(), SimpleDateFormat.format()

java.text.DecimalFormatSymbols
(JDK 1.1)

java.text.Format (JDK 1.1)

Chapter 18
The java.awt Package

18.55 java.awt.Shape (JDK 1.1)

This interface encapsulates some very generic information about geometric shapes. All Shape objects
must have a bounding box--i.e., a rectangle that completely encloses the represented shape.

When the forthcoming Java2D API is integrated with the AWT, this interface may be changed. For this
reason, Java 1.1 applications can use this interface, but should not implement it in their own classes.

public abstract interface Shape {
 // Public Instance Methods
 public abstract Rectangle getBounds();
}

Implemented By:

Polygon, Rectangle

Passed To:

Graphics.setClip()

Returned By:

Graphics.getClip()

java.awt.Scrollbar (JDK 1.0) java.awt.SystemColor (JDK
1.1)

Chapter 30
The java.util Package

30.20 java.util.ResourceBundle (JDK 1.1)

This abstract class allows subclasses to define sets of localized resources which can then be dynamically loaded as
needed by internationalized programs. Such resources may include user-visible text and images that appear in an
application, and even more complex things such as Menu objects.

Use getBundle() to load a ResourceBundle subclass that is appropriate for the default or the specified locale.
Use getObject(), getString(), and getStringArray() to look up a named resource in a bundle. To define
a bundle, provide implementations of handleGetObject() and getKeys(). It is often easier, however, to
subclass ListResourceBundle, or to provide a property file that is used by PropertyResourceBundle. The
name of any localized ResourceBundle class you define should include the locale language code, and, optionally,
the locale country code.

public abstract class ResourceBundle extends Object {
 // Default Constructor: public ResourceBundle()
 // Protected Instance Variables
 protected ResourceBundle parent;
 // Class Methods
 public static final ResourceBundle getBundle(String baseName) throws
MissingResourceException;
 public static final ResourceBundle getBundle(String baseName, Locale
locale);
 // Public Instance Methods
 public abstract Enumeration getKeys();
 public final Object getObject(String key) throws
MissingResourceException;
 public final String getString(String key) throws
MissingResourceException;
 public final String[] getStringArray(String key) throws
MissingResourceException;
 // Protected Instance Methods
 protected abstract Object handleGetObject(String key) throws
MissingResourceException;
 protected void setParent(ResourceBundle parent);
}

Extended By:

ListResourceBundle, PropertyResourceBundle

Passed To:

ResourceBundle.setParent()

Returned By:

ResourceBundle.getBundle()

Type Of:

ResourceBundle.parent

java.util.Random (JDK 1.0) java.util.SimpleTimeZone
(JDK 1.1)

Chapter 22
The java.awt.peer Package

22.24 java.awt.peer.TextComponentPeer (JDK 1.0)

public abstract interface TextComponentPeer extends ComponentPeer {
 // Public Instance Methods
 1.1 public abstract int getCaretPosition();
 public abstract int getSelectionEnd();
 public abstract int getSelectionStart();
 public abstract String getText();
 public abstract void select(int selStart, int selEnd);
 1.1 public abstract void setCaretPosition(int pos);
 public abstract void setEditable(boolean editable);
 public abstract void setText(String l);
}

Extended By:

TextAreaPeer, TextFieldPeer

java.awt.peer.TextAreaPeer
(JDK 1.0)

java.awt.peer.TextFieldPeer
(JDK 1.0)

Chapter 31
The java.util.zip Package

31.2 java.util.zip.CheckedInputStream (JDK 1.1)

This class is a subclass of java.io.FilterInputStream; it allows a stream to be read and a checksum computed
on its contents at the same time. This is useful when you want to check the integrity of a stream of data against a
published checksum value.

To create a CheckedInputStream, you must specify both the stream that it should read and also a Checksum
object, such as CRC32, that implements the particular checksum algorithm you desire. The read() and skip()
methods are the same as those of other input streams. As bytes are read, they are incorporated into the checksum that is
being computed. Note that the getChecksum() method does not return the checksum value itself, but rather the
Checksum object. You must call the getValue() method of this object to obtain the checksum value.

public class CheckedInputStream extends FilterInputStream {
 // Public Constructor
 public CheckedInputStream(InputStream in, Checksum cksum);
 // Public Instance Methods
 public Checksum getChecksum();
 public int read() throws IOException; // Overrides FilterInputStream
 public int read(byte[] buf, int off, int len) throws IOException; //
Overrides FilterInputStream
 public long skip(long n) throws IOException; // Overrides
FilterInputStream
}

Hierarchy:

Object->InputStream->FilterInputStream->CheckedInputStream

java.util.zip.Adler32 (JDK
1.1)

java.util.zip.CheckedOutputStream
(JDK 1.1)

Chapter 31
The java.util.zip Package

31.3 java.util.zip.CheckedOutputStream (JDK 1.1)

This class is a subclass of java.io.FilterOutputStream that allows data to be written to a stream and a
checksum computed on that data at the same time.

To create a CheckedOutputStream you must specify the output stream that it is to write its data to, and you must
also specify a Checksum object, such as an instance of Adler32, that implements the particular checksum algorithm
you desire. The write() methods are similar to those of other OutputStream classes. The getChecksum()
method returns the Checksum object. Note that you must call getValue() on this object in order to obtain the actual
checksum value.

public class CheckedOutputStream extends FilterOutputStream {
 // Public Constructor
 public CheckedOutputStream(OutputStream out, Checksum cksum);
 // Public Instance Methods
 public Checksum getChecksum();
 public void write(int b) throws IOException; // Overrides
FilterOutputStream
 public void write(byte[] b, int off, int len) throws IOException; //
Overrides FilterOutputStream
}

Hierarchy:

Object->OutputStream->FilterOutputStream->CheckedOutputStream

java.util.zip.CheckedInputStream
(JDK 1.1)

java.util.zip.Checksum (JDK
1.1)

Chapter 30
The java.util Package

30.13 java.util.MissingResourceException (JDK 1.1)

This exception signals that no ResourceBundle could be located for the desired locale, or that a named resource could not
be found within a given ResourceBundle.

getClassName() returns the name of the ResourceBundle class in question, and getKey() returns the name of the
resource that could not be located.

public class MissingResourceException extends RuntimeException {
 // Public Constructor
 public MissingResourceException(String s, String className, String key);
 // Public Instance Methods
 public String getClassName();
 public String getKey();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->MissingResourceException

Thrown By:

Locale.getISO3Country(), Locale.getISO3Language(), ResourceBundle.getBundle(), ResourceBundle.getObject(),
ResourceBundle.getString(), ResourceBundle.getStringArray(), ResourceBundle.handleGetObject()

java.util.Locale (JDK 1.1) java.util.NoSuchElementException
(JDK 1.0)

Chapter 20
The java.awt.event Package

20.21 java.awt.event.MouseEvent (JDK 1.1)

An event of this type indicates that the user has moved the mouse or pressed one of the mouse buttons.

Call getID() to determine the specific type of mouse event that has occurred. This method returns one of the following
seven constants, which corresponds to a method in either the MouseListener or MouseMotionListener interface.

MOUSE_PRESSED

The user has pressed a mouse button.

MOUSE_RELEASED

The user has released a mouse button.

MOUSE_CLICKED

The user has pressed and released a mouse button without any intervening mouse drag.

MOUSE_DRAGGED

The user has moved the mouse while holding a button down

MOUSE_MOVED

The user has moved the mouse without holding any buttons down.

MOUSE_ENTERED

The mouse pointer has entered the component. MOUSE_EXITED

The mouse pointer has left the component

Use getX() and getY() or getPoint() to obtain the coordinates of the mouse event. Use translatePoint() to
modify these coordinates by a specified amount.

Use getModifiers() and other methods and constants inherited from InputEvent to determine the mouse button or
keyboard modifiers that were down when the event occurred. See InputEvent for details. Note that mouse button modifiers
are not reported for MOUSE_RELEASED events, since, technically, the mouse button in question is no longer pressed. This can

be surprising.

Use getComponent(), inherited from ComponentEvent, to determine over which component the event occurred.

For mouse events of type MOUSE_CLICKED, MOUSE_PRESSED, or MOUSE_RELEASED, call getClickCount() to
determine how many consecutive clicks have occurred.

If you are using popup menus, use isPopupTrigger() to test whether the current event represents the standard platform-
dependent popup menu trigger event.

public class MouseEvent extends InputEvent {
 // Public Constructor
 public MouseEvent(Component source, int id, long when, int modifiers, int
x, int y,
 public MouseEvent'u'int clickCount, boolean popupTrigger);
 // Constants
 public static final int MOUSE_CLICKED;
 public static final int MOUSE_DRAGGED;
 public static final int MOUSE_ENTERED;
 public static final int MOUSE_EXITED;
 public static final int MOUSE_FIRST;
 public static final int MOUSE_LAST;
 public static final int MOUSE_MOVED;
 public static final int MOUSE_PRESSED;
 public static final int MOUSE_RELEASED;
 // Public Instance Methods
 public int getClickCount();
 public Point getPoint();
 public int getX();
 public int getY();
 public boolean isPopupTrigger();
 public String paramString(); // Overrides ComponentEvent
 public synchronized void translatePoint(int x, int y);
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->ComponentEvent->InputEvent->MouseEvent

Passed To:

AWTEventMulticaster.mouseClicked(), AWTEventMulticaster.mouseDragged(),
AWTEventMulticaster.mouseEntered(), AWTEventMulticaster.mouseExited(),
AWTEventMulticaster.mouseMoved(), AWTEventMulticaster.mousePressed(),
AWTEventMulticaster.mouseReleased(), Component.processMouseEvent(),
Component.processMouseMotionEvent(), MouseAdapter.mouseClicked(),
MouseAdapter.mouseEntered(), MouseAdapter.mouseExited(), MouseAdapter.mousePressed(),
MouseAdapter.mouseReleased(), MouseListener.mouseClicked(),
MouseListener.mouseEntered(), MouseListener.mouseExited(),
MouseListener.mousePressed(), MouseListener.mouseReleased(),
MouseMotionAdapter.mouseDragged(), MouseMotionAdapter.mouseMoved(),

MouseMotionListener.mouseDragged(), MouseMotionListener.mouseMoved()

java.awt.event.MouseAdapter
(JDK 1.1)

java.awt.event.MouseListener
(JDK 1.1)

Chapter 28
The java.net Package

28.3 java.net.ContentHandler (JDK 1.0)

This abstract class defines a method that reads data from a URLConnection and returns an object representing that data.
Each subclass that implements this method is responsible for handling a different type of content (i.e., a different MIME type).
Applications never create ContentHandler objects directly--they are created, when necessary, by the registered
ContentHandlerFactory object. Applications should also never call ContentHandler methods directly--they should
call URL.getContent() or URLConnection.getContent() instead. You only need to subclass ContentHandler
if you are writing a Web browser or similar application that needs to parse and understand some new content type.

public abstract class ContentHandler extends Object {
 // Default Constructor: public ContentHandler()
 // Public Instance Methods
 public abstract Object getContent(URLConnection urlc) throws IOException;
}

Returned By:

ContentHandlerFactory.createContentHandler()

java.net.ConnectException
(JDK 1.1)

java.net.ContentHandlerFactory
(JDK 1.0)

Chapter 30
The java.util Package

30.11 java.util.ListResourceBundle (JDK 1.1)

This abstract class provides a simple way to define a ResourceBundle. You may find it easier to
subclass ListResourceBundle than to subclass ResourceBundle directly.

ListResourceBundle provides implementations for the abstract handleGetObject() and
getKeys() methods defined by ResourceBundle, and it adds its own abstract getContents()
method that your subclasses must override. getContents() returns an Object[][]--an array of
arrays of objects. This array can have any number of elements. Each element of this array must itself be an
array with two elements: the first element of each subarray should be a String that specifies the name of
a resource, and the corresponding second element should be the value of that resource--this value can be an
Object of any desired type.

See also ResourceBundle and PropertyResourceBundle.

public abstract class ListResourceBundle extends ResourceBundle {
 // Default Constructor: public ListResourceBundle()
 // Public Instance Methods
 public Enumeration getKeys(); // Defines ResourceBundle
 public final Object handleGetObject(String key); // Defines
ResourceBundle
 // Protected Instance Methods
 protected abstract Object[][] getContents();
}

Hierarchy:

Object->ResourceBundle->ListResourceBundle

java.util.Hashtable (JDK 1.0) java.util.Locale (JDK 1.1)

Chapter 28
The java.net Package

28.8 java.net.FileNameMap (JDK 1.1)

This interface defines a single method that is called to obtain the MIME type of a file based on the name
of a file. The fileNameMap field of the URLConnection class refers to an object that implements
this interface. The filename-to-file-type map it implements is used by the static
URLConnection.guessContentTypeFromName() method.

public abstract interface FileNameMap {
 // Public Instance Methods
 public abstract String getContentTypeFor(String fileName);
}

Type Of:

URLConnection.fileNameMap

java.net.DatagramSocketImpl
(JDK 1.1)

java.net.HttpURLConnection
(JDK 1.1)

Chapter 18
The java.awt Package

18.11 java.awt.CheckboxGroup (JDK 1.0)

A CheckboxGroup object enforces mutual exclusion (also known as "radio button" behavior) among
any number of Checkbox buttons. A Checkbox component can specify a CheckboxGroup object
when created or with Checkbox.setCheckboxGroup(). If a Checkbox with a given
CheckboxGroup object is selected, then the CheckboxGroup ensures that the previously selected
Checkbox becomes unselected.

public class CheckboxGroup extends Object implements Serializable {
 // Public Constructor
 public CheckboxGroup();
 // Public Instance Methods
 # public Checkbox getCurrent();
 1.1 public Checkbox getSelectedCheckbox();
 # public synchronized void setCurrent(Checkbox box);
 1.1 public synchronized void setSelectedCheckbox(Checkbox box);
 public String toString(); // Overrides Object
}

Passed To:

Checkbox(), Checkbox.setCheckboxGroup(),
CheckboxPeer.setCheckboxGroup()

Returned By:

Checkbox.getCheckboxGroup()

java.awt.Checkbox (JDK 1.0) java.awt.CheckboxMenuItem
(JDK 1.0)

Chapter 29
The java.text Package

29.15 java.text.ParseException (JDK 1.1)

This exception signals that a string had an incorrect format and could not be parsed. It is typically thrown
by the parse() or parseObject() methods of Format and its subclasses, but is also thrown by
certain methods in the java.text package that are passed patterns or other rules in string form. The
getErrorOffset() method of this class returns the character position at which the parsing error
occurred in the offending string.

public class ParseException extends Exception {
 // Public Constructor
 public ParseException(String s, int errorOffset);
 // Public Instance Methods
 public int getErrorOffset();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->ParseException

Thrown By:

DateFormat.parse(), Format.parseObject(), MessageFormat.parse(), NumberFormat.parse(),
RuleBasedCollator()

java.text.NumberFormat (JDK
1.1)

java.text.ParsePosition (JDK
1.1)

Chapter 25
The java.lang Package

25.20 java.lang.ExceptionInInitializerError (JDK 1.1)

This error is thrown by the Java Virtual Machine when an exception occurs in the static initializer of a
class. You can use the getException() method to obtain the Throwable object that was thrown
from the initializer.

public class ExceptionInInitializerError extends LinkageError {
 // Public Constructors
 public ExceptionInInitializerError();
 public ExceptionInInitializerError(Throwable thrown);
 public ExceptionInInitializerError(String s);
 // Public Instance Methods
 public Throwable getException();
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->ExceptionInInitializerError

java.lang.Exception (JDK 1.0) java.lang.Float (JDK 1.0)

Chapter 18
The java.awt Package

18.43 java.awt.MenuContainer (JDK 1.0)

This interface defines the methods necessary for MenuContainer types such as the Menu, Frame,
and MenuBar objects. Unless you implement new menu-like components, you never need to use it.

public abstract interface MenuContainer {
 // Public Instance Methods
 public abstract Font getFont();
 public abstract boolean postEvent(Event evt);
 public abstract void remove(MenuComponent comp);
}

Implemented By:

Component, Frame, Menu, MenuBar

Returned By:

MenuComponent.getParent()

java.awt.MenuComponent
(JDK 1.0)

java.awt.MenuItem (JDK 1.0)

Chapter 29
The java.text Package

29.16 java.text.ParsePosition (JDK 1.1)

ParsePosition objects are passed to the parse() and parseObject() methods of Format and
its subclasses. The ParsePosition class represents the position in a string at which parsing should
begin or at which parsing stopped. Before calling a parse() method, you can specify the starting
position of parsing by passing the desired index to the ParsePosition() constructor, or by calling
the setIndex() of an existing ParsePosition object. When parse() returns, you can determine
where parsing ended by calling getIndex(). When parsing multiple objects or values from a string, a
single ParsePosition object can be used sequentially.

public class ParsePosition extends Object {
 // Public Constructor
 public ParsePosition(int index);
 // Public Instance Methods
 public int getIndex();
 public void setIndex(int index);
}

Passed To:

ChoiceFormat.parse(), DateFormat.parse(), DateFormat.parseObject(), DecimalFormat.parse(),
Format.parseObject(), MessageFormat.parse(), MessageFormat.parseObject(), NumberFormat.parse(),
NumberFormat.parseObject(), SimpleDateFormat.parse()

java.text.ParseException
(JDK 1.1)

java.text.RuleBasedCollator
(JDK 1.1)

Chapter 23
The java.beans Package

23.7 java.beans.IndexedPropertyDescriptor (JDK 1.1)

An IndexedPropertyDescriptor object is a type of PropertyDescriptor that describes a Java bean property
that is (or behaves like) an array. The BeanInfo class for a Java bean optionally creates and initializes
IndexedPropertyDescriptor objects to describe the indexed properties that the bean supports. Typically, only
application builders and similar tools use the descriptor objects to obtain indexed property description information.

You create an IndexedPropertyDescriptor by specifying the name of the indexed property and the Class object
for the bean. If you have not followed the standard "design patterns" for accessor method naming, you may also specify
the accessor methods for the property, either as method names or as java.lang.reflect.Method objects. Once you
have created an IndexedPropertyDescriptor object, you can use the methods of PropertyDescriptor and
FeatureDescriptor to provide additional information about the indexed property.

public class IndexedPropertyDescriptor extends PropertyDescriptor {
 // Public Constructors
 public IndexedPropertyDescriptor(String propertyName, Class beanClass)
throws IntrospectionException;
 public IndexedPropertyDescriptor(String propertyName, Class beanClass,
String getterName,
 public IndexedPropertyDescriptor'u'String setterName, String
indexedGetterName,
 public IndexedPropertyDescriptor'u'String indexedSetterName) throws
IntrospectionException;
 public IndexedPropertyDescriptor(String propertyName, Method getter,
Method setter, Method indexedGetter,
 public IndexedPropertyDescriptor'u'Method indexedSetter) throws
IntrospectionException;
 // Public Instance Methods
 public Class getIndexedPropertyType();
 public Method getIndexedReadMethod();
 public Method getIndexedWriteMethod();
}

Hierarchy:

Object->FeatureDescriptor->PropertyDescriptor->IndexedPropertyDescriptor

java.beans.FeatureDescriptor
(JDK 1.1)

java.beans.IntrospectionException
(JDK 1.1)

Chapter 23
The java.beans Package

23.3 java.beans.Beans (JDK 1.1)

The Beans class is never meant to be instantiated; its static methods provide miscellaneous JavaBeans features.

The instantiate() method creates an instance of a bean. The specified bean name represents either a serialized
bean file or a bean class file; it is interpreted relative to the specified ClassLoader object.

The setDesignTime() and isDesignTime() methods are used to set and query a flag that indicates whether
beans are being used in an application builder environment. Similarly, setGuiAvailable() and
isGuiAvailable() set and query a flag that indicates whether the Java Virtual Machine is running in an
environment in which a GUI is available. (Note that untrusted applet code cannot call setDesignTime() or
setGuiAvailable().)

The isInstanceOf() method is a replacement for the Java instanceof operator for use with beans.
Currently, it behaves just like instanceof, but in the future it may work with beans that consist of a set of Java
objects, each of which provides a different "view" of a bean. Similarly, the getInstanceOf() method is a
replacement for the Java cast operator. It converts a bean to a superclass or interface type. Currently, it behaves just
like a cast, but you should use it for future compatibility with multiclass beans.

public class Beans extends Object {
 // Default Constructor: public Beans()
 // Class Methods
 public static Object getInstanceOf(Object bean, Class targetType);
 public static Object instantiate(ClassLoader cls, String beanName)
 public static Object instantiate'u'throws IOException,
ClassNotFoundException;
 public static boolean isDesignTime();
 public static boolean isGuiAvailable();
 public static boolean isInstanceOf(Object bean, Class targetType);
 public static void setDesignTime(boolean isDesignTime) throws
SecurityException;
 public static void setGuiAvailable(boolean isGuiAvailable) throws
SecurityException;
}

java.beans.BeanInfo (JDK
1.1)

java.beans.Customizer (JDK
1.1)

Chapter 28
The java.net Package

28.12 java.net.MulticastSocket (JDK 1.1)

This subclass of DatagramSocket is used to send and receive multicast UDP packets. It extends
DatagramSocket by adding joinGroup() and leaveGroup() methods to join and leave multicast
groups. The IP address specified to these methods should be a valid multicast address in the range of 224.0.0.1 to
239.255.255.255. Note that you do not have to join a group to send a packet to a multicast address, but you must
join the group to receive packets sent to that address.

MulticastSocket defines a variant send() method that allows you to specify a time-to-live (TTL) value for
the packet you send. This value specifies the number of network "hops" the packet may travel before it expires.
You can also set a default TTL for all packets sent though a MulticastSocket with setTTL().

Note that untrusted applets are not allowed to use multicast sockets.

public class MulticastSocket extends DatagramSocket {
 // Public Constructors
 public MulticastSocket() throws IOException;
 public MulticastSocket(int port) throws IOException;
 // Public Instance Methods
 public InetAddress getInterface() throws SocketException;
 public byte getTTL() throws IOException;
 public void joinGroup(InetAddress mcastaddr) throws IOException;
 public void leaveGroup(InetAddress mcastaddr) throws IOException;
 public synchronized void send(DatagramPacket p, byte ttl) throws
IOException;
 public void setInterface(InetAddress inf) throws SocketException;
 public void setTTL(byte ttl) throws IOException;
}

Hierarchy:

Object->DatagramSocket->MulticastSocket

java.net.MalformedURLException
(JDK 1.0)

java.net.NoRouteToHostException
(JDK 1.1)

Chapter 30
The java.util Package

30.18 java.util.PropertyResourceBundle (JDK 1.1)

This class is a concrete subclass of ResourceBundle. It reads a Properties file from a specified InputStream
and implements the ResourceBundle API for looking up named resources from the resulting Properties object.

A Properties file contains lines of the form:

name=value

Each such line defines a named property with the specified String value.

Although you can instantiate a PropertyResourceBundle yourself, it is more common to simply define a
Properties file, and then allow ResourceBundle.getBundle() to look up that file and return the necessary
PropertyResourceBundle object.

See also Properties and ResourceBundle.

public class PropertyResourceBundle extends ResourceBundle {
 // Public Constructor
 public PropertyResourceBundle(InputStream stream) throws IOException;
 // Public Instance Methods
 public Enumeration getKeys(); // Defines ResourceBundle
 public Object handleGetObject(String key); // Defines ResourceBundle
}

Hierarchy:

Object->ResourceBundle->PropertyResourceBundle

java.util.Properties (JDK 1.0) java.util.Random (JDK 1.0)

Chapter 24
The java.io Package

24.35 java.io.LineNumberReader (JDK 1.1)

This class is a character input stream that keeps track of the number of lines of text that have been read from it. It supports the
usual Reader methods, and also the readLine() method introduced by its superclass. In addition to these methods, you
can call getLineNumber() to query the number of lines set so far. You can also call setLineNumber() to set the line
number for the current line. Subsequent lines are numbered sequentially from this specified starting point.

This class is a character-stream analog to LineNumberInputStream, which has been deprecated in Java 1.1.

public class LineNumberReader extends BufferedReader {
 // Public Constructors
 public LineNumberReader(Reader in);
 public LineNumberReader(Reader in, int sz);
 // Public Instance Methods
 public int getLineNumber();
 public void mark(int readAheadLimit) throws IOException; // Overrides
BufferedReader
 public int read() throws IOException; // Overrides BufferedReader
 public int read(char[] cbuf, int off, int len) throws IOException; //
Overrides BufferedReader
 public String readLine() throws IOException; // Overrides BufferedReader
 public void reset() throws IOException; // Overrides BufferedReader
 public void setLineNumber(int lineNumber);
 public long skip(long n) throws IOException; // Overrides BufferedReader
}

Hierarchy:

Object->Reader->BufferedReader->LineNumberReader

java.io.LineNumberInputStream
(JDK 1.0; Deprecated.)

java.io.NotActiveException
(JDK 1.1)

Chapter 23
The java.beans Package

23.10 java.beans.MethodDescriptor (JDK 1.1)

A MethodDescriptor object is a type of FeatureDescriptor that describes a method supported
by a Java bean. The BeanInfo class for a Java bean optionally creates MethodDescriptor objects
that describe the methods the bean exports. While a BeanInfo class creates and initializes
MethodDescriptor objects, it is typically only application builders and similar tools that use these
objects to obtain information about the methods supported by a bean.

To create a MethodDescriptor, you must specify the java.lang.reflect.Method object for
the method, and optionally specify an array of ParameterDescriptor objects that describe the
parameters of the method. Once you have created a MethodDescriptor object, you can use
FeatureDescriptor methods to provide additional information about each method.

public class MethodDescriptor extends FeatureDescriptor {
 // Public Constructors
 public MethodDescriptor(Method method);
 public MethodDescriptor(Method method, ParameterDescriptor[]
parameterDescriptors);
 // Public Instance Methods
 public Method getMethod();
 public ParameterDescriptor[] getParameterDescriptors();
}

Hierarchy:

Object->FeatureDescriptor->MethodDescriptor

Passed To:

EventSetDescriptor()

Returned By:

BeanInfo.getMethodDescriptors(), EventSetDescriptor.getListenerMethodDescriptors(),
SimpleBeanInfo.getMethodDescriptors()

java.beans.Introspector (JDK
1.1)

java.beans.ParameterDescriptor
(JDK 1.1)

Chapter 22
The java.awt.peer Package

22.23 java.awt.peer.TextAreaPeer (JDK 1.0)

public abstract interface TextAreaPeer extends TextComponentPeer {
 // Public Instance Methods
 1.1 public abstract Dimension getMinimumSize(int rows, int columns);
 1.1 public abstract Dimension getPreferredSize(int rows, int columns);
 1.1 public abstract void insert(String text, int pos);
 public abstract void insertText(String txt, int pos);
 public abstract Dimension minimumSize(int rows, int cols);
 public abstract Dimension preferredSize(int rows, int cols);
 1.1 public abstract void replaceRange(String text, int start, int end);
 public abstract void replaceText(String txt, int start, int end);
}

Hierarchy:

(TextAreaPeer(TextComponentPeer(ComponentPeer)))

Returned By:

Toolkit.createTextArea()

java.awt.peer.ScrollbarPeer
(JDK 1.0)

java.awt.peer.TextComponentPeer
(JDK 1.0)

Chapter 22
The java.awt.peer Package

22.25 java.awt.peer.TextFieldPeer (JDK 1.0)

public abstract interface TextFieldPeer extends TextComponentPeer {
 // Public Instance Methods
 1.1 public abstract Dimension getMinimumSize(int columns);
 1.1 public abstract Dimension getPreferredSize(int columns);
 public abstract Dimension minimumSize(int cols);
 public abstract Dimension preferredSize(int cols);
 1.1 public abstract void setEchoChar(char echoChar);
 public abstract void setEchoCharacter(char c);
}

Hierarchy:

(TextFieldPeer(TextComponentPeer(ComponentPeer)))

Returned By:

Toolkit.createTextField()

java.awt.peer.TextComponentPeer
(JDK 1.0)

java.awt.peer.WindowPeer
(JDK 1.0)

Chapter 23
The java.beans Package

23.12 java.beans.PropertyChangeEvent (JDK 1.1)

The PropertyChangeEvent class is a subclass of java.util.EventObject. An event of this type is sent to
interested PropertyChangeListener objects whenever a Java bean changes a "bound" property, or whenever a
PropertyEditor or Customizer changes a property value. A PropertyChangeEvent is also sent to
registered VetoableChangeListener objects when a bean attempts to change the value of a "constrained"
property.

When creating a PropertyChangeEvent, you normally specify the bean that generated the event, the programmatic
(locale-independent) name of the property that changed, and the old and new values of the property. If the values cannot
be determined, null should be passed instead. If the event is a notification that more than one property value changed,
the name should also be null.

While Java beans must generate and send PropertyChangeEvent objects, it is typically only application builders
and similar tools that are interested in receiving them.

public class PropertyChangeEvent extends EventObject {
 // Public Constructor
 public PropertyChangeEvent(Object source, String propertyName, Object
oldValue, Object newValue);
 // Public Instance Methods
 public Object getNewValue();
 public Object getOldValue();
 public Object getPropagationId();
 public String getPropertyName();
 public void setPropagationId(Object propagationId);
}

Hierarchy:

Object->EventObject(Serializable)->PropertyChangeEvent

Passed To:

PropertyChangeListener.propertyChange(), PropertyVetoException(), VetoableChangeListener.vetoableChange()

Returned By:

PropertyVetoException.getPropertyChangeEvent()

java.beans.ParameterDescriptor
(JDK 1.1)

java.beans.PropertyChangeListener
(JDK 1.1)

Chapter 18
The java.awt Package

18.21 java.awt.EventQueue (JDK 1.1)

This class implements an event queue for AWT events in Java 1.1. When an EventQueue is created, a new thread is
automatically created and started to remove events from the front of the queue and dispatch them to the appropriate
component. It is this thread, created by the EventQueue, that notifies event listeners and executes most of the code in a
typical GUI-driven application.

An application can create and use its own private EventQueue, but all AWT events are placed on and dispatched from a
single system EventQueue. Use the getSystemEventQueue() method of the Toolkit class to get the system
EventQueue object.

getNextEvent() removes and returns the event at the front of the queue. It blocks if there are no events in the queue.
peekEvent() returns the event at the front of the queue without removing it from the queue. Passed an optional
AWTEvent id field, it returns the first event of the specified type. Finally, postEvent() places a new event on the end of
the event queue.

Most applications do not need to use the EventQueue class at all; they can simply rely on the system to dispatch events
automatically.

public class EventQueue extends Object {
 // Public Constructor
 public EventQueue();
 // Public Instance Methods
 public synchronized AWTEvent getNextEvent() throws InterruptedException;
 public synchronized AWTEvent peekEvent();
 public synchronized AWTEvent peekEvent(int id);
 public synchronized void postEvent(AWTEvent theEvent);
}

Returned By:

Toolkit.getSystemEventQueue(), Toolkit.getSystemEventQueueImpl()

java.awt.Event (JDK 1.0) java.awt.FileDialog (JDK 1.0)

Chapter 18
The java.awt Package

18.50 java.awt.PrintGraphics (JDK 1.1)

The Graphics object returned by the getGraphics() method of PrintJob always implements
this PrintGraphics interface. You can use this fact to distinguish a Graphics object that draws to
the screen from one that generates hardcopy. This is a useful thing to do in a paint() method when
you want to generate hardcopy that differs somewhat from what is displayed on-screen.

The getPrintJob() method defined by this interface can also be used, of course, to return the
PrintJob with which the PrintGraphics object is associated.

public abstract interface PrintGraphics {
 // Public Instance Methods
 public abstract PrintJob getPrintJob();
}

java.awt.PopupMenu (JDK
1.1)

java.awt.PrintJob (JDK 1.1)

Chapter 23
The java.beans Package

23.19 java.beans.PropertyVetoException (JDK 1.1)

The PropertyVetoException signals that a VetoableChangeListener that received a
PropertyChangeEvent for a "constrained" property of a bean has vetoed that proposed change.

When this exception is received, the property in question should revert back to its original value, and any
VetoableChangeListener objects that have already been notified of the property change must be re-notified to
indicate that the property has reverted to its old value. The VetoableChangeSupport class handles this re-
notification automatically and re-throws the PropertyVetoException to notify its caller that the change was
rejected.

public class PropertyVetoException extends Exception {
 // Public Constructor
 public PropertyVetoException(String mess, PropertyChangeEvent evt);
 // Public Instance Methods
 public PropertyChangeEvent getPropertyChangeEvent();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->PropertyVetoException

Thrown By:

VetoableChangeListener.vetoableChange(), VetoableChangeSupport.fireVetoableChange()

java.beans.PropertyEditorSupport
(JDK 1.1)

java.beans.SimpleBeanInfo
(JDK 1.1)

Chapter 23
The java.beans Package

23.15 java.beans.PropertyDescriptor (JDK 1.1)

A PropertyDescriptor object is a type of FeatureDescriptor that describes a single property of a Java bean.
The BeanInfo class for a Java bean optionally creates and initializes PropertyDescriptor objects to describe the
properties that the bean supports. Typically, only application builders and similar tools use the get and is methods to
obtain this property description information.

You create a PropertyDescriptor by specifying the name of the property and the Class object for the bean. If you
have not followed the standard "design patterns" for accessor method naming, you may also specify the accessor methods
for the property. Once a PropertyDescriptor is created, the setBound() and setConstrained() methods
allow you to specify whether the property is bound and/or constrained. setPropertyEditorClass() allows you to
specify a specific property editor that should be used to edit the value of this property (this is useful, for example, when
the property is an enumerated type with a specific list of supported values). The methods of the FeatureDescriptor
superclass allow additional information about the property to be specified.

public class PropertyDescriptor extends FeatureDescriptor {
 // Public Constructors
 public PropertyDescriptor(String propertyName, Class beanClass) throws
IntrospectionException;
 public PropertyDescriptor(String propertyName, Class beanClass, String
getterName,
 public PropertyDescriptor'u'String setterName) throws
IntrospectionException;
 public PropertyDescriptor(String propertyName, Method getter, Method
setter) throws IntrospectionException;
 // Public Instance Methods
 public Class getPropertyEditorClass();
 public Class getPropertyType();
 public Method getReadMethod();
 public Method getWriteMethod();
 public boolean isBound();
 public boolean isConstrained();
 public void setBound(boolean bound);
 public void setConstrained(boolean constrained);
 public void setPropertyEditorClass(Class propertyEditorClass);
}

Hierarchy:

Object->FeatureDescriptor->PropertyDescriptor

Extended By:

IndexedPropertyDescriptor

Returned By:

BeanInfo.getPropertyDescriptors(), SimpleBeanInfo.getPropertyDescriptors()

java.beans.PropertyChangeSupport
(JDK 1.1)

java.beans.PropertyEditor
(JDK 1.1)

Chapter 30
The java.util Package

30.8 java.util.EventObject (JDK 1.1)

EventObject serves as a superclass for all events objects used by the Java 1.1 AWT event model and
the JavaBeans event model. This class defines a very generic type of event; it is extended by the more
specific event classes in the java.awt, java.awt.event, and java.beans packages.

The only common feature shared by all events is a source object, which is the object that in some way
"generated" the event. The source object is passed to the EventObject() constructor, and is returned
by the getSource() method.

public class EventObject extends Object implements Serializable {
 // Public Constructor
 public EventObject(Object source);
 // Protected Instance Variables
 protected transient Object source;
 // Public Instance Methods
 public Object getSource();
 public String toString(); // Overrides Object
}

Extended By:

AWTEvent, PropertyChangeEvent

java.util.EventListener (JDK
1.1)

java.util.GregorianCalendar
(JDK 1.1)

Chapter 26
The java.lang.reflect Package

26.4 java.lang.reflect.InvocationTargetException (JDK
1.1)

An object of this class is thrown by Method.invoke() and Constructor.newInstance() when
an exception is thrown by the method or constructor invoked through those methods. The
InvocationTargetException class serves as a wrapper around the object that was thrown; that object
can be retrieved with the getTargetException() method.

public class InvocationTargetException extends Exception {
 // Public Constructors
 public InvocationTargetException(Throwable target);
 public InvocationTargetException(Throwable target, String s);
 // Protected Constructor
 protected InvocationTargetException();
 // Public Instance Methods
 public Throwable getTargetException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->InvocationTargetException

Thrown By:

Constructor.newInstance(), Method.invoke()

java.lang.reflect.Field (JDK
1.1)

java.lang.reflect.Member
(JDK 1.1)

Chapter 19
The java.awt.datatransfer

Package

19.4 java.awt.datatransfer.StringSelection (JDK 1.1)

This convenience class implements the Transferable and ClipboardOwner interfaces in order to make it very easy to
transfer String values through the AWT data transfer mechanism. It is able to transfer String values using either the
DataFlavor.stringFlavor or DataFlavor.plainTextFlavor data flavors.

To create a StringSelection object, simply pass the String you want to transfer to the StringSelection()
constructor. You can then make the StringSelection available for transfer by passing it to the setContents()
method of the Clipboard. You need never call the methods of StringSelection yourself.

public class StringSelection extends Object implements Transferable, ClipboardOwner {
 // Public Constructor
 public StringSelection(String data);
 // Public Instance Methods
 public synchronized Object getTransferData(DataFlavor flavor)
 public synchronized Object getTransferData'u'throws
UnsupportedFlavorException, IOException;
 public synchronized Object getTransferData'u'// From Transferable
 public synchronized DataFlavor[] getTransferDataFlavors(); // From
Transferable
 public boolean isDataFlavorSupported(DataFlavor flavor); // From
Transferable
 public void lostOwnership(Clipboard clipboard, Transferable contents);
// From ClipboardOwner
}

java.awt.datatransfer.DataFlavor
(JDK 1.1)

java.awt.datatransfer.Transferable
(JDK 1.1)

Chapter 19
The java.awt.datatransfer

Package

19.5 java.awt.datatransfer.Transferable (JDK 1.1)

This interface defines the methods that a class must define if it is to act as the source object in a data transfer
operation.

getTransferDataFlavors() should return an array of DataFlavor objects that specify the data types or
formats in which the object can provide its data. The DataFlavor objects should be ordered from best format
(most richly descriptive) to worst format.

isDataFlavorSupported() must return a boolean value indicating whether it can transfer data using a
specified DataFlavor. Finally, getTransferData() must return an object that represents the data formatted
as required by the specified DataFlavor.

StringSelection is a pre-defined class that implements the Transferable interface for the transfer of
string data.

public abstract interface Transferable {
 // Public Instance Methods
 public abstract Object getTransferData(DataFlavor flavor) throws
UnsupportedFlavorException, IOException;
 public abstract DataFlavor[] getTransferDataFlavors();
 public abstract boolean isDataFlavorSupported(DataFlavor flavor);
}

Implemented By:

StringSelection

Passed To:

Clipboard.setContents(), ClipboardOwner.lostOwnership(),
StringSelection.lostOwnership()

Returned By:

Clipboard.getContents()

Type Of:

Clipboard.contents

java.awt.datatransfer.StringSelection
(JDK 1.1)

java.awt.datatransfer.UnsupportedFlavorException
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.25 java.awt.event.PaintEvent (JDK 1.1)

An event of this type indicates that a component should have its update() method invoked. (The update()
method typically, by default, invokes the paint() method.)

PaintEvent differs from the other event types in java.awt.event in that it does not have a corresponding
EventListener interface. PaintEvent is essentially for internal use by the AWT redisplay framework, so
your programs should not try to handle it the way they handle other events. Instead, applets and custom components
should simply override their paint() and/or update() methods to redraw themselves appropriately. AWT
automatically invokes update() (which typically invokes paint()) when a PaintEvent arrives.

Although you do not typically use the PaintEvent, redraw events are implemented through this class for
simplicity, so that they are on equal footing with other event types, and so that advanced programs can manipulate
them through the EventQueue.

public class PaintEvent extends ComponentEvent {
 // Public Constructor
 public PaintEvent(Component source, int id, Rectangle updateRect);
 // Constants
 public static final int PAINT;
 public static final int PAINT_FIRST;
 public static final int PAINT_LAST;
 public static final int UPDATE;
 // Public Instance Methods
 public Rectangle getUpdateRect();
 public String paramString(); // Overrides ComponentEvent
 public void setUpdateRect(Rectangle updateRect);
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->ComponentEvent->PaintEvent

java.awt.event.MouseMotionListener
(JDK 1.1)

java.awt.event.TextEvent
(JDK 1.1)

Chapter 31
The java.util.zip Package

31.4 java.util.zip.Checksum (JDK 1.1)

This interface defines the methods required to compute a checksum on a stream of data. The checksum is
computed based on the bytes of data supplied by the update() methods, and the current value of the
checksum can be obtained at any time with the getValue() method. reset() resets the checksum to
its default value--use this method before beginning a new stream of data.

Note that the checksum value computed by a Checksum object and returned through the getValue()
method must fit into a long value. Therefore, this interface is not suitable for the cryptographic
checksum algorithms used in cryptography and security.

The classes CheckedInputStream and CheckedOutputStream provide a higher-level API for
computing a checksum on a stream of data.

public abstract interface Checksum {
 // Public Instance Methods
 public abstract long getValue();
 public abstract void reset();
 public abstract void update(int b);
 public abstract void update(byte[] b, int off, int len);
}

Implemented By:

Adler32, CRC32

Passed To:

CheckedInputStream(), CheckedOutputStream()

Returned By:

CheckedInputStream.getChecksum(), CheckedOutputStream.getChecksum()

java.util.zip.CheckedOutputStream
(JDK 1.1)

java.util.zip.CRC32 (JDK
1.1)

Chapter 31
The java.util.zip Package

31.5 java.util.zip.CRC32 (JDK 1.1)

This class implements the Checksum interface and computes a checksum on a stream of data using the CRC-32 algorithm.
The CheckedInputStream and CheckedOutputStream classes provide a higher-level interface to computing
checksums on streams of data.

public class CRC32 extends Object implements Checksum {
 // Default Constructor: public CRC32()
 // Public Instance Methods
 public long getValue(); // From Checksum
 public void reset(); // From Checksum
 public void update(int b); // From Checksum
 public native void update(byte[] b, int off, int len); // From Checksum
 public void update(byte[] b);
}

Type Of:

GZIPInputStream.crc, GZIPOutputStream.crc

java.util.zip.Checksum
(JDK 1.1)

java.util.zip.DataFormatException
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.29 java.awt.event.WindowEvent (JDK 1.1)

An event of this type indicates that an important action has occurred for a Window object.

Call getWindow() to determine the Window object that is the source of this event. Call getID() to
determine the specific type of event that has occurred. Each of the following seven constants corresponds
to one of the methods of the WindowListener interface:

WINDOW_OPENED

This type indicates that the window has been created and opened; it is only delivered the first time that a
window is opened.

WINDOW_CLOSING

This type indicates that the user has requested that the window be closed through the system menu, or
through a close button on the window's border, or by invoking a platform-defined keystroke, such as Alt-
F4 in Windows. The application should respond to this event by calling hide() or destroy() on the
Window object.

WINDOW_CLOSED

This event type is delivered after a window is closed by a call to hide() or destroy().

WINDOW_ICONIFIED

This event type is delivered when the user iconifies the window.

WINDOW_DEICONIFIED

This event type is delivered when the user de-iconifies the window.

WINDOW_ACTIVATED

This event type is delivered when the window is activated--that is, when it is given the keyboard focus
and becomes the "active" window.

WINDOW_DEACTIVATED

This event type is delivered when the window ceases to be the active window, typically when the user
activates some other window.

public class WindowEvent extends ComponentEvent {
 // Public Constructor
 public WindowEvent(Window source, int id);
 // Constants
 public static final int WINDOW_ACTIVATED;
 public static final int WINDOW_CLOSED;
 public static final int WINDOW_CLOSING;
 public static final int WINDOW_DEACTIVATED;
 public static final int WINDOW_DEICONIFIED;
 public static final int WINDOW_FIRST;
 public static final int WINDOW_ICONIFIED;
 public static final int WINDOW_LAST;
 public static final int WINDOW_OPENED;
 // Public Instance Methods
 public Window getWindow();
 public String paramString(); // Overrides ComponentEvent
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->ComponentEvent-
>WindowEvent

Passed To:

AWTEventMulticaster.windowActivated(),
AWTEventMulticaster.windowClosed(),
AWTEventMulticaster.windowClosing(),
AWTEventMulticaster.windowDeactivated(),
AWTEventMulticaster.windowDeiconified(),

AWTEventMulticaster.windowIconified(),
AWTEventMulticaster.windowOpened(), Window.processWindowEvent(),
WindowAdapter.windowActivated(), WindowAdapter.windowClosed(),
WindowAdapter.windowClosing(), WindowAdapter.windowDeactivated(),
WindowAdapter.windowDeiconified(), WindowAdapter.windowIconified(),
WindowAdapter.windowOpened(), WindowListener.windowActivated(),
WindowListener.windowClosed(), WindowListener.windowClosing(),
WindowListener.windowDeactivated(),
WindowListener.windowDeiconified(), WindowListener.windowIconified(),
WindowListener.windowOpened()

java.awt.event.WindowAdapter
(JDK 1.1)

java.awt.event.WindowListener
(JDK 1.1)

Chapter 30
The java.util Package

30.6 java.util.Enumeration (JDK 1.0)

This interface defines the methods necessary to enumerate, or iterate through, a set of values, such as the
set of values contained in a hashtable or binary tree. It is particularly useful for data structures, like
hashtables, for which elements cannot simply be looked up by index, as they can in arrays. An
Enumeration is usually not instantiated directly, but instead is created by the object that is to have its
values enumerated. A number of classes, such as Vector and Hashtable, have methods that return
Enumeration objects.

To use an Enumeration object, you use its two methods in a loop: hasMoreElements() returns
true if there are more values to be enumerated, and can be used to determine whether a loop should
continue. Within a loop, a call to nextElement() returns a value from the enumeration. An
Enumeration makes no guarantees about the order in which the values are returned. The values in an
Enumeration may be iterated through only once--there is no way to reset it to the beginning.

public abstract interface Enumeration {
 // Public Instance Methods
 public abstract boolean hasMoreElements();
 public abstract Object nextElement();
}

Implemented By:

StringTokenizer

Passed To:

SequenceInputStream()

Returned By:

AppletContext.getApplets(), Dictionary.elements(), Dictionary.keys(),
FeatureDescriptor.attributeNames(), Hashtable.elements(), Hashtable.keys(),
ListResourceBundle.getKeys(), MenuBar.shortcuts(), Properties.propertyNames(),
PropertyResourceBundle.getKeys(), ResourceBundle.getKeys(), Vector.elements(), ZipFile.entries()

java.util.EmptyStackException
(JDK 1.0)

java.util.EventListener (JDK
1.1)

Chapter 20
The java.awt.event Package

20.16 java.awt.event.ItemListener (JDK 1.1)

This interface defines the method that an object must implement to "listen" for item events on AWT
components. When an ItemEvent occurs, an AWT component notifies its registered ItemListener
objects by invoking their itemStateChanged() methods.

public abstract interface ItemListener extends EventListener {
 // Public Instance Methods
 public abstract void itemStateChanged(ItemEvent e);
}

Implemented By:

AWTEventMulticaster

Passed To:

AWTEventMulticaster.add(), AWTEventMulticaster.remove(),
Checkbox.addItemListener(), Checkbox.removeItemListener(),
CheckboxMenuItem.addItemListener(),
CheckboxMenuItem.removeItemListener(), Choice.addItemListener(),
Choice.removeItemListener(), ItemSelectable.addItemListener(),
ItemSelectable.removeItemListener(), List.addItemListener(),
List.removeItemListener()

Returned By:

AWTEventMulticaster.add(), AWTEventMulticaster.remove()

java.awt.event.ItemEvent
(JDK 1.1)

java.awt.event.KeyAdapter
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.17 java.awt.event.KeyAdapter (JDK 1.1)

This class is a trivial implementation of KeyListener; it provides empty bodies for each of the methods
of that interface. When you are not interested in all of these methods, it is often easier to subclass
KeyAdapter than it is to implement KeyListener from scratch.

public abstract class KeyAdapter extends Object implements KeyListener {
 // Default Constructor: public KeyAdapter()
 // Public Instance Methods
 public void keyPressed(KeyEvent e); // From KeyListener
 public void keyReleased(KeyEvent e); // From KeyListener
 public void keyTyped(KeyEvent e); // From KeyListener
}

Hierarchy:

Object->KeyAdapter(KeyListener(EventListener))

java.awt.event.ItemListener
(JDK 1.1)

java.awt.event.KeyEvent
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.19 java.awt.event.KeyListener (JDK 1.1)

This interface defines the methods that an object must implement to "listen" for key events on AWT
components. When a KeyEvent occurs, an AWT component notifies its registered KeyListener
objects by invoking one of their methods.

An easy way to implement this interface is by subclassing the KeyAdapter class.

public abstract interface KeyListener extends EventListener {
 // Public Instance Methods
 public abstract void keyPressed(KeyEvent e);
 public abstract void keyReleased(KeyEvent e);
 public abstract void keyTyped(KeyEvent e);
}

Implemented By:

AWTEventMulticaster, KeyAdapter

Passed To:

AWTEventMulticaster.add(), AWTEventMulticaster.remove(),
Component.addKeyListener(), Component.removeKeyListener()

Returned By:

AWTEventMulticaster.add(), AWTEventMulticaster.remove()

java.awt.event.KeyEvent
(JDK 1.1)

java.awt.event.MouseAdapter
(JDK 1.1)

Chapter 19
The java.awt.datatransfer

Package

19.2 java.awt.datatransfer.ClipboardOwner (JDK 1.1)

This interface defines the single method that an object that places data on a Clipboard must implement. This method
is used to notify the object when its data on the clipboard is replaced by other, more recent, data. An object that places
data on a clipboard must remain ready to satisfy requests for that data until lostOwnership() is called.

public abstract interface ClipboardOwner {
 // Public Instance Methods
 public abstract void lostOwnership(Clipboard clipboard, Transferable
contents);
}

Implemented By:

StringSelection

Passed To:

Clipboard.setContents()

Type Of:

Clipboard.owner

java.awt.datatransfer.Clipboard
(JDK 1.1)

java.awt.datatransfer.DataFlavor
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.20 java.awt.event.MouseAdapter (JDK 1.1)

This class is a trivial implementation of MouseListener; it provides empty bodies for each of the methods of
that interface. When you are not interested in all of these methods, it is often easier to subclass MouseAdapter
than it is to implement MouseListener from scratch.

public abstract class MouseAdapter extends Object implements MouseListener {
 // Default Constructor: public MouseAdapter()
 // Public Instance Methods
 public void mouseClicked(MouseEvent e); // From MouseListener
 public void mouseEntered(MouseEvent e); // From MouseListener
 public void mouseExited(MouseEvent e); // From MouseListener
 public void mousePressed(MouseEvent e); // From MouseListener
 public void mouseReleased(MouseEvent e); // From MouseListener
}

Hierarchy:

Object->MouseAdapter(MouseListener(EventListener))

java.awt.event.KeyListener
(JDK 1.1)

java.awt.event.MouseEvent
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.22 java.awt.event.MouseListener (JDK 1.1)

This interface defines the methods that an object must implement to "listen" for mouse events on AWT
components. When a MouseEvent occurs, an AWT component notifies its registered
MouseListener objects (or MouseMotionListener objects if the event involves mouse motion)
by invoking one of their methods.

An easy way to implement this interface is by subclassing the MouseAdapter class.

public abstract interface MouseListener extends EventListener {
 // Public Instance Methods
 public abstract void mouseClicked(MouseEvent e);
 public abstract void mouseEntered(MouseEvent e);
 public abstract void mouseExited(MouseEvent e);
 public abstract void mousePressed(MouseEvent e);
 public abstract void mouseReleased(MouseEvent e);
}

Implemented By:

AWTEventMulticaster, MouseAdapter

Passed To:

AWTEventMulticaster.add(), AWTEventMulticaster.remove(),
Component.addMouseListener(), Component.removeMouseListener()

Returned By:

AWTEventMulticaster.add(), AWTEventMulticaster.remove()

java.awt.event.MouseEvent
(JDK 1.1)

java.awt.event.MouseMotionAdapter
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.23 java.awt.event.MouseMotionAdapter (JDK 1.1)

This class is a trivial implementation of MouseMotionListener; it provides empty bodies for each of the methods
of that interface. When you are not interested in all of these methods, it is often easier to subclass
MouseMotionAdapter than it is to implement MouseMotionListener from scratch.

public abstract class MouseMotionAdapter extends Object implements
MouseMotionListener {
 // Default Constructor: public MouseMotionAdapter()
 // Public Instance Methods
 public void mouseDragged(MouseEvent e); // From MouseMotionListener
 public void mouseMoved(MouseEvent e); // From MouseMotionListener
}

Hierarchy:

Object->MouseMotionAdapter(MouseMotionListener(EventListener))

java.awt.event.MouseListener
(JDK 1.1)

java.awt.event.MouseMotionListener
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.24 java.awt.event.MouseMotionListener (JDK
1.1)

This interface defines the methods that an object must implement to "listen" for mouse motion events on
AWT components. When a MouseEvent occurs involving a mouse drag or mouse motion with no
buttons down, an AWT component notifies its registered MouseMotionListener objects by
invoking one of their methods.

An easy way to implement this is by subclassing the MouseMotionAdapter class.

public abstract interface MouseMotionListener extends EventListener {
 // Public Instance Methods
 public abstract void mouseDragged(MouseEvent e);
 public abstract void mouseMoved(MouseEvent e);
}

Implemented By:

AWTEventMulticaster, MouseMotionAdapter

Passed To:

AWTEventMulticaster.add(), AWTEventMulticaster.remove(),
Component.addMouseMotionListener(),
Component.removeMouseMotionListener()

Returned By:

AWTEventMulticaster.add(), AWTEventMulticaster.remove()

java.awt.event.MouseMotionAdapter
(JDK 1.1)

java.awt.event.PaintEvent
(JDK 1.1)

Chapter 30
The java.util Package

30.19 java.util.Random (JDK 1.0)

This class implements a pseudo-random number generator. nextDouble() and nextFloat() return
a value between 0.0 and 1.0. nextLong() and nextInt() return long and int values distributed
across the range of those data types. nextGaussian() returns pseudo-random values with a Gaussian
distribution--the mean of the values is 0.0, and the standard deviation is 1.0. You can use the
setSeed() method or the optional constructor argument to initialize the pseudo-random number
generator with some variable seed value other than the current time (the default), or with a constant to
ensure a repeatable sequence of pseudo-randomness.

public class Random extends Object implements Serializable {
 // Public Constructors
 public Random();
 public Random(long seed);
 // Public Instance Methods
 1.1public void nextBytes(byte[] bytes);
 public double nextDouble();
 public float nextFloat();
 public synchronized double nextGaussian();
 public int nextInt();
 public long nextLong();
 public synchronized void setSeed(long seed);
 // Protected Instance Methods
 1.1protected synchronized int next(int bits);
}

Passed To:

BigInteger()

java.util.PropertyResourceBundle
(JDK 1.1)

java.util.ResourceBundle
(JDK 1.1)

Chapter 29
The java.text Package

29.4 java.text.CollationElementIterator (JDK 1.1)

A CollationElementIterator object is returned by the
getCollationElementIterator() method of the RuleBasedCollator object. The purpose
of this class is to allow a program to iterate (with the next() method) through the characters of a string,
returning ordering values for each of the "collation keys" in the string. Note that collation keys are not
exactly the same thing as characters. In the traditional Spanish collation order, for example, the two-
character sequence "ch" is treated as a single collation key that comes alphabetically between the letters
"c" and "d."

The value returned by the next() method is the collation order of the next collation key in the string.
This numeric value can be directly compared to the value returned by next() for other
CollationElementIterator objects. The value returned by next() can also be decomposed
into primary, secondary, and tertiary ordering values with the static methods of this class.

This class is used by RuleBasedCollator to implement its compare() method, and to create
CollationKey objects. Few applications ever need to use it directly.

public final class CollationElementIterator extends Object {
 // No Constructor
 // Constants
 public static final int NULLORDER;
 // Class Methods
 public static final int primaryOrder(int order);
 public static final short secondaryOrder(int order);
 public static final short tertiaryOrder(int order);
 // Public Instance Methods
 public int next();
 public void reset();
}

Returned By:

RuleBasedCollator.getCollationElementIterator()

java.text.ChoiceFormat (JDK
1.1)

java.text.CollationKey (JDK
1.1)

Chapter 20
The java.awt.event Package

20.26 java.awt.event.TextEvent (JDK 1.1)

An event of this type indicates that the user has edited the text value that appears in a TextField,
TextArea, or other TextComponent. This event is triggered by any change to the displayed text.
Note that this is not the same as the ActionEvent sent by the TextField object when the user edits
the text and strikes the Return key.

Use the inherited getSource() to determine the object that was the source of this event. You have to
cast that object to its TextComponent type. Call getID() to determine the type of a TextEvent.
The standard AWT components always generate text events of type TEXT_VALUE_CHANGED.

public class TextEvent extends AWTEvent {
 // Public Constructor
 public TextEvent(Object source, int id);
 // Constants
 public static final int TEXT_FIRST;
 public static final int TEXT_LAST;
 public static final int TEXT_VALUE_CHANGED;
 // Public Instance Methods
 public String paramString(); // Overrides AWTEvent
}

Hierarchy:

Object->EventObject(Serializable)->AWTEvent->TextEvent

Passed To:

AWTEventMulticaster.textValueChanged(),
TextComponent.processTextEvent(), TextListener.textValueChanged()

java.awt.event.PaintEvent
(JDK 1.1)

java.awt.event.TextListener
(JDK 1.1)

Chapter 23
The java.beans Package

23.13 java.beans.PropertyChangeListener (JDK 1.1)

This interface is an extension of java.util.EventListener and defines the method that a class must
implement in order to be notified when property changes occur. A PropertyChangeEvent is sent out to
all registered PropertyChangeListener objects whenever a bean changes one of its "bound"
properties, or whenever a PropertyEditor or Customizer changes the value of a property.

public abstract interface PropertyChangeListener extends EventListener {
 // Public Instance Methods
 public abstract void propertyChange(PropertyChangeEvent evt);
}

Passed To:

Customizer.addPropertyChangeListener(), Customizer.removePropertyChangeListener(),
PropertyChangeSupport.addPropertyChangeListener(),
PropertyChangeSupport.removePropertyChangeListener(), PropertyEditor.addPropertyChangeListener(),
PropertyEditor.removePropertyChangeListener(), PropertyEditorSupport.addPropertyChangeListener(),
PropertyEditorSupport.removePropertyChangeListener()

java.beans.PropertyChangeEvent
(JDK 1.1)

java.beans.PropertyChangeSupport
(JDK 1.1)

Chapter 24
The java.io Package

24.11 java.io.DataInputStream (JDK 1.0)

This class is a type of FilterInputStream that allows you to read binary representations of Java primitive data types in a
portable way. Create a DataInputStream by specifying the InputStream that is to be filtered in the call to the
constructor.

Many of this class's methods read and return a single Java primitive type, in binary format, from the stream.
readUnsignedByte() and readUnsignedShort() read unsigned values and return them as int values, since
unsigned byte and short types are not supported in Java. read() reads data into an array of bytes, blocking until at least
some data are available. By contrast, readFully() reads data into an array of bytes, but blocks until all of the requested
data become available. skipBytes() blocks until the specified number of bytes have been read and discarded.

readLine() reads characters from the stream until it encounters a newline, a carriage return, or a newline carriage return
pair. The returned string is not terminated with a newline or carriage return. This method is deprecated in Java 1.1; see
BufferedReader for an alternative. readUTF() reads a string of Unicode text encoded in a slightly modified version of
the UTF-8 "transformation format." UTF-8 is an ASCII-compatible encoding of Unicode characters that is often used for the
transmission and storage of Unicode text. This class uses a modified UTF-8 encoding that never contains embedded null
characters.

DataInputStream only reads primitive Java types. Use ObjectInputStream to read object values.

public class DataInputStream extends FilterInputStream implements DataInput {
 // Public Constructor
 public DataInputStream(InputStream in);
 // Class Methods
 public static final String readUTF(DataInput in) throws IOException;
 // Public Instance Methods
 public final int read(byte[] b) throws IOException; // Overrides
FilterInputStream
 public final int read(byte[] b, int off, int len) throws IOException; //
Overrides FilterInputStream
 public final boolean readBoolean() throws IOException; // From DataInput
 public final byte readByte() throws IOException; // From DataInput
 public final char readChar() throws IOException; // From DataInput
 public final double readDouble() throws IOException; // From DataInput
 public final float readFloat() throws IOException; // From DataInput
 public final void readFully(byte[] b) throws IOException; // From
DataInput
 public final void readFully(byte[] b, int off, int len) throws
IOException; // From DataInput
 public final int readInt() throws IOException; // From DataInput

 # public final String readLine() throws IOException; // From DataInput
 public final long readLong() throws IOException; // From DataInput
 public final short readShort() throws IOException; // From DataInput
 public final String readUTF() throws IOException; // From DataInput
 public final int readUnsignedByte() throws IOException; // From
DataInput
 public final int readUnsignedShort() throws IOException; // From
DataInput
 public final int skipBytes(int n) throws IOException; // From DataInput
}

Hierarchy:

Object->InputStream->FilterInputStream->DataInputStream(DataInput)

java.io.DataInput (JDK 1.0) java.io.DataOutput (JDK 1.0)

Chapter 24
The java.io Package

24.10 java.io.DataInput (JDK 1.0)

This interface defines the methods required for streams that can read Java primitive data types in a machine-
independent binary format. It is implemented by DataInputStream and RandomAccessFile. See
DataInputStream for more information on the methods.

public abstract interface DataInput {
 // Public Instance Methods
 public abstract boolean readBoolean() throws IOException;
 public abstract byte readByte() throws IOException;
 public abstract char readChar() throws IOException;
 public abstract double readDouble() throws IOException;
 public abstract float readFloat() throws IOException;
 public abstract void readFully(byte[] b) throws IOException;
 public abstract void readFully(byte[] b, int off, int len) throws
IOException;
 public abstract int readInt() throws IOException;
 public abstract String readLine() throws IOException;
 public abstract long readLong() throws IOException;
 public abstract short readShort() throws IOException;
 public abstract String readUTF() throws IOException;
 public abstract int readUnsignedByte() throws IOException;
 public abstract int readUnsignedShort() throws IOException;
 public abstract int skipBytes(int n) throws IOException;
}

Extended By:

ObjectInput

Implemented By:

DataInputStream, RandomAccessFile

Passed To:

DataInputStream.readUTF()

java.io.CharConversionException
(JDK 1.1)

java.io.DataInputStream
(JDK 1.0)

Chapter 24
The java.io Package

24.15 java.io.Externalizable (JDK 1.1)

This interface defines the methods that must be implemented by an object that wants complete control over the way it is
serialized. The writeExternal() and readExternal() methods should be implemented to write and read object data
in some arbitrary format, using the methods of the DataOutput and DataInput objects. Externalizable objects
must serialize their own fields, and are also responsible for serializing the fields of their superclasses.

Most objects do not need to define a custom output format and can use the Serializable interface instead of
Externalizable for serialization.

public abstract interface Externalizable extends Serializable {
 // Public Instance Methods
 public abstract void readExternal(ObjectInput in) throws IOException,
ClassNotFoundException;
 public abstract void writeExternal(ObjectOutput out) throws IOException;
}

java.io.EOFException (JDK
1.0)

java.io.File (JDK 1.0)

Chapter 25
The java.lang Package

25.50 java.lang.Runnable (JDK 1.0)

This interface specifies the run() method that is required for use with the Thread class. Any class that
implements this interface can provide the "body" of a thread. See Thread for more information.

public abstract interface Runnable {
 // Public Instance Methods
 public abstract void run();
}

Implemented By:

Thread

Passed To:

Thread()

java.lang.Process (JDK 1.0) java.lang.Runtime (JDK 1.0)

Chapter 22
The java.awt.peer Package

22.12 java.awt.peer.LabelPeer (JDK 1.0)

public abstract interface LabelPeer extends ComponentPeer {
 // Public Instance Methods
 public abstract void setAlignment(int alignment);
 public abstract void setText(String label);
}

Returned By:

Toolkit.createLabel()

java.awt.peer.FramePeer
(JDK 1.0)

java.awt.peer.LightweightPeer
(JDK 1.1)

Chapter 22
The java.awt.peer Package

22.4 java.awt.peer.CheckboxPeer (JDK 1.0)

public abstract interface CheckboxPeer extends ComponentPeer {
 // Public Instance Methods
 public abstract void setCheckboxGroup(CheckboxGroup g);
 public abstract void setLabel(String label);
 public abstract void setState(boolean state);
}

Returned By:

Toolkit.createCheckbox()

java.awt.peer.CheckboxMenuItemPeer
(JDK 1.0)

java.awt.peer.ChoicePeer
(JDK 1.0)

Chapter 21
The java.awt.image Package

21.3 java.awt.image.CropImageFilter (JDK 1.0)

This class implements an ImageFilter that crops an image to a specified rectangle. The methods defined by this class
are used for communication between the filter and its FilteredImageSource and should never be called directly.

public class CropImageFilter extends ImageFilter {
 // Public Constructor
 public CropImageFilter(int x, int y, int w, int h);
 // Public Instance Methods
 public void setDimensions(int w, int h); // Overrides ImageFilter
 public void setPixels(int x, int y, int w, int h, ColorModel model,
 public void setPixels'u'byte[] pixels, int off, int scansize); //
Overrides ImageFilter
 public void setPixels(int x, int y, int w, int h, ColorModel model,
 public void setPixels'u'int[] pixels, int off, int scansize); //
Overrides ImageFilter
 public void setProperties(Hashtable props); // Overrides ImageFilter
}

Hierarchy:

Object->ImageFilter(ImageConsumer, Cloneable)->CropImageFilter

java.awt.image.ColorModel
(JDK 1.0)

java.awt.image.DirectColorModel
(JDK 1.0)

Chapter 22
The java.awt.peer Package

22.9 java.awt.peer.FileDialogPeer (JDK 1.0)

public abstract interface FileDialogPeer extends DialogPeer {
 // Public Instance Methods
 public abstract void setDirectory(String dir);
 public abstract void setFile(String file);
 public abstract void setFilenameFilter(FilenameFilter filter);
}

Hierarchy:

(FileDialogPeer(DialogPeer(WindowPeer(ContainerPeer(ComponentPeer)))))

Returned By:

Toolkit.createFileDialog()

java.awt.peer.DialogPeer
(JDK 1.0)

java.awt.peer.FontPeer (JDK
1.1)

Chapter 22
The java.awt.peer Package

22.11 java.awt.peer.FramePeer (JDK 1.0)

public abstract interface FramePeer extends WindowPeer {
 // Public Instance Methods
 public abstract void setIconImage(Image im);
 public abstract void setMenuBar(MenuBar mb);
 public abstract void setResizable(boolean resizeable);
 public abstract void setTitle(String title);
}

Hierarchy:

(FramePeer(WindowPeer(ContainerPeer(ComponentPeer))))

Returned By:

Toolkit.createFrame()

java.awt.peer.FontPeer (JDK
1.1)

java.awt.peer.LabelPeer (JDK
1.0)

Chapter 22
The java.awt.peer Package

22.22 java.awt.peer.ScrollbarPeer (JDK 1.0)

public abstract interface ScrollbarPeer extends ComponentPeer {
 // Public Instance Methods
 public abstract void setLineIncrement(int l);
 public abstract void setPageIncrement(int l);
 public abstract void setValues(int value, int visible, int minimum, int
maximum);
}

Returned By:

Toolkit.createScrollbar()

java.awt.peer.ScrollPanePeer
(JDK 1.1)

java.awt.peer.TextAreaPeer
(JDK 1.0)

Chapter 22
The java.awt.peer Package

22.8 java.awt.peer.DialogPeer (JDK 1.0)

public abstract interface DialogPeer extends WindowPeer {
 // Public Instance Methods
 public abstract void setResizable(boolean resizeable);
 public abstract void setTitle(String title);
}

Hierarchy:

(DialogPeer(WindowPeer(ContainerPeer(ComponentPeer))))

Extended By:

FileDialogPeer

Returned By:

Toolkit.createDialog()

java.awt.peer.ContainerPeer
(JDK 1.0)

java.awt.peer.FileDialogPeer
(JDK 1.0)

Chapter 22
The java.awt.peer Package

22.3 java.awt.peer.CheckboxMenuItemPeer (JDK
1.0)

public abstract interface CheckboxMenuItemPeer extends MenuItemPeer {
 // Public Instance Methods
 public abstract void setState(boolean t);
}

Hierarchy:

(CheckboxMenuItemPeer(MenuItemPeer(MenuComponentPeer)))

Returned By:

Toolkit.createCheckboxMenuItem()

java.awt.peer.CanvasPeer
(JDK 1.0)

java.awt.peer.CheckboxPeer
(JDK 1.0)

Chapter 22
The java.awt.peer Package

22.20 java.awt.peer.PopupMenuPeer (JDK 1.1)

public abstract interface PopupMenuPeer extends MenuPeer {
 // Public Instance Methods
 public abstract void show(Event e);
}

Hierarchy:

(PopupMenuPeer(MenuPeer(MenuItemPeer(MenuComponentPeer))))

Returned By:

Toolkit.createPopupMenu()

java.awt.peer.PanelPeer (JDK
1.0)

java.awt.peer.ScrollPanePeer
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.27 java.awt.event.TextListener (JDK 1.1)

This interface defines the method that an object must implement to "listen" for text events on AWT
components. When a TextEvent occurs, an AWT component notifies its registered TextListener
objects by invoking their textValueChanged() methods.

public abstract interface TextListener extends EventListener {
 // Public Instance Methods
 public abstract void textValueChanged(TextEvent e);
}

Implemented By:

AWTEventMulticaster

Passed To:

AWTEventMulticaster.add(), AWTEventMulticaster.remove(),
TextComponent.addTextListener(), TextComponent.removeTextListener()

Returned By:

AWTEventMulticaster.add(), AWTEventMulticaster.remove()

Type Of:

TextComponent.textListener

java.awt.event.TextEvent
(JDK 1.1)

java.awt.event.WindowAdapter
(JDK 1.1)

Chapter 22
The java.awt.peer Package

22.26 java.awt.peer.WindowPeer (JDK 1.0)

public abstract interface WindowPeer extends ContainerPeer {
 // Public Instance Methods
 public abstract void toBack();
 public abstract void toFront();
}

Hierarchy:

(WindowPeer(ContainerPeer(ComponentPeer)))

Extended By:

DialogPeer, FramePeer

Returned By:

Toolkit.createWindow()

java.awt.peer.TextFieldPeer
(JDK 1.0)

The java.beans Package

Chapter 25
The java.lang Package

25.69 java.lang.Void (JDK 1.1)

The Void class may not be instantiated, and serves merely as a placeholder for its static TYPE field,
which is a Class object constant that represents the void type.

public final class Void extends Object {
 // No Constructor
 // Constants
 public static final Class TYPE;
}

java.lang.VirtualMachineError
(JDK 1.0)

The java.lang.reflect Package

Chapter 30
The java.util Package

30.16 java.util.Observer (JDK 1.0)

This interface defines the update() method required for an object to "observe" subclasses of
Observable. An Observer registers interest in an Observable() by calling the
Observable.addObserver() method. Observer objects that have been registered in this way
will have their update() method invoked by the Observable when that object has changed.

public abstract interface Observer {
 // Public Instance Methods
 public abstract void update(Observable o, Object arg);
}

Passed To:

Observable.addObserver(), Observable.deleteObserver()

java.util.Observable (JDK
1.0)

java.util.Properties (JDK 1.0)

Chapter 24
The java.io Package

24.40 java.io.ObjectInputValidation (JDK 1.1)

A class implements this interface and defines the validateObject() method in order to be able to validate itself
when it, and all the objects it depends on, have been completely deserialized from an ObjectInputStream. The
validateObject() method is only invoked, however, if the object is passed to
ObjectInputStream.registerValidation(); this must be done from the readObject() method of the
object. Note that if an object is deserialized as part of a larger object graph, its validateObject() method is not
invoked until the entire graph is read, and the original call to ObjectInputStream.readObject() is about to
return.

validateObject() should throw an InvalidObjectException if the object fails validation. This stops
object serialization, and causes the original call to ObjectInputStream.readObject() to terminate with the
InvalidObjectException exception.

public abstract interface ObjectInputValidation {
 // Public Instance Methods
 public abstract void validateObject() throws InvalidObjectException;
}

Passed To:

ObjectInputStream.registerValidation()

java.io.ObjectInputStream
(JDK 1.1)

java.io.ObjectOutput (JDK
1.1)

Chapter 23
The java.beans Package

23.21 java.beans.VetoableChangeListener (JDK 1.1)

This interface is an extension of java.util.EventListener and defines the method that a class must
implement in order to be notified when a Java bean makes a change to a "constrained" property. A
PropertyChangeEvent is passed to the vetoableChange() method when such a change occurs, and if the
VetoableChangeListener wants to prevent the change from occurring, this method should throw a
PropertyVetoException.

public abstract interface VetoableChangeListener extends EventListener {
 // Public Instance Methods
 public abstract void vetoableChange(PropertyChangeEvent evt) throws
PropertyVetoException;
}

Passed To:

VetoableChangeSupport.addVetoableChangeListener(), VetoableChangeSupport.removeVetoableChangeListener()

java.beans.SimpleBeanInfo
(JDK 1.1)

java.beans.VetoableChangeSupport
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.28 java.awt.event.WindowAdapter (JDK 1.1)

This class is a trivial implementation of WindowListener; it provides empty bodies for each of the methods of that
interface. When you are not interested in all of these methods, it is often easier to subclass WindowAdapter than it is
to implement WindowListener from scratch.

public abstract class WindowAdapter extends Object implements WindowListener {
 // Default Constructor: public WindowAdapter()
 // Public Instance Methods
 public void windowActivated(WindowEvent e); // From WindowListener
 public void windowClosed(WindowEvent e); // From WindowListener
 public void windowClosing(WindowEvent e); // From WindowListener
 public void windowDeactivated(WindowEvent e); // From WindowListener
 public void windowDeiconified(WindowEvent e); // From WindowListener
 public void windowIconified(WindowEvent e); // From WindowListener
 public void windowOpened(WindowEvent e); // From WindowListener
}

Hierarchy:

Object->WindowAdapter(WindowListener(EventListener))

java.awt.event.TextListener
(JDK 1.1)

java.awt.event.WindowEvent
(JDK 1.1)

Chapter 20
The java.awt.event Package

20.30 java.awt.event.WindowListener (JDK 1.1)

This interface defines the methods that an object must implement to "listen" for window events on AWT
components. When a WindowEvent occurs, an AWT component notifies its registered
WindowListener objects by invoking one of their methods.

An easy way to implement this interface is by subclassing the WindowAdapter class.

public abstract interface WindowListener extends EventListener {
 // Public Instance Methods
 public abstract void windowActivated(WindowEvent e);
 public abstract void windowClosed(WindowEvent e);
 public abstract void windowClosing(WindowEvent e);
 public abstract void windowDeactivated(WindowEvent e);
 public abstract void windowDeiconified(WindowEvent e);
 public abstract void windowIconified(WindowEvent e);
 public abstract void windowOpened(WindowEvent e);
}

Implemented By:

AWTEventMulticaster, WindowAdapter

Passed To:

AWTEventMulticaster.add(), AWTEventMulticaster.remove(),
Window.addWindowListener(), Window.removeWindowListener()

Returned By:

AWTEventMulticaster.add(), AWTEventMulticaster.remove()

java.awt.event.WindowEvent
(JDK 1.1)

The java.awt.image Package

Chapter 24
The java.io Package

24.12 java.io.DataOutput (JDK 1.0)

This interface defines the methods required for streams that can write character data or Java primitive data types
in a machine-independent binary format. It is implemented by DataOutputStream and
RandomAccessFile. See DataOutputStream for more information on the methods.

public abstract interface DataOutput {
 // Public Instance Methods
 public abstract void write(int b) throws IOException;
 public abstract void write(byte[] b) throws IOException;
 public abstract void write(byte[] b, int off, int len) throws
IOException;
 public abstract void writeBoolean(boolean v) throws IOException;
 public abstract void writeByte(int v) throws IOException;
 public abstract void writeBytes(String s) throws IOException;
 public abstract void writeChar(int v) throws IOException;
 public abstract void writeChars(String s) throws IOException;
 public abstract void writeDouble(double v) throws IOException;
 public abstract void writeFloat(float v) throws IOException;
 public abstract void writeInt(int v) throws IOException;
 public abstract void writeLong(long v) throws IOException;
 public abstract void writeShort(int v) throws IOException;
 public abstract void writeUTF(String str) throws IOException;
}

Extended By:

ObjectOutput

Implemented By:

DataOutputStream, RandomAccessFile

java.io.DataInputStream (JDK
1.0)

java.io.DataOutputStream
(JDK 1.0)

Chapter 18
The java.awt Package

18.4 java.awt.AWTException (JDK 1.0)

Signals that an exception has occurred in the java.awt package.

public class AWTException extends Exception {
 // Public Constructor
 public AWTException(String msg);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->AWTException

java.awt.AWTEventMulticaster
(JDK 1.1)

java.awt.Adjustable (JDK
1.1)

Chapter 18
The java.awt Package

18.31 java.awt.IllegalComponentStateException (JDK
1.1)

This exception signals that an AWT component is not in the appropriate state (for example, it hasn't been added
to a container yet or is currently hidden) for some requested operation.

public class IllegalComponentStateException extends IllegalStateException {
 // Public Constructors
 public IllegalComponentStateException();
 public IllegalComponentStateException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->
IllegalStateException->IllegalComponentStateException

java.awt.GridLayout (JDK
1.0)

java.awt.Image (JDK 1.0)

Chapter 9
Object Serialization

9.3 Serialization and Class Versioning

When an object is serialized, some information about its class must obviously be serialized with it, so
that the correct class file can be loaded when the object is deserialized. This information about the class
is represented by the java.io.ObjectStreamClass class. It contains the fully-qualified name of
the class and a version number. The version number is very important because an early version of a class
may not be able to deserialize a serialized instance created by a later version of the same class.

The version number of a class is stored in a constant long field named serialVersionUID. For
example, a class might declare its version number with a field like this:

static final long serialVersionUID = 280432937854755317L;

If a class does not define a serialVersionUID constant, the ObjectOutputStream
automatically computes a unique version number for it by applying the Secure Hash Algorithm (SHA) to
the name of the class, its interfaces, fields, and methods. In this case, any change to a field in a class or to
a non-private class method signature results in a change to the automatically-computed unique version
number.

If you need to make minor changes to a class without breaking serialization compatibility, you should
explicitly declare a serialVersionUID constant so that an updated and incompatible version number
is not automatically generated. You can use the serialver program that is provided with the JDK to
compute an initial value for this constant for the first version of your class. When you make minor,
compatible changes to the class, leave the constant unchanged. Then, if you make larger changes that
break serialization compatibility, run serialver again to generate an updated version number.

Custom Serialization Serialized Applets

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch09_02.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch09_02.htm

Chapter 9
Object Serialization

9.4 Serialized Applets

One of the uses of object serialization in Java 1.1 is for serialized applets. As discussed in Chapter 15,
Java-Related HTML Tags, the <APPLET> tag has a new attribute, OBJECT, that can be used in place of
the CODE attribute to specify a serialized object file instead of a class file. When such an <APPLET> tag
is encountered, the applet viewer or Web browser creates the applet by deserializing it.

The reason that this is an interesting thing to do is that it allows an applet to be shipped in a pre-
initialized state. The code for the applet need not even include the code that performed the initialization.
For example, imagine a GUI builder tool that allows a programmer to build a GUI using a point-and-
click interface. Such a tool could create a tree of AWT components within an Applet panel, and then
serialize the applet, including all of the GUI components it contains. When deserialized, the applet would
have a complete GUI, despite the fact that the applet's class file does not contain any code to create the
GUI.

You can experiment with applet serialization with the JDK 1.1 appletviewer program. Start an applet
running in appletviewer in the usual way. This loads the applet and runs its init() and start()
methods. Next, select the Stop item from the menu to stop the applet. Now use the Save menu item to
serialize the applet to a file. By convention, your serialized applet file should be given a .ser extension. If
the applet refers to any non-serializable objects, you may not be able to serialize it. For example, you
may encounter problems serializing applets that use threads or images.

Once you have serialized an applet, create an HTML file with an <APPLET> tag something like this:

<APPLET OBJECT="MyApplet.ser" WIDTH=400 HEIGHT=200></APPLET >

Finally, you can use appletviewer with this new HTML file. It should deserialize and display the applet.
When created in this way, the applet's init() method is not called (since it was called before
serialization), but its start() method is called (because the applet should have been stopped before
serialization).

Serialization and Class
Versioning

Advanced Serialization

Chapter 9
Object Serialization

9.5 Advanced Serialization

The Object Serialization API also has some advanced features beyond those demonstrated above. One
such feature is the Externalizable interface. If a class implements this interface, the
ObjectInputStream and ObjectOutputStream classes use an object's readExternal()
and writeExternal() methods to read and write its state from a stream. Most classes that want
custom serialization behavior simply implement readObject() and writeObject() methods to
do pre- and post-processing. Externalizable objects, on the other hand, take complete control over
reading and writing their state. This interface is intended for objects that do not even want to use the
basic serialized object data format used for all Serializable objects. A word processor object, for
example, might "externalize" itself using its own native file format.

Another advanced serialization feature is the ability to register an ObjectInputValidation object
that can verify that an object graph has been deserialized in a consistent, valid state. Typically, the root of
an object graph registers such a validation object by calling the registerValidation() method of
the ObjectInputStream from its own custom readObject() method. Then, when the graph has
been read completely, the validateObject() method of the ObjectInputValidation object
is called to perform whatever validity checks are necessary.

Finally, you may notice that ObjectOutputStream and ObjectInputStream have methods like
annotateClass(), replaceObject(), resolveClass(), and resolveObject(). These
are intended for use by subclasses of the object streams that implement special kinds of object
serialization behavior.

Serialized Applets Java Beans

Chapter 28
The java.net Package

28.21 java.net.UnknownServiceException (JDK 1.0)

Signals an attempt to use an unsupported service of a network connection.

public class UnknownServiceException extends IOException {
 // Public Constructors
 public UnknownServiceException();
 public UnknownServiceException(String msg);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->UnknownServiceException

java.net.UnknownHostException
(JDK 1.0)

java.net.URL (JDK 1.0)

Chapter 10
The java.lang Package

Cloneable

Name

Cloneable

Synopsis

Interface Name:

java.lang.Cloneable

Super-interface:

None

Immediate Sub-interfaces:

java.text.CharacterIterator

Implemented by:

java.awt.GridBagConstraints, java.awt.Insets,

java.awt.image.ImageFilter,

java.text.BreakIterator,

java.text.Collator, java.text.DateFormat,

java.text.DateFormatSymbols,

java.text.DecimalFormatSymbols,

java.text.Format, java.text.NumberFormat,

java.util.BitSet, java.util.Calendar,

java.util.Date, java.util.Hashtable,

java.util.Locale, java.util.TimeZone,

java.util.Vector

Availability:

JDK 1.0 or later

Description

The Cloneable interface provides no functionality; it declares no methods or variables. This interface
is simply provided as a way of indicating that an object can be cloned (that is, copied). A class that is
declared as implementing this interface is assumed to have overridden the Object class'
implementation of clone() with an implementation that can successfully clone instances of the class.
The implementation of clone() that is provided by the Object class simply throws a
CloneNotSupportedException.

Interface Declaration

public interface java.lang.Cloneable {
}

See Also

Exceptions; Object

ClassLoader Compiler

Chapter 28
The java.net Package

28.20 java.net.UnknownHostException (JDK 1.0)

Signals that the name of a specified host could not be resolved.

public class UnknownHostException extends IOException {
 // Public Constructors
 public UnknownHostException(String host);
 public UnknownHostException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->UnknownHostException

Thrown By:

InetAddress.getAllByName(), InetAddress.getByName(), InetAddress.getLocalHost(), Socket()

java.net.SocketImplFactory
(JDK 1.0)

java.net.UnknownServiceException
(JDK 1.0)

Chapter 12

12. Reflection
Contents:
Obtaining Class and Member Information
Invoking a Named Method

As noted in Chapter 4, What's New in Java 1.1, the Reflection API allows a Java program to inspect and manipulate
itself. The Reflection API comprises the much-expanded Class class in java.lang and the
java.lang.reflect package, which represents the members of a class with Method, Constructor, and
Field objects.

Reflection can be used to obtain information about a class and its members. This is the technique that the JavaBeans
"introspection" mechanism uses to determine the properties, events, and methods that are supported by a bean, for
example. Reflection can also be used to manipulate objects in Java. You can use the Field class to query and set the
values of fields, the Method class to invoke methods, and the Constructor class to create new objects. The
examples in this chapter demonstrate both techniques for using the Reflection API.

12.1 Obtaining Class and Member Information

Example 12.1 shows a program that uses the Class, Constructor, Field, and Method classes to display
information about a specified class. The program's output is similar to the class synopses that appear in the reference
section of this book. (You might notice that the names of method arguments are not shown; argument names are not
stored in class files, so they are not available through the Reflection API.)

Here is the output from using ShowClass on itself:

% java ShowClass ShowClass
public class ShowClass extends java.lang.Object {
 // Constructors
 public ShowClass();
 // Fields
 // Methods
 public static void main(java.lang.String[]);
 public static void print_class(java.lang.Class);
 public static java.lang.String typename(java.lang.Class);
 public static java.lang.String modifiers(int);

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_06.htm

 public static void print_field(java.lang.reflect.Field);
 public static void print_method_or_constructor(java.lang.reflect.Member);
}

The code for this example is quite straightforward. It uses the Class.forName() method to dynamically load the
named class, and calls various methods of Class object to look up the superclass, interfaces, and members of the
class. The example uses Constructor, Field, and Method objects to obtain information about each member of
the class.

Example 12.1: Obtaining Class and Member Information with the Reflection API

import java.lang.reflect.*;
/** A program that displays a class synopsis for the named class. */
public class ShowClass {
 /** The main method. Print info about the named class. */
 public static void main(String[] args) throws ClassNotFoundException {
 Class c = Class.forName(args[0]);
 print_class(c);
 }
 /** Display the modifiers, name, superclass, and interfaces of a class
 * or interface. Then go and list all constructors, fields, and methods. */
 public static void print_class(Class c)
 {
 // Print modifiers, type (class or interface), name, and superclass.
 if (c.isInterface()) {
 // The modifiers will include the "interface" keyword here...
 System.out.print(Modifier.toString(c.getModifiers()) + c.getName());
 }
 else
 System.out.print(Modifier.toString(c.getModifiers()) + " class " +
 c.getName() +
 " extends " + c.getSuperclass().getName());
 // Print interfaces or super-interfaces of the class or interface.
 Class[] interfaces = c.getInterfaces();
 if ((interfaces != null) && (interfaces.length > 0)) {
 if (c.isInterface()) System.out.println(" extends ");
 else System.out.print(" implements ");
 for(int i = 0; i < interfaces.length; i++) {
 if (i > 0) System.out.print(", ");
 System.out.print(interfaces[i].getName());
 }
 }
 System.out.println(" {"); // Begin class member listing.
 // Now look up and display the members of the class.
 System.out.println(" // Constructors");
 Constructor[] constructors = c.getDeclaredConstructors();
 for(int i = 0; i < constructors.length; i++) // Display constructors.
 print_method_or_constructor(constructors[i]);

 System.out.println(" // Fields");
 Field[] fields = c.getDeclaredFields(); // Look up fields.
 for(int i = 0; i < fields.length; i++) // Display them.
 print_field(fields[i]);
 System.out.println(" // Methods");
 Method[] methods = c.getDeclaredMethods(); // Look up methods.
 for(int i = 0; i < methods.length; i++) // Display them.
 print_method_or_constructor(methods[i]);
 System.out.println("}"); // End class member listing.
 }
 /** Return the name of an interface or primitive type, handling arrays. */
 public static String typename(Class t) {
 String brackets = "";
 while(t.isArray()) {
 brackets += "[]";
 t = t.getComponentType();
 }
 return t.getName() + brackets;
 }
 /** Return a string version of modifiers, handling spaces nicely. */
 public static String modifiers(int m) {
 if (m == 0) return "";
 else return Modifier.toString(m) + " ";
 }
 /** Print the modifiers, type, and name of a field. */
 public static void print_field(Field f) {
 System.out.println(" " +
 modifiers(f.getModifiers()) +
 typename(f.getType()) + " " + f.getName() + ";");
 }
 /** Print the modifiers, return type, name, parameter types, and exception
 * type of a method or constructor. Note the use of the Member interface
 * to allow this method to work with both Method and Constructor objects. */
 public static void print_method_or_constructor(Member member) {
 Class returntype=null, parameters[], exceptions[];
 if (member instanceof Method) {
 Method m = (Method) member;
 returntype = m.getReturnType();
 parameters = m.getParameterTypes();
 exceptions = m.getExceptionTypes();
 } else {
 Constructor c = (Constructor) member;
 parameters = c.getParameterTypes();
 exceptions = c.getExceptionTypes();
 }
 System.out.print(" " + modifiers(member.getModifiers()) +
 ((returntype!=null)? typename(returntype)+" " : "") +
 member.getName() + "(");
 for(int i = 0; i < parameters.length; i++) {

 if (i > 0) System.out.print(", ");
 System.out.print(typename(parameters[i]));
 }
 System.out.print(")");
 if (exceptions.length > 0) System.out.print(" throws ");
 for(int i = 0; i < exceptions.length; i++) {
 if (i > 0) System.out.print(", ");
 System.out.print(typename(exceptions[i]));
 }
 System.out.println(";");
 }
}

Formatted Messages Invoking a Named Method

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_06.htm

Chapter 30
The java.util Package

30.5 java.util.EmptyStackException (JDK 1.0)

Signals that a Stack object is empty.

public class EmptyStackException extends RuntimeException {
 // Public Constructor
 public EmptyStackException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->EmptyStackException

java.util.Dictionary (JDK 1.0) java.util.Enumeration (JDK
1.0)

Chapter 30
The java.util Package

30.7 java.util.EventListener (JDK 1.1)

EventListener is a base interface for the Java 1.1 AWT event model. This interface defines no
method or constants. Its purpose is to serve as a tag to identify objects that serve as event listeners. The
event listener interfaces in the java.awt.event, and java.beans packages extend this interface.

public interface EventListener {
}

Extended By:

ActionListener, AdjustmentListener, ComponentListener, ContainerListener, FocusListener,
ItemListener, KeyListener, MouseListener, MouseMotionListener, PropertyChangeListener,
TextListener, VetoableChangeListener, WindowListener

Passed To:

AWTEventMulticaster(), AWTEventMulticaster.addInternal(), AWTEventMulticaster.remove(),
AWTEventMulticaster.removeInternal(), AWTEventMulticaster.save()

Returned By:

AWTEventMulticaster.addInternal(), AWTEventMulticaster.remove(),
AWTEventMulticaster.removeInternal()

Type Of:

AWTEventMulticaster.a, AWTEventMulticaster.b

java.util.Enumeration (JDK
1.0)

java.util.EventObject (JDK
1.1)

Chapter 30
The java.util Package

30.14 java.util.NoSuchElementException (JDK 1.0)

Signals that there are no elements in an object (such as a Vector) or that there are no more elements in
an object (such as an Enumeration).

public class NoSuchElementException extends RuntimeException {
 // Public Constructors
 public NoSuchElementException();
 public NoSuchElementException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->NoSuchElementException

java.util.MissingResourceException
(JDK 1.1)

java.util.Observable (JDK
1.0)

Chapter 30
The java.util Package

30.25 java.util.TooManyListenersException (JDK
1.1)

An exception of this type signals that an AWT component or Java bean may only have one
EventListener object registered for some specific type of event. That is, it signals that a particular
event is a "unicast" event rather than a "multicast" event.

This exception type serves a formal purpose in the AWT and JavaBeans event model. Its presence in the
throws clause of an EventListener registration method (even if the method never actually throws
the exception) signals that an event is a unicast event.

public class TooManyListenersException extends Exception {
 // Public Constructors
 public TooManyListenersException();
 public TooManyListenersException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->TooManyListenersException

java.util.TimeZone (JDK 1.1) java.util.Vector (JDK 1.0)

Chapter 10

10. Java Beans
Contents:
Bean Basics
A Simple Bean
A More Complex Bean
Custom Events
Specifying Bean Information
Defining a Simple Property Editor
Defining a Complex Property Editor
Defining a Bean Customizer
Naming Patterns and Conventions

The JavaBeans API provides a framework for defining reusable, embeddable, modular software
components. The JavaBeans Specification includes the following definition of a bean: "a reusable
software component that can be manipulated visually in a builder tool." As you can see, this is a rather
loose definition; beans can take a variety of forms. At the simplest level, individual AWT components (in
Java 1.1) are all beans, while at a much higher level, an embeddable spreadsheet application might also
function as a bean. Most beans, however, will probably fall somewhere between these two extremes.

One of the goals of the JavaBeans model is interoperability with similar component frameworks. So, for
example, a native Windows program can, with an appropriate bridge or wrapper object, use a Java bean
as if it were a COM or ActiveX component. The details of this sort of interoperability are beyond the
scope of this chapter, however.

Beans can be used at three levels, by three different categories of programmers:

● If you are developing GUI editors, application builders, or other "beanbox" tools, you need the
JavaBeans API to manipulate beans within these tools. beanbox is the name of the sample bean
manipulation program provided by Sun in its Beans Development Kit (BDK). The term is a useful
one, and I'll use it to describe any kind of graphical design tool or application builder that

manipulates beans.

● If you are writing actual beans, you need the JavaBeans API to write code that can be used in any
conforming beanbox.

● If you are writing applications that use beans developed by other programmers, or using a
beanbox tool to combine those beans into an application, you do not actually need to be familiar
with the JavaBeans API. You only need to be familiar with the documentation for individual
beans that you are using.

This chapter explains how to use the JavaBeans API at the second level, or in other words, it describes
how to write beans. It covers the following topics:

● Basic bean concepts and terminology

● Requirements for the simplest beans

● Packaging beans in JAR files

● Providing additional information about beans with the BeanInfo class

● Defining property editors to allow custom editing of bean properties

● Defining bean customizers to allow customization of an entire bean

● The various naming conventions and requirements imposed by the JavaBeans model

10.1 Bean Basics

We begin our discussion of beans with some basic concepts and terminology. Any object that conforms
to certain basic rules can be a bean; there is no Bean class that all beans are required to subclass. Many
beans are AWT components, but it is also quite possible, and often useful, to write "invisible" beans that
do not have an on-screen appearance. (Just because a bean does not have an on-screen appearance in a
finished application does not mean that it won't be visually manipulated by a beanbox tool, however.)

A bean exports properties, events, and methods. A property is a piece of the bean's internal state that can
be programmatically set and queried, usually through a standard pair of get and set accessor methods.
A bean may generate events in the same way that an AWT component, such as a Button, generates
ActionEvent events. The JavaBeans API uses the same event model as the Java 1.1 AWT does. See
Chapter 7, Events, for a full discussion of this model. A bean defines an event if it provides methods for
adding and removing event listener objects from a list of interested listeners for that event. Finally, the

methods exported by a bean are simply any public methods defined by the bean, excluding those
methods used to get and set property values and register and remove event listeners.

In addition to the regular sort of properties described above, the JavaBeans API also provides support for
"indexed properties," "bound properties," and "constrained properties." An indexed property is any
property that has an array value and for which the bean provides methods to get and set individual
elements of the array, as well as methods to get and set the entire array. A bound property is one that
sends out a notification event when its value changes, while a constrained property is one that sends out a
notification event when its value changes and allows the change to be vetoed by listeners.

Because Java allows dynamic loading of classes, beanbox programs can load arbitrary beans. The
beanbox tool determines the properties, events, and methods a bean supports by using an "introspection"
mechanism that is based on the java.lang.reflect reflection mechanism for obtaining information
about the members of a class. A bean can also provide an auxiliary BeanInfo class that provides
additional information about the bean. The BeanInfo class provides this additional information in the
form of a number of FeatureDescriptor objects, each one describing a single feature of the bean.
FeatureDescriptor has a number of subclasses: BeanDescriptor, PropertyDescriptor,
IndexedPropertyDescriptor, EventSetDescriptor, MethodDescriptor, and
ParameterDescriptor.

One of the primary tasks of a beanbox application is to allow the user to customize a bean by setting
property values. A beanbox defines "property editors" for commonly used property types, such as
numbers, strings, fonts, and colors. If a bean has properties of more complicated types, however, it may
need to define a PropertyEditor class that enables the beanbox to let the user set values for that
property.

In addition, a complex bean may not be satisfied with the property-by-property customization mechanism
provided by most beanboxes. Such a bean may want to define a Customizer class, which creates a
graphical interface that allows the user to configure a bean in some useful way. A particularly complex
bean may even define customizers that serve as "wizards" that guide the user step-by-step through the
customization process.

Advanced Serialization A Simple Bean

Chapter 25
The java.lang Package

25.38 java.lang.NegativeArraySizeException (JDK
1.0)

Signals an attempt to allocate an array with fewer than zero elements.

public class NegativeArraySizeException extends RuntimeException {
 // Public Constructors
 public NegativeArraySizeException();
 public NegativeArraySizeException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->NegativeArraySizeException

Thrown By:

Array.newInstance()

java.lang.Math (JDK 1.0) java.lang.NoClassDefFoundError
(JDK 1.0)

Chapter 25
The java.lang Package

25.2 java.lang.ArithmeticException (JDK 1.0)

A RuntimeException that signals an exceptional arithmetic condition, such as integer division by
zero.

public class ArithmeticException extends RuntimeException {
 // Public Constructors
 public ArithmeticException();
 public ArithmeticException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->ArithmeticException

Thrown By:

BigDecimal.divide(), BigDecimal.setScale(), BigInteger.add(), BigInteger.clearBit(), BigInteger.divide(),
BigInteger.divideAndRemainder(), BigInteger.flipBit(), BigInteger.modInverse(), BigInteger.pow(),
BigInteger.remainder(), BigInteger.setBit(), BigInteger.testBit()

java.lang.AbstractMethodError
(JDK 1.0)

java.lang.ArrayIndexOutOfBoundsException
(JDK 1.0)

Chapter 25
The java.lang Package

25.3 java.lang.ArrayIndexOutOfBoundsException (JDK
1.0)

Signals that an array index less than zero or greater than or equal to the array size has been used.

public class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException {
 // Public Constructors
 public ArrayIndexOutOfBoundsException();
 public ArrayIndexOutOfBoundsException(int index);
 public ArrayIndexOutOfBoundsException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException-> IndexOutOfBoundsException-
>ArrayIndexOutOfBoundsException

Thrown By:

Array.get(), Array.getBoolean(), Array.getByte(), Array.getChar(), Array.getDouble(), Array.getFloat(),
Array.getInt(), Array.getLong(), Array.getShort(), Array.set(), Array.setBoolean(), Array.setByte(), Array.setChar(),
Array.setDouble(), Array.setFloat(), Array.setInt(), Array.setLong(), Array.setShort()

java.lang.ArithmeticException
(JDK 1.0)

java.lang.ArrayStoreException
(JDK 1.0)

Chapter 25
The java.lang Package

25.4 java.lang.ArrayStoreException (JDK 1.0)

Signals an attempt to store the wrong type of object into an array.

public class ArrayStoreException extends RuntimeException {
 // Public Constructors
 public ArrayStoreException();
 public ArrayStoreException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->ArrayStoreException

java.lang.ArrayIndexOutOfBoundsException
(JDK 1.0)

java.lang.Boolean
(JDK 1.0)

Chapter 25
The java.lang Package

25.9 java.lang.ClassCastException (JDK 1.0)

Signals an invalid cast of an object to a type of which it is not an instance.

public class ClassCastException extends RuntimeException {
 // Public Constructors
 public ClassCastException();
 public ClassCastException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->ClassCastException

java.lang.Class (JDK 1.0) java.lang.ClassCircularityError
(JDK 1.0)

Chapter 25
The java.lang Package

25.10 java.lang.ClassCircularityError (JDK 1.0)

Signals that a circular dependency has been detected while performing initialization for a class.

public class ClassCircularityError extends LinkageError {
 // Public Constructors
 public ClassCircularityError();
 public ClassCircularityError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->ClassCircularityError

java.lang.ClassCastException
(JDK 1.0)

java.lang.ClassFormatError
(JDK 1.0)

Chapter 25
The java.lang Package

25.11 java.lang.ClassFormatError (JDK 1.0)

Signals an error in the binary format of a class file.

public class ClassFormatError extends LinkageError {
 // Public Constructors
 public ClassFormatError();
 public ClassFormatError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->ClassFormatError

java.lang.ClassCircularityError
(JDK 1.0)

java.lang.ClassLoader (JDK
1.0)

Chapter 25
The java.lang Package

25.13 java.lang.ClassNotFoundException (JDK 1.0)

Signals that a class to be loaded could not be found.

public class ClassNotFoundException extends Exception {
 // Public Constructors
 public ClassNotFoundException();
 public ClassNotFoundException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->ClassNotFoundException

Thrown By:

Beans.instantiate(), Class.forName(), ClassLoader.findSystemClass(), ClassLoader.loadClass(),
Externalizable.readExternal(), ObjectInput.readObject(), ObjectInputStream.defaultReadObject(),
ObjectInputStream.readObject(), ObjectInputStream.resolveClass()

java.lang.ClassLoader
(JDK 1.0)

java.lang.CloneNotSupportedException
(JDK 1.0)

Chapter 25
The java.lang Package

25.14 java.lang.CloneNotSupportedException (JDK
1.0)

Signals that the clone() method has been called for an object of a class that does not implement the
Cloneable interface.

public class CloneNotSupportedException extends Exception {
 // Public Constructors
 public CloneNotSupportedException();
 public CloneNotSupportedException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->CloneNotSupportedException

Thrown By:

Object.clone()

java.lang.ClassNotFoundException
(JDK 1.0)

java.lang.Cloneable (JDK
1.0)

Chapter 25
The java.lang Package

25.15 java.lang.Cloneable (JDK 1.0)

This interface defines no methods or variables, but indicates that the class that implements it may be
cloned (i.e., copied) by calling the Object method clone(). Calling clone() for an object that does
not implement this interface (and does not override clone() with its own implementation) causes a
CloneNotSupportedException to be thrown.

public interface Cloneable {
}

Extended By:

CharacterIterator

Implemented By:

BitSet, BreakIterator, Calendar, Collator, Date, DateFormat, DateFormatSymbols,
DecimalFormatSymbols, Format, GridBagConstraints, Hashtable, ImageFilter, Insets, Locale,
NumberFormat, TimeZone, Vector

java.lang.CloneNotSupportedException
(JDK 1.0)

java.lang.Compiler (JDK
1.0)

Chapter 25
The java.lang Package

25.18 java.lang.Error (JDK 1.0)

This class forms the root of the error hierarchy in Java. Subclasses of Error, unlike subclasses of
Exception, should generally not be caught, and generally cause termination of the program.
Subclasses of Error need not be declared in the throws clause of a method definition.

getMessage() returns a message associated with the error. See Throwable for other methods.

public class Error extends Throwable {
 // Public Constructors
 public Error();
 public Error(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error

Extended By:

AWTError, LinkageError, ThreadDeath, VirtualMachineError

java.lang.Double (JDK 1.0) java.lang.Exception (JDK 1.0)

Chapter 25
The java.lang Package

25.19 java.lang.Exception (JDK 1.0)

This class forms the root of the exception hierarchy in Java. An Exception signals an abnormal
condition that must be specially handled to prevent program termination. Exceptions may be caught and
handled. Exceptions that are not subclasses of RuntimeException must be declared in the throws
clause of any method that can throw them.

getMessage() returns a message associated with the exception. See Throwable for other methods.

public class Exception extends Throwable {
 // Public Constructors
 public Exception();
 public Exception(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception

Extended By:

AWTException, ClassNotFoundException, CloneNotSupportedException, DataFormatException,
IllegalAccessException, InstantiationException, InterruptedException, IntrospectionException,
InvocationTargetException, IOException, NoSuchFieldException, NoSuchMethodException,
ParseException, PropertyVetoException, RuntimeException, TooManyListenersException,
UnsupportedFlavorException

Passed To:

WriteAbortedException()

Type Of:

WriteAbortedException.detail

java.lang.Error (JDK 1.0) java.lang.ExceptionInInitializerError
(JDK 1.1)

Chapter 25
The java.lang Package

25.22 java.lang.IllegalAccessError (JDK 1.0)

Signals an attempted use of a class, method, or variable that is not accessible.

public class IllegalAccessError extends IncompatibleClassChangeError {
 // Public Constructors
 public IllegalAccessError();
 public IllegalAccessError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->IncompatibleClassChangeError-
>IllegalAccessError

java.lang.Float (JDK 1.0) java.lang.IllegalAccessException
(JDK 1.0)

Chapter 25
The java.lang Package

25.23 java.lang.IllegalAccessException (JDK 1.0)

Signals that a class or initializer is not accessible. Thrown by Class.newInstance().

public class IllegalAccessException extends Exception {
 // Public Constructors
 public IllegalAccessException();
 public IllegalAccessException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IllegalAccessException

Thrown By:

Class.newInstance(), Constructor.newInstance(), Field.get(), Field.getBoolean(), Field.getByte(),
Field.getChar(), Field.getDouble(), Field.getFloat(), Field.getInt(), Field.getLong(), Field.getShort(),
Field.set(), Field.setBoolean(), Field.setByte(), Field.setChar(), Field.setDouble(), Field.setFloat(),
Field.setInt(), Field.setLong(), Field.setShort(), Method.invoke()

java.lang.IllegalAccessError
(JDK 1.0)

java.lang.IllegalArgumentException
(JDK 1.0)

Chapter 25
The java.lang Package

25.24 java.lang.IllegalArgumentException (JDK 1.0)

Signals an illegal argument to a method. See subclasses IllegalThreadStateException and
NumberFormatException.

public class IllegalArgumentException extends RuntimeException {
 // Public Constructors
 public IllegalArgumentException();
 public IllegalArgumentException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->IllegalArgumentException

Extended By:

IllegalThreadStateException, NumberFormatException

Thrown By:

Array.get(), Array.getBoolean(), Array.getByte(), Array.getChar(), Array.getDouble(), Array.getFloat(),
Array.getInt(), Array.getLength(), Array.getLong(), Array.getShort(), Array.newInstance(), Array.set(),
Array.setBoolean(), Array.setByte(), Array.setChar(), Array.setDouble(), Array.setFloat(), Array.setInt(),
Array.setLong(), Array.setShort(), BigDecimal.divide(), BigDecimal.setScale(), BigInteger(),
Constructor.newInstance(), Field.get(), Field.getBoolean(), Field.getByte(), Field.getChar(),
Field.getDouble(), Field.getFloat(), Field.getInt(), Field.getLong(), Field.getShort(), Field.set(),
Field.setBoolean(), Field.setByte(), Field.setChar(), Field.setDouble(), Field.setFloat(), Field.setInt(),
Field.setLong(), Field.setShort(), Method.invoke(), PropertyEditor.setAsText(),
PropertyEditorSupport.setAsText()

java.lang.IllegalAccessException
(JDK 1.0)

java.lang.IllegalMonitorStateException
(JDK 1.0)

Chapter 25
The java.lang Package

25.25 java.lang.IllegalMonitorStateException (JDK
1.0)

Signals an illegal monitor state. It is thrown by the Object notify() and wait() methods used for
thread synchronization.

public class IllegalMonitorStateException extends RuntimeException {
 // Public Constructors
 public IllegalMonitorStateException();
 public IllegalMonitorStateException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->IllegalMonitorStateException

java.lang.IllegalArgumentException
(JDK 1.0)

java.lang.IllegalStateException
(JDK 1.1)

Chapter 25
The java.lang Package

25.26 java.lang.IllegalStateException (JDK 1.1)

An exception of this type signals that a method has been invoked on an object that is not in an
appropriate state to be able to perform the requested operation.

public class IllegalStateException extends RuntimeException {
 // Public Constructors
 public IllegalStateException();
 public IllegalStateException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->IllegalStateException

Extended By:

IllegalComponentStateException

java.lang.IllegalMonitorStateException
(JDK 1.0)

java.lang.IllegalThreadStateException
(JDK 1.0)

Chapter 25
The java.lang Package

25.27 java.lang.IllegalThreadStateException (JDK 1.0)

Signals that a thread is not in the appropriate state for an attempted operation to succeed.

public class IllegalThreadStateException extends IllegalArgumentException {
 // Public Constructors
 public IllegalThreadStateException();
 public IllegalThreadStateException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException-> IllegalArgumentException-
>IllegalThreadStateException

java.lang.IllegalStateException
(JDK 1.1)

java.lang.IncompatibleClassChangeError
(JDK 1.0)

Chapter 25
The java.lang Package

25.28 java.lang.IncompatibleClassChangeError
(JDK 1.0)

This is the superclass of a group of related error types. It signals some kind of illegal use of a legal class.

public class IncompatibleClassChangeError extends LinkageError {
 // Public Constructors
 public IncompatibleClassChangeError();
 public IncompatibleClassChangeError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->IncompatibleClassChangeError

Extended By:

AbstractMethodError, IllegalAccessError, InstantiationError, NoSuchFieldError, NoSuchMethodError

java.lang.IllegalThreadStateException
(JDK 1.0)

java.lang.IndexOutOfBoundsException
(JDK 1.0)

Chapter 25
The java.lang Package

25.29 java.lang.IndexOutOfBoundsException (JDK
1.0)

Signals that an index is out of bounds. See the subclasses ArrayIndexOutOfBoundsException
and StringIndexOutOfBoundsException.

public class IndexOutOfBoundsException extends RuntimeException {
 // Public Constructors
 public IndexOutOfBoundsException();
 public IndexOutOfBoundsException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->IndexOutOfBoundsException

Extended By:

ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException

java.lang.IncompatibleClassChangeError
(JDK 1.0)

java.lang.InstantiationError
(JDK 1.0)

Chapter 25
The java.lang Package

25.30 java.lang.InstantiationError (JDK 1.0)

Signals an attempt to instantiate an interface or abstract class.

public class InstantiationError extends IncompatibleClassChangeError {
 // Public Constructors
 public InstantiationError();
 public InstantiationError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->IncompatibleClassChangeError-
>InstantiationError

java.lang.IndexOutOfBoundsException
(JDK 1.0)

java.lang.InstantiationException
(JDK 1.0)

Chapter 25
The java.lang Package

25.31 java.lang.InstantiationException (JDK 1.0)

Signals an attempt to instantiate an interface or an abstract class.

public class InstantiationException extends Exception {
 // Public Constructors
 public InstantiationException();
 public InstantiationException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->InstantiationException

Thrown By:

Class.newInstance(), Constructor.newInstance()

java.lang.InstantiationError
(JDK 1.0)

java.lang.Integer (JDK 1.0)

Chapter 25
The java.lang Package

25.33 java.lang.InternalError (JDK 1.0)

Signals an internal error in the Java interpreter.

public class InternalError extends VirtualMachineError {
 // Public Constructors
 public InternalError();
 public InternalError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->VirtualMachineError->InternalError

java.lang.Integer (JDK 1.0) java.lang.InterruptedException
(JDK 1.0)

Chapter 25
The java.lang Package

25.34 java.lang.InterruptedException (JDK 1.0)

Signals that the thread has been interrupted.

public class InterruptedException extends Exception {
 // Public Constructors
 public InterruptedException();
 public InterruptedException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->InterruptedException

Thrown By:

EventQueue.getNextEvent(), MediaTracker.waitForAll(), MediaTracker.waitForID(), Object.wait(),
PixelGrabber.grabPixels(), Process.waitFor(), Thread.join(), Thread.sleep()

java.lang.InternalError (JDK
1.0)

java.lang.LinkageError (JDK
1.0)

Chapter 25
The java.lang Package

25.35 java.lang.LinkageError (JDK 1.0)

The superclass of a group of errors that signal problems linking a class or resolving dependencies
between classes.

public class LinkageError extends Error {
 // Public Constructors
 public LinkageError();
 public LinkageError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError

Extended By:

ClassCircularityError, ClassFormatError, ExceptionInInitializerError, IncompatibleClassChangeError,
NoClassDefFoundError, UnsatisfiedLinkError, VerifyError

java.lang.InterruptedException
(JDK 1.0)

java.lang.Long (JDK 1.0)

Chapter 25
The java.lang Package

25.39 java.lang.NoClassDefFoundError (JDK 1.0)

Signals that the definition of a specified class could not be found.

public class NoClassDefFoundError extends LinkageError {
 // Public Constructors
 public NoClassDefFoundError();
 public NoClassDefFoundError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->NoClassDefFoundError

java.lang.NegativeArraySizeException
(JDK 1.0)

java.lang.NoSuchFieldError
(JDK 1.0)

Chapter 25
The java.lang Package

25.40 java.lang.NoSuchFieldError (JDK 1.0)

Signals that a specified field could not be found.

public class NoSuchFieldError extends IncompatibleClassChangeError {
 // Public Constructors
 public NoSuchFieldError();
 public NoSuchFieldError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->IncompatibleClassChangeError-
>NoSuchFieldError

java.lang.NoClassDefFoundError
(JDK 1.0)

java.lang.NoSuchFieldException
(JDK 1.1)

Chapter 25
The java.lang Package

25.41 java.lang.NoSuchFieldException (JDK 1.1)

This exception signals that the specified field does not exist in the specified class.

public class NoSuchFieldException extends Exception {
 // Public Constructors
 public NoSuchFieldException();
 public NoSuchFieldException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->NoSuchFieldException

Thrown By:

Class.getDeclaredField(), Class.getField()

java.lang.NoSuchFieldError
(JDK 1.0)

java.lang.NoSuchMethodError
(JDK 1.0)

Chapter 25
The java.lang Package

25.42 java.lang.NoSuchMethodError (JDK 1.0)

Signals that a specified method could not be found.

public class NoSuchMethodError extends IncompatibleClassChangeError {
 // Public Constructors
 public NoSuchMethodError();
 public NoSuchMethodError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->IncompatibleClassChangeError-
>NoSuchMethodError

java.lang.NoSuchFieldException
(JDK 1.1)

java.lang.NoSuchMethodException
(JDK 1.0)

Chapter 25
The java.lang Package

25.43 java.lang.NoSuchMethodException (JDK 1.0)

This exception signals that the specified method does not exist in the specified class.

public class NoSuchMethodException extends Exception {
 // Public Constructors
 public NoSuchMethodException();
 public NoSuchMethodException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->NoSuchMethodException

Thrown By:

Class.getConstructor(), Class.getDeclaredConstructor(), Class.getDeclaredMethod(), Class.getMethod()

java.lang.NoSuchMethodError
(JDK 1.0)

java.lang.NullPointerException
(JDK 1.0)

Chapter 25
The java.lang Package

25.44 java.lang.NullPointerException (JDK 1.0)

Signals an attempt to access a field or invoke a method of a null object.

public class NullPointerException extends RuntimeException {
 // Public Constructors
 public NullPointerException();
 public NullPointerException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->NullPointerException

java.lang.NoSuchMethodException
(JDK 1.0)

java.lang.Number (JDK
1.0)

Chapter 25
The java.lang Package

25.46 java.lang.NumberFormatException (JDK 1.0)

Signals an illegal number format.

public class NumberFormatException extends IllegalArgumentException {
 // Public Constructors
 public NumberFormatException();
 public NumberFormatException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException-> IllegalArgumentException-
>NumberFormatException

Thrown By:

BigDecimal(), BigDecimal.valueOf(), BigInteger(), Byte(), Byte.decode(), Byte.parseByte(),
Byte.valueOf(), Color.decode(), Double(), Double.valueOf(), Float(), Float.valueOf(), Integer(),
Integer.decode(), Integer.parseInt(), Integer.valueOf(), Long(), Long.parseLong(), Long.valueOf(),
Short(), Short.decode(), Short.parseShort(), Short.valueOf()

java.lang.Number (JDK 1.0) java.lang.Object (JDK 1.0)

Chapter 25
The java.lang Package

25.48 java.lang.OutOfMemoryError (JDK 1.0)

Signals that the interpreter has run out of memory (and that garbage collection is unable to free any
memory).

public class OutOfMemoryError extends VirtualMachineError {
 // Public Constructors
 public OutOfMemoryError();
 public OutOfMemoryError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->VirtualMachineError->OutOfMemoryError

java.lang.Object (JDK 1.0) java.lang.Process (JDK 1.0)

Chapter 25
The java.lang Package

25.52 java.lang.RuntimeException (JDK 1.0)

This exception type is not used directly, but serves as a superclass of a group of run-time exceptions that
need not be declared in the throws clause of a method definition. These exceptions need not be
declared because they are run-time conditions that can generally occur in any Java method. Thus,
declaring them would be unduly burdensome, and Java does not require it.

public class RuntimeException extends Exception {
 // Public Constructors
 public RuntimeException();
 public RuntimeException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException

Extended By:

ArithmeticException, ArrayStoreException, ClassCastException, EmptyStackException,
IllegalArgumentException, IllegalMonitorStateException, IllegalStateException,
IndexOutOfBoundsException, MissingResourceException, NegativeArraySizeException,
NoSuchElementException, NullPointerException, SecurityException

java.lang.Runtime (JDK 1.0) java.lang.SecurityException
(JDK 1.0)

Chapter 25
The java.lang Package

25.53 java.lang.SecurityException (JDK 1.0)

Signals that an operation is not permitted for security reasons.

public class SecurityException extends RuntimeException {
 // Public Constructors
 public SecurityException();
 public SecurityException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException->SecurityException

Thrown By:

Beans.setDesignTime(), Beans.setGuiAvailable(), Class.getConstructor(), Class.getConstructors(),
Class.getDeclaredClasses(), Class.getDeclaredConstructor(), Class.getDeclaredConstructors(),
Class.getDeclaredField(), Class.getDeclaredFields(), Class.getDeclaredMethod(),
Class.getDeclaredMethods(), Class.getField(), Class.getFields(), Class.getMethod(), Class.getMethods(),
ObjectInputStream.enableResolveObject(), ObjectOutputStream.enableReplaceObject()

java.lang.RuntimeException
(JDK 1.0)

java.lang.SecurityManager
(JDK 1.0)

Chapter 25
The java.lang Package

25.56 java.lang.StackOverflowError (JDK 1.0)

Signals that a stack overflow has occurred within the Java interpreter.

public class StackOverflowError extends VirtualMachineError {
 // Public Constructors
 public StackOverflowError();
 public StackOverflowError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->VirtualMachineError->StackOverflowError

java.lang.Short (JDK 1.1) java.lang.String (JDK 1.0)

Chapter 25
The java.lang Package

25.59 java.lang.StringIndexOutOfBoundsException (JDK
1.0)

Signals that the index used to access a character of a String or StringBuffer is less than zero or is too large.

public class StringIndexOutOfBoundsException extends IndexOutOfBoundsException {
 // Public Constructors
 public StringIndexOutOfBoundsException();
 public StringIndexOutOfBoundsException(String s);
 public StringIndexOutOfBoundsException(int index);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->RuntimeException-> IndexOutOfBoundsException-
>StringIndexOutOfBoundsException

java.lang.StringBuffer (JDK
1.0)

java.lang.System (JDK 1.0)

Chapter 25
The java.lang Package

25.62 java.lang.ThreadDeath (JDK 1.0)

Signals that a thread should terminate. This error is thrown in a thread when the Thread.stop()
method is called for that thread. This is an unusual Error type that simply causes a thread to be
terminated, but does not print an error message or cause the interpreter to exit. You may catch
ThreadDeath errors to do any necessary cleanup for a thread, but if you do, you must re-throw the
error, so that the thread actually terminates.

public class ThreadDeath extends Error {
 // Default Constructor: public ThreadDeath()
}

Hierarchy:

Object->Throwable(Serializable)->Error->ThreadDeath

java.lang.Thread (JDK 1.0) java.lang.ThreadGroup (JDK
1.0)

Chapter 25
The java.lang Package

25.65 java.lang.UnknownError (JDK 1.0)

Signals that an unknown error has occurred at the level of the Java Virtual Machine.

public class UnknownError extends VirtualMachineError {
 // Public Constructors
 public UnknownError();
 public UnknownError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->VirtualMachineError->UnknownError

java.lang.Throwable (JDK
1.0)

java.lang.UnsatisfiedLinkError
(JDK 1.0)

Chapter 25
The java.lang Package

25.66 java.lang.UnsatisfiedLinkError (JDK 1.0)

Signals that Java cannot satisfy all of the links in a class that it has loaded.

public class UnsatisfiedLinkError extends LinkageError {
 // Public Constructors
 public UnsatisfiedLinkError();
 public UnsatisfiedLinkError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->UnsatisfiedLinkError

java.lang.UnknownError
(JDK 1.0)

java.lang.VerifyError (JDK
1.0)

Chapter 25
The java.lang Package

25.67 java.lang.VerifyError (JDK 1.0)

Signals that a class has not passed the byte-code verification procedures.

public class VerifyError extends LinkageError {
 // Public Constructors
 public VerifyError();
 public VerifyError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->LinkageError->VerifyError

java.lang.UnsatisfiedLinkError
(JDK 1.0)

java.lang.VirtualMachineError
(JDK 1.0)

Chapter 25
The java.lang Package

25.68 java.lang.VirtualMachineError (JDK 1.0)

An abstract error type that serves as superclass for a group of errors related to the Java Virtual Machine.
See InternalError, UnknownError, OutOfMemoryError, and StackOverflowError.

public abstract class VirtualMachineError extends Error {
 // Public Constructors
 public VirtualMachineError();
 public VirtualMachineError(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Error->VirtualMachineError

Extended By:

InternalError, OutOfMemoryError, StackOverflowError, UnknownError

java.lang.VerifyError (JDK
1.0)

java.lang.Void (JDK 1.1)

Chapter 24
The java.io Package

24.22 java.io.FileWriter (JDK 1.1)

FileWriter is a convenience subclass of OutputStreamWriter that is useful when you want to write text (as
opposed to binary data) to a file. You create a FileWriter by specifying the file to be written to, and optionally
specifying whether the data should be appended to the end of an existing file instead of overwriting that file.

The FileWriter class creates an internal FileOutputStream to write bytes to the specified file, and uses the
functionality of its superclass, OutputStreamWriter, to convert the Unicode characters written to the stream
characters into bytes using the default encoding of the default locale. (If you want to use an encoding other than the
default, you cannot use FileWriter; in that case you must create your own OutputStreamWriter and
FileOutputStream.)

Because FileWriter is a trivial subclass of OutputStreamWriter, it does not define any methods of its own, but
simply inherits them from its superclass.

public class FileWriter extends OutputStreamWriter {
 // Public Constructors
 public FileWriter(String fileName) throws IOException;
 public FileWriter(String fileName, boolean append) throws IOException;
 public FileWriter(File file) throws IOException;
 public FileWriter(FileDescriptor fd);
}

Hierarchy:

Object->Writer->OutputStreamWriter->FileWriter

java.io.FileReader (JDK 1.1) java.io.FilenameFilter (JDK
1.0)

Chapter 28
The java.net Package

28.14 java.net.ProtocolException (JDK 1.0)

Signals a protocol error in the Socket class.

public class ProtocolException extends IOException {
 // Public Constructors
 public ProtocolException(String host);
 public ProtocolException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->ProtocolException

Thrown By:

HttpURLConnection.setRequestMethod()

java.net.NoRouteToHostException
(JDK 1.1)

java.net.ServerSocket (JDK
1.0)

Chapter 28
The java.net Package

28.17 java.net.SocketException (JDK 1.0)

Signals an exceptional condition while using a socket.

public class SocketException extends IOException {
 // Public Constructors
 public SocketException(String msg);
 public SocketException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->SocketException

Extended By:

BindException, ConnectException, NoRouteToHostException

Thrown By:

DatagramSocket(), DatagramSocket.getSoTimeout(), DatagramSocket.setSoTimeout(),
DatagramSocketImpl.bind(), DatagramSocketImpl.create(), DatagramSocketImpl.getOption(),
DatagramSocketImpl.setOption(), MulticastSocket.getInterface(), MulticastSocket.setInterface(),
ServerSocket.setSoTimeout(), Socket(), Socket.getSoLinger(), Socket.getSoTimeout(),
Socket.getTcpNoDelay(), Socket.setSoLinger(), Socket.setSoTimeout(), Socket.setTcpNoDelay(),
SocketImpl.getOption(), SocketImpl.setOption()

java.net.Socket (JDK 1.0) java.net.SocketImpl (JDK 1.0)

Chapter 19
The java.awt.datatransfer

Package

19.6
java.awt.datatransfer.UnsupportedFlavorException
(JDK 1.1)

An exception of this type signals that a Transferable object could not provide data in the requested
format.

public class UnsupportedFlavorException extends Exception {
 // Public Constructor
 public UnsupportedFlavorException(DataFlavor flavor);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->UnsupportedFlavorException

Thrown By:

StringSelection.getTransferData(), Transferable.getTransferData()

java.awt.datatransfer.Transferable
(JDK 1.1)

The java.awt.event Package

Chapter 22
The java.awt.peer Package

22.13 java.awt.peer.LightweightPeer (JDK 1.1)

public interface LightweightPeer extends ComponentPeer {
}

Returned By:

Toolkit.createComponent()

java.awt.peer.LabelPeer (JDK
1.0)

java.awt.peer.ListPeer (JDK
1.0)

Chapter 22
The java.awt.peer Package

22.19 java.awt.peer.PanelPeer (JDK 1.0)

public interface PanelPeer extends ContainerPeer {
}

Hierarchy:

(PanelPeer(ContainerPeer(ComponentPeer)))

Returned By:

Toolkit.createPanel()

java.awt.peer.MenuPeer (JDK
1.0)

java.awt.peer.PopupMenuPeer
(JDK 1.1)

Chapter 31
The java.util.zip Package

31.6 java.util.zip.DataFormatException (JDK 1.1)

Signals that invalid or corrupt data has been encountered while uncompressing data.

public class DataFormatException extends Exception {
 // Public Constructors
 public DataFormatException();
 public DataFormatException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->DataFormatException

Thrown By:

Inflater.inflate()

java.util.zip.CRC32 (JDK 1.1) java.util.zip.Deflater (JDK
1.1)

Chapter 31
The java.util.zip Package

31.14 java.util.zip.ZipException (JDK 1.1)

Signals that an error has occurred in reading or writing a ZIP file.

public class ZipException extends IOException {
 // Public Constructors
 public ZipException();
 public ZipException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->ZipException

Thrown By:

ZipFile()

java.util.zip.ZipEntry (JDK
1.1)

java.util.zip.ZipFile (JDK 1.1)

Chapter 24
The java.io Package

24.9 java.io.CharConversionException (JDK 1.1)

This exception signals an error when converting bytes to characters or vice versa.

public class CharConversionException extends IOException {
 // Public Constructors
 public CharConversionException();
 public CharConversionException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->CharConversionException

java.io.CharArrayWriter (JDK
1.1)

java.io.DataInput (JDK 1.0)

Chapter 24
The java.io Package

24.14 java.io.EOFException (JDK 1.0)

An IOException that signals the end-of-file.

public class EOFException extends IOException {
 // Public Constructors
 public EOFException();
 public EOFException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->EOFException

java.io.DataOutputStream
(JDK 1.0)

java.io.Externalizable (JDK
1.1)

Chapter 24
The java.io Package

24.19 java.io.FileNotFoundException (JDK 1.0)

An IOException that signals that a specified file cannot be found.

public class FileNotFoundException extends IOException {
 // Public Constructors
 public FileNotFoundException();
 public FileNotFoundException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->FileNotFoundException

Thrown By:

FileInputStream(), FileReader()

java.io.FileInputStream (JDK
1.0)

java.io.FileOutputStream
(JDK 1.0)

Chapter 24
The java.io Package

24.21 java.io.FileReader (JDK 1.1)

FileReader is a convenience subclass of InputStreamReader that is useful when you want to read text
(as opposed to binary data) from a file. You create a FileReader by specifying the file to be read, in any of
three possible forms. The FileReader constructor internally creates a FileInputStream to read bytes
from the specified file, and uses the functionality of its superclass, InputStreamReader, to convert those
bytes from characters in the local encoding to the Unicode characters used by Java.

Because FileReader is a trivial subclass of InputStreamReader, it does not define any read() methods
or other methods of its own. Instead, it inherits all its methods from its superclass.

If you want to read Unicode characters from a file that uses some encoding other than the default encoding for the
locale, you must explicitly create your own InputStreamReader to perform the byte-to-character
conversion.

public class FileReader extends InputStreamReader {
 // Public Constructors
 public FileReader(String fileName) throws FileNotFoundException;
 public FileReader(File file) throws FileNotFoundException;
 public FileReader(FileDescriptor fd);
}

Hierarchy:

Object->Reader->InputStreamReader->FileReader

java.io.FileOutputStream
(JDK 1.0)

java.io.FileWriter (JDK 1.1)

Chapter 24
The java.io Package

24.32 java.io.InvalidObjectException (JDK 1.1)

This exception should be thrown by the validateObject() method of an object that implements the
ObjectInputValidation interface when a deserialized object fails an input validation test for any
reason.

public class InvalidObjectException extends ObjectStreamException {
 // Public Constructor
 public InvalidObjectException(String reason);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->ObjectStreamException-
>InvalidObjectException

Thrown By:

ObjectInputStream.registerValidation(), ObjectInputValidation.validateObject()

java.io.InvalidClassException
(JDK 1.1)

java.io.IOException (JDK
1.0)

Chapter 24
The java.io Package

24.33 java.io.IOException (JDK 1.0)

Signals that an exceptional condition has occurred during input or output. This class has several more
specific subclasses. See EOFException, FileNotFoundException,
InterruptedIOException, and UTFDataFormatException.

public class IOException extends Exception {
 // Public Constructors
 public IOException();
 public IOException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException

Extended By:

CharConversionException, EOFException, FileNotFoundException, InterruptedIOException,
MalformedURLException, ObjectStreamException, ProtocolException, SocketException,
SyncFailedException, UnknownHostException, UnknownServiceException,
UnsupportedEncodingException, UTFDataFormatException, ZipException

Thrown By:

Many methods

java.io.InvalidObjectException
(JDK 1.1)

java.io.LineNumberInputStream
(JDK 1.0; Deprecated.)

Chapter 24
The java.io Package

24.36 java.io.NotActiveException (JDK 1.1)

This exception is thrown in several circumstances. It indicates that the invoked method was not invoked
at the right time or in the correct context. Typically it means that an ObjectOutputStream or
ObjectInputStream is not currently active, and therefore the requested operation could not be
performed.

public class NotActiveException extends ObjectStreamException {
 // Public Constructors
 public NotActiveException(String reason);
 public NotActiveException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->ObjectStreamException-
>NotActiveException

Thrown By:

ObjectInputStream.defaultReadObject(), ObjectInputStream.registerValidation()

java.io.LineNumberReader
(JDK 1.1)

java.io.NotSerializableException
(JDK 1.1)

Chapter 24
The java.io Package

24.37 java.io.NotSerializableException (JDK 1.1)

This exception signals that an object could not be serialized. It is thrown when serialization is attempted
on an instance of a class that does not implement the Serializable interface. Note that it is also
thrown when an attempt is made to serialize a Serializable object that refers to (or "contains") an
object that is not Serializable.

A subclass of a class that is Serializable can prevent itself from being serialized by throwing this
exception from its writeObject() and/or readObject() methods.

public class NotSerializableException extends ObjectStreamException {
 // Public Constructors
 public NotSerializableException(String classname);
 public NotSerializableException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->ObjectStreamException-
>NotSerializableException

java.io.NotActiveException
(JDK 1.1)

java.io.ObjectInput (JDK 1.1)

Chapter 24
The java.io Package

24.44 java.io.ObjectStreamException (JDK 1.1)

This class is the superclass of a number of more specific exception types that may be raised in the
process of serializing and deserializing objects with the ObjectOutputStream and
ObjectInputStream classes.

public abstract class ObjectStreamException extends IOException {
 // Protected Constructors
 protected ObjectStreamException(String classname);
 protected ObjectStreamException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->ObjectStreamException

Extended By:

InvalidClassException, InvalidObjectException, NotActiveException, NotSerializableException,
OptionalDataException, StreamCorruptedException, WriteAbortedException

java.io.ObjectStreamClass
(JDK 1.1)

java.io.OptionalDataException
(JDK 1.1)

Chapter 24
The java.io Package

24.59 java.io.Serializable (JDK 1.1)

The Serializable interface defines no methods or constants. A class should implement this interface
simply to indicate that it allows itself to be serialized and deserialized with
ObjectOutputStream.writeObject() and ObjectInputStream.readObject().

Objects that need special handling during serialization or deserialization may implement one or both of
the following methods. Note, however, that these methods are not part of the Serializable interface:

private void writeObject(java.io.ObjectOutputStream out)
 throws IOException
private void readObject(java.io.ObjectInputStream in)
 throws IOException, ClassNotFoundException;

Typically the writeObject() method performs any necessary cleanup or preparation for
serialization, invokes the defaultWriteObject() method of the ObjectOutputStream to
serialize the non-transient fields of the class, and then optionally writes any additional data that are
required. Similarly, the readObject() method typically invokes the defaultReadObject()
method of the ObjectInputStream, reads any additional data written by the corresponding
writeObject() method, and finally performs any extra initialization required by the object. The
readObject() method may also register an ObjectInputValidation object to validate the
object once it is completely deserialized.

public interface Serializable {
}

Extended By:

Externalizable

Implemented By:

BitSet, Boolean, BorderLayout, BreakIterator, Calendar, CardLayout, Character, CheckboxGroup, Class,
Collator, Color, Component, Cursor, Date, DateFormatSymbols, DecimalFormatSymbols, Dimension,
Event, EventObject, File, FlowLayout, Font, FontMetrics, Format, GridBagConstraints, GridBagLayout,
GridLayout, Hashtable, InetAddress, Insets, Locale, MediaTracker, MenuComponent, MenuShortcut,
Number, ObjectStreamClass, Point, Polygon, PropertyChangeSupport, Random, Rectangle, String,
StringBuffer, SystemColor, Throwable, TimeZone, URL, Vector, VetoableChangeSupport

java.io.SequenceInputStream
(JDK 1.0)

java.io.StreamCorruptedException
(JDK 1.1)

Chapter 24
The java.io Package

24.60 java.io.StreamCorruptedException (JDK 1.1)

This exception signals that the data stream being read by an ObjectInputStream has been corrupted
and does not contain valid serialized object data.

public class StreamCorruptedException extends ObjectStreamException {
 // Public Constructors
 public StreamCorruptedException(String reason);
 public StreamCorruptedException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->ObjectStreamException-
>StreamCorruptedException

Thrown By:

ObjectInputStream(), ObjectInputStream.readStreamHeader()

java.io.Serializable (JDK 1.1) java.io.StreamTokenizer (JDK
1.0)

Chapter 24
The java.io Package

24.65 java.io.SyncFailedException (JDK 1.1)

Signals that a call to FileDescriptor.sync() did not complete successfully.

public class SyncFailedException extends IOException {
 // Public Constructor
 public SyncFailedException(String desc);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->SyncFailedException

Thrown By:

FileDescriptor.sync()

java.io.StringWriter (JDK
1.1)

java.io.UnsupportedEncodingException
(JDK 1.1)

Chapter 24
The java.io Package

24.66 java.io.UnsupportedEncodingException (JDK
1.1)

This exception signals that a requested character encoding is not supported by the current Java Virtual
Machine.

public class UnsupportedEncodingException extends IOException {
 // Public Constructors
 public UnsupportedEncodingException();
 public UnsupportedEncodingException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->UnsupportedEncodingException

Thrown By:

ByteArrayOutputStream.toString(), InputStreamReader(), OutputStreamWriter(), String(),
String.getBytes()

java.io.SyncFailedException
(JDK 1.1)

java.io.UTFDataFormatException
(JDK 1.0)

Chapter 24
The java.io Package

24.67 java.io.UTFDataFormatException (JDK 1.0)

An IOException that signals that a malformed UTF-8 string has been encountered by a class that
implements the DataInput interface. UTF-8 is an ASCII-compatible "transformation format" for
Unicode characters that is often used to store and transmit Unicode text.

public class UTFDataFormatException extends IOException {
 // Public Constructors
 public UTFDataFormatException();
 public UTFDataFormatException(String s);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->UTFDataFormatException

java.io.UnsupportedEncodingException
(JDK 1.1)

java.io.WriteAbortedException
(JDK 1.1)

Chapter 11

11. Internationalization
Contents:
A Word About Locales
Unicode
Character Encodings
Handling Local Customs
Localizing User-Visible Messages
Formatted Messages

Internationalization is the process of making a program flexible enough to run correctly in any locale, as
discussed in Chapter 4, What's New in Java 1.1. The required corollary to internationalization is
localization--the process of arranging for a program to run in a specific locale.

There are several distinct steps to the task of internationalization. Java 1.1 addresses these steps with
several different mechanisms:

● A program must be able to read, write, and manipulate localized text. Java uses the Unicode
character encoding, which by itself is a huge step towards internationalization. In addition, in Java
1.1 the InputStreamReader and OutputStreamWriter classes convert text from a
locale-specific encoding to Unicode and from Unicode to a locale-specific encoding, respectively.

● A program must conform to local customs when displaying dates and times, formatting numbers,
and sorting strings. Java addresses these issues with the classes in the new java.text package.

● A program must display all user-visible text in the local language. Translating the messages a
program displays is always one of the main tasks in localizing a program. A more important task
is writing the program so that all user-visible text is fetched at runtime, rather than hard-coded
directly into the program. Java 1.1 facilitates this process with the ResourceBundle class and
its subclasses in the java.util package.

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_06.htm

This chapter discusses all three of these aspects of internationalization.

11.1 A Word About Locales

A locale represents a geographic, political, or cultural region. In Java 1.1, locales are represented by the
java.util.Locale class. A locale is frequently defined by a language, which is represented by its
standard lowercase two-letter code, such as en (English) or fr (French). Sometimes, however, language
alone is not sufficient to uniquely specify a locale, and a country is added to the specification. A country
is represented by an uppercase two-letter code. For example, the United States English locale (en_US) is
distinct from the British English locale (en_GB), and the French spoken in Canada (fr_CA) is different
from the French spoken in France (fr_FR). Occasionally, the scope of a locale is further narrowed with
the addition of a system-dependent "variant" string.

The Locale class maintains a static default locale, which can be set and queried with
Locale.setDefault() and Locale.getDefault(). Locale-sensitive methods in Java 1.1
typically come in two forms. One uses the default locale and the other uses a Locale object that is
explicitly specified as an argument. A program can create and use any number of non-default Locale
objects, although it is more common simply to rely on the default locale, which is inherited from the
underlying default locale on the native platform. Locale-sensitive classes in Java often provide a method
to query the list of locales that they support.

Finally, note that AWT components in Java 1.1 have a locale property, so it is possible for different
components to use different locales. (Most components, however, are not locale-sensitive; they behave
the same in any locale.)

Naming Patterns and
Conventions

Unicode

Chapter 23
The java.beans Package

23.8 java.beans.IntrospectionException (JDK 1.1)

Signals that introspection on a Java bean could not be completed. Typically this indicates a bug in the
way the bean or its associated BeanInfo class is defined.

public class IntrospectionException extends Exception {
 // Public Constructor
 public IntrospectionException(String mess);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IntrospectionException

Thrown By:

EventSetDescriptor(), IndexedPropertyDescriptor(), Introspector.getBeanInfo(), PropertyDescriptor()

java.beans.IndexedPropertyDescriptor
(JDK 1.1)

java.beans.Introspector
(JDK 1.1)

Chapter 23
The java.beans Package

23.11 java.beans.ParameterDescriptor (JDK 1.1)

A ParameterDescriptor object is a type of FeatureDescriptor that describes an argument or
parameter to a method of a Java bean. The BeanInfo class for a Java bean optionally creates
ParameterDescriptor objects that describe the parameters of the methods that the bean exports.
While the BeanInfo class creates and initializes ParameterDescriptor objects, it is typically
only application builders and similar tools that use these objects to obtain information about method
parameters supported by the bean.

The ParameterDescriptor class is a trivial subclass of FeatureDescriptor, and does not
provide any new methods. Thus, you should use the methods of FeatureDescriptor to provide
information about method parameters.

public class ParameterDescriptor extends FeatureDescriptor {
 // Default Constructor: public ParameterDescriptor()
}

Hierarchy:

Object->FeatureDescriptor->ParameterDescriptor

Passed To:

MethodDescriptor()

Returned By:

MethodDescriptor.getParameterDescriptors()

java.beans.MethodDescriptor
(JDK 1.1)

java.beans.PropertyChangeEvent
(JDK 1.1)

Chapter 28
The java.net Package

28.2 java.net.ConnectException (JDK 1.1)

This exception signals that a socket could not be connected to a remote address and port. This means that
the remote host could be reached, but is not responding, perhaps because there is no process on that host
that is listening on the specified port.

public class ConnectException extends SocketException {
 // Public Constructors
 public ConnectException(String msg);
 public ConnectException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->SocketException->ConnectException

java.net.BindException (JDK
1.1)

java.net.ContentHandler (JDK
1.0)

Chapter 28
The java.net Package

28.11 java.net.MalformedURLException (JDK 1.0)

Signals that an unparseable URL specification has been passed to a method.

public class MalformedURLException extends IOException {
 // Public Constructors
 public MalformedURLException();
 public MalformedURLException(String msg);
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->MalformedURLException

Thrown By:

URL(default.htm)

java.net.InetAddress (JDK
1.0)

java.net.MulticastSocket
(JDK 1.1)

Chapter 28
The java.net Package

28.13 java.net.NoRouteToHostException (JDK 1.1)

This exception signals that a socket could not be connected to a remote host, because the host could not
be contacted. Typically this means that some link in the network between the local machine and the
remote host is down, or that the host is behind a firewall.

public class NoRouteToHostException extends SocketException {
 // Public Constructors
 public NoRouteToHostException(String msg);
 public NoRouteToHostException();
}

Hierarchy:

Object->Throwable(Serializable)->Exception->IOException->SocketException-
>NoRouteToHostException

java.net.MulticastSocket
(JDK 1.1)

java.net.ProtocolException
(JDK 1.0)

Chapter 22
The java.awt.peer Package

22.2 java.awt.peer.CanvasPeer (JDK 1.0)

public interface CanvasPeer extends ComponentPeer {
}

Returned By:

Toolkit.createCanvas()

java.awt.peer.ButtonPeer
(JDK 1.0)

java.awt.peer.CheckboxMenuItemPeer
(JDK 1.0)

Chapter 22
The java.awt.peer Package

22.10 java.awt.peer.FontPeer (JDK 1.1)

public interface FontPeer {
}

Returned By:

Font.getPeer(), Toolkit.getFontPeer()

java.awt.peer.FileDialogPeer
(JDK 1.0)

java.awt.peer.FramePeer
(JDK 1.0)

Chapter 10
Java Beans

10.9 Naming Patterns and Conventions

As we've seen, beanbox programs may rely on introspection of a bean to determine the list of properties,
events, and methods it supports. In order for this to work, bean developers must follow a set of standard
naming conventions, sometimes referred to as JavaBeans "design patterns." These patterns specify, for
example, that the getter and setter accessor methods for a property should begin with get and set. Not all
of the patterns are absolute requirements. If a bean has accessor methods with different names, it is
possible to use a PropertyDescriptor object, specified in a BeanInfo class, to specify the accessor
methods for the property. Note, however, that although an accessor method name is not required to follow
the pattern, the method is required to have the exact type signature specified by the pattern.

This section lists the design patterns for bean properties, events, and methods. It also lists other
conventions and requirements that you should keep in mind when developing beans.

Java Bean Patterns

Beans

class name:

Any

superclass:

Any

constructor:

Must have a no-argument constructor, or a serialized template file

packaging:

JAR file manifest entry specifies Java-Bean: True

Properties (property p of type T)

getter:

public T getP()

setter:

public void setP(T value)

Boolean Properties (property p of type boolean)

getter:

public boolean getP()

(boolean value)

or public boolean is P() setter:

public void setP

Indexed Properties (property p of type T[])

array getter:

public T[] getP()

array setter:

public void setP(T[] value)

element getter:

public T getP(int index)

element setter:

public void setP(int index, T value)

Bound Properties (property p of type T)

getter:

Same as regular property

setter:

Same as regular property

listeners:

One event listener list for all bound properties of a bean

listener registration:

public void addPropertyChangeListener (PropertyChangeListener l)

listener removal:

public void removePropertyChangeListener (PropertyChangeListener l)

Constrained Properties (property p of type T)

getter:

Same as regular property

setter:

public void setP(T value)
 throws PropertyVetoException

listeners:

One event listener list for all constrained properties of a bean

listener registration:

public void addVetoableChangeListener (VetoableChangeListener l)

listener removal:

public void removeVetoableChangeListener
 (VetoableChangeListener l)

Events (event named E)

event class name:

EEvent

listener name:

EListener

listener methods:

public void methodname(EEvent e)

listener registration:

public void addEListener(EListener l)

listener removal:

public void removeEListener(EListener l)

Unicast Events (event named E only one listener allowed)

listener registration:

public void addEListener(EListener l)
 throws TooManyListenersException

listener removal:

public void removeEListener(EListener l)

Methods

method name:

Any

method args:

Any; some tools only recognize no-argument methods

BeanInfo Classes (for bean B)

class name:

BBeanInfo

Property Editors (for properties of type T)

class name:

TEditor

constructor:

Must have a no-argument constructor

Property Editors (for individual properties)

class name:

Any; register via PropertyDescriptor

constructor:

Must have a no-argument constructor

Customizers (for bean B)

class name:

Any; register via BeanDescriptor (BCustomizer by convention)

superclass:

Must be a component; typically extends Panel

constructor:

Must have a no-argument constructor

Documentation File (for bean B)

default docs:

B.html

localized docs:

locale/B.html

Defining a Bean Customizer Internationalization

Chapter 11
Internationalization

11.2 Unicode

Java uses the Unicode character encoding. Java 1.0 used Unicode version 1.1, while Java 1.1 has adopted
the newer Unicode 2.0 standard. Unicode is a 16-bit character encoding established by the Unicode
Consortium, which describes the standard as follows (see http://unicode.org):

The Unicode Worldwide Character Standard is a character coding system designed to
support the interchange, processing, and display of the written texts of the diverse
languages of the modern world. In addition, it supports classical and historical texts of
many written languages.

In its current version (2.0), the Unicode standard contains 38,885 distinct coded characters
derived from 25 supported scripts. These characters cover the principal written languages
of the Americas, Europe, the Middle East, Africa, India, Asia, and Pacifica.

In the canonical form of the Unicode encoding, which is what Java char and String types use, every
character occupies two bytes. The Unicode characters \u0020 to \u007E are equivalent to the ASCII and
ISO8859-1 (Latin-1) characters 0x20 through 0x7E. The Unicode characters \u00A0 to \u00FF are
identical to the ISO8859-1 characters 0xA0 to 0xFF. Thus there is a trivial mapping between Latin-1 and
Unicode characters. A number of other portions of the Unicode encoding are based on pre-existing
standards, such as ISO8859-5 (Cyrillic) and ISO8859-8 (Hebrew), though the mappings between these
standards and Unicode may not be as trivial as the Latin-1 mapping.

Note that Unicode support is quite limited on many platforms. One of the difficulties with the use of
Unicode is the poor availability of fonts to display all of the Unicode characters. Figure 11.1 shows the
characters that are available on a typical configuration of the U.S. English Windows 95 platform. Note
the special box glyph used to indicate undefined characters.

Figure 11.1: Some Unicode characters and their encodings

file:///C|/download/unicode.org/default.htm

[Graphic: Figure 11-1]

Unicode is similar to, but not the same as, ISO 10646, the UCS (Universal Character Set) encoding. UCS
is a 2- or 4-byte encoding originally intended to contain all national standard character encodings. For
example, it was to include the separate Chinese, Japanese, Korean, and Vietnamese encodings for Han
ideographic characters. Unicode, in contrast, "unifies" these disparate encodings into a single set of Han
characters that work for all four countries. Unicode has been so successful, however, that ISO 10646 has
adopted it in place of non-unified encodings. Thus, ISO 10646 is effectively Unicode, with the option of
two extra bytes for expansion purposes.

Unicode is a trademark of the Unicode Consortium. Version 2.0 of the standard is defined by the book
The Unicode Standard, Version 2.0 (published by Addison-Wesley, ISBN 0-201-48345-9). Further
information about the Unicode standard and the Unicode Consortium can be obtained at
http://unicode.org/.

file:///C|/download/unicode.org/default.htm

Table 11.1 provides an overview of the Unicode 2.0 encoding.

Table 11.1: Outline of the Unicode 2.0 Encoding

Start End Description

0000 1FFF Alphabets

0000 007F Basic Latin

0080 00FF Latin-1 Supplement

0100 017F Latin Extended-A

0180 024F Latin Extended-B

0250 02AF IPA Extensions

02B0 02FF Spacing Modifier Letters

0300 036F Combining Diacritical Marks

0370 03FF Greek

0400 04FF Cyrillic

0530 058F Armenian

0590 05FF Hebrew

0600 06FF Arabic

0900 097F Devanagari

0980 09FF Bengali

0A00 0A7F Gurmukhi

0A80 0AFF Gujarati

0B00 0B7F Oriya

0B80 0BFF Tamil

0C00 0C7F Telugu

0C80 0CFF Kannada

0D00 0D7F Malayalam

0E00 0E7F Thai

0E80 0EFF Lao

0F00 0FBF Tibetan

10A0 10FF Georgian

1100 11FF Hangul Jamo

1E00 1EFF Latin Extended Additional

1F00 1FFF Greek Extended

2000 2FFF Symbols and Punctuation

2000 206F General Punctuation

2070 209F Superscripts and Subscripts

20A0 20CF Currency Symbols

20D0 20FF Combining Marks for Symbols

2100 214F Letterlike Symbols

2150 218F Number Forms

2190 21FF Arrows

2200 22FF Mathematical Operators

2300 23FF Miscellaneous Technical

2400 243F Control Pictures

2440 245F Optical Character Recognition

2460 24FF Enclosed Alphanumerics

2500 257F Box Drawing

2580 259F Block Elements

25A0 25FF Geometric Shapes

2600 26FF Miscellaneous Symbols

2700 27BF Dingbats

3000 33FF CJK Auxiliary

3000 303F CJK Symbols and Punctuation

3040 309F Hiragana

30A0 30FF Katakana

3100 312F Bopomofo

3130 318F Hangul Compatibility Jamo

3190 319F Kanbun

3200 32FF Enclosed CJK Letters and Months

3300 33FF CJK Compatibility

4E00 9FFF
CJK Unified Ideographs Han characters used in China, Japan, Korea, Taiwan, and
Vietnam

AC00 D7A3 Hangul Syllables

D800 DFFF Surrogates

D800 DB7F High Surrogates

DB80 DBFF High Private Use Surrogates

DC00 DFFF Low Surrogates

E000 F8FF Private Use

F900 FFFF Miscellaneous

F900 FAFF CJK Compatibility Ideographs

FB00 FB4F Alphabetic Presentation Forms

FB50 FDFF Arabic Presentation Forms-A

FE20 FE2F Combining Half Marks

FE30 FE4F CJK Compatibility Forms

FE50 FE6F Small Form Variants

FE70 FEFE Arabic Presentation Forms-B

FEFF FEFF Specials

FF00 FFEF Halfwidth and Fullwidth Forms

FFF0 FFFF Specials

Unicode and Local Encodings

While Java programs use Unicode text internally, Unicode is not the customary character encoding for
most countries or locales. Thus, an important requirement for Java programs is to be able to convert text
from the local encoding to Unicode as it is read (from a file or network, for example) and to be able to
convert text from Unicode to the local encoding as it is written. In Java 1.0, this requirement is not well
supported. In Java 1.1, however, the conversion can be done with the
java.io.InputStreamReader and java.io.OutputStreamWriter classes, respectively.
These classes load an appropriate ByteToCharConverter or CharToByteConverter class to
perform the conversion. Note that these converter classes are part of the sun.io package and are not for
public use (although an explicit conversion interface may be defined in a later release of Java).

The UTF-8 Encoding

The canonical two-bytes per character encoding is useful for the manipulation of character data and is the
internal representation used throughout Java. However, because a large amount of text used by Java
programs is 8-bit text, and because there are so many existing computer systems that support only 8-bit
characters, the 16-bit canonical form is usually not the most efficient way to store Unicode text nor the
most portable way to transmit it.

Because of this, other encodings called "transformation formats" have been developed. Java provides
simple support for the UTF-8 encoding with the DataInputStream.readUTF() and
DataOutputStream.writeUTF() methods. UTF-8 is a variable-width or "multi-byte" encoding
format; this means that different characters require different numbers of bytes. In UTF-8, the standard
ASCII characters occupy only one byte, and remain untouched by the encoding (i.e., a string of ASCII
characters is a legal UTF-8 string). As a tradeoff, however, other Unicode characters occupy two or three
bytes.

In UTF-8, Unicode characters between \u0000 and \u007F occupy a single byte, which has a value of
between 0x00 and 0x7F, and which always has its high-order bit set to 0. Characters between \u0080
and \u07FF occupy two bytes, and characters between \u0800 and \uFFFF occupy three bytes. The
first byte of a two-byte character always has high-order bits 110, and the first byte of a three-byte
character always has high-order bits 1110. Since single-byte characters always have 0 as their high-
order bit, the one-, two-, and three-byte characters can easily be distinguished from each other.

The second and third bytes of two- and three-byte characters always have high-order bits 10, which
distinguishes them from one-byte characters, and also distinguishes them from the first byte of a two- or
three-byte sequence. This is important because it allows a program to locate the start of a character in a
multi-byte sequence.

The remaining bits in each character (i.e., the bits that are not part of one of the required high-order bit
sequences) are used to encode the actual Unicode character data. In the single-byte form, there are seven
bits available, suitable for encoding characters up to \u007F. In the two-byte form, there are 11 data
bits available, which is enough to encode values to \u07FF, and in the three-byte form there are 16
available data bits, which is enough to encode all 16-bit Unicode characters. Table 11.2 summarizes the
UTF-8 encoding.

Table 11.2: The UTF-8 Encoding

Start Character End Character Required Data Bits Binary Byte Sequence (x = data bits)

\u0000 \u007F 7 0xxxxxxx

\u0080 \u07FF 11 110xxxxx 10xxxxxx

\u0800 \uFFFF 16 1110xxxx 10xxxxxx 10xxxxxx

The UTF-8 has the following desirable features:

● All ASCII characters are one-byte UTF-8 characters. A legal ASCII string is a legal UTF-8 string.

● Any non-ASCII character (i.e., any character with the high-order bit set) is part of a multi-byte

character.

● The first byte of any UTF-8 character indicates the number of additional bytes in the character.

● The first byte of a multi-byte character is easily distinguished from the subsequent bytes. Thus, it
is easy to locate the start of a character from an arbitrary position in a data stream.

● It is easy to convert between UTF-8 and Unicode.

● The UTF-8 encoding is relatively compact. For text with a large percentage of ASCII characters,
it is more compact than Unicode. In the worst case, a UTF-8 string is only 50% larger than the
corresponding Unicode string.

Java actually uses a slightly modified form of UTF-8. The Unicode character \u0000 is encoded using
a two-byte sequence, so that an encoded Unicode string never contains null characters.

A Word About Locales Character Encodings

Chapter 11
Internationalization

11.3 Character Encodings

Text representation has traditionally been one of the most difficult problems of internationalization. Java 1.1,
however, solves this problem quite elegantly and hides the difficult issues. Java uses Unicode internally, so it can
represent essentially any character in any commonly used written language. As noted above, the remaining task is to
convert Unicode to and from locale-specific encodings. Java 1.1 includes quite a few internal "byte-to-char"
converters and "char-to-byte" converters that handle converting locale-specific character encodings to Unicode and
vice versa. While the converters themselves are not public, they are accessed through the InputStreamReader
and OutputStreamWriter classes, which are two of the new character streams included in the java.io
package.

Any program can automatically handle locale-specific encodings simply by using these new character stream classes
to do their textual input and output. (And in addition to automatic encoding conversion, the program also benefits
from the greatly improved efficiency of these new classes over the byte streams of Java 1.0.)

Example 11.1 shows a simple program that works with character encodings. It converts a file from one specified
encoding to another by converting from the first encoding to Unicode and then from Unicode to the second encoding.
Note that most of the program is taken up with the mechanics of parsing argument lists, handling exceptions, and so
on. Only a few lines are required to create the InputStreamReader and OutputStreamWriter classes that
perform the two halves of the conversion. Also note that exceptions are handled by calling
LocalizedError.display(). This method is not part of the Java 1.1 API; it is a custom method shown in
Example 11.6 at the end of this chapter.

Example 11.1: Working with Character Encodings

import java.io.*;
/** A program to convert from one character encoding to another. */
public class ConvertEncoding {
 public static void main(String[] args) {
 String from = null, to = null;
 String infile = null, outfile = null;
 for(int i = 0; i < args.length; i++) { // Parse command-line arguments.
 if (i == args.length-1) usage(); // All legal args require another.
 if (args[i].equals("-from")) from = args[++i];
 else if (args[i].equals("-to")) to = args[++i];
 else if (args[i].equals("-in")) infile = args[++i];
 else if (args[i].equals("-out")) outfile = args[++i];

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_06.htm#JNUT2-CH-11-EX-6

 else usage();
 }
 try { convert(infile, outfile, from, to); } // Attempt conversion.
 catch (Exception e) { // Handle possible exceptions.
 LocalizedError.display(e); // Defined at the end of this chapter.
 System.exit(1);
 }
 }
 public static void usage() {
 System.err.println("Usage: java ConvertEncoding <options>\n" +
 "Options:\n\t-from <encoding>\n\t-to <encoding>\n\t" +
 "-in <file>\n\t-out <file>");
 System.exit(1);
 }
 public static void convert(String infile, String outfile,
 String from, String to)
 throws IOException, UnsupportedEncodingException
 {
 // Set up byte streams.
 InputStream in;
 if (infile != null) in = new FileInputStream(infile);
 else in = System.in;
 OutputStream out;
 if (outfile != null) out = new FileOutputStream(outfile);
 else out = System.out;
 // Use default encoding if no encoding is specified.
 if (from == null) from = System.getProperty("file.encoding");
 if (to == null) to = System.getProperty("file.encoding");
 // Set up character streams.
 Reader r = new BufferedReader(new InputStreamReader(in, from));
 Writer w = new BufferedWriter(new OutputStreamWriter(out, to));
 // Copy characters from input to output. The InputStreamReader converts
 // from the input encoding to Unicode, and the OutputStreamWriter converts
 // from Unicode to the output encoding. Characters that cannot be
 // represented in the output encoding are output as '?'
 char[] buffer = new char[4096];
 int len;
 while((len = r.read(buffer)) != -1) // Read a block of input.
 w.write(buffer, 0, len); // And write it out.
 r.close(); // Close the input.
 w.flush(); // Flush and close output.
 w.close();
 }
}

Unicode Handling Local Customs

Chapter 11
Internationalization

11.4 Handling Local Customs

The second problem of internationalization is the task of following local customs and conventions in areas like date
and time formatting. The java.text package defines classes to help with this duty.

The NumberFormat class is used to format numbers, monetary amounts, and percentages in a locale-dependent way
for display to the user. This is necessary because different locales have different conventions for number formatting.
For example, in France, a comma is used as a decimal separator instead of a period, as used in many English speaking
countries. A NumberFormat object can use the default locale or any locale you specify.

The DateFormat class is used to format dates and times in a locale-dependent way for display to the user. Different
countries have different conventions. Should the month or day be displayed first? Should periods or colons be used to
separate fields of the time? What are the names of the months in the language of the locale? A DateFormat object
can simply use the default locale or it can use any locale you specify. The DateFormat class is used in conjunction
with the TimeZone and Calendar classes of java.util. The TimeZone object tells the DateFormat what
time zone the date should be interpreted in, while the Calendar object specifies how the date itself should be
broken down into days, weeks, months, and years. Almost all locales use the standard GregorianCalendar.

The Collator class is used to compare strings in a locale-dependent way. This is necessary because different
languages "alphabetize" strings in different ways (and some languages don't even use alphabets). In traditional
Spanish, for example, the letters "ch" are treated as a single character that comes between "c" and "d" for the purposes
of sorting. When you need to sort strings or search for a string within Unicode text, you should use a Collator
object, either one created to work with the default locale or one created for a specified locale.

The BreakIterator class allows you to locate character, word, line, and sentence boundaries in a locale-
dependent way. This is useful when you need to recognize such boundaries in Unicode text, as when you are
implementing a word-wrapping algorithm.

Example 11.3 shows a class that uses the NumberFormat and DateFormat classes to display a hypothetical stock
portfolio to the user following local conventions. The program uses various NumberFormat and DateFormat
objects to format (using the format() method) different types of numbers and dates. These Format objects all
operate using the default locale, but could have been created with an explicitly specified locale. Example 11.2 shows
the output of this program in American, Canadian, and French locales. Note the different treatment of dates, numbers,
and monetary quantities in these three locales.

Example 11.2: Dates and Numbers Formatted for Three Locales

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm

American English locale (en_US)
Portfolio value at April 08, 1997 6:57:40 PM PDT:
Symbol Shares Bought On At Quote Change
XXX 400 6/15/96 $11.90 $13.00 9%
YYY 1,100 9/14/96 $71.09 $27.25 -61%
ZZZ 6,000 6/27/91 $23.37 $89.12 281%
Canadian English locale (en_CA)
Portfolio value at April 8, 1997 9:57:40 CDT PM:
Symbol Shares Bought On At Quote Change
XXX 400 15/06/96 $11.90 $13.00 9%
YYY 1,100 14/09/96 $71.09 $27.25 -61%
ZZZ 6,000 27/06/91 $23.37 $89.12 281%
French locale (fr_FR)
Portfolio value at 9 avril 1997 03:57:40 GMT+02:00:
Symbol Shares Bought On At Quote Change
XXX 400 15/06/96 11,90 F 13,00 F 9%
YYY 1 100 14/09/96 71,09 F 27,25 F -61%
ZZZ 6 000 27/06/91 23,37 F 89,12 F 281%

Example 11.3: Formatting Dates and Numbers in an Internationalized Program

import java.text.*;
import java.util.Date;
/**
 * A partial implementation of a hypothetical stock portfolio class.
 * We use it only to demonstrate number and date internationalization.
 */
public class Portfolio {
 EquityPosition[] positions;
 Date lastQuoteTime = new Date();
 public void print() {
 // Obtain NumberFormat and DateFormat objects to format our data.
 NumberFormat number = NumberFormat.getInstance();
 NumberFormat price = NumberFormat.getCurrencyInstance();
 NumberFormat percent = NumberFormat.getPercentInstance();
 DateFormat shortdate = DateFormat.getDateInstance(DateFormat.SHORT);
 DateFormat fulldate = DateFormat.getDateTimeInstance(DateFormat.LONG,
 DateFormat.LONG);
 // Print some introductory data.
 System.out.println("Portfolio value at " +
 fulldate.format(lastQuoteTime) + ":");
 System.out.println("Symbol\tShares\tBought On\tAt\t" +
 "Quote\tChange");
 // Then display the table using the format() methods of the Format objects.
 for(int i = 0; i < positions.length; i++) {
 System.out.print(positions[i].name + "\t");
 System.out.print(number.format(positions[i].shares) + "\t");
 System.out.print(shortdate.format(positions[i].purchased) + "\t");

 System.out.print(price.format(positions[i].bought) + "\t");
 System.out.print(price.format(positions[i].current) + "\t");
 double change =
 (positions[i].current - positions[i].bought)/positions[i].bought;
 System.out.println(percent.format(change));
 }
 }
 static class EquityPosition {
 String name; // Name of the stock.
 int shares; // Number of shares held.
 Date purchased; // When purchased.
 double bought, current; // Purchase price and current price (per share).
 EquityPosition(String n, int s, Date when, double then, double now) {
 name = n; shares = s; purchased = when; bought = then; current = now;
 }
 }
}

Character Encodings Localizing User-Visible
Messages

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm

Chapter 10
Java Beans

10.2 A Simple Bean

As noted above, the AWT components in Java 1.1 can all function as beans. When you write a custom GUI
component, it is not difficult to make it function as a bean as well. Example 10.1 shows the definition of a custom
component, MultiLineLabel, that is also a bean. This component is like the standard Label component, but it
can display labels that contain more than one line of text.

Much of the code in this example is taken up with the mechanics of breaking the label into separate lines and
measuring the size of each of those lines. From the standpoint of custom AWT components, however, the most
important code is in several required methods that make any component work correctly. First, there is the paint()
method, of course. All components (including applets) use this method to display themselves on the screen. Second,
the getPreferredSize() and getMinimumSize() methods return the preferred and minimum sizes for the
component. These methods must be implemented so that layout managers can correctly lay the component out.
(Note, though, that for compatibility with Java 1.0, this example defines the deprecated preferredSize() and
minimumSize() methods instead.)

MultiLineLabel extends Canvas, which is a blank component intended primarily for subclassing. When a
component is a subclass of Canvas, it is typically given its own native window in the underlying window system.
In Java 1.1, however, it is possible to define "lightweight" custom components by extending Component instead of
Canvas. A lightweight component does not have its own native window in the underlying window system.

What makes this component a bean is that all of its properties have get and set accessor methods. Because
MultiLineLabel does not respond to user input in any way, it does not define any events, so there are no event
listener registration methods required. Although it is not a formal requirement for a bean, most beanboxes attempt to
instantiate a bean by invoking its no-argument constructor. Thus, a bean should define a constructor that expects no
arguments.

Example 10.1: A Custom AWT Component and JavaBean

package oreilly.beans.yesno;
import java.awt.*;
import java.util.*;
/**
 * A custom component that displays multiple lines of text with specified
 * margins and alignment. In Java 1.1, we could extend Component instead
 * of Canvas, making this a more efficient "Lightweight component."

 */
public class MultiLineLabel extends Canvas {
 // User-specified attributes
 protected String label; // The label, not broken into lines
 protected int margin_width; // Left and right margins
 protected int margin_height; // Top and bottom margins
 protected int alignment; // The alignment of the text
 public static final int LEFT = 0, CENTER = 1, RIGHT = 2; // alignment values
 // Computed state values
 protected int num_lines; // The number of lines
 protected String[] lines; // The label, broken into lines
 protected int[] line_widths; // How wide each line is
 protected int max_width; // The width of the widest line
 protected int line_height; // Total height of the font
 protected int line_ascent; // Font height above baseline
 protected boolean measured = false; // Have the lines been measured?
 // Here are five versions of the constructor.
 public MultiLineLabel(String label, int margin_width,
 int margin_height, int alignment) {
 this.label = label; // Remember all the properties.
 this.margin_width = margin_width;
 this.margin_height = margin_height;
 this.alignment = alignment;
 newLabel(); // Break the label up into lines.
 }
 public MultiLineLabel(String label, int margin_width, int margin_height) {
 this(label, margin_width, margin_height, LEFT);
 }
 public MultiLineLabel(String label, int alignment) {
 this(label, 10, 10, alignment);
 }
 public MultiLineLabel(String label) { this(label, 10, 10, LEFT); }
 public MultiLineLabel() { this(""); }
 // Methods to set and query the various attributes of the component.
 // Note that some query methods are inherited from the superclass.
 public void setLabel(String label) {
 this.label = label;
 newLabel(); // Break the label into lines.
 measured = false; // Note that we need to measure lines.
 repaint(); // Request a redraw.
 }
 public void setFont(Font f) {
 super.setFont(f); // Tell our superclass about the new font.
 measured = false; // Note that we need to remeasure lines.
 repaint(); // Request a redraw.
 }
 public void setForeground(Color c) {
 super.setForeground(c); // Tell our superclass about the new color.

 repaint(); // Request a redraw (size is unchanged).
 }
 public void setAlignment(int a) { alignment = a; repaint(); }
 public void setMarginWidth(int mw) { margin_width = mw; repaint(); }
 public void setMarginHeight(int mh) { margin_height = mh; repaint(); }
 public String getLabel() { return label; }
 public int getAlignment() { return alignment; }
 public int getMarginWidth() { return margin_width; }
 public int getMarginHeight() { return margin_height; }
 /**
 * This method is called by a layout manager when it wants to
 * know how big we'd like to be. In Java 1.1, getPreferredSize() is
 * the preferred version of this method. We use this deprecated version
 * so that this component can interoperate with 1.0 components.
 */
 public Dimension preferredSize() {
 if (!measured) measure();
 return new Dimension(max_width + 2*margin_width,
 num_lines * line_height + 2*margin_height);
 }
 /**
 * This method is called when the layout manager wants to know
 * the bare minimum amount of space we need to get by.
 * For Java 1.1, we'd use getMinimumSize().
 */
 public Dimension minimumSize() { return preferredSize(); }
 /**
 * This method draws the label (same method that applets use).
 * Note that it handles the margins and the alignment, but that
 * it doesn't have to worry about the color or font--the superclass
 * takes care of setting those in the Graphics object we're passed.
 */
 public void paint(Graphics g) {
 int x, y;
 Dimension size = this.size(); // Use getSize() in Java 1.1.
 if (!measured) measure();
 y = line_ascent + (size.height - num_lines * line_height)/2;
 for(int i = 0; i < num_lines; i++, y += line_height) {
 switch(alignment) {
 default:
 case LEFT: x = margin_width; break;
 case CENTER: x = (size.width - line_widths[i])/2; break;
 case RIGHT: x = size.width - margin_width - line_widths[i]; break;
 }
 g.drawString(lines[i], x, y);
 }
 }
 /** This internal method breaks a specified label up into an array of lines.

 * It uses the StringTokenizer utility class. */
 protected synchronized void newLabel() {
 StringTokenizer t = new StringTokenizer(label, "\n");
 num_lines = t.countTokens();
 lines = new String[num_lines];
 line_widths = new int[num_lines];
 for(int i = 0; i < num_lines; i++) lines[i] = t.nextToken();
 }
 /** This internal method figures out how big the font is, and how wide each
 * line of the label is, and how wide the widest line is. */
 protected synchronized void measure() {
 FontMetrics fm = this.getToolkit().getFontMetrics(this.getFont());
 line_height = fm.getHeight();
 line_ascent = fm.getAscent();
 max_width = 0;
 for(int i = 0; i < num_lines; i++) {
 line_widths[i] = fm.stringWidth(lines[i]);
 if (line_widths[i] > max_width) max_width = line_widths[i];
 }
 measured = true;
 }
}

Packaging a Bean

To prepare a bean for use in a beanbox, you must package it up in a JAR file, along with any other classes or
resource files it requires. (JAR files are "Java archives"; they were introduced in Chapter 6, Applets.) Because a
single bean can have many auxiliary files, and because a JAR file can contain multiple beans, the manifest of the
JAR file must define which of the JAR file entries are beans. You create a JAR file with c option to the jar
command. When you use the m option in conjunction with c, it tells jar to read a partial manifest file that you
specify. jar uses the information in your partially-specified manifest file when creating the complete manifest for the
JAR file. To identify a class file as a bean, you simply add the following line to the file's manifest entry:

Java-Bean: True

So, to package up the MultiLineLabel class in a JAR file, you must first create a manifest "stub" file. Create a
file, perhaps named manifest.stub, with the following contents:

Name: oreilly/beans/MultiLineLabel.class
Java-Bean: True

Note that the forward slashes in the manifest file should not be changed to backward slashes on Windows systems.
The format of the JAR manifest file requires forward slashes to separate directories regardless of the platform.
Having created this partial manifest file, we can now go ahead and create the JAR file:

% jar cfm MultiLineLabel.jar manifest.stub oreilly/beans/MultiLineLabel.class

(On a Windows system, you do need to replace the forward slashes with backslashes in this command line.) If this
bean required any auxiliary files, we would specify them on the end of the jar command line, along with the class
file for the bean.

Installing a Bean

The procedure for installing a bean depends entirely upon the beanbox tool that you are using. For the beanbox tool
shipped with the BDK, all you need to do is to copy the bean's JAR file into the jars/ directory within the BDK
directory. Once you have done this, the bean will appear on the palette of beans every time you start up the
application. Alternatively, you can also load a bean's JAR file at runtime by selecting the Load JAR option from the
File menu of beanbox.

Bean Basics A More Complex Bean

Chapter 10
Java Beans

10.3 A More Complex Bean

Example 10.2 shows another bean, YesNoDialog. This bean creates a dialog box that displays a simple message to
the user and asks the user to respond by clicking the Yes, No, or Cancel button. Figure 10.1 shows the bean being
manipulated in Sun's beanbox tool and also shows a dialog displayed by the bean.

Figure 10.1: The YesNoDialog bean in the beanbox

The YesNoDialog bean uses a custom AnswerEvent type to notify AnswerListener objects when the user
has dismissed the dialog by clicking on one of its three buttons. This new event class and listener interface are defined
in the next section.

Note that YesNoDialog is a subclass of Object, not Dialog. This is a result of the requirement for a bean to
have a no-argument constructor. Because all dialog boxes must be associated with a Frame, Dialog does not have a
no-argument constructor, and this means that subclasses of Dialog cannot have meaningful no-argument
constructors, either. As a result, YesNoDialog defers creation of its window and associated GUI components until
it is actually popped up with the display() method. Another beanbox shortcoming is that it only recognizes

methods with no arguments. [1] For this reason, the display() method has no arguments, and so no Frame can be
specified through that method either. Since a parent Frame cannot be specified, YesNoDialog cannot create a
Dialog object, and instead simulates a dialog box with a Frame window. An alternative would have been to define
a bean property through which the required Frame could be specified.

[1] The beanbox tool shipped with the February 1997 version of the BDK has a number of
shortcomings. In part, this is due to the fact that the BDK is a new technology and not as stable or
robust as the JDK. It is also because beanbox is intended as a test environment, not an actual
programmer's tool.

Since YesNoDialog is not a subclass of Component, it has to define its own properties and accessor methods for
fonts and colors; normally these would simply be inherited from Component. Since this bean is not a Component
subclass, it is an "invisible" bean that does not have a graphical representation of its own. (It pops up a window when
the display() method is called, but that is not the same as having a graphical representation that appears within
another window.) Different tools treat invisible beans differently. beanbox simply displays the classname of invisible
beans.

Notice that YesNoDialog does not use any classes from the java.beans package. One of the surprising things
about beans is that they typically do not have to use any classes from this package. As we'll see in later sections, it is
the auxiliary classes that are shipped with a bean that make heavy use of that package.

Example 10.2: The YesNoDialog Bean

package oreilly.beans.yesno; // Put this bean in its own private package.
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class YesNoDialog {
 // Properties of the bean.
 protected String message, title;
 protected String yesLabel, noLabel, cancelLabel;
 protected int alignment;
 protected Font font = new Font("Serif", Font.PLAIN, 12);
 protected Color background = SystemColor.control;
 protected Color foreground = SystemColor.controlText;
 // Constants for the alignment property.
 public static final int LEFT = MultiLineLabel.LEFT;
 public static final int RIGHT = MultiLineLabel.RIGHT;
 public static final int CENTER = MultiLineLabel.CENTER;
 // Methods to query all of the bean properties.
 public String getMessage() { return message; }
 public String getTitle() { return title; }
 public String getYesLabel() { return yesLabel; }
 public String getNoLabel() { return noLabel; }
 public String getCancelLabel() { return cancelLabel; }
 public int getAlignment() { return alignment; }
 public Font getFont() { return font; }
 public Color getBackground() { return background; }

 public Color getForeground() { return foreground; }
 // Methods to set all of the bean properties.
 public void setMessage(String m) { message = m; }
 public void setTitle(String t) { title=t; }
 public void setYesLabel(String l) { yesLabel = l; }
 public void setNoLabel(String l) { noLabel = l; }
 public void setCancelLabel(String l) { cancelLabel = l; }
 public void setAlignment(int a) { alignment = a; }
 public void setFont(Font f) { font = f; }
 public void setBackground(Color bg) { background = bg; }
 public void setForeground(Color fg) { foreground = fg; }
 /** This field holds a list of registered ActionListeners.
 * Vector is internally synchronized to prevent race conditions. */
 protected Vector listeners = new Vector();
 /** Register an action listener to be notified when a button is pressed. */
 public void addAnswerListener(AnswerListener l) {
 listeners.addElement(l);
 }
 /** Remove an Answer listener from our list of interested listeners. */
 public void removeAnswerListener(AnswerListener l) {
 listeners.removeElement(l);
 }
 /** Send an event to all registered listeners. */
 public void fireEvent(AnswerEvent e) {
 // Make a copy of the list and fire the events using that copy.
 // This means that listeners can be added or removed from the original
 // list in response to this event. We ought to be able to just use an
 // enumeration for the vector, but that doesn't copy the list internally.
 Vector list = (Vector) listeners.clone();
 for(int i = 0; i < list.size(); i++) {
 AnswerListener listener = (AnswerListener)list.elementAt(i);
 switch(e.getID()) {
 case AnswerEvent.YES: listener.yes(e); break;
 case AnswerEvent.NO: listener.no(e); break;
 case AnswerEvent.CANCEL: listener.cancel(e); break;
 }
 }
 }
 /** The no-argument bean constructor, with default property values */
 public YesNoDialog() {
 this("Question", "Your\nMessage\nHere", "Yes", "No", "Cancel", LEFT);
 }
 /** A constructor for programmers using this class "by hand". */
 public YesNoDialog(String title, String message,
 String yesLabel, String noLabel, String cancelLabel,
 int alignment) {
 this.title = title;
 this.message = message;
 this.yesLabel = yesLabel;

 this.noLabel = noLabel;
 this.cancelLabel = cancelLabel;
 this.alignment = alignment;
 }
 /** This method makes the bean display the dialog box. */
 public void display() {
 // Create a frame with the specified title. It would be nice to
 // use a Dialog, but that needs to be passed a Frame argument, and
 // the BDK beanbox tool only seems to work with no-argument methods.
 final Frame frame = new Frame(title);
 // Specify a LayoutManager for it.
 frame.setLayout(new BorderLayout(15, 15));
 // Specify font and colors, if any are specified.
 if (font != null) frame.setFont(font);
 if (background != null) frame.setBackground(background);
 if (foreground != null) frame.setForeground(foreground);
 // Put the message label in the middle of the window.
 frame.add("Center", new MultiLineLabel(message, 20, 20, alignment));
 // Create an action listener for use by the buttons of the dialog.
 // When a button is pressed, this listener first closes the dialog box.
 // Then, it creates an AnswerEvent object that corresponds to the
 // button that was pressed, and sends that new event to all registered
 // listeners, using the fireEvent() method defined above.
 ActionListener listener = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 frame.dispose(); // Pop down window.
 if (listeners != null) { // Notify any registered listeners.
 String cmd = e.getActionCommand();
 int type;
 if (cmd.equals("yes")) type = AnswerEvent.YES;
 else if (cmd.equals("no")) type = AnswerEvent.NO;
 else type = AnswerEvent.CANCEL;
 fireEvent(new AnswerEvent(YesNoDialog.this, type));
 }
 }
 };
 // Create a panel for the dialog buttons and put it at the bottom
 // of the dialog. Specify a FlowLayout layout manager for it.
 Panel buttonbox = new Panel();
 buttonbox.setLayout(new FlowLayout(FlowLayout.CENTER, 25, 15));
 frame.add("South", buttonbox);
 // Create each specified button, specifying the action listener
 // and action command for each, and adding them to the buttonbox.
 if ((yesLabel != null) && (yesLabel.length() > 0)) {
 Button yes = new Button(yesLabel); // Create button.
 yes.setActionCommand("yes"); // Set action command.
 yes.addActionListener(listener); // Set listener.
 buttonbox.add(yes); // Add button to the panel.
 }

 if ((noLabel != null) && (noLabel.length() > 0)) {
 Button no = new Button(noLabel);
 no.setActionCommand("no");
 no.addActionListener(listener);
 buttonbox.add(no);
 }
 if ((cancelLabel != null) && (cancelLabel.length() > 0)) {
 Button cancel = new Button(cancelLabel);
 cancel.setActionCommand("cancel");
 cancel.addActionListener(listener);
 buttonbox.add(cancel);
 }
 // Finally, set the dialog to its preferred size and display it.
 frame.pack();
 frame.show();
 }
 /**
 * A main method that demonstrates how to use this class, and allows testing.
 */
 public static void main(String[] args) {
 // Create an instance of InfoDialog, with title and message specified:
 YesNoDialog d =
 new YesNoDialog("YesNoDialog Test",
 "There are unsaved files.\n" +
 "Do you want to save them before quitting?",
 "Yes, save and quit",
 "No, quit without saving",
 "Cancel; don't quit",
 YesNoDialog.CENTER);
 // Register an action listener for the dialog. This one just prints
 // the results out to the console.
 d.addAnswerListener(new AnswerListener() {
 public void yes(AnswerEvent e) { System.out.println("Yes"); }
 public void no(AnswerEvent e) { System.out.println("No"); }
 public void cancel(AnswerEvent e) { System.out.println("Cancel"); }
 });
 // Now pop the dialog up. It will pop itself down automatically.
 d.display();
 }
}

A Simple Bean Custom Events

Chapter 10
Java Beans

10.4 Custom Events

Beans can use the standard AWT event types defined in the java.awt.event package, but they do
not have to. Our YesNoDialog class defines its own event type, AnswerEvent. Defining a new
event class is really quite simple; AnswerEvent is shown in Example 10.3.

Example 10.3: The AnswerEvent Class

package oreilly.beans.yesno;
public class AnswerEvent extends java.util.EventObject {
 protected int id;
 public static final int YES = 0, NO = 1, CANCEL = 2;
 public AnswerEvent(Object source, int id) {
 super(source);
 this.id = id;
 }
 public int getID() { return id; }
}

Along with the AnswerEvent class, YesNoDialog also defines a new type of event listener
interface, ActionListener, that defines the methods that must be implemented by any object that
wants to receive notification from a YesNoDialog. The definition of AnswerListener is shown in
Example 10.4.

Example 10.4: The AnswerListener Interface

package oreilly.beans.yesno;
public interface AnswerListener extends java.util.EventListener {
 public void yes(AnswerEvent e);
 public void no(AnswerEvent e);
 public void cancel(AnswerEvent e);

}

A More Complex Bean Specifying Bean Information

Chapter 10
Java Beans

10.5 Specifying Bean Information

The YesNoDialog class itself and the AnswerEvent and AnswerListener classes it relies on are all a
required part of our bean. When an application that uses the bean is shipped, it has to include all three of these class
files. There are other kinds of classes, however, that are often bundled with a bean that are not intended for use by the
application developer. These classes are used by the beanbox tool that manipulates the bean. The bean class itself
does not refer to any of these auxiliary beanbox classes so that it is not dependent on them and they do not have to be
shipped with the bean in finished products.

The first of these optional, auxiliary classes is a BeanInfo class. As explained earlier, a beanbox discovers the
properties, events, and methods exported by a bean through "introspection" based on the Java Reflection API. A bean
developer who wants to provide additional information about a bean, or who wants to refine the (somewhat rough)
information available through introspection, should define a class that implements the BeanInfo interface to
provide that information. A BeanInfo class typically subclasses SimpleBeanInfo, which provides a no-op
implementation of the BeanInfo interface. When you only want to override one or two methods, it is easier to
subclass SimpleBeanInfo than to implement BeanInfo directly. Beanbox tools rely on a naming convention in
order to find the BeanInfo class for a given bean: a BeanInfo class should have the same name as the bean, with
the string "BeanInfo" appended. Example 10.5 shows an implementation of the YesNoDialogBeanInfo class.

This BeanInfo class specifies a number of pieces of information for our bean:

● An icon that can be used to represent the bean.

● A BeanDescriptor object, which includes a reference to a Customizer class for the bean. We'll see an
implementation of this class later in the chapter.

● A list of the supported properties of the bean, along with a short description of each one. Some beanbox tools
(but not Sun's beanbox) display these strings to the user in some useful way.

● A method that returns the most commonly customized property of the bean--this is called the "default"
property.

● References to PropertyEditor classes for two of the properties. We'll see implementations of these
property editor classes later in the chapter.

● A list of the methods supported by the bean, again with a short description of each one.

Besides specifying this information, a BeanInfo class can also provide information about the events it generates
and specify a default event. The various FeatureDescriptor objects used to provide information about such
things as properties and methods can also include other information not provided by YesNoDialogBeanInfo,
such as a localized display name that is distinct from the programmatic name.

Example 10.5: The YesNoDialogBeanInfo Class

package oreilly.beans.yesno;
import java.beans.*;
import java.lang.reflect.*;
import java.awt.*;
/** The BeanInfo class for the YesNoDialog bean. */
public class YesNoDialogBeanInfo extends SimpleBeanInfo {
 /** Return an icon for the bean. We should really check the kind argument
 * to see what size icon the beanbox wants, but since we only have one
 * icon to offer, we just return it and let the beanbox deal with it. */
 public Image getIcon(int kind) {
 return loadImage("YesNoDialogIcon.gif");
 }
 /** Return a descriptor for the bean itself. It specifies a customizer
 * for the bean class. We could also add a description string here. */
 public BeanDescriptor getBeanDescriptor() {
 return new BeanDescriptor(YesNoDialog.class, YesNoDialogCustomizer.class);
 }
 /** This is a convenience routine for creating PropertyDescriptor objects. */
 public static PropertyDescriptor property(String name, String description)
 throws IntrospectionException
 {
 PropertyDescriptor p = new PropertyDescriptor(name, YesNoDialog.class);
 p.setShortDescription(description);
 return p;
 }
 /** This method returns an array of PropertyDescriptor objects that specify
 * additional information about the properties supported by the bean.
 * By explicitly specifying property descriptors, we are able to provide
 * simple help strings for each property; these would not be available to
 * the beanbox through simple introspection. We are also able to register
 * special property editors for two of the properties.
 */
 public PropertyDescriptor[] getPropertyDescriptors() {
 try {
 PropertyDescriptor[] props = {
 property("title", "The string that appears in the dialog title bar"),
 property("message", "The string that appears in the dialog body"),
 property("yesLabel", "The label for the 'Yes' button, if any"),
 property("noLabel", "The label for the 'No' button, if any"),
 property("cancelLabel", "The label for the 'Cancel' button, if any"),
 property("alignment", "The alignment of the message text"),

 property("font", "The font to use for message and buttons"),
 property("background", "The background color for the dialog"),
 property("foreground", "The text color for message and buttons")
 };
 props[1].setPropertyEditorClass(YesNoDialogMessageEditor.class);
 props[5].setPropertyEditorClass(YesNoDialogAlignmentEditor.class);
 return props;
 }
 catch (IntrospectionException e) {return super.getPropertyDescriptors(); }
 }
 /** The message property is most often customized; make it the default. */
 public int getDefaultPropertyIndex() { return 1; }
 /** This is a convenience method for creating MethodDescriptors. Note that
 * it assumes we are talking about methods with no arguments. */
 public static MethodDescriptor method(String name, String description)
 throws NoSuchMethodException, SecurityException {
 Method m = YesNoDialog.class.getMethod(name, new Class[] {});
 MethodDescriptor md = new MethodDescriptor(m);
 md.setShortDescription(description);
 return md;
 }
 /** This method returns an array of method descriptors for the supported
 * methods of a bean. This allows us to provide useful description strings,
 * but it also allows us to filter out non-useful methods like wait()
 * and notify() that the bean inherits and which might otherwise be
 * displayed by the beanbox.
 */
 public MethodDescriptor[] getMethodDescriptors() {
 try {
 MethodDescriptor[] methods = {
 method("display", "Pop up the dialog; make it visible")
 };
 return methods;
 }
 catch (Exception e) {
 return super.getMethodDescriptors();
 }
 }
}

Custom Events Defining a Simple Property
Editor

Chapter 10
Java Beans

10.6 Defining a Simple Property Editor

A bean can also provide an auxiliary PropertyEditor for use by a beanbox tool. PropertyEditor is a
flexible interface that allows a bean to tell a beanbox how to display and edit the values of certain types of
properties.

A beanbox tool always provides simple property editors for common property types, such as strings, numbers,
fonts, and colors. If your bean has properties of a non-standard type, you should register a property editor for that
type. The easiest way to "register" a property editor is through a simple naming convention. If your type is defined
by the class X, the editor for it should be defined in the class XEditor. Alternately, you can register a property
editor by calling the PropertyEditorManager.registerEditor() method, probably from the
constructor of your BeanInfo class. If you call this method from the bean itself, the bean then depends on the
property editor class, so the editor has to be bundled with the bean in applications.

In our YesNoDialog example, we don't define any new data types, but we still have two individual properties
that need custom editors. In this case, we register the property editors for individual properties by specifying them
in the PropertyDescriptor objects returned by the getPropertyDescriptors() method of our
BeanInfo class.

The PropertyEditor interface can seem confusing at first. Its methods allow you to define three techniques
for displaying the value of a property and two techniques for allowing the user to edit the value of a property. The
value of a property can be displayed:

● As a string. If you define the getAsText() method, a beanbox can convert a property to a string and
display that string to the user.

● As an enumerated value. If a property can only take on a value from a fixed set of values, you can define
the getTags() method to allow a beanbox to display a dropdown menu of allowed values for the
property.

● In a graphical display. If you define paintValue(), a beanbox can ask the property editor to display the
value using some natural graphical format, such as a color swatch for colors. You also need to define
isPaintable() to specify that a graphical format is supported.

The two editing techniques are:

● String editing. If you define the setAsText() method, a beanbox knows it can simply have the user type
a value into a text field and pass that value to setAsText(). If your property editor defines
getTags(), it should also define setAsText() so that a beanbox can set the property value using the
individual tag values.

● Custom editing. If your property editor defines getCustomEditor(), a beanbox can call it to obtain
some kind of AWT component that can be displayed in a dialog box and serve as a custom editor for the
property. You also need to define supportsCustomEditor() to specify that custom editing is
supported.

The setValue() method of a PropertyEditor is called to specify the current value of the property. It is this
value that should be converted to a string or graphical representation by getAsText() or paintValue().

A property editor is required to maintain a list of event listeners that are interested in changes to the value of the
property. The addPropertyChangeListener() and removePropertyChangeListener() methods
are standard event listener registration and removal methods. When a property editor changes the value of a
property, either through setAsText() or through a custom editor, it must send a PropertyChangeEvent to
all registered listeners.

PropertyEditor defines the getJavaInitializationString() for use by beanbox tools that generate
Java code. This method should return a fragment of Java code that can be used to initialize a variable to the current
property value.

Finally, a class that implements the PropertyEditor interface must have a no-argument constructor, so that it
can be dynamically loaded and instantiated by a beanbox.

Most property editors can be much simpler than this detailed description would suggest. In many cases, you can
subclass PropertyEditorSupport instead of implementing the PropertyEditor interface directly. This
useful class provides no-op implementations of most PropertyEditor methods. It also implements the
methods for adding and removing event listeners.

A property that has an enumerated value requires a simple property editor. The alignment property of the
YesNoDialog bean is an example of this common type of property. The property is defined as an int, but it has
only three legal values, defined by the constants LEFT, CENTER, and RIGHT. By default, a beanbox only knows
that the property is an int, so it displays the property as a number and allows the user to enter any integer as a
property value. Instead, we would like the beanbox to display one of the strings "left," "center," or "right" as the
value, and allow the user to choose from these values when setting the property. This can be done with the
getTags() and setAsText() methods of a property editor, as shown in Example 10.6.

This example creates the YesNoDialogAlignmentEditor class, which is registered as a
PropertyEditor for the alignment property by the YesNoDialogBeanInfo class shown in Example
10.5 . The property editor subclasses PropertyEditorSupport, so it is relatively short. Notice that it passes
Integer objects in the calls to setValue() that are made from the setAsText() method. You need to use
wrapper objects for any primitive-type properties. The use of the Integer class is also apparent in the definition
of getJavaInitializationString(). The setValue() method of ProperyEditorSupport

handles notifying registered PropertyChangeListener objects about changes in the value of the property, so
this simple property editor does not need to be aware of the existence of such listeners.

Example 10.6: The YesNoDialogAlignmentEditor Class

package oreilly.beans.yesno;
import java.beans.*;
import java.awt.*;
public class YesNoDialogAlignmentEditor extends PropertyEditorSupport {
 // These two methods allow the property to be edited in a dropdown list.
 // Return the list of value names for the enumerated type.
 public String[] getTags() {
 return new String[] { "left", "center", "right" };
 }
 // Convert each of those value names into the actual value.
 public void setAsText(String s) {
 if (s.equals("left")) setValue(new Integer(YesNoDialog.LEFT));
 else if (s.equals("center")) setValue(new Integer(YesNoDialog.CENTER));
 else if (s.equals("right")) setValue(new Integer(YesNoDialog.RIGHT));
 else throw new IllegalArgumentException(s);
 }
 // This is an important method for code generation.
 public String getJavaInitializationString() {
 switch(((Number)getValue()).intValue()) {
 default:
 case YesNoDialog.LEFT: return "oreilly.beans.yesno.YesNoDialog.LEFT";
 case YesNoDialog.CENTER: return "oreilly.beans.yesno.YesNoDialog.CENTER";
 case YesNoDialog.RIGHT: return "oreilly.beans.yesno.YesNoDialog.RIGHT";
 }
 }
}

Specifying Bean Information Defining a Complex Property
Editor

Chapter 10
Java Beans

10.7 Defining a Complex Property Editor

There is another YesNoDialog property value that requires a property editor. The message property of
YesNoDialog can specify a multi-line message to be displayed in the dialog. This property requires a property
editor because the beanbox program does not distinguish between single-line and multi-line string types and the
TextField objects it uses for text input do not allow the user to enter multiple lines of text. For this reason, we
define the YesNoDialogMessageEditor class and register it with the PropertyDescriptor for the
message property, as shown in Example 10.5.

Example 10.7 shows the definition of this property editor. This is a more complex editor that supports the creation of
a custom editor component and graphical display of the value. Note that this example implements
PropertyEditor directly. getCustomEditor() returns an editor component for multi-line strings. Figure
10.2 shows this custom editor placed within a dialog box created by the beanbox program. Note that the Done button
in this figure is part of the beanbox dialog, not part of the property editor itself.

Figure 10.2: A custom property editor dialog

[Graphic: Figure 10-2]

The paintValue() method is responsible for displaying the value of the message property. This multi-line value
does not typically fit in the small rectangle of screen space allowed for the property, so paintValue() displays
instructions for popping up the custom editor, which allows the user to inspect and edit the property value. (This
example relies on the click-to-edit behavior of the beanbox program; this paintValue() method may not make
sense when the bean is used in other beanbox tools.)

Example 10.7: The YesNoDialogMessageEditor Class

package oreilly.beans.yesno;
import java.beans.*;
import java.awt.*;
import java.awt.event.*;
/**
 * This class is a custom editor for the message property of the
 * YesNoDialog bean. It is necessary because the default editor for
 * properties of type String does not allow multi-line strings to be entered.
 */
public class YesNoDialogMessageEditor implements PropertyEditor {
 protected String value; // The value we will be editing.
 public void setValue(Object o) { value = (String) o; }
 public Object getValue() { return value; }
 public void setAsText(String s) { value = s; }
 public String getAsText() { return value; }
 public String[] getTags() { return null; } // not enumerated; no tags
 // Say that we allow custom editing.
 public boolean supportsCustomEditor() { return true; }
 // Return the custom editor. This just creates and returns a TextArea
 // to edit the multi-line text. But it also registers a listener on the
 // text area to update the value as the user types and to fire the
 // property change events that property editors are required to fire.
 public Component getCustomEditor() {
 final TextArea t = new TextArea(value);
 t.setSize(300, 150); // TextArea doesn't have a preferred size, so set one.
 t.addTextListener(new TextListener() {
 public void textValueChanged(TextEvent e) {
 value = t.getText();
 listeners.firePropertyChange(null, null, null);
 }
 });
 return t;
 }
 // Visual display of the value, for use with the custom editor.
 // Just print some instructions and hope they fit in the box.
 // This could be more sophisticated.
 public boolean isPaintable() { return true; }
 public void paintValue(Graphics g, Rectangle r) {
 g.setClip(r);
 g.drawString("Click to edit...", r.x+5, r.y+15);
 }
 // Important method for code generators. Note that it
 // ought to add any necessary escape sequences.
 public String getJavaInitializationString() { return "\"" + value + "\""; }
 // This code uses the PropertyChangeSupport class to maintain a list of
 // listeners interested in the edits we make to the value.
 protected PropertyChangeSupport listeners = new PropertyChangeSupport(this);

 public void addPropertyChangeListener(PropertyChangeListener l) {
 listeners.addPropertyChangeListener(l);
 }
 public void removePropertyChangeListener(PropertyChangeListener l) {
 listeners.removePropertyChangeListener(l);
 }
}

Defining a Simple Property
Editor

Defining a Bean Customizer

Chapter 10
Java Beans

10.8 Defining a Bean Customizer

A bean may want to provide some way for the user of a beanbox program to customize its properties other than by
setting them one at a time. A bean can do this by creating a Customizer class for itself, and registering the
customizer class with the BeanDescriptor object returned by its BeanInfo class, as we saw in Example 10.5.

A customizer must be some kind of AWT component that is suitable for display in a dialog box created by the
beanbox. Therefore, a customizer class is typically a subclass of Panel. In addition, a customizer must implement
the Customizer interface. This interface consists of methods for adding and removing property change event
listeners and a setObject() method that the beanbox calls to tell the customizer what bean object it is
customizing. Whenever the user makes a change to the bean through the customizer, the customizer should send a
PropertyChangeEvent to any interested listeners. Finally, like a property editor, a customizer must have a no-
argument constructor, so it can easily be instantiated by a beanbox.

Example 10.8 shows a customizer for our YesNoDialog bean. This customizer displays a panel that has the same
layout as a YesNoDialog, but it substitutes a TextArea object for the message display and three TextField
objects for the three buttons that the dialog can display. These text entry areas allow the user to enter values for the
message, yesLabel, noLabel, and cancelLabel properties. Figure 10.3 shows this customizer panel
displayed within a dialog box created by the beanbox program. Again, note that the Done button is part of the
beanbox dialog, not part of the customizer itself.

Figure 10.3: The customizer dialog for the YesNoDialog bean

Example 10.8: The YesNoDialogCustomizer Class

package oreilly.beans.yesno;
import java.awt.*;
import java.awt.event.*;
import java.beans.*;
/**
 * This class is a customizer for the YesNoDialog bean. It displays a
 * TextArea and three TextFields where the user can enter the dialog message
 * and the labels for each of the three buttons. It does not allow the
 * dialog title or other resources to be set.
 */
public class YesNoDialogCustomizer extends Panel
 implements Customizer, TextListener
{
 protected YesNoDialog bean; // The bean being customized.
 protected TextComponent message, fields[]; // Components used by customizer
 // Default constructor: YesNoDialogCustomizer() { super(); }
 // The bean box calls this method to tell us what object to customize.
 // This method will always be called before the customizer is displayed,
 // so it is safe to create the customizer GUI here.
 public void setObject(Object o) {
 bean = (YesNoDialog)o; // Save the object we're customizing.
 // Put a label at the top of the panel.
 this.setLayout(new BorderLayout());
 this.add(new Label("Enter the message to appear in the dialog:"), "North");
 // And a big text area below it for entering the dialog message.
 message = new TextArea(bean.getMessage());
 message.addTextListener(this);
 // TextAreas don't know how big they want to be. You must tell them.
 message.setSize(400, 200);
 this.add(message, "Center");

 // Then add a row of textfields for entering the button labels.
 Panel buttonbox = new Panel(); // The row container.
 buttonbox.setLayout(new GridLayout(1, 0, 25, 10)); // Equally spaced items.
 this.add(buttonbox, "South"); // Put row on bottom.
 // Now go create three TextFields to put in this row. But actually
 // position a Label above each, so create a container for each
 // TextField+Label combination.
 fields = new TextComponent[3]; // Array of TextFields.
 String[] labels = new String[] { // Labels for each.
 "Yes Button Label", "No Button Label", "Cancel Button Label"};
 String[] values = new String[] { // Initial values of each.
 bean.getYesLabel(), bean.getNoLabel(), bean.getCancelLabel()};
 for(int i = 0; i < 3; i++) {
 Panel p = new Panel(); // Create a container.
 p.setLayout(new BorderLayout()); // Give it a BorderLayout.
 p.add(new Label(labels[i]), "North"); // Put a label on the top.
 fields[i] = new TextField(values[i]); // Create the text field.
 p.add(fields[i], "Center"); // Put it below the label.
 fields[i].addTextListener(this); // Set the event listener.
 buttonbox.add(p); // Add container to row.
 }
 }
 // Add some space around the outside of the panel.
 public Insets getInsets() { return new Insets(10, 10, 10, 10); }
 // This is the method defined by the TextListener interface. Whenever the
 // user types a character in the TextArea or TextFields, this will get
 // called. It updates the appropriate property of the bean and fires a
 // property changed event, as all customizers are required to do.
 // Note that we are not required to fire an event for every keystroke.
 // Instead we could include an "Apply" button that would make all the
 // changes at once, with a single property changed event.
 public void textValueChanged(TextEvent e) {
 TextComponent t = (TextComponent)e.getSource();
 String s = t.getText();
 if (t == message) bean.setMessage(s);
 else if (t == fields[0]) bean.setYesLabel(s);
 else if (t == fields[1]) bean.setNoLabel(s);
 else if (t == fields[2]) bean.setCancelLabel(s);
 listeners.firePropertyChange(null, null, null);
 }
 // This code uses the PropertyChangeSupport class to maintain a list of
 // listeners interested in the edits we make to the bean.
 protected PropertyChangeSupport listeners = new PropertyChangeSupport(this);
 public void addPropertyChangeListener(PropertyChangeListener l) {
 listeners.addPropertyChangeListener(l);
 }
 public void removePropertyChangeListener(PropertyChangeListener l) {
 listeners.removePropertyChangeListener(l);
 }

}

Defining a Complex Property
Editor

Naming Patterns and
Conventions

Chapter 3
Classes and Objects in Java

3.6 Subclasses and Inheritance

The Circle class we've defined is good for abstract mathematical manipulation. For some applications this is
exactly what we need. For other applications, we want to be able to manipulate circles and draw them on the screen.
This means we need a new class, GraphicCircle, that has all the functionality of Circle, but also has the
ability to be drawn.

We want to implement GraphicCircle so that it can make use of the code we've already written for Circle.
One way to do that is the following:

public class GraphicCircle {
 // Here is the mathematical circle.
 public Circle c;
 // Here are the old methods.
 public double area() { return c.area(); }
 public double circumference() { return c.circumference(); }
 // The new graphic variables and methods go here.
 public Color outline, fill;
 public void draw(DrawWindow dw) { /* code omitted */ }
}

This approach would work, but it is not particularly elegant. The problem is that we have to write stubs for methods
like area() and circumference() that have nothing to do with drawing circles. It would be nice if we didn't
have to do this.

Extending a Class

In fact, we don't have to do it this way. Java allows us to define GraphicCircle as an extension, or subclass of
Circle. Example 3.10 shows how. Note that this example assumes we have two other classes of objects defined:
Color, which represents a color, and DrawWindow, a class that has the window into which drawing is done and
that defines the primitive methods to do the drawing.

Example 3.10: Subclassing a Class

public class GraphicCircle extends Circle {
 // We automatically inherit the variables and methods of

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm

 // Circle, so we only have to put the new stuff here.
 // We've omitted the GraphicCircle constructor, for now.
 Color outline, fill;
 public void draw(DrawWindow dw) {
 dw.drawCircle(x, y, r, outline, fill);
 }
}

The extends keyword tells Java that GraphicCircle is a subclass of Circle, and that it inherits the fields
and methods of that class. [7] The definition of the draw() method shows variable inheritance--this method uses
the Circle variables x, y, and r as if they were defined right in GraphicCircle itself.

[7] Except for private fields and methods. We'll discuss private members of a class later. C++
programmers should note that extends is the Java equivalent of the : operator in C++--both
indicate the superclass of a class.

GraphicCircle also inherits the methods of Circle. Thus, if we have a GraphicCircle object referred to
by variable gc, we can say:

double area = gc.area();

This works just as if the area() method were defined in GraphicCircle itself.

Another feature of subclassing is that every GraphicCircle object is also a perfectly legal Circle object.
Thus, if gc refers to a GraphicCircle object, we can assign it to a Circle variable, and we can forget all
about its extra graphic capabilities: Circle c = gc;.

Final Classes

When a class is declared with the final modifier, it means that it cannot be extended or subclassed.
java.lang.System is an example of a final class. Declaring a class final prevents unwanted extensions to
the class. But it also allows the compiler to make some optimizations when invoking the methods of a class. We'll
explore this in more detail when we talk about method overriding later in this chapter.

Superclasses, Object, and the Class Hierarchy

In our example, GraphicCircle is a subclass of Circle. We can also say that Circle is the superclass of
GraphicCircle. The superclass of a class is specified in its extends clause:

public class GraphicCircle extends Circle { ... }

Every class you define has a superclass. If you do not specify the superclass with an extends clause, the
superclass is the class Object. Object is a special class for a couple of reasons:

● It is the only class that does not have a superclass.

● The methods defined by Object can be called by any Java object.

Because every class has a superclass, classes in Java form a class hierarchy, which can be represented as a tree with
Object at its root. Figure 3.1 shows a class hierarchy diagram which includes our Circle and
GraphicCircle classes, as well as some of the standard classes from the Java API.

Figure 3.1: A class hierarchy diagram

[Graphic: Figure 3-1]

The complete class hierarchy for the Java API is diagrammed in the figures of Part V, API Quick Reference.

Subclass Constructors

In Example 3.10 we left out the constructor method for our new GraphicCircle class. Let's implement that now.
Here's one way:

public GraphicCircle(double x, double y, double r,
 Color outline, Color fill)
{
 this.x = x;
 this.y = y;
 this.r = r;
 this.outline = outline;
 this.fill = fill;
}

This constructor relies on the fact that GraphicCircle inherits all the variables of Circle and simply initializes
those variables itself. But this duplicates the code of the Circle constructor, and if Circle did more elaborate
initialization, it could become quite wasteful. Furthermore, if the Circle class had internal private fields
(discussed later), we wouldn't be able to initialize them like this. What we need is a way of calling a Circle
constructor from within our GraphicCircle constructor. Example 3.11 shows how we can do this.

Example 3.11: Invoking a Superclass's Constructor

public GraphicCircle(double x, double y, double r,
 Color outline, Color fill)
{
 super(x, y, r);
 this.outline = outline;
 this.fill = fill;
}

super is a reserved word in Java. One of its uses is that shown in the example--to invoke the constructor method of
a superclass. Its use is analogous to the use of the this keyword to invoke one constructor method of a class from
within another. Using super to invoke a constructor is subject to the same restrictions as using this to invoke a
constructor:

● super may only be used in this way within a constructor method.

● The call to the superclass constructor must appear as the first statement within the constructor method. It
must appear even before variable declarations.

Constructor Chaining

When you define a class, Java guarantees that the class's constructor method is called whenever an instance of that
class is created. It also guarantees that the constructor is called when an instance of any subclass is created. In order
to guarantee this second point, Java must ensure that every constructor method calls its superclass constructor
method. If the first statement in a constructor is not an explicit call to a constructor of the superclass with the super
keyword, then Java implicitly inserts the call super()--that is, it calls the superclass constructor with no
arguments. If the superclass does not have a constructor that takes no arguments, this causes a compilation error.

There is one exception to the rule that Java invokes super() implicitly if you do not do so explicitly. If the first
line of a constructor, C1, uses the this() syntax to invoke another constructor, C2, of the class, Java relies on C2
to invoke the superclass constructor, and does not insert a call to super() into C1. Of course, if C2 itself uses
this() to invoke a third constructor, C2 does not call super() either, but somewhere along the chain, a
constructor either explicitly or implicitly invokes the superclass constructor, which is what is required.

Consider what happens when we create a new instance of the GraphicCircle class. First, the
GraphicCircle constructor shown in Example 3.11 is invoked. This constructor explicitly invokes a Circle
constructor and that Circle constructor implicitly calls super() to invoke the constructor of its superclass,
Object. The body of the Object constructor runs first, followed by the body of the Circle constructor, and
finally followed by the body of the GraphicCircle constructor.

What this all means is that constructor calls are "chained"--any time an object is created, a sequence of constructor
methods are invoked, from subclass to superclass on up to Object at the root of the class hierarchy. Because a
superclass constructor is always invoked as the first statement of its subclass constructor, the body of the Object
constructor always runs first, followed by the body of its subclass, and on down the class hierarchy to the class that
is being instantiated.

The Default Constructor

There is one missing piece in the description of constructor chaining above. If a constructor does not invoke a
superclass constructor, Java does so implicitly. But what if a class is declared without any constructor at all? In this
case, Java implicitly adds a constructor to the class. This default constructor does nothing but invoke the superclass
constructor.

For example, if we did not declare a constructor for the GraphicCircle class, Java would have implicitly
inserted this constructor:

public GraphicCircle() { super(); }

Note that if the superclass, Circle(), did not declare a no-argument constructor, then this automatically inserted
default constructor would cause a compilation error. If a class does not define a no-argument constructor, then all of
its subclasses must define constructors that explicitly invoke the superclass constructor with the necessary
arguments.

It can be confusing when Java implicitly calls a constructor or inserts a constructor definition into a class--something
is happening that does not appear in your code! Therefore, it is good coding style, whenever you rely on an implicit
superclass constructor call or on a default constructor, to insert a comment noting this fact. Your comments might
look like those in the following example:

class A {
 int i;
 public A() {
 // Implicit call to super(); here.
 i = 3;
 }
}
class B extends A {
 // Default constructor: public B() { super(); }
}

If a class does not declare any constructor, it is given a publicly constructor by default. Classes that do not want
to be publically instantiated, should declare a protected constructor to prevent the insertion of this public
constructor. Classes that never want to be instantiated at all should define a private constructor.

Finalizer Chaining?

You might assume that since Java chains constructor methods that it also automatically chains the finalizer methods
for an object. In other words, you may think that the finalizer method of a class automatically invokes the finalizer
of its superclass. In fact, Java does not do this. In practice, finalizer methods are relatively rare, and the need for
finalizer chaining rarely arises. If a class B with a finalizer method is a subclass of a class A with its own finalizer
method, then B's finalizer should be sure to invoke A's finalizer, explicitly creating a chain of finalizers. This is a
little tricky, since finalizers always have the same name (finalize()), and we haven't yet learned how to invoke
a method in the superclass when that method is also defined in the subclass. We'll return to the issue of finalizer

chaining when we learn how.

Shadowed Variables

Suppose that our GraphicCircle class has a new variable that specifies the resolution, in dots per inch, of the
DrawWindow object in which it is going to be drawn. And further, suppose that it names that new variable r:

public class GraphicCircle extends Circle {
 Color outline, fill;
 float r; // New variable. Resolution in dots-per-inch.
 public GraphicCircle(double x, double y, double rad, Color o, Color f) {
 super(x, y, rad); outline = o; fill = f;
 }
 public void setResolution(float resolution) { r = resolution; }
 public void draw(DrawWindow dw) { dw.drawCircle(x, y, r, outline, fill); }
}

Now, with this resolution variable declared, when we use the variable r in the GraphicCircle class, we are no
longer referring to the radius of the circle. The resolution variable r in GraphicCircle shadows the radius
variable r in Circle. [8]

[8] This is a contrived example, of course--we could simply rename the variable and avoid the issue.
Typically we would rename the variable: variable shadowing is a necessary part of Java syntax, but is
not a useful programming technique. Your code will be easier to understand if you avoid shadowed
variables.

So, how can we refer to the radius variable defined in the Circle class when we need it? Recall that using a
variable, such as r, in the class in which it is defined is shorthand for:

this.r // Refers to the GraphicCircle resolution variable.

As you might guess, you can refer to a variable r defined in the superclass like this:

super.r // Refers to the Circle radius variable.

Another way you can do this is to cast this to the appropriate class and then access the variable:

((Circle) this).r

This cast is exactly what the super keyword does when used like this. You can use this casting technique when
you need to refer to a shadowed variable defined in a class that is not the immediate superclass. For example, if C is
a subclass of B, which is a subclass of A, and class C shadows a variable x that is also defined in classes A and B,
then you can refer to these different variables from class C as follows:

x // Variable x in class C.
this.x // Variable x in class C.

super.x // Variable x in class B.
((B)this).x // Variable x in class B.
((A)this).x // Variable x in class A.
super.super.x // Illegal; does not refer to x in class A.

Note that you cannot refer to a shadowed variable x in the superclass of a superclass with super.super.x. Java
does not recognize this syntax.

Shadowed Methods?

Just as a variable defined in one class can shadow a variable with the same name in a superclass, you might expect
that a method in one class could shadow a method with the same name (and same arguments) in a superclass. In a
sense, they do: "shadowed" methods are called overridden methods. But method overriding is significantly different
than variable shadowing; it is discussed in the sections that follow.

Object Destruction Overriding Methods

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm

Chapter 3
Classes and Objects in Java

3.7 Overriding Methods

When a class defines a method using the same name, return type, and arguments as a method in its
superclass, the method in the class overrides the method in the superclass. When the method is invoked for
an object of the class, it is the new definition of the method that is called, not the superclass' old definition.

Method overriding is an important and useful technique in object-oriented programming. Suppose we define
a subclass Ellipse of our Circle class. [9] Then it would be important for Ellipse to override the
area() and circumference() methods of Circle. Ellipse would have to implement new versions
of these functions because the formulas that apply to circles don't work for ellipses.

[9] This is admittedly a strange thing to do, since, mathematically, a circle is a kind of ellipse,
and it is customary to derive a more specific class from a more general one. Nevertheless, it is
a useful example here.

Before we go any further with the discussion of method overriding, be sure that you understand the
difference between method overriding and method overloading, which we discussed earlier. As you probably
recall, method overloading refers to the practice of defining multiple methods (in the same class) with the
same name but with differing argument lists. This is very different from method overriding, and it is
important not to get them confused!

Overriding Is Not Shadowing

Although Java treats the variables and methods of a class analogously in many ways, method overriding is
not like variable shadowing at all: You can refer to shadowed variables simply by casting an object to the
appropriate type. You cannot invoke overridden methods with this technique, however. Example 3.12
illustrates this crucial difference.

Example 3.12: Method Overriding versus Variable Shadowing

class A {
 int i = 1;

 int f() { return i; }
}
class B extends A {
 int i = 2; // Shadows variable i in class A.
 int f() { return -i; } // Overrides method f in class A.
}
public class override_test {
 public static void main(String args[]) {
 B b = new B();
 System.out.println(b.i); // Refers to B.i; prints 2.
 System.out.println(b.f()); // Refers to B.f(); prints -2.
 A a = (A) b; // Cast b to an instance of class A.
 System.out.println(a.i); // Now refers to A.i; prints 1;
 System.out.println(a.f()); // Still refers to B.f(); prints -2;
 }
}

While this difference between method overriding and variable shadowing may seem surprising at first, a
little thought makes the purpose clear. Suppose we have a bunch of Circle and Ellipse (a subclass of
Circle) objects that we are manipulating. To keep track of the circles and ellipses, we store them in an
array of type Circle[], casting all the Ellipse objects to Circle objects before we store them. Then,
when we loop through the elements of this array, we don't have to know or care whether the element is
actually a Circle or an Ellipse. What we do care very much about, however, is that the correct value is
computed when we invoke the area() method of any element of the array. That is, we don't want to use the
formula for the area of a circle when the object is actually an ellipse!

Seen in this context, it is not surprising at all that method overriding is handled differently by Java than
variable shadowing.

final Methods

If a method is declared final, it means that the method declaration is the "final" one--that it cannot be
overridden. static methods and private methods (which we haven't learned about yet) cannot be
overridden either, nor can the methods of a final class. If a method cannot be overridden, the compiler
may perform certain optimizations on it, as we'll see below.

Dynamic Method Lookup

If we have an array of Circle and Ellipse objects, how does the compiler know to call the Circle
area() method or the Ellipse area() method for any given item in the array? The compiler does not
know this; it can't. The compiler knows that it does not know, however, and produces code that uses
"dynamic method lookup" at run-time. When the interpreter runs the code, it looks up the appropriate
area() method to call for each of the objects. That is, when the interpreter interprets the expression

s.area(), it dynamically looks for an area() method associated with the particular object referred to by
the variable s. It does not simply use the area() method that is statically associated with the type of the
variable s. [10]

[10] C++ programmers should note that dynamic method lookup is what C++ does for
virtual functions. An important difference between Java and C++ is that Java does not
have a virtual keyword; methods in Java are "virtual" by default.

Dynamic method lookup is fast, but it is not as fast as invoking a method directly. Fortunately, there are a
number of cases in which Java does not need to use dynamic method lookup. static methods cannot be
overridden, so they are always invoked directly. private methods (which we haven't learned about yet) are
not inherited by subclasses and so cannot be overridden by subclasses; this means the Java compiler can
safely invoke them without dynamic method lookup as well. final methods are invoked directly for the
same reason: they cannot be overridden. Finally, when a method of a final class is invoked through an
instance of the class or a subclass of it, then it, too, can be invoked without the overhead of dynamic lookup.
These static, final, and private methods that can be invoked directly are also candidates for inlining-
-i.e., if the methods are short, the compiler may simply insert the method body into the code rather than
inserting a call to the method.

Invoking an Overridden Method

We've seen the important differences between method overriding and variable shadowing. Nevertheless, the
Java syntax for invoking an overridden method is very similar to the syntax for accessing a shadowed
variable: both use the super keyword. Example 3.13 illustrates this.

Example 3.13: Invoking an Overridden Method

class A {
 int i = 1;
 int f() { return i; } // A very simple method.
}
class B extends A {
 int i; // This variable shadows i in A.
 int f() { // This method overrides f() in A.
 i = super.i + 1; // It retrieves A.i this way.
 return super.f() + i; // And it invokes A.f() this way.
 }
}

Recall that when you use super to refer to a shadowed variable, it is the same as casting this to the
superclass type and accessing the variable through that. On the other hand, using super to invoke an
overridden method is not the same as casting this. In this case, super has the special purpose of turning
off dynamic method lookup and invoking the specific method that the superclass defines or inherits.

In Example 3.13 we use super to invoke an overridden method that is actually defined in the immediate
superclass. super also works perfectly well to invoke overridden methods that are defined further up the
class hierarchy. This is because the overridden method is inherited by the immediate superclass, and so the
super syntax does in fact refer to the correct method.

To make this more concrete, suppose class A defines method f, and that B is a subclass of A, and that C is a
subclass of B that overrides method f. Then you can still use:

super.f()

to invoke the overridden method from within class C. This is because class B inherits method f from class A.
If classes A, B, and C all define method f, however, then calling super.f() in class C invokes class B's
definition of the method. In this case, there is no way to invoke A.f() from within class C.
super.super.f() is not legal Java syntax!

It is important to note that super can only be used to invoke overridden methods from within the class that
does the overriding. With our Circle and Ellipse classes, for example, there is no way to write a
program (with or without super) that invokes the Circle area() method on an object of type
Ellipse. The only way to do this is to use super in a method within the Ellipse class.

Finally, note that this form of super does not have to occur in the first statement in a method, as it does
when used to invoke a superclass constructor method.

Finalizer Chaining Revisited

Now that we've discussed method overriding and how to invoke an overridden method, we can return to the
issue of the finalizer method that we left dangling earlier on.

In Java, constructor methods are automatically chained, but finalizer methods are not. If you define a
finalize() method to free resources allocated by your class, you may be overriding a finalize()
method in a superclass that frees resources allocated by that class. If your finalizer method does not invoke
the superclass finalizer, the superclass finalizer never gets called, and resources are not deallocated when
they should be.

To prevent this, you should be sure to invoke the superclass finalize() method. The best time to do this
is usually after your finalize() method has done all of its deallocation. It is a good idea to add the
following call:

super.finalize();

as the last line of all your finalizer methods. You should do this even if you know that none of your class's
superclasses have finalizer methods, because future implementations of the class may include one.

Subclasses and Inheritance Data Hiding and
Encapsulation

Chapter 3
Classes and Objects in Java

3.8 Data Hiding and Encapsulation

We started this chapter by describing a class as "a collection of data and methods." One of the important object-
oriented techniques that we haven't discussed so far is hiding the data within the class, and making it available only
through the methods. This technique is often known as encapsulation, because it seals the class's data (and internal
methods) safely inside the "capsule" of the class, where it can be accessed only by trusted users--i.e., by the methods
of the class.

Why would you want to do this? The most important reason is to hide the internal implementation details of your
class. If you prevent programmers from relying on those details, then you can safely modify the implementation
without worrying that you will break existing code that uses the class.

Another reason for encapsulation is to protect your class against accidental or willful stupidity. A class often
contains a number of variables that are interdependent and must be in a consistent state. If you allow a programmer
(this may be you yourself) to manipulate those variables directly, she may change one variable without changing
important related variables, thus leaving the class in an inconsistent state. If, instead, she had to call a method to
change the variable, that method can be sure to do everything necessary to keep the state consistent.

Here's another way to think about encapsulation: When all of a class's variables are hidden, the class's methods
define the only possible operations that can be performed on objects of that class. Once you have carefully tested
and debugged your methods, you can be confident that the class will work as expected. On the other hand, if all the
variables can be directly manipulated, the number of possibilities you have to test becomes unmanageable.

There are other reasons to hide data, too:

● Internal variables that are visible externally to the class just clutter up your class's API. Keeping visible
variables to a minimum keeps your class tidy and elegant.

● If a variable is visible in your class, you have to document it. Save time by hiding it instead!

Visibility Modifiers

In most of our examples so far, you've probably noticed the public keyword being used. When applied to a class,
it means that the class is visible everywhere. When applied to a method or variable, it means that the method or
variable is visible everywhere.

To hide variables (or methods, for that matter) you just have to declare them private:

public class Laundromat { // People can use this class.
 private Laundry[] dirty; // They can't see this internal variable,
 public void wash() { ... } // but they can use these public methods
 public void dry() { ... } // to manipulate the internal variable.
}

A private field of a class is visible only in methods defined within that class. (Or, in Java 1.1, in classes defined
within the class.) Similarly, a private method may only be invoked by methods within the class (or methods of
classes within the class). Private members are not visible within subclasses, and are not inherited by subclasses as
other members are. [11] Of course, non-private methods that invoke private methods internally are inherited
and may be invoked by subclasses.

[11] Every object does, of course, have its own copy of all fields of all superclasses, including the
private fields. The methods defined by the object can never refer to or use the private fields of
superclasses, however, and so we say that those fields are not inherited.

Besides public and private, Java has two other visibility levels: protected and the default visibility level,
"package visibility," which applies if none of the public, private, and protected keywords are used.

A protected member of a class is visible within the class where it is defined, of course, and within all subclasses
of the class, and also within all classes that are in the same package as that class. You should use protected
visibility when you want to hide fields and methods from code that uses your class, but want those fields and
methods to be fully accessible to code that extends your class.

The default package visibility is more restrictive than protected, but less restrictive than private. If a class
member is not declared with any of the public, private, or protected keywords, then it is visible only
within the class that defines it and within classes that are part of the same package. It is not visible to subclasses
unless those subclasses are part of the same package.

A note about packages: A package is a group of related and possibly cooperating classes. All non-private
members of all classes in the package are visible to all other classes in the package. This is okay because the classes
are assumed to know about, and trust, each other. [12] The only time difficulty arises is when you write programs
without a package statement. These classes are thrown into a default package with other package-less classes,
and all their non-private members are visible throughout the package. (The default package usually consists of
all classes in the current working directory.)

[12] If you're a C++ programmer, you can say that classes within the same package are friend-ly to
each other.

There is an important point to make about subclass access to protected members. A subclass inherits the
protected members of its superclass, but it can only access those members through instances of itself, not
directly in instances of the superclass. Suppose, for example, that A, B, and C are public classes, each defined in a
different package, and that a, b, and c are instances of those classes. Let B be a subclass of A, and C be a subclass of
B. Now, if A has a protected field x, then the class B inherits that field, and its methods can use this.x, b.x
and c.x. But it cannot access a.x. Similarly, if A has a protected method f(), then the methods of class B can

invoke this.f(), b.f(), and c.f(), but they cannot invoke a.f().

Table 3.1 shows the circumstances under which class members of the various visibility types are accessible to other
classes.

Table 3.1: Class Member Accessibility

Accessible to: public protected package private

Same class yes yes yes yes

Class in same package yes yes yes no

Subclass in different package yes yes no no

Non-subclass, different package yes no no no

The details of member visibility in Java can become quite confusing. Here are some simple rules of thumb for using
visibility modifiers:

● Use public only for methods and constants that form part of the public API of the class. Certain very
important or very frequently used fields may also be public, but it is common practice to make fields non-
public and encapsulate them with public accessor methods.

● Use protected for fields and methods that aren't necessary to use the class, but that may be of interest to
anyone creating a subclass as part of a different package.

● Use the default package visibility for fields and methods that you want to be hidden outside of the package,
but which you want cooperating classes within the same package to have access to.

● Use private for fields and methods that are only used inside the class and should be hidden everywhere
else.

Note that you can't take advantage of package visibility unless you use the package statement to group your
related classes into packages. See Chapter 13, Java Syntax, Java Syntax, for a table that summarizes the Java
visibility modifiers and other modifiers.

Data Access Methods

In the Circle example we've been using, we've declared the circle position and radius to be public fields. In
fact, the Circle class is one where it may well make sense to keep those visible--it is a simple enough class, with
no dependencies between the variables.

On the other hand, suppose we wanted to impose a maximum radius on objects of the Circle class. Then it would
be better to hide the r variable so that it could not be set directly. Instead of a visible r variable, we'd implement a
setRadius() method that verifies that the specified radius isn't too large and then sets the r variable internally.
Example 3.14 shows how we might implement Circle with encapsulated data and a restriction on radius size. For
convenience, we use protected fields for the radius and position variables. This means that subclasses of

Circle, or cooperating classes within the shapes package are able to access these variables directly. To any
other classes, however, the variables are hidden. Also, note the private constant and method used to check
whether a specified radius is legal. And finally, notice the public methods that allow you to set and query the
values of the instance variables.

Example 3.14: Hiding Variables in the Circle Class

package shapes; // Specify a package for the class.
public class Circle { // Note that the class is still public!
 protected double x, y; // Position is hidden, but visible to subclasses.
 protected double r; // Radius is hidden, but visible to subclasses.
 private static final double MAXR = 100.0; // Maximum radius (constant).
 private boolean check_radius(double r) { return (r <= MAXR); }
 // Public constructors
 public Circle(double x, double y, double r) {
 this.x = x; this.y = y;
 if (check_radius(r)) this.r = r;
 else this.r = MAXR;
 }
 public Circle(double r) { this(0.0, 0.0, r); }
 public Circle() { this(0.0, 0.0, 1.0); }
 // Public data access methods
 public void moveto(double x, double y) { this.x = x; this.y = y;}
 public void move(double dx, double dy) { x += dx; y += dy; }
 public void setRadius(double r) { this.r = (check_radius(r))?r:MAXR; }
 // Declare these trivial methods final so we don't get dynamic
 // method lookup and so that they can be inlined by the compiler.
 public final double getX() { return x; };
 public final double getY() { return y; };
 public final double getRadius() { return r; };
}

Overriding Methods Abstract Classes and
Interfaces

Chapter 3
Classes and Objects in Java

3.9 Abstract Classes and Interfaces

In Example 3.14 we declared our Circle class to be part of a package named shapes. Suppose we plan to
implement a number of shape classes: Rectangle, Square, Ellipse, Triangle, and so on. We'll give all of
these shape classes our two basic area() and circumference() methods. Now, to make it easy to work with an
array of shapes, it would be helpful if all our shape classes have a common superclass, Shape. We want Shape to
encapsulate whatever features all our shapes have in common. In this case, they have in common the area() and
circumference() methods. But our generic Shape class can't actually implement these methods, since it doesn't
represent any actual shape. Java handles this case with abstract methods.

Abstract Methods

Java lets us define a method without implementing it by making the method abstract. An abstract method has
no body; it simply has a signature definition followed by a semicolon. [13] Here are the rules about abstract
methods, and the abstract classes that contain them:

[13] An abstract method in Java is something like a "pure virtual function" in C++ (i.e., a virtual
function that is declared = 0). In C++, a class that contains a pure virtual function is called an "abstract
class" and may not be instantiated. The same is true of Java classes that contain abstract methods.

● Any class with an abstract method is automatically abstract itself, and must be declared as such.

● A class may be declared abstract even if it has no abstract methods. This prevents it from being
instantiated.

● An abstract class cannot be instantiated.

● A subclass of an abstract class can be instantiated if it overrides each of the abstract methods of its
superclass and provides an implementation (i.e., a method body) for all of them.

● If a subclass of an abstract class does not implement all of the abstract methods it inherits, that
subclass is itself abstract.

That description of the abstract keyword was pretty abstract! Example 3.15 is more concrete. It shows an
abstract Shape class and two non-abstract subclasses of it.

Example 3.15: An Abstract Class and Subclasses

public abstract class Shape {
 public abstract double area();
 public abstract double circumference();
}
class Circle extends Shape {
 protected double r;
 protected static final double PI = 3.14159265358979323846;
 public Circle() { r = 1.0; }
 public Circle(double r) { this.r = r; }
 public double area() { return PI * r * r; }
 public double circumference() { return 2 * PI * r; }
 public double getRadius() { return r; }
}
class Rectangle extends Shape {
 protected double w, h;
 public Rectangle() { w = 0.0; h = 0.0; }
 public Rectangle(double w, double h) { this.w = w; this.h = h; }
 public double area() { return w * h; }
 public double circumference() { return 2 * (w + h); }
 public double getWidth() { return w; }
 public double getHeight() { return h; }
}

Note that the abstract methods in Shape have a semicolon right after their parentheses. There are no curly
braces, and no method body is defined. Using the classes defined in Example 3.15, we can now write code like this:

Shape[] shapes = new Shape[3]; // Create an array to hold shapes.
shapes[0] = new Circle(2.0); // Fill in the array...
shapes[1] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangle(4.0, 2.0);
double total_area = 0;
for(int i = 0; i < shapes.length; i++)
 total_area += shapes[i].area(); // Compute the area of the shapes.

There are two important points to notice here:

● Subclasses of Shape can be assigned to elements of an array of Shape. No cast is necessary.

● You can invoke the area() and circumference() methods for Shape objects, even though Shape
does not define a body for these methods, because Shape declared them abstract. If Shape did not
declare them at all, the code would cause a compilation error.

Interfaces

Let's extend our shapes package further. Suppose we now want to implement a number of shapes that can be drawn

on the screen. We could define an abstract DrawableShape class, and then implement various subclasses of it,
such as DrawableCircle, DrawableRectangle, and so on. This would work fine.

But suppose we want our drawable shape types to support the area() and circumference() methods. We don't
want to have to re-implement these methods, so we'd like to make DrawableCircle a subclass of Circle, for
example, and DrawableRectangle a subclass of Rectangle. But classes in Java can only have one superclass.
If DrawableCircle extends Circle, then it cannot also extend DrawableShape! [14]

[14] C++ allows classes to have more than one superclass, using a technique known as "multiple
inheritance." Multiple inheritance opens up a can of worms, so Java replaces it with what many believe
is a more elegant solution.

Java's solution to this problem is called an interface. An interface looks a lot like an abstract class, except that it uses
the keyword interface instead of the words abstract and class. Example 3.16 shows an interface named
Drawable.

Example 3.16: An Interface Definition

public interface Drawable {
 public void setColor(Color c);
 public void setPosition(double x, double y);
 public void draw(DrawWindow dw);
}

While an abstract class may define some abstract methods and some non-abstract methods, all the
methods defined within an interface are implicitly abstract. We've omitted the abstract keyword in this
example, but it is perfectly legal to use it if you want to belabor the abstractness of interface methods. A further
restriction on interfaces is that any variables declared in an interface must be static and final--that is, they must
be constants.

So what can we do with an interface? Just as a class extends its superclass, it also optionally implements an
interface. implements is a Java keyword that can appear in a class declaration following the extends clause.
implements should be followed by the name of the interface that the class implements. In order to implement an
interface, a class must first declare the interface in an implements clause, and then it must provide an
implementation (i.e., a body) for all of the abstract methods of the interface. [15]

[15] This is the real difference between multiple inheritance in C++ and interfaces in Java. In C++, a
class can inherit method implementations from more than one superclass. In Java, a class can inherit
actual implementations only from one superclass. It can inherit additional abstract methods from
interfaces, but it must provide its own implementation of those methods. It is rare, however, to actually
be able to use C++ multiple inheritance to inherit useful, non-trivial implementations from more than
one class. The elegance and simplicity of Java's interface more than compensate for the inability to
inherit implementations from more than one class.

Example 3.17 shows how we can define a DrawableRectangle class that extends our Rectangle class and
implements the Drawable interface we defined in Example 3.16. The example assumes that a Color class and a
DrawWindow class are defined elsewhere, and that DrawWindow knows how to convert floating-point coordinates

to pixel coordinates and knows how to draw primitive shapes.

Example 3.17: Implementing an Interface

public class DrawableRectangle extends Rectangle implements Drawable {
 // New instance variables
 private Color c;
 private double x, y;
 // A constructor
 public DrawableRectangle(double w, double h) { super(w, h); }
 // Here are implementations of the Drawable methods.
 // We also inherit all the public methods of Rectangle.
 public void setColor(Color c) { this.c = c; }
 public void setPosition(double x, double y) { this.x = x; this.y = y; }
 public void draw(DrawWindow dw) {
 dw.drawRect(x, y, w, h, c);
 }
}

Using Interfaces

Suppose we implement DrawableCircle and DrawableSquare just as we implemented
DrawableRectangle in Example 3.17. As we saw earlier, instances of these classes can be treated as instances of
the abstract Shape class. They can also be treated as instances of the Drawable interface. Example 3.18
demonstrates this.

Example 3.18: Casting Objects to Their Interface Type

Shape[] shapes = new Shape[3]; // Create an array to hold shapes
Drawable[] drawables = new Drawable[3]; // and an array to hold drawables.
// Create some drawable shapes.
DrawableCircle dc = new DrawableCircle(1.1);
DrawableSquare ds = new DrawableSquare(2.5);
DrawableRectangle dr = new DrawableRectangle(2.3, 4.5);
// The shapes can be assigned to both arrays.
shapes[0] = dc; drawables[0] = dc;
shapes[1] = ds; drawables[1] = ds;
shapes[2] = dr; drawables[2] = dr;
// Compute total area and draw the shapes by invoking
// the Shape and the Drawable abstract methods.
double total_area = 0;
for(int i = 0; i < shapes.length; i++) {
 total_area += shapes[i].area(); // Compute the area of the shapes.
 drawables[i].setPosition(i*10.0, i*10.0);
 drawables[i].draw(draw_window); // Assume draw_window defined somewhere.
}

What this example demonstrates is that interfaces are data types in Java, just as classes are, and that when a class
implements an interface, instances of that class can be assigned to variables of the interface type. Don't interpret this
example to imply that you must assign a DrawableRectangle object to a Drawable variable before you can
invoke the draw() method or that you must assign it to a Shape variable before you can invoke the area()
method. DrawableRectangle defines draw() and inherits area() from its Rectangle superclass, and so
you can always invoke these methods.

Implementing Multiple Interfaces

Suppose we wanted shapes that could be scaled to be larger or smaller. One way we could do this is by defining a
Scalable interface and implementing subclasses of DrawableRectangle and the other classes. To do this,
though, the new subclass would have to implement both the Drawable interface and the Scalable interface. This
is no problem. You may specify a list of comma-separated interfaces in the implements clause of any class:

public class DrawableScalableRectangle extends DrawableRectangle
 implements Drawable, Scalable {
 // The methods of the Scalable interface must be implemented here.
}

When a class implements more than one interface, it means simply that it must provide an implementation for all of
the abstract methods in all of its interfaces.

Constants in Interfaces

As we noted above, constants may appear in interface definitions. What does it mean to implement an interface that
contains constants? It simply means that the class that implements the interface "inherits" the constants (in a sense)
and can use them as if they were defined directly in the class. There is no need to prefix them with the name of the
interface, and there is no need to provide an "implementation" of the constants:

class A { static final int CONSTANT1 = 3; }
interface B { static final int CONSTANT2 = 4; }
class C implements B {
 void f() {
 int i = A.CONSTANT1; // Have to use the class name here.
 int j = CONSTANT2; // No class name here, because we implement
 } // the interface that defines this constant.
}

When you have a set of constants used by more than one class within a package (for example, a port number and
other protocol constants used by a client and server), it is convenient to define them in an interface that contains no
abstract methods. Then, any class that wants to use those constants needs only to declare that it implements the
interface.

Extending Interfaces

Interfaces can have sub-interfaces, just as classes can have subclasses. A sub-interface inherits all the abstract

methods and constants of its super-interface, and may define new abstract methods and constants. Interfaces are
different from classes in one very important way, however.

An interface can extend more than one interface at a time:

public interface Transformable extends Scalable, Rotateable, Reflectable { }
public interface DrawingObject extends Drawable, Transformable { }
public class Shape implements DrawingObject { ... }

An interface that extends more than one interface inherits all the abstract methods and constants from each of those
interfaces, and may define its own additional abstract methods and constants. A class that implements such an
interface must implement the abstract methods defined in the interface itself as well as all the abstract methods
inherited from all the super-interfaces.

Marker Interfaces

Another technique that is sometimes useful is to define an interface that is entirely empty. A class can implement this
interface to provide additional information about itself. The Cloneable interface in java.lang is an example of
this type of "marker interface." It defines no methods, but serves simply to identify the class as one that will allow its
internal state to be cloned by the clone() method of the Object class. In Java 1.1, java.io.Serializable
is another such marker interface. You can test whether a class implements a marker interface (or any interface) using
the instanceof operator.

Data Hiding and
Encapsulation

C++ Features Not Found in
Java

Chapter 3
Classes and Objects in Java

3.10 C++ Features Not Found in Java

Throughout this chapter, we've noted similarities and differences between Java and C++ in footnotes.
Java shares enough concepts and features with C++ to make it an easy language for C++ programmers to
pick up. There are several features of C++ that have no parallel in Java, however. In general, Java does
not adopt those features of C++ that make the language significantly more complicated. These omissions
from Java (or simplifications of C++) are described below.

C++ supports "multiple inheritance" of method implementations from more than one superclass at a time.
While this seems like a very useful feature, adding it to the language actually turns out to introduce many
complexities. The Java language designers chose to avoid the added complexity by using interfaces
instead. Thus, a class in Java can only inherit method implementations from a single superclass, but it
can inherit method declarations from any number of interfaces. In practice, this is not any particular
hardship.

C++ supports (though not yet in a very standardized way) templates that allow you, for example, to
implement a Stack class and then instantiate it as Stack<int> or Stack<double> to produce two
separate types: a stack of integers and a stack of floating-point values. Java has no such facility.
However, the fact that every class in Java is a subclass of Object means that every object can be cast to
an instance of Object. Thus, in Java, it is often sufficient to define a data structure (such as a Stack
class) that operates on Object values--the objects can be cast back to their actual type whenever
necessary.

C++ allows you to define operators that perform arbitrary operations on instances of your classes. In
effect, it allows you to extend the syntax of the language. This is a nifty feature, called operator
overloading, that makes for very elegant examples. In practice, however, it tends to make code hard to
understand. After much debate, the Java language designers decided to omit such "operator overloading"
from the language. Note, though, that the use of the + operator for string concatenation in Java is at least
reminiscent of operator overloading.

C++ allows you to define "conversion functions" for a class that automatically invoke an appropriate
constructor method when a value is assigned to a variable of that class. This is simply a syntactic shortcut

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_11.htm

(similar to overriding the assignment operator) and is not included in Java.

In C++, objects are by default manipulated by value; you must use & to specify a variable or function
argument that is automatically manipulated by reference. In Java, all objects are manipulated by
reference, so there is no need for this & syntax.

Abstract Classes and
Interfaces

Summary

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_11.htm

Examples From Java in a Nutshell,
Second Edition

The Java programming examples linked below are from the book Java in a Nutshell, Second Edition, by
David Flanagan, published by O'Reilly & Associates.

Although you can view the example source code online, by following the links below, I recommend that
you download the complete set of examples so that you can work with them on your computer locally.
They are available as a zip file or as a gzipped tar file.

Reporting Bugs

If you find any bugs in these examples, please send e-mail describing the bug to
bookquestions@ora.com. If you have found a workaround to the problem, please include it.

Copyright

The examples were written by David Flanagan, and are Copyright (c) 1997 by O'Reilly and Associates.

You may study, use, and modify these examples for any purpose. This means that you can use the
examples, or modified versions of the examples in your programs, and you can even sell those programs.
You can distribute the source code to these examples, but only for non-commercial purposes, and only as
long as the copyright notice is retained. This means that you can make them available on a public Web
site, for example, but that you cannot include them on a commercial CD-ROM without the prior
permission of O'Reilly and Associates.

Note that these examples are provided AS-IS, with absolutely NO WARRANTY of any kind, either
expressed or implied.

Example 1-2

Scribble.java: an applet of intermediate complexity, used as an example in the introductory chapter.

Example 2-3

throwtest.java: an application that demonstrates how to define, throw, and handle exceptions. This
application doesn't do anything other than print out some text, but you might want to study it and play

file:///C|/download/www.ora.com/catalog/books/javanut2
file:///C|/download/www.ora.com/catalog/books/javanut2/examples/examples.zip
file:///C|/download/www.ora.com/catalog/books/javanut2/examples/examples.tar.gz
mailto:bookquestions@ora.com

around with it to learn more about how exceptions work in Java. See the usage instructions in the source
code.

Example 6-1

FirstApplet.java: the simplest possible applet. Displays "Hello World"

Example 6-2

SecondApplet.java: a fancier version of "Hello World"

Example 6-3

Scribble.java: a simple applet with user interaction. It allows the user to click and scribble in the window.

Example 6-4

ColorScribble.java: the scribble applet, with colors specified through applet parameters in an HTML file.

Example 6-5

Soundmap.java: An applet that displays an image, plays a sound, and demonstrates several other applet
capabilities.

Example 7-1

Scribble1.java: a simple applet, using the Java 1.0 event model.

Example 7-2

Scribble2.java: the same applet, using the Java 1.1 event model.

Example 7-3

Scribble3.java: the applet using the Java 1.1 event model and inner classes.

Example 7-4

Scribble4.java: the applet using a low-level interface to the Java 1.1 event model.

Example 8-1

ScribbleFrame.java: a relatively long application that demonstrates many of the new AWT features of
Java 1.1, and also demonstrates object serialization and data compression.

Example 9-2

IntList.java: a simple datatype that defines custom serialziation and de-serialization behavior for itself.

Example 10-1

MultiLineLabel.java: a custom AWT component and Java Bean that displays a specified string of text,
using multiple lines, if the string contains newline characters.

Example 10-2

YesNoDialog.java: a bean that displays a dialog box.

Example 10-3

AnswerEvent.java: an event type used by the bean.

Example 10-4

AnswerListener.java: the event listener interface used by the bean

Example 10-5

YesNoDialogBeanInfo.java: a BeanInfo class for the bean.

Example 10-6

YesNoDialogAlignmentEditor.java: a property editor class for one of the bean's properties.

Example 10-7

YesNoDialogMessageEditor.java: a property editor class for another of the bean's properties.

Example 10-8

YesNoDialogCustomizer.java: a customizer class for the bean.

Example 11-1

ConvertEncoding.java: an application that converts a file from one character encoding to another.

Example 11-3

Portfolio.java: a dummy stock portfolio program that demonstrates internationalization of dates, times
and numbers.

Example 11-4

SimpleMenu.java: a convenience class for simple creation of localized menus using ResourceBundles.

Example 11-5

Menus.properties Menus_en_GB.properties Menus_fr.properties: property files that specify default,
British, and French resource bundles for simple menu creation.

Example 11-6

LocalizedError.java: a class that displays a localized error message fora given exception object, using the
MessageFormat class.

Example 11-7

Errors.properties: a sample property file used by the previous example

Example 12-1

ShowClass.java: a program that uses the Reflection API to show the fields and methods of a class.

Example 12-2

UniversalActionListener.java: an ActionListener implementation that uses reflection to invoke a named
method of an object.

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.applet.*;
import java.awt.*;

public class Scribble extends Applet {
 private int last_x, last_y; // Store the last mouse position.
 private Color current_color = Color.black; // Store the current color.
 private Button clear_button; // The clear button.
 private Choice color_choices; // The color dropdown list.

 // This method is called to initialize the applet.
 // Applets don't have a main() method.
 public void init() {
 // Set the background color
 this.setBackground(Color.white);

 // Create a button and add it to the applet. Set the button's colors
 clear_button = new Button("Clear");
 clear_button.setForeground(Color.black);
 clear_button.setBackground(Color.lightGray);
 this.add(clear_button);

 // Create a menu of colors and add it to the applet.
 // Also set the menus's colors and add a label.
 color_choices = new Choice();
 color_choices.addItem("black");
 color_choices.addItem("red");
 color_choices.addItem("yellow");
 color_choices.addItem("green");
 color_choices.setForeground(Color.black);
 color_choices.setBackground(Color.lightGray);
 this.add(new Label("Color: "));
 this.add(color_choices);
 }

 // This method is called when the user clicks the mouse to start a scribble.
 public boolean mouseDown(Event e, int x, int y)
 {
 last_x = x; last_y = y;
 return true;
 }

 // This method is called when the user drags the mouse.
 public boolean mouseDrag(Event e, int x, int y)
 {
 Graphics g = this.getGraphics();
 g.setColor(current_color);
 g.drawLine(last_x, last_y, x, y);
 last_x = x;
 last_y = y;
 return true;
 }

 // This method is called when the user clicks the button or chooses a color
 public boolean action(Event event, Object arg) {
 // If the Clear button was clicked on, handle it.

 if (event.target == clear_button) {
 Graphics g = this.getGraphics();
 Rectangle r = this.bounds();
 g.setColor(this.getBackground());
 g.fillRect(r.x, r.y, r.width, r.height);
 return true;
 }
 // Otherwise if a color was chosen, handle that
 else if (event.target == color_choices) {
 if (arg.equals("black")) current_color = Color.black;
 else if (arg.equals("red")) current_color = Color.red;
 else if (arg.equals("yellow")) current_color = Color.yellow;
 else if (arg.equals("green")) current_color = Color.green;
 return true;
 }
 // Otherwise, let the superclass handle it.
 else return super.action(event, arg);
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

// Here we define some exception types of our own.
// Exception classes generally have constructors but no data or
// other methods. All these do is to call their superclass constructors.
class MyException extends Exception {
 public MyException() { super(); }
 public MyException(String s) { super(s); }
}
class MyOtherException extends Exception {
 public MyOtherException() { super(); }
 public MyOtherException(String s) { super(s); }
}
class MySubException extends MyException {
 public MySubException() { super(); }
 public MySubException(String s) { super(s); }
}

// This class demonstrates defining, throwing and handling exceptions.
// Try invoking it in the following ways and try to understand the
// output:
// java throwtest
// java throwtest one
// java throwtest 0
// java throwtest 1
// java throwtest 99
// java throwtest 2
// java throwtest 3
public class throwtest {
 // This is the main() method. Note that it uses two
 // catch clauses to handle two standard Java exceptions.
 public static void main(String argv[]) {
 int i;

 // First, convert our argument to an integer
 // Make sure we have an argument and that it is convertible.
 try {
 i = Integer.parseInt(argv[0]);
 }
 catch (ArrayIndexOutOfBoundsException e) { // argv is empty
 System.out.println("Must specify an argument");
 return;
 }
 catch (NumberFormatException e) { // argv[0] isn't an integer
 System.out.println("Must specify an integer argument.");
 return;
 }

 // Now, pass that integer to method a().
 a(i);
 }

 // This method invokes b(), which is declared to throw
 // one type of exception. We handle that one exception.
 public static void a(int i) {
 try {

 b(i);
 }
 catch (MyException e) { // Point 1.
 // Here we handle MyException and
 // its subclass MyOtherException
 if (e instanceof MySubException)
 System.out.print("MySubException: ");
 else
 System.out.print("MyException: ");
 System.out.println(e.getMessage());
 System.out.println("Handled at point 1");
 }
 }

 // This method invokes c(), and handles one of the
 // two exception types that that method can throw. The other
 // exception type is not handled, and is propagated up
 // and declared in this method's throws clause.
 // This method also has a finally clause to finish up
 // the work of its try clause. Note that the finally clause
 // is executed after a local catch clause, but before a
 // a containing catch clause or one in an invoking procedure.
 public static void b(int i) throws MyException {
 int result;
 try {
 System.out.print("i = " + i);
 result = c(i);
 System.out.print(" c(i) = " + result);
 }
 catch (MyOtherException e) { // Point 2
 // Handle MyOtherException exceptions:
 System.out.println("MyOtherException: " + e.getMessage());
 System.out.println("Handled at point 2");
 }
 finally {
 // Terminate the output we printed above with a newline.
 System.out.print("\n");
 }
 }

 // This method computes a value or throws an exception.
 // The throws clause only lists two exceptions, because
 // one of the exceptions thrown is a subclass of another.
 public static int c(int i) throws MyException, MyOtherException {
 switch (i) {
 case 0: // processing resumes at point 1 above
 throw new MyException("input too low");
 case 1: // processing resumes at point 1 above
 throw new MySubException("input still too low");
 case 99:// processing resumes at point 2 above
 throw new MyOtherException("input too high");
 default:
 return i*i;
 }
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.applet.*; // Don't forget this import statement!
import java.awt.*; // Or this one for the graphics!

public class FirstApplet extends Applet {
 // This method displays the applet.
 // The Graphics class is how you do all drawing in Java.
 public void paint(Graphics g) {
 g.drawString("Hello World", 25, 50);
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.applet.*;
import java.awt.*;

public class SecondApplet extends Applet {
 static final String message = "Hello World";
 private Font font;

 // One-time initialization for the applet
 // Note: no constructor defined.
 public void init() {
 font = new Font("Helvetica", Font.BOLD, 48);
 }

 // Draw the applet whenever necessary. Do some fancy graphics.
 public void paint(Graphics g) {
 // The pink oval
 g.setColor(Color.pink);
 g.fillOval(10, 10, 330, 100);

 // The red outline. Java doesn't support wide lines, so we
 // try to simulate a 4-pixel wide line by drawing four ovals.
 g.setColor(Color.red);
 g.drawOval(10,10, 330, 100);
 g.drawOval(9, 9, 332, 102);
 g.drawOval(8, 8, 334, 104);
 g.drawOval(7, 7, 336, 106);

 // The text
 g.setColor(Color.black);
 g.setFont(font);
 g.drawString(message, 40, 75);
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.applet.*;
import java.awt.*;

public class Scribble extends Applet {
 private int last_x = 0, last_y = 0; // Fields to store a point in.

 // Called when the user clicks.
 public boolean mouseDown(Event e, int x, int y) {
 last_x = x; last_y = y; // Remember the location of the click.
 return true;
 }

 // Called when the mouse moves with the button down
 public boolean mouseDrag(Event e, int x, int y) {
 Graphics g = getGraphics(); // Get a Graphics to draw with.
 g.drawLine(last_x, last_y, x, y); // Draw a line from last point to this.
 last_x = x; last_y = y; // And update the saved location.
 return true;
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.applet.*;
import java.awt.*;

public class ColorScribble extends Scribble {
 // Read in two color parameters and set the colors.
 public void init() {
 super.init();
 Color foreground = getColorParameter("foreground");
 Color background = getColorParameter("background");
 if (foreground != null) this.setForeground(foreground);
 if (background != null) this.setBackground(background);
 }

 // Read the specified parameter. Interpret it as a hexadecimal
 // number of the form RRGGBB and convert it to a color.
 protected Color getColorParameter(String name) {
 String value = this.getParameter(name);
 try { return new Color(Integer.parseInt(value, 16)); }
 catch (Exception e) { return null; }
 }

 // Return information suitable for display in an About dialog box.
 public String getAppletInfo() {
 return "ColorScribble v. 0.02. Written by David Flanagan.";
 }

 // Return info about the supported parameters. Web browsers and applet
 // viewers should display this information, and may also allow users to
 // set the parameter values.
 public String[][] getParameterInfo() { return info; }

 // Here's the information that getParameterInfo() returns.
 // It is an array of arrays of strings describing each parameter.
 // Format: parameter name, parameter type, parameter description
 private String[][] info = {
 {"foreground", "hexadecimal color value", "foreground color"},
 {"background", "hexadecimal color value", "background color"}
 };
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.util.*;

/**
 * A Java applet that simulates a client-side imagemap.
 * Plays a sound whenever the user clicks on one of the hyperlinks.
 */
public class Soundmap extends Applet {
 protected Image image; // The image to display.
 protected Vector rects; // A list of rectangles in it.
 protected AudioClip sound; // A sound to play on user clicks in a rectangle.

 /** Initialize the applet */
 public void init() {
 // Look up the name of the image, relative to a base URL, and load it.
 // Note the use of three Applet methods in this one line.
 image = this.getImage(this.getDocumentBase(), this.getParameter("image"));

 // Lookup and parse a list of rectangular areas and the URLs they map to.
 // The convenience routine getRectangleParameter() is defined below.
 rects = new Vector();
 ImagemapRectangle r;
 for(int i = 0; (r = getRectangleParameter("rect" + i)) != null; i++)
 rects.addElement(r);

 // Look up a sound to play when the user clicks one of those areas.
 sound = this.getAudioClip(this.getDocumentBase(),
 this.getParameter("sound"));

 // Specify an "event listener" object to respond to mouse button
 // presses and releases. Note that this is the Java 1.1 event model.
 // Note that it also uses a Java 1.1 inner class, defined below.
 this.addMouseListener(new Listener());
 }

 /** Called when the applet is being unloaded from the system.
 * We use it here to "flush" the image we no longer need. This may
 * result in memory and other resources being freed more quickly. */
 public void destroy() { image.flush(); }

 /** To display the applet, we simply draw the image. */
 public void paint(Graphics g) { g.drawImage(image, 0, 0, this); }

 /** We override this method so that it doesn't clear the background
 * before calling paint(). No clear is necessary, since paint() overwrites
 * everything with an image. Causes less flickering this way. */
 public void update(Graphics g) { paint(g); }

 /** Parse a comma-separated list of rectangle coordinates and a URL.
 * Used to read the imagemap rectangle definitions from applet parameters */
 protected ImagemapRectangle getRectangleParameter(String name) {
 int x, y, w, h;

 URL url;
 String value = this.getParameter(name);
 if (value == null) return null;

 try {
 StringTokenizer st = new StringTokenizer(value, ",");
 x = Integer.parseInt(st.nextToken());
 y = Integer.parseInt(st.nextToken());
 w = Integer.parseInt(st.nextToken());
 h = Integer.parseInt(st.nextToken());
 url = new URL(this.getDocumentBase(), st.nextToken());
 }
 catch (NoSuchElementException e) { return null; }
 catch (NumberFormatException e) { return null; }
 catch (MalformedURLException e) { return null; }

 return new ImagemapRectangle(x, y, w, h, url);
 }

 /**
 * An instance of this inner class is used to respond to mouse events
 */
 class Listener extends MouseAdapter {
 /** The rectangle that the mouse was pressed in. */
 private ImagemapRectangle lastrect;

 /** Called when a mouse button is pressed. */
 public void mousePressed(MouseEvent e) {
 // On button down, check if we're inside one of the specified rectangles.
 // If so, highlight the rectangle, display a message, and play a sound.
 // The utility routine findrect() is defined below.
 ImagemapRectangle r = findrect(e);
 if (r == null) return;
 Graphics g = Applet.this.getGraphics();
 g.setXORMode(Color.red);
 g.drawRect(r.x, r.y, r.width, r.height); // highlight rectangle
 Applet.this.showStatus("To: " + r.url); // display URL
 sound.play(); // play the sound
 lastrect = r; // Remember the rectangle so it can be un-highlighted.
 }

 /** Called when a mouse button is released. */
 public void mouseReleased(MouseEvent e) {
 // When the button is released, unhighlight the rectangle. If the
 // mouse is still inside it, ask the browser to go to the URL.
 if (lastrect != null) {
 Graphics g = Applet.this.getGraphics();
 g.setXORMode(Color.red);
 g.drawRect(lastrect.x, lastrect.y, lastrect.width, lastrect.height);
 Applet.this.showStatus(""); // Clear the message.
 ImagemapRectangle r = findrect(e);
 if ((r != null) && (r == lastrect)) // If still in the same rectangle
 Applet.this.getAppletContext().showDocument(r.url); // Go to the URL
 lastrect = null;
 }
 }

 /** Find the rectangle we're inside. */
 protected ImagemapRectangle findrect(MouseEvent e) {
 int i, x = e.getX(), y = e.getY();
 for(i = 0; i < rects.size(); i++) {
 ImagemapRectangle r = (ImagemapRectangle) rects.elementAt(i);

 if (r.contains(x, y)) return r;
 }
 return null;
 }
 }

 /**
 * A helper class. Just like java.awt.Rectangle, but with a URL field.
 * Note the use of a nested toplevel class for neatness.
 */
 static class ImagemapRectangle extends Rectangle {
 URL url;
 public ImagemapRectangle(int x, int y, int w, int h, URL url) {
 super(x, y, w, h);
 this.url = url;
 }
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.applet.*;
import java.awt.*;

/** A simple applet using the Java 1.0 event handling model */
public class Scribble1 extends Applet {
 private int lastx, lasty; // Remember last mouse coordinates.
 Button clear_button; // The Clear button.
 Graphics g; // A Graphics object for drawing.

 /** Initialize the button and the Graphics object */
 public void init() {
 clear_button = new Button("Clear");
 this.add(clear_button);
 g = this.getGraphics();
 }
 /** Respond to mouse clicks */
 public boolean mouseDown(Event e, int x, int y) {
 lastx = x; lasty = y;
 return true;
 }
 /** Respond to mouse drags */
 public boolean mouseDrag(Event e, int x, int y) {
 g.setColor(Color.black);
 g.drawLine(lastx, lasty, x, y);
 lastx = x; lasty = y;
 return true;
 }
 /** Respond to key presses */
 public boolean keyDown(Event e, int key) {
 if ((e.id == Event.KEY_PRESS) && (key == 'c')) {
 clear();
 return true;
 }
 else return false;
 }
 /** Respond to Button clicks */
 public boolean action(Event e, Object arg) {
 if (e.target == clear_button) {
 clear();
 return true;
 }
 else return false;
 }
 /** convenience method to erase the scribble */
 public void clear() {
 g.setColor(this.getBackground());
 g.fillRect(0, 0, bounds().width, bounds().height);
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class Scribble2 extends Applet
 implements MouseListener, MouseMotionListener {
 private int last_x, last_y;

 public void init() {
 // Tell this applet what MouseListener and MouseMotionListener
 // objects to notify when mouse and mouse motion events occur.
 // Since we implement the interfaces ourself, our own methods are called.
 this.addMouseListener(this);
 this.addMouseMotionListener(this);
 }

 // A method from the MouseListener interface. Invoked when the
 // user presses a mouse button.
 public void mousePressed(MouseEvent e) {
 last_x = e.getX();
 last_y = e.getY();
 }

 // A method from the MouseMotionListener interface. Invoked when the
 // user drags the mouse with a button pressed.
 public void mouseDragged(MouseEvent e) {
 Graphics g = this.getGraphics();
 int x = e.getX(), y = e.getY();
 g.drawLine(last_x, last_y, x, y);
 last_x = x; last_y = y;
 }

 // The other, unused methods of the MouseListener interface.
 public void mouseReleased(MouseEvent e) {;}
 public void mouseClicked(MouseEvent e) {;}
 public void mouseEntered(MouseEvent e) {;}
 public void mouseExited(MouseEvent e) {;}

 // The other method of the MouseMotionListener interface.
 public void mouseMoved(MouseEvent e) {;}
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class Scribble3 extends Applet {
 int last_x, last_y;

 public void init() {
 // Define, instantiate and register a MouseListener object.
 this.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 last_x = e.getX();
 last_y = e.getY();
 }
 });

 // Define, instantiate and register a MouseMotionListener object.
 this.addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent e) {
 Graphics g = getGraphics();
 int x = e.getX(), y = e.getY();
 g.setColor(Color.black);
 g.drawLine(last_x, last_y, x, y);
 last_x = x; last_y = y;
 }
 });

 // Create a clear button
 Button b = new Button("Clear");
 // Define, instantiate, and register a listener to handle button presses
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) { // clear the scribble
 Graphics g = getGraphics();
 g.setColor(getBackground());
 g.fillRect(0, 0, getSize().width, getSize().height);
 }
 });
 // And add the button to the applet
 this.add(b);
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class Scribble4 extends Applet {
 private int lastx, lasty;

 /** Tell the system we're interested in mouse events, mouse motion events,
 * and keyboard events. This is required or events won't be sent.
 */
 public void init() {
 this.enableEvents(AWTEvent.MOUSE_EVENT_MASK |
 AWTEvent.MOUSE_MOTION_EVENT_MASK |
 AWTEvent.KEY_EVENT_MASK);
 this.requestFocus(); // Ask for keyboard focus so we get key events
 }

 /** Invoked when a mouse event of some type occurs */
 public void processMouseEvent(MouseEvent e) {
 if (e.getID() == MouseEvent.MOUSE_PRESSED) { // check the event type
 lastx = e.getX(); lasty = e.getY();
 }
 else super.processMouseEvent(e); // pass unhandled events to superclass
 }

 /** Invoked when a mouse motion event occurs */
 public void processMouseMotionEvent(MouseEvent e) {
 if (e.getID() == MouseEvent.MOUSE_DRAGGED) { // check type
 int x = e.getX(), y = e.getY();
 Graphics g = this.getGraphics();
 g.drawLine(lastx, lasty, x, y);
 lastx = x; lasty = y;
 }
 else super.processMouseMotionEvent(e);
 }

 /** Called on key events: clear the screen when 'c' is typed */
 public void processKeyEvent(KeyEvent e) {
 if ((e.getID() == KeyEvent.KEY_TYPED) && (e.getKeyChar() == 'c')) {
 Graphics g = this.getGraphics();
 g.setColor(this.getBackground());
 g.fillRect(0, 0, this.getSize().width, this.getSize().height);
 }
 else super.processKeyEvent(e); // pass unhandled events to our superclass
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.awt.*; // ScrollPane, PopupMenu, MenuShortcut, etc.
import java.awt.datatransfer.*; // Clipboard, Transferable, DataFlavor, etc.
import java.awt.event.*; // New event model.
import java.io.*; // Object serialization streams.
import java.util.zip.*; // Data compression/decompression streams.
import java.util.Vector; // To store the scribble in.
import java.util.Properties; // To store printing preferences in.

/**
 * This class places a Scribble component in a ScrollPane container,
 * puts the ScrollPane in a window, and adds a simple pulldown menu system.
 * The menu uses menu shortcuts. Events are handled with anonymous classes.
 */
public class ScribbleFrame extends Frame {
 /** A very simple main() method for our program. */
 public static void main(String[] args) { new ScribbleFrame(); }

 /** Remember # of open windows so we can quit when last one is closed */
 protected static int num_windows = 0;

 /** Create a Frame, Menu, and ScrollPane for the scribble component */
 public ScribbleFrame() {
 super("ScribbleFrame"); // Create the window.
 num_windows++; // Count it.

 ScrollPane pane = new ScrollPane(); // Create a ScrollPane.
 pane.setSize(300, 300); // Specify its size.
 this.add(pane, "Center"); // Add it to the frame.
 Scribble scribble;
 scribble = new Scribble(this, 500, 500); // Create a bigger scribble area.
 pane.add(scribble); // Add it to the ScrollPane.

 MenuBar menubar = new MenuBar(); // Create a menubar.
 this.setMenuBar(menubar); // Add it to the frame.
 Menu file = new Menu("File"); // Create a File menu.
 menubar.add(file); // Add to menubar.

 // Create three menu items, with menu shortcuts, and add to the menu.
 MenuItem n, c, q;
 file.add(n = new MenuItem("New Window", new MenuShortcut(KeyEvent.VK_N)));
 file.add(c = new MenuItem("Close Window",new MenuShortcut(KeyEvent.VK_W)));
 file.addSeparator(); // Put a separator in the menu
 file.add(q = new MenuItem("Quit", new MenuShortcut(KeyEvent.VK_Q)));

 // Create and register action listener objects for the three menu items.
 n.addActionListener(new ActionListener() { // Open a new window
 public void actionPerformed(ActionEvent e) { new ScribbleFrame(); }
 });
 c.addActionListener(new ActionListener() { // Close this window.
 public void actionPerformed(ActionEvent e) { close(); }
 });
 q.addActionListener(new ActionListener() { // Quit the program.
 public void actionPerformed(ActionEvent e) { System.exit(0); }
 });

 // Another event listener, this one to handle window close requests.
 this.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) { close(); }
 });

 // Set the window size and pop it up.
 this.pack();
 this.show();
 }

 /** Close a window. If this is the last open window, just quit. */
 void close() {
 if (--num_windows == 0) System.exit(0);
 else this.dispose();
 }
}

/**
 * This class is a custom component that supports scribbling. It also has
 * a popup menu that allows the scribble color to be set and provides access
 * to printing, cut-and-paste, and file loading and saving facilities.
 * Note that it extends Component rather than Canvas, making it "lightweight."
 */
class Scribble extends Component implements ActionListener {
 protected short last_x, last_y; // Coordinates of last click.
 protected Vector lines = new Vector(256,256); // Store the scribbles.
 protected Color current_color = Color.black; // Current drawing color.
 protected int width, height; // The preferred size.
 protected PopupMenu popup; // The popup menu.
 protected Frame frame; // The frame we are within.

 /** This constructor requires a Frame and a desired size */
 public Scribble(Frame frame, int width, int height) {
 this.frame = frame;
 this.width = width;
 this.height = height;

 // We handle scribbling with low-level events, so we must specify
 // which events we are interested in.
 this.enableEvents(AWTEvent.MOUSE_EVENT_MASK);
 this.enableEvents(AWTEvent.MOUSE_MOTION_EVENT_MASK);

 // Create the popup menu using a loop. Note the separation of menu
 // "action command" string from menu label. Good for internationalization.
 String[] labels = new String[] {
 "Clear", "Print", "Save", "Load", "Cut", "Copy", "Paste" };
 String[] commands = new String[] {
 "clear", "print", "save", "load", "cut", "copy", "paste" };
 popup = new PopupMenu(); // Create the menu
 for(int i = 0; i < labels.length; i++) {
 MenuItem mi = new MenuItem(labels[i]); // Create a menu item.
 mi.setActionCommand(commands[i]); // Set its action command.
 mi.addActionListener(this); // And its action listener.
 popup.add(mi); // Add item to the popup menu.
 }
 Menu colors = new Menu("Color"); // Create a submenu.
 popup.add(colors); // And add it to the popup.
 String[] colornames = new String[] { "Black", "Red", "Green", "Blue"};
 for(int i = 0; i < colornames.length; i++) {
 MenuItem mi = new MenuItem(colornames[i]); // Create the submenu items
 mi.setActionCommand(colornames[i]); // in the same way.
 mi.addActionListener(this);

 colors.add(mi);
 }
 // Finally, register the popup menu with the component it appears over
 this.add(popup);
 }

 /** Specifies big the component would like to be. It always returns the
 * preferred size passed to the Scribble() constructor */
 public Dimension getPreferredSize() { return new Dimension(width, height); }

 /** This is the ActionListener method invoked by the popup menu items */
 public void actionPerformed(ActionEvent event) {
 // Get the "action command" of the event, and dispatch based on that.
 // This method calls a lot of the interesting methods in this class.
 String command = event.getActionCommand();
 if (command.equals("clear")) clear();
 else if (command.equals("print")) print();
 else if (command.equals("save")) save();
 else if (command.equals("load")) load();
 else if (command.equals("cut")) cut();
 else if (command.equals("copy")) copy();
 else if (command.equals("paste")) paste();
 else if (command.equals("Black")) current_color = Color.black;
 else if (command.equals("Red")) current_color = Color.red;
 else if (command.equals("Green")) current_color = Color.green;
 else if (command.equals("Blue")) current_color = Color.blue;
 }

 /** Draw all the saved lines of the scribble, in the appropriate colors */
 public void paint(Graphics g) {
 for(int i = 0; i < lines.size(); i++) {
 Line l = (Line)lines.elementAt(i);
 g.setColor(l.color);
 g.drawLine(l.x1, l.y1, l.x2, l.y2);
 }
 }

 /**
 * This is the low-level event-handling method called on mouse events
 * that do not involve mouse motion. Note the use of isPopupTrigger()
 * to check for the platform-dependent popup menu posting event, and of
 * the show() method to make the popup visible. If the menu is not posted,
 * then this method saves the coordinates of a mouse click or invokes
 * the superclass method.
 */
 public void processMouseEvent(MouseEvent e) {
 if (e.isPopupTrigger()) // If popup trigger,
 popup.show(this, e.getX(), e.getY()); // pop up the menu.
 else if (e.getID() == MouseEvent.MOUSE_PRESSED) {
 last_x = (short)e.getX(); last_y = (short)e.getY(); // Save position.
 }
 else super.processMouseEvent(e); // Pass other event types on.
 }

 /**
 * This method is called for mouse motion events. It adds a line to the
 * scribble, on screen, and in the saved representation
 */
 public void processMouseMotionEvent(MouseEvent e) {
 if (e.getID() == MouseEvent.MOUSE_DRAGGED) {
 Graphics g = getGraphics(); // Object to draw with.

 g.setColor(current_color); // Set the current color.
 g.drawLine(last_x, last_y, e.getX(), e.getY()); // Draw this line
 lines.addElement(new Line(last_x, last_y, // and save it, too.
 (short) e.getX(), (short)e.getY(),
 current_color));
 last_x = (short) e.getX(); // Remember current mouse coordinates.
 last_y = (short) e.getY();
 }
 else super.processMouseMotionEvent(e); // Important!
 }

 /** Clear the scribble. Invoked by popup menu */
 void clear() {
 lines.removeAllElements(); // Throw out the saved scribble
 repaint(); // and redraw everything.
 }

 /** Print out the scribble. Invoked by popup menu. */
 void print() {
 // Obtain a PrintJob object. This posts a Print dialog.
 // printprefs (created below) stores user printing preferences.
 Toolkit toolkit = this.getToolkit();
 PrintJob job = toolkit.getPrintJob(frame, "Scribble", printprefs);

 // If the user clicked Cancel in the print dialog, then do nothing.
 if (job == null) return;

 // Get a Graphics object for the first page of output.
 Graphics page = job.getGraphics();

 // Check the size of the scribble component and of the page.
 Dimension size = this.getSize();
 Dimension pagesize = job.getPageDimension();

 // Center the output on the page. Otherwise it would be
 // be scrunched up in the upper-left corner of the page.
 page.translate((pagesize.width - size.width)/2,
 (pagesize.height - size.height)/2);

 // Draw a border around the output area, so it looks neat.
 page.drawRect(-1, -1, size.width+1, size.height+1);

 // Set a clipping region so our scribbles don't go outside the border.
 // On-screen this clipping happens automatically, but not on paper.
 page.setClip(0, 0, size.width, size.height);

 // Print this Scribble component. By default this will just call paint().
 // This method is named print(), too, but that is just coincidence.
 this.print(page);

 // Finish up printing.
 page.dispose(); // End the page--send it to the printer.
 job.end(); // End the print job.
 }

 /** This Properties object stores the user print dialog settings. */
 private static Properties printprefs = new Properties();

 /**
 * The DataFlavor used for our particular type of cut-and-paste data.
 * This one will transfer data in the form of a serialized Vector object.
 * Note that in Java 1.1.1, this works intra-application, but not between
 * applications. Java 1.1.1 inter-application data transfer is limited to

 * the pre-defined string and text data flavors.
 */
 public static final DataFlavor dataFlavor =
 new DataFlavor(Vector.class, "ScribbleVectorOfLines");

 /**
 * Copy the current scribble and store it in a SimpleSelection object
 * (defined below). Then put that object on the clipboard for pasting.
 */
 public void copy() {
 // Get system clipboard
 Clipboard c = this.getToolkit().getSystemClipboard();
 // Copy and save the scribble in a Transferable object
 SimpleSelection s = new SimpleSelection(lines.clone(), dataFlavor);
 // Put that object on the clipboard
 c.setContents(s, s);
 }

 /** Cut is just like a copy, except we erase the scribble afterwards */
 public void cut() { copy(); clear(); }

 /**
 * Ask for the Transferable contents of the system clipboard, then ask that
 * object for the scribble data it represents. If either step fails, beep!
 */
 public void paste() {
 Clipboard c = this.getToolkit().getSystemClipboard(); // Get clipboard.
 Transferable t = c.getContents(this); // Get its contents.
 if (t == null) { // If there is nothing to paste, beep.
 this.getToolkit().beep();
 return;
 }
 try {
 // Ask for clipboard contents to be converted to our data flavor.
 // This will throw an exception if our flavor is not supported.
 Vector newlines = (Vector) t.getTransferData(dataFlavor);
 // Add all those pasted lines to our scribble.
 for(int i = 0; i < newlines.size(); i++)
 lines.addElement(newlines.elementAt(i));
 // And redraw the whole thing
 repaint();
 }
 catch (UnsupportedFlavorException e) {
 this.getToolkit().beep(); // If clipboard has some other type of data
 }
 catch (Exception e) {
 this.getToolkit().beep(); // Or if anything else goes wrong...
 }
 }

 /**
 * This nested class implements the Transferable and ClipboardOwner
 * interfaces used in data transfer. It is a simple class that remembers a
 * selected object and makes it available in only one specified flavor.
 */
 static class SimpleSelection implements Transferable, ClipboardOwner {
 protected Object selection; // The data to be transferred.
 protected DataFlavor flavor; // The one data flavor supported.
 public SimpleSelection(Object selection, DataFlavor flavor) {
 this.selection = selection; // Specify data.
 this.flavor = flavor; // Specify flavor.

 }

 /** Return the list of supported flavors. Just one in this case */
 public DataFlavor[] getTransferDataFlavors() {
 return new DataFlavor[] { flavor };
 }
 /** Check whether we support a specified flavor */
 public boolean isDataFlavorSupported(DataFlavor f) {
 return f.equals(flavor);
 }
 /** If the flavor is right, transfer the data (i.e. return it) */
 public Object getTransferData(DataFlavor f)
 throws UnsupportedFlavorException {
 if (f.equals(flavor)) return selection;
 else throw new UnsupportedFlavorException(f);
 }

 /** This is the ClipboardOwner method. Called when the data is no
 * longer on the clipboard. In this case, we don't need to do much. */
 public void lostOwnership(Clipboard c, Transferable t) {
 selection = null;
 }
 }

 /**
 * Prompt the user for a filename, and save the scribble in that file.
 * Serialize the vector of lines with an ObjectOutputStream.
 * Compress the serialized objects with a GZIPOutputStream.
 * Write the compressed, serialized data to a file with a FileOutputStream.
 * Don't forget to flush and close the stream.
 */
 public void save() {
 // Create a file dialog to query the user for a filename.
 FileDialog f = new FileDialog(frame, "Save Scribble", FileDialog.SAVE);
 f.show(); // Display the dialog and block.
 String filename = f.getFile(); // Get the user's response
 if (filename != null) { // If user didn't click "Cancel".
 try {
 // Create the necessary output streams to save the scribble.
 FileOutputStream fos = new FileOutputStream(filename); // Save to file
 GZIPOutputStream gzos = new GZIPOutputStream(fos); // Compressed
 ObjectOutputStream out = new ObjectOutputStream(gzos); // Save objects
 out.writeObject(lines); // Write the entire Vector of scribbles
 out.flush(); // Always flush the output.
 out.close(); // And close the stream.
 }
 // Print out exceptions. We should really display them in a dialog...
 catch (IOException e) { System.out.println(e); }
 }
 }

 /**
 * Prompt for a filename, and load a scribble from that file.
 * Read compressed, serialized data with a FileInputStream.
 * Uncompress that data with a GZIPInputStream.
 * Deserialize the vector of lines with a ObjectInputStream.
 * Replace current data with new data, and redraw everything.
 */
 public void load() {
 // Create a file dialog to query the user for a filename.
 FileDialog f = new FileDialog(frame, "Load Scribble", FileDialog.LOAD);

 f.show(); // Display the dialog and block.
 String filename = f.getFile(); // Get the user's response
 if (filename != null) { // If user didn't click "Cancel".
 try {
 // Create necessary input streams
 FileInputStream fis = new FileInputStream(filename); // Read from file
 GZIPInputStream gzis = new GZIPInputStream(fis); // Uncompress
 ObjectInputStream in = new ObjectInputStream(gzis); // Read objects
 // Read in an object. It should be a vector of scribbles
 Vector newlines = (Vector)in.readObject();
 in.close(); // Close the stream.
 lines = newlines; // Set the Vector of lines.
 repaint(); // And redisplay the scribble.
 }
 // Print out exceptions. We should really display them in a dialog...
 catch (Exception e) { System.out.println(e); }
 }
 }

 /** A class to store the coordinates and color of one scribbled line.
 * The complete scribble is stored as a Vector of these objects */
 static class Line implements Serializable {
 public short x1, y1, x2, y2;
 public Color color;
 public Line(short x1, short y1, short x2, short y2, Color c) {
 this.x1 = x1; this.y1 = y1; this.x2 = x2; this.y2 = y2; this.color = c;
 }
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.io.*;

/** A simple class that implements a growable array or ints, and knows
 * how to serialize itself as efficiently as a non-growable array. */
public class IntList implements Serializable
{
 private int[] nums = new int[8]; // An array to store the numbers.
 private transient int size = 0; // Index of next unused element of nums[].

 /** Return an element of the array */
 public int elementAt(int index) throws ArrayIndexOutOfBoundsException {
 if (index >= size) throw new ArrayIndexOutOfBoundsException(index);
 else return nums[index];
 }

 /** Add an int to the array, growing the array if necessary */
 public void add(int x) {
 if (nums.length == size) resize(nums.length*2); // Grow array, if needed.
 nums[size++] = x; // Store the int in it.
 }

 /** An internal method to change the allocated size of the array */
 protected void resize(int newsize) {
 int[] oldnums = nums;
 nums = new int[newsize]; // Create a new array.
 System.arraycopy(oldnums, 0, nums, 0, size); // Copy array elements.
 }

 /** Get rid of unused array elements before serializing the array */
 private void writeObject(ObjectOutputStream out) throws IOException {
 if (nums.length > size) resize(size); // Compact the array.
 out.defaultWriteObject(); // Then write it out normally.
 }

 /** Compute the transient size field after deserializing the array */
 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 in.defaultReadObject(); // Read the array normally.
 size = nums.length; // Restore the transient field.
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

package oreilly.beans.yesno;
import java.awt.*;
import java.util.*;

/**
 * A custom component that displays multiple lines of text with specified
 * margins and alignment. In Java 1.1, we could extend Component instead
 * of Canvas, making this a more efficient "Lightweight component"
 */
public class MultiLineLabel extends Canvas {
 // User-specified attributes
 protected String label; // The label, not broken into lines
 protected int margin_width; // Left and right margins
 protected int margin_height; // Top and bottom margins
 protected int alignment; // The alignment of the text.
 public static final int LEFT = 0, CENTER = 1, RIGHT = 2; // alignment values
 // Computed state values
 protected int num_lines; // The number of lines
 protected String[] lines; // The label, broken into lines
 protected int[] line_widths; // How wide each line is
 protected int max_width; // The width of the widest line
 protected int line_height; // Total height of the font
 protected int line_ascent; // Font height above baseline
 protected boolean measured = false; // Have the lines been measured?

 // Here are five versions of the constructor.
 public MultiLineLabel(String label, int margin_width,
 int margin_height, int alignment) {
 this.label = label; // Remember all the properties.
 this.margin_width = margin_width;
 this.margin_height = margin_height;
 this.alignment = alignment;
 newLabel(); // Break the label up into lines.
 }
 public MultiLineLabel(String label, int margin_width, int margin_height) {
 this(label, margin_width, margin_height, LEFT);
 }
 public MultiLineLabel(String label, int alignment) {
 this(label, 10, 10, alignment);
 }
 public MultiLineLabel(String label) { this(label, 10, 10, LEFT); }
 public MultiLineLabel() { this(""); }

 // Methods to set and query the various attributes of the component.
 // Note that some query methods are inherited from the superclass.
 public void setLabel(String label) {
 this.label = label;
 newLabel(); // Break the label into lines.
 measured = false; // Note that we need to measure lines.
 repaint(); // Request a redraw.
 }
 public void setFont(Font f) {
 super.setFont(f); // Tell our superclass about the new font.
 measured = false; // Note that we need to remeasure lines.

 repaint(); // Request a redraw.
 }
 public void setForeground(Color c) {
 super.setForeground(c); // Tell our superclass about the new color.
 repaint(); // Request a redraw (size is unchanged).
 }
 public void setAlignment(int a) { alignment = a; repaint(); }
 public void setMarginWidth(int mw) { margin_width = mw; repaint(); }
 public void setMarginHeight(int mh) { margin_height = mh; repaint(); }
 public String getLabel() { return label; }
 public int getAlignment() { return alignment; }
 public int getMarginWidth() { return margin_width; }
 public int getMarginHeight() { return margin_height; }

 /**
 * This method is called by a layout manager when it wants to
 * know how big we'd like to be. In Java 1.1, getPreferredSize() is
 * the preferred version of this method. We use this deprecated version
 * so that this component can interoperate with 1.0 components.
 */
 public Dimension preferredSize() {
 if (!measured) measure();
 return new Dimension(max_width + 2*margin_width,
 num_lines * line_height + 2*margin_height);
 }

 /**
 * This method is called when the layout manager wants to know
 * the bare minimum amount of space we need to get by.
 * For Java 1.1, we'd use getMinimumSize().
 */
 public Dimension minimumSize() { return preferredSize(); }

 /**
 * This method draws the label (same method that applets use).
 * Note that it handles the margins and the alignment, but that
 * it doesn't have to worry about the color or font--the superclass
 * takes care of setting those in the Graphics object we're passed.
 */
 public void paint(Graphics g) {
 int x, y;
 Dimension size = this.size(); // use getSize() in Java 1.1
 if (!measured) measure();
 y = line_ascent + (size.height - num_lines * line_height)/2;
 for(int i = 0; i < num_lines; i++, y += line_height) {
 switch(alignment) {
 default:
 case LEFT: x = margin_width; break;
 case CENTER: x = (size.width - line_widths[i])/2; break;
 case RIGHT: x = size.width - margin_width - line_widths[i]; break;
 }
 g.drawString(lines[i], x, y);
 }
 }

 /** This internal method breaks a specified label up into an array of lines.
 * It uses the StringTokenizer utility class. */
 protected synchronized void newLabel() {
 StringTokenizer t = new StringTokenizer(label, "\n");
 num_lines = t.countTokens();
 lines = new String[num_lines];

 line_widths = new int[num_lines];
 for(int i = 0; i < num_lines; i++) lines[i] = t.nextToken();
 }

 /** This internal method figures out how the font is, and how wide each
 * line of the label is, and how wide the widest line is. */
 protected synchronized void measure() {
 FontMetrics fm = this.getToolkit().getFontMetrics(this.getFont());
 line_height = fm.getHeight();
 line_ascent = fm.getAscent();
 max_width = 0;
 for(int i = 0; i < num_lines; i++) {
 line_widths[i] = fm.stringWidth(lines[i]);
 if (line_widths[i] > max_width) max_width = line_widths[i];
 }
 measured = true;
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

package oreilly.beans.yesno; // Put this bean in its own private package.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class YesNoDialog {
 // Properties of the bean.
 protected String message, title;
 protected String yesLabel, noLabel, cancelLabel;
 protected int alignment;
 protected Font font = new Font("Serif", Font.PLAIN, 12);
 protected Color background = SystemColor.control;
 protected Color foreground = SystemColor.controlText;

 // Constants for the alignment property.
 public static final int LEFT = MultiLineLabel.LEFT;
 public static final int RIGHT = MultiLineLabel.RIGHT;
 public static final int CENTER = MultiLineLabel.CENTER;

 // Methods to query all of the bean properties.
 public String getMessage() { return message; }
 public String getTitle() { return title; }
 public String getYesLabel() { return yesLabel; }
 public String getNoLabel() { return noLabel; }
 public String getCancelLabel() { return cancelLabel; }
 public int getAlignment() { return alignment; }
 public Font getFont() { return font; }
 public Color getBackground() { return background; }
 public Color getForeground() { return foreground; }

 // Methods to set all of the bean properties.
 public void setMessage(String m) { message = m; }
 public void setTitle(String t) { title=t; }
 public void setYesLabel(String l) { yesLabel = l; }
 public void setNoLabel(String l) { noLabel = l; }
 public void setCancelLabel(String l) { cancelLabel = l; }
 public void setAlignment(int a) { alignment = a; }
 public void setFont(Font f) { font = f; }
 public void setBackground(Color bg) { background = bg; }
 public void setForeground(Color fg) { foreground = fg; }

 /** This field holds a list of registered ActionListeners.
 * Vector is internally synchronized to prevent race conditions */
 protected Vector listeners = new Vector();

 /** Register an action listener to be notified when a button is pressed */
 public void addAnswerListener(AnswerListener l) {
 listeners.addElement(l);
 }

 /** Remove an Answer listener from our list of interested listeners */
 public void removeAnswerListener(AnswerListener l) {
 listeners.removeElement(l);
 }

 /** Send an event to all registered listeners */
 public void fireEvent(AnswerEvent e) {
 // Make a copy of the list and fire the events using that copy.
 // This means that listeners can be added or removed from the original
 // list in response to this event. We ought to be able to just use an
 // enumeration for the vector, but that doesn't copy the list internally.
 Vector list = (Vector) listeners.clone();
 for(int i = 0; i < list.size(); i++) {
 AnswerListener listener = (AnswerListener)list.elementAt(i);
 switch(e.getID()) {
 case AnswerEvent.YES: listener.yes(e); break;
 case AnswerEvent.NO: listener.no(e); break;
 case AnswerEvent.CANCEL: listener.cancel(e); break;
 }
 }
 }

 /** The no-argument bean constructor, with default property values */
 public YesNoDialog() {
 this("Question", "Your\nMessage\nHere", "Yes", "No", "Cancel", LEFT);
 }

 /** A constructor for programmers using this class "by hand" */
 public YesNoDialog(String title, String message,
 String yesLabel, String noLabel, String cancelLabel,
 int alignment) {
 this.title = title;
 this.message = message;
 this.yesLabel = yesLabel;
 this.noLabel = noLabel;
 this.cancelLabel = cancelLabel;
 this.alignment = alignment;
 }

 /** This method makes the bean display the dialog box */
 public void display() {
 // Create a frame with the specified title. It would be nice to
 // use a Dialog, but that needs to be passed a Frame argument, and
 // the BDK beanbox tool only seems to work with no-argument methods.
 final Frame frame = new Frame(title);

 // Specify a LayoutManager for it.
 frame.setLayout(new BorderLayout(15, 15));

 // Specify font and colors, if any are specified.
 if (font != null) frame.setFont(font);
 if (background != null) frame.setBackground(background);
 if (foreground != null) frame.setForeground(foreground);

 // Put the message label in the middle of the window.
 frame.add("Center", new MultiLineLabel(message, 20, 20, alignment));

 // Create an action listener for use by the buttons of the dialog.
 // When a button is pressed, this listener first closes the dialog box.
 // Then, it creates an AnswerEvent object that corresponds to the
 // button that was pressed, and send that new event to all registered
 // listeners, using the fireEvent() method defined above.
 ActionListener listener = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 frame.dispose(); // pop down window
 if (listeners != null) { // notify any registered listeners
 String cmd = e.getActionCommand();

 int type;
 if (cmd.equals("yes")) type = AnswerEvent.YES;
 else if (cmd.equals("no")) type = AnswerEvent.NO;

 else type = AnswerEvent.CANCEL;
 fireEvent(new AnswerEvent(YesNoDialog.this, type));
 }
 }
 };

 // Create a panel for the dialog buttons and put it at the bottom
 // of the dialog. Specify a FlowLayout layout manager for it.
 Panel buttonbox = new Panel();
 buttonbox.setLayout(new FlowLayout(FlowLayout.CENTER, 25, 15));
 frame.add("South", buttonbox);

 // Create each specified button, specifying the action listener
 // and action command for each, and adding them to the buttonbox
 if ((yesLabel != null) && (yesLabel.length() > 0)) {
 Button yes = new Button(yesLabel); // Create button.
 yes.setActionCommand("yes"); // Set action command.
 yes.addActionListener(listener); // Set listener.
 buttonbox.add(yes); // Add button to the panel.
 }
 if ((noLabel != null) && (noLabel.length() > 0)) {
 Button no = new Button(noLabel);
 no.setActionCommand("no");
 no.addActionListener(listener);
 buttonbox.add(no);
 }
 if ((cancelLabel != null) && (cancelLabel.length() > 0)) {
 Button cancel = new Button(cancelLabel);
 cancel.setActionCommand("cancel");
 cancel.addActionListener(listener);
 buttonbox.add(cancel);
 }

 // Finally, set the dialog to its preferred size and display it.
 frame.pack();
 frame.show();
 }

 /**
 * A main method that demonstrates how to use this class, and allows testing
 */
 public static void main(String[] args) {
 // Create an instance of InfoDialog, with title and message specified:
 YesNoDialog d =
 new YesNoDialog("YesNoDialog Test",
 "There are unsaved files.\n" +
 "Do you want to save them before quitting?",
 "Yes, save and quit",
 "No, quit without saving",
 "Cancel; don't quit",
 YesNoDialog.CENTER);

 // Register an action listener for the dialog. This one just prints
 // the results out to the console.
 d.addAnswerListener(new AnswerListener() {
 public void yes(AnswerEvent e) { System.out.println("Yes"); }
 public void no(AnswerEvent e) { System.out.println("No"); }
 public void cancel(AnswerEvent e) { System.out.println("Cancel"); }

 });

 // Now pop the dialog up. It will pop itself down automatically.
 d.display();
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

package oreilly.beans.yesno;

public class AnswerEvent extends java.util.EventObject {
 protected int id;
 public static final int YES = 0, NO = 1, CANCEL = 2;
 public AnswerEvent(Object source, int id) {
 super(source);
 this.id = id;
 }
 public int getID() { return id; }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

package oreilly.beans.yesno;

public interface AnswerListener extends java.util.EventListener {
 public void yes(AnswerEvent e);
 public void no(AnswerEvent e);
 public void cancel(AnswerEvent e);
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

package oreilly.beans.yesno;
import java.beans.*;
import java.lang.reflect.*;
import java.awt.*;

/** The BeanInfo class for the YesNoDialog bean */
public class YesNoDialogBeanInfo extends SimpleBeanInfo {

 /** Return an icon for the bean. We should really check the kind argument
 * to see what size icon the beanbox wants, but since we only have one
 * icon to offer, we just return it and let the beanbox deal with it */
 public Image getIcon(int kind) {
 return loadImage("YesNoDialogIcon.gif");
 }

 /** Return a descriptor for the bean itself. It specifies a customizer
 * for the bean class. We could also add a description string here */
 public BeanDescriptor getBeanDescriptor() {
 return new BeanDescriptor(YesNoDialog.class, YesNoDialogCustomizer.class);
 }

 /** This is a convenience routine for creating PropertyDescriptor objects */
 public static PropertyDescriptor property(String name, String description)
 throws IntrospectionException
 {
 PropertyDescriptor p = new PropertyDescriptor(name, YesNoDialog.class);
 p.setShortDescription(description);
 return p;
 }

 /** This method returns an array of PropertyDescriptor objects that specify
 * additional information about the properties supported by the bean.
 * By explicitly specifying property descriptors, we are able to provide
 * simple help strings for each property; these would not be available to
 * the beanbox through simple introspection. We are also able to register
 * special property editors for two of the properties
 */
 public PropertyDescriptor[] getPropertyDescriptors() {
 try {
 PropertyDescriptor[] props = {
 property("title", "The string that appears in the dialog title bar"),
 property("message", "The string that appears in the dialog body"),
 property("yesLabel", "The label for the 'Yes' button, if any"),
 property("noLabel", "The label for the 'No' button, if any"),
 property("cancelLabel", "The label for the 'Cancel' button, if any"),
 property("alignment", "The alignment of the message text"),
 property("font", "The font to use for message and buttons"),
 property("background", "The background color for the dialog"),
 property("foreground", "The text color for message and buttons")
 };

 props[1].setPropertyEditorClass(YesNoDialogMessageEditor.class);
 props[5].setPropertyEditorClass(YesNoDialogAlignmentEditor.class);

 return props;

 }
 catch (IntrospectionException e) {return super.getPropertyDescriptors(); }
 }

 /** The message property is most often customized; make it the default */
 public int getDefaultPropertyIndex() { return 1; }

 /** This is a convenience method for creating MethodDescriptors. Note that
 * it assumes we are talking about methods with no arguments */
 public static MethodDescriptor method(String name, String description)
 throws NoSuchMethodException, SecurityException {
 Method m = YesNoDialog.class.getMethod(name, new Class[] {});
 MethodDescriptor md = new MethodDescriptor(m);
 md.setShortDescription(description);
 return md;
 }

 /** This method returns an array of method descriptors for the supported
 * methods of a bean. This allows us to provide useful description strings,
 * but it also allows us to filter out non-useful methods like wait()
 * and notify() that the bean inherits and which might otherwise be
 * displayed by the beanbox.
 */
 public MethodDescriptor[] getMethodDescriptors() {
 try {
 MethodDescriptor[] methods = {
 method("display", "Pop up the dialog; make it visible")
 };
 return methods;
 }
 catch (Exception e) {
 return super.getMethodDescriptors();
 }
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

package oreilly.beans.yesno;
import java.beans.*;
import java.awt.*;

public class YesNoDialogAlignmentEditor extends PropertyEditorSupport {
 // These two methods allow the property to be edited in a dropdown list.
 // Return the list of value names for the enumerated type.
 public String[] getTags() {
 return new String[] { "left", "center", "right" };
 }

 // Convert each of those value names into the actual value.
 public void setAsText(String s) {
 if (s.equals("left")) setValue(new Integer(YesNoDialog.LEFT));
 else if (s.equals("center")) setValue(new Integer(YesNoDialog.CENTER));
 else if (s.equals("right")) setValue(new Integer(YesNoDialog.RIGHT));
 else throw new IllegalArgumentException(s);
 }

 // This is an important method for code generation.
 public String getJavaInitializationString() {
 switch(((Number)getValue()).intValue()) {
 default:
 case YesNoDialog.LEFT: return "oreilly.beans.yesno.YesNoDialog.LEFT";
 case YesNoDialog.CENTER: return "oreilly.beans.yesno.YesNoDialog.CENTER";
 case YesNoDialog.RIGHT: return "oreilly.beans.yesno.YesNoDialog.RIGHT";
 }
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

package oreilly.beans.yesno;
import java.beans.*;
import java.awt.*;
import java.awt.event.*;

/**
 * This class is a custom editor for the message property of the
 * YesNoDialog bean. It is necessary because the default editor for
 * properties of type String does not allow multi-line strings to be entered.
 */
public class YesNoDialogMessageEditor implements PropertyEditor {
 protected String value; // The value we will be editing.

 public void setValue(Object o) { value = (String) o; }
 public Object getValue() { return value; }
 public void setAsText(String s) { value = s; }
 public String getAsText() { return value; }
 public String[] getTags() { return null; } // not enumerated; no tags

 // Say that we allow custom editing.
 public boolean supportsCustomEditor() { return true; }

 // Return the custom editor. This just creates and returns a TextArea
 // to edit the multi-line text. But it also registers a listener on the
 // text area to update the value as the user types and to fire the
 // property change events that property editors are required to fire.
 public Component getCustomEditor() {
 final TextArea t = new TextArea(value);
 t.setSize(300, 150); // TextArea doesn't have a preferred size, so set one
 t.addTextListener(new TextListener() {
 public void textValueChanged(TextEvent e) {
 value = t.getText();
 listeners.firePropertyChange(null, null, null);
 }
 });
 return t;
 }

 // Visual display of the value, for use with the custom editor.
 // Just print some instructions and hope they fit in the in the box.
 // This could be more sophisticated.
 public boolean isPaintable() { return true; }
 public void paintValue(Graphics g, Rectangle r) {
 g.setClip(r);
 g.drawString("Click to edit...", r.x+5, r.y+15);
 }

 // Important method for code generators. Note that it
 // ought to add any necessary escape sequences.
 public String getJavaInitializationString() { return "\"" + value + "\""; }

 // This code uses the PropertyChangeSupport class to maintain a list of
 // listeners interested in the edits we make to the value.
 protected PropertyChangeSupport listeners = new PropertyChangeSupport(this);
 public void addPropertyChangeListener(PropertyChangeListener l) {

 listeners.addPropertyChangeListener(l);
 }
 public void removePropertyChangeListener(PropertyChangeListener l) {
 listeners.removePropertyChangeListener(l);
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

package oreilly.beans.yesno;

import java.awt.*;
import java.awt.event.*;
import java.beans.*;

/**
 * This class is a customizer for the YesNoDialog bean. It displays a
 * TextArea and three TextFields where the user can enter the dialog message
 * and the labels for each of the three buttons. It does not allow the
 * dialog title or other resources to be set.
 */
public class YesNoDialogCustomizer extends Panel
 implements Customizer, TextListener
{
 protected YesNoDialog bean; // The bean being customized
 protected TextComponent message, fields[]; // Components used by customizer

 // Default constructor: YesNoDialogCustomizer() { super(); }

 // The bean box calls this method to tell us what object to customize.
 // This method will always be called before the customizer is displayed,
 // so it is safe to create the customizer GUI here.
 public void setObject(Object o) {
 bean = (YesNoDialog)o; // save the object we're customizing

 // Put a label at the top of the panel.
 this.setLayout(new BorderLayout());
 this.add(new Label("Enter the message to appear in the dialog:"), "North");

 // And a big text area below it for entering the dialog message.
 message = new TextArea(bean.getMessage());
 message.addTextListener(this);
 // TextAreas don't know how big they want to be. You must tell them.
 message.setSize(400, 200);
 this.add(message, "Center");

 // Then add a row of textfields for entering the button labels.
 Panel buttonbox = new Panel(); // The row container
 buttonbox.setLayout(new GridLayout(1, 0, 25, 10)); // Equally spaced items
 this.add(buttonbox, "South"); // Put row on bottom

 // Now go create three TextFields to put in this row. But actually
 // position a Label above each, so create an container for each
 // TextField+Label combination.
 fields = new TextComponent[3]; // Array of TextFields.
 String[] labels = new String[] { // Labels for each.
 "Yes Button Label", "No Button Label", "Cancel Button Label"};
 String[] values = new String[] { // Initial values of each.
 bean.getYesLabel(), bean.getNoLabel(), bean.getCancelLabel()};
 for(int i = 0; i < 3; i++) {
 Panel p = new Panel(); // Create a container.
 p.setLayout(new BorderLayout()); // Give it a BorderLayout.
 p.add(new Label(labels[i]), "North"); // Put a label on the top.
 fields[i] = new TextField(values[i]); // Create the text field.

 p.add(fields[i], "Center"); // Put it below the label.
 fields[i].addTextListener(this); // Set the event listener.
 buttonbox.add(p); // Add container to row.
 }
 }

 // Add some space around the outside of the panel.
 public Insets getInsets() { return new Insets(10, 10, 10, 10); }

 // This is the method defined by the TextListener interface. Whenever the
 // user types a character in the TextArea or TextFields, this will get
 // called. It updates the appropriate property of the bean and fires a
 // property changed event, as all customizers are required to do.
 // Note that we are not required to fire an event for every keystroke.
 // Instead we could include an "Apply" button that would make all the
 // changes at once, with a single property changed event.
 public void textValueChanged(TextEvent e) {
 TextComponent t = (TextComponent)e.getSource();
 String s = t.getText();
 if (t == message) bean.setMessage(s);
 else if (t == fields[0]) bean.setYesLabel(s);
 else if (t == fields[1]) bean.setNoLabel(s);
 else if (t == fields[2]) bean.setCancelLabel(s);
 listeners.firePropertyChange(null, null, null);
 }

 // This code uses the PropertyChangeSupport class to maintain a list of
 // listeners interested in the edits we make to the bean.
 protected PropertyChangeSupport listeners = new PropertyChangeSupport(this);
 public void addPropertyChangeListener(PropertyChangeListener l) {
 listeners.addPropertyChangeListener(l);
 }
 public void removePropertyChangeListener(PropertyChangeListener l) {
 listeners.removePropertyChangeListener(l);
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.io.*;

/** A program to convert from one character encoding to another */
public class ConvertEncoding {
 public static void main(String[] args) {
 String from = null, to = null;
 String infile = null, outfile = null;
 for(int i = 0; i < args.length; i++) { // Parse command-line arguments.
 if (i == args.length-1) usage(); // All legal args require another.
 if (args[i].equals("-from")) from = args[++i];
 else if (args[i].equals("-to")) to = args[++i];
 else if (args[i].equals("-in")) infile = args[++i];
 else if (args[i].equals("-out")) outfile = args[++i];
 else usage();
 }

 try { convert(infile, outfile, from, to); } // Attempt conversion.
 catch (Exception e) { // Handle possible exceptions.
 LocalizedError.display(e); // Defined at the end of this chapter.
 System.exit(1);
 }
 }

 public static void usage() {
 System.err.println("Usage: java ConvertEncoding <options>\n" +
 "Options:\n\t-from <encoding>\n\t-to <encoding>\n\t" +
 "-in <file>\n\t-out <file>");
 System.exit(1);
 }

 public static void convert(String infile, String outfile,
 String from, String to)
 throws IOException, UnsupportedEncodingException
 {
 // Set up byte streams.
 InputStream in;
 if (infile != null) in = new FileInputStream(infile);
 else in = System.in;
 OutputStream out;
 if (outfile != null) out = new FileOutputStream(outfile);
 else out = System.out;

 // Use default encoding if no encoding is specified.
 if (from == null) from = System.getProperty("file.encoding");
 if (to == null) to = System.getProperty("file.encoding");

 // Set up character streams.
 Reader r = new BufferedReader(new InputStreamReader(in, from));
 Writer w = new BufferedWriter(new OutputStreamWriter(out, to));

 // Copy characters from input to output. The InputStreamReader converts
 // from the input encoding to Unicode, and the OutputStreamWriter converts
 // from Unicode to the output encoding. Characters that cannot be
 // represented in the output encoding are output as '?'
 char[] buffer = new char[4096];

 int len;
 while((len = r.read(buffer)) != -1) // Read a block of input.
 w.write(buffer, 0, len); // And write it out.
 r.close(); // Close the input.
 w.flush(); // Flush and close output.
 w.close();
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.text.*;
import java.util.Date;

/**
 * A partial implementation of a hypothetical stock portfolio class.
 * We use it only to demonstrate number and date internationalization.
 */
public class Portfolio {
 EquityPosition[] positions;
 Date lastQuoteTime = new Date();

 public void print() {
 // Obtain NumberFormat and DateFormat objects to format our data.
 NumberFormat number = NumberFormat.getInstance();
 NumberFormat price = NumberFormat.getCurrencyInstance();
 NumberFormat percent = NumberFormat.getPercentInstance();
 DateFormat shortdate = DateFormat.getDateInstance(DateFormat.SHORT);
 DateFormat fulldate = DateFormat.getDateTimeInstance(DateFormat.LONG,
 DateFormat.LONG);

 // Print some introductory data.
 System.out.println("Portfolio value at " +
 fulldate.format(lastQuoteTime) + ":");
 System.out.println("Symbol\tShares\tBought On\tAt\t" +
 "Quote\tChange");

 // Then display the table using the format() methods of the Format objects.
 for(int i = 0; i < positions.length; i++) {
 System.out.print(positions[i].name + "\t");
 System.out.print(number.format(positions[i].shares) + "\t");
 System.out.print(shortdate.format(positions[i].purchased) + "\t");
 System.out.print(price.format(positions[i].bought) + "\t");
 System.out.print(price.format(positions[i].current) + "\t");
 double change =
 (positions[i].current - positions[i].bought)/positions[i].bought;
 System.out.println(percent.format(change));
 }
 }
 static class EquityPosition {
 String name; // Name of the stock.
 int shares; // Number of shares held.
 Date purchased; // When purchased.
 double bought, current; // Purchase price and current price (per share).
 EquityPosition(String n, int s, Date when, double then, double now) {
 name = n; shares = s; purchased = when; bought = then; current = now;
 }
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.awt.*;
import java.awt.event.*;
import java.util.Locale;
import java.util.ResourceBundle;
import java.util.MissingResourceException;

/** A convenience class to automatically create localized menu panes */
public class SimpleMenu {
 /** The convenience method that creates menu panes */
 public static Menu create(String bundlename,
 String menuname, String[] itemnames,
 ActionListener listener, boolean popup) {
 // Get the resource bundle used for this menu.
 ResourceBundle b = ResourceBundle.getBundle(bundlename);

 // Get the menu title from the bundle. Use name as default label.
 String menulabel;
 try { menulabel = b.getString(menuname + ".label"); }
 catch(MissingResourceException e) { menulabel = menuname; }

 // Create the menu pane.
 Menu m;
 if (popup) m = new PopupMenu(menulabel);
 else m = new Menu(menulabel);

 // For each named item in the menu.
 for(int i = 0; i < itemnames.length; i++) {
 // Look up the label for the item, using name as default.
 String itemlabel;
 try { itemlabel=b.getString(menuname + "." + itemnames[i] + ".label"); }
 catch (MissingResourceException e) { itemlabel = itemnames[i]; }

 // Look up a shortcut for the item, and create the menu shortcut, if any.
 String shortcut;
 try{shortcut = b.getString(menuname + "." + itemnames[i]+".shortcut"); }
 catch (MissingResourceException e) { shortcut = null; }
 MenuShortcut ms = null;
 if (shortcut != null) ms = new MenuShortcut(shortcut.charAt(0));

 // Create the menu item.
 MenuItem mi;
 if (ms != null) mi = new MenuItem(itemlabel, ms);
 else mi = new MenuItem(itemlabel);

 // Register an action listener and command for the item.
 if (listener != null) {
 mi.addActionListener(listener);
 mi.setActionCommand(itemnames[i]);
 }

 // Add the item to the menu.
 m.add(mi);
 }

 // Return the automatically created localized menu.

 return m;
 }

 /** A simple test program for the above code */
 public static void main(String[] args) {
 // Set the default locale based on the command-line args.
 if (args.length == 2) Locale.setDefault(new Locale(args[0], args[1]));

 Frame f = new Frame("SimpleMenu Test"); // Create a window.
 MenuBar menubar = new MenuBar(); // Create a menubar.
 f.setMenuBar(menubar); // Add menubar to window.

 // Create a menu using our convenience routine (and the default locale).
 Menu colors = SimpleMenu.create("Menus", "colors",
 new String[] { "red", "green", "blue" },
 null, false);

 menubar.add(colors); // Add the menu to the menubar.
 f.setSize(300, 150); // Set the window size.
 f.show(); // Pop the window up.
 }
}

The file Menus.properties is the default "Menus" resource bundle.
As an American programmer, I made my own locale the default.
colors.label=Colors
colors.red.label=Red
colors.red.shortcut=R
colors.green.label=Green
colors.green.shortcut=G
colors.blue.label=Blue
colors.blue.shortcut=B

This is the file Menus_en_GB.properties. It is the resource bundle for
British English. Note that it overrides only a single resource definition
and simply inherits the rest from the default (American) bundle.
colors.label=Colours

This is the file Menus_fr.properties. It is the resource bundle for all
French-speaking locales. It overrides most, but not all, of the resources
in the default bundle.
colors.label=Couleurs
colors.red.label=Rouge
colors.green.label=Vert
colors.green.shortcut=V
colors.blue.label=Bleu

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.text.*;
import java.io.*;
import java.util.*;

/**
 * A convenience class that can display a localized exception message
 * depending on the class of the exception. It uses a MessageFormat,
 * and passes five arguments that the localized message may include:
 * {0}: the message included in the exception or error.
 * {1}: the full class name of the exception or error.
 * {2}: a guess at what file the exception was caused by.
 * {3}: a line number in that file.
 * {4}: the current date and time.
 * Messages are looked up in a ResourceBundle with the basename
 * "Errors", using a the full class name of the exception object as
 * the resource name. If no resource is found for a given exception
 * class, the superclasses are checked.
 */
public class LocalizedError {
 public static void display(Throwable error) {
 ResourceBundle bundle;
 // Try to get the resource bundle.
 // If none, print the error in a non-localized way.
 try { bundle = ResourceBundle.getBundle("Errors"); }
 catch (MissingResourceException e) {
 error.printStackTrace(System.err);
 return;
 }

 // Look up a localized message resource in that bundle, using the
 // classname of the error (or its superclasses) as the resource name.
 // If no resource was found, display the error without localization.
 String message = null;
 Class c = error.getClass();
 while((message == null) && (c != Object.class)) {
 try { message = bundle.getString(c.getName()); }
 catch (MissingResourceException e) { c = c.getSuperclass(); }
 }
 if (message == null) { error.printStackTrace(System.err); return; }

 // Try to figure out the filename and line number of the
 // exception. Output the error's stack trace into a string, and
 // use the heuristic that the first line number that appears in
 // the stack trace is after the first or second colon. We assume that
 // this stack frame is the first one the programmer has any control
 // over, and so report it as the location of the exception.
 String filename = "";
 int linenum = 0;
 try {
 StringWriter sw = new StringWriter(); // Output stream into a string.
 PrintWriter out = new PrintWriter(sw); // PrintWriter wrapper.
 error.printStackTrace(out); // Print stacktrace.
 String trace = sw.toString(); // Get it as a string.
 int pos = trace.indexOf(':'); // Look for first colon.

 if (error.getMessage() != null) // If the error has a message
 pos = trace.indexOf(':', pos+1); // look for second colon.
 int pos2 = trace.indexOf(')', pos); // Look for end of line number.
 linenum = Integer.parseInt(trace.substring(pos+1,pos2)); // Get linenum.
 pos2 = trace.lastIndexOf('(', pos); // Back to start of filename.
 filename = trace.substring(pos2+1, pos); // Get filename.
 }
 catch (Exception e) { ; } // Ignore exceptions.

 // Set up an array of arguments to use with the message
 String errmsg = error.getMessage();
 Object[] args = {
 ((errmsg!= null)?errmsg:""), error.getClass().getName(),
 filename, new Integer(linenum), new Date()
 };
 // Finally, display the localized error message, using
 // MessageFormat.format() to substitute the arguments into the message.
 System.out.println(MessageFormat.format(message, args));
 }
}

#
This is the file Errors.properties
One property for each class of exceptions that our program might
report. Note the use of backslashes to continue long lines onto the
next. Also note the use of \n and \t for newlines and tabs
#
java.io.FileNotFoundException: \
Error: File "{0}" not found\n\t\
Error occurred at line {3} of file "{2}"\n\tat {4}

java.io.UnsupportedEncodingException: \
Error: Specified encoding not supported\n\t\
Error occurred at line {3} of file "{2}"\n\tat {4,time} on {4,date}

java.io.CharConversionException:\
Error: Character conversion failure. Input data is not in specified format.

A generic resource. Display a message for any error or exception that
is not handled by a more specific resource.
java.lang.Throwable:\
Error: {1}: {0}\n\t\
Error occurred at line {3} of file "{2}"\n\t{4,time,long} {4,date,long}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.lang.reflect.*;

/** A program that displays a class synopsis for the named class */
public class ShowClass {
 /** The main method. Print info about the named class */
 public static void main(String[] args) throws ClassNotFoundException {
 Class c = Class.forName(args[0]);
 print_class(c);
 }

 /** Display the modifiers, name, superclass and interfaces of a class
 * or interface. Then go and list all constructors, fields, and methods. */
 public static void print_class(Class c)
 {
 // Print modifiers, type (class or interface), name and superclass.
 if (c.isInterface()) {
 // The modifiers will include the "interface" keyword here...
 System.out.print(Modifier.toString(c.getModifiers()) + c.getName());
 }
 else
 System.out.print(Modifier.toString(c.getModifiers()) + " class " +
 c.getName() +
 " extends " + c.getSuperclass().getName());

 // Print interfaces or super-interfaces of the class or interface.
 Class[] interfaces = c.getInterfaces();
 if ((interfaces != null) && (interfaces.length > 0)) {
 if (c.isInterface()) System.out.println(" extends ");
 else System.out.print(" implements ");
 for(int i = 0; i < interfaces.length; i++) {
 if (i > 0) System.out.print(", ");
 System.out.print(interfaces[i].getName());
 }
 }

 System.out.println(" {"); // Begin class member listing.

 // Now look up and display the members of the class.
 System.out.println(" // Constructors");
 Constructor[] constructors = c.getDeclaredConstructors();
 for(int i = 0; i < constructors.length; i++) // Display constructors.
 print_method_or_constructor(constructors[i]);

 System.out.println(" // Fields");
 Field[] fields = c.getDeclaredFields(); // Look up fields.
 for(int i = 0; i < fields.length; i++) // Display them.
 print_field(fields[i]);

 System.out.println(" // Methods");
 Method[] methods = c.getDeclaredMethods(); // Look up methods.
 for(int i = 0; i < methods.length; i++) // Display them.
 print_method_or_constructor(methods[i]);

 System.out.println("}"); // End class member listing.
 }

 /** Return the name of an interface or primitive type, handling arrays. */
 public static String typename(Class t) {
 String brackets = "";
 while(t.isArray()) {
 brackets += "[]";
 t = t.getComponentType();
 }
 return t.getName() + brackets;
 }

 /** Return a string version of modifiers, handling spaces nicely. */
 public static String modifiers(int m) {
 if (m == 0) return "";
 else return Modifier.toString(m) + " ";
 }

 /** Print the modifiers, type, and name of a field */
 public static void print_field(Field f) {
 System.out.println(" " +
 modifiers(f.getModifiers()) +
 typename(f.getType()) + " " + f.getName() + ";");
 }

 /** Print the modifiers, return type, name, parameter types and exception
 * type of a method or constructor. Note the use of the Member interface
 * to allow this method to work with both Method and Constructor objects */
 public static void print_method_or_constructor(Member member) {
 Class returntype=null, parameters[], exceptions[];
 if (member instanceof Method) {
 Method m = (Method) member;
 returntype = m.getReturnType();
 parameters = m.getParameterTypes();
 exceptions = m.getExceptionTypes();
 } else {
 Constructor c = (Constructor) member;
 parameters = c.getParameterTypes();
 exceptions = c.getExceptionTypes();
 }

 System.out.print(" " + modifiers(member.getModifiers()) +
 ((returntype!=null)? typename(returntype)+" " : "") +
 member.getName() + "(");
 for(int i = 0; i < parameters.length; i++) {
 if (i > 0) System.out.print(", ");
 System.out.print(typename(parameters[i]));
 }
 System.out.print(")");
 if (exceptions.length > 0) System.out.print(" throws ");
 for(int i = 0; i < exceptions.length; i++) {
 if (i > 0) System.out.print(", ");
 System.out.print(typename(exceptions[i]));
 }
 System.out.println(";");
 }
}

// This example is from the book "Java in a Nutshell, Second Edition".
// Written by David Flanagan. Copyright (c) 1997 O'Reilly & Associates.
// You may distribute this source code for non-commercial purposes only.
// You may study, modify, and use this example for any purpose, as long as
// this notice is retained. Note that this example is provided "as is",
// WITHOUT WARRANTY of any kind either expressed or implied.

import java.awt.event.*;
import java.lang.reflect.*;
import java.awt.*; // Only used for the test program below.

public class UniversalActionListener implements ActionListener {
 protected Object target;
 protected Object arg;
 protected Method m;

 public UniversalActionListener(Object target, String methodname, Object arg)
 throws NoSuchMethodException, SecurityException
 {
 this.target = target; // Save the target object.
 this.arg = arg; // And method argument.

 // Now look up and save the Method to invoke on that target object
 Class c, parameters[];
 c = target.getClass(); // The Class object.
 if (arg == null) parameters = new Class[0]; // Method parameter.
 else parameters = new Class[] { arg.getClass() };
 m = c.getMethod(methodname, parameters); // Find matching method.
 }

 public void actionPerformed(ActionEvent event) {
 Object[] arguments;
 if (arg == null) arguments = new Object[0]; // Set up arguments.
 else arguments = new Object[] { arg };
 try { m.invoke(target, arguments); } // And invoke the method.
 catch (IllegalAccessException e) { // Should never happen.
 System.err.println("UniversalActionListener: " + e);
 } catch (InvocationTargetException e) { // Should never happen.
 System.err.println("UniversalActionListener: " + e);
 }
 }

 // A simple test program for the UniversalActionListener
 public static void main(String[] args) throws NoSuchMethodException {
 Frame f = new Frame("UniversalActionListener Test");// Create window.
 f.setLayout(new FlowLayout()); // Set layout manager.
 Button b1 = new Button("tick"); // Create buttons.
 Button b2 = new Button("tock");
 Button b3 = new Button("Close Window");
 f.add(b1); f.add(b2); f.add(b3); // Add them to window.

 // Specify what the buttons do. Invoke a named method with
 // the UniversalActionListener object.
 b1.addActionListener(new UniversalActionListener(b1, "setLabel", "tock"));
 b1.addActionListener(new UniversalActionListener(b2, "setLabel", "tick"));
 b1.addActionListener(new UniversalActionListener(b3, "hide", null));
 b2.addActionListener(new UniversalActionListener(b1, "setLabel", "tick"));
 b2.addActionListener(new UniversalActionListener(b2, "setLabel", "tock"));
 b2.addActionListener(new UniversalActionListener(b3, "show", null));
 b3.addActionListener(new UniversalActionListener(f, "dispose", null));

 f.pack(); // Set window size.

 f.show(); // And pop it up.
 }
}

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Symbols and Numbers
@ (at sign) in doc comments : Comments (EXJ)
! (logical complement) operator : Operators (EXJ)
+ symbol (URLEncoder) : (Reference page) (NUT)
& (ampersand)
& (bitwise AND) operator : Bitwise/Logical AND Operator & (JLR)
&& (boolean AND) operator : Boolean AND Operator && (JLR)
& (bitwise AND) operator : Operators (EXJ)
& reference operator
Reference Data Types (NUT)
Operators (NUT)
Operators (NUT)
&& (logical AND) operator
Operators (NUT)
Operators (NUT)
&= (AND) operator : Operators (NUT)
& (boolean AND) operator : Operators (EXJ)
& (dereference) operator in C : Operators (EXJ)
&& (conditional AND) operator : Operators (EXJ)
&= (assignment) operator : Operators (EXJ)
* (asterisk)
in import directive : The import Directive (JLR)
* (multiplication) operator : Multiplication Operator * (JLR)
* (multiplication) operator : Operators (EXJ)
* dereference operator
Reference Data Types (NUT)
Importing Classes (EXJ)
@ tags, javadoc : Documentation Comments (JLR)
\ (backslash)
Java Filenames and Directory Structure (NUT)
Character literals (JLR)

Path localization (EXJ)
\u escapes (see Unicode characters)
! (bang)
! (unary negation) operator : Boolean Negation Operator ! (JLR)
!= (not-equal-to) operator : Not-Equal-To-Operator != (JLR)
! (not) operator : run() (EXJ)
!= (inequality) operator : Operators (EXJ)
| (bitwise OR) operator : Operators (EXJ)
| (boolean OR) operator : Operators (EXJ)
|| (conditional OR) operator : Operators (EXJ)
|= (assignment) operator : Operators (EXJ)
[] (brackets)
array allocation expressions : Array Allocation Expressions (JLR)
in array type declarations
Array Types (JLR)
Local variable type (JLR)
[] brackets, arrays and
Creating and Destroying Arrays (NUT)
Operators (NUT)
[] (index) operator : Arrays (EXJ)
^ (bitwise exclusive OR) operator : Bitwise/Logical Exclusive OR Operator ^ (JLR)
^ (bitwise XOR) operator : Operators (EXJ)
^ (boolean XOR) operator : Operators (EXJ)
^= (assignment) operator : Operators (EXJ)
, (comma) operator
Operators (NUT)
The for Loop (NUT)
Operators (NUT)
Operators (JLR)
The for Statement (JLR)
Statements (EXJ)
Operators (EXJ)
{ } curly braces : Arrays (EXJ)
for creating arrays : Array Creation and Initialization (EXJ)
for code blocks : Statements (EXJ)
- (subtraction) operator : Operators (EXJ)
- - (decrement) operator : Operators (EXJ)
- = (assignment) operator : Operators (EXJ)
- (hyphen) in class names : Locating Content Handlers (EXJ)

. (dot)
accessing objects with : Accessing Objects (NUT)
as field access operator : Operators (NUT)
in fully qualified names : No Global Variables (NUT)
. (dot) notation
Variable access (EXJ)
Accessing Members (EXJ)
= operator : Copying Objects (NUT)
= (assignment) operator : Assignment Operators (JLR)
= = (equal-to) operator : Equal-To Operator == (JLR)
= (assignment) operator : Operators (EXJ)
= (equality) operator : Operators (EXJ)
== operator
Checking Objects for Equality (NUT)
More Events and Interfaces (EXJ)
Comparisons (EXJ)
> (greater than) operator : Operators (EXJ)
>= (greater than or equal) operator : Operators (EXJ)
>> (rightwise shift) operator : Operators (EXJ)
>>= (assignment) operator : Operators (EXJ)
>>> (rightwise shift) operator : Operators (EXJ)
>>>= (assignment) operator : Operators (EXJ)
- (hyphen)
- (arithmetic subtraction) operator : Arithmetic Subtraction Operator - (JLR)
- (unary minus) operator : Unary Minus Operator - (JLR)
- - (decrement) operator
Field Expressions (JLR)
Increment/Decrement Operators (JLR)
- (unary minus) operator : Operators (EXJ)
- dereference operator : Reference Data Types (NUT)
< (left angle bracket)
< (less-than) operator : Less-Than Operator < (JLR)
<= (less-than-or-equal-to) operator : Less-Than-Or-Equal-To Operator <= (JLR)
<< (left shift) operator : Left Shift Operator << (JLR)
< (less than) operator : Operators (EXJ)
<= (less than or equal) operator : Operators (EXJ)
<< (leftwise shift) operator
Operators (EXJ)
Creating an image (EXJ)

<<= (assignment) operator : Operators (EXJ)
() (parentheses) : Parenthetical Expressions (JLR)
cast operations : Casts (JLR)
object allocation expressions : Object Allocation Expressions (JLR)
() parentheses in object creation
Object Creation (NUT)
Operators (EXJ)
% (remainder) operator
Remainder Operator % (JLR)
Operators (EXJ)
%= (assignment) operator : Operators (EXJ)
+ (concatenation) operator
String Concatenation (JFC)
Unicode and Character Escapes (NUT)
Operators (NUT)
Operators (NUT)
+ (arithmetic addition) operator : Arithmetic Addition Operator + (JLR)
+ (string concatenation) operator
null (JLR)
String Concatenation Operator + (JLR)
+ (unary plus) operator : Unary Plus Operator + (JLR)
++ (increment) operator
Field Expressions (JLR)
Increment/Decrement Operators (JLR)
+ (addition) operator : Operators (EXJ)
+ (string concatenation) operator
Syntactic Sweet 'n Low (EXJ)
A Word About Strings (EXJ)
Operators (EXJ)
String Constructors (EXJ)
java.lang.StringBuffer (EXJ)
+ (unary plus) operator : Operators (EXJ)
+= (assignment) operator : Operators (EXJ)
++ (increment) operator : Operators (EXJ)
?: (conditional) operator : Conditional Operator (JLR)
?: (conditional ternary) operator : Operators (EXJ)
> (right angle bracket)
> (greater-than) operator : Greater-Than Operator > (JLR)
>= (greater-than-or-equal-to) operator : Greater-Than-Or-Equal-To Operator >= (JLR)

>> (right shift) operator : Right Shift Operator >> (JLR)
>>> (unsigned right shift) operator : Unsigned Right Shift Operator >>> (JLR)
>> (shift) operator : Operators (NUT)
>>> (shift) operator
Operators (NUT)
Operators (NUT)
>>>= (shift) operator : Operators (NUT)
; (semicolon) : Method implementation (JLR)
/ (slash)
Java Filenames and Directory Structure (NUT)
Path localization (EXJ)
/ (division) operator : Division Operator / (JLR)
/* */ C-style comments
A "Hello World" Program (JLR)
Comments (JLR)
/** */ documentation comments
Comments (JLR)
Documentation Comments (JLR)
// single-line comments
A "Hello World" Program (JLR)
Comments (JLR)
/ (division) operator : Operators (EXJ)
/* */ comment markers : Comments (NUT)
/** */ doc comment markers
Comments (NUT)
Java Documentation Comment Syntax (NUT)
/= (assignment) operator : Operators (EXJ)
// C-style comment marker : Comments (NUT)
// // comments : Comments (EXJ)
/* */ comments : Comments (EXJ)
/** */ comments : Comments (EXJ)
* (reference) operator in C : Operators (EXJ)
*= (assignment) operator : Operators (EXJ)
~ ((bitwise negation) operator : Bitwise Negation Operator ~ (JLR)
~ (bitwise complement) operator : Operators (EXJ)
| (vertical bar)
| (bitwise include OR) operator : Bitwise/Logical Inclusive OR Operator | (JLR)
|| (boolean OR) operator : Boolean OR Operator || (JLR)
| (OR) operator

Operators (NUT)
Operators (NUT)
|= (OR) operator : Operators (NUT)
|| (logical OR) operator
Operators (NUT)
Operators (NUT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

A
ABORT (variable) : Implementing an ImageObserver (EXJ)
ABORT constant : ImageObserver Interface (AWT)
ABORTED constant : MediaTracker Methods (AWT)
abortGrabbing() : PixelGrabber (AWT)
abs()
Math (JFC)
Math (JLR)
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
abs() : java.lang.Math (EXJ)
absolute positioning : Absolute Positioning? (EXJ)
absolute value : java.lang.Math (EXJ)
abstract (modifier)
Constructors (EXJ)
Glossary (EXJ)
methods and classes : Abstract Methods and Classes (EXJ)
abstract classes
Abstract Classes and Interfaces (NUT)
InstantiationError : (Reference page) (NUT)
InstantiationException : (Reference page) (NUT)
abstract methods : Abstract Methods (NUT)
AbstractMethodError : (Reference page) (NUT)
abstract modifier
Modifiers (NUT)
Inner class modifiers (JLR)
Inner interface modifiers (JLR)
Local class modifiers (JLR)
classes and
Abstract classes (JLR)
Class Modifiers (JLR)

interfaces and : Interface Modifiers (JLR)
methods and
Method modifiers (JLR)
Interface method modifiers (JLR)
Abstract Windowing Toolkit (see AWT)
AbstractMethodError
AbstractMethodError (JFC)
Errors (JLR)
accept()
FilenameFilter interface
FilenameFilter (JFC)
(Reference page) (NUT)
FilenameFilter interface and : FilenameFilter (JFC)
ServerSocket class
ServerSocket (JFC)
(Reference page) (NUT)
SocketImpl class : SocketImpl (JFC)
accept() with sockets : Clients and Servers (EXJ)
access
IllegalAccessError : IllegalAccessError (JFC)
IllegalAccessException : IllegalAccessException (JFC)
access control (see encapsulation; visibility modifiers)
access restrictions on applets : Applet Security Restrictions (NUT)
account name, user : System Properties (EXJ)
acos()
Math (JFC)
Math (JLR)
acos() : java.lang.Math (EXJ)
action() : Dealing With Events (AWT)
Button component : Button Events (AWT)
Checkbox component : Checkbox Events (AWT)
Choice component : Choice Events (AWT)
Component class : Component Events (AWT)
List component : List Events (AWT)
MenuItem class : MenuItem Events (AWT)
TextField class : TextField Events (AWT)
ACTION_ constants : ActionEvent (AWT)
action keys : KeyEvent (AWT)
ActionEvent class

ActionEvent (AWT)

ActionEvent (AWT)
(Reference page) (NUT)
ActionListener() : AWTEventMulticaster (AWT)
ActionListener interface
ActionListener (AWT)

ActionListener (AWT)
(Reference page) (NUT)
actionPerformed()
Constants (AWT)
ActionListener (AWT)
ACTION_EVENT event : Constants (AWT)
activeCaption color : SystemColor Methods (AWT)
activeCaptionBorder color : SystemColor Methods (AWT)
activeCaptionText color : SystemColor Methods (AWT)
activeCount()
Thread class
Thread (JFC)
Thread (JLR)
ThreadGroup class
ThreadGroup (JFC)
ThreadGroup (JLR)
activeGroupCount()
ThreadGroup (JFC)
ThreadGroup (JLR)
adapter classes
The Java 1.1 Event Model (AWT)
Local classes (JLR)
adapters
ComponentAdapter interface : (Reference page) (NUT)
ContainerAdapter class : (Reference page) (NUT)
FocusAdapter class : (Reference page) (NUT)
KeyAdapter class : (Reference page) (NUT)
MouseAdapter class : (Reference page) (NUT)
WindowAdapter class : (Reference page) (NUT)
add() : Rectangle Methods (AWT)
add listener interfaces
The Java 1.1 Event Model (AWT)
AWTEventMulticaster (AWT)

AWTEventMulticaster : (Reference page) (NUT)
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
Calendar class
Calendar (JFC)
(Reference page) (NUT)
Choice component : Component Methods (AWT)
Component class : Component Methods (AWT)
Container : The java.awt Package (NUT)
Container class
Container Methods (AWT)
(Reference page) (NUT)
Dialog class : (Reference page) (NUT)
GregorianCalendar class : GregorianCalendar (JFC)
GridBagLayout class : (Reference page) (NUT)
List component : List Methods (AWT)
Menu class
Menu Methods (AWT)
(Reference page) (NUT)
MenuBar class
MenuBar Methods (AWT)
(Reference page) (NUT)
PopupMenu class : (Reference page) (NUT)
add()
Layout (EXJ)
Containers (EXJ)
addActionListener() : Button Events (AWT)
List component : List Events (AWT)
MenuItem class : MenuItem Events (AWT)
TextField class : TextField Events (AWT)
addAdjustmentListener()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Scrollbar class : Scrollbar Events (AWT)
addComponentListener() : Component Events (AWT)
addConsumer() : (Reference page) (NUT)
FilteredImageSource class : FilteredImageSource (AWT)
ImageProducer interface : ImageProducer Interface (AWT)
MemoryImageSource class : MemoryImageSource (AWT)
addConsumer()

Producing Image Data (EXJ)
A sequence of images (EXJ)
addContainerListener() : Container Methods (AWT)
addElement() : Vectors (JFC)
Vector class : Vector (JFC)
addElement() : java.util.Vector (EXJ)
addFocusListener() : Component Events (AWT)
addImage()
MediaTracker Methods (AWT)
(Reference page) (NUT)
addImpl()
Container class : Container Methods (AWT)
ScrollPane container : ScrollPane Methods (AWT)
addInternal() : AWTEventMulticaster (AWT)
addItem() : (Reference page) (NUT)
Choice component : Component Methods (AWT)
List component : List Methods (AWT)
addItem() : Menus and Choices (EXJ)
addItemListener() : (Reference page) (NUT)
Checkbox component : Checkbox Events (AWT)
Choice component : Choice Events (AWT)
List component : List Events (AWT)
Menu class : CheckboxMenuItem Events (AWT)
addition (+) operator : Operators (EXJ)
addition (+) operator, arithmetic : Arithmetic Addition Operator + (JLR)
additive operators : Additive Operators (JLR)
addKeyListener() : Component Events (AWT)
addLayoutComponent() : (Reference page) (NUT)
BorderLayout layout
BorderLayout Methods (AWT)
CardLayout layout
CardLayout Methods (AWT)
FlowLayout layout : FlowLayout Methods (AWT)
GridBagLayout layout
GridBagLayout Methods (AWT)
GridLayout layout : GridLayout Methods (AWT)
HorizBagLayout layout : HorizBagLayout (AWT)
LayoutManager interface
Methods of the LayoutManager Interface (AWT)

LayoutManager Methods (AWT)
LayoutManager2 interface : The LayoutManager2 Interface (AWT)
VerticalBagLayout layout : VerticalBagLayout (AWT)
addMouseListener() : Component Events (AWT)
addMouseMotionListener() : Component Events (AWT)
addNotify()
Button component : Button Methods (AWT)
Canvas class : Canvas Methods (AWT)
Checkbox component : Checkbox Methods (AWT)
CheckboxMenuItem class : CheckboxMenuItem Methods (AWT)
Choice component : Component Methods (AWT)
Container class
Component Methods (AWT)
Container Methods (AWT)
Dialog class : Dialog Constructors and Methods (AWT)
FileDialog class : FileDialog Methods (AWT)
Frame class : Frame Methods (AWT)
Label component : Label Methods (AWT)
List component : List Methods (AWT)
Menu class : Menu Methods (AWT)
MenuBar class : MenuBar Methods (AWT)
MenuItem class : MenuItem Methods (AWT)
Panel class : Panel Methods (AWT)
PopupMenu class : PopupMenu Methods (AWT)
Scrollbar class : Scrollbar Methods (AWT)
ScrollPane container : ScrollPane Methods (AWT)
TextArea class : TextArea Methods (AWT)
TextField class : TextField Methods (AWT)
Window class : Window Methods (AWT)
addNotify() : Peers (EXJ)
addObserver() : Observable (JFC)
addPoint() : Polygon Methods (AWT)
addPropertyChangeListener()
Customizer interface : (Reference page) (NUT)
PropertyEditor interface : Defining a Simple Property Editor (NUT)
PropertyEditorSupport : (Reference page) (NUT)
addSeparator()
Menu Methods (AWT)
(Reference page) (NUT)

addTextListener() : TextComponent Events (AWT)
addWindowListener() : Window Events (AWT)
Adjustable : (Reference page) (NUT)
Adjustable interface
The Adjustable Interface (AWT)

Adjustable (AWT)
ADJUSTMENT_ constants : AdjustmentEvent (AWT)
AdjustmentEvent() : AdjustmentEvent (AWT)
AdjustmentEvent class
AdjustmentEvent (AWT)

AdjustmentEvent (AWT)
(Reference page) (NUT)
AdjustmentListener interface
AdjustmentListener (AWT)

AdjustmentListener (AWT)
(Reference page) (NUT)
adjustmentValueChanged()
Constants (AWT)
AdjustmentListener (AWT)
Adler32 class
Adler32 (JFC)
The java.util.zip Package (NUT)
(Reference page) (NUT)
after() : (Reference page) (NUT)
Calendar class : Calendar (JFC)
Date class : Date (JFC)
GregorianCalendar class : GregorianCalendar (JFC)
ALIGN attribute (<APPLET> tag) : The <APPLET> Tag (NUT)
align attribute (<applet> tag)
Embedding an Applet in a Web Page (JLR)
The Complete Applet Tag (EXJ)
alignment
ALIGN parameter (<APPLET> tag) : The Applet Tag (AWT)
BorderLayout vs. GridBagLayout : GridBagLayout (AWT)
centering text (example) : The FontMetrics Class (AWT)
Component class constants : Component Methods (AWT)
of components : Component Methods (AWT)
container components : Container Methods (AWT)
of containers : The LayoutManager2 Interface (AWT)

GridBagLayout layout for
GridBagLayout (AWT)
GridBagLayout (AWT)
GridBagLayout (AWT)
GridLayout layout for
GridLayout (AWT)
GridLayout (AWT)
GridLayout (AWT)
labels : Label Methods (AWT)
layout managers and (see under specific layout manager)
VariableGridLayout layout for : VariableGridLayout (AWT)
alignment, applet : The Complete Applet Tag (EXJ)
alive threads
Controlling a Thread (JFC)
Controlling a Thread (JLR)
ALLBITS (variable) : Implementing an ImageObserver (EXJ)
ALLBITS constant : ImageObserver Interface (AWT)
allocating memory
Creating Objects (NUT)
java (NUT)
Dynamic Memory Management (EXJ)
allocation
Reference Types (JLR)
Allocation Expressions (JLR)
Object-Orientation Java Style (JLR)
anonymous arrays
New Language Features in Java 1.1 (JLR)
Array Allocation Expressions (JLR)
anonymous class instances : Allocating instances of anonymous classes (JLR)
allowsMultipleMode() : List Methods (AWT)
allowThreadSuspension()
ThreadGroup (JFC)
ThreadGroup (JLR)
alpha (see ARGB color model)
alpha component, pixel
ColorModel Methods (AWT)
DirectColorModel (AWT)
IndexColorModel (AWT)
alphabetization : Handling Local Customs (NUT)

alt attribute (<applet> tag)
Embedding an Applet in a Web Page (JLR)
The Complete Applet Tag (EXJ)
ALT attribute (<APPLET> tag) : The <APPLET> Tag (NUT)
Alt key (see modifiers)
ALT parameter (<APPLET> tag) : The Applet Tag (AWT)
alternate text for browsers : The Complete Applet Tag (EXJ)
anchor variable (GridBagContraints class) : GridBagConstraints Methods (AWT)
and()
BigInteger class : BigInteger (JFC)
BitSet class : BitSet (JFC)
AND (&) operator
Operators (NUT)
Operators (NUT)
AND (&) operator, boolean : Operators (EXJ)
AND (&) operator, bitwise
Bitwise/Logical AND Operator & (JLR)
Operators (EXJ)
AND (&&) operator, boolean : Boolean AND Operator && (JLR)
AND (&&) operator, conditional : Operators (EXJ)
andNot() : BigInteger (JFC)
animation : Simple Animation (AWT)
MemoryImageSource class for
MemoryImageSource (AWT)
annotateClass() : Advanced Serialization (NUT)
ObjectOutputStream class : ObjectOutputStream (JFC)
anonymous
arrays : Anonymous Arrays (NUT)
classes
An Overview of Inner Classes (NUT)
Anonymous Classes (NUT)
anonymous arrays
New Language Features in Java 1.1 (JLR)
Array Allocation Expressions (JLR)
anonymous classes
Allocating instances of anonymous classes (JLR)
Anonymous classes (JLR)
instance initializers : New Language Features in Java 1.1 (JLR)
API (Application Programming Interface)
Basic Utility Classes (EXJ)

Glossary (EXJ)
APIs (application programming interfaces) (see Java API)
generating documentation : javadoc (NUT)
Java (see Java API)
JavaBeans
Java Beans (NUT)
Object Serialization : Advanced Serialization (NUT)
Reflection (see reflection)
append()
TextArea Methods (AWT)
(Reference page) (NUT)
StringBuffer (JLR)
StringBuffer class : StringBuffer (JFC)
append() : java.lang.StringBuffer (EXJ)
appendText()
TextArea Methods (AWT)
(Reference page) (NUT)
Applet() : Applet Methods (AWT)
Applet (class) : Applet (EXJ)
Applet class : Applets (JLR)
<applet> tag (HTML) : Embedding an Applet in a Web Page (JLR)
<APPLET> tags
A First Applet (NUT)
The <APPLET> Tag (NUT)
ALIGN attribute : The <APPLET> Tag (NUT)
ALT attribute : The <APPLET> Tag (NUT)
ARCHIVE attribute
JAR Files (NUT)
The <APPLET> Tag (NUT)
CODE attribute
Applet Changes (NUT)
Serialized Applets (NUT)
The <APPLET> Tag (NUT)
CODEBASE attribute : The <APPLET> Tag (NUT)
HEIGHT attribute : The <APPLET> Tag (NUT)
HSPACE attribute : The <APPLET> Tag (NUT)
NAME attribute : The <APPLET> Tag (NUT)
OBJECT attribute
Applet Changes (NUT)

Serialized Applets (NUT)
The <APPLET> Tag (NUT)
VSPACE attribute : The <APPLET> Tag (NUT)
WIDTH attribute : The <APPLET> Tag (NUT)
AppletContext (object)
Getting Applet Resources (EXJ)
Driving the Browser (EXJ)
appletResize() : AppletStub Interface (AWT)
applets
Applets (AWT)
And Then There Were Applets (AWT)
Threads (JFC)
A Scribble Applet (NUT)
Applet Changes (NUT)
Applets (NUT)
Applets (JLR)
Threads (JLR)
Applets (EXJ)
Applets (EXJ)
Glossary (EXJ)
alignment of : The Complete Applet Tag (EXJ)
alternate text for : The Complete Applet Tag (EXJ)
Applet class
Applet Methods (AWT)
Applet (AWT)
(Reference page) (NUT)
<APPLET> tag (HTML) : The Applet Tag (AWT)
AppletConext interface : AppletContext (AWT)
AppletContext interface
AppletContext Interface (AWT)
(Reference page) (NUT)
AppletStub interface
AppletStub Interface (AWT)
AppletStub (AWT)
(Reference page) (NUT)
applications versus : Program Structure and Environment (NUT)
audio and : Applet Methods (AWT)
examples of simple : A First Applet (EXJ)
files and : Applets and Files (EXJ)

imagemaps in : Images and Sounds (NUT)
java.applet package : The java.applet Package (NUT)
name of
Attributes (EXJ)
The Complete Applet Tag (EXJ)
Loading Class Files (EXJ)
padding of : The Complete Applet Tag (EXJ)
parameters for : Reading Applet Parameters (NUT)
propreties unreadable by : System Properties (EXJ)
restrictions on : Applet Security Restrictions (NUT)
security of (see security)
serialized : Serialized Applets (NUT)
signed
Secure (NUT)
Applet Changes (NUT)
Signed Applets (NUT)
size of
Attributes (EXJ)
The Complete Applet Tag (EXJ)
threading : Threading Applets (EXJ)
viewing
Viewing Applets (EXJ)
Getting Applet Resources (EXJ)
Glossary (EXJ)
viewing with appletviewer : appletviewer (NUT)
AppletStub (object) : Getting Applet Resources (EXJ)
appletviewer program
Signed Applets (NUT)
appletviewer (NUT)
Viewing Applets (EXJ)
applet serialization and : Serialized Applets (NUT)
commands : appletviewer (NUT)
Application Programming Interface (API)
Basic Utility Classes (EXJ)
Glossary (EXJ)
application-level security : Application and User Level Security (EXJ)
application/x-tar type : The application/x-tar Handler (EXJ)
applications
Running a Java Application (JLR)

Applications (JLR)
New Kinds of Applications (EXJ)
Glossary (EXJ)
applets
Enter Java (EXJ)
helper : Applets (EXJ)
applyLocalizedPattern() : DecimalFormat (JFC)
applyLocalizePattern()
SimpleDateFormat class : SimpleDateFormat (JFC)
applyPattern()
ChoiceFormat (JFC)
DecimalFormat (JFC)
ChoiceFormat class : (Reference page) (NUT)
DecimalFormat class : (Reference page) (NUT)
MessageFormat class
MessageFormat (JFC)
(Reference page) (NUT)
SimpleDateFormat class
SimpleDateFormat (JFC)
(Reference page) (NUT)
arccosine : java.lang.Math (EXJ)
arcHeight, arcWidth parameters : Graphics Methods (AWT)
architecture neutrality : Architecture Neutral and Portable (NUT)
archive attribute (<applet> tag) : Embedding an Applet in a Web Page (JLR)
ARCHIVE attribute (<APPLET> tags)
JAR Files (NUT)
The <APPLET> Tag (NUT)
archived class files : The Class Path (EXJ)
ARCHIVES parameter
<APPLET> tag : The Applet Tag (AWT)
<PARAM> tag : The Applet Tag (AWT)
arcs : Graphics Methods (AWT)
arcsine : java.lang.Math (EXJ)
arctangent : java.lang.Math (EXJ)
AreaAveragingScaleFilter class
Graphics Methods (AWT)
AreaAveragingScaleFilter (AWT)

AreaAveragingScaleFilter (AWT)
Miscellaneous Improvements (NUT)

(Reference page) (NUT)
ARGB color model : Color models (EXJ)
arguments : Variables (EXJ)
IllegalArgumentException : IllegalArgumentException (JFC)
passing to methods : Argument Passing and References (EXJ)
arithmetic addition (+) operator : Arithmetic Addition Operator + (JLR)
arithmetic data types : Arithmetic Types (JLR)
arithmetic operators : Operators (EXJ)
arithmetic subtraction (-) operator : Arithmetic Subtraction Operator - (JLR)
ArithmeticException
ArithmeticException (JFC)
Integral Types (NUT)
(Reference page) (NUT)
Runtime exceptions (JLR)
Math Utilities (EXJ)
Array class : Array (JFC)
arraycopy() : (Reference page) (NUT)
arraycopy() : Using Arrays (EXJ)
ArrayIndexOutOfBoundsException
Array Types (JLR)
Runtime exceptions (JLR)
Using Arrays (EXJ)
arrays (see vectors)
Arrays (NUT)
Array Types (JLR)
Dynamic Memory Management (EXJ)
Arrays (EXJ)
Arrays (EXJ)
Inside Arrays (EXJ)
allocation expressions for : Array Allocation Expressions (JLR)
anonymous
Anonymous Arrays (NUT)
New Language Features in Java 1.1 (JLR)
Array Allocation Expressions (JLR)
Array class : (Reference page) (NUT)
arraycopy()
System (JFC)
System (JLR)
ArrayIndexOutOfBoundsException

ArrayIndexOutOfBoundsException (JFC)
Accessing Array Elements (NUT)
(Reference page) (NUT)
ArrayStoreException
ArrayStoreException (JFC)
(Reference page) (NUT)
assigning elements (see assignment operators)
creating : Allocation Expressions (JLR)
creating and initializing : Array Creation and Initialization (EXJ)
declaring : Arrays (EXJ)
index expressions : Index Expressions (JLR)
IndexOutOfBoundsException : IndexOutOfBoundsException (JFC)
length of : Array Types (JLR)
local : Local variable type (JLR)
multi-dimensional
Array Types (JLR)
Array Allocation Expressions (JLR)
Variable type (JLR)
Local variable type (JLR)
multidimensional
Multidimensional Arrays (NUT)
Multidimensional Arrays (EXJ)
NegativeArraySizeException
NegativeArraySizeException (JFC)
(Reference page) (NUT)
nonrectangular : Multidimensional Arrays (EXJ)
objects versus : Are Arrays Objects? (NUT)
variable-length (see vectors)
variables/arguments of : Declaring Array Variables and Arguments (NUT)
Vector class
Vector (JFC)
(Reference page) (NUT)
ArrayStoreException
Runtime exceptions (JLR)
Inside Arrays (EXJ)
ascent (for fonts) : Font Metrics (EXJ)
ascent, font : The FontMetrics Class (AWT)
ASCII (see Unicode character sets)
asin()

Math (JFC)
Math (JLR)
asin() : java.lang.Math (EXJ)
assignment : Assignment (EXJ)
compatibility
Integer types (JLR)
Floating-point types (JLR)
Assignment Compatibility (JLR)
operators
Operators (JLR)
Assignment Operators (JLR)
assignment operators : Operators (EXJ)
associativity operator : Operators (NUT)
associativity, operator : Order of Operations (JLR)
atan()
Math (JFC)
Math (JLR)
atan() : java.lang.Math (EXJ)
atan2()
Math (JFC)
Math (JLR)
attributes, HTML : Attributes (EXJ)
audio : Audio in Applications (AWT)
applets and : Applet Methods (AWT)
AudioClip interface
AudioClip Interface (AWT)
AudioClip (AWT)
(Reference page) (NUT)
AudioData class : AudioData (AWT)
AudioDataStream class : AudioDataStream (AWT)
AudioPlayer class : AudioPlayer (AWT)
AudioStream class : AudioStream (AWT)
AudioStreamSequence class : AudioStreamSequence (AWT)
beep() : Toolkit Methods (AWT)
ContinuousAudioDataStream class : ContinuousAudioDataStream (AWT)
getAudioClip()
(Reference page) (NUT)
(Reference page) (NUT)
audio files : Working with Audio (EXJ)

audio, real-time transmission of : Sockets (JFC)
AudioClip (object) : Working with Audio (EXJ)
authentication : Signing Classes (EXJ)
@author tag (javadoc) : Documentation Comments (JLR)
author (Applet information) : Reading Applet Parameters (NUT)
@author tag : Comments (EXJ)
Author: doc comment tag : Java Documentation Comment Syntax (NUT)
available() : (Reference page) (NUT)
BufferedInputStream class : BufferedInputStream (JFC)
ByteArrayInputStream class : ByteArrayInputStream (JFC)
FileInputStream class : FileInputStream (JFC)
FilterInputStream class : FilterInputStream (JFC)
InputStream class
InputStream (JFC)
InputStream (JFC)
LineNumberInputStream class : LineNumberInputStream (JFC)
ObjectInput interface : ObjectInput (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
PipedInputStream class : PipedInputStream (JFC)
PushbackInputStream class : PushbackInputStream (JFC)
SequenceInputStream class : SequenceInputStream (JFC)
SocketImpl class : SocketImpl (JFC)
StringBufferInputStream class : StringBufferInputStream (JFC)
available()
Terminal I/O (EXJ)
File Streams (EXJ)
avoidingGui() : (Reference page) (NUT)
AWT
versions of : Abstract Window Toolkit Overview (AWT)
AWT (Abstract Windowing Toolkit)
Understand the Abstract Windowing Toolkit (EXJ)
Glossary (EXJ)
AWT event model
The New AWT Event Model (NUT)
AWT toolkit (see java.awt package)
AWT, versions of : Preface (AWT)
AWTError : (Reference page) (NUT)
AWTError error
AWTError (AWT)

AWTError (AWT)
AWTEvent() : AWTEvent (AWT)
AWTEvent class
The Java 1.1 Event Model (AWT)

AWTEvent (AWT)
The Java 1.1 Event Model (NUT)
Inside the Java 1.1 Event Model (NUT)
(Reference page) (NUT)
constants of : AWTEvent (AWT)
AWTEventMulticaster() : AWTEventMulticaster (AWT)
AWTEventMulticaster class
AWTEventMulticaster (AWT)

AWTEventMulticaster (AWT)
(Reference page) (NUT)
AWTException : (Reference page) (NUT)
AWTException exception
AWTException (AWT)
AWTException (AWT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

B
background colors
SystemColor Methods (AWT)
Component Methods (AWT)
highlighted text : SystemColor Methods (AWT)
images : Graphics Methods (AWT)
windows : SystemColor Methods (AWT)
backslash (\) : Java Filenames and Directory Structure (NUT)
in paths : Path localization (EXJ)
in strings : Path localization (EXJ)
balking strategy (threads)
Balking (JFC)
Balking (JLR)
base classes, fragile : Incremental Development (EXJ)
base URL
Loading Class Files (EXJ)
Working with URLs (EXJ)
beans (see JavaBeans API)
beep() : Toolkit Methods (AWT)
before(:) : (Reference page) (NUT)
Calendar class : Calendar (JFC)
Date class : Date (JFC)
GregorianCalendar class : GregorianCalendar (JFC)
BigDecimal class
BigDecimal (JFC)
(Reference page) (NUT)
BigInteger class
BigInteger (JFC)
(Reference page) (NUT)
binary
addition (+) operator : Arithmetic Addition Operator + (JLR)

division (/) operator : Division Operator / (JLR)
multiplication (*) operator : Multiplication Operator * (JLR)
remainder (%) operator : Remainder Operator % (JLR)
subtraction (-) operator : Arithmetic Subtraction Operator - (JLR)
binary tree (see Enumeration interface)
bind()
SocketImpl class : SocketImpl (JFC)
BindException
BindException (JFC)
(Reference page) (NUT)
binding methods : Type Safety and Method Binding (EXJ)
dynamic : Overridden methods and dynamic binding (EXJ)
bit shifting : Shift Operators (JLR)
bitCount() : BigInteger (JFC)
bitfields : No Bitfields (NUT)
BITFTP, obtaining examples by : BITFTP (AWT)
bitLength() : BigInteger (JFC)
BitSet class
BitSet (JFC)
The java.util Package (NUT)
(Reference page) (NUT)
bitwise operators
Operators (NUT)
Operators (NUT)
Bitwise/Logical Operators (JLR)
Operators (EXJ)
AND (&) : Bitwise/Logical AND Operator & (JLR)
negation (~) : Bitwise Negation Operator ~ (JLR)
OR (^) operator : Bitwise/Logical Exclusive OR Operator ^ (JLR)
OR (|) operator : Bitwise/Logical Inclusive OR Operator | (JLR)
blank finals
Blank Finals (NUT)
New Language Features in Java 1.1 (JLR)
Variable modifiers (JLR)
Final local variables (JLR)
block comments (see comments)
BLOCK_ constants : AdjustmentEvent (AWT)
blocks, statement
Lexical Scope of Declarations (JLR)

Blocks (JLR)
blue (color)
Color Methods (AWT)
ColorModel Methods (AWT)
DirectColorModel (AWT)
IndexColorModel (AWT)
blurring filter (example) : ImageFilter Methods (AWT)
BNF notation : Notational Conventions (JLR)
BOLD constant : The Font Class (AWT)
BOLD(value) : Fonts (EXJ)
Boolean() : Boolean (JFC)
boolean (type)
Instance Variables (EXJ)
Primitive Types (EXJ)
Glossary (EXJ)
Boolean class
Boolean (JFC)
Boolean Type (JLR)
Boolean (JLR)
boolean data type
The boolean Type (NUT)
(Reference page) (NUT)
Boolean literals (JLR)
Boolean Type (JLR)
Boolean class
The java.lang Package (NUT)
(Reference page) (NUT)
boolean operators
Boolean Operators (JLR)
Operators (EXJ)
AND (&&) operator : Boolean AND Operator && (JLR)
negation (!) : Boolean Negation Operator ! (JLR)
OR (||) operator : Boolean OR Operator || (JLR)
booleanValue()
Boolean (JFC)
(Reference page) (NUT)
Boolean (JLR)
BorderLayout() : BorderLayout Methods (AWT)
BorderLayout (layout manager)

Layout managers (EXJ)
A TextEntryBox
BorderLayout (EXJ)
BorderLayout class : (Reference page) (NUT)
BorderLayout layout
BorderLayout (AWT)
BorderLayout (AWT)
BorderLayout (AWT)
borders
caption, color of
SystemColor Methods (AWT)
inset : Insets Methods (AWT)
windows, color of : SystemColor Methods (AWT)
BOTTOM_ALIGNMENT constant : Component Methods (AWT)
bound properties : Bean Basics (NUT)
bounds() : Component Methods (AWT)
braces { } : Arrays (EXJ)
for creating arrays : Array Creation and Initialization (EXJ)
for code blocks : Statements (EXJ)
brackets [], arrays and
Creating and Destroying Arrays (NUT)
Operators (NUT)
break statement
Labelled break and continue Statements (NUT)
The break Statement (JLR)
break statements
Statements (EXJ)
The finally Clause (EXJ)
BreakIterator class
The java.text Package (JFC)
The java.text Package (JFC)
BreakIterator (JFC)
Handling Local Customs (NUT)
The java.text Package (NUT)
(Reference page) (NUT)
brighter()
Color Methods (AWT)
(Reference page) (NUT)
browsers : Other Java Books and Resources (AWT)

getting information about : AppletStub Interface (AWT)
status line for
Applet Methods (AWT)
AppletContext Interface (AWT)
browsers, Web (see Web browsers)
BufferedInputStream (class)
Streams (EXJ)
Buffered streams (EXJ)
BufferedInputStream class
BufferedReader and BufferedInputStream (JFC)
BufferedInputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
BufferedOutputStream (class)
Streams (EXJ)
Buffered streams (EXJ)
BufferedOutputStream class
BufferedWriter and BufferedOutputStream (JFC)
BufferedOutputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
BufferedReader (class)
Streams (EXJ)
Buffered streams (EXJ)
BufferedReader class
BufferedReader and BufferedInputStream (JFC)
BufferedReader (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
BufferedWriter (class)
Streams (EXJ)
Buffered streams (EXJ)
BufferedWriter class
BufferedWriter and BufferedOutputStream (JFC)
BufferedWriter (JFC)
(Reference page) (NUT)
buffers (see memory)
Button (object)
Hello Web! III: The Button Strikes! (EXJ)
Peers (EXJ)

buttons
The Button class (AWT)
Button class
The Button class (AWT)
Buttons (AWT)
Button (AWT)
(Reference page) (NUT)
button events : Button Events (AWT)
button mask constants : InputEvent (AWT)
ButtonPeer interface
ButtonPeer (AWT)
(Reference page) (NUT)
ImageButton class : The Button class (AWT)
keyboard events and : Button Events (AWT)
mouse (see mouse events)
raised rectangles for : Graphics Methods (AWT)
Byte() : Byte (JFC)
byte (type)
Primitive Types (EXJ)
Glossary (EXJ)
Byte class
The java.lang Package (JFC)
Byte (JFC)
Byte (JLR)
byte data type : Integer types (JLR)
byte-code : Interpreted (NUT)
converting to ASCII : native2ascii (NUT)
JIT compilers
High-Performance (NUT)
(Reference page) (NUT)
verification
Secure (NUT)
Byte-Code Verification (NUT)
java (NUT)
VerifyError : (Reference page) (NUT)
VerifyError error : VerifyError (JFC)
byte-code verification
Safety of Implementation (EXJ)
The Java Interpreter (EXJ)

Glossary (EXJ)
ByteArrayImageSource class : A Brief Tour of sun.awt.image (AWT)
ByteArrayInputStream class
CharArrayReader and ByteArrayInputStream (JFC)
ByteArrayInputStream (JFC)
ByteArrayOutputStream class
CharArrayWriter and ByteArrayOutputStream (JFC)
ByteArrayOutputStream (JFC)
bytes
Byte class
The java.lang Package (NUT)
(Reference page) (NUT)
byte data type : Primitive Data Types (NUT)
ByteArrayInputStream class
The java.io Package (NUT)
(Reference page) (NUT)
ByteArrayOutputStream class
The java.io Package (NUT)
(Reference page) (NUT)
CharConversionException : (Reference page) (NUT)
bytesWidth() : The FontMetrics Class (AWT)
byteValue() : Byte (JFC)
Byte class : Byte (JLR)
Double class
Double (JFC)
Double (JLR)
Float class
Float (JFC)
Float (JLR)
Integer class
Integer (JFC)
Integer (JLR)
Long class
Long (JFC)
Long (JLR)
Number class
Number (JFC)
Number (JLR)
Short class
Short (JFC)

Short (JLR)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

C
C and C++, compared to Java : Java Compared (EXJ)
C programming language
character escapes : Unicode and Character Escapes (NUT)
differences from Java
How Java Differs from C (NUT)
Unicode and Character Escapes (NUT)
generating files (see javah)
C-style comments (see comments)
C++ language
Classes and Objects in Java (NUT)
C++ Features Not Found in Java (NUT)
C++ programming language : Introduction (JLR)
CAB files : The Applet Tag (AWT)
CABBASE parameter name (<PARAM> tag) : The Applet Tag (AWT)
calculator example : A Simple Calculator (AWT)
Calendar class
Calendar (JFC)
The java.util Package (NUT)
(Reference page) (NUT)
GregorianCalendar class : (Reference page) (NUT)
calendars (see date and time)
callbacks
Interfaces as Callbacks (EXJ)
Glossary (EXJ)
canFilterIndexColorModel (variable) : (Reference page) (NUT)
canRead()
File (JFC)
(Reference page) (NUT)
File class : File (JFC)
canRead() : File methods (EXJ)

Canvas() : Canvas Methods (AWT)
Canvas (object) : Painting and Updating (EXJ)
Canvas class
The Canvas class (AWT)
Canvas (AWT)
Canvas (AWT)
(Reference page) (NUT)
CanvasPeer interface
CanvasPeer (AWT)
(Reference page) (NUT)
canWrite()
File (JFC)
(Reference page) (NUT)
File class : File (JFC)
canWrite() : File methods (EXJ)
capacity()
StringBuffer (JFC)
(Reference page) (NUT)
StringBuffer (JLR)
Vector class : Vector (JFC)
capacity, vector : Vectors (JFC)
capitalization (see case sensitivity)
Static Members (EXJ)
Locating Content Handlers (EXJ)
equals() : Comparisons (EXJ)
toUpperCase(), toLowerCase() : Editing (EXJ)
capitalization convention : Defining Constants (NUT)
captions, colors for
SystemColor Methods (AWT)
CardLayout() : CardLayout Methods (AWT)
CardLayout (layout manager)
Layout Managers (EXJ)
CardLayout (EXJ)
CardLayout class : (Reference page) (NUT)
CardLayout layout
CardLayout (AWT)
CardLayout (AWT)
CardLayout (AWT)
carets : TextComponent Methods (AWT)

carriage return
Division of the Input Stream into Lines (JLR)
Character literals (JLR)
carriage returns (see whitespace)
cascading filters : Cascading Filters (AWT)
case expressions : Statements (EXJ)
case labels : The switch Statement (JLR)
case labels (switch) : The switch Statement (NUT)
case sensitivity
class names : Applications (JLR)
comparing strings and : String (JFC)
filenames : Compiling a Java Source File (JLR)
naming conventions and : Naming Conventions (JLR)
package names : Packages (JLR)
StreamTokenizer class and : StreamTokenizer (JFC)
toLowerCase() and toUpperCase() : String (JFC)
cast operations : Casts (JLR)
casting
Casting (EXJ)
Glossary (EXJ)
casting, shadowed variables and : Shadowed Variables (NUT)
catch clause
Handling Exceptions (JFC)
Handling Exceptions (JLR)
catch clauses
Exceptions (EXJ)
Statements (EXJ)
Exception Handling (EXJ)
Try Creep (EXJ)
Glossary (EXJ)
catch statement : Exception Handling (NUT)
catching exceptions (see exceptions)
ceil()
Math (JFC)
Math (JLR)
ceil() : java.lang.Math (EXJ)
centering (see alignment)
CENTER_ALIGNMENT constant : Component Methods (AWT)
chaining

constructors : Constructor Chaining (NUT)
finalizer methods
Finalizer Chaining? (NUT)
Finalizer Chaining Revisited (NUT)
chains, listener (see AWTEventMulticaster class)
char (type)
Text Encoding (EXJ)
Primitive Types (EXJ)
Character literals (EXJ)
Glossary (EXJ)
char data type
The char Type (NUT)
Unicode (NUT)
(Reference page) (NUT)
Integer types (JLR)
Character() : Character (JFC)
Character class
Character (JFC)
Character (JLR)
character encodings
Internationalization (NUT)
Internationalization (NUT)
Character Encodings (NUT)
local : Unicode and Local Encodings (NUT)
Unicode character set : Unicode (NUT)
UnsupportedEncodingException : (Reference page) (NUT)
UTF-8 : The UTF-8 Encoding (NUT)
character escapes
Unicode and Character Escapes (NUT)
Character Escape Sequences (NUT)
character literals
Character literals (EXJ)
getting from strings : Things from Strings (EXJ)
within strings, returning : Editing (EXJ)
characters
Character class
The java.lang Package (NUT)
(Reference page) (NUT)
character literals : Character literals (JLR)

character streams : The java.io Package (JFC)
CharacterIterator interface
CharacterIterator (JFC)
(Reference page) (NUT)
CharArrayReader class
CharArrayReader and ByteArrayInputStream (JFC)
(Reference page) (NUT)
CharArrayWriter class
CharArrayWriter and ByteArrayOutputStream (JFC)
(Reference page) (NUT)
CharConversionException
CharConversionException (JFC)
(Reference page) (NUT)
drawing : Graphics Methods (AWT)
echoing : TextField Methods (AWT)
integer data types for : Arithmetic Types (JLR)
string literals : String literals (JLR)
StringCharacterIterator class : StringCharacterIterator (JFC)
Unicode
Pre-Processing (JLR)
Packages (JLR)
Unicode 2.0 character set
The Unicode 2.0 Character Set (JFC)
The Unicode 2.0 Character Set (JLR)
width of : The FontMetrics Class (AWT)
CharArrayReader class : CharArrayReader (JFC)
CharArrayWriter class : CharArrayWriter (JFC)
charAt() : (Reference page) (NUT)
String class
String (JFC)
String (JFC)
String (JLR)
StringBuffer class
StringBuffer (JFC)
StringBuffer (JLR)
charAt() : Things from Strings (EXJ)
CharConversionException : CharConversionException (JFC)
charsWidth() : The FontMetrics Class (AWT)
charValue()

(Reference page) (NUT)
Character (JLR)
Character class : Character (JFC)
charWidth() : The FontMetrics Class (AWT)
charWidth() : Font Metrics (EXJ)
CHAR_UNDEFINED constant : KeyEvent (AWT)
check methods, SecurityManager class : SecurityManager (JFC)
checkCreateClassLoader() : ClassLoader (JFC)
checkRead() : File (JFC)
checkWrite() : File (JFC)
checkAccept()
SecurityManager (JFC)
SecurityManager (JLR)
checkAccept() : The Security Manager (EXJ)
checkAccess()
SecurityManager class
SecurityManager (JFC)
SecurityManager (JLR)
Thread class
Thread (JFC)
Thread (JLR)
ThreadGroup class
ThreadGroup (JFC)
ThreadGroup (JLR)
checkAccess()
The Security Manager (EXJ)
Taming the daemon (EXJ)
checkAll() : MediaTracker Methods (AWT)
checkAwtEventQueueAccess()
SecurityManager (JFC)
SecurityManager (JLR)
Checkbox() : Checkbox Methods (AWT)
checkboxes : Checkboxes and CheckboxGroups (EXJ)
Checkbox class : (Reference page) (NUT)
Checkbox component
The Checkbox and CheckboxGroup classes (AWT)
Checkbox (AWT)
Checkbox (AWT)
checkbox events : Checkbox Events (AWT)

checkbox menu events : CheckboxMenuItem Events (AWT)
CheckboxGroup class
The Checkbox and CheckboxGroup classes (AWT)
CheckboxGroup (AWT)
CheckboxGroup (AWT)
(Reference page) (NUT)
CheckboxMenuItem class
CheckboxMenuItem (AWT)
CheckboxMenuItem (AWT)
(Reference page) (NUT)
CheckboxMenuItemPeer : (Reference page) (NUT)
CheckboxMenuItemPeer interface : CheckboxMenuItemPeer (AWT)
CheckboxPeer interface : (Reference page) (NUT)
state of : Checkbox Methods (AWT)
CheckboxGroup() : CheckboxGroup Methods (AWT)
CheckboxGroup (object) : Checkboxes and CheckboxGroups (EXJ)
CheckboxMenuItem() : CheckboxMenuItem Methods (AWT)
checkConnect()
SecurityManager (JFC)
SecurityManager (JLR)
checkConnect() : The Security Manager (EXJ)
checkCreateClassLoader()
SecurityManager (JFC)
SecurityManager (JLR)
checkDelete()
SecurityManager (JFC)
SecurityManager (JLR)
checkDelete() : The Security Manager (EXJ)
CheckedInputStream class
CheckedInputStream (JFC)
(Reference page) (NUT)
CheckedOutputStream class
CheckedOutputStream (JFC)
(Reference page) (NUT)
checkError() : (Reference page) (NUT)
PrintStream class : PrintStream (JFC)
PrintWriter class
PrintWriter and PrintStream (JFC)
PrintWriter (JFC)

checkError() : Print streams (EXJ)
checkExec()
SecurityManager (JFC)
SecurityManager (JLR)
checkExec() : The Security Manager (EXJ)
checkExit()
SecurityManager (JFC)
SecurityManager (JLR)
checkExit() : The Security Manager (EXJ)
checkID() : MediaTracker Methods (AWT)
checkImage()
ImageObserver interface : Component Methods (AWT)
Toolkit class : Toolkit Methods (AWT)
checkLink()
SecurityManager (JFC)
SecurityManager (JLR)
checkListen()
SecurityManager (JFC)
SecurityManager (JLR)
checkListen() : The Security Manager (EXJ)
checkMemberAccess()
SecurityManager (JFC)
SecurityManager (JLR)
checkMulticast()
SecurityManager (JFC)
SecurityManager (JLR)
checkPackageAccess()
SecurityManager (JFC)
SecurityManager (JLR)
checkPackageDefinition()
SecurityManager (JFC)
SecurityManager (JLR)
checkPrintJobAccess()
SecurityManager (JFC)
SecurityManager (JLR)
checkPropertiesAccess()
SecurityManager (JFC)
SecurityManager (JLR)
checkPropertyAccess() : The Security Manager (EXJ)
checkRead()

SecurityManager (JFC)
SecurityManager (JLR)
checkRead()
The Security Manager (EXJ)
Taming the daemon (EXJ)
checkSecurityAccess()
SecurityManager (JFC)
SecurityManager (JLR)
checkSetFactory()
SecurityManager (JFC)
SecurityManager (JLR)
-checksource option (java) : The Java Interpreter (EXJ)
Checksum interface
Checksum (JFC)
(Reference page) (NUT)
checkSystemClipboardAccess()
SecurityManager (JFC)
SecurityManager (JLR)
checkTopLevelWindow()
SecurityManager (JFC)
SecurityManager (JLR)
checkTopLevelWindow() : The Security Manager (EXJ)
checkWrite()
SecurityManager (JFC)
SecurityManager (JLR)
checkWrite() : The Security Manager (EXJ)
Choice() : Component Methods (AWT)
Choice (object) : Menus and Choices (EXJ)
Choice class : (Reference page) (NUT)
Choice component
The Choice class (AWT)
Choice (AWT)
Choice (AWT)
ChoiceFormat class
The java.text Package (JFC)
ChoiceFormat (JFC)
The java.text Package (NUT)
(Reference page) (NUT)
ChoicePeer interface
ChoicePeer (AWT)

(Reference page) (NUT)
circles (see ovals)
circular dependency : (Reference page) (NUT)
circular references : ClassCircularityError (JFC)
Class : Class (JFC)
Class (object) : java.lang.Class (EXJ)
Class class : The java.lang Package (JFC)
class data types : Class Types (JLR)
casting : Casts (JLR)
.class extension : The Java Compiler (EXJ)
class files
Java Filenames and Directory Structure (NUT)
Packages (JLR)
adding line numbers
javac (NUT)
javap (NUT)
alternative base URL : Loading Class Files (EXJ)
archived : The Class Path (EXJ)
javap disassembler : javap (NUT)
loading : Loading Class Files (EXJ)
modification times : The Java Compiler (EXJ)
names for : Java Filenames and Directory Structure (NUT)
nested top-level classes and : Nested Top-Level Classes and .class Files (NUT)
optimizing : javac (NUT)
storing : javac (NUT)
class instances
Objects Are Instances of a Class (NUT)
Class Instances and Objects (EXJ)
Classes (EXJ)
class literals
Class Literals (NUT)
New Language Features in Java 1.1 (JLR)
Class Literals (JLR)
class loaders
Class Loader (EXJ)
Glossary (EXJ)
class members : Access to Packages, Classes, and Class Members (NUT)
class methods
Class Methods (NUT)

Static Members (EXJ)
Glossary (EXJ)
class paths
The Java Interpreter (EXJ)
The Class Path (EXJ)
Glossary (EXJ)
default : The Class Path (EXJ)
class type variables (see references)
class variables
Class Variables (NUT)
Static Members (EXJ)
Glossary (EXJ)
initializers and : Static Initializers (NUT)
ClassCastException
Casting (EXJ)
java.util.Vector (EXJ)
Getting the Content as an Object (EXJ)
classDepth()
SecurityManager (JFC)
SecurityManager (JLR)
classes (see also under specific class name)
Object-Oriented (NUT)
Introduction to Classes and Objects (NUT)
A "Hello World" Program (JLR)
Classes (JLR)
A Virtual Machine (EXJ)
Scalability (EXJ)
Classes (EXJ)
Classes (EXJ)
Glossary (EXJ)
abstract
Abstract Classes and Interfaces (NUT)
Abstract classes (JLR)
Abstract Methods and Classes (EXJ)
accessing : Access to Packages, Classes, and Class Members (NUT)
adapter : The Java 1.1 Event Model (AWT)
adapter classes : Local classes (JLR)
anonymous
An Overview of Inner Classes (NUT)

Anonymous Classes (NUT)
Allocating instances of anonymous classes (JLR)
Anonymous classes (JLR)
array (see arrays)
AWTEvent class : The Java 1.1 Event Model (AWT)
Class class
Class (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
Class (JLR)
ClassCastException
ClassCastException (JFC)
(Reference page) (NUT)
Casts (JLR)
Runtime exceptions (JLR)
ClassCircularityError
ClassCircularityError (JFC)
(Reference page) (NUT)
Errors (JLR)
ClassFormatError
ClassFormatError (JFC)
(Reference page) (NUT)
Errors (JLR)
ClassLoader class
ClassLoader (JFC)
Loading Classes Securely (NUT)
(Reference page) (NUT)
ClassLoader (JLR)
ClassNotFoundException
ClassNotFoundException (JFC)
(Reference page) (NUT)
Other exceptions (JLR)
code verification (see byte-code verification)
collection : Vectors and Hashtables (EXJ)
compilation units
Compilation Units (EXJ)
Glossary (EXJ)
constructors : Constructors (JLR)
declaring

Lexical Scope of Declarations (JLR)
Glossary (EXJ)
documentation for : Documentation Comments (JLR)
dynamically loading : ClassLoader (JFC)
encapsulation : A Scribble Applet (NUT)
error : Exceptions and Error Classes (EXJ)
exception : The try Statement (JLR)
extending : Extending a Class (NUT)
final
Final Classes (NUT)
Final classes (JLR)
String Method Summary (EXJ)
hierarchy of : Superclasses, Object, and the Class Hierarchy (NUT)
IllegalAccessError : (Reference page) (NUT)
IllegalAccessException : (Reference page) (NUT)
import directive : The import Directive (JLR)
importing
Import (EXJ)
Importing Classes (EXJ)
Glossary (EXJ)
IncompatibleClassChangeError
IncompatibleClassChangeError (JFC)
(Reference page) (NUT)
incremental development : Incremental Development (EXJ)
inheritance (see inheritance)
Inheritance (EXJ)
inner
Inner Classes (NUT)
inner classes
New Language Features in Java 1.1 (JLR)
Field Expressions (JLR)
Inner Classes (JLR)
InvalidClassException
InvalidClassException (JFC)
(Reference page) (NUT)
Java API : Packages of the Java API (NUT)
LinkageError
LinkageError (JFC)
(Reference page) (NUT)

loading (static initializers) : Static Initializers (JLR)
loading securely : Loading Classes Securely (NUT)
local
An Overview of Inner Classes (NUT)
Local Classes (NUT)
Anonymous Classes versus Local Classes (NUT)
Local classes (JLR)
Local Classes (JLR)
member
An Overview of Inner Classes (NUT)
Member Classes (NUT)
member classes
Member classes (JLR)
Nested Top-Level and Member Classes (JLR)
methods : Methods (JLR)
MIME types and : Locating Content Handlers (EXJ)
with multiple constructor methods : Multiple Constructors (NUT)
multiple constructors (see overloading methods)
names of : No Global Variables (NUT)
nested top-level
Nested top-level classes and interfaces (JLR)
Nested Top-Level and Member Classes (JLR)
nested-top-level
An Overview of Inner Classes (NUT)
Nested Top-Level Classes and Interfaces (NUT)
NoClassDefFoundError
NoClassDefFoundError (JFC)
(Reference page) (NUT)
object serialization : The java.io Package (JFC)
object serialization and
Object Serialization Basics (JFC)
ObjectStreamClass (JFC)
ObjectStreamClass class : (Reference page) (NUT)
packages of (see packages)
protocols into names for : Locating Protocol Handlers (EXJ)
public
Java Filenames and Directory Structure (NUT)
Access to Packages, Classes, and Class Members (NUT)
public, javac compiler and : The Java Compiler (EXJ)

reference types : Reference Types (EXJ)
reflection and : Obtaining Class and Member Information (NUT)
socket : Sockets (JFC)
specially supported : Specially supported classes (JLR)
subclass constructors : Subclass Constructors (NUT)
subclasses
Subclasses and Inheritance (NUT)
Visibility Modifiers (NUT)
superclasses : Superclasses, Object, and the Class Hierarchy (NUT)
UnsatisfiedLinkError : (Reference page) (NUT)
variables of : Variables (JLR)
versioning
Versioning of Classes (JFC)
Serialization and Class Versioning (NUT)
serialver (NUT)
visibility (see visibility modifiers)
visibility of : Class Visibility (EXJ)
wrapper : Primitive Types (EXJ)
ClassLoader class : ClassLoader (JFC)
classLoaderDepth()
SecurityManager (JFC)
SecurityManager (JLR)
CLASSPATH (variable)
The Class Path (EXJ)
Glossary (EXJ)
-classpath option (java, javac) : The Java Interpreter (EXJ)
CLASSPATH variable
The Java Class Path (NUT)
Compiling a Java Source File (JLR)
Packages (JLR)
with appletviewer : appletviewer (NUT)
with java interpreter : java (NUT)
with javac compiler : javac (NUT)
with javah : javah (NUT)
with javap disassembler : javap (NUT)
with jdb debugger : jdb (NUT)
clear() : List Methods (AWT)
BitSet class : BitSet (JFC)
Calendar class : Calendar (JFC)

Hashtable class : Hashtable (JFC)
clearBit() : BigInteger (JFC)
clearChanged() : Observable (JFC)
clearRect() : Graphics Methods (AWT)
clickCount variable : Variables (AWT)
clicking mouse buttons (see mouse events)
client sockets : Sockets (JFC)
clients
Clients and Servers (EXJ)
Glossary (EXJ)
Clipboard() : Clipboard Methods (AWT)
Clipboard class
Cut-and-Paste (NUT)
Data Transfer with Cut-and-Paste (NUT)
(Reference page) (NUT)
ClipboardOwner interface
Data Transfer with Cut-and-Paste (NUT)
(Reference page) (NUT)
clipboards
New Features of AWT in Java 1.1 (AWT)
Clipboards (AWT)
Toolkit Methods (AWT)
Reading and Writing the Clipboard (AWT)
Clipboard class
Clipboard (AWT)

Clipboard (AWT)
ClipboardOwner interface
ClipboardOwner Interface (AWT)

ClipboardOwner (AWT)
StringSelection class
StringSelection (AWT)

StringSelection (AWT)
clipping area : Graphics Methods (AWT)
clipRate() : Clipping (EXJ)
clipRect() : Graphics Methods (AWT)
clipRect() : Painting and Updating (EXJ)
clock applet : Threading Applets (EXJ)
clone()
Copying Objects (NUT)

Object (JLR)
BitSet class : BitSet (JFC)
BreakIterator class : BreakIterator (JFC)
Calendar class : Calendar (JFC)
CharacterIterator interface : CharacterIterator (JFC)
ChoiceFormat class : ChoiceFormat (JFC)
Cloneable interface : (Reference page) (NUT)
Collator class : Collator (JFC)
DateFormat class : DateFormat (JFC)
DateFormatSymbols class : DateFormatSymbols (JFC)
DecimalFormat class : DecimalFormat (JFC)
DecimalFormatSymbols class : DecimalFormatSymbols (JFC)
Format class : Format (JFC)
GregorianCalendar class : GregorianCalendar (JFC)
GridBagConstraints class : GridBagConstraints Methods (AWT)
Hashtable class : Hashtable (JFC)
ImageFilter class : ImageFilter Methods (AWT)
Insets class : Insets Methods (AWT)
Locale class : Locale (JFC)
MessageFormat class : MessageFormat (JFC)
NumberFormat class : NumberFormat (JFC)
Object class
Object (JFC)
(Reference page) (NUT)
RuleBasedCollator class : RuleBasedCollator (JFC)
SimpleDateFormat class : SimpleDateFormat (JFC)
SimpleTimeZone class : SimpleTimeZone (JFC)
StringCharacterIterator class : StringCharacterIterator (JFC)
TimeZone class : TimeZone (JFC)
Vector class : Vector (JFC)
Cloneable interface
Cloneable (JFC)
(Reference page) (NUT)
Cloneable (JLR)
CloneNotSupportedException
CloneNotSupportedException (JFC)
(Reference page) (NUT)
Other exceptions (JLR)
close() : (Reference page) (NUT)

BufferedReader class : BufferedReader (JFC)
BufferedWriter class
BufferedWriter (JFC)
(Reference page) (NUT)
CharArrayReader class : CharArrayReader (JFC)
CharArrayWriter class
CharArrayWriter (JFC)
(Reference page) (NUT)
DatagramSocket class
DatagramSocket (JFC)
(Reference page) (NUT)
DeflaterOutputStream class
DeflaterOutputStream (JFC)
(Reference page) (NUT)
FileInputStream class
FileInputStream (JFC)
(Reference page) (NUT)
FileOutputStream class
FileOutputStream (JFC)
(Reference page) (NUT)
FilterInputStream class
FilterInputStream and FilterReader (JFC)
FilterInputStream (JFC)
FilterOutputStream class
FilterOutputStream and FilterWriter (JFC)
FilterOutputStream (JFC)
FilterReader class : FilterReader (JFC)
FilterWriter class : FilterWriter (JFC)
GZIPInputStream class
GZIPInputStream (JFC)
(Reference page) (NUT)
GZIPOutputStream class
GZIPOutputStream (JFC)
(Reference page) (NUT)
InputStream class
InputStream (JFC)
(Reference page) (NUT)
InputStreamReader class : InputStreamReader (JFC)
ObjectInput interface : ObjectInput (JFC)
ObjectInputStream class : ObjectInputStream (JFC)

ObjectOutput interface : ObjectOutput (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
OutputStream class
OutputStream (JFC)
(Reference page) (NUT)
OutputStreamWriter class : OutputStreamWriter (JFC)
PipedInputStream class : PipedInputStream (JFC)
PipedOutputStream class : PipedOutputStream (JFC)
PipedReader class : PipedReader (JFC)
PipedWriter class : PipedWriter (JFC)
PrintStream class : PrintStream (JFC)
PrintWriter class
PrintWriter (JFC)
(Reference page) (NUT)
PushbackReader class : PushbackReader (JFC)
RandomAccessFile class
RandomAccessFile (JFC)
RandomAccessFile (JFC)
Reader class
Reader (JFC)
(Reference page) (NUT)
SequenceInputStream class : SequenceInputStream (JFC)
ServerSocket class : ServerSocket (JFC)
Socket class : Socket (JFC)
SocketImpl class : SocketImpl (JFC)
StringReader class : StringReader (JFC)
StringWrinter class : (Reference page) (NUT)
StringWriter class : StringWriter (JFC)
Writer class : Writer (JFC)
ZipFile class : ZipFile (JFC)
ZipInputStream class : ZipInputStream (JFC)
ZipOutputStream class
ZipOutputStream (JFC)
(Reference page) (NUT)
close()
Terminal I/O (EXJ)
File Streams (EXJ)
closeEntry() : (Reference page) (NUT)
ZipInputStream class : ZipInputStream (JFC)

ZipOutputStream class : ZipOutputStream (JFC)
closeNextEntry() : (Reference page) (NUT)
CODE attribute (<APPLET> tag)
Applet Changes (NUT)
Serialized Applets (NUT)
The <APPLET> Tag (NUT)
code attribute (<applet> tag)
Embedding an Applet in a Web Page (JLR)
Attributes (EXJ)
Loading Class Files (EXJ)
CODE parameter (<APPLET> tag) : The Applet Tag (AWT)
code stack size : java (NUT)
code, source
blocks
Statements (EXJ)
Static and Nonstatic Code Blocks (EXJ)
compilation units : Compilation Units (EXJ)
CODEBASE attribute (<APPLET> tag) : The <APPLET> Tag (NUT)
codebase attribute (<applet> tag)
Embedding an Applet in a Web Page (JLR)
Loading Class Files (EXJ)
CODEBASE parameter (<APPLET> tag) : The Applet Tag (AWT)
CollationElementIterator class
CollationElementIterator (JFC)
(Reference page) (NUT)
CollationKey class
The java.text Package (JFC)
CollationKey (JFC)
(Reference page) (NUT)
Collator class
The java.text Package (JFC)
The java.text Package (JFC)
Collator (JFC)
Handling Local Customs (NUT)
The java.text Package (NUT)
(Reference page) (NUT)
RuleBasedCollator class : (Reference page) (NUT)
collection classes : Vectors and Hashtables (EXJ)
Color() : Color Methods (AWT)

Color (class) : Color Commentary (EXJ)
ColorModel() : ColorModel Methods (AWT)
colors
Color (AWT)
Drawing Graphics (NUT)
Color Commentary (EXJ)
Colors
background
SystemColor Methods (AWT)
Component Methods (AWT)
highlighted text : SystemColor Methods (AWT)
images : Graphics Methods (AWT)
windows : SystemColor Methods (AWT)
caption
SystemColor Methods (AWT)
Color class
Color Methods (AWT)
Color (AWT)
(Reference page) (NUT)
color models
Color models (EXJ)
Image consumers (EXJ)
ColorModel class
ColorModel (AWT)
ColorModel (AWT)
The java.awt.image Package (NUT)
(Reference page) (NUT)
DirectColorModel class
DirectColorModel (AWT)
DirectColorModel (AWT)
(Reference page) (NUT)
encoding as image data : Color models (EXJ)
foreground
Graphics Methods (AWT)
Component Methods (AWT)
in images : Reading Applet Parameters (NUT)
IndexColorModel class
IndexColorModel (AWT)
IndexColorModel (AWT)

IndexColorModel interface : (Reference page) (NUT)
menus and : SystemColor Methods (AWT)
pop-up help and : SystemColor Methods (AWT)
predefined
Color Methods (AWT)
SystemColor (AWT)
Using Desktop Colors (AWT)
Static Members (EXJ)
as properties : Specifying Color Properties (NUT)
RGBImageFilter class
The java.awt.image Package (NUT)
(Reference page) (NUT)
separating : Filtering Image Data (EXJ)
SystemColor class
SystemColor (AWT)

SystemColor (AWT)
Miscellaneous Improvements (NUT)
(Reference page) (NUT)
XOR mode and : Graphics Methods (AWT)
columns (see alignment)
columnWeights[] variable : GridBagLayout Methods (AWT)
columnWidths[] variable : GridBagLayout Methods (AWT)
comma (,)
Operators (JLR)
The for Statement (JLR)
comma (,) operator
Operators (NUT)
The for Loop (NUT)
Operators (NUT)
comma (,) operator in C
Statements (EXJ)
Operators (EXJ)
command()
Compiler (JFC)
(Reference page) (NUT)
Compiler (JLR)
command-line arguments : Command-Line Arguments (NUT)
commands
appletviewer : appletviewer (NUT)

jdb : jdb (NUT)
commentChar()
StreamTokenizer (JFC)
(Reference page) (NUT)
comments
Comments (NUT)
Java Documentation Comment Syntax (NUT)
A "Hello World" Program (JLR)
Comments (JLR)
Documentation Comments (JLR)
Comments (EXJ)
communication (see java.net package)
compare()
CollationElementIterator class : (Reference page) (NUT)
Collator class
Collator (JFC)
(Reference page) (NUT)
RuleBasedCollator class : RuleBasedCollator (JFC)
compareTo()
String (JFC)
String (JLR)
BigDecimal class
BigDecimal (JFC)
(Reference page) (NUT)
BigInteger class
BigInteger (JFC)
(Reference page) (NUT)
CollationKey class
CollationKey (JFC)
(Reference page) (NUT)
String class
String (JFC)
(Reference page) (NUT)
compareTo() : Comparisons (EXJ)
comparing
colors : Color Methods (AWT)
comparison operators : Relational Comparison Operators (JLR)
dimensional sizes : Dimension Methods (AWT)
fonts : The Font Class (AWT)
hashtable data : Hashtables (JFC)

insets : Insets Methods (AWT)
menu shortcuts : MenuShortcut Methods (AWT)
MIME types : DataFlavor Methods (AWT)
objects for equality : Checking Objects for Equality (NUT)
points : Point Methods (AWT)
rectangles : Rectangle Methods (AWT)
strings
String (JFC)
Comparisons (EXJ)
URL objects : URL Objects (JFC)
compatibility, assignment
Integer types (JLR)
Floating-point types (JLR)
Assignment Compatibility (JLR)
compilation units
Compilation Units (JLR)
Compilation Units (EXJ)
Glossary (EXJ)
compileClass()
Compiler (JFC)
(Reference page) (NUT)
Compiler (JLR)
compileClasses()
Compiler (JFC)
(Reference page) (NUT)
Compiler (JLR)
Compiler class
Compiler (JFC)
(Reference page) (NUT)
Compiler (JLR)
compiler, Java (see javac)
compilers : Glossary (EXJ)
compiling conditionally : Conditional Compilation (NUT)
compiling Java source files : Compiling a Java Source File (JLR)
complete()
Calendar class : Calendar (JFC)
COMPLETE constant : MediaTracker Methods (AWT)
COMPLETESCANLINES constant : ImageConsumer Interface (AWT)
COMPLETESCANLINES property : Image consumers (EXJ)

compList program : Test Program (AWT)
Component() : Component Methods (AWT)
Component (class)
Relationships and Finger Pointing (EXJ)
Components (EXJ)
COMPONENT_ constants
ComponentEvent (AWT)
ContainerEvent (AWT)

ComponentAdapter class : ComponentAdapter (AWT)
ComponentAdapter interface : ComponentListener and ComponentAdapter (AWT)
componentAdded() : ContainerListener and ContainerAdapter (AWT)
ComponentEvent() : ComponentEvent (AWT)
ComponentEvent class
ComponentEvent (AWT)

ComponentEvent (AWT)
componentHidden() : ComponentListener and ComponentAdapter (AWT)
ComponentListener interface
ComponentListener and ComponentAdapter (AWT)

ComponentListener (AWT)
componentMoved()
Constants (AWT)
ComponentListener and ComponentAdapter (AWT)
componentRemoved() : ContainerListener and ContainerAdapter (AWT)
componentResized() : ComponentListener and ComponentAdapter (AWT)
components
Components (AWT)
Component (AWT)
CardLayout layout for
CardLayout (AWT)
CardLayout (AWT)
CardLayout (AWT)
Component class
Component Methods (AWT)
Component (AWT)
(Reference page) (NUT)
ComponentAdapter interface : (Reference page) (NUT)
ComponentEvent class : (Reference page) (NUT)
ComponentListener interface : (Reference page) (NUT)
ComponentPeer interface

ComponentPeer (AWT)
(Reference page) (NUT)
designing : Creating Your Own Component (AWT)
events for various : Components and Their Events (NUT)
handling events in : Component Events (AWT)
padding around : GridBagConstraints Methods (AWT)
peers for (see peers)
state of : Component Methods (AWT)
components, GUI
Components (EXJ)
Glossary (EXJ)
absolute positioning : Absolute Positioning? (EXJ)
checkboxes : Checkboxes and CheckboxGroups (EXJ)
dialogs : Dialogs (EXJ)
file-selection boxes : File Selection Dialog (EXJ)
menus : Menus and Choices (EXJ)
scrollbars : ScrollPane and Scrollbars (EXJ)
size of : Layout Managers (EXJ)
text : Text Components (EXJ)
updating : Painting and Updating (EXJ)
componentShown() : ComponentListener and ComponentAdapter (AWT)
composition
Variables (EXJ)
Glossary (EXJ)
compound assignment operators : Assignment Operators (JLR)
compressing files (see GZIP format; ZIP format)
compression (see data compression/decompression)
computeFields() : Calendar (JFC)
GregorianCalendar class : GregorianCalendar (JFC)
computeTime() : Calendar (JFC)
GregorianCalendar class : GregorianCalendar (JFC)
concat()
String (JFC)
String (JFC)
(Reference page) (NUT)
String (JLR)
concatenating strings
String (JFC)
String Concatenation (JFC)

concatenation (+) operator
Unicode and Character Escapes (NUT)
Operators (NUT)
Operators (NUT)
null (JLR)
String Concatenation Operator + (JLR)
Syntactic Sweet 'n Low (EXJ)
A Word About Strings (EXJ)
Operators (EXJ)
String Constructors (EXJ)
java.lang.StringBuffer (EXJ)
concurrency (see threads, synchronization)
conditional
AND (&&) operator : Operators (EXJ)
OR (||) operator : Operators (EXJ)
statements : Statements (EXJ)
ternary (?:) operator : Operators (EXJ)
conditional (?:) operator : Conditional Operator (JLR)
conditional AND (&&) operator : Boolean AND Operator && (JLR)
conditional compilation : Conditional Compilation (NUT)
conditional operators (see boolean operators)
conditional OR (||) operator : Boolean OR Operator || (JLR)
conditional statements
The if/else, while, and do/while Statements (NUT)
The if Statement (JLR)
connect()
PipedInputStream class
PipedInputStream and PipedReader (JFC)
PipedOutputStream and PipedWriter (JFC)
PipedInputStream (JFC)
(Reference page) (NUT)
PipedOutputStream class
PipedInputStream and PipedReader (JFC)
PipedOutputStream and PipedWriter (JFC)
PipedOutputStream (JFC)
(Reference page) (NUT)
PipedReader class : PipedReader (JFC)
PipedWriter class : PipedWriter (JFC)
SocketImpl class : SocketImpl (JFC)

URLConnection class : (Reference page) (NUT)
connect() : Pipes (EXJ)
connected (variable) : The URLConnection (EXJ)
ConnectException
ConnectException (JFC)
(Reference page) (NUT)
connection-oriented protocol : Sockets (EXJ)
connection-oriented protocols
Sockets (JFC)
Sockets for Connection-Oriented Protocols (JFC)
connectionless protocols
Sockets (JFC)
Sockets for Connectionless Protocols (JFC)
constained properties : Bean Basics (NUT)
constant colors : Colors
constants (see also under specific constant name)
Defining Constants (NUT)
Constants: Another Class Variable Example (NUT)
Static Members (EXJ)
alignment : Component Methods (AWT)
AWTEvent class : AWTEvent (AWT)
class literals : Class Literals (NUT)
constant expressions : Constant Expressions (JLR)
cursor shapes : Cursor Constants (AWT)
for each keyboard key : KeyEvent (AWT)
Event class : Constants (AWT)
for cursor shapes : Frame Constants (AWT)
integer : Integer types (JLR)
in interface definitions : Constants in Interfaces (NUT)
PI and E : java.lang.Math (EXJ)
predefined colors
Color Methods (AWT)
SystemColor (AWT)
Using Desktop Colors (AWT)
special floating-point : Floating-point types (JLR)
string (see strings)
Constructor class : Constructor (JFC)
constructors
Object Creation (NUT)

Object Creation (JLR)
Constructors (JLR)
Constructors (EXJ)
Object creation (EXJ)
Constructors (EXJ)
Using superclass constructors (EXJ)
Glossary (EXJ)
chaining
Constructor Chaining (NUT)
Constructor implementation (JLR)
Constructor : (Reference page) (NUT)
declaring : Defining a Constructor (NUT)
default
The Default Constructor (NUT)
The default constructor (JLR)
Method Overloading (EXJ)
File : File constructors (EXJ)
inheritance : Constructor inheritance (JLR)
multiple : Multiple Constructors (NUT)
overloaded : Working with Overloaded Constructors (EXJ)
selecting to invoke : Object Allocation Expressions (JLR)
string : String Constructors (EXJ)
subclass : Subclass Constructors (NUT)
super keyword and : super (JLR)
for threads : Associating a Method with a Thread (JLR)
constructors for threads : Associating a Method with a Thread (JFC)
consume()
AWTEvent class : AWTEvent (AWT)
InputEvent class
InputEvent (AWT)
(Reference page) (NUT)
KeyEvent class : (Reference page) (NUT)
consumer threads : The Message Passer (EXJ)
Container() : Container Methods (AWT)
Container (class)
Relationships and Finger Pointing (EXJ)
Containers (EXJ)
CONTAINER_ constants : ContainerEvent (AWT)

ContainerAdapter class : ContainerAdapter (AWT)

ContainerEvent() : ContainerEvent (AWT)

ContainerEvent class : ContainerEvent (AWT)

ContainerListener interface : ContainerListener (AWT)
containers
Containers (AWT)
Containers (AWT)
Containers (EXJ)
Glossary (EXJ)
Container class
Container (AWT)
Container (AWT)
(Reference page) (NUT)
ContainerAdapter class : (Reference page) (NUT)
ContainerAdapter interface : ContainerListener and ContainerAdapter (AWT)
ContainerEvent class
ContainerEvent (AWT)
(Reference page) (NUT)
ContainerListener interface
ContainerListener and ContainerAdapter (AWT)
(Reference page) (NUT)
ContainerPeer interface
ContainerPeer (AWT)
(Reference page) (NUT)
invalid : validate() and layout() (EXJ)
preferred size of : Layout Managers (EXJ)
contains() : java.util.Vector (EXJ)
Container class : Component Methods (AWT)
Hashtable class
Hashtables (JFC)
Hashtable (JFC)
Polygon class : Polygon Methods (AWT)
Rectangle class : Rectangle Methods (AWT)
Vector class : Vectors (JFC)
containsKey()
Hashtables (JFC)
Hashtable (JFC)
containsKey() : java.util.Hashtable (EXJ)
content handlers
New Kinds of Applications (EXJ)

Web Browsers and Handlers (EXJ)
Glossary (EXJ)
content types
DataFlavor (AWT)

DataFlavor (AWT)
content()
URLConnection class : URLConnection (JFC)
ContentHandler (class) : The ContentHandler class (EXJ)
ContentHandler class
ContentHandler (JFC)
(Reference page) (NUT)
ContentHandlerFactory (object) : Using our new handler (EXJ)
ContentHandlerFactory interface
ContentHandlerFactory (JFC)
(Reference page) (NUT)
continue statement
Labelled break and continue Statements (NUT)
The for Statement (JLR)
The continue Statement (JLR)
continue statements
Statements (EXJ)
The finally Clause (EXJ)
ContinuousAudioDataStream class : ContinuousAudioDataStream (AWT)
control color : SystemColor Methods (AWT)
Control key (see modifiers)
controlDkShadow color : SystemColor Methods (AWT)
controlDown()
Event Methods (AWT)
Key and Modifier Constants (NUT)
controlHighlight color : SystemColor Methods (AWT)
controlLtHighlight color : SystemColor Methods (AWT)
controlShadow color : SystemColor Methods (AWT)
controlText color : SystemColor Methods (AWT)
conversion
double to integer : java.lang.Math (EXJ)
MIME types to package/class names : Locating Content Handlers (EXJ)
protocols into package/class names : Locating Protocol Handlers (EXJ)
rectangular and polar coordinates : java.lang.Math (EXJ)
to and from strings : Strings from Things (EXJ)

converting
CharConversionException : CharConversionException (JFC)
colors formats (RGB/HSB) : Color Methods (AWT)
data types
Integer types (JLR)
Casts (JLR)
images to pixels : PixelGrabber (AWT)
programs to Unicode : Conversion to Unicode (JLR)
converting source code to ASCII : native2ascii (NUT)
coordinates (see also points)
coordinate system (see graphics)
of events : Variables (AWT)
GridBagLayout components : GridBagConstraints Methods (AWT)
mouse event : MouseEvent (AWT)
rectangular and polar : java.lang.Math (EXJ)
system of : Drawing Methods (EXJ)
copy() : Data Transfer with Cut-and-Paste (NUT)
copyArea() : Graphics Methods (AWT)
copying
Copying Objects (NUT)
copyright (Applet information) : Reading Applet Parameters (NUT)
copyValueOf()
String (JFC)
String (JLR)
CornerLayout layout (example) : A New LayoutManager: CornerLayout (AWT)
corners, rounded : Graphics Methods (AWT)
cos()
Math (JFC)
Math (JLR)
java.lang.Math (EXJ)
cosine : java.lang.Math (EXJ)
countComponents() : Container Methods (AWT)
countItems()
Choice component : Component Methods (AWT)
List component : List Methods (AWT)
Menu class : Menu Methods (AWT)
countMenus() : MenuBar Methods (AWT)
countObservers() : Observable (JFC)
countStackFrames()

Thread (JFC)
Thread (JLR)
countTokens() : (Reference page) (NUT)
StringTokenizer class : StringTokenizer (JFC)
countTokens() : java.util.StringTokenizer (EXJ)
CRC32 class
CRC32 (JFC)
The java.util.zip Package (NUT)
(Reference page) (NUT)
create()
Graphics Methods (AWT)
(Reference page) (NUT)
SocketImpl class : SocketImpl (JFC)
createButton() : Peers (EXJ)
createContentHandler() : ContentHandlerFactory (JFC)
createImage()
(Reference page) (NUT)
The java.awt.image Package (NUT)
Component class
Graphics Methods (AWT)
Component Methods (AWT)
Toolkit class : Toolkit Methods (AWT)
critical section
Single-Threaded Execution (JFC)
Single-Threaded Execution
critical sections of code : The synchronized Statement (NUT)
CropImageFilter class
The java.awt.image Package (NUT)
(Reference page) (NUT)
cropping images : Graphics Methods (AWT)
CropImageFilter class
CropImageFilter (AWT)
CropImageFilter (AWT)
crypt : The crypt Handler (EXJ)
cryptography : Signing Classes (EXJ)
-cs option (java) : The Java Interpreter (EXJ)
CTRL key (see modifiers)
curly braces (see braces)
current() : BreakIterator (JFC)

BreakIterator class : (Reference page) (NUT)
CharacterIterator interface
CharacterIterator (JFC)
(Reference page) (NUT)
StringCharacterIterator class : StringCharacterIterator (JFC)
currentClassLoader()
SecurityManager (JFC)
SecurityManager (JLR)
currentLoadedClass()
SecurityManager (JFC)
SecurityManager (JLR)
currentThread()
Using Thread Objects (JFC)
Using Thread Objects (JLR)
Thread (JLR)
Thread class : Thread (JFC)
currentTimeMillis()
System (JFC)
(Reference page) (NUT)
System (JLR)
Cursor() : Cursor Methods (AWT)
Cursor class
Miscellaneous Improvements (NUT)
(Reference page) (NUT)
cursors
components and : Component Methods (AWT)
Cursor class
Cursor (AWT)

Cursor (AWT)
Frame class constants for : Frame Constants (AWT)
Customizer interface
Defining a Bean Customizer (NUT)
(Reference page) (NUT)
customizing system property values : Working with System Properties (NUT)
customs, local : Handling Local Customs (NUT)
cut() : Data Transfer with Cut-and-Paste (NUT)
cut and paste
Cut-and-Paste (NUT)
Data Transfer with Cut-and-Paste (NUT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

D
-D option, java
System Properties (JFC)
The Java Compiler (EXJ)
daemon threads
Daemon threads (JFC)
Daemon threads (JLR)
darker()
Color Methods (AWT)
(Reference page) (NUT)
dash (-) : Locating Content Handlers (EXJ)
data
Data Transfer (AWT)
buffers : Buffered streams (EXJ)
copying : Copying Objects (NUT)
DataFlavor class
DataFlavor (AWT)

DataFlavor (AWT)
Cut-and-Paste (NUT)
DataFormatException : (Reference page) (NUT)
DataInput interface : (Reference page) (NUT)
DataInputStream class
The UTF-8 Encoding (NUT)
The java.io Package (NUT)
(Reference page) (NUT)
DataOutput class : (Reference page) (NUT)
DataOutputStream class
The UTF-8 Encoding (NUT)
The java.io Package (NUT)
(Reference page) (NUT)
DataTransfer class : (Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2

fields : Accessing Object Data (NUT)
hiding (see encapsulation)
streams : Streams (EXJ)
Transferable interface
Transferable Interface (AWT)

Transferable (AWT)
types (see types)
data compression/decompression : The java.util.zip Package (JFC)
data types
The java.lang Package (JFC)
URL Objects (JFC)
Robust (NUT)
Data Types (JLR)
Variable type (JLR)
assignment compatibility : Assignment Compatibility (JLR)
cast operations : Casts (JLR)
Class objects for : Class Literals (NUT)
comparing with instanceof operator : The instanceof Operator (JLR)
concatentation (+) operator and : String Concatenation (JFC)
DataInput interface : DataInput (JFC)
DataOutput interface : DataOutput (JFC)
of expressions : Data Type of an Expression (JLR)
interfaces : Interfaces (NUT)
local variables : Local variable type (JLR)
for positive/negative infinity : Floating-Point Types (NUT)
primitive
Primitive Data Types (NUT)
The boolean Type (NUT)
The char Type (NUT)
Integral Types (NUT)
Floating-Point Types (NUT)
null (NUT)
Unicode (NUT)
Primitive Data Types (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_02.htm#JAWT-CH-16-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_08.htm#JFC-CH-1-SECT-8
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch04_15.htm#JLR2-CH-4-SECT-15

(Reference page) (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
reference : Reference Data Types (NUT)
structures and unions (in C) : No Structures or Unions (NUT)
system properties and : System Properties (JFC)
DataFlavor() : DataFlavor Methods (AWT)
DataFlavor class : Data Transfer with Cut-and-Paste (NUT)
DataFormatException : DataFormatException (JFC)
datagram sockets : Datagram Sockets (EXJ)
DatagramPacket class
Sockets for Connectionless Protocols (JFC)
DatagramPacket (JFC)
The java.net Package (NUT)
(Reference page) (NUT)
datagrams : Glossary (EXJ)
DatagramSocket class
Sockets for Connectionless Protocols (JFC)
DatagramSocket (JFC)
(Reference page) (NUT)
DatagramSocketImpl class : (Reference page) (NUT)
DataInput interface
DataInput (JFC)
DataInputStream (class)
Streams (EXJ)
Data streams (EXJ)
DataInputStream class
DataInputStream (JFC)
DataInputStream (JFC)
DataOutput interface
DataOutput (JFC)
DataOutputStream (class)
Streams (EXJ)
Data streams (EXJ)
DataOutputStream class
DataOutputStream (JFC)
DataOutputStream (JFC)
date (see time and date)
date and time

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM

Calendar class : Calendar (JFC)
Date class : Date (JFC)
DateFormat class
The java.text Package (JFC)
DateFormat (JFC)
DateFormatSymbols class : DateFormatSymbols (JFC)
GregorianCalendar class : GregorianCalendar (JFC)
SimpleDateFormat class : SimpleDateFormat (JFC)
SimpleTimeZone class : SimpleTimeZone (JFC)
TimeZone class : TimeZone (JFC)
Date class
The java.util Package (NUT)
(Reference page) (NUT)
DateAtHost client : The DateAtHost Client (EXJ)
DateFormat class
Handling Local Customs (NUT)
The java.text Package (NUT)
(Reference page) (NUT)
DateFormatSymbols class : (Reference page) (NUT)
dates and times : The DateAtHost Client (EXJ)
deallocating memory (see allocating memory; garbage collection)
Dynamic Memory Management (EXJ)
debugging : Syntactic Sweet 'n Low (EXJ)
debugging by overriding event handlers : Basic Event Handlers (AWT)
debugging Java (see jdb)
decimal integers : Integer literals (EXJ)
decimal literals
Integer literals (JLR)
DecimalFormat class
DecimalFormat (JFC)
(Reference page) (NUT)
DecimalFormatSymbols class : DecimalFormatSymbols (JFC)
DecimnalFormatSymbols class : (Reference page) (NUT)
declaring
array variables/arguments : Declaring Array Variables and Arguments (NUT)
arrays : Arrays (EXJ)
classes
Class Declarations (JLR)
Glossary (EXJ)

constructors : Defining a Constructor (NUT)
exceptions
Declaring Exceptions (NUT)
Declaring Exceptions (JLR)
interfaces : Interface Declarations (JLR)
lexical scope : Lexical Scope of Declarations (JLR)
local classes : Local Classes (JLR)
local variables
Local Variable Declarations (NUT)
Local Variable Initialization (EXJ)
methods
Methods (JLR)
Interface Methods (JLR)
Classes (EXJ)
variables
Objects Are Instances of a Class (NUT)
Variables (JLR)
Variables (EXJ)
Declaration and initialization (EXJ)
Statements (EXJ)
Classes (EXJ)
declaring exceptions : Declaring Exceptions (JFC)
decode()
Byte()
Byte (JFC)
Byte (JLR)
Byte class : (Reference page) (NUT)
Color class : Color Methods (AWT)
Font class : The Font Class (AWT)
Integer class
Integer (JFC)
(Reference page) (NUT)
Integer (JLR)
Short class
Short (JFC)
(Reference page) (NUT)
Short (JLR)
decompressing files (see java.util.zip package)
decompression (see data compression/decompression)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_02.htm#JLR2-CH-9-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_02.htm#JFC-CH-4-SECT-2

decrement (- -) operator
Field Expressions (JLR)
Increment/Decrement Operators (JLR)
decrement (- -) operator : Operators (EXJ)
de-emphasizing with color
Color Methods (AWT)
SystemColor Methods (AWT)
Displaying Colors (AWT)
default
array values : Array Creation and Initialization (EXJ)
case expression : Statements (EXJ)
class path : The Class Path (EXJ)
constructors
Object Creation (NUT)
Defining a Constructor (NUT)
The Default Constructor (NUT)
Method Overloading (EXJ)
Constructors (EXJ)
coordinate system : Drawing Methods (EXJ)
locale : A Word About Locales (NUT)
property values : Default Values (EXJ)
values for instance variables : Instance Variables (EXJ)
variable values
Primitive Data Types (NUT)
Declaration and initialization (EXJ)
default constructor : The default constructor (JLR)
default label (switch) : The switch Statement (NUT)
defaultReadObject()
Writing Classes to Work with Serialization (JFC)
Versioning of Classes (JFC)
Custom Serialization (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
ObjectInputStream class : ObjectInputStream (JFC)
defaultWriteObject()
Writing Classes to Work with Serialization (JFC)
Versioning of Classes (JFC)
ObjectOutputStream class
ObjectOutputStream (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch03_05.htm#JAWT-CH-3-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch09_02.htm#JNUT2-CH-9-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2

(Reference page) (NUT)
(Reference page) (NUT)
#define directive
No Preprocessor (NUT)
Constants: Another Class Variable Example (NUT)
#define statements : Syntactic Sweet 'n Low (EXJ)
defineClass()
ClassLoader (JFC)
ClassLoader (JLR)
deflate() : (Reference page) (NUT)
Deflater class : Deflater (JFC)
DeflaterOutputStream class : DeflaterOutputStream (JFC)
Deflater class
Deflater (JFC)
The java.util.zip Package (NUT)
(Reference page) (NUT)
DeflaterOutputStream class
DeflaterOutputStream (JFC)
The java.util.zip Package (NUT)
(Reference page) (NUT)
delegation model for event handling : The Java 1.1 Event Model (AWT)
delete()
File (JFC)
(Reference page) (NUT)
File class : File (JFC)
delete keyword (in C) (see garbage collection)
delete() : File methods (EXJ)
deleteMenuShortcut() : MenuItem Methods (AWT)
deleteObserver() : Observable (JFC)
deleteObservers() : Observable (JFC)
deleteShortcut() : MenuBar Methods (AWT)
deleting
applets : Applet Methods (AWT)
Graphics objects
Graphics Methods (AWT)
ImageConsumers (see removeConsumer())
layout components (see removeLayoutComponent())
listener interfaces
AWTEventMulticaster (AWT)

menu shortcuts
MenuItem Methods (AWT)
MenuBar Methods (AWT)
objects from MediaTracker : MediaTracker Methods (AWT)
peers (see removeNotify())
delItem() : List Methods (AWT)
delItems() : List Methods (AWT)
deliverEvent() : Identifying the Target (AWT)
Component class : Component Events (AWT)
Container class : Container Methods (AWT)
denial-of-service attacks : Denial of Service Attacks (NUT)
@deprecated tag (javadoc) : Documentation Comments (JLR)
Deprecated: doc comment tag : Java Documentation Comment Syntax (NUT)
depreciated features : Deprecated Features (NUT)
dereference (&) operator in C : Operators (EXJ)
descent (for fonts) : Font Metrics (EXJ)
descent, font : The FontMetrics Class (AWT)
deselect() : List Methods (AWT)
DESELECTED constant : ItemEvent (AWT)
deserialization (see object serialization)
design patterns, JavaBeans : Naming Patterns and Conventions (NUT)
desktop colors (see SystemColor class)
destroy()
Applet Methods (AWT)
External Program Execution (JFC)
Introduction to Applets (NUT)
Applet class
(Reference page) (NUT)
Applets (JLR)
Process class
Process (JFC)
(Reference page) (NUT)
Process (JLR)
Thread class
Thread (JFC)
Thread (JLR)
ThreadGroup class
ThreadGroup (JFC)
ThreadGroup (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_15.htm#JLR2-CH-10-SECT-15

WindowEvent class : (Reference page) (NUT)
destroy()
Threading Applets (EXJ)
Applet Control (EXJ)
destroying objects (see garbage collection)
Object Destruction (EXJ)
destruction, object (see garbage collection)
Dialog() : Dialog Constructors and Methods (AWT)
dialog boxes
Dialog class : (Reference page) (NUT)
DialogPeer interface : (Reference page) (NUT)
FileDialog : (Reference page) (NUT)
FileDialogPeer interface : (Reference page) (NUT)
dialogs
Dialog and FileDialog (AWT)
Dialogs (AWT)
Dialogs (EXJ)
Dialog class
Dialogs (AWT)
Dialog (AWT)
DialogPeer interface : DialogPeer (AWT)
for files (see FileDialog class)
Dictionary class
Hashtables (JFC)
Dictionary (JFC)
(Reference page) (NUT)
java.util.Dictionary (EXJ)
Digit characters : Conversion to Unicode (JLR)
digit()
Character (JFC)
(Reference page) (NUT)
Character (JLR)
digital signatures
Secure (NUT)
Applet Changes (NUT)
Signed Applets (NUT)
javakey (NUT)
Signing Classes (EXJ)
Dimension() : Dimension Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm#EXJ-CH-5-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_18.htm#JAWT-CH-19-REF-DIALOG

Dimension class
Dimension (AWT)
Dimension (AWT)
(Reference page) (NUT)
dimensions (see size)
direct color models : Color models (EXJ)
DirectColorModel() : DirectColorModel (AWT)
DirectColorModel class
DirectColorModel (AWT)
DirectColorModel (AWT)
(Reference page) (NUT)
directories (see files)
creating : File methods (EXJ)
getting information about : File methods (EXJ)
listing files of : File methods (EXJ)
renaming : File methods (EXJ)
directories, managing : (Reference page) (NUT)
disable()
Compiler (JFC)
Compiler (JLR)
Compiler class : (Reference page) (NUT)
Component class : (Reference page) (NUT)
Container class : Component Methods (AWT)
MenuItem class
MenuItem Methods (AWT)
(Reference page) (NUT)
disableEvents()
Component class : Component Events (AWT)
MenuItem class : MenuItem Events (AWT)
disabling LayoutManager : Disabling the LayoutManager (AWT)
disconnect()
HttpURLConnection (JFC)
(Reference page) (NUT)
dispatchEvent() : MenuComponent Methods (AWT)
dispose() : Printing (NUT)
Dialog class : (Reference page) (NUT)
Frame class
Frame Methods (AWT)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_19.htm#JAWT-CH-19-REF-DIMENSION
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm#JNUT2-CH-8-SECT-3

Graphics class
Graphics Methods (AWT)
(Reference page) (NUT)
PrintJob class : (Reference page) (NUT)
Window class : Window Methods (AWT)
dispose()
Menus and Choices (EXJ)
Double Buffering (EXJ)
distributed languages : Dynamic and Distributed (NUT)
divide()
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
divideAndRemainder() : BigInteger (JFC)
dividing by zero : Division Operator / (JLR)
division (/) operator : Operators (EXJ)
division (/) operator, binary : Division Operator / (JLR)
division by zero : Integral Types (NUT)
do statement
The do Statement (JLR)
do-while statements : Statements (EXJ)
do/while statement : The if/else, while, and do/while Statements (NUT)
doc comments
Comments (NUT)
Java Documentation Comment Syntax (NUT)
Comments (EXJ)
documentation (see help)
Related Books (JLR)
documentation comments
Comments (JLR)
Documentation Comments (JLR)
doLayout()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
ScrollPane container : ScrollPane Methods (AWT)
domain names : Packages (JLR)
dontUseGui() : (Reference page) (NUT)
dot (.)
accessing objects with : Accessing Objects (NUT)
as field access operator : Operators (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch00_03.htm#JLR2-PREFACE-SECT-3

in fully qualified names : No Global Variables (NUT)
dot (.) notation
Variable access (EXJ)
Accessing Members (EXJ)
Double() : Double (JFC)
double (type)
Primitive Types (EXJ)
Floating-point literals (EXJ)
Glossary (EXJ)
converting to integer : java.lang.Math (EXJ)
double buffering
Double Buffering (AWT)
Double Buffering (EXJ)
Double class
Double (JFC)
(Reference page) (NUT)
Floating-point types (JLR)
Double (JLR)
double data type
Floating-Point Types (NUT)
(Reference page) (NUT)
Floating-point literals (JLR)
Floating-point types (JLR)
double-precision numbers (see floating-point data types)
doubleToLongBits()
Double (JFC)
(Reference page) (NUT)
Double (JLR)
doubleValue() : Byte (JFC)
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
Byte class : Byte (JLR)
Double class
Double (JFC)
Double (JLR)
Float class
Float (JFC)
Float (JLR)
Integer class

Integer (JFC)
Integer (JLR)
Long class
Long (JFC)
Long (JLR)
Number class
Number (JFC)
Number (JLR)
Short class
Short (JFC)
Short (JLR)
doubleValue() : Wrappers for Primitive Types (EXJ)
drain()
ObjectOutputStream class : ObjectOutputStream (JFC)
draw3DRect() : Graphics Methods (AWT)
draw3DRect() : Drawing Methods (EXJ)
drawArc() : Graphics Methods (AWT)
drawArc() : Drawing Methods (EXJ)
drawBytes() : Graphics Methods (AWT)
drawChars() : Graphics Methods (AWT)
drawImage()
Graphics Methods (AWT)
Miscellaneous Improvements (NUT)
drawImage() : The Image Class (EXJ)
drawing (see graphics)
drawLine() : Graphics Methods (AWT)
drawLine() : Drawing Methods (EXJ)
drawOval() : Graphics Methods (AWT)
drawOval() : Drawing Methods (EXJ)
drawPolygon()
Graphics Methods (AWT)
(Reference page) (NUT)
drawPolygon() : Drawing Methods (EXJ)
drawPolyline() : Graphics Methods (AWT)
drawPolyline() : Drawing Methods (EXJ)
drawRect() : Graphics Methods (AWT)
drawRect() : Drawing Methods (EXJ)
drawRoundRect() : Graphics Methods (AWT)
drawRoundRect() : Drawing Methods (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.1

drawString() : Graphics Methods (AWT)
drawString()
The paint() Method (EXJ)
Fonts (EXJ)
Font Metrics (EXJ)
dropdown lists : (Reference page) (NUT)
dumpStack()
Thread (JFC)
Thread (JLR)
dynamic allocation
Reference Types (JLR)
Object-Orientation Java Style (JLR)
dynamic binding : Overridden methods and dynamic binding (EXJ)
dynamic languages : Dynamic and Distributed (NUT)
dynamic method lookup
Dynamic Method Lookup (NUT)
Method Call Expression (JLR)
dynamically loaded classes : ClassLoader (JFC)
DynamicFilter class (example) : ImageFilter Methods (AWT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

E
E (value) : java.lang.Math (EXJ)
echo command : Command-Line Arguments (NUT)
echoCharIsSet() : TextField Methods (AWT)
echoing characters : TextField Methods (AWT)
echoing text : (Reference page) (NUT)
editing strings : Editing (EXJ)
Editor (object) : File Selection Dialog (EXJ)
elementAt() : Vectors (JFC)
elementAt() : java.util.Vector (EXJ)
elements()
Dictionary class : Dictionary (JFC)
Hashtable class
Hashtables (JFC)
Hashtable (JFC)
(Reference page) (NUT)
Vector class : (Reference page) (NUT)
elements()
java.util.Enumeration (EXJ)
java.util.Hashtable (EXJ)
elements, array (see arrays)
else clause (see if statement)
embeddable applications (see applets)
embedding applets in Web pages : Embedding an Applet in a Web Page (JLR)
empty() : Stacks (JFC)
Stack class : Stack (JFC)
empty statements : The Empty Statement (JLR)
empty string
String (JFC)
String (JLR)
EmptyStackException

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_03.htm#JFC-CH-5-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_22.htm#JFC-CH-17-REF-STACK
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_03.htm#JLR2-CH-6-SECT-3

Stacks (JFC)
EmptyStackException (JFC)
(Reference page) (NUT)
enable()
Compiler (JFC)
Compiler (JLR)
Compiler class : (Reference page) (NUT)
Component class : (Reference page) (NUT)
Container class : Component Methods (AWT)
MenuItem class
MenuItem Methods (AWT)
(Reference page) (NUT)
enableEvents() : Inside the Java 1.1 Event Model (NUT)
AWTEvent class : (Reference page) (NUT)
Component class : Component Events (AWT)
MenuItem class : MenuItem Events (AWT)
enableReplaceObject()
ObjectOutputStream class : ObjectOutputStream (JFC)
enableResolveObject()
ObjectInputStream class : ObjectInputStream (JFC)
encapsulation
A Scribble Applet (NUT)
Data Hiding and Encapsulation (NUT)
Encapsulation (JLR)
Safety of Implementation (EXJ)
Variable and Method Visibility (EXJ)
Glossary (EXJ)
enclosing instance : Member classes (JLR)
encode()
URLEncoder class : URLEncoder (JFC)
encoding
color image data : Color models (EXJ)
ISO10646 : Glossary (EXJ)
ISO8859-1 : Glossary (EXJ)
text : Text Encoding (EXJ)
UnsupportedEncodingException : UnsupportedEncodingException (JFC)
UTF-8 : Glossary (EXJ)
UTF-8 encoding : The UTF-8 Encoding (JFC)
Encryption (class) : The Encryption class (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_03.htm#JFC-CH-5-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_05.htm#JFC-CH-17-REF-EMPTYSTACKEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm#EXJ-CH-5-SECT-7
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_66.htm#JFC-CH-11-REF-UNSUPPORTEDENCODINGEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/appb_01.htm#JFC-APP-B

end() : Methods (AWT)
Deflater class : Deflater (JFC)
Inflater class : Inflater (JFC)
PrintJob class
Printing (NUT)
(Reference page) (NUT)
end-of-line characters : Division of the Input Stream into Lines (JLR)
endsWith()
String (JFC)
String (JFC)
(Reference page) (NUT)
String (JLR)
endsWith() : Searching (EXJ)
ensureCapacity()
StringBuffer (JFC)
StringBuffer (JLR)
entries()
ZipFile (JFC)
(Reference page) (NUT)
enum keyword (in C) : No Enumerated Types (NUT)
enumerate()
Thread class
Thread (JFC)
Thread (JLR)
ThreadGroup class
ThreadGroup (JFC)
ThreadGroup (JLR)
Enumeration interface
Enumerations (JFC)
Enumeration (JFC)
The java.util Package (NUT)
(Reference page) (NUT)
java.util.StringTokenizer (EXJ)
java.util.Enumeration (EXJ)
environment information
System Properties (JFC)
System Properties (EXJ)
CLASSPATH : The Class Path (EXJ)
environment variables
Environment Variables (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_02.htm#JAWT-CH-17-SECT-2.2
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm#JNUT2-CH-8-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_01.htm#JFC-CH-5-SECT-1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_06.htm#JFC-CH-17-REF-ENUMERATION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_03.htm#JFC-CH-10-SECT-3

EOFException
EOFException (JFC)
(Reference page) (NUT)
java.io.RandomAccessFile (EXJ)
eolIsSignificant()
StreamTokenizer (JFC)
(Reference page) (NUT)
equal-to (= =) operator : Equal-To Operator == (JLR)
equality (see comparing)
checking objects for : Checking Objects for Equality (NUT)
equality (=) operator : Operators (EXJ)
equality operators : Equality Comparison Operators (JLR)
equals()
Checking Objects for Equality (NUT)
The Object and Class Classes (EXJ)
Comparisons (EXJ)
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
BitSet class : BitSet (JFC)
Boolean class
Boolean (JFC)
Boolean (JLR)
Byte class
Byte (JFC)
Byte (JLR)
Calendar class : Calendar (JFC)
Character class
Character (JFC)
Character (JLR)
ChoiceFormat class : ChoiceFormat (JFC)
CollationKey class : CollationKey (JFC)
Collator class
Collator (JFC)
(Reference page) (NUT)
Color class : Color Methods (AWT)
Constructor class : Constructor (JFC)
of data flavors (MIME types) : DataFlavor Methods (AWT)
Date class : Date (JFC)
DateFormat class : DateFormat (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_14.htm#JFC-CH-11-REF-EOFEXCEPTION

DateFormatSymbols class : DateFormatSymbols (JFC)
DecimalFormat class : DecimalFormat (JFC)
DecimalFormatSymbols class : DecimalFormatSymbols (JFC)
Dimension class : Dimension Methods (AWT)
Double class
Double (JFC)
Double (JLR)
equalsIgnoreCase() : String (JFC)
Field class : Field (JFC)
File class : File (JFC)
Font class : The Font Class (AWT)
GregorianCalendar class : GregorianCalendar (JFC)
Hashtable class : Hashtables (JFC)
InetAddress class : InetAddress (JFC)
Insets class : Insets Methods (AWT)
Integer class
Integer (JFC)
Integer (JLR)
Locale class : Locale (JFC)
Long class
Long (JFC)
Long (JLR)
MenuShortcut class : MenuShortcut Methods (AWT)
MessageFormat class : MessageFormat (JFC)
Method class : Method (JFC)
Object class
Object (JFC)
(Reference page) (NUT)
The instanceof Operator (JLR)
Object (JLR)
Point class : Point Methods (AWT)
Rectangle class : Rectangle Methods (AWT)
RuleBasedCollator class : RuleBasedCollator (JFC)
Short class
Short (JFC)
Short (JLR)
SimpleDateFormat class : SimpleDateFormat (JFC)
SimpleTimeZone class : SimpleTimeZone (JFC)
String class

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm#JFC-CH-13-REF-METHOD

String (JFC)
String (JFC)
String (JLR)
StringCharacterIterator class : StringCharacterIterator (JFC)
URL class : URL (JFC)
equalsIgnoreCase()
String (JFC)
(Reference page) (NUT)
String (JLR)
equalsIgnoreCase() : Comparisons (EXJ)
equsl()
NumberFormat class : NumberFormat (JFC)
err (see System.err)
err variable
System (JFC)
System (JLR)
ERROR (variable) : Implementing an ImageObserver (EXJ)
Error class
The java.lang Package (NUT)
(Reference page) (NUT)
ERROR constant : ImageObserver Interface (AWT)
error messages
internationalizing : Localizing User-Visible Messages (NUT)
ERRORED constant : MediaTracker Methods (AWT)
errors
AWTError (AWT)
Errors (JLR)
Error class
The java.lang Package (JFC)
Declaring Exceptions (JFC)
Error (JFC)
Declaring Exceptions (JLR)
The Exception Hierarchy (JLR)
Errors (JLR)
FileDialog class and Navigator : FileDialog (AWT)
multimedia : MediaTracker Methods (AWT)
PrintWriter class for : PrintWriter and PrintStream (JFC)
standard error : I/O (JFC)
when loading images : MediaTracker Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_02.htm#JFC-CH-4-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_02.htm#JLR2-CH-9-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_01.htm#JFC-CH-10-SECT-1

errors and exceptions
Error Handling (EXJ)
Exceptions (EXJ)
Statements (EXJ)
Exceptions (EXJ)
Glossary (EXJ)
ArithmeticException : Math Utilities (EXJ)
ArrayIndexOutOfBoundsException : Using Arrays (EXJ)
ArrayStoreException : Inside Arrays (EXJ)
ClassCastException
Casting (EXJ)
java.util.Vector (EXJ)
Getting the Content as an Object (EXJ)
compile time errors : Statements (EXJ)
EOFException : java.io.RandomAccessFile (EXJ)
error classes : Exceptions and Error Classes (EXJ)
FileNotFoundException
File Streams (EXJ)
Taming the daemon (EXJ)
IllegalAccessException : java.lang.Class (EXJ)
InstantiationException : java.lang.Class (EXJ)
InterruptedException
Exceptions (EXJ)
Controlling Threads (EXJ)
IOException
Terminal I/O (EXJ)
Print streams (EXJ)
File Streams (EXJ)
java.io.RandomAccessFile (EXJ)
Clients (EXJ)
HeartBeat (EXJ)
Getting the Content as an Object (EXJ)
MalformedURLException : The URL class (EXJ)
NullPointerException
Variables (EXJ)
null (EXJ)
NumberFormatException : Wrappers for Primitive Types (EXJ)
OutOfMemoryException : Glossary (EXJ)
overridden methods and : Exceptions and overridden methods (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.2
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2.1.1

ParseException (invented) : Buffered streams (EXJ)
runtime exceptions : The throws Clause and checked Exceptions
SecurityException : The Security Manager (EXJ)
throwing exceptions on purpose : Throwing Exceptions (EXJ)
UnknownHostException
Clients (EXJ)
HeartBeat (EXJ)
UnknownServiceException : Stream Data (EXJ)
escape sequences
Character Escape Sequences (NUT)
Text Encoding (EXJ)
EscapedSourceCharacter sequence
Conversion to Unicode (JLR)
Character literals (JLR)
escapes (see character escapes)
evaluation, order of
Statements and Expressions (EXJ)
Operators (EXJ)
Event() : Event Methods (AWT)
EventQueue() : Using an event multicaster (AWT)
events
New Features of AWT in Java 1.1 (AWT)
Events (AWT)
Events (AWT)
The New AWT Event Model (NUT)
Handling Events (NUT)
Events (EXJ)
Glossary (EXJ)
ActionEvent class : (Reference page) (NUT)
AdjustmentEvent class : (Reference page) (NUT)
AWT event model : The New AWT Event Model (NUT)
AWTEvent class
The Java 1.1 Event Model (NUT)
(Reference page) (NUT)
AWTEventMulticaster class : (Reference page) (NUT)
checkbox : Checkbox Events (AWT)
by component : Components and Their Events (NUT)
ComponentEvent class : (Reference page) (NUT)
components and : Component Events (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2.1.1
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch06_04.htm#JNUT2-CH-6-SECT-4

ContainerEvent class : (Reference page) (NUT)
containers and : Container Methods (AWT)
custom, beans and
Bean Basics (NUT)
Custom Events (NUT)
Event class
The Event Class (AWT)
Event (AWT)
The Java 1.0 Event Model (NUT)
(Reference page) (NUT)
event methods : Event Methods (AWT)
event multicasters
AWTEventMulticaster (AWT)

AWTEventMulticaster (AWT)
event queue
The Java 1.1 Event Model (AWT)
Using an event multicaster (AWT)
Toolkit Methods (AWT)

EventQueue (AWT)
event triggers : Event Triggers (AWT)
event types : The Java 1.1 Event Model (AWT)
EventListener : (Reference page) (NUT)
EventListener interface : EventListener (JFC)
EventObject class
EventObject (JFC)
The Java 1.1 Event Model (NUT)
(Reference page) (NUT)
EventQueue class
The Java 1.1 Event Model (AWT)
Using an event multicaster (AWT)

EventQueue (AWT)
(Reference page) (NUT)
EventSetDescriptor class : (Reference page) (NUT)
FileDialog class and : Constants (AWT)
focus (see focus events)
FocusEvent class : (Reference page) (NUT)
frames and : Frame Events (AWT)
handlers
Dealing With Events (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_20.htm#JAWT-CH-19-REF-EVENT
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_21.htm#JAWT-CH-19-REF-EVENTQUEUE
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_21.htm#JAWT-CH-19-REF-EVENTQUEUE
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_21.htm#JAWT-CH-19-REF-EVENTQUEUE
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_07.htm#JFC-CH-17-REF-EVENTLISTENER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_08.htm#JFC-CH-17-REF-EVENTOBJECT
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_21.htm#JAWT-CH-19-REF-EVENTQUEUE
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_21.htm#JAWT-CH-19-REF-EVENTQUEUE
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_21.htm#JAWT-CH-19-REF-EVENTQUEUE

Basic Event Handlers (AWT)
handling at component level : Component Events (AWT)
inner classes and : Scribbling with Inner Classes (NUT)
InputEvent class : (Reference page) (NUT)
ItemEvent class : (Reference page) (NUT)
Java 1.0 model : The Java 1.0 Event Model (NUT)
Java 1.0 model of : Java 1.0 Event Model (AWT)
Java 1.1 model
The Java 1.1 Event Model (NUT)
Inside the Java 1.1 Event Model (NUT)
Java 1.1 model of : The Java 1.1 Event Model (AWT)
keyboard (see keyboard events)
keyboard events
Key and Modifier Constants (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
listeners (see listener interfaces)
lists and
Choice Events (AWT)
List Events (AWT)
local classes and : Typical Uses of Local Classes (NUT)
menu
MenuComponent Methods (AWT)
MenuItem Events (AWT)
CheckboxMenuItem Events (AWT)
Using Java 1.1 Events (AWT)
mouse (see mouse events)
mouse button modifiers : Mouse Buttons (NUT)
MouseEvent class : (Reference page) (NUT)
PaintEvent class : (Reference page) (NUT)
platforms and : Platform-Specific Event Handling (AWT)
scrolling (see scrolling, scrolling events)
target of
Identifying the Target (AWT)
Variables (AWT)
TextArea class and : TextArea Events (AWT)
TextComponent class and : TextComponent Events (AWT)
TextEvent class : (Reference page) (NUT)
TextField class and : TextField Events (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm#JAWT-APP-C

types of : Dealing With Events (AWT)
WindowEvent class : (Reference page) (NUT)
windows and
Window Events (AWT)
Frame Events (AWT)
example programs, obtaining : Obtaining the Example Programs (AWT)
@exception tag (javadoc)
Documentation Comments (JLR)
Comments (EXJ)
exceptions (see also errors; under specific exception)
AWT Exceptions and Errors (AWT)
Exception Handling (JFC)
Robust (NUT)
Exceptions and Exception Handling (NUT)
The try Statement (JLR)
Exception Handling (JLR)
declaring : Declaring Exceptions (NUT)
Exception class
The java.lang Package (JFC)
Exception (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
The Exception Hierarchy (JLR)
ExceptionInInitializerError
ExceptionInInitializerError (JFC)
(Reference page) (NUT)
Errors (JLR)
in finalizer methods : Object Finalization (NUT)
MIME content type : UnsupportedFlavorException (AWT)
object serialization : ObjectStreamException (JFC)
PrintWriter class and : PrintWriter and PrintStream (JFC)
rethrowing
Rethrowing Exceptions (JFC)
Rethrowing Exceptions (JLR)
runtime : Runtime exceptions (JLR)
stack traces
Printing Stack Traces (JFC)
Printing Stack Traces (JLR)
throw statement : The throw Statement (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm#JNUT2-CH-3-SECT-5.3
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_06.htm#JAWT-CH-16-SECT-6
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_44.htm#JFC-CH-11-REF-OBJECTSTREAMEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_03.htm#JFC-CH-4-SECT-2.2
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm#JLR2-CH-9-SECT-2.2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_03.htm#JFC-CH-4-SECT-2.1
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm#JLR2-CH-9-SECT-2.1

Throwable interface
The java.lang Package (NUT)
(Reference page) (NUT)
throws clause
Method throws clause (JLR)
Constructor throws clause (JLR)
Interface method throws clause (JLR)
try statement and : The try Statement (JLR)
exclusive OR (^) operator : Bitwise/Logical Exclusive OR Operator ^ (JLR)
exec()
External Program Execution (JFC)
(Reference page) (NUT)
Runtime (JLR)
Runtime class : Runtime (JFC)
exists()
File (JFC)
(Reference page) (NUT)
File class : File (JFC)
exists() : File methods (EXJ)
exit()
Runtime class
Runtime (JFC)
(Reference page) (NUT)
Runtime (JLR)
System class
Self Termination (JFC)
System (JFC)
Program Exit Value (NUT)
(Reference page) (NUT)
System (JLR)
exiting programs : Program Exit Value (NUT)
exitValue()
External Program Execution (JFC)
(Reference page) (NUT)
Process (JLR)
Process class : Process (JFC)
exp()
Math (JFC)
Math (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_06.htm#JFC-CH-10-SECT-6
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_15.htm#JLR2-CH-10-SECT-15

java.lang.Math (EXJ)
explicit synchronization
Explicit Synchronization (JFC)
Explicit Synchronization (JLR)
exponents/exponentials
java.lang.Math (EXJ)
expressions
Expression Statements (JLR)
Statements and Expressions (EXJ)
Expressions (EXJ)
allocation : Allocation Expressions (JLR)
constant : Constant Expressions (JLR)
data types of : Data Type of an Expression (JLR)
field : Field Expressions (JLR)
index : Index Expressions (JLR)
literal : Literal Expressions (JLR)
method calls : Method Call Expression (JLR)
order of operations in : Order of Operations (JLR)
parenthetical : Parenthetical Expressions (JLR)
extends (keyword)
Inheritance (EXJ)
Glossary (EXJ)
extends clause
Inheritance (JLR)
Class Inheritance (JLR)
Interface Inheritance (JLR)
extends keyword
Extending a Class (NUT)
Interfaces (NUT)
external program execution : External Program Execution (JFC)
Externalizable interface
Writing Classes to Work with Serialization (JFC)
Externalizable (JFC)
Object Serialization (NUT)
Custom Serialization (NUT)
Advanced Serialization (NUT)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_04.htm#JLR2-CH-6-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch04_15.htm#JLR2-CH-4-SECT-15
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_15.htm#JFC-CH-11-REF-EXTERNALIZABLE
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch09_02.htm#JNUT2-CH-9-SECT-2

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

F
false (value)
Instance Variables (EXJ)
FALSE value
Boolean (JFC)
Boolean Type (JLR)
Boolean (JLR)
family, font : The Font Class (AWT)
FeatureDescriptor class
Bean Basics (NUT)
(Reference page) (NUT)
fetching images : A Brief Tour of sun.awt.image (AWT)
field declarations : Class Members (JLR)
field expressions : Field Expressions (JLR)
FieldPosition class : FieldPosition (JFC)
fields : Classes (EXJ)
Field class
Field (JFC)
(Reference page) (NUT)
FieldPosition class : (Reference page) (NUT)
fully qualified names of : No Global Variables (NUT)
modifiers for (see modifiers)
names of : No Global Variables (NUT)
NoSuchFieldError
NoSuchFieldError (JFC)
(Reference page) (NUT)
NoSuchFieldException
NoSuchFieldException (JFC)
(Reference page) (NUT)
FIFO (first-in, first-out) queue
Optimistic Single-Threaded Execution (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_11.htm#JFC-CH-16-REF-FIELDPOSITION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

Optimistic Single-Threaded Execution (JLR)
File class : The java.io Package (JFC)
File constructor : File constructors (EXJ)
File.pathSeparator : Path localization (EXJ)
File.pathSeparatorChar : Path localization (EXJ)
File.separator
System Properties (EXJ)
Path localization (EXJ)
File.separatorChar : Path localization (EXJ)
FileDialog() : FileDialog Methods (AWT)
FileDialog (class)
Path localization (EXJ)
File Selection Dialog (EXJ)
FileDialog class
Dialog and FileDialog (AWT)
FileDialog (AWT)
FileDialog (AWT)
events for : Constants (AWT)

FileDialogPeer interface : FontPeer (AWT)
FileImageSource class : A Brief Tour of sun.awt.image (AWT)
FileInputStream (class)
Streams (EXJ)
File Streams (EXJ)
FileInputStream class : (Reference page) (NUT)
filename extensions, data types and : URL Objects (JFC)
FileNotFoundException
File Streams (EXJ)
Taming the daemon (EXJ)
FileOutputStream (class)
Streams (EXJ)
File Streams (EXJ)
FileReader (class) : Streams (EXJ)
files
Compiling a Java Source File (JLR)
Files (EXJ)
access (see access)
applets and : Applets and Files (EXJ)
audio
Applet Resources

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_22.htm#JAWT-CH-19-REF-FILEDIALOG

Working with Audio (EXJ)
class, storing : javac (NUT)
compression (see java.util.zip package)
EOFException : EOFException (JFC)
File class
File (JFC)
The java.io Package (JFC)
File (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
FileDescriptior class : (Reference page) (NUT)
FileDescriptor class
FileInputStream and FileReader (JFC)
FileWriter and FileOutputStream (JFC)
FileDescriptor (JFC)
FileDialog class : (Reference page) (NUT)
FileDialogPeer interface : (Reference page) (NUT)
FileInputStream class
FileInputStream and FileReader (JFC)
Sockets for Connection-Oriented Protocols (JFC)
FileInputStream (JFC)
Internationalization (NUT)
The java.io Package (NUT)
(Reference page) (NUT)
FilenameFilter interface
FilenameFilter (JFC)
FilenameFilter (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
FileNameMap interface
FileNameMap (JFC)
(Reference page) (NUT)
FileNotFoundException
FileNotFoundException (JFC)
(Reference page) (NUT)
FileOutputStream class
FileWriter and FileOutputStream (JFC)
FileOutputStream (JFC)
The java.io Package (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_14.htm#JFC-CH-11-REF-EOFEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_17.htm#JFC-CH-11-REF-FILEDESCRIPTOR

(Reference page) (NUT)
FileReader class
FileInputStream and FileReader (JFC)
FileReader (JFC)
Internationalization (NUT)
(Reference page) (NUT)
FileWriter class
FileWriter and FileOutputStream (JFC)
FileWriter (JFC)
(Reference page) (NUT)
getting information about : File methods (EXJ)
images (see images)
including : Including Files (NUT)
manipulation of : File Manipulation (JFC)
nonexistent on server : Getting the Content as an Object (EXJ)
permissions for : File (JFC)
RandomAccessFile class
The java.io Package (JFC)
FileInputStream and FileReader (JFC)
FileWriter and FileOutputStream (JFC)
RandomAccessFile (JFC)
Writing Classes to Work with Serialization (JFC)
The java.io Package (JFC)
RandomAccessFile (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
renaming : File methods (EXJ)
restricting access to : Taming the daemon (EXJ)
selecting from dialogs : File Selection Dialog (EXJ)
source files
Compilation Units (JLR)
Packages (JLR)
specifying system properties in : Using Property Files (NUT)
streams for : File Streams (EXJ)
tar : The application/x-tar Handler (EXJ)
ZIP (see java.util.zip package)
ZipFile class
ZipFile (JFC)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_22.htm#JFC-CH-11-REF-FILEREADER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_23.htm#JFC-CH-11-REF-FILEWRITER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2

FileWriter (class) : Streams (EXJ)
fill() : InflaterInputStream (JFC)
fill variable (GridBagContraints class) : GridBagConstraints Methods (AWT)
fill3DRect() : Graphics Methods (AWT)
fill3DRect() : Drawing Methods (EXJ)
fillArc() : Graphics Methods (AWT)
fillArc()
Drawing Methods (EXJ)
fillInStackTrace()
Rethrowing Exceptions (JFC)
Throwable (JFC)
(Reference page) (NUT)
Rethrowing Exceptions (JLR)
Throwable (JLR)
fillOval() : Graphics Methods (AWT)
fillOval()
Drawing Methods (EXJ)
fillPolygon()
Graphics Methods (AWT)
(Reference page) (NUT)
fillPolygon() : Drawing Methods (EXJ)
fillRect() : Graphics Methods (AWT)
fillRect()
Drawing Methods (EXJ)
Drawing Techniques (EXJ)
fillRoundRect() : Graphics Methods (AWT)
fillRoundRect() : Drawing Methods (EXJ)
FilteredImageSource() : FilteredImageSource (AWT)
FilteredImageSource (class) : Filtering Image Data (EXJ)
FilteredImageSource class
FilteredImageSource (AWT)
FilteredImageSource (AWT)
The java.awt.image Package (NUT)
(Reference page) (NUT)
filterIndexColorModel() : RGBImageFilter (AWT)
filtering image data : Filtering Image Data (EXJ)
filtering images : ImageFilter (AWT)
cascading filters : Cascading Filters (AWT)
FilterInputStream (class) : Stream Wrappers (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_03.htm#JFC-CH-4-SECT-2.2
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm#JLR2-CH-9-SECT-2.2
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm#JLR2-CH-10-SECT-25

FilterInputStream class
FilterInputStream and FilterReader (JFC)
FilterInputStream (JFC)
The java.io Package (NUT)
DataInputStream class : DataInputStream (JFC)
FilterOutputStream (class) : Stream Wrappers (EXJ)
FilterOutputStream class
FilterOutputStream and FilterWriter (JFC)
FilterOutputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
DataOutputStream class : DataOutputStream (JFC)
FilterReader class
FilterInputStream and FilterReader (JFC)
FilterReader (JFC)
(Reference page) (NUT)
filterRGB()
RGBImageFilter (AWT)
(Reference page) (NUT)
filterRGBPixels() : RGBImageFilter (AWT)
FilterWriter class
FilterOutputStream and FilterWriter (JFC)
FilterWriter (JFC)
(Reference page) (NUT)
final
classes : Final Classes (NUT)
methods : final Methods (NUT)
final (modifier)
Static Members (EXJ)
Constructors (EXJ)
Dynamic method selection and peformance
Glossary (EXJ)
classes : String Method Summary (EXJ)
static color values : Colors
final modifier
Defining Constants (NUT)
Modifiers (NUT)
Constants: Another Class Variable Example (NUT)
Final Classes (NUT)

Modifiers (NUT)
Inner class modifiers (JLR)
Local class modifiers (JLR)
blank finals
Blank Finals (NUT)
New Language Features in Java 1.1 (JLR)
Variable modifiers (JLR)
Final local variables (JLR)
catch clause and : The try Statement (JLR)
classes and
Final classes (JLR)
Class Modifiers (JLR)
local variables
New Language Features in Java 1.1 (JLR)
Final local variables (JLR)
methods and : Method modifiers (JLR)
variables and : Variable modifiers (JLR)
finalize()
(Reference page) (NUT)
Object Destruction (JLR)
The finalize method (JLR)
ColorModel class : ColorModel Methods (AWT)
Deflater class : Deflater (JFC)
FileInputStream class : FileInputStream (JFC)
FileOutputStream class : FileOutputStream (JFC)
Graphics class : Graphics Methods (AWT)
Inflater class : Inflater (JFC)
Object class
Object (JFC)
Object (JLR)
PrintJob class : Methods (AWT)
runFinalization() and
Runtime (JFC)
System (JFC)
Runtime (JLR)
System (JLR)
runFinalizersOnExit() and
Runtime (JFC)
System (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_02.htm#JAWT-CH-17-SECT-2.2
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17

Runtime (JLR)
System (JLR)
finalize()
Finalization (EXJ)
Glossary (EXJ)
finalizer methods : Object Finalization (NUT)
chaining
Finalizer Chaining? (NUT)
Finalizer Chaining Revisited (NUT)
finally clause
Handling Exceptions (JFC)
Labelled break and continue Statements (NUT)
Exception Handling (NUT)
Handling Exceptions (JLR)
finally clauses
Statements (EXJ)
The finally Clause (EXJ)
Glossary (EXJ)
findEditor() : (Reference page) (NUT)
findLoadedClass()
ClassLoader (JFC)
ClassLoader (JLR)
findSystemClass()
ClassLoader (JFC)
ClassLoader (JLR)
finish()
Deflater class : Deflater (JFC)
DeflaterOutputStream class : DeflaterOutputStream (JFC)
GZIPOutputStream class : GZIPOutputStream (JFC)
ZipOutputStream class : ZipOutputStream (JFC)
finished()
Deflater class : Deflater (JFC)
Inflater class : Inflater (JFC)
firePropertyChange()
PropertyChangeSupport class : (Reference page) (NUT)
PropertyEditorSupport : (Reference page) (NUT)
fireVetoableChange() : (Reference page) (NUT)
first()
CardLayout Methods (AWT)
BreakIterator (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm#EXJ-CH-5-SECT-4.2
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm#JNUT2-CH-3-SECT-5.3

BreakIterator class : (Reference page) (NUT)
CardLayout class : (Reference page) (NUT)
CharacterIterator interface
CharacterIterator (JFC)
(Reference page) (NUT)
StringCharacterIterator class : StringCharacterIterator (JFC)
first() : CardLayout (EXJ)
firstElement() : Vectors (JFC)
flavors, data (see data)
flipBit() : BigInteger (JFC)
flipping images : Graphics Methods (AWT)
Float() : Float (JFC)
float (type)
Primitive Types (EXJ)
Floating-point literals (EXJ)
Glossary (EXJ)
Float class
Float (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
Floating-point types (JLR)
Float (JLR)
float data type
Floating-Point Types (NUT)
(Reference page) (NUT)
Floating-point literals (JLR)
Floating-point types (JLR)
floating-point data types
Floating-Point Types (NUT)
Floating-point literals (JLR)
Floating-point types (JLR)
parseNumbers() : (Reference page) (NUT)
unary minus (-) and : Unary Minus Operator - (JLR)
floating-point literals
Floating-point literals (EXJ)
isNaN() : Math Utilities (EXJ)
out-of-range values : Math Utilities (EXJ)
floatToIntBits()
Float (JFC)

(Reference page) (NUT)
Float (JLR)
floatValue()
Byte (JFC)
(Reference page) (NUT)
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
Byte class : Byte (JLR)
Double class
Double (JFC)
Double (JLR)
Float class
Float (JFC)
Float (JLR)
Integer class
Integer (JFC)
Integer (JLR)
Long class
Long (JFC)
Long (JLR)
Number class
Number (JFC)
Number (JLR)
Short class
Short (JFC)
Short (JLR)
floatValue() : Wrappers for Primitive Types (EXJ)
floor()
Math (JFC)
Math (JLR)
floor() : java.lang.Math (EXJ)
FlowLayout() : FlowLayout Methods (AWT)
FlowLayout (layout manager)
Layout managers (EXJ)
FlowLayout (EXJ)
FlowLayout class : (Reference page) (NUT)
FlowLayout layout
FlowLayout (AWT)
FlowLayout (AWT)
FlowLayout (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_23.htm#JAWT-CH-19-REF-FLOWLAYOUT

flush()
Image Methods (AWT)
(Reference page) (NUT)
BufferedOutputStream class
BufferedOutputStream (JFC)
(Reference page) (NUT)
BufferedWriter class
BufferedWriter (JFC)
(Reference page) (NUT)
CharArrayWriter class
CharArrayWriter (JFC)
(Reference page) (NUT)
DataOutputStream class
DataOutputStream (JFC)
(Reference page) (NUT)
FilterOutputStream class : FilterOutputStream (JFC)
FilterWriter class : FilterWriter (JFC)
ObjectOutput interface : ObjectOutput (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
OutputStream class
OutputStream (JFC)
OutputStream (JFC)
(Reference page) (NUT)
OutputStreamWriter class : OutputStreamWriter (JFC)
PipedOutputStream class : PipedOutputStream (JFC)
PipedWriter class : PipedWriter (JFC)
PrintStream class : PrintStream (JFC)
PrintWriter class
PrintWriter and PrintStream (JFC)
PrintWriter (JFC)
(Reference page) (NUT)
StringWrinter class : (Reference page) (NUT)
StringWriter class : StringWriter (JFC)
Writer class
Writer (JFC)
Writer (JFC)
flush() : Buffered streams (EXJ)
focus
components and : Component Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM

focus events
Constants (AWT)
Component Events (AWT)
FocusEvent class
FocusEvent (AWT)

FocusEvent (AWT)
listeners for (see listener interfaces)
TextArea class and : TextArea Events (AWT)
TextField class and : TextField Events (AWT)
FocusAdapter, FocusListener interfaces
FocusListener and FocusAdapter (AWT)

FocusAdapter (AWT)

FocusListener (AWT)
FOCUS_ constants : FocusEvent (AWT)
focus, GUI component : Focus, please
FocusAdapter class : (Reference page) (NUT)
FocusEvent() : FocusEvent (AWT)
FocusEvent class : (Reference page) (NUT)
focusGained()
Constants (AWT)
FocusListener and FocusAdapter (AWT)
FocusListener interface : (Reference page) (NUT)
focusLost()
Constants (AWT)
FocusListener and FocusAdapter (AWT)
following()
BreakIterator (JFC)
(Reference page) (NUT)
Font() : The Font Class (AWT)
FontMetrics class
FontMetrics (AWT)
(Reference page) (NUT)
fonts
Fonts (AWT)
Component Methods (AWT)
Miscellaneous Improvements (NUT)
Drawing Graphics (NUT)
(Reference page) (NUT)
Fonts (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_5F25.htm#JAWT-CH-19-REF-FONTMETRICS

Font class
The Font Class (AWT)
Font (AWT)
(Reference page) (NUT)
font size
Fonts (AWT)
The Font Class (AWT)
character width : The FontMetrics Class (AWT)
font height : The FontMetrics Class (AWT)
FontMetrics class : FontMetrics (AWT)
graphics and : Graphics Methods (AWT)
FontPeer class : The Font Class (AWT)
FontPeer interface : (Reference page) (NUT)
FontX class : The Font Class (AWT)
graphics and : Graphics Methods (AWT)
for menu items : (Reference page) (NUT)
menus and : MenuComponent Methods (AWT)
metrics : Font Metrics (EXJ)
as properties : Specifying Font Properties (NUT)
style of
The Font Class (AWT)
for statement
The for Loop (NUT)
Lexical Scope of Declarations (JLR)
The for Statement (JLR)
for statements : Statements (EXJ)
forbidden access to files : Taming the daemon (EXJ)
forClass() : (Reference page) (NUT)
ObjectStreamClass class : ObjectStreamClass (JFC)
forDigit()
Character (JFC)
(Reference page) (NUT)
Character (JLR)
foreground
colors : Graphics Methods (AWT)
foreground colors : Component Methods (AWT)
foreign languages, programming in : Unicode and Character Escapes (NUT)
formal parameters
Field Expressions (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_24.htm#JAWT-CH-19-REF-FONT

Method Call Expression (JLR)
Object Allocation Expressions (JLR)
Method formal parameters (JLR)
Constructor formal parameters (JLR)
format()]
SimpleDateFormat class : SimpleDateFormat (JFC)
Format class
The java.text Package (JFC)
Format (JFC)
(Reference page) (NUT)
format()
ChoiceFormat class
ChoiceFormat (JFC)
(Reference page) (NUT)
DateFormat class
DateFormat (JFC)
(Reference page) (NUT)
DecimalFormat class : DecimalFormat (JFC)
Format class
Format (JFC)
(Reference page) (NUT)
MessageFormat class
MessageFormat (JFC)
Formatted Messages (NUT)
(Reference page) (NUT)
NumberFormat class
NumberFormat (JFC)
(Reference page) (NUT)
formatting code, conventions for : Anonymous Class Indentation and Formatting (NUT)
forName()
ClassLoader (JFC)
Class (JFC)
Class Literals (JLR)
Class (JLR)
Class class : (Reference page) (NUT)
forName() : java.lang.Class (EXJ)
forward references : Forward References (NUT)
fragile base class : Incremental Development (EXJ)
Frame() : Frame Constructors (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_06.htm#JNUT2-CH-11-SECT-6

Frame (object) : Containers (EXJ)
BorderLayout : Layout managers (EXJ)
FRAMEBITS (variable) : Implementing an ImageObserver (EXJ)
FRAMEBITS constant : ImageObserver Interface (AWT)
frames
Frames (AWT)
Frames (AWT)
centering text in (example) : The FontMetrics Class (AWT)
Frame class
Frame Constants (AWT)
Frame (AWT)
The java.awt Package (NUT)
(Reference page) (NUT)
FramePeer interface
FramePeer (AWT)
(Reference page) (NUT)
menubars on : MenuBar (AWT)
menus in (see menus)
frames, menus and : Menus and Choices (EXJ)
free() (see garbage collection)
freeMemory()
Runtime (JFC)
(Reference page) (NUT)
Runtime (JLR)
friendly access
Variable modifiers (JLR)
Method modifiers (JLR)
Constructor modifiers (JLR)
Inner class modifiers (JLR)
FTP, obtaining examples by : FTP (AWT)
Ftpmail, obtaining examples by : Ftpmail (AWT)
fully qualified names : No Global Variables (NUT)
packages : Globally Unique Package Names (NUT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_26.htm#JAWT-CH-19-REF-FRAME
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

G
gap settings
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
FlowLayout layout : FlowLayout Methods (AWT)
GridLayout layout : GridLayout Methods (AWT)
garbage collection
Graphics Methods (AWT)
Daemon threads (JFC)
Garbage Collection (JFC)
Runtime (JFC)
System (JFC)
Garbage Collection (NUT)
Object Destruction (NUT)
Object Destruction (JLR)
The finalize method (JLR)
Daemon threads (JLR)
Runtime (JLR)
System (JLR)
Dynamic Memory Management (EXJ)
Garbage Collection (EXJ)
Garbage Collection (EXJ)
Double Buffering (EXJ)
Glossary (EXJ)
java interpreter and : java (NUT)
jdb and : jdb (NUT)
OutOfMemoryError : (Reference page) (NUT)
printing messages after : java (NUT)
Gaussian distributions : Random Numbers (EXJ)
gc()

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_05.htm#JFC-CH-10-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm#JNUT2-CH-3-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm#EXJ-CH-5-SECT-4.1

Runtime (JLR)
System (JLR)
Runtime class
Runtime (JFC)
System (JFC)
(Reference page) (NUT)
System class
Garbage Collection (JFC)
(Reference page) (NUT)
gc() : Garbage Collection (EXJ)
gcd()
BigInteger (JFC)
(Reference page) (NUT)
general exceptions
The throws Clause and checked Exceptions
generic : java.util.Vector (EXJ)
get() : java.util.Hashtable (EXJ)
Array class
Array (JFC)
(Reference page) (NUT)
Calendar class
Calendar (JFC)
(Reference page) (NUT)
Dictionary class : Dictionary (JFC)
Field class
Field (JFC)
(Reference page) (NUT)
Hashtable class
Hashtables (JFC)
Hashtable (JFC)
(Reference page) (NUT)
URLConnection class : (Reference page) (NUT)
getAbsolutePath() : (Reference page) (NUT)
File class : File (JFC)
getAbsolutePath() : File methods (EXJ)
getActionCommand() : (Reference page) (NUT)
ActionEvent class : ActionEvent (AWT)
Button component : Button Methods (AWT)
MenuItem class : MenuItem Events (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_05.htm#JFC-CH-10-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm#EXJ-CH-5-SECT-4.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

getAddress() : (Reference page) (NUT)
DatagramPacket class : DatagramPacket (JFC)
InetAddress class : InetAddress (JFC)
getAdjustable()
AdjustmentEvent (AWT)
(Reference page) (NUT)
getAdjustmentType()
AdjustmentEvent (AWT)
(Reference page) (NUT)
getAdler()
Deflater class : Deflater (JFC)
Inflater class : Inflater (JFC)
getAlignment()
FlowLayout layout : FlowLayout Methods (AWT)
Label component : Label Methods (AWT)
getAlignmentX()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
getAlignmentY()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
getAllByName()
InetAddress (JFC)
(Reference page) (NUT)
getAllowUserInteraction() : URLConnection (JFC)
getAlpha() : DirectColorModel (AWT)
ColorModel class : ColorModel Methods (AWT)
DirectColorModel class : DirectColorModel (AWT)
IndexColorModel class : IndexColorModel (AWT)
getAlphas() : IndexColorModel (AWT)
getAmPmStrings() : DateFormatSymbols (JFC)
getApplet()
AppletContext Interface (AWT)
(Reference page) (NUT)
getAppletContext()
Introduction to Applets (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
Applet class : Applet Methods (AWT)

AppletStub interface : AppletStub Interface (AWT)
getAppletContext() : Driving the Browser (EXJ)
getAppletInfo()
Applet Methods (AWT)
Introduction to Applets (NUT)
Reading Applet Parameters (NUT)
(Reference page) (NUT)
getApplets()
AppletContext Interface (AWT)
(Reference page) (NUT)
getAscent() : The FontMetrics Class (AWT)
getAscent() : Font Metrics (EXJ)
getAudioClip()
Applet class
Applet Methods (AWT)
Introduction to Applets (NUT)
(Reference page) (NUT)
AppletContext interface
AppletContext Interface (AWT)
(Reference page) (NUT)
getAudioClip()
Applet Resources
Working with Audio (EXJ)
getAvailableIDs() : (Reference page) (NUT)
TimeZone class : TimeZone (JFC)
getAvailableLocales()
BreakIterator (JFC)
(Reference page) (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
Calendar class : Calendar (JFC)
Collator class : Collator (JFC)
DateFormat class : DateFormat (JFC)
NumberFormat class : NumberFormat (JFC)
getBackground() : Component Methods (AWT)
getBeanDescriptor() : (Reference page) (NUT)
getBeanInfo() : (Reference page) (NUT)
getBeginIndex()
CharacterIterator (JFC)

FieldPosition (JFC)
CharacterIterator interface : (Reference page) (NUT)
FieldPosition class : (Reference page) (NUT)
StringCharacterIterator class : StringCharacterIterator (JFC)
getBlockIncrement()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Scrollbar class : Scrollbar Methods (AWT)
getBlue()
Color class : Color Methods (AWT)
ColorModel class : ColorModel Methods (AWT)
DirectColorModel class : DirectColorModel (AWT)
IndexColorModel class : IndexColorModel (AWT)
getBlueMask() : DirectColorModel (AWT)
getBlues() : IndexColorModel (AWT)
getBoolean()
Boolean (JFC)
System Properties (NUT)
(Reference page) (NUT)
Boolean (JLR)
Array class : Array (JFC)
Boolean class : System Properties (JFC)
Field class : Field (JFC)
getBounds()
Polygon Methods (AWT)
(Reference page) (NUT)
Component class : Component Methods (AWT)
Polygon class : Polygon Methods (AWT)
Rectangle class : Rectangle Methods (AWT)
Shape class : Shape Method (AWT)
getBuffer() : (Reference page) (NUT)
StringWriter class : StringWriter (JFC)
getBuffer() : Strings to Streams and Back (EXJ)
getBundle()
Working with Resource Bundles (NUT)
(Reference page) (NUT)
ResourceBundle class : ResourceBundle (JFC)
getByName()
InetAddress (JFC)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_11.htm#JFC-CH-16-REF-FIELDPOSITION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch02_04.htm#JAWT-CH-2-SECT-4.1
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_20.htm#JFC-CH-17-REF-RESOURCEBUNDLE

getByName() : HeartBeat (EXJ)
getByte()
Array class : Array (JFC)
Field class : Field (JFC)
getBytes()
String (JFC)
String (JLR)
String class : String (JFC)
getCalendar()
DateFormat class : DateFormat (JFC)
getCanonicalPath()
File class : File (JFC)
getCanonicalPath() : File methods (EXJ)
getCaretPosition() : TextComponent Methods (AWT)
getChar()
Array class : Array (JFC)
Field class : Field (JFC)
getCharacterInstance() : BreakIterator (JFC)
getCharacterInstances() : (Reference page) (NUT)
getChars() : String (JFC)
String class
String (JFC)
String (JLR)
StringBuffer class
StringBuffer (JFC)
StringBuffer (JLR)
getCheckboxGroup() : Checkbox Methods (AWT)
getChecksum()
CheckedInputStream class
CheckedInputStream (JFC)
(Reference page) (NUT)
CheckedOutputStream class
CheckedOutputStream (JFC)
(Reference page) (NUT)
getChild() : (Reference page) (NUT)
getClass() : Object (JLR)
Class class : (Reference page) (NUT)
Object class
Object (JFC)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2.1.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

getClass() : java.lang.Class (EXJ)
getClassContext()
SecurityManager (JFC)
SecurityManager (JLR)
getClasses()
Class (JFC)
Class (JLR)
getClassLoader()
Class (JFC)
Class (JLR)
getClassName() : (Reference page) (NUT)
MissingResourceException : MissingResourceException (JFC)
getClickCount()
MouseEvent (AWT)
(Reference page) (NUT)
getClip() : Graphics Methods (AWT)
getClipBounds() : Graphics Methods (AWT)
getClipRect() : Graphics Methods (AWT)
getCodeBase()
Introduction to Applets (NUT)
(Reference page) (NUT)
Applet class : Applet Methods (AWT)
AppletStub interface : AppletStub Interface (AWT)
getCodeBase()
HeartBeat (EXJ)
Applet Resources
getColFraction() : VariableGridLayout (AWT)
getCollationElementIterator()
RuleBasedCollator (JFC)
(Reference page) (NUT)
getCollationKey()
Collator (JFC)
(Reference page) (NUT)
RuleBasedCollator class : RuleBasedCollator (JFC)
getColor()
System Properties (JFC)
System Properties (NUT)
Specifying Color Properties (NUT)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_13.htm#JFC-CH-17-REF-MISSINGRESOURCEEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2.1.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2

Color class : Color Methods (AWT)
Graphics class : Graphics Methods (AWT)
getColor() : Colors
getColorModel() : Component Methods (AWT)
PixelGrabber class : PixelGrabber (AWT)
Toolkit class : Toolkit Methods (AWT)
getColumns()
GridLayout layout : GridLayout Methods (AWT)
TextArea class : TextArea Methods (AWT)
TextField class : TextField Methods (AWT)
getComment() : ZipEntry (JFC)
getComponent()
ComponentEvent class
ComponentEvent (AWT)
(Reference page) (NUT)
Container class : Container Methods (AWT)
ContainerEvent class : ContainerEvent (AWT)
FocusEvent class : (Reference page) (NUT)
InputEvent class : (Reference page) (NUT)
KeyEvent class : (Reference page) (NUT)
MouseEvent class : (Reference page) (NUT)
getComponent() : Checkboxes and CheckboxGroups (EXJ)
getComponentAt()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
getComponentCount() : Container Methods (AWT)
getComponents()
Container Methods (AWT)
(Reference page) (NUT)
getComponentType()
Class (JFC)
Class (JLR)
getCompressedSize() : ZipEntry (JFC)
getConstraints() : GridBagLayout Methods (AWT)
getConstructor()
Class (JFC)
Class (JLR)
getConstructors()
Class (JFC)

Class (JLR)
getContainer()
ContainerEvent (AWT)
(Reference page) (NUT)
getContent()
ContentHandler class
ContentHandler (JFC)
(Reference page) (NUT)
URL class
URL Objects (JFC)
URL (JFC)
The java.awt.image Package (NUT)
(Reference page) (NUT)
URLConnection class
URLConnection (JFC)
(Reference page) (NUT)
getContent()
Getting the Content as an Object (EXJ)
The ContentHandler class (EXJ)
getContentEncoding() : (Reference page) (NUT)
URLConnection class : URLConnection (JFC)
getContentLength() : (Reference page) (NUT)
URLConnection class : URLConnection (JFC)
getContents() : Clipboard Methods (AWT)
Clipboard class
Data Transfer with Cut-and-Paste (NUT)
(Reference page) (NUT)
ListResourceBundle class
ListResourceBundle (JFC)
(Reference page) (NUT)
getContentType() : (Reference page) (NUT)
URLConnection class : URLConnection (JFC)
getContentTypeFor() : FileNameMap (JFC)
getCountry() : Locale (JFC)
getCrc() : ZipEntry (JFC)
getCurrencyInstance()
NumberFormat (JFC)
(Reference page) (NUT)
getCurrent() : CheckboxGroup Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_11.htm#JFC-CH-17-REF-LISTRESOURCEBUNDLE

getCurrent() : Checkboxes and CheckboxGroups (EXJ)
getCursor() : Component Methods (AWT)
getCursorType() : Frame Methods (AWT)
getCustomEditor() : Defining a Simple Property Editor (NUT)
getData() : AudioStream (AWT)
DatagramPacket class : DatagramPacket (JFC)
getDate() : (Reference page) (NUT)
Date class : Date (JFC)
URLConnection class : URLConnection (JFC)
getDateFormatSymbols() : SimpleDateFormat (JFC)
getDateInstance()
DateFormat (JFC)
(Reference page) (NUT)
getDateTimeInstance()
DateFormat (JFC)
(Reference page) (NUT)
getDay()
Date class : Date (JFC)
getDecimalFormatSymbols() : DecimalFormat (JFC)
getDecimalSeparator() : DecimalFormatSymbols (JFC)
getDeclaredClasses()
Class (JFC)
Class (JLR)
getDeclaredConstructor()
Class (JFC)
Class (JLR)
getDeclaredConstructors()
Class (JFC)
Class (JLR)
getDeclaredField()
Class (JFC)
Class (JLR)
getDeclaredFields()
Class (JFC)
Class (JLR)
getDeclaredMethod()
Class (JFC)
Class (JLR)
getDeclaredMethods()
Class (JFC)

Class (JLR)
getDeclaringClass()
Class (JFC)
Class (JLR)
Constructor class : Constructor (JFC)
Field class
Field (JFC)
(Reference page) (NUT)
Member interface
Member (JFC)
(Reference page) (NUT)
Method class : Method (JFC)
getDecomposition() : Collator (JFC)
getDefault()
Locale class
Locale (JFC)
A Word About Locales (NUT)
(Reference page) (NUT)
TimeZone class
TimeZone (JFC)
(Reference page) (NUT)
getDefaultAllowUserInteraction() : URLConnection (JFC)
getDefaultCursor()
Cursor Methods (AWT)
(Reference page) (NUT)
getDefaultEventIndex() : (Reference page) (NUT)
getDefaultPropertyIndex() : (Reference page) (NUT)
getDefaultRequestProperty() : URLConnection (JFC)
getDefaultToolkit()
Toolkit Methods (AWT)
(Reference page) (NUT)
getDefaultUseCaches() : URLConnection (JFC)
getDescent()
The FontMetrics Class (AWT)
getDescent() : Font Metrics (EXJ)
getDigit()
DecimalFormatSymbols class : DecimalFormatSymbols (JFC)
getDirectory() : FileDialog Methods (AWT)
getDisplayCountry() : Locale (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_05.htm#JFC-CH-13-REF-MEMBER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm#JFC-CH-13-REF-METHOD

getDisplayLanguage() : Locale (JFC)
getDisplayName() : Locale (JFC)
getDisplayVariant() : Locale (JFC)
getDocumentBase()
Introduction to Applets (NUT)
(Reference page) (NUT)
Applet class : Applet Methods (AWT)
AppletStub interface : AppletStub Interface (AWT)
getDocumentBase() : Applet Resources
getDoInput() : URLConnection (JFC)
getDoOutput() : URLConnection (JFC)
getDouble()
Array class : Array (JFC)
Field class : Field (JFC)
getEchoChar() : TextField Methods (AWT)
getDecent() : The FontMetrics Class (AWT)
getEncoding()
InputStreamReader class
InputStreamReader (JFC)
(Reference page) (NUT)
OutputStreamWriter class
OutputStreamWriter (JFC)
(Reference page) (NUT)
getEndIndex()
CharacterIterator (JFC)
FieldPosition (JFC)
CharacterIterator interface : (Reference page) (NUT)
FieldPosition class : (Reference page) (NUT)
StringCharacterIterator class : StringCharacterIterator (JFC)
getEntry()
ZipFile (JFC)
(Reference page) (NUT)
getenv()
System (JFC)
System (JLR)
getEnv() : Environment Variables (JFC)
getEras() : DateFormatSymbols (JFC)
getErrorOffset()
ParseException : ParseException (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_11.htm#JFC-CH-16-REF-FIELDPOSITION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_03.htm#JFC-CH-10-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_15.htm#JFC-CH-16-REF-PARSEEXCEPTION

getErrorsAny() : MediaTracker Methods (AWT)
getErrorsID() : MediaTracker Methods (AWT)
getErrorStream()
External Program Execution (JFC)
Process (JLR)
Process class : Process (JFC)
getEventSetDescriptors() : (Reference page) (NUT)
getException()
ExceptionInInitializerError : ExceptionInInitializerError (JFC)
getExceptionTypes()
(Reference page) (NUT)
(Reference page) (NUT)
Constructor class : Constructor (JFC)
Method class : Method (JFC)
getExpiration()
URLConnection (JFC)
(Reference page) (NUT)
getExtra() : ZipEntry (JFC)
getFamily() : The Font Class (AWT)
getFamily() : Fonts (EXJ)
getFD() : (Reference page) (NUT)
FileInputStream class : FileInputStream (JFC)
FileOutputStream class : FileOutputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
getField()
Class (JFC)
Class (JLR)
FieldPosition class : FieldPosition (JFC)
getFields()
Class (JFC)
Class (JLR)
getFile() : FileDialog Methods (AWT)
FileDialog class : (Reference page) (NUT)
URL class
URL (JFC)
(Reference page) (NUT)
getFile() : The URL class (EXJ)
getFileDescriptor()
SocketImpl class : SocketImpl (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_15.htm#JLR2-CH-10-SECT-15
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm#JFC-CH-13-REF-METHOD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_11.htm#JFC-CH-16-REF-FIELDPOSITION

getFilenameFilter() : FileDialog Methods (AWT)
getFilePointer() : RandomAccessFile (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
getFilePointer() : java.io.RandomAccessFile (EXJ)
getFilterInstance() : ImageFilter Methods (AWT)
getFirstDayOfWeek() : Calendar (JFC)
getFloat()
Array class : Array (JFC)
Field class : Field (JFC)
getFocus() : Focus, please
getFocusOwner() : Window Methods (AWT)
getFollowRedirects() : HttpURLConnection (JFC)
getFont()
System Properties (JFC)
System Properties (NUT)
(Reference page) (NUT)
Component class : Component Methods (AWT)
Font class : The Font Class (AWT)
FontMetrics class : The FontMetrics Class (AWT)
Graphics class : Graphics Methods (AWT)
MenuComponent class : MenuComponent Methods (AWT)
MenuContainer interface : MenuContainer Methods (AWT)
getFont()
Fonts (EXJ)
Font Metrics (EXJ)
getFontList()
Toolkit Methods (AWT)
(Reference page) (NUT)
getFontMetrics()
Graphics Methods (AWT)
Component Methods (AWT)
Toolkit Methods (AWT)
(Reference page) (NUT)
getFontMetrics() : Font Metrics (EXJ)
getForeground() : Component Methods (AWT)
getFormats() : ChoiceFormat (JFC)
MessageFormat class : MessageFormat (JFC)
getGraphics() : Component Methods (AWT)
Component class : Graphics (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch10_02.htm#JAWT-CH-10-SECT-2.1

Graphics class : (Reference page) (NUT)
Image class
Image Methods (AWT)
(Reference page) (NUT)
PrintJob class
Methods (AWT)
Printing (NUT)
(Reference page) (NUT)
getGreatestMinimum() : Calendar (JFC)
getGreatestMininum()
GregorianCalendar class : GregorianCalendar (JFC)
getGreen()
Color class : Color Methods (AWT)
ColorModel class : ColorModel Methods (AWT)
DirectColorModel class : DirectColorModel (AWT)
IndexColorModel class : IndexColorModel (AWT)
getGreenMask() : DirectColorModel (AWT)
getGreens() : IndexColorModel (AWT)
getGregorianChange() : GregorianCalendar (JFC)
getGroupingSeparator() : DecimalFormatSymbols (JFC)
getGroupingSize() : DecimalFormat (JFC)
getHAdjustable()
ScrollPane Methods (AWT)
(Reference page) (NUT)
getHeaderField() : (Reference page) (NUT)
URLConnection class : URLConnection (JFC)
getHeaderFieldDate() : (Reference page) (NUT)
URLConnection class : URLConnection (JFC)
getHeaderFieldInt()
URLConnection (JFC)
(Reference page) (NUT)
getHeaderFieldKey() : URLConnection (JFC)
getHeight() : Image Methods (AWT)
FontMetrics class
The FontMetrics Class (AWT)
PixelGrabber class : PixelGrabber (AWT)
getHeight(), getWidth()
Font Metrics (EXJ)
Scaling and Size (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_02.htm#JAWT-CH-17-SECT-2.2
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm#JNUT2-CH-8-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.3

getHelpMenu() : MenuBar Methods (AWT)
getHgap()
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
FlowLayout layout : FlowLayout Methods (AWT)
GridLayout layout : GridLayout Methods (AWT)
getHost() : (Reference page) (NUT)
URL class : URL (JFC)
getHost()
HeartBeat (EXJ)
The URL class (EXJ)
getHostAddress() : InetAddress (JFC)
getHostName() : InetAddress (JFC)
getHours()
Date class : Date (JFC)
getHours() : The DateAtHost Client (EXJ)
getHSBColor()
Color Methods (AWT)
(Reference page) (NUT)
getHScrollbarHeight()
ScrollPane Methods (AWT)
(Reference page) (NUT)
getHumanPresentableName() : DataFlavor Methods (AWT)
getIcon()
BeanInfo class : (Reference page) (NUT)
SimpleBeanInfo class : (Reference page) (NUT)
getIconImage() : Frame Methods (AWT)
getID() : AWTEvent (AWT)
ActionEvent class : (Reference page) (NUT)
AdjustmentEvent class : (Reference page) (NUT)
AWTEvent class
The Java 1.1 Event Model (NUT)
(Reference page) (NUT)
ComponentEvent class : (Reference page) (NUT)
ContainerEvent class : (Reference page) (NUT)
ItemEvent class : (Reference page) (NUT)
KeyEvent class : (Reference page) (NUT)
MouseEvent class : (Reference page) (NUT)
TextEvent class : (Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2.1.1

TimeZone class
TimeZone (JFC)
(Reference page) (NUT)
WindowEvent class : (Reference page) (NUT)
getIfModifiedSince() : URLConnection (JFC)
getImage()
Applet class
Graphics Methods (AWT)
Applet Methods (AWT)
Introduction to Applets (NUT)
(Reference page) (NUT)
The java.awt.image Package (NUT)
AppletContext interface
AppletContext Interface (AWT)
(Reference page) (NUT)
Toolkit class
Graphics Methods (AWT)
Toolkit Methods (AWT)
getImage()
Applet Resources
The Image Class (EXJ)
getInCheck()
SecurityManager (JFC)
SecurityManager (JLR)
getIndex()
BitSet class : BitSet (JFC)
CharacterIterator interface
CharacterIterator (JFC)
(Reference page) (NUT)
ParsePosition class
ParsePosition (JFC)
(Reference page) (NUT)
StringCharacterIterator class : StringCharacterIterator (JFC)
getInetAddress() : ServerSocket (JFC)
Socket class : Socket (JFC)
SocketImpl class : SocketImpl (JFC)
getInfinity() : DecimalFormatSymbols (JFC)
getInputStream() : Process (JLR)
Process class
External Program Execution (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_16.htm#JFC-CH-16-REF-PARSEPOSITION
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_15.htm#JLR2-CH-10-SECT-15
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4

Process (JFC)
(Reference page) (NUT)
Socket class
Sockets for Connection-Oriented Protocols (JFC)
Socket (JFC)
(Reference page) (NUT)
URLConnection class
URLConnection (JFC)
(Reference page) (NUT)
ZipFile class
ZipFile (JFC)
(Reference page) (NUT)
getInputStream(:)
SocketImpl class : SocketImpl (JFC)
getInputStream() : Clients (EXJ)
getInsets() : Container Methods (AWT)
getInstance()
Calendar class
Calendar (JFC)
(Reference page) (NUT)
Collator class
Collator (JFC)
(Reference page) (NUT)
DateFormat class
DateFormat (JFC)
(Reference page) (NUT)
NumberFormat class
NumberFormat (JFC)
(Reference page) (NUT)
getInstanceOf() : (Reference page) (NUT)
getInt()
Array class : Array (JFC)
Field class : Field (JFC)
getInteger()
System Properties (JFC)
System Properties (NUT)
(Reference page) (NUT)
Integer (JLR)
Integer class : Integer (JFC)
getInterface()

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2

InetAddress class : MulticastSocket (JFC)
getInterfaces()
Class (JFC)
(Reference page) (NUT)
Class (JLR)
getISO3Country() : Locale (JFC)
getISO3Language() : Locale (JFC)
getItem() : (Reference page) (NUT)
AWTEvent class : ItemEvent (AWT)
Choice component : Component Methods (AWT)
List component : List Methods (AWT)
Menu class : Menu Methods (AWT)
getItemCount()
Choice component : Component Methods (AWT)
List component : List Methods (AWT)
Menu class : Menu Methods (AWT)
getItems() : List Methods (AWT)
getItemSelectable()
ItemEvent (AWT)
(Reference page) (NUT)
getJavaInitializationString() : Defining a Simple Property Editor (NUT)
getKey()
MenuShortcut Methods (AWT)
(Reference page) (NUT)
MissingResourceException : MissingResourceException (JFC)
getKeyChar()
KeyEvent (AWT)
(Reference page) (NUT)
getKeyCode() : (Reference page) (NUT)
getKeyModifiersText()
KeyEvent (AWT)
(Reference page) (NUT)
getKeys()
ListResourceBundle class
ListResourceBundle (JFC)
(Reference page) (NUT)
PropertyResourceBundle class : PropertyResourceBundle (JFC)
ResourceBundle class
ResourceBundle (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_13.htm#JFC-CH-17-REF-MISSINGRESOURCEEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_11.htm#JFC-CH-17-REF-LISTRESOURCEBUNDLE
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_18.htm#JFC-CH-17-REF-PROPERTYRESOURCEBUNDLE
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_20.htm#JFC-CH-17-REF-RESOURCEBUNDLE

(Reference page) (NUT)
getKeyText()
KeyEvent (AWT)
(Reference page) (NUT)
getLabel() : Button Methods (AWT)
Checkbox component : Checkbox Methods (AWT)
MenuItem class : MenuItem Methods (AWT)
getLabel() : Checkboxes and CheckboxGroups (EXJ)
getLanguage() : Locale (JFC)
getLastModified() : (Reference page) (NUT)
URLConnection class : URLConnection (JFC)
getLayout() : Container Methods (AWT)
getLayoutAlignmentX()
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
GridBagLayout layout : GridBagLayout Methods (AWT)
LayoutManager2 interface : The LayoutManager2 Interface (AWT)
getLayoutAlignmentY()
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
GridBagLayout layout : GridBagLayout Methods (AWT)
LayoutManager2 interface : The LayoutManager2 Interface (AWT)
getLayoutDimensions() : GridBagLayout Methods (AWT)
getLayoutOrigin() : GridBagLayout Methods (AWT)
getLayoutWeights() : GridBagLayout Methods (AWT)
getLeading() : The FontMetrics Class (AWT)
getLeading() : Font Metrics (EXJ)
getLeastMaximum() : Calendar (JFC)
GregorianCalendar class : GregorianCalendar (JFC)
getLength()
AudioStream (AWT)
(Reference page) (NUT)
Array class : Array (JFC)
DatagramPacket class : DatagramPacket (JFC)
getLimits() : ChoiceFormat (JFC)
getLineIncrement() : Scrollbar Methods (AWT)
getLineInstance()
BreakIterator (JFC)
(Reference page) (NUT)

getLineNumber() : LineNumberReader and LineNumberInputStream (JFC)
LineNumberInputStream class
LineNumberInputStream (JFC)
(Reference page) (NUT)
LineNumberReader class
LineNumberReader (JFC)
(Reference page) (NUT)
getLocalAddress()
DatagramSocket class : DatagramSocket (JFC)
Socket class : Socket (JFC)
getLocale() : IllegalComponentStateException (AWT)
Applet class : Applet Methods (AWT)
Component class : Component Methods (AWT)
MessageFormat class : MessageFormat (JFC)
Window class : Window Methods (AWT)
getLocalHost()
InetAddress (JFC)
(Reference page) (NUT)
getLocalizedInputStream()
Runtime (JFC)
Runtime (JLR)
getLocalizedMessage()
Throwable (JFC)
Throwable (JLR)
getLocalizedOutputStream()
Runtime (JFC)
Runtime (JLR)
getLocalPatternChars() : DateFormatSymbols (JFC)
getLocalPort()
ServerSocket (JFC)
(Reference page) (NUT)
(Reference page) (NUT)
DatagramSocket class : DatagramSocket (JFC)
Socket class : Socket (JFC)
SocketImpl class : SocketImpl (JFC)
getLocation()
Component class : Component Methods (AWT)
Point class : Point Methods (AWT)
Rectangle class : Rectangle Methods (AWT)
getLocationOnScreen()

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm#JLR2-CH-10-SECT-25
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17

Component Methods (AWT)
IllegalComponentStateException (AWT)
getLong()
Long (JFC)
(Reference page) (NUT)
Long (JLR)
Array class : Array (JFC)
Field class : Field (JFC)
Long class : System Properties (JFC)
getLowestSetBit() : BigInteger (JFC)
getMapSize() : IndexColorModel (AWT)
getMaxAdvance() : The FontMetrics Class (AWT)
getMaxAdvance() : Font Metrics (EXJ)
getMaxAscent() : The FontMetrics Class (AWT)
getMaxAscent() : Font Metrics (EXJ)
getMaxDescent() : The FontMetrics Class (AWT)
getMaxDescent() : Font Metrics (EXJ)
getMaximum()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Calendar class : Calendar (JFC)
Scrollbar class : Scrollbar Methods (AWT)
getMaximumFractionDigits() : NumberFormat (JFC)
getMaximumIntegerDigits() : NumberFormat (JFC)
getMaximumSize()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
getMaximumSize() : Layout Managers (EXJ)
getMaxmimum()
GregorianCalendar class : GregorianCalendar (JFC)
getMaxPriority()
ThreadGroup (JFC)
ThreadGroup (JLR)
getMenu() : MenuBar Methods (AWT)
getMenuBar() : Frame Methods (AWT)
getMenuCount() : MenuBar Methods (AWT)
getMenuShortcut() : MenuItem Methods (AWT)
getMenuShortcutKeyMask()
Toolkit Methods (AWT)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2

getMessage()
Throwable (JFC)
Throwable (JLR)
Error class : (Reference page) (NUT)
Exception class : (Reference page) (NUT)
Throwable interface
Exception Objects (NUT)
(Reference page) (NUT)
WriteAbortedException : (Reference page) (NUT)
getMessage() : The Message Passer (EXJ)
getMethod()
Class (JFC)
(Reference page) (NUT)
Class (JLR)
ZIPEntry class : ZipEntry (JFC)
getMethodDescriptors() : (Reference page) (NUT)
getMethods()
Class (JFC)
Class (JLR)
getMimeType() : DataFlavor Methods (AWT)
getMinimalDaysInFirstWeek() : Calendar (JFC)
getMinimum()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Calendar class : Calendar (JFC)
GregorianCalendar class : GregorianCalendar (JFC)
Scrollbar class : Scrollbar Methods (AWT)
getMinimumFractionDigits() : NumberFormat (JFC)
getMinimumIntegerDigits() : NumberFormat (JFC)
getMinimumSize()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
List component : List Methods (AWT)
TextArea class : TextArea Methods (AWT)
TextField class : TextField Methods (AWT)
getMinimumSize() : Layout Managers (EXJ)
getMinusSign() : DecimalFormatSymbols (JFC)
getMinutes()
Date class : Date (JFC)
getMinutes() : The DateAtHost Client (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm#JLR2-CH-10-SECT-25

getMode() : FileDialog Methods (AWT)
getModifiers()
Class (JFC)
(Reference page) (NUT)
Class (JLR)
ActionEvent class
ActionEvent (AWT)
(Reference page) (NUT)
Constructor class : Constructor (JFC)
Field class
Field (JFC)
(Reference page) (NUT)
InputEvent class
InputEvent (AWT)
(Reference page) (NUT)
Member interface
Member (JFC)
(Reference page) (NUT)
Method class : Method (JFC)
MouseEvent class : (Reference page) (NUT)
getMonth()
Date class : Date (JFC)
getMonths() : DateFormatSymbols (JFC)
getMultiplier()
DecimalFormat class : DecimalFormat (JFC)
getName()
Class class
Class (JFC)
(Reference page) (NUT)
Class (JLR)
Clipboard class
Clipboard Methods (AWT)
(Reference page) (NUT)
Component class : Component Methods (AWT)
Constructor class : Constructor (JFC)
Field class
Field (JFC)
(Reference page) (NUT)
File class
File (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_05.htm#JFC-CH-13-REF-MEMBER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm#JFC-CH-13-REF-METHOD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

File (JFC)
(Reference page) (NUT)
Font class : The Font Class (AWT)
Member interface
Member (JFC)
(Reference page) (NUT)
MenuComponent class : MenuComponent Methods (AWT)
Method class : Method (JFC)
ObjectStreamClass class : ObjectStreamClass (JFC)
Thread class
Thread (JFC)
Thread (JLR)
ThreadGroup class
ThreadGroup (JFC)
ThreadGroup (JLR)
ZIPEntry class : ZipEntry (JFC)
ZipFile class : ZipFile (JFC)
getName()
File methods (EXJ)
Fonts (EXJ)
getNaN()
DecimalFormatSymbols class : DecimalFormatSymbols (JFC)
getNegativePrefix() : DecimalFormat (JFC)
getNegativeSuffix() : DecimalFormat (JFC)
getNextEntry()
ZipInputStream (JFC)
(Reference page) (NUT)
getNextEvent()
Using an event multicaster (AWT)
(Reference page) (NUT)
getNumberFormat() : DateFormat (JFC)
getNumberInstance() : NumberFormat (JFC)
getNumericValue()
Character (JFC)
Character (JLR)
getObject()
Working with Resource Bundles (NUT)
(Reference page) (NUT)
ResourceBundle class : ResourceBundle (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_05.htm#JFC-CH-13-REF-MEMBER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm#JFC-CH-13-REF-METHOD
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_20.htm#JFC-CH-17-REF-RESOURCEBUNDLE

getOffset() : (Reference page) (NUT)
SimpleTimeZone class : SimpleTimeZone (JFC)
TimeZone class : TimeZone (JFC)
getOrientation()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Scrollbar class : Scrollbar Methods (AWT)
getOuputStream() : Clients (EXJ)
getOutputStream() : Process (JLR)
Process class
External Program Execution (JFC)
Process (JFC)
(Reference page) (NUT)
Socket class
Sockets for Connection-Oriented Protocols (JFC)
Socket (JFC)
(Reference page) (NUT)
SocketImpl class : SocketImpl (JFC)
URLConnection class
URLConnection (JFC)
(Reference page) (NUT)
getPageDimension()
Methods (AWT)
(Reference page) (NUT)
getPageIncrement() : Scrollbar Methods (AWT)
getPageResolution()
Methods (AWT)
(Reference page) (NUT)
getParameter()
Introduction to Applets (NUT)
(Reference page) (NUT)
Applet class : Applet Methods (AWT)
AppletStub interface : AppletStub Interface (AWT)
getParameter()
Methods (EXJ)
Applet Parameters
getParameterInfo()
Applet Methods (AWT)
Introduction to Applets (NUT)
Reading Applet Parameters (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_15.htm#JLR2-CH-10-SECT-15
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_02.htm#JAWT-CH-17-SECT-2.2
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_02.htm#JAWT-CH-17-SECT-2.2

(Reference page) (NUT)
getParameterTypes()
(Reference page) (NUT)
(Reference page) (NUT)
Constructor class : Constructor (JFC)
Method class : Method (JFC)
getParent()
ThreadGroup (JFC)
ThreadGroup (JLR)
Component class
Component Methods (AWT)
(Reference page) (NUT)
File class
File (JFC)
File (JFC)
(Reference page) (NUT)
MenuComponent class : MenuComponent Methods (AWT)
ResourceBundle class : ResourceBundle (JFC)
getParent() : File methods (EXJ)
getPath()
File (JFC)
(Reference page) (NUT)
File class : File (JFC)
getPath() : File methods (EXJ)
getPatternSeparator()
DecimalFormatSymbols class : DecimalFormatSymbols (JFC)
getPeer()
Container class : Component Methods (AWT)
Font class : The Font Class (AWT)
MenuComponent class : MenuComponent Methods (AWT)
getPercent()
DecimalFormatSymbols class : DecimalFormatSymbols (JFC)
getPercentInstance()
NumberFormat (JFC)
(Reference page) (NUT)
getPerMill() : DecimalFormatSymbols (JFC)
getPixels() : PixelGrabber (AWT)
getPixelSize() : ColorModel Methods (AWT)
getPoint()
MouseEvent (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm#JFC-CH-13-REF-METHOD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_20.htm#JFC-CH-17-REF-RESOURCEBUNDLE

(Reference page) (NUT)
getPort()
(Reference page) (NUT)
(Reference page) (NUT)
DatagramPacket class : DatagramPacket (JFC)
Socket class : Socket (JFC)
SocketImpl class : SocketImpl (JFC)
URL class : URL (JFC)
getPositivePrefix() : DecimalFormat (JFC)
getPositiveSuffix() : DecimalFormat (JFC)
getPredefinedCursor()
Cursor Methods (AWT)
(Reference page) (NUT)
getPreferredSize()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
List component : List Methods (AWT)
TextArea class : TextArea Methods (AWT)
TextField class : TextField Methods (AWT)
getPreferredSize() : Layout Managers (EXJ)
getPrintJob()
PrintGraphics interface
Methods (AWT)
(Reference page) (NUT)
PrintJob class
Printing (NUT)
(Reference page) (NUT)
Toolkit class : Toolkit Methods (AWT)
getPriority()
Thread priority (JFC)
Thread (JFC)
Thread priority (JLR)
Thread (JLR)
getProperties()
System Properties (NUT)
System (JLR)
System class : System (JFC)
getProperty() : System (JLR)
Image class : Image Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_01.htm#JAWT-CH-17-SECT-1.1
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm#JNUT2-CH-8-SECT-3

Properties class
Properties (JFC)
(Reference page) (NUT)
System class
System Properties (JFC)
System (JFC)
Environment (NUT)
System Properties (NUT)
(Reference page) (NUT)
Toolkit class : Toolkit Methods (AWT)
getProperty()
Properties (EXJ)
System Properties (EXJ)
getPropertyDescriptors() : (Reference page) (NUT)
getProtocol() : (Reference page) (NUT)
URL class : URL (JFC)
getProtocol() : The URL class (EXJ)
getRawOffset()
SimpleTimeZone class : SimpleTimeZone (JFC)
TimeZone class : TimeZone (JFC)
getRed()
Color class : Color Methods (AWT)
ColorModel class : ColorModel Methods (AWT)
DirectColorModel class : DirectColorModel (AWT)
IndexColorModel class : IndexColorModel (AWT)
getRedMask() : DirectColorModel (AWT)
getReds() : IndexColorModel (AWT)
getRef()
URL (JFC)
(Reference page) (NUT)
getRemaining() : Inflater (JFC)
getRepresentationClass() : DataFlavor Methods (AWT)
getRequestMethod()
HttpURLConnection class : HttpURLConnection (JFC)
getRequestProperty()
URLConnection class : URLConnection (JFC)
getResource()
Class (JFC)
ClassLoader (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_17.htm#JFC-CH-17-REF-PROPERTIES
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2

Class (JLR)
ClassLoader (JLR)
getResourceAsStream()
Class (JFC)
ClassLoader (JFC)
Working with Resource Bundles (NUT)
Class (JLR)
ClassLoader (JLR)
getResourceString() : (Reference page) (NUT)
getResponseCode()
HttpURLConnection (JFC)
(Reference page) (NUT)
getResponseMessage()
HttpURLConnection (JFC)
(Reference page) (NUT)
getReturnType()
Method (JFC)
(Reference page) (NUT)
getRGB() : (Reference page) (NUT)
Color class : Color Methods (AWT)
ColorModel class : ColorModel Methods (AWT)
DirectColorModel class : DirectColorModel (AWT)
IndexColorModel class : IndexColorModel (AWT)
SystemColor class : SystemColor Methods (AWT)
getRGBDefault() : (Reference page) (NUT)
getRGBdefault() : ColorModel Methods (AWT)
getRGBdefault() : Color models (EXJ)
getRowFraction() : VariableGridLayout (AWT)
getRows() : GridLayout Methods (AWT)
List component : List Methods (AWT)
TextArea class : TextArea Methods (AWT)
getRules()
RuleBasedCollator class : RuleBasedCollator (JFC)
getRuntime()
Runtime (JFC)
(Reference page) (NUT)
Runtime (JLR)
getScaledInstance()
Image Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm#JFC-CH-13-REF-METHOD
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17

Image class
Miscellaneous Improvements (NUT)
(Reference page) (NUT)
ReplicateScaleFilter class : (Reference page) (NUT)
getScreenResolution()
Toolkit Methods (AWT)
(Reference page) (NUT)
getScreenSize()
Toolkit Methods (AWT)
(Reference page) (NUT)
getScrollbarDisplayPolicy() : ScrollPane Methods (AWT)
getScrollbarVisibility() : TextArea Methods (AWT)
getScrollPosition() : ScrollPane Methods (AWT)
getSeconds()
Date class : Date (JFC)
getSecurityContext()
SecurityManager (JFC)
SecurityManager (JLR)
getSecurityManager()
System (JFC)
System (JLR)
getSelectedCheckbox() : CheckboxGroup Methods (AWT)
getSelectedIndex()
Component Methods (AWT)
(Reference page) (NUT)
List component : List Methods (AWT)
getSelectedIndexes() : List Methods (AWT)
getSelectedItem() : (Reference page) (NUT)
Choice component : Component Methods (AWT)
List component : List Methods (AWT)
getSelectedItem() : Menus and Choices (EXJ)
getSelectedItems()
CheckboxMenuItem class : CheckboxMenuItem Methods (AWT)
List component : List Methods (AWT)
getSelectedObjects() : (Reference page) (NUT)
Checkbox component : Checkbox Methods (AWT)
Choice component : Component Methods (AWT)
ItemSelectable interface : Methods (AWT)
List component : List Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch09_05.htm#JAWT-CH-9-SECT-5.1

getSelectedText()
TextComponent Methods (AWT)
(Reference page) (NUT)
getSelectionEnd() : TextComponent Methods (AWT)
getSelectionStart() : TextComponent Methods (AWT)
getSentenceInstance()
BreakIterator (JFC)
(Reference page) (NUT)
getSerialVersionUID() : Versioning of Classes (JFC)
ObjectStreamClass class : ObjectStreamClass (JFC)
getShort()
Array class : Array (JFC)
Field class : Field (JFC)
getShortcutMenuItem() : MenuBar Methods (AWT)
getShortMonths() : DateFormatSymbols (JFC)
getShortWeekdays() : DateFormatSymbols (JFC)
getSigners()
Class (JFC)
Class (JLR)
getSize() : ZipEntry (JFC)
Component class : Component Methods (AWT)
Dimension class : Dimension Methods (AWT)
Font class : The Font Class (AWT)
Rectangle class : Rectangle Methods (AWT)
getSize() : Fonts (EXJ)
getSoLinger() : Socket (JFC)
getSoTimeout()
DatagramSocket class : DatagramSocket (JFC)
ServerSocket class : ServerSocket (JFC)
Socket class : Socket (JFC)
getSource() : Image Methods (AWT)
AWTEvent class
The Java 1.1 Event Model (NUT)
(Reference page) (NUT)
EventObject class : EventObject (JFC)
Image class
(Reference page) (NUT)
The java.awt.image Package (NUT)
ItemEvent class : (Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_08.htm#JFC-CH-17-REF-EVENTOBJECT

TextEvent class : (Reference page) (NUT)
getSourceString()
CollationKey class : CollationKey (JFC)
getState()
Checkbox component : Checkbox Methods (AWT)
CheckboxMenuItem class : CheckboxMenuItem Methods (AWT)
getState() : Checkboxes and CheckboxGroups (EXJ)
getStateChange()
ItemEvent (AWT)
(Reference page) (NUT)
getStatus() : PixelGrabber (AWT)
getStrength()
Collator class : Collator (JFC)
getString()
Working with Resource Bundles (NUT)
(Reference page) (NUT)
ResourceBundle class : ResourceBundle (JFC)
getStringArray()
ResourceBundle class : ResourceBundle (JFC)
getStyle() : The Font Class (AWT)
getStyle() : Fonts (EXJ)
getSuperclass()
Class (JFC)
(Reference page) (NUT)
Class (JLR)
getSystemClipboard()
Toolkit Methods (AWT)
Data Transfer with Cut-and-Paste (NUT)
(Reference page) (NUT)
getSystemEventQueue()
Toolkit Methods (AWT)
(Reference page) (NUT)
getSystemEventQueueImpl() : Toolkit Methods (AWT)
getSystemResource()
ClassLoader (JFC)
ClassLoader (JLR)
getSystemResourceAsStream()
ClassLoader (JFC)
ClassLoader (JLR)
getTargetException() : InvocationTargetException (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_20.htm#JFC-CH-17-REF-RESOURCEBUNDLE
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_20.htm#JFC-CH-17-REF-RESOURCEBUNDLE
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_04.htm#JFC-CH-13-REF-INVOCATIONTARGETEXCEPTION

getTcpNoDelay() : Socket (JFC)
getText()
BreakIterator (JFC)
(Reference page) (NUT)
Label component : Label Methods (AWT)
TextComponent class : TextComponent Methods (AWT)
getText() : A TextEntryBox
getThreadGroup()
SecurityManager (JFC)
Thread (JFC)
SecurityManager (JLR)
Thread (JLR)
getTime()
Calendar class : Calendar (JFC)
Date class : Date (JFC)
ZIPEntry class : ZipEntry (JFC)
getTimeInMillis() : Calendar (JFC)
getTimeInstance()
DateFormat (JFC)
(Reference page) (NUT)
getTimeZone() : (Reference page) (NUT)
Calendar class : Calendar (JFC)
DateFormat class : DateFormat (JFC)
TimeZone class : TimeZone (JFC)
getTimezoneOffset() : Date (JFC)
getTitle()
Dialog class : Dialog Constructors and Methods (AWT)
Frame class : Frame Methods (AWT)
getToolkit()
Component class : Component Methods (AWT)
Window class : Window Methods (AWT)
getTotalIn()
Deflater (JFC)
Inflater (JFC)
getTotalOut()
Deflater (JFC)
Inflater (JFC)
getTransferData()
Data Transfer with Cut-and-Paste (NUT)

(Reference page) (NUT)
StringSelection class : StringSelection Methods (AWT)
Transferable interface : Transferable Interface (AWT)
getTransferDataFlavors() : (Reference page) (NUT)
DataFlavor class : Transferable Interface (AWT)
StringSelection class : StringSelection Methods (AWT)
getTransparentPixel() : IndexColorModel (AWT)
getTreeLock() : Component Methods (AWT)
getTTL() : MulticastSocket (JFC)
getType()
Cursor Methods (AWT)
Character (JFC)
Field (JFC)
Character (JLR)
Character class : (Reference page) (NUT)
Cursor class : (Reference page) (NUT)
Field class : (Reference page) (NUT)
getUnitIncrement()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Scrollbar class : Scrollbar Methods (AWT)
getUpdateRect() : PaintEvent (AWT)
getURL() : URLConnection (JFC)
getUseCaches() : URLConnection (JFC)
getVAdjustable()
ScrollPane Methods (AWT)
(Reference page) (NUT)
getValue()
Adjustable interface : Methods of the Adjustable Interface (AWT)
AdjustmentEvent class
AdjustmentEvent (AWT)
(Reference page) (NUT)
Adler32 class : Adler32 (JFC)
CheckedInputStream class : (Reference page) (NUT)
CheckedOutputStream class : (Reference page) (NUT)
Checksum interface
Checksum (JFC)
(Reference page) (NUT)
CRC32 class : CRC32 (JFC)
Scrollbar class : Scrollbar Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_02.htm#JAWT-CH-16-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_02.htm#JAWT-CH-16-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

getVariant() : Locale (JFC)
getVgap()
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
FlowLayout layout : FlowLayout Methods (AWT)
GridLayout layout : GridLayout Methods (AWT)
getViewportSize() : ScrollPane Methods (AWT)
getVisible() : Scrollbar Methods (AWT)
getVisibleAmount()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Scrollbar class : Scrollbar Methods (AWT)
getVisibleIndex() : List Methods (AWT)
getVScrollbarHeight() : (Reference page) (NUT)
getVScrollbarWidth() : ScrollPane Methods (AWT)
getWarningString() : Window Methods (AWT)
getWeekdays() : DateFormatSymbols (JFC)
getWhen()
InputEvent (AWT)
(Reference page) (NUT)
getWidth()
Image class : Image Methods (AWT)
PixelGrabber class : PixelGrabber (AWT)
getWidth() : Scaling and Size (EXJ)
getWidths() : The FontMetrics Class (AWT)
getWidths() : Font Metrics (EXJ)
getWindow()
WindowEvent (AWT)
(Reference page) (NUT)
getWordInstance()
BreakIterator (JFC)
(Reference page) (NUT)
getX()
MouseEvent (AWT)
(Reference page) (NUT)
getY()
MouseEvent (AWT)
(Reference page) (NUT)
getYear() : Date (JFC)
getZeroDigit() : DecimalFormatSymbols (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.3

getZoneStrings() : DateFormatSymbols (JFC)
global variables
No Global Variables (NUT)
Global Variables? (NUT)
Gosling, James : Java's Origins (EXJ)
gotFocus()
Component class : Component Events (AWT)
TextArea class : TextArea Events (AWT)
TextField class and : TextField Events (AWT)
goto statement : No goto Statement (NUT)
goto statements in C : Statements (EXJ)
GOT_FOCUS event
Constants (AWT)
TextField Events (AWT)
TextArea Events (AWT)
grabPixels()
PixelGrabber (AWT)
(Reference page) (NUT)
graphical user interface : Applications (JLR)
graphical user interfaces (GUIs) : The java.awt Package (NUT)
components of : The java.awt Package (NUT)
graphics
animation (see animation)
Canvas class for
The Canvas class (AWT)
Canvas (AWT)
Canvas (AWT)
components and : Component Methods (AWT)
Container class and : Container Methods (AWT)
coordinate space
Graphics Methods (AWT)
Point Methods (AWT)
double buffering : Double Buffering (AWT)
Graphics class
Graphics (AWT)
Graphics (AWT)
images (see images)
multimedia and : MediaTracker (AWT)
PaintEvent class

PaintEvent (AWT)

PaintEvent (AWT)
printing
PrintGraphics Interface (AWT)

PrintGraphics (AWT)
shapes and (see shapes)
XOR mode : Graphics Methods (AWT)
Graphics (class) : The paint() Method (EXJ)
Graphics class
Miscellaneous Improvements (NUT)
Printing (NUT)
(Reference page) (NUT)
graphics context
The paint() Method (EXJ)
Basic Drawing (EXJ)
Glossary (EXJ)
origin of : Drawing Methods (EXJ)
graying out menu items : (Reference page) (NUT)
greater than (>) operator : Operators (EXJ)
greater than or equal (>=) operator : Operators (EXJ)
greater-than (>) operator : Greater-Than Operator > (JLR)
greater-than-or-equal-to (>=) operator : Greater-Than-Or-Equal-To Operator >= (JLR)
green (color)
Color Methods (AWT)
ColorModel Methods (AWT)
DirectColorModel (AWT)
IndexColorModel (AWT)
GregorianCalendar class
GregorianCalendar (JFC)
(Reference page) (NUT)
GridBagConstraints() : GridBagConstraints Methods (AWT)
GridBagConstraints class
GridBagConstraints (AWT)
(Reference page) (NUT)
GridBagLayout() : GridBagLayout Methods (AWT)
GridBagLayout class : (Reference page) (NUT)
GridBagLayout layout
GridBagLayout (AWT)
GridBagLayout (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_01.htm#JAWT-CH-17-SECT-1
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_50.htm#JAWT-CH-19-REF-PRINTGRAPHICS
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_50.htm#JAWT-CH-19-REF-PRINTGRAPHICS
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_50.htm#JAWT-CH-19-REF-PRINTGRAPHICS
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm#JNUT2-CH-8-SECT-3

GridBagLayout (AWT)
GridBagConstraints class : GridBagConstraints (AWT)
gridheight, gridwidth variables (GridBagConstraints class) : GridBagConstraints Methods (AWT)
GridLayout() : GridLayout Methods (AWT)
GridLayout (layout manager)
Layout managers (EXJ)
Using Scrollbars
GridLayout (EXJ)
GridLayout class : (Reference page) (NUT)
GridLayout layout
GridLayout (AWT)
GridLayout (AWT)
GridLayout (AWT)
grow() : Rectangle Methods (AWT)
groups, thread
Thread priority (JFC)
Controlling groups of threads (JFC)
Thread priority (JLR)
Controlling groups of threads (JLR)
guessContentTypeFromName()
URLConnection (JFC)
(Reference page) (NUT)
guessContentTypeFromName() : The URLConnection (EXJ)
guessContentTypeFromStream() : URLConnection (JFC)
guessContentTypeFromStream() : The URLConnection (EXJ)
GUI (graphical user interface) : Applications (JLR)
GUIs (graphical user interfaces)
The New AWT Event Model (NUT)
Events (EXJ)
GUI Concepts in Java (EXJ)
Glossary (EXJ)
keyboard focus traversal : Keyboard Focus Traversal (NUT)
layout managers
Layout (EXJ)
Layout managers (EXJ)
Layout Managers (EXJ)
updating components : Painting and Updating (EXJ)
GZIP (see java.util.zip package)
GZIP classes : The java.util.zip Package (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_08.htm#JFC-CH-1-SECT-8

GZIP format : The java.util.zip Package (JFC)
GZIPInputStream class
The java.util.zip Package (JFC)
GZIPInputStream (JFC)
GZIPOutputStream class
The java.util.zip Package (JFC)
GZIPOutputStream (JFC)
GZIPInputStream class : (Reference page) (NUT)
GZIPOutputStream class : (Reference page) (NUT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

H
handleEvent()
Dealing With Events (AWT)
The Java 1.0 Event Model (NUT)
Component class : Component Events (AWT)
handleGetObject()
ListResourceBundle class
ListResourceBundle (JFC)
(Reference page) (NUT)
PropertyResourceBundle class : PropertyResourceBundle (JFC)
ResourceBundle class
ResourceBundle (JFC)
Working with Resource Bundles (NUT)
(Reference page) (NUT)
handleSetObject() : Working with Resource Bundles (NUT)
handling (see exceptions)
events (see events)
exceptions (see exceptions)
handling exceptions (see exceptions)
hasChanged() : (Reference page) (NUT)
Observable class : Observable (JFC)
hashCode()
(Reference page) (NUT)
The Object and Class Classes (EXJ)
Hashcodes (EXJ)
Hashcodes and key values (EXJ)
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
BitSet class : BitSet (JFC)
Boolean class
Boolean (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_11.htm#JFC-CH-17-REF-LISTRESOURCEBUNDLE
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_18.htm#JFC-CH-17-REF-PROPERTYRESOURCEBUNDLE
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_20.htm#JFC-CH-17-REF-RESOURCEBUNDLE
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5.1
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5.1

Boolean (JLR)
Byte class
Byte (JFC)
Byte (JLR)
Character class
Character (JFC)
Character (JLR)
ChoiceFormat class : ChoiceFormat (JFC)
CollationKey class : CollationKey (JFC)
Collator class : Collator (JFC)
Color class : Color Methods (AWT)
Constructor class : Constructor (JFC)
Date class : Date (JFC)
DateFormat class : DateFormat (JFC)
DateFormatSymbols class : DateFormatSymbols (JFC)
DecimalFormat class : DecimalFormat (JFC)
DecimalFormatSymbols class : DecimalFormatSymbols (JFC)
Double class
Double (JFC)
Double (JLR)
Field class : Field (JFC)
File class : File (JFC)
Float class
Float (JFC)
Float (JLR)
Font class : The Font Class (AWT)
getVariant() : Locale (JFC)
GregorianCalendar class : GregorianCalendar (JFC)
InetAddress class : InetAddress (JFC)
Integer class
Integer (JFC)
Integer (JLR)
Long class
Long (JFC)
Long (JLR)
MessageFormat class : MessageFormat (JFC)
Method class : Method (JFC)
NumberFormat class : NumberFormat (JFC)
Object class

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm#JFC-CH-13-REF-METHOD

Hashtables (JFC)
Object (JFC)
Object (JLR)
Point class : Point Methods (AWT)
Rectangle class : Rectangle Methods (AWT)
RuleBasedCollator class : RuleBasedCollator (JFC)
Short class
Short (JFC)
Short (JLR)
SimpleDateFormat class : SimpleDateFormat (JFC)
SimpleTimeZone class : SimpleTimeZone (JFC)
String class
String (JFC)
String (JLR)
StringCharacterIterator class : StringCharacterIterator (JFC)
URL class : URL (JFC)
hashcodes
Hashtables (JFC)
Hashcodes and key values (EXJ)
Glossary (EXJ)
Hashtable class
Hashtable (JFC)
The java.util Package (NUT)
(Reference page) (NUT)
hashtables
Hashtables (JFC)
Vectors and Hashtables (EXJ)
Glossary (EXJ)
for strings (see Properties)
hasMoreElements() : Enumeration (JFC)
Enumeration interface
Enumerations (JFC)
(Reference page) (NUT)
StringTokenizer class
StringTokenizer (JFC)
(Reference page) (NUT)
hasMoreElements()
java.util.StringTokenizer (EXJ)
java.util.Enumeration (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_06.htm#JFC-CH-17-REF-ENUMERATION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_01.htm#JFC-CH-5-SECT-1

hasMoreTokens() : (Reference page) (NUT)
StringTokenizer class : StringTokenizer (JFC)
hasMoreTokens() : java.util.StringTokenizer (EXJ)
header files : Import (EXJ)
header files, generating (see javah)
height (see size)
HEIGHT (variable) : Implementing an ImageObserver (EXJ)
height attribute (<applet> tag)
Embedding an Applet in a Web Page (JLR)
Attributes (EXJ)
The Complete Applet Tag (EXJ)
HEIGHT attribute (<APPLET> tag) : The <APPLET> Tag (NUT)
HEIGHT parameter (<APPLET> tag) : The Applet Tag (AWT)
help : Getting Wired (EXJ)
help menus : MenuBar Methods (AWT)
pop-up help colors : SystemColor Methods (AWT)
resources for further reading : Other Java Books and Resources (AWT)
Help menus : (Reference page) (NUT)
helper applications : Applets (EXJ)
hexadecimal literals
Integer literals (JLR)
hexadecimal numbers : Integer literals (EXJ)
HexDigit characters : Conversion to Unicode (JLR)
hide() : Component Methods (AWT)
Component class : (Reference page) (NUT)
FileDialog class : (Reference page) (NUT)
Window class : (Reference page) (NUT)
WindowEvent class : (Reference page) (NUT)
hiding data (see encapsulation)
highlighting with color
Color Methods (AWT)
SystemColor Methods (AWT)
Displaying Colors (AWT)
HLS encoding : Color models (EXJ)
home directory, user : System Properties (EXJ)
HorizBagLayout (layout manager) : Nonstandard Layout Managers (EXJ)
horizontal
alignment (see alignment)
character width : The FontMetrics Class (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch00_04.htm#EXJ-PREF-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch03_05.htm#JAWT-CH-3-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch12_06.htm#EXJ-CH-12-SECT-5

gaps (see gap settings)
HorizBagLayout : HorizBagLayout (AWT)
scrollbars (see scrolling)
size (see size)
host application : Applets (JLR)
hostnames
Clients and Servers (EXJ)
Working with URLs (EXJ)
Glossary (EXJ)
hosts, security and : Application and User Level Security (EXJ)
HotJava Web browser
New Kinds of Applications (EXJ)
Applets and Files (EXJ)
Web Browsers and Handlers (EXJ)
Glossary (EXJ)
HSB colors
Color Methods (AWT)
HSBtoRGB() : Color Methods (AWT)
hspace attribute (<applet> tag)
Embedding an Applet in a Web Page (JLR)
The Complete Applet Tag (EXJ)
HSPACE attribute (<APPLET> tag) : The <APPLET> Tag (NUT)
HSPACE parameter (<APPLET> tag) : The Applet Tag (AWT)
HSV encoding : Color models (EXJ)
HTML (Hypertext Markup Language) (see also under specific HTML tag name))
Java Documentation Comment Syntax (NUT)
Java-Related HTML Tags (NUT)
Documentation Comments (JLR)
Embedding an Applet in a Web Page (JLR)
HTML attributes
align attribute (<applet>) : The Complete Applet Tag (EXJ)
alt attribute (<applet>) : The Complete Applet Tag (EXJ)
code attribute (<applet>)
Attributes (EXJ)
Loading Class Files (EXJ)
codebase attribute (<applet>) : Loading Class Files (EXJ)
height attribute (<applet>)
Attributes (EXJ)
The Complete Applet Tag (EXJ)

hspace attribute (<applet>) : The Complete Applet Tag (EXJ)
name attribute (<applet>) : The Complete Applet Tag (EXJ)
vspace attribute (<applet>) : The Complete Applet Tag (EXJ)
width attribute (<applet>)
Attributes (EXJ)
The Complete Applet Tag (EXJ)
HTML tags
<applet> : The Applet Tag (EXJ)
<param>
Parameters (EXJ)
Glossary (EXJ)
unknown, browsers and
Hablo Applet? (EXJ)
The Complete Applet Tag (EXJ)
HTTP daemon example : The TinyHttpd Server (EXJ)
HttpURLConnection class
URLConnection Objects (JFC)
HttpURLConnection (JFC)
(Reference page) (NUT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

I
identifiers : Identifiers (JLR)
identity (==) operator
More Events and Interfaces (EXJ)
Comparisons (EXJ)
identityHashCode()
System (JFC)
System (JLR)
IEEEremainder()
Math (JFC)
Math (JLR)
if statement : The if Statement (JLR)
if-else clauses : Statements (EXJ)
if/else statement : The if/else, while, and do/while Statements (NUT)
#ifdef construct : No Preprocessor (NUT)
IllegalAccessError
IllegalAccessError (JFC)
(Reference page) (NUT)
Errors (JLR)
IllegalAccessException
IllegalAccessException (JFC)
(Reference page) (NUT)
Other exceptions (JLR)
java.lang.Class (EXJ)
IllegalArgumentException
IllegalArgumentException (JFC)
(Reference page) (NUT)
Runtime exceptions (JLR)
IllegalComponentStateException : (Reference page) (NUT)
IllegalComponentStateException exception
IllegalComponentStateException (AWT)

IllegalComponentStateException (AWT)
IllegalMonitorStateException
IllegalMonitorStateException (JFC)
(Reference page) (NUT)
Runtime exceptions (JLR)
IllegalStateException
IllegalStateException (JFC)
(Reference page) (NUT)
Runtime exceptions (JLR)
IllegalThreadStateException
IllegalThreadStateException (JFC)
(Reference page) (NUT)
Runtime exceptions (JLR)
IMAGEABORTED constant : ImageConsumer Interface (AWT)
imageComplete()
ImageConsumer Interface (AWT)
(Reference page) (NUT)
ImageFilter class : ImageFilter Methods (AWT)
PixelGrabber class : PixelGrabber (AWT)
imageComplete() : Image consumers (EXJ)
ImageConsumer (interface) : Glossary (EXJ)
IMAGEERROR constant : ImageConsumer Interface (AWT)
IMAGEERROR property : Image consumers (EXJ)
ImageObserver (interface) : Glossary (EXJ)
ImageProducer (interface) : Glossary (EXJ)
images (see loading images)
Graphics Methods (AWT)
Image Processing (AWT)
ImageProducer (AWT)
A First Applet (NUT)
Drawing With the AWT (EXJ)
Images (EXJ)
animation with : Simple Animation (AWT)
applets and : Applet Methods (AWT)
AreaAveragingScaleFilter class : AreaAveragingScaleFilter (AWT)
colors in : Colors
encoding as image data : Color models (EXJ)
components and : Component Methods (AWT)
converting to pixels : PixelGrabber (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3

creating image data : Producing Image Data (EXJ)
CropImageFilter class
The java.awt.image Package (NUT)
(Reference page) (NUT)
cropping : CropImageFilter (AWT)
decoders for : A Brief Tour of sun.awt.image (AWT)
double buffering
Double Buffering (AWT)
Double Buffering (EXJ)
DynamicFilter class (example) : ImageFilter Methods (AWT)
FilteredImageSource class
FilteredImageSource (AWT)
The java.awt.image Package (NUT)
(Reference page) (NUT)
filtering image data : Filtering Image Data (EXJ)
Graphics class : (Reference page) (NUT)
Image class
A Brief Tour of sun.awt.image (AWT)
Image (AWT)
Image (AWT)
(Reference page) (NUT)
image consumers : Image consumers (EXJ)
filtering : Filtering Image Data (EXJ)
image filters : ImageFilter (AWT)
image observers
Image Observers (EXJ)
Image Processing (EXJ)
Implementing an ImageObserver (EXJ)
image producers
Image Processing (EXJ)
Producing Image Data (EXJ)
ImageButton class : The Button class (AWT)
ImageConsumer interface
ImageConsumer (AWT)
ImageConsumer (AWT)
(Reference page) (NUT)
ImageFetcher class : A Brief Tour of sun.awt.image (AWT)
ImageFilter class
ImageFilter Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_32.htm#JAWT-CH-19-REF-IMAGE
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.2

ImageFilter (AWT)
(Reference page) (NUT)
imagemaps : Images and Sounds (NUT)
ImageObserver : (Reference page) (NUT)
ImageObserver interface
Graphics Methods (AWT)
ImageObserver (AWT)
ImageObserver (AWT)
ImageProducer interface
ImageProducer (AWT)
ImageProducer (AWT)
The java.awt.image Package (NUT)
(Reference page) (NUT)
ImageProducer object : Image Methods (AWT)
ImageRepresentation consumer : A Brief Tour of sun.awt.image (AWT)
InputStreamImageSource class : A Brief Tour of sun.awt.image (AWT)
java.awt.image : The java.awt.image Package (NUT)
loading (see loading images)
MediaTracker class : (Reference page) (NUT)
MemoryImageSource class
MemoryImageSource (AWT)
MemoryImageSource (AWT)
The java.awt.image Package (NUT)
(Reference page) (NUT)
modifying : PixelGrabber (AWT)
multimedia and : MediaTracker (AWT)
MVC and : The Model/View/Controller Framework
off-screen : Off-Screen Drawing (EXJ)
PixelGrabber class : PixelGrabber (AWT)
PPMImageDecoder class (example) : ImageConsumer Interface (AWT)
processing : Image Processing (EXJ)
ReplicateScaleFilter class
ReplicateScaleFilter (AWT)

ReplicateScaleFilter (AWT)
RGBImageFilter class
RGBImageFilter (AWT)
RGBImageFilter (AWT)
The java.awt.image Package (NUT)
scrollbars with : ScrollPane and Scrollbars (EXJ)

scrolling (example) : Scrolling An Image (AWT)
sequence of : A sequence of images (EXJ)
size of
Image Methods (AWT)
ImageObserver Interface (AWT)
ImageConsumer Interface (AWT)
Scaling and Size (EXJ)
sources, classes for : A Brief Tour of sun.awt.image (AWT)
Toolkit class and : Toolkit Methods (AWT)
imageUpdate()
Component Methods (AWT)
ImageObserver Interface (AWT)
(Reference page) (NUT)
imageUpdate() : Implementing an ImageObserver (EXJ)
implAccept() : ServerSocket (JFC)
implements clause : Interfaces (JLR)
implements clauses : Glossary (EXJ)
implements keyword : Interfaces (NUT)
import directive
Packages (JLR)
The import Directive (JLR)
import statement
The import Statement (NUT)
Including Files (NUT)
The package and import Statements (NUT)
top-level classes/interfaces : Nested Top-Level Classes and Interfaces (NUT)
import statements
Import (EXJ)
Importing Classes (EXJ)
Glossary (EXJ)
in (System.in) : Terminal I/O (EXJ)
in variable
System (JFC)
System (JLR)
inactiveCaption color : SystemColor Methods (AWT)
inactiveCaptionBorder color : SystemColor Methods (AWT)
inactiveCaptionText color : SystemColor Methods (AWT)
inClass()
SecurityManager (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.3

SecurityManager (JLR)
inClassLoader()
SecurityManager (JFC)
SecurityManager (JLR)
#include construct : No Preprocessor (NUT)
including files : Including Files (NUT)
inclusive OR (|) operator : Bitwise/Logical Inclusive OR Operator | (JLR)
IncompatibleClassChangeError
IncompatibleClassChangeError (JFC)
(Reference page) (NUT)
Errors (JLR)
increment (++) operator
Field Expressions (JLR)
Increment/Decrement Operators (JLR)
Operators (EXJ)
incremental class development : Incremental Development (EXJ)
incrementaldraw parameter : Component Methods (AWT)
incrementaldraw property : Image Observers (EXJ)
InDaylightTime() : (Reference page) (NUT)
inDaylightTime()
SimpleTimeZone class : SimpleTimeZone (JFC)
indentation conventions : Anonymous Class Indentation and Formatting (NUT)
index expressions : Index Expressions (JLR)
index [] operator : Arrays (EXJ)
index, array (see arrays)
IndexColorModel class
IndexColorModel (AWT)
IndexColorModel (AWT)
IndexColorModel interface : (Reference page) (NUT)
indexed color models : Color models (EXJ)
indexed properties : Bean Basics (NUT)
IndexedPropertyDescriptor class : (Reference page) (NUT)
indexOf()
(Reference page) (NUT)
String (JLR)
String class
String (JFC)
String (JFC)
Vector class : Vectors (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.2

indexOf()
Searching (EXJ)
java.util.Vector (EXJ)
IndexOutOfBoundsException
IndexOutOfBoundsException (JFC)
(Reference page) (NUT)
Runtime exceptions (JLR)
inequality (!=) operator : Operators (EXJ)
InetAddress (object) : HeartBeat (EXJ)
InetAddress class
The java.net Package (JFC)
InetAddress (JFC)
The java.net Package (NUT)
(Reference page) (NUT)
infinity values : Floating-point types (JLR)
infinity, data types for : Floating-Point Types (NUT)
inflate() : (Reference page) (NUT)
DataFormatException : DataFormatException (JFC)
Inflater class : Inflater (JFC)
Inflater class
Inflater (JFC)
The java.util.zip Package (NUT)
(Reference page) (NUT)
InflaterInputStream class
InflaterInputStream (JFC)
The java.util.zip Package (NUT)
(Reference page) (NUT)
info color : SystemColor Methods (AWT)
infoText color : SystemColor Methods (AWT)
inheritance
Introduction to the Reference Chapters
Extending a Class (NUT)
Scope Versus Inheritance (NUT)
Introduction (JLR)
Inheritance (JLR)
Class Inheritance (JLR)
Constructor inheritance (JLR)
Interface Inheritance (JLR)
Syntactic Sweet 'n Low (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2.1.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_04.htm#JFC-CH-1-SECT-4

Inheritance (EXJ)
Subclassing and Inheritance (EXJ)
Glossary (EXJ)
private classes and : Subclassing and Inheritance (EXJ)
private methods and : Method name (JLR)
resource bundles and : Working with Resource Bundles (NUT)
init()
Introduction to Applets (NUT)
Drawing Graphics (NUT)
Reading Applet Parameters (NUT)
(Reference page) (NUT)
Applets (JLR)
Applet class : Applet Methods (AWT)
MediaTracker class : Using a MediaTracker (AWT)
init()
Methods (EXJ)
Applet Control (EXJ)
versus constructors : Constructors (EXJ)
MediaTracker and : Using a MediaTracker (EXJ)
initializers
New Language Features in Java 1.1 (JLR)
Array Allocation Expressions (JLR)
Variable initializers (JLR)
Instance Initializers (JLR)
Interface variable initializers (JLR)
for creating arrays : Creating and Destroying Arrays (NUT)
ExceptionInInitializerError
ExceptionInInitializerError (JFC)
(Reference page) (NUT)
final fields and : Blank Finals (NUT)
IllegalAccessException : (Reference page) (NUT)
instance initializers
Instance Initializers (NUT)
New Java Syntax for Anonymous Classes (NUT)
local variable : Local variable initializers (JLR)
for local variables : Local Variable Declarations (NUT)
nested : Multidimensional Arrays (NUT)
static
Static Initializers (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5.1

Static Initializers (JLR)
initializing
arrays : Array Creation and Initialization (EXJ)
local variables : Local Variable Initialization (EXJ)
variables : Declaration and initialization (EXJ)
inner classes
Inner Classes (NUT)
Inner Classes and Other New Language Features (NUT)
New Language Features in Java 1.1 (JLR)
Field Expressions (JLR)
Inner Classes (JLR)
anonymous classes : Anonymous Classes (NUT)
events and : Scribbling with Inner Classes (NUT)
local classes
Local Classes (NUT)
Anonymous Classes versus Local Classes (NUT)
member classes : Member Classes (NUT)
nested top-level
An Overview of Inner Classes (NUT)
Nested Top-Level Classes and Interfaces (NUT)
input
User Input (AWT)
The java.io Package (JFC)
I/O (JFC)
Checkbox component
Checkbox (AWT)
Checkbox (AWT)
CheckboxGroup class
CheckboxGroup (AWT)
CheckboxGroup (AWT)
Choice component
Choice (AWT)
Choice (AWT)
dialogs (see dialogs; FileDialog class)
InputEvent class
InputEvent (AWT)

InputEvent (AWT)
InterruptedIOException : InterruptedIOException (JFC)
IOException : IOException (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_01.htm#JFC-CH-10-SECT-1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_30.htm#JFC-CH-11-REF-INTERRUPTEDIOEXCEPTION

keyboard : The TextField and TextArea classes (AWT)
List component : Lists (AWT)
menus for (see menus)
multiline text (see text, TextArea class)
single-line text (see text, TextField class)
text (see text)
input streams
Input Streams and Readers (JFC)
The java.io Package (JFC)
BufferedInputStream class
BufferedReader and BufferedInputStream (JFC)
BufferedInputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
ByteArrayInputStream class
CharArrayReader and ByteArrayInputStream (JFC)
ByteArrayInputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
CheckedInputStream class
CheckedInputStream (JFC)
(Reference page) (NUT)
DataInputStream class
DataInputStream (JFC)
DataInputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
FileInputStream class
FileInputStream and FileReader (JFC)
Sockets for Connection-Oriented Protocols (JFC)
FileInputStream (JFC)
Internationalization (NUT)
The java.io Package (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
FilterInputStream class
FilterInputStream and FilterReader (JFC)
FilterInputStream (JFC)
The java.io Package (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM

GZIPInputStream class
The java.util.zip Package (JFC)
GZIPInputStream (JFC)
(Reference page) (NUT)
InflaterInputStream class
InflaterInputStream (JFC)
The java.util.zip Package (NUT)
(Reference page) (NUT)
InputStream class
The java.io Package (JFC)
InputStream (JFC)
InputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
InputStreamReader class
The java.io Package (JFC)
InputStreamReader (JFC)
InputStreamReader (JFC)
Internationalization (NUT)
Character Encodings (NUT)
(Reference page) (NUT)
LineNumberInputStream class
LineNumberReader and LineNumberInputStream (JFC)
LineNumberInputStream (JFC)
(Reference page) (NUT)
ObjectInputStream class
The java.io Package (JFC)
ObjectInputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
PipedInputStream class
PipedInputStream and PipedReader (JFC)
PipedOutputStream and PipedWriter (JFC)
PipedInputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
PushbackInputStream class
PushbackInputStream and PushbackReader (JFC)
PushbackInputStream (JFC)

(Reference page) (NUT)
SequenceInputStream class
SequenceInputStream (JFC)
SequenceInputStream (JFC)
(Reference page) (NUT)
StreamCorruptedException : (Reference page) (NUT)
StreamTokenizer class : StreamTokenizer (JFC)
StringBufferInputStream class
StringReader and StringBufferInputStream (JFC)
StringBufferInputStream (JFC)
(Reference page) (NUT)
ZipInputStream class
ZipInputStream (JFC)
(Reference page) (NUT)
input/output (see java.io package)
Input/Output Facilities (EXJ)
InputEvent class : (Reference page) (NUT)
InputStream (class)
Streams (EXJ)
Terminal I/O (EXJ)
InputStreamReader (class) : Streams (EXJ)
insert()
(Reference page) (NUT)
StringBuffer (JLR)
java.lang.StringBuffer (EXJ)
Choice component : Component Methods (AWT)
Menu class : Menu Methods (AWT)
StringBuffer class : StringBuffer (JFC)
TextArea class : TextArea Methods (AWT)
insertElement() : java.util.Vector (EXJ)
insertElementAt() : Vectors (JFC)
inserting text : TextComponent Methods (AWT)
insertSeparator() : Menu Methods (AWT)
insertText() : (Reference page) (NUT)
insets() : Container Methods (AWT)
Insets class
Insets (AWT)
Insets (AWT)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_33.htm#JAWT-CH-19-REF-INSETS

inside()
(Reference page) (NUT)
Container class : Component Methods (AWT)
Polygon class : Polygon Methods (AWT)
Rectangle class : Rectangle Methods (AWT)
installation directory, Java : System Properties (EXJ)
installing beans : Installing a Bean (NUT)
instance initializers
Instance Initializers (NUT)
New Java Syntax for Anonymous Classes (NUT)
New Language Features in Java 1.1 (JLR)
Instance Initializers (JLR)
instance methods
Classes (EXJ)
Glossary (EXJ)
instance variables
Instance Variables (EXJ)
Classes (EXJ)
Glossary (EXJ)
initializers and : Static Initializers (NUT)
versus class variables : Class Variables (NUT)
instanceof operator
Operators (NUT)
Operators (NUT)
The instanceof Operator (JLR)
Operators (EXJ)
instanceof (EXJ)
java.util.Vector (EXJ)
Getting the Content as an Object (EXJ)
Glossary (EXJ)
instances
Objects Are Instances of a Class (NUT)
Glossary (EXJ)
class
Class Instances and Objects (EXJ)
Classes (EXJ)
instances, enclosing : Member classes (JLR)
instantiate() : (Reference page) (NUT)
instantiation

InstantiationError : InstantiationError (JFC)
InstantiationException : InstantiationException (JFC)
InstantiationError
(Reference page) (NUT)
Errors (JLR)
InstantiationException
(Reference page) (NUT)
Other exceptions (JLR)
java.lang.Class (EXJ)
int (type)
Primitive Types (EXJ)
Integer literals (EXJ)
Glossary (EXJ)
int data type
(Reference page) (NUT)
Integer types (JLR)
intBitsToFloat(: Float (JFC)
intBitsToFloat()
(Reference page) (NUT)
Float (JLR)
Integer() : Integer (JFC)
Integer class
Integer (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
Integer (JLR)
integer data types : Integer types (JLR)
integer literals
Integer literals (JLR)
Integer literals (EXJ)
converting double to : java.lang.Math (EXJ)
integral data types : Integral Types (NUT)
integral operators : Operators (EXJ)
<< (leftwise shift)
Operators (EXJ)
Creating an image (EXJ)
interactive TV (ITV) : Java's Origins (EXJ)
interface (keyword) : Interfaces (EXJ)
interface data types : Interface Types (JLR)

casting
Casts (JLR)
interface definitions (see jawa.awt.peer package)
interfaces (see also under specific interface)
Interfaces (NUT)
Encapsulation (JLR)
Interfaces (JLR)
Interface Declarations (JLR)
Syntactic Sweet 'n Low (EXJ)
Reference Types (EXJ)
Interfaces (EXJ)
Glossary (EXJ)
AdjustmentListener interface : (Reference page) (NUT)
declaring : Lexical Scope of Declarations (JLR)
import directive : The import Directive (JLR)
InstantiationError : (Reference page) (NUT)
listeners (see listener interfaces)
modifiers for : Interface Modifiers (JLR)
nested top-level
An Overview of Inner Classes (NUT)
Nested Top-Level Classes and Interfaces (NUT)
Nested top-level classes and interfaces (JLR)
Nested Top-Level Interfaces (JLR)
packages and : Interfaces and Packages (EXJ)
peer (see peers)
sub-interfaces : Extending Interfaces (NUT)
variables in : Interface Variables (JLR)
intern()
String (JFC)
String (JLR)
InternalError
InternalError (JFC)
(Reference page) (NUT)
Errors (JLR)
internalGet() : Calendar (JFC)
internationalization
Internationalization (NUT)
Internationalization (NUT)
Text Encoding (EXJ)

java.text class : The java.text Package (JFC)
java.util class : The java.util Package (JFC)
local customs : Handling Local Customs (NUT)
locales
Internationalization (NUT)
A Word About Locales (NUT)
of messages : Localizing User-Visible Messages (NUT)
UTF-8 encoding : The UTF-8 Encoding (JFC)
Internet (see java.net package)
interpreted languages : Interpreted (NUT)
interpreter (see java interpreter)
Glossary (EXJ)
interrupt()
Interrupting a thread (JFC)
Thread (JFC)
(Reference page) (NUT)
Interrupting a thread (JLR)
Thread (JLR)
Interrupt() : Controlling Threads (EXJ)
interrupted()
Thread (JFC)
(Reference page) (NUT)
Thread (JLR)
InterruptedException
InterruptedException (JFC)
Declaring Exceptions (NUT)
(Reference page) (NUT)
Other exceptions (JLR)
Exceptions (EXJ)
Controlling Threads (EXJ)
InterruptedException exception
Interrupting a thread (JFC)
Interrupting a thread (JLR)
InterruptedException, waiting and : MediaTracker Methods (AWT)
InterruptedIOException
InterruptedIOException (JFC)
(Reference page) (NUT)
interrupting threads : Interrupting a thread (JLR)
intersection() : Rectangle Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_05.htm#JFC-CH-1-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/appb_01.htm#JFC-APP-B
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.2
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_30.htm#JFC-CH-11-REF-INTERRUPTEDIOEXCEPTION

intersections with rectangles : Rectangle Methods (AWT)
intersects() : Rectangle Methods (AWT)
introspection mechanism
Reflection (NUT)
Bean Basics (NUT)
IntrospectionException : (Reference page) (NUT)
Introspector class
Java Beans (NUT)
(Reference page) (NUT)
intValue() : Byte (JFC)
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
Byte class : Byte (JLR)
Double class
Double (JFC)
Double (JLR)
Integer class
Integer (JFC)
Integer (JLR)
Long class
Long (JFC)
Long (JLR)
Number class
Number (JFC)
Number (JLR)
Short class
Short (JFC)
Short (JLR)
intValue() : Wrappers for Primitive Types (EXJ)
invalid containers (see containers)
invalidate()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
invalidateLayout() : The LayoutManager2 Interface (AWT)
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
GridBagLayout layout : GridBagLayout Methods (AWT)
InvalidClassException
InvalidClassException (JFC)

(Reference page) (NUT)
InvalidObjectException
InvalidObjectException (JFC)
(Reference page) (NUT)
inverse trigonometric functions : java.lang.Math (EXJ)
InvocationTargetException
InvocationTargetException (JFC)
(Reference page) (NUT)
invoke()
Method (JFC)
(Reference page) (NUT)
invoking methods : Method invocation (EXJ)
invoking overridden methods : Invoking an Overridden Method (NUT)
IOException
IOException (JFC)
Declaring Exceptions (NUT)
(Reference page) (NUT)
Terminal I/O (EXJ)
Print streams (EXJ)
File Streams (EXJ)
java.io.RandomAccessFile (EXJ)
Clients (EXJ)
HeartBeat (EXJ)
Getting the Content as an Object (EXJ)
isAbsolute() : (Reference page) (NUT)
File class : File (JFC)
isAbsolute() : File methods (EXJ)
isAbstract()
Modifier (JFC)
(Reference page) (NUT)
isActionKey()
KeyEvent (AWT)
(Reference page) (NUT)
isActive()
Applet class : Applet Methods (AWT)
AppletStub interface : AppletStub Interface (AWT)
isAlive()
Controlling a Thread (JFC)
Thread (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_04.htm#JFC-CH-13-REF-INVOCATIONTARGETEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm#JFC-CH-13-REF-METHOD
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2.1.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER

Controlling a Thread (JLR)
Thread (JLR)
isAltDown() : InputEvent (AWT)
isAncestorOf() : Container Methods (AWT)
isArray()
Class (JFC)
Class (JLR)
isAssignableFrom()
Class (JFC)
Class (JLR)
isBold() : The Font Class (AWT)
isConsumed() : (Reference page) (NUT)
AWTEvent class : AWTEvent (AWT)
InputEvent class : InputEvent (AWT)
isConsumer()
FilteredImageSource class : FilteredImageSource (AWT)
ImageProducer interface : ImageProducer Interface (AWT)
MemoryImageSource class : MemoryImageSource (AWT)
isConsumer() : Producing Image Data (EXJ)
isControlDown() : InputEvent (AWT)
isDaemon()
Thread class
Daemon threads (JFC)
Thread (JFC)
Daemon threads (JLR)
Thread (JLR)
ThreadGroup class
ThreadGroup (JFC)
ThreadGroup (JLR)
isDataFlavorSupported() : (Reference page) (NUT)
DataFlavor class : Transferable Interface (AWT)
StringSelection class : StringSelection Methods (AWT)
isDaylightTime()
TimeZone class : TimeZone (JFC)
isDecimalSeparatorAlwaysShown() : DecimalFormat (JFC)
isDesignTime() : (Reference page) (NUT)
isDestroyed()
ThreadGroup (JFC)
ThreadGroup (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_02.htm#JAWT-CH-16-SECT-2

isDigit()
Character (JFC)
Character (JLR)
isDirectory() : (Reference page) (NUT)
File class
File (JFC)
File (JFC)
ZIPEntry class : ZipEntry (JFC)
isDirectory() : File methods (EXJ)
isEditable() : TextComponent Methods (AWT)
isEmpty() : Rectangle Methods (AWT)
Dictionary class : Dictionary (JFC)
Hashtable class : Hashtable (JFC)
isEnabled()
Component class : Component Methods (AWT)
MenuItem class : MenuItem Methods (AWT)
isErrorAny()
MediaTracker Methods (AWT)
(Reference page) (NUT)
isErrorID()
MediaTracker Methods (AWT)
(Reference page) (NUT)
isFile()
File (JFC)
(Reference page) (NUT)
File class : File (JFC)
isFile() : File methods (EXJ)
isFinal() : Modifier (JFC)
isFocusTraversable()
Component Methods (AWT)
Keyboard Focus Traversal (NUT)
isGroupingUsed() : NumberFormat (JFC)
isGuiAvailable() : (Reference page) (NUT)
isIdentifierIgnorable()
Character (JFC)
Character (JLR)
isIndexSelected() : List Methods (AWT)
isInfinite()
Double class
Double (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER

(Reference page) (NUT)
Double (JLR)
Float class
Float (JFC)
(Reference page) (NUT)
Float (JLR)
isInstance()
Class (JFC)
Class (JLR)
isInstanceOf() : (Reference page) (NUT)
isInterface()
Class (JFC)
Modifier (JFC)
(Reference page) (NUT)
Class (JLR)
isInterrupted()
Interrupting a thread (JFC)
(Reference page) (NUT)
Interrupting a thread (JLR)
Thread (JLR)
Thread class : Thread (JFC)
isISOControl()
Character (JFC)
Character (JLR)
isItalic() : The Font Class (AWT)
isJavaIdentifierPart()
Character (JFC)
Character (JLR)
isJavaIdentifierStart()
Character (JFC)
Character (JLR)
isJavaLetter()
Character (JFC)
Character (JLR)
isJavaLetterOrDigit()
Character (JFC)
Character (JLR)
isLeapYear() : GregorianCalendar (JFC)
isLenient() : DateFormat (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER

Calendar class : Calendar (JFC)
isLetter()
Character (JFC)
Character (JLR)
isLetterOrDigit()
Character (JFC)
Character (JLR)
isLowerCase()
Character (JFC)
Character (JLR)
isMetaDown() : InputEvent (AWT)
isMimeTypeEqual()
DataFlavor Methods (AWT)
(Reference page) (NUT)
isModal() : Dialog Constructors and Methods (AWT)
isMulticastAddress() : InetAddress (JFC)
isMultipleMode() : List Methods (AWT)
isNaN()
Double class
Double (JFC)
(Reference page) (NUT)
Double (JLR)
Float class
Float (JFC)
(Reference page) (NUT)
Float (JLR)
isNaN() : Math Utilities (EXJ)
isNative() : Modifier (JFC)
ISO10646 encoding : Glossary (EXJ)
ISO8859-1 encoding
Unicode and Character Escapes (NUT)
Unicode (NUT)
Text Encoding (EXJ)
Glossary (EXJ)
isParseIntegerOnly() : NumberFormat (JFC)
isPlain() : The Font Class (AWT)
isPopupTrigger()
MouseEvent (AWT)
Popup Menus and Menu Shortcuts (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_02.htm#JNUT2-CH-8-SECT-2

(Reference page) (NUT)
(Reference page) (NUT)
isPrimitive()
Class (JFC)
Class Literals (JLR)
Class (JLR)
isPrivate() : Modifier (JFC)
isProbablePrime() : BigInteger (JFC)
isProbablyPrime() : (Reference page) (NUT)
isProtected() : Modifier (JFC)
isPublic()
Modifier (JFC)
(Reference page) (NUT)
isResizable()
Dialog class : Dialog Constructors and Methods (AWT)
Frame classM : Frame Methods (AWT)
isSelected() : List Methods (AWT)
isSet()
Calendar class : Calendar (JFC)
isShiftDown() : InputEvent (AWT)
isShowing() : Component Methods (AWT)
isSpace()
Character (JFC)
Character (JLR)
isSpaceChar()
Character (JFC)
Character (JLR)
isStatic() : Modifier (JFC)
isSynchronized() : Modifier (JFC)
isTearOff() : Menu Methods (AWT)
isTemporary()
FocusEvent (AWT)
(Reference page) (NUT)
isTitleCase()
Character (JFC)
Character (JLR)
isTransient() : Modifier (JFC)
isUnicodeIdentifierPart()
Character (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER

Character (JLR)
isUnicodeIdentifierStart()
Character (JFC)
Character (JLR)
isUpperCase()
Character (JFC)
Character (JLR)
isValid() : Component Methods (AWT)
isVisible() : Component Methods (AWT)
isVolatile() : Modifier (JFC)
isWhitespace()
Character (JFC)
Character (JLR)
ITALIC (value) : Fonts (EXJ)
ITALIC constant : The Font Class (AWT)
ITEM_ constants : ItemEvent (AWT)
ItemEvent class
ItemEvent (AWT)

ItemEvent (AWT)
(Reference page) (NUT)
ItemListener interface
ItemListener (AWT)

ItemListener (AWT)
(Reference page) (NUT)
ItemSelectable interface
ItemSelectable (AWT)

ItemSelectable (AWT)
(Reference page) (NUT)
itemStateChanged()
Constants (AWT)
ItemListener (AWT)
(Reference page) (NUT)
iteration statements : Iteration Statements (JLR)
continue statement and : The continue Statement (JLR)
iterative statements : Statements (EXJ)
ITV (interactive TV) : Java's Origins (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch09_05.htm#JAWT-CH-9-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_34.htm#JAWT-CH-19-REF-ITEMSELECTABLE
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_34.htm#JAWT-CH-19-REF-ITEMSELECTABLE
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_34.htm#JAWT-CH-19-REF-ITEMSELECTABLE

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

J
J-code : A Virtual Machine (EXJ)
JAR files
The Applet Tag (AWT)
Applet Changes (NUT)
JAR Files (NUT)
jar tool : jar (NUT)
preparing beans : Packaging a Bean (NUT)
Java
API : Packages of the Java API (NUT)
API packages : Basic Utility Classes (EXJ)
applets (see applets)
availability of : Availability (EXJ)
C++ language versus : Classes and Objects in Java (NUT)
code (see byte-code)
compared to C, C++ : Java Compared (EXJ)
compiler (see javac)
converting source code to ASCII : native2ascii (NUT)
debugging (see jdb)
depreciated features : Deprecated Features (NUT)
differences from C : How Java Differs from C (NUT)
documentation (see doc comments)
as general application language : Java as a General Application Language (EXJ)
GUI concepts : GUI Concepts in Java (EXJ)
history of : Java's Origins (EXJ)
input/output : Input/Output Facilities (EXJ)
interpreter : A Virtual Machine (EXJ)
numbers in
Instance Variables (EXJ)
online information about : Getting Wired (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch00_04.htm#EXJ-PREF-SECT-3

programming in (see programming in Java)
resources for further reading : Other Java Books and Resources (AWT)
security manager (see security manager)
security of (see security)
Safety of Design (EXJ)
version 1.1 improvements : What's New in Java 1.1 (NUT)
version information : System Properties (EXJ)
versions of : Preface (AWT)
WWW and (see World Wide Web)
java (interpreter)
The Java Interpreter (EXJ)
-noasyncgc option : Garbage Collection (EXJ)
Java 1.0
Event class constants : Constants (AWT)
event handling
Java 1.0 Event Model (AWT)
The Java 1.1 Event Model (AWT)
mouse buttons in : Working With Mouse Buttons in Java 1.0 (AWT)
Java DataBase Connectivity (JDBC)
Java 1.1 Package-by-Package (NUT)
Enterprise APIs: JDBC, RMI, and Security (NUT)
Java Developers Kit (JDK) : appletviewer (NUT)
Java Development Kit (JDK)
Compiling a Java Source File (JLR)
Availability (EXJ)
Glossary (EXJ)
$JAVA directory : The Class Path (EXJ)
.java extension
The Java Compiler (EXJ)
Compilation Units (EXJ)
Glossary (EXJ)
.java file extension : Java Filenames and Directory Structure (NUT)
.java files : Lexical Scope of Declarations (JLR)
java interpreter
Program Structure and Environment (NUT)
java (NUT)
Running a Java Application (JLR)
-D option
Environment (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm#EXJ-CH-5-SECT-4.1

Specifying Individual Properties (NUT)
InternalError : (Reference page) (NUT)
OutOfMemoryError : (Reference page) (NUT)
StackOverflowError : (Reference page) (NUT)
Java Open Language Toolkit (JOLT) : Availability (EXJ)
Java virtual machine
UnknownError : (Reference page) (NUT)
VirtualMachineError : (Reference page) (NUT)
java virtual machine
-D option : System Properties (JFC)
-noasyncgc option : Garbage Collection (JFC)
Java WorkShop : Glossary (EXJ)
Java, version 1.1
Preface (JFC)
Introduction (JFC)
Java, version 1.1 changes : Preface (JLR)
java. hierarchy : Packages (EXJ)
java.applet package
Java 1.1 Package-by-Package (NUT)
The java.applet Package (NUT)
java.applet--> (see applets)
java.applet.AudioClip : Working with Audio (EXJ)
java.awt : Understand the Abstract Windowing Toolkit (EXJ)
java.awt package
Java 1.1 Package-by-Package (NUT)
The java.awt Package (NUT)
java.awt.Color : Colors
java.awt.datatransfer package
Cut-and-Paste (NUT)
Data Transfer with Cut-and-Paste (NUT)
The java.awt.datatransfer Package (NUT)
java.awt.event package : The java.awt.event Package (NUT)
java.awt.FileDialog (see FileDialog)
java.awt.FontMetrics : Font Metrics (EXJ)
java.awt.Fonts : Fonts (EXJ)
java.awt.Graphics (see images)
java.awt.image package : The java.awt.image Package (NUT)
java.awt.image.ColorModel : Color models (EXJ)
java.awt.image.MemoryImageSource : Creating an image (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_05.htm#JFC-CH-10-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch00_01.htm#JFC-PREF
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch00_01.htm#JLR2-PREFACE

java.awt.MediaTracker : Using a MediaTracker (EXJ)
java.awt.peer (see peer interfaces)
java.awt.peer package : The java.awt.peer Package (NUT)
java.beans package (see JavaBeans API)
java.class.path : System Properties (EXJ)
java.class.version : System Properties (EXJ)
java.home : System Properties (EXJ)
java.io : Input/Output Facilities (EXJ)
java.io package
The java.io Package (JFC)
I/O (JFC)
The java.io Package (JFC)
Java 1.1 Package-by-Package (NUT)
Internationalization (NUT)
Object Serialization (NUT)
The java.io Package (NUT)
java.io.File : java.io.File (EXJ)
java.lang package
The java.lang Package (JFC)
The java.lang Package (JFC)
Java 1.1 Package-by-Package (NUT)
The java.lang Package (NUT)
The java.lang Package (JLR)
Basic Utility Classes (EXJ)
primitive type wrappers : Wrappers for Primitive Types (EXJ)
java.lang.Class : java.lang.Class (EXJ)
java.lang.Object : The Object and Class Classes (EXJ)
java.lang.reflect package
The java.lang.reflect Package (JFC)
The java.lang.reflect Package (JFC)
Reflection (NUT)
Class Literals (NUT)
Bean Basics (NUT)
Reflection (NUT)
The java.lang.reflect Package (NUT)
java.lang.SecurityManager (see security manager)
java.lang.String (see strings)
java.lang.StringBuffer (see StringBuffer)
java.lang.System : System Properties (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_02.htm#JFC-CH-1-SECT-2

java.math package
The java.math Package (JFC)
The java.math Package (JFC)
Java 1.1 Package-by-Package (NUT)
The java.math Package (NUT)
java.net : Network Programming (EXJ)
java.net package
The java.net Package (JFC)
Networking (JFC)
The java.net Package (JFC)
Java 1.1 Package-by-Package (NUT)
The java.net Package (NUT)
java.net.DatagramSocket (see datagram sockets)
java.net.InetAddress : HeartBeat (EXJ)
java.net.Socket (see sockets)
java.net.URL (see URLs)
java.net.URLStreamHandler (see URLStreamHandler)
java.rmi package : Java 1.1 Package-by-Package (NUT)
java.security package : Java 1.1 Package-by-Package (NUT)
java.sql package : Java 1.1 Package-by-Package (NUT)
java.text package
The java.text Package (JFC)
The java.text Package (JFC)
Java 1.1 Package-by-Package (NUT)
Internationalization (NUT)
Handling Local Customs (NUT)
The java.text Package (NUT)
java.util package
The java.util Package (JFC)
The java.util Package (JFC)
Java 1.1 Package-by-Package (NUT)
The java.util Package (NUT)
java.util.Dictionary : java.util.Dictionary (EXJ)
java.util.Enumeration (see Enumeration interface)
java.util.Math (class) (see math utilities)
java.util.Properties : Properties (EXJ)
java.util.Random (see random numbers)
java.util.StringTokenizer : java.util.StringTokenizer (EXJ)
java.util.Vector (see vectors)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_07.htm#JFC-CH-1-SECT-7
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_04.htm#JFC-CH-1-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2.1.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_05.htm#JFC-CH-1-SECT-5

java.util.zip package
The java.util.zip Package (JFC)
The java.util.zip Package (JFC)
The java.util.zip Package (NUT)
java.vendor : System Properties (EXJ)
java.vendor.url : System Properties (EXJ)
java.version : System Properties (EXJ)
JavaBeans : Deprecated Methods and JavaBeans (AWT)
JavaBeans API
Java 1.1 Package-by-Package (NUT)
Java Beans (NUT)
Java Beans (NUT)
The java.beans Package (NUT)
BeanDescriptor class : (Reference page) (NUT)
BeanInfo class : Specifying Bean Information (NUT)
Beans class : (Reference page) (NUT)
BeansInfo interface : (Reference page) (NUT)
custom events
Bean Basics (NUT)
Custom Events (NUT)
Customizer interface
Defining a Bean Customizer (NUT)
(Reference page) (NUT)
design patterns : Naming Patterns and Conventions (NUT)
EventSetDescriptor class : (Reference page) (NUT)
Feature Descriptor class : (Reference page) (NUT)
IndexedPropertyDescriptor class : (Reference page) (NUT)
IntrospectionException : (Reference page) (NUT)
Introspector class : (Reference page) (NUT)
MethodDescriptor class : (Reference page) (NUT)
ParameterDescriptor class : (Reference page) (NUT)
preparing/installing beans : Packaging a Bean (NUT)
PropertyChangeEvent class : (Reference page) (NUT)
PropertyChangeListener interface : (Reference page) (NUT)
PropertyChangeSupport class : (Reference page) (NUT)
PropertyDescriptor class : (Reference page) (NUT)
PropertyEditor interface
Defining a Simple Property Editor (NUT)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_08.htm#JFC-CH-1-SECT-8

PropertyEditorManager class : (Reference page) (NUT)
PropertyEditorSupport class : (Reference page) (NUT)
PropertyVetoException : (Reference page) (NUT)
SimpleBeanInfo class : (Reference page) (NUT)
VetoableChangeListener interface : (Reference page) (NUT)
VetoableChangeSupport class : (Reference page) (NUT)
Visibility interface : (Reference page) (NUT)
javac (compiler)
Hello Web! (EXJ)
The Java Compiler (EXJ)
-O option : Compiler optimiziations
unreachable statements and : Statements (EXJ)
javac compiler
javac (NUT)
Compiling a Java Source File (JLR)
javadoc
javadoc (NUT)
Comments (EXJ)
javadoc program : Documentation Comments (JLR)
javadoc tag : Java Documentation Comment Syntax (NUT)
javah : javah (NUT)
javakey tool
Enterprise APIs: JDBC, RMI, and Security (NUT)
Signed Applets (NUT)
javakey (NUT)
javap class disassembler : javap (NUT)
JavaScript language
Java Compared (EXJ)
Glossary (EXJ)
jdb (Java debugger) : jdb (NUT)
commands : jdb (NUT)
JDBC (Java DataBase Connectivity)
Java 1.1 Package-by-Package (NUT)
Enterprise APIs: JDBC, RMI, and Security (NUT)
JDK (Java Developers Kit) : appletviewer (NUT)
JDK (Java Development Kit)
Availability (EXJ)
Glossary (EXJ)
JIT compilers

High-Performance (NUT)
(Reference page) (NUT)
join()
Rendezvous (JFC)
Thread (JFC)
(Reference page) (NUT)
Rendezvous (JLR)
Thread (JLR)
joinGroup()
MulticastSocket (JFC)
(Reference page) (NUT)
JOLT (Java Open Language Toolkit) : Availability (EXJ)
Joy, Bill : Java's Origins (EXJ)
just-in-time compilers : High-Performance (NUT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

K
KEY_ constants : KeyEvent (AWT)
KEY_ events
Constants (AWT)
KeyEvent (AWT)
key text properties : KeyEvent (AWT)
key values : java.util.Hashtable (EXJ)
key-certification agency : Signing Classes (EXJ)
keyboard
events
Key and Modifier Constants (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
focus traversal : Keyboard Focus Traversal (NUT)
KeyAdapter class : (Reference page) (NUT)
KeyEvent class : (Reference page) (NUT)
KeyListener interface : (Reference page) (NUT)
menu shortcuts
Popup Menus and Menu Shortcuts (NUT)
Popup Menus and Menu Shortcuts (NUT)
modifiers
(Reference page) (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
keyboard events (see also events)
Constants (AWT)
buttons and : Button Events (AWT)
Checkbox component and : Checkbox Events (AWT)
Choice component and : Choice Events (AWT)
constants for each key : KeyEvent (AWT)
Event class constants for : Constants (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_02.htm#JNUT2-CH-8-SECT-2

key variable : Variables (AWT)

KeyAdapter class : KeyAdapter (AWT)
KeyEvent class
KeyEvent (AWT)

KeyEvent (AWT)

KeyListener interface : KeyListener (AWT)
KeyListener, KeyAdapter interfaces : KeyListener and KeyAdapter (AWT)
List component and : List Events (AWT)
listeners for (see listener interfaces)
modifiers for
Variables (AWT)
Constants (AWT)
Event Methods (AWT)
InputEvent (AWT)
KeyEvent (AWT)
MenuShortcut Methods (AWT)
key modifier text properties : KeyEvent (AWT)
TextArea class and : TextArea Events (AWT)
TextField class and : TextField Events (AWT)
keyboard input : The TextField and TextArea classes (AWT)
keyboard shortcuts
MenuShortcut (AWT)
MenuBar Methods (AWT)
keyDown()
Button component : Button Events (AWT)
Checkbox component : Checkbox Events (AWT)
Choice component and : Choice Events (AWT)
Component class : Component Events (AWT)
Event class : Constants (AWT)
List component : List Events (AWT)
TextArea class : TextArea Events (AWT)
TextField class : TextField Events (AWT)
keyEvent() : KeyEvent (AWT)
keyPressed()
Constants (AWT)
KeyListener and KeyAdapter (AWT)
keyReleased()
Constants (AWT)

KeyListener and KeyAdapter (AWT)
keys() : java.util.Hashtable (EXJ)
keys() : (Reference page) (NUT)
Dictionary class : Dictionary (JFC)
Hashtable class
Hashtables (JFC)
Hashtable (JFC)
keyTyped() : KeyListener and KeyAdapter (AWT)
keyUp()
Button component : Button Events (AWT)
Checkbox component : Checkbox Events (AWT)
Choice component and : Choice Events (AWT)
Component class : Component Events (AWT)
Event class : Constants (AWT)
List component : List Events (AWT)
TextArea class : TextArea Events (AWT)
TextField class : TextField Events (AWT)
keywords : Keywords (JLR)
KEY_ACTION, KEY_ACTION_RELEASE events : Key and Modifier Constants (NUT)
KEY_PRESS, KEY_RELEASE events : Key and Modifier Constants (NUT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

L
Label() : Label Methods (AWT)
labeled statements : Labeled Statements (JLR)
labels
in break and continue statements : Labelled break and continue Statements (NUT)
Label class : (Reference page) (NUT)
Label component
Static Text (AWT)
Labels (AWT)
Label (AWT)
LabelPeer interface
LabelPeer (AWT)
(Reference page) (NUT)
for menu items : MenuItem Methods (AWT)
in switch statements : The switch Statement (NUT)
languages (see internationalization)
last()
CardLayout Methods (AWT)
BreakIterator (JFC)
CardLayout (EXJ)
BreakIterator class : (Reference page) (NUT)
CardLayout class : (Reference page) (NUT)
CharacterIterator interface
CharacterIterator (JFC)
(Reference page) (NUT)
StringCharacterIterator class : StringCharacterIterator (JFC)
lastElement() : Vectors (JFC)
lastIndexOf()
String (JFC)
(Reference page) (NUT)
String (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_35.htm#JAWT-CH-19-REF-LABEL

String class : String (JFC)
Vector class : Vectors (JFC)
lastIndexOf() : Searching (EXJ)
lastModified()
File (JFC)
(Reference page) (NUT)
File class : File (JFC)
lastModified() : File methods (EXJ)
lastPageFirst()
Methods (AWT)
(Reference page) (NUT)
Latin-1 encoding
Unicode (NUT)
Text Encoding (EXJ)
layout()
Layout (EXJ)
validate() and layout() (EXJ)
Component class : Component Methods (AWT)
ScrollPane container : ScrollPane Methods (AWT)
layout managers
The java.awt Package (NUT)
Layout (EXJ)
Layout managers (EXJ)
A TextEntryBox
Layout Managers (EXJ)
Glossary (EXJ)
BorderLayout class : (Reference page) (NUT)
CardLayout class : (Reference page) (NUT)
FlowLayout class : (Reference page) (NUT)
GridBagLayout class : (Reference page) (NUT)
GridLayout class : (Reference page) (NUT)
LayoutManager class : (Reference page) (NUT)
LayoutManager2 class : (Reference page) (NUT)
null : Absolute Positioning? (EXJ)
layoutContainer()
Methods of the LayoutManager Interface (AWT)
(Reference page) (NUT)
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_02.htm#JAWT-CH-17-SECT-2.2

FlowLayout layout : FlowLayout Methods (AWT)
GridLayout layout
GridLayout Methods (AWT)
GridBagLayout Methods (AWT)
HorizBagLayout layout : HorizBagLayout (AWT)
LayoutManager interface : LayoutManager Methods (AWT)
OrientableFlowLayout layout : OrientableFlowLayout (AWT)
VariableGridLayout layout : VariableGridLayout (AWT)
VerticalBagLayout layout : VerticalBagLayout (AWT)
layouts
Layouts (AWT)
Layouts (AWT)
Other Layouts Available on the Net (AWT)
BorderLayout
BorderLayout (AWT)
BorderLayout (AWT)
BorderLayout (AWT)
CardLayout
CardLayout (AWT)
CardLayout (AWT)
CardLayout (AWT)
combining : Combining Layouts (AWT)
containers and : Container Methods (AWT)
CornerLayout (example) : A New LayoutManager: CornerLayout (AWT)
designing : Designing Your Own LayoutManager (AWT)
disabling LayoutManager : Disabling the LayoutManager (AWT)
FlowLayout
FlowLayout (AWT)
FlowLayout (AWT)
FlowLayout (AWT)
GridBagConstraints class
GridBagConstraints (AWT)
GridBagConstraints (AWT)
GridBagLayout
GridBagLayout (AWT)
GridBagLayout (AWT)
GridBagLayout (AWT)
GridLayout
GridLayout (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_23.htm#JAWT-CH-19-REF-FLOWLAYOUT

GridLayout (AWT)
GridLayout (AWT)
HorizBagLayout : HorizBagLayout (AWT)
LayoutManager interface
Layouts (AWT)
The LayoutManager Interface (AWT)
LayoutManager (AWT)
LayoutManager2 interface
The LayoutManager2 Interface (AWT)

LayoutManager2 (AWT)
OrientableFlowLayout : OrientableFlowLayout (AWT)
scrollbar : ScrollPane Methods (AWT)
from sun.awt package : The sun.awt Layout Collection (AWT)
VariableGridLayout : VariableGridLayout (AWT)
VerticalBagLayout : VerticalBagLayout (AWT)
leading space (for fonts) : Font Metrics (EXJ)
leading, font : The FontMetrics Class (AWT)
leaveGroup()
MulticastSocket (JFC)
(Reference page) (NUT)
left shift (<<) operator : Left Shift Operator << (JLR)
leftwise shift (<<) operator
Operators (EXJ)
Creating an image (EXJ)
LEFT_ALIGNMENT constant : Component Methods (AWT)
length()
File class
File (JFC)
File (JFC)
(Reference page) (NUT)
RandomAccessFile class
RandomAccessFile (JFC)
RandomAccessFile (JFC)
String class
String (JFC)
String (JFC)
(Reference page) (NUT)
String (JLR)
StringBuffer class

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_36.htm#JAWT-CH-19-REF-LAYOUTMANAGER
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_37.htm#JAWT-CH-19-REF-LAYOUTMANAGER2
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_37.htm#JAWT-CH-19-REF-LAYOUTMANAGER2
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_37.htm#JAWT-CH-19-REF-LAYOUTMANAGER2

StringBuffer (JFC)
StringBuffer (JLR)
length (variable) : Using Arrays (EXJ)
length()
String Constructors (EXJ)
File methods (EXJ)
File Streams (EXJ)
length, array : Array Types (JLR)
less than (<) operator : Operators (EXJ)
less than or equal (<=) operator : Operators (EXJ)
less-than (<) operator : Less-Than Operator < (JLR)
less-than-or-equal-to (<=) operator : Less-Than-Or-Equal-To Operator <= (JLR)
lexical scope : Lexical Scope of Declarations (JLR)
lexical structure, Java : Notational Conventions (JLR)
lightweight components : Miscellaneous Improvements (NUT)
LightweightPeer interface
New Features of AWT in Java 1.1 (AWT)
The Peer Interfaces (AWT)

LightweightPeer (AWT)
(Reference page) (NUT)
line comments (see comments)
line increment, scrollbars : Scrollbar Methods (AWT)
line numbers
javac (NUT)
javap (NUT)
line.separator : System Properties (EXJ)
linefeed character
Division of the Input Stream into Lines (JLR)
Character literals (JLR)
lineno() : (Reference page) (NUT)
StreamTokenizer class : StreamTokenizer (JFC)
LineNumberInputStream class
LineNumberReader and LineNumberInputStream (JFC)
LineNumberInputStream (JFC)
(Reference page) (NUT)
LineNumberReader class
LineNumberReader and LineNumberInputStream (JFC)
LineNumberReader (JFC)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch15_02.htm#JAWT-CH-15-SECT-2

lines : Graphics Methods (AWT)
arcs : Graphics Methods (AWT)
connecting to form polygons : Graphics Methods (AWT)
width of : Graphics Methods (AWT)
lines, breaking programs into : Division of the Input Stream into Lines (JLR)
LinkageError
LinkageError (JFC)
(Reference page) (NUT)
Errors (JLR)
linked lists : Argument Passing and References (EXJ)
Lisp
Java Compared (EXJ)
Type Safety and Method Binding (EXJ)
list() : ThreadGroup (JLR)
Component class : Component Methods (AWT)
Container class
Container Methods (AWT)
(Reference page) (NUT)
File class
File (JFC)
File (JFC)
(Reference page) (NUT)
(Reference page) (NUT)
Properties class
Properties (JFC)
(Reference page) (NUT)
ThreadGroup class : ThreadGroup (JFC)
List class
The List class (AWT)
List Methods (AWT)
LIST_ events : List Events (AWT)
list()
Loading and Storing (EXJ)
File methods (EXJ)
listen()
SocketImpl class : SocketImpl (JFC)
listener interfaces
The Java 1.1 Event Model (AWT)
Event Listener Interfaces and Adapters (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_17.htm#JFC-CH-17-REF-PROPERTIES

The Java 1.1 Event Model (NUT)
AWTEventMulticaster class
AWTEventMulticaster (AWT)

AWTEventMulticaster (AWT)
for checkbox events : Checkbox Events (AWT)
components and : Component Events (AWT)
containers and : Container Methods (AWT)
for list events
Choice Events (AWT)
List Events (AWT)
for menu events : CheckboxMenuItem Events (AWT)
for menu item events : MenuItem Events (AWT)
for scrolling events : Scrollbar Events (AWT)
for text events
TextComponent Events (AWT)
TextField Events (AWT)
TextField class and : TextField Events (AWT)
windows and : Window Events (AWT)
listeners
Typical Uses of Local Classes (NUT)
Images and Sounds (NUT)
ActionListener interface : (Reference page) (NUT)
ComponentListener interface : (Reference page) (NUT)
ContainerListener interface : (Reference page) (NUT)
EventListener : (Reference page) (NUT)
EventListener interface : EventListener (JFC)
FocusListener interface : (Reference page) (NUT)
ItemListener interface : (Reference page) (NUT)
KeyListener interface : (Reference page) (NUT)
MouseListener interface : (Reference page) (NUT)
MouseMotionListener interface : (Reference page) (NUT)
PropertyChangeListener interface : (Reference page) (NUT)
TextListener interface : (Reference page) (NUT)
TooManyListenersException
TooManyListenersException (JFC)
(Reference page) (NUT)
VetoableChangeListener interface : (Reference page) (NUT)
WindowListener : (Reference page) (NUT)
ListResourceBundle class : ListResourceBundle (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_07.htm#JFC-CH-17-REF-EVENTLISTENER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_5F25.htm#JFC-CH-17-REF-TOOMANYLISTENERSEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_11.htm#JFC-CH-17-REF-LISTRESOURCEBUNDLE

lists
checkboxes (see checkboxes)
List class : (Reference page) (NUT)
List component
Lists (AWT)
List (AWT)
list events
Constants (AWT)
Choice Events (AWT)
List Events (AWT)
ListPeer interface
ListPeer (AWT)
(Reference page) (NUT)
ListResourceBundle class : (Reference page) (NUT)
pop-up : Choice (AWT)
literal expressions : Literal Expressions (JLR)
literals (see constants)
Literals (JLR)
Constant Expressions (JLR)
character : Character literals (EXJ)
floating-point : Floating-point literals (EXJ)
integer : Integer literals (EXJ)
string (see strings)
LiveConnect : The Applet Tag (AWT)
load()
Properties class
Properties (JFC)
(Reference page) (NUT)
Runtime class
Runtime (JFC)
(Reference page) (NUT)
Runtime (JLR)
System class
System (JFC)
(Reference page) (NUT)
System (JLR)
load() : Loading and Storing (EXJ)
loadClass()
ClassLoader (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_38.htm#JAWT-CH-19-REF-LIST
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_17.htm#JFC-CH-17-REF-PROPERTIES
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17

ClassLoader (JFC)
ClassLoader (JLR)
loadFile() : File Selection Dialog (EXJ)
loadImage() : (Reference page) (NUT)
loading class files : Loading Class Files (EXJ)
loading classes dynamically : ClassLoader (JFC)
loading classes securely : Loading Classes Securely (NUT)
LOADING constant : MediaTracker Methods (AWT)
loading images
How Images are Loaded (AWT)
MediaTracker (AWT)
ImageObserver constants for : ImageObserver Interface (AWT)
status of (see status, loading)
loadLibrary()
Runtime class
Runtime (JFC)
(Reference page) (NUT)
Runtime (JLR)
System class
System (JFC)
(Reference page) (NUT)
System (JLR)
local
character encodings : Unicode and Local Encodings (NUT)
classes
An Overview of Inner Classes (NUT)
Local Classes (NUT)
customs : Handling Local Customs (NUT)
variables
Local Variables (NUT)
Local Variable Declarations (NUT)
local classes
Anonymous Classes versus Local Classes (NUT)
Local classes (JLR)
Local Classes (JLR)
anonymous classes versus : Anonymous Classes versus Local Classes (NUT)
local variables
Local Variables (JLR)
Instance Variables (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17

Local Variables (EXJ)
Glossary (EXJ)
final
New Language Features in Java 1.1 (JLR)
Final local variables (JLR)
initializing : Local Variable Initialization (EXJ)
Locale class
Component Methods (AWT)
Locale (JFC)
A Word About Locales (NUT)
(Reference page) (NUT)
locales (see internationalization)
locate() : (Reference page) (NUT)
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
location()
Component class : Component Methods (AWT)
GridBagLayout layout : GridBagLayout Methods (AWT)
log()
Math (JFC)
Math (JLR)
log() : java.lang.Math (EXJ)
logging : Pipes (EXJ)
logical complement (!) operator : Operators (EXJ)
logical operators
Operators (NUT)
Operators (NUT)
Long() : Long (JFC)
long (type)
Primitive Types (EXJ)
Integer literals (EXJ)
Glossary (EXJ)
Long class
Long (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
Long (JLR)
long data type
Integral Types (NUT)

(Reference page) (NUT)
Integer types (JLR)
long integers
Integer literals (JLR)
longBitsToDouble()
Double (JFC)
(Reference page) (NUT)
Double (JLR)
longjmp() statements in C : Exceptions (EXJ)
longValue() : Byte (JFC)
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
Byte class : Byte (JLR)
Double class
Double (JFC)
Double (JLR)
Float class
Float (JFC)
Float (JLR)
Integer class
Integer (JFC)
Integer (JLR)
Long class
Long (JFC)
Long (JLR)
Number class
Number (JFC)
Number (JLR)
Short class
Short (JFC)
Short (JLR)
longValue() : Wrappers for Primitive Types (EXJ)
lookup() : (Reference page) (NUT)
loop() : AudioClip Interface (AWT)
loop() : Working with Audio (EXJ)
loops : Iteration Statements (JLR)
continue statement and : The continue Statement (JLR)
lostFocus()
Component class : Component Events (AWT)

TextArea class : TextArea Events (AWT)
TextField class and : TextField Events (AWT)
lostOwnership()
Data Transfer with Cut-and-Paste (NUT)
(Reference page) (NUT)
ClipboardOwner interface : ClipboardOwner Interface (AWT)
StringSelection class : StringSelection Methods (AWT)
LOST_FOCUS event
Constants (AWT)
TextField Events (AWT)
TextArea Events (AWT)
lowercase (see Character class; case sensitivity)
lowerCaseMode() : (Reference page) (NUT)
StreamTokenizer class : StreamTokenizer (JFC)
<applet> tags
The Applet Tag (EXJ)
Applet Parameters
align attribute : The Complete Applet Tag (EXJ)
alt attribute : The Complete Applet Tag (EXJ)
code attribute
Attributes (EXJ)
Loading Class Files (EXJ)
codebase attribute : Loading Class Files (EXJ)
height attribute
Attributes (EXJ)
The Complete Applet Tag (EXJ)
hspace attribute : The Complete Applet Tag (EXJ)
name attribute : The Complete Applet Tag (EXJ)
vspace attribute : The Complete Applet Tag (EXJ)
width attribute
Attributes (EXJ)
The Complete Applet Tag (EXJ)
<param> tag (HTML) : Embedding an Applet in a Web Page (JLR)
<param> tags
Parameters (EXJ)
Glossary (EXJ)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

M
macros : Defining Macros (NUT)
mail servers, obtaining examples by : Ftpmail (AWT)
main()
Program Structure and Environment (NUT)
Applications (JLR)
main() : The Java Interpreter (EXJ)
makeVisible() : List Methods (AWT)
MalformedURLException
MalformedURLException (JFC)
(Reference page) (NUT)
The URL class (EXJ)
malloc in C/C++ : Local Variable Initialization (EXJ)
Mandelbrot program (example) : MemoryImageSource (AWT)
manifest files : Applet Changes (NUT)
margins : (Reference page) (NUT)
mark()
BufferedInputStream class : BufferedInputStream (JFC)
BufferedReader class
BufferedReader and BufferedInputStream (JFC)
BufferedReader (JFC)
ByteArrayInputStream class : CharArrayReader and ByteArrayInputStream (JFC)
CharArrayReader class
CharArrayReader and ByteArrayInputStream (JFC)
CharArrayReader (JFC)
(Reference page) (NUT)
FilterInputStream class : FilterInputStream (JFC)
FilterReader class : FilterReader (JFC)
InputStream class
InputStream (JFC)
InputStream (JFC)

(Reference page) (NUT)
LineNumberInputStream class : LineNumberInputStream (JFC)
LineNumberReader class : LineNumberReader (JFC)
Reader class
Reader (JFC)
(Reference page) (NUT)
StringReader class
StringReader and StringBufferInputStream (JFC)
StringReader (JFC)
(Reference page) (NUT)
mark() : Buffered streams (EXJ)
marker interfaces : Marker Interfaces (NUT)
markSupported()
BufferedInputStream class : BufferedInputStream (JFC)
BufferedReader class : BufferedReader (JFC)
CharArrayReader class : CharArrayReader (JFC)
FilterInputStream class : FilterInputStream (JFC)
FilterReader class : FilterReader (JFC)
InputStream class
InputStream (JFC)
InputStream (JFC)
(Reference page) (NUT)
PushbackInputStream class : PushbackInputStream (JFC)
PushbackReader class : PushbackReader (JFC)
Reader class
Reader (JFC)
(Reference page) (NUT)
StringBufferInputStream class : StringReader and StringBufferInputStream (JFC)
StringReader class : StringReader (JFC)
Math class
Math (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
Math (JLR)
ArithmeticException : (Reference page) (NUT)
math utilities : Math Utilities (EXJ)
mathematics : The java.math Package (JFC)
ArithmeticException : ArithmeticException (JFC)
max()

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_07.htm#JFC-CH-1-SECT-7

Math (JFC)
Math (JLR)
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
max() : java.lang.Math (EXJ)
maxAscent value : The FontMetrics Class (AWT)
maximumLayoutSize() : The LayoutManager2 Interface (AWT)
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
GridBagLayout layout : GridBagLayout Methods (AWT)
MAX_PRIORITY (value) : Priorities (EXJ)
MAX_PRIORITY constant
Thread priority (JFC)
Thread priority (JLR)
MAX_VALUE constant : Integer types (JLR)
MAYSCRIPT parameter (<APPLET> tag) : The Applet Tag (AWT)
MediaTracker (object) : Using a MediaTracker (EXJ)
MediaTracker class
MediaTracker Methods (AWT)
(Reference page) (NUT)
member classes
An Overview of Inner Classes (NUT)
Member Classes (NUT)
Member classes (JLR)
Nested Top-Level and Member Classes (JLR)
visibility modifiers and : Member Classes and Visibility Modifiers (NUT)
member information, reflection and : Obtaining Class and Member Information (NUT)
Member interface
Member (JFC)
(Reference page) (NUT)
memory (see also performance)
Dynamic Memory Management (EXJ)
allocating/deallocating
Creating Objects (NUT)
java (NUT)
color and : ColorModel (AWT)
garbage collection : Graphics Methods (AWT)
garbage collection and : Garbage Collection (JFC)
image data size : PixelGrabber (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm#EXJ-CH-6-SECT-4.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_05.htm#JFC-CH-13-REF-MEMBER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_05.htm#JFC-CH-10-SECT-5

MemoryImageSource class
MemoryImageSource (AWT)
MemoryImageSource (AWT)
Miscellaneous Improvements (NUT)
The java.awt.image Package (NUT)
(Reference page) (NUT)
OutOfMemoryError
OutOfMemoryError (JFC)
(Reference page) (NUT)
Runtime class and : (Reference page) (NUT)
MemoryImageSource (class) : Creating an image (EXJ)
Menu() : Menu Methods (AWT)
MenuBar() : MenuBar Methods (AWT)
MenuComponent() : MenuComponent Methods (AWT)
MenuItem() : MenuItem Methods (AWT)
MenuItem (object) : Menus and Choices (EXJ)
menus
Menus (AWT)
Would You Like to Choose from the Menu? (AWT)
Putting It All Together (AWT)
Menus and Choices (EXJ)
checkboxes (see checkboxes)
CheckboxMenuItem class : (Reference page) (NUT)
CheckboxMenuItemPeer interface : (Reference page) (NUT)
Choice class : (Reference page) (NUT)
colors of : SystemColor Methods (AWT)
help menus : MenuBar Methods (AWT)
Menu class
Menu (AWT)
Menu (AWT)
(Reference page) (NUT)
menu events
MenuComponent Methods (AWT)
MenuItem Events (AWT)
CheckboxMenuItem Events (AWT)
Using Java 1.1 Events (AWT)
MenuBar class
MenuBar (AWT)
MenuBar (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_5F40.htm#JAWT-CH-19-REF-MENU
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_41.htm#JAWT-CH-19-REF-MENUBAR

(Reference page) (NUT)
MenuBarPeer interface
MenuBarPeer (AWT)
(Reference page) (NUT)
MenuComponent class
MenuComponent (AWT)
MenuComponent (AWT)
(Reference page) (NUT)
MenuComponentPeer interface
MenuComponentPeer (AWT)
(Reference page) (NUT)
MenuContainer class : (Reference page) (NUT)
MenuContainer interface
MenuContainer (AWT)
MenuContainer (AWT)
MenuItem class
MenuItem (AWT)
MenuItem (AWT)
(Reference page) (NUT)
MenuItemPeer interface
MenuItemPeer (AWT)
(Reference page) (NUT)
MenuPeer interface
MenuPeer (AWT)
(Reference page) (NUT)
MenuShortcut class
MenuShortcut (AWT)

MenuShortcut (AWT)
Popup Menus and Menu Shortcuts (NUT)
Popup Menus and Menu Shortcuts (NUT)
(Reference page) (NUT)
pop-up (see pop-up menus)
PopupMenu class
Popup Menus and Menu Shortcuts (NUT)
Popup Menus and Menu Shortcuts (NUT)
(Reference page) (NUT)
PopupMenuPeer interface : (Reference page) (NUT)
MenuShortcut() : MenuShortcut Methods (AWT)
menuText color : SystemColor Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_42.htm#JAWT-CH-19-REF-MENUCOMPONENT
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch10_02.htm#JAWT-CH-10-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_43.htm#JAWT-CH-19-REF-MENUCONTAINER
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_44.htm#JAWT-CH-19-REF-MENUITEM
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_45.htm#JAWT-CH-19-REF-MENUSHORTCUT
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_45.htm#JAWT-CH-19-REF-MENUSHORTCUT
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_45.htm#JAWT-CH-19-REF-MENUSHORTCUT
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_02.htm#JNUT2-CH-8-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_02.htm#JNUT2-CH-8-SECT-2

MessageFormat class
The java.text Package (JFC)
MessageFormat (JFC)
messages
internationalizing : Localizing User-Visible Messages (NUT)
message digests : Applet Changes (NUT)
MessageFormat class
Internationalization (NUT)
Formatted Messages (NUT)
The java.text Package (NUT)
(Reference page) (NUT)
to terminal : java (NUT)
Meta key (see modifiers)
metaDown()
Event Methods (AWT)
Key and Modifier Constants (NUT)
method invocation : Method invocation (EXJ)
method signature : The Java Interpreter (EXJ)
methods
Program Structure and Environment (NUT)
Using Object Methods (NUT)
A "Hello World" Program (JLR)
Methods (JLR)
Classes (EXJ)
Statements (EXJ)
Methods (EXJ)
Glossary (EXJ)
abstract
Abstract Methods (NUT)
Abstract Methods and Classes (EXJ)
AbstractMethodError : (Reference page) (NUT)
accessing : Accessing Members (EXJ)
associating with threads
Associating a Method with a Thread (JFC)
Associating a Method with a Thread (JLR)
binding : Type Safety and Method Binding (EXJ)
class : Class Methods (NUT)
constructor (see constructors)
declaring

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_06.htm#JNUT2-CH-11-SECT-6

Lexical Scope of Declarations (JLR)
Classes (EXJ)
final : final Methods (NUT)
finalizing : Finalization (EXJ)
fully qualified names of : No Global Variables (NUT)
IllegalAccessError : (Reference page) (NUT)
IllegalArgumentException : (Reference page) (NUT)
IllegalStateException
IllegalStateException (JFC)
(Reference page) (NUT)
instance
Classes (EXJ)
Glossary (EXJ)
interface : Interface Methods (JLR)
interfaces (see interfaces)
JavaBean API and : Bean Basics (NUT)
local variables : Local Variables (EXJ)
method call expressions : Method Call Expression (JLR)
Method class
Method (JFC)
(Reference page) (NUT)
MethodDescriptor class : (Reference page) (NUT)
modifiers for (see modifiers)
named : Invoking a Named Method (NUT)
native
A Virtual Machine (EXJ)
Packages (EXJ)
Glossary (EXJ)
NoSuchMethodError
NoSuchMethodError (JFC)
(Reference page) (NUT)
NoSuchMethodException
NoSuchMethodException (JFC)
(Reference page) (NUT)
overloaded
Method Overloading (NUT)
Method Overloading (NUT)
Method Call Expression (JLR)
overloading

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm#EXJ-CH-5-SECT-4.2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm#JFC-CH-13-REF-METHOD

Method Overloading (EXJ)
Method Overloading (EXJ)
Glossary (EXJ)
overridden : Overriding Methods (NUT)
overriding
Variable name (JLR)
Method name (JLR)
Method throws clause (JLR)
Overriding Methods (EXJ)
Glossary (EXJ)
passing arguments to : Argument Passing and References (EXJ)
renaming for Java 1.1
Deprecated Methods and JavaBeans (AWT)
Abstract Window Toolkit Overview (AWT)
RMI : Enterprise APIs: JDBC, RMI, and Security (NUT)
selecting to invoke : Method Call Expression (JLR)
serializing : Serializing Methods (EXJ)
shadowed
Shadowed Methods? (NUT)
Overriding Is Not Shadowing (NUT)
static (see methods, class)
Static Members (EXJ)
Static Members (EXJ)
Static Methods (EXJ)
Static method binding (EXJ)
super keyword and : super (JLR)
synchronized : Method modifiers (JLR)
UnsatisfiedLinkError : UnsatisfiedLinkError (JFC)
variable-length argument lists : No Variable-Length Argument Lists (NUT)
virtual : Type Safety and Method Binding (EXJ)
visibility (see visibility modifiers)
MIME (Multipurpose Internet Mail Extensions) : Writing a Content Handler (EXJ)
MIME content types
DataFlavor (AWT)

DataFlavor (AWT)
MIME types : (Reference page) (NUT)
min()
Math (JFC)
Math (JLR)

BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
minimumLayoutSize()
Methods of the LayoutManager Interface (AWT)
(Reference page) (NUT)
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
FlowLayout layout : FlowLayout Methods (AWT)
GridLayout layout
GridLayout Methods (AWT)
GridBagLayout Methods (AWT)
HorizBagLayout layout : HorizBagLayout (AWT)
LayoutManager interface : LayoutManager Methods (AWT)
OrientableFlowLayout layout : OrientableFlowLayout (AWT)
VerticalBagLayout layout : VerticalBagLayout (AWT)
minimumSize()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
List component : List Methods (AWT)
TextArea class : TextArea Methods (AWT)
TextField class : TextField Methods (AWT)
minus (-) operator, subtraction : Operators (EXJ)
minus (-) operator, unary
Unary Minus Operator - (JLR)
Operators (EXJ)
MIN_PRIORITY (value) : Priorities (EXJ)
MIN_PRIORITY constant
Thread priority (JFC)
Thread priority (JLR)
MIN_VALUE constant : Integer types (JLR)
missing variables, serialization and : Versioning of Classes (JFC)
MissingResourceException
MissingResourceException (JFC)
Working with Resource Bundles (NUT)
(Reference page) (NUT)
mkdir()
File (JFC)
(Reference page) (NUT)
File class : File (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm#EXJ-CH-6-SECT-4.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_13.htm#JFC-CH-17-REF-MISSINGRESOURCEEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5.1

mkdir(), mkdirs() : File methods (EXJ)
mkdirs()
File (JFC)
(Reference page) (NUT)
File class : File (JFC)
mod() : BigInteger (JFC)
modal windows : Dialogs (EXJ)
Model/View/Controller (see MVC framework)
modes, FileDialog class : FileDialog Methods (AWT)
modification times
java (NUT)
The Java Compiler (EXJ)
File methods (EXJ)
Modifier class : Modifier (JFC)
modifiers
Modifiers (NUT)
The paint() Method (EXJ)
Glossary (EXJ)
action event : ActionEvent (AWT)
class : Class Modifiers (JLR)
constructor : Constructor modifiers (JLR)
getModifiers()
InputEvent (AWT)
ActionEvent (AWT)
inner classes : Inner class modifiers (JLR)
inner interface : Inner interface modifiers (JLR)
interface : Interface Modifiers (JLR)
keyboard
Variables (AWT)
Constants (AWT)
Event Methods (AWT)
InputEvent (AWT)
KeyEvent (AWT)
(Reference page) (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
key modifier text properties : KeyEvent (AWT)
keyboard event : Key and Modifier Constants (NUT)
list of : Modifiers (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER

method
Method modifiers (JLR)
Interface method modifiers (JLR)
Modifier class : (Reference page) (NUT)
mouse : (Reference page) (NUT)
mouse button
Constants (AWT)
Event Methods (AWT)
InputEvent (AWT)
mouse button event : Mouse Buttons (NUT)
variable
Variable modifiers (JLR)
Interface variable modifiers (JLR)
modifiers, keyboard
for menu shortcuts : MenuShortcut Methods (AWT)
modInverse()
BigInteger (JFC)
(Reference page) (NUT)
modPow() : (Reference page) (NUT)
modulus (see remainder operator)
monitor resolution : Toolkit Methods (AWT)
monitor size : Toolkit Methods (AWT)
monitors : Synchronization (EXJ)
monospaced fonts : Miscellaneous Improvements (NUT)
more than (see greater than)
mouse
button event modifiers : Mouse Buttons (NUT)
cursor
Miscellaneous Improvements (NUT)
(Reference page) (NUT)
events
Handling Events (NUT)
(Reference page) (NUT)
modifiers : (Reference page) (NUT)
MouseAdapter class : (Reference page) (NUT)
MouseListener interface : (Reference page) (NUT)
MouseMotionAdapter class : (Reference page) (NUT)
MouseMotionListener interface : (Reference page) (NUT)
MOUSE_ constants : MouseEvent (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch06_04.htm#JNUT2-CH-6-SECT-4

mouse events (see also events)
Constants (AWT)
buttom modifiers : Event Methods (AWT)
button modifiers
Constants (AWT)
InputEvent (AWT)
clickCount variable : Variables (AWT)
Component class and : Component Events (AWT)
in Java 1.0 : Working With Mouse Buttons in Java 1.0 (AWT)
listeners for (see listener interfaces)

MouseAdapter class : MouseAdapter (AWT)
MouseAdapter interfaces : MouseListener and MouseAdapter (AWT)
MouseEvent class
MouseEvent (AWT)

MouseEvent (AWT)

MouseListener interface : MouseListener (AWT)
MouseListener interfaces : MouseListener and MouseAdapter (AWT)

MouseMotionAdapter class : MouseMotionAdapter (AWT)
MouseMotionAdapter interface : MouseMotionListener and MouseMotionAdapter (AWT)

MouseMotionListener class : MouseMotionListener (AWT)
MouseMotionListener interface : MouseMotionListener and MouseMotionAdapter (AWT)
scrollbars and : Scrollbar Events (AWT)
mouse for text selection : TextComponent Methods (AWT)
mouseClicked() : MouseListener and MouseAdapter (AWT)
mouseDown()
Component class : Component Events (AWT)
Event class : Constants (AWT)
mouseDown(), mouseUp() : Handling Events (NUT)
mouseDrag() : Handling Events (NUT)
Component class : Component Events (AWT)
Event class : Constants (AWT)
mouseDrag() : Clipping (EXJ)
mouseDragged()
Constants (AWT)
MouseMotionListener and MouseMotionAdapter (AWT)
mouseEnter()
Component class : Component Events (AWT)
Event class : Constants (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch06_04.htm#JNUT2-CH-6-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch06_04.htm#JNUT2-CH-6-SECT-4

mouseEntered()
Constants (AWT)
MouseListener and MouseAdapter (AWT)
MouseEvent() : MouseEvent (AWT)
mouseExit()
Component class : Component Events (AWT)
Event class : Constants (AWT)
mouseExited()
Constants (AWT)
MouseListener and MouseAdapter (AWT)
mouseMove()
Component class : Component Events (AWT)
Event class : Constants (AWT)
mouseMoved()
Constants (AWT)
MouseMotionListener and MouseMotionAdapter (AWT)
mousePressed()
Constants (AWT)
MouseListener and MouseAdapter (AWT)
mouseReleased()
Constants (AWT)
MouseListener and MouseAdapter (AWT)
mouseUp()
Component class : Component Events (AWT)
Event class : Constants (AWT)
move() : (Reference page) (NUT)
Component class : Component Methods (AWT)
Point class : Point Methods (AWT)
movePointLeft() : BigDecimal (JFC)
movePointRight() : BigDecimal (JFC)
multi-dimensional arrays
Array Types (JLR)
Array Allocation Expressions (JLR)
Variable type (JLR)
Local variable type (JLR)
multi-line text : (Reference page) (NUT)
MulticastSocket class : (Reference page) (NUT)
multidimensional arrays
Multidimensional Arrays (NUT)
Multidimensional Arrays (EXJ)

multiline input (see text, TextArea class)
MultiLineLabel component : A Simple Bean (NUT)
multimedia : MediaTracker (AWT)
MediaTracker class
MediaTracker Methods (AWT)
MediaTracker (AWT)
multiplication (*) operator : Operators (EXJ)
multiplicative operators : Multiplicative Operators (JLR)
multiply()
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
multithreaded programs (see threads)
multithreading (see threads)
MVC framework
Peers (EXJ)
Glossary (EXJ)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_39.htm#JAWT-CH-19-REF-MEDIATRACKER

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

N
NAME attribute
<APPLET> tag : The <APPLET> Tag (NUT)
<PARAM> tag : The <PARAM> Tag (NUT)
name attribute (<applet> tag)
Embedding an Applet in a Web Page (JLR)
The Complete Applet Tag (EXJ)
named methods : Invoking a Named Method (NUT)
names : Naming Conventions (JLR)
applet
Attributes (EXJ)
The Complete Applet Tag (EXJ)
Loading Class Files (EXJ)
classes : Class Name (JLR)
clipboards : Clipboard Methods (AWT)
of components : Component Methods (AWT)
constructors : Constructor name (JLR)
of data flavors (MIME types) : DataFlavor Methods (AWT)
directories and files : File methods (EXJ)
filenames : Compiling a Java Source File (JLR)
of fonts
The Font Class (AWT)
Fonts (EXJ)
inner classes : Class Literals (JLR)
interface : Interface Name (JLR)
labels : Labeled Statements (JLR)
local variables : Local variable name (JLR)
menu components : MenuComponent Methods (AWT)
methods
Method name (JLR)
Interface method name (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch15_02.htm#JNUT2-CH-15-SECT-2

NAME parameter
<APPLET> tag : The Applet Tag (AWT)
<PARAM> tag : The Applet Tag (AWT)
package : Packages (JLR)
packages : A Word About Package Names (EXJ)
variables
Variable name (JLR)
Interface variable name (JLR)
naming
class files : Java Filenames and Directory Structure (NUT)
constructors : Defining a Constructor (NUT)
fields : No Global Variables (NUT)
fully qualified names : No Global Variables (NUT)
JavaBean API and : Naming Patterns and Conventions (NUT)
methods : No Global Variables (NUT)
packages : Globally Unique Package Names (NUT)
variables : No Global Variables (NUT)
NaN (not a number) (value)
Math Utilities (EXJ)
Glossary (EXJ)
NaN value
String Concatenation (JFC)
Double (JFC)
Float (JFC)
Floating-Point Types (NUT)
Floating-point types (JLR)
Double (JLR)
Float (JLR)
native methods
Method modifiers (JLR)
A Virtual Machine (EXJ)
Packages (EXJ)
Glossary (EXJ)
native modifier
Modifiers (NUT)
Modifiers (NUT)
native2ascii program
New JDK Utilities (NUT)
native2ascii (NUT)

natural logarithms : java.lang.Math (EXJ)
needsDictionary() : Inflater (JFC)
needsGui() : (Reference page) (NUT)
needsInput()
Deflater class : Deflater (JFC)
Inflater class : Inflater (JFC)
negate()
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
negation (!) operator, boolean : Boolean Negation Operator ! (JLR)
negation (~) operator, bitwise : Bitwise Negation Operator ~ (JLR)
negative numbers
Integer types (JLR)
Floating-point types (JLR)
NegativeArraySizeException : Runtime exceptions (JLR)
NEGATIVE_INFINITY constant
Double (JFC)
Float (JFC)
Floating-point types (JLR)
Double (JLR)
Float (JLR)
unary minus (-) and : Unary Minus Operator - (JLR)
zero : Floating-point types (JLR)
negative zero, data types for : Floating-Point Types (NUT)
NegativeArraySizeException
NegativeArraySizeException (JFC)
(Reference page) (NUT)
NEGATIVE_INFINITY (value) : Math Utilities (EXJ)
NEGATIVE_INFINITY constant : String Concatenation (JFC)
nested
arrays (see multi-dimensional arrays)
statement blocks : Lexical Scope of Declarations (JLR)
top-level classes/interfaces
Nested top-level classes and interfaces (JLR)
Nested Top-Level and Member Classes (JLR)
Nested Top-Level Interfaces (JLR)
nested initializers : Multidimensional Arrays (NUT)
nesting comments : Comments (EXJ)
Netscape

JavaScript
Java Compared (EXJ)
Glossary (EXJ)
Navigator
Applets and Files (EXJ)
Web Browsers and Handlers (EXJ)
Netscape Navigator : Abstract Window Toolkit Overview (AWT)
FileDialog class and : FileDialog (AWT)
network byte order : The DateAtHost Client (EXJ)
Network Time Protocol (NTP) : The DateAtHost Client (EXJ)
networking
connection-oriented protocols
Sockets (JFC)
Sockets for Connection-Oriented Protocols (JFC)
connectionless protocols
Sockets (JFC)
Sockets for Connectionless Protocols (JFC)
sockets : Sockets (JFC)
networks : Network Programming (EXJ)
new operator
Creating Objects (NUT)
Objects Are Instances of a Class (NUT)
New Syntax for Member Classes (NUT)
Array Types (JLR)
Variables (EXJ)
The New Operator (EXJ)
Object creation (EXJ)
Classes (EXJ)
Constructors (EXJ)
Glossary (EXJ)
anonymous classes and : Anonymous Classes (NUT)
creating arrays : Creating and Destroying Arrays (NUT)
multidimensional arrays and : Multidimensional Arrays (EXJ)
newEras() : DateFormatSymbols (JFC)
newInstance()
Class (JFC)
Object Creation (JLR)
Other exceptions (JLR)
Class (JLR)

Array class
Array (JFC)
(Reference page) (NUT)
Class class
Creating Objects (NUT)
(Reference page) (NUT)
Constructor class
Constructor (JFC)
(Reference page) (NUT)
newInstance() : java.lang.Class (EXJ)
newLine() : (Reference page) (NUT)
BufferedWriter class : BufferedWriter (JFC)
newlines (see whitespace)
newLocalPatternChars() : DateFormatSymbols (JFC)
newPixels() : MemoryImageSource (AWT)
newsgroups, Java : Online Resources (JLR)
newsgroups, Java-related : Other Java Books and Resources (AWT)
NewtonScript : Safety of Implementation (EXJ)
newZoneStrings() : DateFormatSymbols (JFC)
next()
CardLayout Methods (AWT)
BreakIterator (JFC)
CardLayout (EXJ)
CardLayout class : (Reference page) (NUT)
CharacterIterator interface
CharacterIterator (JFC)
(Reference page) (NUT)
CollationElementIterator class
CollationElementIterator (JFC)
(Reference page) (NUT)
Random class : Random (JFC)
StringCharacterIterator class : StringCharacterIterator (JFC)
nextBytes()
Random class : Random (JFC)
nextDouble()
ChoiceFormat (JFC)
(Reference page) (NUT)
Random class : Random (JFC)
nextDouble() : Random Numbers (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch00_04.htm#JLR2-PREFACE-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_19.htm#JFC-CH-17-REF-RANDOM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_19.htm#JFC-CH-17-REF-RANDOM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_19.htm#JFC-CH-17-REF-RANDOM

nextElement() : Enumeration (JFC)
Enumeration interface
Enumerations (JFC)
(Reference page) (NUT)
StringTokenizer class
StringTokenizer (JFC)
(Reference page) (NUT)
nextElement()
java.util.StringTokenizer (EXJ)
java.util.Enumeration (EXJ)
nextFloat() : (Reference page) (NUT)
Random class : Random (JFC)
nextFloat() : Random Numbers (EXJ)
nextFocus() : Component Methods (AWT)
nextGaussian()
Random (JFC)
(Reference page) (NUT)
nextGaussian() : Random Numbers (EXJ)
nextInt() : (Reference page) (NUT)
Random class : Random (JFC)
nextInt() : Random Numbers (EXJ)
nextLong() : (Reference page) (NUT)
Random class : Random (JFC)
nextLong() : Random Numbers (EXJ)
nextToken()
StreamTokenizer (JFC)
(Reference page) (NUT)
(Reference page) (NUT)
StringTokenizer class : StringTokenizer (JFC)
nextToken() : java.util.StringTokenizer (EXJ)
-noasyncgc option (java) : Garbage Collection (EXJ)
-noasyncgc option, java : Garbage Collection (JFC)
NoClassDefFoundError
NoClassDefFoundError (JFC)
(Reference page) (NUT)
Errors (JLR)
non-preemptive thread scheduling
Yielding (JFC)
Yielding (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_06.htm#JFC-CH-17-REF-ENUMERATION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_01.htm#JFC-CH-5-SECT-1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_19.htm#JFC-CH-17-REF-RANDOM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_19.htm#JFC-CH-17-REF-RANDOM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_19.htm#JFC-CH-17-REF-RANDOM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_19.htm#JFC-CH-17-REF-RANDOM
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm#EXJ-CH-5-SECT-4.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_05.htm#JFC-CH-10-SECT-5

nonexistent files : Getting the Content as an Object (EXJ)
NonZeroDigit characters : Integer literals (JLR)
normalizeMimeType() : DataFlavor Methods (AWT)
normalizeMimeTypeParameter() : DataFlavor Methods (AWT)
NORM_PRIORITY (value) : Priorities (EXJ)
NoRouteToHostException
NoRouteToHostException (JFC)
(Reference page) (NUT)
NoSuchElementException
NoSuchElementException (JFC)
(Reference page) (NUT)
NoSuchFieldError
NoSuchFieldError (JFC)
(Reference page) (NUT)
NoSuchFieldError error : Errors (JLR)
NoSuchFieldException
NoSuchFieldException (JFC)
(Reference page) (NUT)
Other exceptions (JLR)
NoSuchMethodError
NoSuchMethodError (JFC)
(Reference page) (NUT)
Errors (JLR)
NoSuchMethodException
NoSuchMethodException (JFC)
(Reference page) (NUT)
Other exceptions (JLR)
not() : BigInteger (JFC)
not (!) operator : run() (EXJ)
not equal (see inequality operator)
not operator (see negation operator)
not-a-number (NaN) value : Floating-Point Types (NUT)
not-a-number value
Double (JFC)
Float (JFC)
Floating-point types (JLR)
Double (JLR)
Float (JLR)
not-equal-to (!=) operator : Not-Equal-To-Operator != (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm#EXJ-CH-6-SECT-4.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_14.htm#JFC-CH-17-REF-NOSUCHELEMENTEXCEPTION

NotActiveException
NotActiveException (JFC)
(Reference page) (NUT)
notify()
Optimistic Single-Threaded Execution (JFC)
(Reference page) (NUT)
Optimistic Single-Threaded Execution (JLR)
Object (JLR)
wait() and notify() (EXJ)
IllegalMonitorStateException and : IllegalMonitorStateException (JFC)
Object class : Object (JFC)
notifyAll()
Optimistic Single-Threaded Execution (JFC)
(Reference page) (NUT)
Optimistic Single-Threaded Execution (JLR)
Object (JLR)
IllegalMonitorStateException and : IllegalMonitorStateException (JFC)
Object class : Object (JFC)
notifyAll()
wait() and notify() (EXJ)
The Message Passer (EXJ)
Pipes (EXJ)
notifyObservers() : Observable (JFC)
NotSerializableException
Writing Classes to Work with Serialization (JFC)
NotSerializableException (JFC)
(Reference page) (NUT)
-noverify option (java) : The Java Interpreter (EXJ)
NTP (Network Time Protocol) : The DateAtHost Client (EXJ)
null (value)
Variables (EXJ)
Glossary (EXJ)
character : Declaration and initialization (EXJ)
reference : null (EXJ)
null keyword
Reference Types (JLR)
null (JLR)
null value
null (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_37.htm#JFC-CH-11-REF-NOTSERIALIZABLEEXCEPTION

The if/else, while, and do/while Statements (NUT)
Reference Types (JLR)
NullPointerException : (Reference page) (NUT)
references : NullPointerException (JFC)
NullPointerException
NullPointerException (JFC)
null (JLR)
Runtime exceptions (JLR)
Variables (EXJ)
null (EXJ)
NumberFormatException
Runtime exceptions (JLR)
Double (JLR)
Float (JLR)
Wrappers for Primitive Types (EXJ)
numbers (see Character class)
Integer literals (JLR)
Instance Variables (EXJ)
constants
Integer types (JLR)
Floating-point types (JLR)
DateFormat class : (Reference page) (NUT)
DecimalFormat class
DecimalFormat (JFC)
(Reference page) (NUT)
digits (see Character class)
Enumeration interface : (Reference page) (NUT)
floating-point
Floating-point types (JLR)
Floating-point literals (EXJ)
hexadecimal : Integer literals (EXJ)
integer literals : Integer literals (EXJ)
internationalizing
Internationalization (NUT)
Handling Local Customs (NUT)
java.math package : The java.math Package (NUT)
math utilities : Math Utilities (EXJ)
NaN (value)
Math Utilities (EXJ)

Glossary (EXJ)
Number class
Number (JFC)
(Reference page) (NUT)
Number (JLR)
NumberFormat class
NumberFormat (JFC)
Handling Local Customs (NUT)
The java.text Package (NUT)
(Reference page) (NUT)
NumberFormatException
NumberFormatException (JFC)
(Reference page) (NUT)
octal : Integer literals (EXJ)
out-of-range values : Math Utilities (EXJ)
positive/negative infinity : Floating-Point Types (NUT)
positive/negative zero : Floating-point types (JLR)
psuedo-random : (Reference page) (NUT)
Random class : Random (JFC)
randomly generated
java.lang.Math (EXJ)
Random Numbers (EXJ)
sign of : Integer types (JLR)
SimpleDateFormat class : (Reference page) (NUT)
special : Floating-point types (JLR)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_19.htm#JFC-CH-17-REF-RANDOM

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

O
Oak language : Java's Origins (EXJ)
Object() : Object (JFC)
Object (class)
Relationships and Finger Pointing (EXJ)
The Object and Class Classes (EXJ)
object attribute (<applet> tag) : Embedding an Applet in a Web Page (JLR)
OBJECT attribute (<APPLET> tag)
Applet Changes (NUT)
Serialized Applets (NUT)
The <APPLET> Tag (NUT)
Object class
Superclasses, Object, and the Class Hierarchy (NUT)
Reserved Method Names (NUT)
OBJECT parameter (<APPLET> tag) : The Applet Tag (AWT)
object serialization
The java.io Package (JFC)
Object Serialization Basics (JFC)
The java.io Package (JFC)
Object Serialization (NUT)
Simple Serialization (NUT)
API for : Advanced Serialization (NUT)
applets
Applet Changes (NUT)
Serialized Applets (NUT)
class versioning av nd : Serialization and Class Versioning (NUT)
classes and : ObjectStreamClass (JFC)
exceptions : ObjectStreamException (JFC)
InvalidClassException : InvalidClassException (JFC)
InvalidObjectException : InvalidObjectException (JFC)
NotActiveException : NotActiveException (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_44.htm#JFC-CH-11-REF-OBJECTSTREAMEXCEPTION

Externalizable interface
Object Serialization (NUT)
Custom Serialization (NUT)
Advanced Serialization (NUT)
(Reference page) (NUT)
NotSerializableException : (Reference page) (NUT)
ObjectStreamException : (Reference page) (NUT)
Serializable interface
Writing Classes to Work with Serialization (JFC)
Serializable (JFC)
Object Serialization (NUT)
Custom Serialization (NUT)
(Reference page) (NUT)
StreamCorruptedException : StreamCorruptedException (JFC)
WriteAbortedException exception : WriteAbortedException (JFC)
object-oriented programming
Object-Oriented (NUT)
A Scribble Applet (NUT)
Classes and Objects in Java (NUT)
object-oriented style : Object-Orientation Java Style (JLR)
ObjectInput interface : ObjectInput (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
ObjectInputValidation interface : ObjectInputValidation (JFC)
ObjectOutput interface : ObjectOutput (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
objects
Objects (NUT)
Introduction to Classes and Objects (NUT)
Reference Types (JLR)
Object-Orientation Java Style (JLR)
Object Creation (JLR)
Class Instances and Objects (EXJ)
Objects in Java (EXJ)
Glossary (EXJ)
accessing : Accessing Objects (NUT)
accessing data fields of : Accessing Object Data (NUT)
accessing variables of : Variable access (EXJ)
applets (see applications)
array (see arrays)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch09_02.htm#JNUT2-CH-9-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_59.htm#JFC-CH-11-REF-SERIALIZABLE
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch09_02.htm#JNUT2-CH-9-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_60.htm#JFC-CH-11-REF-STREAMCORRUPTEDEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_68.htm#JFC-CH-11-REF-WRITEABORTEDEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_5F40.htm#JFC-CH-11-REF-OBJECTINPUTVALIDATION

arrays as : Are Arrays Objects? (NUT)
comparing for equality : Checking Objects for Equality (NUT)
copying : Copying Objects (NUT)
creating
Allocation Expressions (JLR)
creating with new operator : Objects Are Instances of a Class (NUT)
destroying (see garbage collection)
Object Destruction (EXJ)
equality of : Equal-To Operator == (JLR)
equivalency of (see equals())
Exception (see errors and exceptions)
exception (see exceptions)
finalizing
Object Finalization (NUT)
Glossary (EXJ)
getting from URLs : Getting the Content as an Object (EXJ)
image (see images)
instances (see instances)
InvalidObjectException : (Reference page) (NUT)
modifying simultaneously : The synchronized Statement (NUT)
NullPointerException : (Reference page) (NUT)
Object class
The java.lang Package (JFC)
Object (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
Specially supported classes (JLR)
Casts (JLR)
Inheritance (JLR)
Object (JLR)
ObjectInput interface : (Reference page) (NUT)
ObjectInputStream class
The java.io Package (JFC)
Object Serialization Basics (JFC)
The java.io Package (JFC)
Simple Serialization (NUT)
The java.io Package (NUT)
(Reference page) (NUT)
ObjectInputValidation class

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm#EXJ-CH-5-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm#JNUT2-CH-3-SECT-5.3

Advanced Serialization (NUT)
(Reference page) (NUT)
ObjectInputValidation interface : Writing Classes to Work with Serialization (JFC)
ObjectInvalidException : Writing Classes to Work with Serialization (JFC)
ObjectOutput interface : (Reference page) (NUT)
ObjectOutputStream class
The java.io Package (JFC)
Object Serialization Basics (JFC)
The java.io Package (JFC)
Simple Serialization (NUT)
The java.io Package (NUT)
(Reference page) (NUT)
ObjectStreamClass class
Serialization and Class Versioning (NUT)
(Reference page) (NUT)
pointers to (see references)
positioning and sizing : Component Methods (AWT)
resurrection of : Object Finalization (NUT)
security manager : Security Manager (EXJ)
signatures for (see hashcodes)
string (see strings)
String (see strings)
validating (see validation)
Advanced Serialization (NUT)
Vector class : (Reference page) (NUT)
ObjectStreamClass class : ObjectStreamClass (JFC)
ObjectStreamException class : ObjectStreamException (JFC)
Observable class
Observable (JFC)
The java.util Package (NUT)
(Reference page) (NUT)
Observer interface
Observer (JFC)
The java.util Package (NUT)
(Reference page) (NUT)
obtaining source code : About the Source Code (AWT)
octal literals
Integer literals (JLR)
octal numbers : Integer literals (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm#JNUT2-CH-3-SECT-5.3
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_44.htm#JFC-CH-11-REF-OBJECTSTREAMEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_16.htm#JFC-CH-17-REF-OBSERVER

OctalDigit characters : Integer literals (JLR)
off-screen drawing : Off-Screen Drawing (EXJ)
offScreenImage (variable) : Double Buffering (EXJ)
OffScreenImageSource class : A Brief Tour of sun.awt.image (AWT)
okToUseGui() : (Reference page) (NUT)
old keyword (in C) (see garbage collection)
online documentation : Online Resources (JLR)
openConnection() : URLStreamHandler (JFC)
HttpURLConnection class : (Reference page) (NUT)
URL class
URL (JFC)
(Reference page) (NUT)
URLStreamHandler class : (Reference page) (NUT)
openStream()
URL Objects (JFC)
(Reference page) (NUT)
URL class : URL (JFC)
openStream() : Stream Data (EXJ)
operating system : Environment (NUT)
operating system information : System Properties (EXJ)
operators
Operators (NUT)
Operators (JLR)
Operators (EXJ)
additive : Additive Operators (JLR)
assignment
Operators (JLR)
Assignment Operators (JLR)
associativity of : Order of Operations (JLR)
bitwise/logical : Bitwise/Logical Operators (JLR)
boolean : Boolean Operators (JLR)
cast : Casts (JLR)
conditional (?:) : Conditional Operator (JLR)
equality : Equality Comparison Operators (JLR)
increment/decrement
Field Expressions (JLR)
Increment/Decrement Operators (JLR)
list of : Operators (NUT)
multiplicative : Multiplicative Operators (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch00_04.htm#JLR2-PREFACE-SECT-4

prcedence of : Order of Operations (JLR)
relational : Relational Comparison Operators (JLR)
shift : Shift Operators (JLR)
unary : Unary Operators (JLR)
optimistic single-threaded execution
Optimistic Single-Threaded Execution (JFC)
Optimistic Single-Threaded Execution (JLR)
optimization of class files : javac (NUT)
option menus : (Reference page) (NUT)
OptionalDataException
OptionalDataException (JFC)
(Reference page) (NUT)
or()
BigInteger class : BigInteger (JFC)
BitSet class : BitSet (JFC)
OR (^) operator, bitwise
Bitwise/Logical Exclusive OR Operator ^ (JLR)
Operators (EXJ)
OR (^) operator, boolean : Operators (EXJ)
OR (|) operator : Operators (NUT)
OR (|) operator, bitwise
Bitwise/Logical Inclusive OR Operator | (JLR)
Operators (EXJ)
OR (|) operator, boolean : Operators (EXJ)
OR (||) operator, boolean : Boolean OR Operator || (JLR)
OR (||) operator, conditional : Operators (EXJ)
order of evaluation
Statements and Expressions (EXJ)
Operators (EXJ)
order of operations : Order of Operations (JLR)
ordinaryChar()
StreamTokenizer (JFC)
(Reference page) (NUT)
ordinaryChars()
StreamTokenizer (JFC)
(Reference page) (NUT)
OrientableFlowLayout layout : OrientableFlowLayout (AWT)
orientHorizontally() : OrientableFlowLayout (AWT)
orientVertically() : OrientableFlowLayout (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_45.htm#JFC-CH-11-REF-OPTIONALDATAEXCEPTION

origin
coordinate space : Graphics Methods (AWT)
GridBagLayout layout : GridBagLayout Methods (AWT)
origin, graphics context : Drawing Methods (EXJ)
os.arch : System Properties (EXJ)
os.name : System Properties (EXJ)
os.version : System Properties (EXJ)
out (see System.out)
out variable
System (JFC)
System (JLR)
out-of-range values : Math Utilities (EXJ)
OutOfMemoryError
OutOfMemoryError (JFC)
(Reference page) (NUT)
Errors (JLR)
OutOfMemoryException : Glossary (EXJ)
output
The java.io Package (JFC)
I/O (JFC)
InterruptedIOException : InterruptedIOException (JFC)
IOException : IOException (JFC)
ObjectOutput interface : ObjectOutput (JFC)
OutputStreamWriter class : OutputStreamWriter (JFC)
output streams
Output Streams and Writers (JFC)
The java.io Package (JFC)
BufferedOutputStream class
BufferedWriter and BufferedOutputStream (JFC)
BufferedOutputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
ByteArrayOutputStream class
CharArrayWriter and ByteArrayOutputStream (JFC)
ByteArrayOutputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
CheckedOutputStream class
CheckedOutputStream (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_01.htm#JFC-CH-10-SECT-1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_30.htm#JFC-CH-11-REF-INTERRUPTEDIOEXCEPTION

(Reference page) (NUT)
DataOutputStream class
DataOutputStream (JFC)
DataOutputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
DeflaterOutputStream class
DeflaterOutputStream (JFC)
The java.util.zip Package (NUT)
(Reference page) (NUT)
FileOutputStream class
FileWriter and FileOutputStream (JFC)
FileOutputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
FilterOutputStream class
FilterOutputStream and FilterWriter (JFC)
FilterOutputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
GZIPOutputStream class
The java.util.zip Package (JFC)
GZIPOutputStream (JFC)
(Reference page) (NUT)
ObjectOutputStream class
The java.io Package (JFC)
ObjectOutputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
OutputStream class
The java.io Package (JFC)
OutputStream (JFC)
OutputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
OutputStreamReader class : The java.io Package (JFC)
OutputStreamWriter class
OutputStreamWriter (JFC)
Character Encodings (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM

(Reference page) (NUT)
PipedOutputStream class
PipedInputStream and PipedReader (JFC)
PipedOutputStream and PipedWriter (JFC)
PipedOutputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
PrintStream class
PrintWriter and PrintStream (JFC)
I/O (JFC)
PrintStream (JFC)
StreamCorruptedException : (Reference page) (NUT)
ZipOutputStream class
ZipOutputStream (JFC)
(Reference page) (NUT)
OutputStream (class)
Streams (EXJ)
Terminal I/O (EXJ)
OutputStreamWriter (class) : Streams (EXJ)
OutputStreamWriter class : OutputStreamWriter (JFC)
ovals : Graphics Methods (AWT)
overloaded methods
Method Overloading (NUT)
Method Overloading (NUT)
Method Call Expression (JLR)
Method name (JLR)
overloading : Syntactic Sweet 'n Low (EXJ)
add() : Layout managers (EXJ)
constructors : Working with Overloaded Constructors (EXJ)
equals() : Equality (EXJ)
indexOf(), lastIndexOf() : Searching (EXJ)
methods
Method Overloading (EXJ)
Method Overloading (EXJ)
Glossary (EXJ)
print() : Print streams (EXJ)
overridden methods : Overriding Methods (NUT)
overriding (see action())
action() (see action())

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_01.htm#JFC-CH-10-SECT-1

equals() : Equality (EXJ)
handleEvent() : Overriding handleEvent() (AWT)
imageUpdate() : Overriding imageUpdate (AWT)
methods
Overriding Methods (EXJ)
Glossary (EXJ)
overriding methods
Variable name (JLR)
Method name (JLR)
Method throws clause (JLR)
owner, clipboard
ClipboardOwner Interface (AWT)

ClipboardOwner (AWT)
owner, contents : Clipboard Methods (AWT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

P
p.add() : A TextEntryBox
pack() : Window Methods (AWT)
Dialog class : (Reference page) (NUT)
Window class
(Reference page) (NUT)
(Reference page) (NUT)
package directive : Packages (JLR)
package statement
The package Statement (NUT)
The package and import Statements (NUT)
package visibility : Modifiers (NUT)
packages
Object-Oriented (NUT)
No Global Variables (NUT)
Running a Java Application (JLR)
Compilation Units (JLR)
Syntactic Sweet 'n Low (EXJ)
Scalability (EXJ)
Packages (EXJ)
Packages (EXJ)
Packages and Compilation Units (EXJ)
Basic Utility Classes (EXJ)
Glossary (EXJ)
accessing : Access to Packages, Classes, and Class Members (NUT)
compilation units
Compilation Units (EXJ)
Glossary (EXJ)
declaring : Lexical Scope of Declarations (JLR)
interfaces and : Interfaces and Packages (EXJ)

Java 1.1 and : Java 1.1 Package-by-Package (NUT)
MIME types and : Locating Content Handlers (EXJ)
naming
No Global Variables (NUT)
Globally Unique Package Names (NUT)
protocols into names for : Locating Protocol Handlers (EXJ)
searching : The import Directive (JLR)
unnamed : The Unnamed Package (EXJ)
visibility and : Visibility Modifiers (NUT)
packets, data : Sockets (JFC)
padding around components : GridBagConstraints Methods (AWT)
padding, applet : The Complete Applet Tag (EXJ)
paging increment, scrollbars : Scrollbar Methods (AWT)
paint() : Applets (JLR)
Applet class
Introduction to Applets (NUT)
A First Applet (NUT)
(Reference page) (NUT)
Canvas class : Canvas Methods (AWT)
Component class
Graphics (AWT)
Component Methods (AWT)
Printing (NUT)
Container class : Container Methods (AWT)
PaintEvent class : (Reference page) (NUT)
paint mode : Graphics Methods (AWT)
PAINT, PAINT_ constants : PaintEvent (AWT)
paint()
The paint() Method (EXJ)
Painting and Updating (EXJ)
Basic Drawing (EXJ)
paintAll() : Component Methods (AWT)
paintComponents() : Container Methods (AWT)
PaintEvent class
PaintEvent (AWT)

PaintEvent (AWT)
(Reference page) (NUT)
painting (see graphics)
Panel() : Panel Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm#JNUT2-CH-8-SECT-3

Panel (object)
Relationships and Finger Pointing (EXJ)
Painting and Updating (EXJ)
Containers (EXJ)
FlowLayout : Layout managers (EXJ)
Panel class
The java.awt Package (NUT)
(Reference page) (NUT)
PanelPeer interface
PanelPeer (AWT)
(Reference page) (NUT)
panels
CardLayout layout for
CardLayout (AWT)
CardLayout (AWT)
CardLayout (AWT)
FlowLayout layout for
FlowLayout (AWT)
FlowLayout (AWT)
FlowLayout (AWT)
OrientableFlowLayout layout for : OrientableFlowLayout (AWT)
Panel class
Panel (AWT)
Panel (AWT)
@param tag (javadoc) : Documentation Comments (JLR)
<PARAM> HTML tag : The <PARAM> Tag (NUT)
<PARAM> tag (HTML)
The Applet Tag (AWT)
Applet Methods (AWT)
@param tag : Comments (EXJ)
ParameterDescriptor class : (Reference page) (NUT)
parameters, applet (see applets, parameters for)
Parameters (EXJ)
Parameters: doc comment tag : Java Documentation Comment Syntax (NUT)
parametric polymorphism : Method Overloading (EXJ)
paramString()
ActionEvent class : ActionEvent (AWT)
AdjustmentEvent class : AdjustmentEvent (AWT)
AWTEvent class : AWTEvent (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_23.htm#JAWT-CH-19-REF-FLOWLAYOUT
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_46.htm#JAWT-CH-19-REF-PANEL
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch15_02.htm#JNUT2-CH-15-SECT-2

Button component : Button Methods (AWT)
Checkbox component : Checkbox Methods (AWT)
CheckboxMenuItem class : CheckboxMenuItem Methods (AWT)
Choice component : Component Methods (AWT)
Component class : Component Methods (AWT)
ComponentEvent class : ComponentEvent (AWT)
Container class : Container Methods (AWT)
ContainerEvent class : ContainerEvent (AWT)
Dialog class : Dialog Constructors and Methods (AWT)
Event class : Event Methods (AWT)
FileDialog class : FileDialog Methods (AWT)
FocusEvent class : FocusEvent (AWT)
Frame class : Frame Methods (AWT)
ItemEvent class : ItemEvent (AWT)
KeyEvent class : KeyEvent (AWT)
Label component : Label Methods (AWT)
List component : List Methods (AWT)
Menu class : Menu Methods (AWT)
MenuComponent class : MenuComponent Methods (AWT)
MenuItem class : MenuItem Methods (AWT)
MenuShortcut class : MenuShortcut Methods (AWT)
MouseEvent class : MouseEvent (AWT)
PaintEvent class : PaintEvent (AWT)
Scrollbar class : Scrollbar Methods (AWT)
ScrollPane container : ScrollPane Methods (AWT)
TextArea class : TextArea Methods (AWT)
TextComponent class : TextComponent Methods (AWT)
TextEvent class : TextEvent (AWT)
TextField class : TextField Methods (AWT)
WindowEvent class : WindowEvent (AWT)
parentheses (see () (parentheses))
parentheses () in object creation : Object Creation (NUT)
parentheses () : Operators (EXJ)
parenthetical expressions
Parenthetical Expressions (JLR)
parentOf()
ThreadGroup (JFC)
ThreadGroup (JLR)
parse()

ChoiceFormat class : ChoiceFormat (JFC)
Date class : Date (JFC)
DateFormat class
DateFormat (JFC)
(Reference page) (NUT)
DecimalFormat class : DecimalFormat (JFC)
MessageFormat class
MessageFormat (JFC)
(Reference page) (NUT)
NumberFormat class
NumberFormat (JFC)
(Reference page) (NUT)
SimpleDateFormat class : SimpleDateFormat (JFC)
parseByte()
Byte (JFC)
(Reference page) (NUT)
Byte (JLR)
ParseException
ParseException (JFC)
(Reference page) (NUT)
ParseException (invented) : Buffered streams (EXJ)
parseInt()
Integer (JFC)
(Reference page) (NUT)
Integer (JLR)
parseInt() : Wrappers for Primitive Types (EXJ)
parseLong()
Long (JFC)
(Reference page) (NUT)
Long (JLR)
parseLong() : Wrappers for Primitive Types (EXJ)
parseNumbers()
StreamTokenizer (JFC)
(Reference page) (NUT)
parseObject()
DateFormat class
DateFormat (JFC)
(Reference page) (NUT)
Format class
Format (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_15.htm#JFC-CH-16-REF-PARSEEXCEPTION

(Reference page) (NUT)
MessageFormat class : MessageFormat (JFC)
NumberFormat class
NumberFormat (JFC)
(Reference page) (NUT)
ParsePosition class
ParsePosition (JFC)
(Reference page) (NUT)
parseShort()
Short (JFC)
(Reference page) (NUT)
Short (JLR)
parseURL() : URLStreamHandler (JFC)
parsing
protocols : URLs, Stream Handlers, and Connections (EXJ)
tar files : Constructing the object (EXJ)
text : java.util.StringTokenizer (EXJ)
URLs
java.util.StringTokenizer (EXJ)
The URL class (EXJ)
parsing strings : StringTokenizer (JFC)
passing arguments to methods : Argument Passing and References (EXJ)
passing by reference : Terminology: Pass by Reference (NUT)
passwords
debugging : java (NUT)
turning off echo for : (Reference page) (NUT)
paste() : Data Transfer with Cut-and-Paste (NUT)
path, class (see class paths)
path.separator : System Properties (EXJ)
pathnames, getting : (Reference page) (NUT)
paths
Path localization (EXJ)
Working with URLs (EXJ)
pathSeparator variable : File (JFC)
pathSeparatorChar variable
File (JFC)
File (JFC)
PDAs (personal digital assistants) : Java's Origins (EXJ)
peek()

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_16.htm#JFC-CH-16-REF-PARSEPOSITION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_04.htm#JFC-CH-2-SECT-4

Stacks (JFC)
(Reference page) (NUT)
Stack class : Stack (JFC)
peekEvent()
Using an event multicaster (AWT)
(Reference page) (NUT)
peer interfaces : Peers (EXJ)
peers
Peers (AWT)
The Peer Interfaces (AWT)
ButtonPeer (AWT)
The java.awt.peer Package (NUT)
Glossary (EXJ)
Container class and : Component Methods (AWT)
Font class and : The Font Class (AWT)
performance
High-Performance (NUT)
colors and : ColorModel (AWT)
deleting applets and : Applet Methods (AWT)
Graphics objects and : Graphics Methods (AWT)
MediaTracker and : MediaTracker Methods (AWT)
period (see dot)
Perl scripting language : Java Compared (EXJ)
permissions, file : File (JFC)
personal digital assistants (PDAs) : Java's Origins (EXJ)
PI (value) : java.lang.Math (EXJ)
PipedInputStream (class)
Streams (EXJ)
Pipes (EXJ)
PipedInputStream class
PipedInputStream and PipedReader (JFC)
PipedOutputStream and PipedWriter (JFC)
PipedInputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
PipedOutputStream (class)
Streams (EXJ)
Pipes (EXJ)
PipedOutputStream class

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_03.htm#JFC-CH-5-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_22.htm#JFC-CH-17-REF-STACK
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_02.htm#JAWT-CH-1-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch15_02.htm#JAWT-CH-15-SECT-2

PipedInputStream and PipedReader (JFC)
PipedOutputStream and PipedWriter (JFC)
PipedOutputStream (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
PipedReader (class) : Streams (EXJ)
PipedReader class
PipedInputStream and PipedReader (JFC)
PipedReader (JFC)
(Reference page) (NUT)
PipedWriter (class) : Streams (EXJ)
PipedWriter class
PipedOutputStream and PipedWriter (JFC)
PipedWriter (JFC)
(Reference page) (NUT)
PixelGrabber class
PixelGrabber (AWT)
PixelGrabber (AWT)
Miscellaneous Improvements (NUT)
The java.awt.image Package (NUT)
(Reference page) (NUT)
pixels (see images)
Image Processing (EXJ)
PLAIN (value) : Fonts (EXJ)
PLAIN constant : The Font Class (AWT)
platform independence : Interpreted (NUT)
platforms
colors and
Color (AWT)
ColorModel (AWT)
event handling and : Comprehensive Event List (AWT)
events and : Platform-Specific Event Handling (AWT)
font ascent and : The FontMetrics Class (AWT)
layouts and : Layouts (AWT)
modifier keys and : Constants (AWT)
peer architecture : Peers (AWT)
scrolling events and : Scrollbar Events (AWT)
Toolkit class
Toolkit (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/appc_01.htm#JAWT-APP-C
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch01_02.htm#JAWT-CH-1-SECT-2

Toolkit (AWT)
play()
Applet class : Applet Methods (AWT)
AudioClip interface : AudioClip Interface (AWT)
play() : Working with Audio (EXJ)
plus (+) operator, addition : Operators (EXJ)
plus (+) operator, unary
Unary Plus Operator + (JLR)
Operators (EXJ)
plus sign (+) operator : String Concatenation (JFC)
Point class : (Reference page) (NUT)
pointers
Simple (NUT)
Java Has No Pointers (NUT)
NullPointerException : NullPointerException (JFC)
points (see also coordinates)
adding to polygons : Polygon Methods (AWT)
contained in rectangles : Rectangle Methods (AWT)
Point class
Point (AWT)
Point (AWT)
polar coordinates : java.lang.Math (EXJ)
Polygon (object) : Drawing Methods (EXJ)
Polygon class : (Reference page) (NUT)
polygons
Graphics Methods (AWT)
Polygon (AWT)
Polygon class
Polygon Methods (AWT)
Polygon (AWT)
polymorphism : Method Overloading (EXJ)
pop()
Stacks (JFC)
(Reference page) (NUT)
Stack class : Stack (JFC)
pop-up lists : Choice (AWT)
pop-up menus
The PopupMenu class (AWT)
PopupMenu (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_60.htm#JAWT-CH-19-REF-TOOLKIT
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_47.htm#JAWT-CH-19-REF-POINT
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_48.htm#JAWT-CH-19-REF-POLYGON
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_03.htm#JFC-CH-5-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_22.htm#JFC-CH-17-REF-STACK

PopupMenu class
New Features of AWT in Java 1.1 (AWT)
PopupMenu Methods (AWT)

PopupMenu (AWT)

PopupMenuPeer interface : PopupMenuPeer (AWT)
pop-up messages (see dialogs)
PopupMenu class (see also menus)
Popup Menus and Menu Shortcuts (NUT)
(Reference page) (NUT)
PopupMenuPeer interface : (Reference page) (NUT)
port numbers
Sockets (JFC)
Clients and Servers (EXJ)
portability
Abstract Window Toolkit Overview (AWT)
Architecture Neutral and Portable (NUT)
Yet Another Language? (EXJ)
A Virtual Machine (EXJ)
events and : Comprehensive Event List (AWT)
positioning absolutely : Absolute Positioning? (EXJ)
positioning objects : Component Methods (AWT)
positive zero : Floating-point types (JLR)
POSITIVE_INFINITY (value) : Math Utilities (EXJ)
POSITIVE_INFINITY constant
String Concatenation (JFC)
Double (JFC)
Float (JFC)
Floating-point types (JLR)
Double (JLR)
Float (JLR)
postEvent()
Passing the Buck (AWT)
Using an event multicaster (AWT)
(Reference page) (NUT)
Component class : Component Events (AWT)
MenuComponent class : MenuComponent Methods (AWT)
MenuContainer interface : MenuContainer Methods (AWT)
Window class : Window Events (AWT)
postfix expressions : Increment/Decrement Operators (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_49.htm#JAWT-CH-19-REF-POPUPMENU
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_49.htm#JAWT-CH-19-REF-POPUPMENU
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_49.htm#JAWT-CH-19-REF-POPUPMENU
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_02.htm#JNUT2-CH-8-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch10_02.htm#JAWT-CH-10-SECT-2.1

increment/decrement operators : Postfix Increment/Decrement Operators (JLR)
pow()
Math (JFC)
Math (JLR)
BigInteger class : BigInteger (JFC)
pow() : java.lang.Math (EXJ)
PPMImageDecoder class (example) : ImageConsumer Interface (AWT)
pre-processing : Pre-Processing (JLR)
precedence, operator
Operators (NUT)
Order of Operations (JLR)
predefined colors
Color Methods (AWT)
SystemColor (AWT)
Using Desktop Colors (AWT)
preemptive thread scheduling
Yielding (JFC)
Yielding (JLR)
preferredLayoutSize()
Methods of the LayoutManager Interface (AWT)
(Reference page) (NUT)
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
FlowLayout layout : FlowLayout Methods (AWT)
GridLayout layout
GridLayout Methods (AWT)
GridBagLayout Methods (AWT)
HorizBagLayout layout : HorizBagLayout (AWT)
LayoutManager interface : LayoutManager Methods (AWT)
OrientableFlowLayout layout : OrientableFlowLayout (AWT)
VerticalBagLayout layout : VerticalBagLayout (AWT)
preferredSize()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
List component : List Methods (AWT)
TextArea class : TextArea Methods (AWT)
TextField class : TextField Methods (AWT)
prefix expressions : Increment/Decrement Operators (JLR)
increment/decrement operators : Prefix Increment/Decrement Operators (JLR)

prepareImage()
Component class : Component Methods (AWT)
Toolkit class : Toolkit Methods (AWT)
prepareImage() : Implementing an ImageObserver (EXJ)
preprocessor : No Preprocessor (NUT)
prev() : (Reference page) (NUT)
previous()
CardLayout Methods (AWT)
BreakIterator (JFC)
(Reference page) (NUT)
CardLayout class : (Reference page) (NUT)
CharacterIterator interface : CharacterIterator (JFC)
StringCharacterIterator class : StringCharacterIterator (JFC)
previous() : CardLayout (EXJ)
previousDouble() : ChoiceFormat (JFC)
primary expressions : Primary Expressions (JLR)
primaryOrder() : CollationElementIterator (JFC)
primitive data types
Primitive Data Types (NUT)
null (NUT)
Primitive Data Types (NUT)
Primitive Types (JLR)
boolean
The boolean Type (NUT)
(Reference page) (NUT)
byte : Primitive Data Types (NUT)
char
The char Type (NUT)
(Reference page) (NUT)
Class objects for : Class Literals (NUT)
double
Floating-Point Types (NUT)
(Reference page) (NUT)
float
Floating-Point Types (NUT)
(Reference page) (NUT)
int : (Reference page) (NUT)
long
Integral Types (NUT)

(Reference page) (NUT)
short : (Reference page) (NUT)
primitive operators : Operators (EXJ)
primitive types
Primitive Types (EXJ)
Argument Passing and References (EXJ)
Glossary (EXJ)
boolean
Primitive Types (EXJ)
Glossary (EXJ)
byte
Primitive Types (EXJ)
Glossary (EXJ)
char
Text Encoding (EXJ)
Primitive Types (EXJ)
Character literals (EXJ)
Glossary (EXJ)
double
Primitive Types (EXJ)
Floating-point literals (EXJ)
Glossary (EXJ)
float
Primitive Types (EXJ)
Floating-point literals (EXJ)
Glossary (EXJ)
int
Primitive Types (EXJ)
Integer literals (EXJ)
Glossary (EXJ)
long
Primitive Types (EXJ)
Integer literals (EXJ)
Glossary (EXJ)
short
Primitive Types (EXJ)
Glossary (EXJ)
streams for reading/writing : Data streams (EXJ)
wrappers for : Wrappers for Primitive Types (EXJ)

print() : Printing (NUT)
Applet class : Introduction to Applets (NUT)
Component class
Component Methods (AWT)
Component Methods (AWT)
Container class : Container Methods (AWT)
PrintStream class
PrintStream (JFC)
(Reference page) (NUT)
PrintWriter class
PrintWriter and PrintStream (JFC)
PrintWriter (JFC)
(Reference page) (NUT)
System.out class : Accessing Class Variables (NUT)
print()
Method Overloading (EXJ)
Print streams (EXJ)
printAll() : Printing (NUT)
Component class
Component Methods (AWT)
Component Methods (AWT)
printComponents()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
ScrollPane container : ScrollPane Methods (AWT)
printing
Printing (AWT)
Printing (AWT)
Printing (NUT)
Printing (NUT)
messages to terminal : java (NUT)
PrintGraphics interface
PrintGraphics Interface (AWT)

PrintGraphics (AWT)
(Reference page) (NUT)
PrintJob class
PrintJob Class (AWT)

PrintJob (AWT)
Printing (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm#JNUT2-CH-8-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_03.htm#JAWT-CH-17-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm#JNUT2-CH-8-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_03.htm#JAWT-CH-17-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_03.htm#JAWT-CH-17-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_01.htm#JAWT-CH-17
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm#JNUT2-CH-8-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_01.htm#JAWT-CH-17-SECT-1
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_50.htm#JAWT-CH-19-REF-PRINTGRAPHICS
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_50.htm#JAWT-CH-19-REF-PRINTGRAPHICS
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_50.htm#JAWT-CH-19-REF-PRINTGRAPHICS
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch17_02.htm#JAWT-CH-17-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_51.htm#JAWT-CH-19-REF-PRINTJOB
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_51.htm#JAWT-CH-19-REF-PRINTJOB
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_51.htm#JAWT-CH-19-REF-PRINTJOB
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_03.htm#JNUT2-CH-8-SECT-3

(Reference page) (NUT)
PrintStream class : (Reference page) (NUT)
PrintWriter class
The java.io Package (NUT)
(Reference page) (NUT)
Toolkit class and : Toolkit Methods (AWT)
printing stack traces
Printing Stack Traces (JFC)
Printing Stack Traces (JLR)
println() : A "Hello World" Program (JLR)
PrintStream class
PrintStream (JFC)
(Reference page) (NUT)
PrintWriter class
PrintWriter and PrintStream (JFC)
PrintWriter (JFC)
(Reference page) (NUT)
System.out class : Accessing Class Variables (NUT)
println()
java.lang.StringBuffer (EXJ)
Print streams (EXJ)
printStackTrace()
Printing Stack Traces (JFC)
Throwable (JFC)
(Reference page) (NUT)
Printing Stack Traces (JLR)
Throwable (JLR)
PrintStream (class)
The Object and Class Classes (EXJ)
Print streams (EXJ)
PrintStream class
PrintWriter and PrintStream (JFC)
I/O (JFC)
PrintStream (JFC)
PrintWriter (class) : Streams (EXJ)
PrintWriter class
PrintWriter and PrintStream (JFC)
PrintWriter (JFC)
priority of threads : Scheduling and Priority (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_03.htm#JFC-CH-4-SECT-2.1
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm#JLR2-CH-9-SECT-2.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_03.htm#JFC-CH-4-SECT-2.1
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm#JLR2-CH-9-SECT-2.1
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm#JLR2-CH-10-SECT-25
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_01.htm#JFC-CH-10-SECT-1
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm#EXJ-CH-6-SECT-4

priority, loading multimedia objects : MediaTracker Methods (AWT)
priority, thread
Thread priority (JFC)
Thread priority (JLR)
yield() and sleep()
Yielding (JFC)
Yielding (JLR)
private (modifier)
Safety of Implementation (EXJ)
Accessing Members (EXJ)
Basic Access Modifiers (EXJ)
Glossary (EXJ)
inheritance and
Subclassing and Inheritance (EXJ)
Glossary (EXJ)
members
The paint() Method (EXJ)
Our Color Methods (EXJ)
private protected : Glossary (EXJ)
private modifier
Visibility Modifiers (NUT)
Member Classes and Visibility Modifiers (NUT)
Modifiers (NUT)
Inner class modifiers (JLR)
constructors and : Constructor modifiers (JLR)
methods and
Method modifiers (JLR)
Method name (JLR)
printing private members : javap (NUT)
variables and
Encapsulation (JLR)
Variable modifiers (JLR)
private protected : What was private protected?
Process class
External Program Execution (JFC)
Process (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
Process (JLR)
processActionEvent()

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm#EXJ-CH-5-SECT-7.1
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm#ch05-SECT3-AUTOID.4
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_15.htm#JLR2-CH-10-SECT-15

Button Events (AWT)
Inside the Java 1.1 Event Model (NUT)
List component : List Events (AWT)
MenuItem class : MenuItem Events (AWT)
TextField class : TextField Events (AWT)
processAdjustmentEvent()
Scrollbar class : Scrollbar Events (AWT)
processComponentEvent() : Component Events (AWT)
processContainerEvent() : Container Methods (AWT)
processEvent() : Inside the Java 1.1 Event Model (NUT)
button component : Button Events (AWT)
Checkbox component : Checkbox Events (AWT)
Choice component : Choice Events (AWT)
Component class : Component Events (AWT)
Container class : Container Methods (AWT)
List component : List Events (AWT)
Menu class : CheckboxMenuItem Events (AWT)
MenuComponent class : MenuComponent Methods (AWT)
MenuItem class : MenuItem Events (AWT)
Scrollbar class : Scrollbar Events (AWT)
TextComponent class : TextComponent Events (AWT)
TextField class : TextField Events (AWT)
Window class : Window Events (AWT)
processFocusEvent()
Component Events (AWT)
Inside the Java 1.1 Event Model (NUT)
processItemEvent()
Checkbox component : Checkbox Events (AWT)
Choice component : Choice Events (AWT)
List component : List Events (AWT)
Menu class : CheckboxMenuItem Events (AWT)
processKeyEvent()
Component Events (AWT)
Inside the Java 1.1 Event Model (NUT)
processMouseEvent()
Component Events (AWT)
Inside the Java 1.1 Event Model (NUT)
processMouseMotionEvent()
Component Events (AWT)

Inside the Java 1.1 Event Model (NUT)
processTextEvent() : TextComponent Events (AWT)
processWindowEvent() : Window Events (AWT)
producer threads : The Message Passer (EXJ)
programming in Java
capitalization : Defining Constants (NUT)
comments
Comments (NUT)
Java Documentation Comment Syntax (NUT)
encapsulation : Data Hiding and Encapsulation (NUT)
environment variables : Environment (NUT)
exceptions : Exceptions and Exception Handling (NUT)
exit value : Program Exit Value (NUT)
forward references : Forward References (NUT)
global variables : No Global Variables (NUT)
HTML (see HTML)
javac compiler : javac (NUT)
for non-English speakers : Unicode and Character Escapes (NUT)
operators : Operators (NUT)
pointers : Java Has No Pointers (NUT)
program structure : Program Structure and Environment (NUT)
reserved words : Reserved Words (NUT)
setting code stack size : java (NUT)
statements : Statements (NUT)
programs (see threads)
applets : Applets (JLR)
external : External Program Execution (JFC)
multithreaded (see threads)
pre-processing : Pre-Processing (JLR)
program structure : Program Structure (JLR)
properties
color : Color Methods (AWT)
font : The Font Class (AWT)
image : Image Methods (AWT)
printing : Toolkit Methods (AWT)
Properties class : (Reference page) (NUT)
PropertyChangeEvent class : (Reference page) (NUT)
PropertyChangeListener interface : (Reference page) (NUT)
PropertyChangeSupport class : (Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4

PropertyDescriptor class : (Reference page) (NUT)
PropertyEditor interface : (Reference page) (NUT)
PropertyEditorManager class : (Reference page) (NUT)
PropertyEditorSupport class : (Reference page) (NUT)
PropertyResourceBundle class : (Reference page) (NUT)
PropertyVetoException : (Reference page) (NUT)
Properties (class) : Properties (EXJ)
Properties class : Properties (JFC)
properties, bean : Bean Basics (NUT)
editing : Defining a Simple Property Editor (NUT)
properties, system
System (JFC)
System (JLR)
property files : Using Property Files (NUT)
PropertyChangeEvent class : Defining a Simple Property Editor (NUT)
PropertyEditor interface : Defining a Simple Property Editor (NUT)
propertyNames()
Properties (JFC)
(Reference page) (NUT)
propertyNames() : Properties (EXJ)
PropertyResourceBundle class
PropertyResourceBundle (JFC)
Working with Resource Bundles (NUT)
protected (modifier)
Accessing Members (EXJ)
Basic Access Modifiers (EXJ)
Glossary (EXJ)
protected modifier
Visibility Modifiers (NUT)
Member Classes and Visibility Modifiers (NUT)
Modifiers (NUT)
Inner class modifiers (JLR)
constructors and : Constructor modifiers (JLR)
methods and : Method modifiers (JLR)
variables : Encapsulation (JLR)
variables and : Variable modifiers (JLR)
protectedSocket() : Socket (JFC)
protocol handlers
New Kinds of Applications (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_17.htm#JFC-CH-17-REF-PROPERTIES
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_17.htm#JFC-CH-17-REF-PROPERTIES
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_18.htm#JFC-CH-17-REF-PROPERTYRESOURCEBUNDLE
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5.1
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm#EXJ-CH-5-SECT-7.1

Web Browsers and Handlers (EXJ)
Writing a Protocol Handler (EXJ)
Glossary (EXJ)
ProtocolException
ProtocolException (JFC)
(Reference page) (NUT)
protocols : Working with URLs (EXJ)
pseudo-random (see random numbers)
psuedo-random numbers : (Reference page) (NUT)
public (modifier)
Accessing Members (EXJ)
Class Visibility (EXJ)
Basic Access Modifiers (EXJ)
Glossary (EXJ)
classes, javac compiler and : The Java Compiler (EXJ)
members : The paint() Method (EXJ)
public classes
Java Filenames and Directory Structure (NUT)
Access to Packages, Classes, and Class Members (NUT)
import statement : The import Statement (NUT)
public modifier
Visibility Modifiers (NUT)
Member Classes and Visibility Modifiers (NUT)
Modifiers (NUT)
Encapsulation (JLR)
Inner class modifiers (JLR)
Inner interface modifiers (JLR)
classes and : Class Modifiers (JLR)
constructors and : Constructor modifiers (JLR)
interfaces and : Interface Modifiers (JLR)
methods and
A "Hello World" Program (JLR)
Method modifiers (JLR)
variables and : Variable modifiers (JLR)
public-key cryptography : Signing Classes (EXJ)
pull-down lists (see pop-up lists; pop-up menus)
pulldown menus : (Reference page) (NUT)
pure values : Expressions (JLR)
push()

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm#EXJ-CH-5-SECT-7.1

Stacks (JFC)
(Reference page) (NUT)
Stack class : Stack (JFC)
pushBack() : (Reference page) (NUT)
StreamTokenizer class : StreamTokenizer (JFC)
PushbackInputStream class
PushbackInputStream and PushbackReader (JFC)
PushbackInputStream (JFC)
(Reference page) (NUT)
PushbackReader class
PushbackInputStream and PushbackReader (JFC)
PushbackReader (JFC)
(Reference page) (NUT)
put()
Dictionary (JFC)
java.util.Hashtable (EXJ)
Hashtable class
Hashtables (JFC)
Hashtable (JFC)
(Reference page) (NUT)
Properties class : (Reference page) (NUT)
putMessage() : The Message Passer (EXJ)
putNextEntry()
ZipOutputStream (JFC)
(Reference page) (NUT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_03.htm#JFC-CH-5-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_22.htm#JFC-CH-17-REF-STACK

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Q
queue (see events, event queue)
event (see events, event queue)
listener (see AWTEventMulticaster class)
quotation marks, String objects and : Creating Objects (NUT)
quoteChar()
StreamTokenizer (JFC)
(Reference page) (NUT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

R
radio button behavior : (Reference page) (NUT)
radio buttons : The Checkbox and CheckboxGroup classes (AWT)
radix
Character (JFC)
Character (JLR)
railroad diagrams : Notational Conventions (JLR)
raised rectangles : Graphics Methods (AWT)
random()
Math (JFC)
Math (JLR)
Random class
Random (JFC)
The java.util Package (NUT)
(Reference page) (NUT)
random numbers
java.lang.Math (EXJ)
Random Numbers (EXJ)
random() : java.lang.Math (EXJ)
RandomAccessFile (class)
File Streams (EXJ)
java.io.RandomAccessFile (EXJ)
RandomAccessFile class
The java.io Package (JFC)
RandomAccessFile (JFC)
The java.io Package (JFC)
RandomAccessFile (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
FileInputStream and FileOutputStream classes
FileInputStream and FileReader (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_19.htm#JFC-CH-17-REF-RANDOM

FileWriter and FileOutputStream (JFC)
serializing objects of : Writing Classes to Work with Serialization (JFC)
RANDOMPIXELORDER constant : ImageConsumer Interface (AWT)
RANDOMPIXELORDER property : Image consumers (EXJ)
read()
AudioStream class : AudioStream (AWT)
AudioStreamSequence class : AudioStreamSequence (AWT)
BufferedInputStream class : BufferedInputStream (JFC)
BufferedReader class : BufferedReader (JFC)
ByteArrayInputStream class : ByteArrayInputStream (JFC)
CharArrayReader class : CharArrayReader (JFC)
CheckedInputStream class
CheckedInputStream (JFC)
(Reference page) (NUT)
ContinuousAudioDataStream class : ContinuousAudioDataStream (AWT)
DataInputStream class
DataInputStream (JFC)
(Reference page) (NUT)
FileInputStream class
FileInputStream (JFC)
(Reference page) (NUT)
FileReader class : (Reference page) (NUT)
FilterInputStream class
FilterInputStream (JFC)
The java.io Package (NUT)
FilterReader class
FilterReader (JFC)
(Reference page) (NUT)
GZIPInputStream class
GZIPInputStream (JFC)
(Reference page) (NUT)
InflaterInputStream class
InflaterInputStream (JFC)
(Reference page) (NUT)
InputStream class
InputStream (JFC)
InputStream (JFC)
(Reference page) (NUT)
InputStreamReader class : InputStreamReader (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM

LineNumberInputStream class : LineNumberInputStream (JFC)
LineNumberReader class
LineNumberReader and LineNumberInputStream (JFC)
LineNumberReader (JFC)
ObjectInput interface : ObjectInput (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
PipedInputStream class : PipedInputStream (JFC)
PipedReader class : PipedReader (JFC)
PushbackInputStream class : PushbackInputStream (JFC)
PushbackReader class : PushbackReader (JFC)
RandomAccessFile class
RandomAccessFile (JFC)
RandomAccessFile (JFC)
Reader class
Reader (JFC)
Reader (JFC)
(Reference page) (NUT)
SequenceInputStream class : SequenceInputStream (JFC)
StringBufferInputStream class : StringBufferInputStream (JFC)
StringReader class : StringReader (JFC)
ZipInputStream class
ZipInputStream (JFC)
(Reference page) (NUT)
read()
Abstract Methods and Classes (EXJ)
Terminal I/O (EXJ)
Pipes (EXJ)
data buffer with : Buffered streams (EXJ)
read-only text : TextComponent Methods (AWT)
readability, checking for : File methods (EXJ)
readBoolean()
DataInput interface : DataInput (JFC)
DataInputStream class : DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
readByte()
DataInput interface : DataInput (JFC)
DataInputStream class : DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM

RandomAccessFile class : RandomAccessFile (JFC)
readChar()
DataInput interface : DataInput (JFC)
DataInputStream class : DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
readDouble()
DataInput interface : DataInput (JFC)
DataInputStream class : DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
readDouble() : Data streams (EXJ)
Reader (class) : Streams (EXJ)
readers
BufferedReader class
BufferedReader and BufferedInputStream (JFC)
BufferedReader (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
CharArrayReader class
CharArrayReader and ByteArrayInputStream (JFC)
CharArrayReader (JFC)
(Reference page) (NUT)
FileReader class
FileInputStream and FileReader (JFC)
FileReader (JFC)
Internationalization (NUT)
(Reference page) (NUT)
FilterReader class
FilterInputStream and FilterReader (JFC)
FilterReader (JFC)
(Reference page) (NUT)
InputStreamReader class
The java.io Package (JFC)
InputStreamReader (JFC)
The java.io Package (JFC)
InputStreamReader (JFC)
Internationalization (NUT)
Character Encodings (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_22.htm#JFC-CH-11-REF-FILEREADER

(Reference page) (NUT)
LineNumberReader class
LineNumberReader and LineNumberInputStream (JFC)
LineNumberReader (JFC)
(Reference page) (NUT)
OutputStreamReader class : The java.io Package (JFC)
PipedReader class
PipedInputStream and PipedReader (JFC)
PipedReader (JFC)
(Reference page) (NUT)
PushbackReader class
PushbackInputStream and PushbackReader (JFC)
PushbackReader (JFC)
(Reference page) (NUT)
Reader class
The java.io Package (JFC)
Input Streams and Readers (JFC)
Reader (JFC)
The java.io Package (JFC)
Reader (JFC)
Internationalization (NUT)
The java.io Package (NUT)
(Reference page) (NUT)
StreamReader class : StringReader and StringBufferInputStream (JFC)
StringReader class
StringReader (JFC)
(Reference page) (NUT)
readExternal()
Advanced Serialization (NUT)
(Reference page) (NUT)
Externalizable interface : Externalizable (JFC)
readFLoat()
DataInput interface : DataInput (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
readFloat()
DataInputStream class : DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
readFully() : (Reference page) (NUT)
DataInput interface : DataInput (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_15.htm#JFC-CH-11-REF-EXTERNALIZABLE
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT

DataInputStream class : DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
reading objects from byte stream : Object Serialization Basics (JFC)
readInt()
DataInput interface : DataInput (JFC)
DataInputStream class : DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
readLine()
BufferedReader class
BufferedReader (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
DataInput interface : DataInput (JFC)
DataInputStream class
DataInputStream (JFC)
(Reference page) (NUT)
LineNumberReader class
LineNumberReader (JFC)
(Reference page) (NUT)
ObjectInputStream class : ObjectInputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
readLine() : Pipes (EXJ)
readLong()
DataInput interface : DataInput (JFC)
DataInputStream class : DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
readObject()
ObjectInput interface : ObjectInput (JFC)
ObjectInputStream class
Object Serialization Basics (JFC)
Writing Classes to Work with Serialization (JFC)
Versioning of Classes (JFC)
ObjectInputStream (JFC)
Object Serialization (NUT)
Simple Serialization (NUT)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2

(Reference page) (NUT)
Serializable interface : (Reference page) (NUT)
readObject(^)
OptionalDataException : (Reference page) (NUT)
readShort()
DataInput interface : DataInput (JFC)
DataInputStream class : DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
readStreamHeader()
ObjectInputStream class : ObjectInputStream (JFC)
readUnsignedByte() : (Reference page) (NUT)
DataInput interface : DataInput (JFC)
DataInputStream class : DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
readUnsignedShort() : (Reference page) (NUT)
DataInput interface : DataInput (JFC)
DataInputStream class : DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
readUTF()
The UTF-8 Encoding (NUT)
(Reference page) (NUT)
DataInput interface : DataInput (JFC)
DataInputStream class
DataInputStream (JFC)
ObjectInputStream class : ObjectInputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
readUTF() : Data streams (EXJ)
ready() : (Reference page) (NUT)
BufferedReader class : BufferedReader (JFC)
CharArrayReader class : CharArrayReader (JFC)
FilterReader class : FilterReader (JFC)
InputStreamReader class : InputStreamReader (JFC)
PushbackReader class : PushbackReader (JFC)
Reader class
Reader (JFC)
Reader (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM

StringReader class : StringReader (JFC)
receive() : (Reference page) (NUT)
DatagramSocket class : DatagramSocket (JFC)
PipedInputStream class : PipedInputStream (JFC)
Rectangle class : (Reference page) (NUT)
rectangles
bounding an object : Component Methods (AWT)
copying : Graphics Methods (AWT)
determining size of : Shape Method (AWT)
as drawing area
Graphics Methods (AWT)
filling
Graphics Methods (AWT)
intersections with : Rectangle Methods (AWT)
raised (with shadow effect) : Graphics Methods (AWT)
Rectangle class
Rectangle (AWT)
Rectangle (AWT)
for repainting : PaintEvent (AWT)
with rounded corners : Graphics Methods (AWT)
size of
Rectangle Methods (AWT)
rectangular coordinates : java.lang.Math (EXJ)
red (color)
Color Methods (AWT)
ColorModel Methods (AWT)
DirectColorModel (AWT)
IndexColorModel (AWT)
redrawing GUI components : Painting and Updating (EXJ)
redrawrate parameter : Component Methods (AWT)
redrawrate property : Image Observers (EXJ)
reference (*) operator in C : Operators (EXJ)
reference data types
Reference Data Types (NUT)
Reference Types (JLR)
reference types
Reference Types (EXJ)
Glossary (EXJ)
reference, passing by : Terminology: Pass by Reference (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch02_04.htm#JAWT-CH-2-SECT-4.1
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_52.htm#JAWT-CH-19-REF-RECTANGLE
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.2

references
Reference Types (JLR)
Dynamic Memory Management (EXJ)
Variables (EXJ)
Reference Types (EXJ)
callbacks
Interfaces as Callbacks (EXJ)
Glossary (EXJ)
casting : Casts (JLR)
casting and : Casting (EXJ)
circular : ClassCircularityError (JFC)
default initial value for : Instance Variables (EXJ)
LinkageError : LinkageError (JFC)
null : NullPointerException (JFC)
setting to null : Threading Applets (EXJ)
when passing arguments : Argument Passing and References (EXJ)
reflection
Reflection (NUT)
Bean Basics (NUT)
Reflection (NUT)
The java.lang.reflect Package (NUT)
Reflection API : The java.lang.reflect Package (JFC)
regionMatches()
String (JFC)
String (JFC)
String (JLR)
registerEditor() : (Reference page) (NUT)
registering a property editor : Defining a Simple Property Editor (NUT)
registerValidation() : Advanced Serialization (NUT)
ObjectInputStream class
ObjectInputStream (JFC)
(Reference page) (NUT)
rehash() : Hashtable (JFC)
relational operators : Relational Comparison Operators (JLR)
RELATIVE constant : GridBagConstraints Methods (AWT)
relative URLs : Working with URLs (EXJ)
remainder (%) operator
Remainder Operator % (JLR)
Operators (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_02.htm#JFC-CH-1-SECT-2

REMAINDER constant : GridBagConstraints Methods (AWT)
remainder() : BigInteger (JFC)
Remote Method Invocation (RMI) : Enterprise APIs: JDBC, RMI, and Security (NUT)
remove() : java.util.Hashtable (EXJ)
AWTEventMulticaster : (Reference page) (NUT)
AWTEventMulticaster class : AWTEventMulticaster (AWT)
Choice component : Component Methods (AWT)
Component class : Component Methods (AWT)
Container class
Container Methods (AWT)
(Reference page) (NUT)
Dictionary class : Dictionary (JFC)
Frame class : Frame Methods (AWT)
Hashtable class
Hashtables (JFC)
Hashtable (JFC)
(Reference page) (NUT)
List component : List Methods (AWT)
Menu class : Menu Methods (AWT)
MenuBar class : MenuBar Methods (AWT)
MenuContainer interface : MenuContainer Methods (AWT)
remove listener interfaces : AWTEventMulticaster (AWT)
removeActionListener()
Button class : Button Events (AWT)
List component : List Events (AWT)
MenuItem class : MenuItem Events (AWT)
TextField class : TextField Events (AWT)
removeAdjustmentListener()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Scrollbar class : Scrollbar Events (AWT)
removeAll()
Choice component : Component Methods (AWT)
Container class : Container Methods (AWT)
List component : List Methods (AWT)
Menu class : Menu Methods (AWT)
removeAllElements() : Vectors (JFC)
removeComponentListener() : Component Events (AWT)
removeConsumer()
FilteredImageSource class : FilteredImageSource (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch10_02.htm#JAWT-CH-10-SECT-2.1

ImageProducer interface : ImageProducer Interface (AWT)
MemoryImageSource class : MemoryImageSource (AWT)
removeConsumer() : Producing Image Data (EXJ)
removeContainerListener() : Container Methods (AWT)
removeElement() : Vectors (JFC)
removeElement() : java.util.Vector (EXJ)
removeElementAt() : Vectors (JFC)
removeFocusListener() : Component Events (AWT)
removeImage() : MediaTracker Methods (AWT)
removeInternal() : AWTEventMulticaster (AWT)
removeItemListener() : (Reference page) (NUT)
Checkbox component : Checkbox Events (AWT)
Choice component : Choice Events (AWT)
List component : List Events (AWT)
Menu class : CheckboxMenuItem Events (AWT)
removeKeyListener() : Component Events (AWT)
removeLayoutComponent() : (Reference page) (NUT)
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
FlowLayout layout : FlowLayout Methods (AWT)
GridLayout layout
GridLayout Methods (AWT)
GridBagLayout Methods (AWT)
HorizBagLayout layout : HorizBagLayout (AWT)
LayoutManager interface
Methods of the LayoutManager Interface (AWT)
LayoutManager Methods (AWT)
VerticalBagLayout layout : VerticalBagLayout (AWT)
removeMouseListener() : Component Events (AWT)
removeMouseMotionListener() : Component Events (AWT)
removeNotify()
Container class
Component Methods (AWT)
Container Methods (AWT)
List component : List Methods (AWT)
Menu class : Menu Methods (AWT)
MenuBar class : MenuBar Methods (AWT)
MenuComponent class : MenuComponent Methods (AWT)
TextComponent class : TextComponent Methods (AWT)

removePropertyChangeListener()
Customizer interface : (Reference page) (NUT)
PropertyEditor interface : Defining a Simple Property Editor (NUT)
PropertyEditorSupport : (Reference page) (NUT)
removeTextListener() : TextComponent Events (AWT)
removeWindowListener() : Window Events (AWT)
rename() : File (JFC)
renameTo() : (Reference page) (NUT)
File class : File (JFC)
renameTo() : File methods (EXJ)
rendezvous strategy (threads)
Rendezvous (JFC)
Rendezvous (JLR)
repaint() : Component Methods (AWT)
repaint()
The repaint() Method (EXJ)
Painting and Updating (EXJ)
Basic Drawing (EXJ)
Image Observers (EXJ)
replace()
String (JFC)
(Reference page) (NUT)
String (JLR)
String class : String (JFC)
replaceItem() : List Methods (AWT)
replaceObject() : Advanced Serialization (NUT)
ObjectOutputStream class : ObjectOutputStream (JFC)
replaceRange() : TextArea Methods (AWT)
replaceText()
TextArea Methods (AWT)
(Reference page) (NUT)
ReplicateScaleFilter() : ReplicateScaleFilter (AWT)
ReplicateScaleFilter class
Graphics Methods (AWT)
ReplicateScaleFilter (AWT)

ReplicateScaleFilter (AWT)
Miscellaneous Improvements (NUT)
(Reference page) (NUT)
requestFocus() : Component Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.2

requestTopDownLeftRightResend()
FilteredImageSource class : FilteredImageSource (AWT)
ImageProducer interface : ImageProducer Interface (AWT)
MemoryImageSource class : MemoryImageSource (AWT)
requestTopDownLeftRightResend() : Producing Image Data (EXJ)
resendTopDownLeftRight() : ImageFilter Methods (AWT)
reserved words : Reserved Words (NUT)
reset()
Adler32 class : Adler32 (JFC)
BufferedInputStream class : BufferedInputStream (JFC)
BufferedReader class
BufferedReader and BufferedInputStream (JFC)
BufferedReader (JFC)
ByteArrayInputStream class
CharArrayReader and ByteArrayInputStream (JFC)
ByteArrayInputStream (JFC)
ByteArrayOutputStream class
ByteArrayOutputStream (JFC)
(Reference page) (NUT)
CharArrayReader class
CharArrayReader and ByteArrayInputStream (JFC)
CharArrayReader (JFC)
(Reference page) (NUT)
CharArrayWriter class
CharArrayWriter (JFC)
(Reference page) (NUT)
Checksum interface
Checksum (JFC)
(Reference page) (NUT)
CollationElementIterator class : CollationElementIterator (JFC)
CRC32 class : CRC32 (JFC)
Deflater class : Deflater (JFC)
FilterInputStream class : FilterInputStream (JFC)
FilterReader class : FilterReader (JFC)
Inflater class : Inflater (JFC)
InputStream class
InputStream (JFC)
InputStream (JFC)
(Reference page) (NUT)

LineNumberInputStream class : LineNumberInputStream (JFC)
LineNumberReader class : LineNumberReader (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
Reader class
Reader (JFC)
(Reference page) (NUT)
StringBufferInputStream class
StringReader and StringBufferInputStream (JFC)
StringBufferInputStream (JFC)
StringReader class
StringReader and StringBufferInputStream (JFC)
StringReader (JFC)
(Reference page) (NUT)
reset() : Buffered streams (EXJ)
resetSyntax()
StreamTokenizer (JFC)
(Reference page) (NUT)
resetting images : Image Methods (AWT)
reshape() : Component Methods (AWT)
resize()
Applet class : Applet Methods (AWT)
Component class : Component Methods (AWT)
resolution, monitor : Toolkit Methods (AWT)
resolveClass()
ClassLoader (JFC)
Advanced Serialization (NUT)
ClassLoader (JLR)
ObjectInputStream class : ObjectInputStream (JFC)
resolveObject() : Advanced Serialization (NUT)
ObjectInputStream class : ObjectInputStream (JFC)
ResourceBundle class
ResourceBundle (JFC)
Internationalization (NUT)
Localizing User-Visible Messages (NUT)
The java.util Package (NUT)
(Reference page) (NUT)
resources for further reading
Other Java Books and Resources (AWT)
Related Books (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_20.htm#JFC-CH-17-REF-RESOURCEBUNDLE
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch11_05.htm#JNUT2-CH-11-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch00_03.htm#JFC-PREF-SECT-3

resources on Java : Related Books (JLR)
resources, system (see performance)
restricting file access : Taming the daemon (EXJ)
resume()
(Reference page) (NUT)
Explicit Synchronization (JLR)
Thread class
Explicit Synchronization (JFC)
Thread (JFC)
Thread (JLR)
ThreadGroup class
ThreadGroup (JFC)
ThreadGroup (JLR)
resume() : Controlling Threads (EXJ)
resurrection of objects : Object Finalization (NUT)
rethrowing exceptions
Rethrowing Exceptions (JFC)
Rethrowing Exceptions (JLR)
return statement (see if statement)
The return Statement (JLR)
return statements
Program Exit Value (NUT)
The finally Clause (EXJ)
@return tag (javadoc)
Documentation Comments (JLR)
Comments (EXJ)
return types
Method return type (JLR)
Constructor return type (JLR)
Interface method return type (JLR)
Returns: doc comment tag : Java Documentation Comment Syntax (NUT)
reverse() : StringBuffer (JLR)
StringBuffer class : StringBuffer (JFC)
RGB colors
Color Methods (AWT)
SystemColor Methods (AWT)
ColorModel Methods (AWT)
DirectColorModel (AWT)
RGBImageFilter class

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch00_03.htm#JLR2-PREFACE-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.2
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm#JNUT2-CH-3-SECT-5.3
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_03.htm#JFC-CH-4-SECT-2.2
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm#JLR2-CH-9-SECT-2.2

RGBImageFilter (AWT)
RGBImageFilter (AWT)
RGB encoding : Color models (EXJ)
RGBImageFilter (class) : Filtering Image Data (EXJ)
RGBImageFilter class
The java.awt.image Package (NUT)
(Reference page) (NUT)
RGBtoGSB() : Color Methods (AWT)
right shift (>>>) operator
Operators (NUT)
Unsigned Right Shift Operator >>> (JLR)
right shift (>>) operator : Right Shift Operator >> (JLR)
rightwise shift (>>>) operator : Operators (EXJ)
rightwise shift (>>) operator : Operators (EXJ)
RIGHT_ALIGNMENT constant : Component Methods (AWT)
rint()
Math (JFC)
Math (JLR)
rint() : java.lang.Math (EXJ)
RMI (Remote Method Invocation) : Enterprise APIs: JDBC, RMI, and Security (NUT)
roll() : (Reference page) (NUT)
Calendar class : Calendar (JFC)
GregorianCalendar class : GregorianCalendar (JFC)
roots : Glossary (EXJ)
rot13
rot13InputStream (EXJ)
The Encryption class (EXJ)
round()
Math (JFC)
Math (JLR)
round() : java.lang.Math (EXJ)
rounded corners : Graphics Methods (AWT)
rowHeights[] variable : GridBagLayout Methods (AWT)
rows (see alignment)
rowWeights[] variable : GridBagLayout Methods (AWT)
RuleBasedCollator class
The java.text Package (JFC)
RuleBasedCollator (JFC)
(Reference page) (NUT)

run()
The Thread Class (EXJ)
run() (EXJ)
The Thread Class and the Runnable Interface (EXJ)
Runnable interface
Runnable (JFC)
(Reference page) (NUT)
Runnable (JLR)
Thread class
Associating a Method with a Thread (JFC)
Sockets for Connection-Oriented Protocols (JFC)
Thread (JFC)
(Reference page) (NUT)
Associating a Method with a Thread (JLR)
Thread (JLR)
run-time typing : Type Safety and Method Binding (EXJ)
runFinalization()
Runtime class
Runtime (JFC)
(Reference page) (NUT)
Runtime (JLR)
System class
System (JFC)
(Reference page) (NUT)
System (JLR)
runFinalizersOnExit()
Runtime class
Runtime (JFC)
Runtime (JLR)
System class
System (JFC)
System (JLR)
Runnable interface
Associating a Method with a Thread (JFC)
Runnable (JFC)
(Reference page) (NUT)
Associating a Method with a Thread (JLR)
Runnable (JLR)
The Runnable Interface (EXJ)
The Thread Class and the Runnable Interface (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.1
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_16.htm#JLR2-CH-10-SECT-16
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_16.htm#JLR2-CH-10-SECT-16
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.1

Runtime class
External Program Execution (JFC)
Runtime (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
Runtime (JLR)
RuntimeException : RuntimeException (JFC)
UnknownError : UnknownError (JFC)
runtime exceptions
Runtime exceptions (JLR)
The throws Clause and checked Exceptions
runtime typing : Introduction (JLR)
RuntimeException
Declaring Exceptions (JFC)
(Reference page) (NUT)
Declaring Exceptions (JLR)
Runtime exceptions (JLR)
RuntimeExceptions
ClassCastException
Casting (EXJ)
java.util.Vector (EXJ)
Getting the Content as an Object (EXJ)
NumberFormatException : Wrappers for Primitive Types (EXJ)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_02.htm#JFC-CH-4-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_02.htm#JLR2-CH-9-SECT-2

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

S
sameFile()
URL Objects (JFC)
URL (JFC)
(Reference page) (NUT)
sameFile() : The URL class (EXJ)
sample programs, obtaining : Obtaining the Example Programs (AWT)
sandbox model : Secure (NUT)
sansserif fonts : Miscellaneous Improvements (NUT)
save()
(Reference page) (NUT)
Loading and Storing (EXJ)
Properties class : Properties (JFC)
saveFile() : File Selection Dialog (EXJ)
say() : Serializing Methods (EXJ)
scalability : Scalability (EXJ)
scalar types in C (see primitive types)
scale() : BigDecimal (JFC)
SCALE_ hints : Image Methods (AWT)
scaling images : Scaling and Size (EXJ)
scheduling threads
Thread priority (JFC)
Yielding (JFC)
Thread priority (JLR)
Yielding (JLR)
Scheduling and Priority (EXJ)
scope versus inheritance : Scope Versus Inheritance (NUT)
scope, declaration : Lexical Scope of Declarations (JLR)
screen resolution : Toolkit Methods (AWT)
screen size : Toolkit Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_17.htm#JFC-CH-17-REF-PROPERTIES
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.3
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm#EXJ-CH-6-SECT-4

scribbling applet : Handling Events (NUT)
scripting languages : Java Compared (EXJ)
SCROLL_ events : Scrollbar Events (AWT)
Scrollbar() : Scrollbar Methods (AWT)
scrollbars : ScrollPane and Scrollbars (EXJ)
SCROLLBARS_ constants : ScrollPane Methods (AWT)
scrolling : Scrolling (AWT)
Adjustable interface
The Adjustable Interface (AWT)

Adjustable (AWT)
images (example) : Scrolling An Image (AWT)
with multiline text input : TextArea (AWT)
Scrollbar class
The Scrollbar class (AWT)
Scrollbar (AWT)
Scrollbar (AWT)
(Reference page) (NUT)
scrollbar color : SystemColor Methods (AWT)
ScrollbarPeer interface
ScrollbarPeer (AWT)
(Reference page) (NUT)
scrolling events
Constants (AWT)
Scrollbar Events (AWT)
Using a ScrollPane (AWT)
ScrollPane class

ScrollPane (AWT)
Miscellaneous Improvements (NUT)
The ScrollPane Container (NUT)
(Reference page) (NUT)
ScrollPane container : ScrollPane (AWT)
ScrollPanePeer interface

ScrollPanePeer (AWT)
(Reference page) (NUT)
ScrollPane container
New Features of AWT in Java 1.1 (AWT)
The Scrollbar class (AWT)
ScrollPane (AWT)
search()

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch06_04.htm#JNUT2-CH-6-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_54.htm#JAWT-CH-19-REF-SCROLLBAR
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_53.htm#JAWT-CH-19-REF-SCROLLPANE
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_53.htm#JAWT-CH-19-REF-SCROLLPANE
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_53.htm#JAWT-CH-19-REF-SCROLLPANE

Stack class : Stack (JFC)
searching
hashtables : Hashtables (JFC)
vector content : Vectors (JFC)
searching packages with import statement : The import Directive (JLR)
secondaryOrder() : CollationElementIterator (JFC)
security
Security (JFC)
Secure (NUT)
Java 1.1 Package-by-Package (NUT)
Enterprise APIs: JDBC, RMI, and Security (NUT)
Applet Security Restrictions (NUT)
Denial of Service Attacks (NUT)
Introduction (JLR)
Yet Another Language? (EXJ)
Safety of Design (EXJ)
application-level : Application and User Level Security (EXJ)
authentication : Signing Classes (EXJ)
external programs and : External Program Execution (JFC)
file permissions : File (JFC)
implementation safety : Safety of Implementation (EXJ)
loading classes : Loading Classes Securely (NUT)
SecurityException
File (JFC)
SecurityManager (JFC)
SecurityException (JFC)
(Reference page) (NUT)
SecurityManager class
File (JFC)
SecurityManager (JFC)
SecurityManager (JFC)
Applet Security Implementation (NUT)
(Reference page) (NUT)
SecurityManager (JLR)
sockets and : Sockets and security (EXJ)
system properties and : System Properties (JFC)
TCP/IP : Servers (EXJ)
security manager
Security Manager (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_22.htm#JFC-CH-17-REF-STACK
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2

The Security Manager (EXJ)
Glossary (EXJ)
applets and files : Applets and Files (EXJ)
HTTP daemon : Taming the daemon (EXJ)
SecurityException
Runtime exceptions (JLR)
The Security Manager (EXJ)
@see tag (javadoc) : Documentation Comments (JLR)
See also: doc comment tag : Java Documentation Comment Syntax (NUT)
@see tags : Comments (EXJ)
seek()
RandomAccessFile (JFC)
(Reference page) (NUT)
RandomAccessFile class : RandomAccessFile (JFC)
seek() : java.io.RandomAccessFile (EXJ)
select()
Choice component : Component Methods (AWT)
List component : List Methods (AWT)
TextComponent class : TextComponent Methods (AWT)
selectAll() : TextComponent Methods (AWT)
SELECTED constant : ItemEvent (AWT)
selecting to invoke
constructors : Object Allocation Expressions (JLR)
methods : Method Call Expression (JLR)
self-termination : Self Termination (JFC)
semicolon (;) : Method implementation (JLR)
send()
DatagramSocket class
DatagramSocket (JFC)
(Reference page) (NUT)
InetAddress class : MulticastSocket (JFC)
MulticastSocket class : (Reference page) (NUT)
separator menu items : Menu Methods (AWT)
separator variable : File (JFC)
separatorChar variable
File (JFC)
File (JFC)
separators : Separators (JLR)
separators, menu : (Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_06.htm#JFC-CH-10-SECT-6

SequenceInputStream class
SequenceInputStream (JFC)
SequenceInputStream (JFC)
(Reference page) (NUT)
Serializable interface
Writing Classes to Work with Serialization (JFC)
Versioning of Classes (JFC)
Serializable (JFC)
Object Serialization (NUT)
Custom Serialization (NUT)
(Reference page) (NUT)
Externalizable interface and : Writing Classes to Work with Serialization (JFC)
serialization (see object serialization)
exceptions
NotSerializableException : NotSerializableException (JFC)
serializing methods : Serializing Methods (EXJ)
serialver program
New JDK Utilities (NUT)
serialver (NUT)
serialVersionUID variable : Versioning of Classes (JFC)
serif fonts : Miscellaneous Improvements (NUT)
server sockets : Sockets (JFC)
servers
Clients and Servers (EXJ)
The server (EXJ)
Glossary (EXJ)
nonexistent files on : Getting the Content as an Object (EXJ)
ServerSocket (object)
Clients and Servers (EXJ)
Servers (EXJ)
ServerSocket class
Sockets for Connection-Oriented Protocols (JFC)
ServerSocket (JFC)
The java.net Package (NUT)
(Reference page) (NUT)
set()
Array class
Array (JFC)
(Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_59.htm#JFC-CH-11-REF-SERIALIZABLE
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch09_02.htm#JNUT2-CH-9-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_37.htm#JFC-CH-11-REF-NOTSERIALIZABLEEXCEPTION

BitSet class : BitSet (JFC)
Calendar class
Calendar (JFC)
(Reference page) (NUT)
Field class
Field (JFC)
(Reference page) (NUT)
URL class : URL (JFC)
URLConnection class : (Reference page) (NUT)
setActionCommand()
ActionEvent class : (Reference page) (NUT)
Button component : Button Methods (AWT)
MenuItem class
MenuItem Events (AWT)
(Reference page) (NUT)
setAddress()
DatagramPacket class : DatagramPacket (JFC)
setAlignment() : (Reference page) (NUT)
FlowLayout layout : FlowLayout Methods (AWT)
Label component : Label Methods (AWT)
setAllowUserInteraction()
URLConnection (JFC)
(Reference page) (NUT)
setAmPmStrings() : DateFormatSymbols (JFC)
setAnimated() : MemoryImageSource (AWT)
setAsText() : Defining a Simple Property Editor (NUT)
setBackground()
Component Methods (AWT)
(Reference page) (NUT)
setBit() : BigInteger (JFC)
setBlockIncrement()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Scrollbar class : Scrollbar Methods (AWT)
setBoolean()
Array class : Array (JFC)
Field class : Field (JFC)
setBound() : (Reference page) (NUT)
setBounds()
Component class : Component Methods (AWT)
Rectangle class : Rectangle Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

setByte()
Array class : Array (JFC)
Field class : Field (JFC)
setCalendar()
DateFormat (JFC)
(Reference page) (NUT)
setCaretPosition()
TextComponent Methods (AWT)
IllegalComponentStateException (AWT)
setChanged() : Observable (JFC)
setChar()
Array class : Array (JFC)
Field class : Field (JFC)
setCharAt() : (Reference page) (NUT)
setCheckboxGroup()
Checkbox Methods (AWT)
(Reference page) (NUT)
setCheckboxGroup() : Checkboxes and CheckboxGroups (EXJ)
setChoices()
ChoiceFormat class : ChoiceFormat (JFC)
setClip() : Graphics Methods (AWT)
setClip() : Drawing Methods (EXJ)
setColFraction() : VariableGridLayout (AWT)
setColor() : Graphics Methods (AWT)
setColor() : Colors
setColorModel()
ImageConsumer interface : ImageConsumer Interface (AWT)
ImageFilter class : ImageFilter Methods (AWT)
PixelGrabber class : PixelGrabber (AWT)
RGBImageFilter class : RGBImageFilter (AWT)
setColorModel() : Image consumers (EXJ)
setColumns()
GridLayout layout : GridLayout Methods (AWT)
TextArea class : TextArea Methods (AWT)
TextField class : TextField Methods (AWT)
setComment()
ZIPEntry class : ZipEntry (JFC)
ZipOutputStream class : ZipOutputStream (JFC)
setConstrained() : (Reference page) (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

setConstraints()
GridBagLayout Methods (AWT)
(Reference page) (NUT)
setContentHandlerFactor() : URLConnection (JFC)
setContentHandlerFactory() : (Reference page) (NUT)
setContents()
Clipboard Methods (AWT)
Data Transfer with Cut-and-Paste (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
setCrc() : ZipEntry (JFC)
setCurrent() : CheckboxGroup Methods (AWT)
setCursor() : (Reference page) (NUT)
Component class : Component Methods (AWT)
Frame class : Frame Methods (AWT)
setDaemon()
ThreadGroup (JFC)
Daemon threads (JLR)
Thread (JLR)
ThreadGroup (JLR)
Thread class
Daemon threads (JFC)
Thread (JFC)
setDaemon() : A Thread's Life (EXJ)
setData() : DatagramPacket (JFC)
setDate()
Date class : Date (JFC)
setDateFormatSymbols() : SimpleDateFormat (JFC)
setDecimalFormatSymbols() : DecimalFormat (JFC)
setDecimalSeparator() : DecimalFormatSymbols (JFC)
setDecimalSeparatorAlwaysShown() : DecimalFormat (JFC)
setDecomposition() : Collator (JFC)
setDefault() : A Word About Locales (NUT)
Locale class : Locale (JFC)
TimeZone class : TimeZone (JFC)
setDefaultAllowUserInteraction()
URLConnection (JFC)
(Reference page) (NUT)
setDefaultRequestProperty() : URLConnection (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.3

setDefaultUseCaches()
URLConnection (JFC)
(Reference page) (NUT)
setDesignTime() : (Reference page) (NUT)
setDictionary()
Deflater class : Deflater (JFC)
Inflater class : Inflater (JFC)
setDigit()
DecimalFormatSymbols class : DecimalFormatSymbols (JFC)
setDimensions()
CropImageFilter class : CropImageFilter (AWT)
ImageConsumer interface : ImageConsumer Interface (AWT)
ImageFilter class : ImageFilter Methods (AWT)
PixelGrabber class : PixelGrabber (AWT)
ReplicateScaleFilter class : ReplicateScaleFilter (AWT)
setDimensions() : Image consumers (EXJ)
setDirectory() : FileDialog Methods (AWT)
setDisplayName() : (Reference page) (NUT)
setDoInput()
URLConnection (JFC)
(Reference page) (NUT)
setDoOuput() : URLConnection (JFC)
setDoOutput() : (Reference page) (NUT)
setDouble()
Array class : Array (JFC)
Field class : Field (JFC)
setEchoChar() : TextField Methods (AWT)
setEchoCharacter()
TextField Methods (AWT)
(Reference page) (NUT)
setEditable()
TextComponent Methods (AWT)
(Reference page) (NUT)
setElementAt() : Vectors (JFC)
setEnabled()
Container class : Component Methods (AWT)
MenuItem class : MenuItem Methods (AWT)
setEndRule() : (Reference page) (NUT)
SimpleTimeZone class : SimpleTimeZone (JFC)
setErr()

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

System (JFC)
System (JLR)
setError()
PrintStream class : PrintStream (JFC)
PrintWriter class : PrintWriter (JFC)
setExpert() : (Reference page) (NUT)
setExtra() : ZipEntry (JFC)
setFile() : FileDialog Methods (AWT)
setFilenameFilter() : FileDialog Methods (AWT)
setFirstDayOfWeek() : Calendar (JFC)
setFloat()
Array class : Array (JFC)
Field class : Field (JFC)
setFollowRedirects()
HttpURLConnection (JFC)
(Reference page) (NUT)
setFont()
Component class
Component Methods (AWT)
(Reference page) (NUT)
Graphics class : Graphics Methods (AWT)
MenuComponent class
MenuComponent Methods (AWT)
(Reference page) (NUT)
setFont() : Fonts (EXJ)
setForeground()
Component Methods (AWT)
(Reference page) (NUT)
setFormat() : (Reference page) (NUT)
MessageFormat class : MessageFormat (JFC)
setFormats()
MessageFormat class : MessageFormat (JFC)
setFullBufferUpdates() : MemoryImageSource (AWT)
setGregorianChange
GregorianCalendar class : GregorianCalendar (JFC)
setGroupingSeparator()
DecimalFormatSymbols class : DecimalFormatSymbols (JFC)
setGroupingSize() : DecimalFormat (JFC)
setGroupingUsed()
NumberFormat (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

(Reference page) (NUT)
setGuiAvailable() : (Reference page) (NUT)
setHelpMenu()
MenuBar Methods (AWT)
(Reference page) (NUT)
setHgap()
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
FlowLayout layout : FlowLayout Methods (AWT)
GridLayout layout : GridLayout Methods (AWT)
setHidden() : (Reference page) (NUT)
setHints() : (Reference page) (NUT)
AreaAveragingScaleFilter class : AreaAveragingScaleFilter (AWT)
ImageConsumer interface : ImageConsumer Interface (AWT)
ImageFilter class : ImageFilter Methods (AWT)
PixelGrabber class : PixelGrabber (AWT)
setHints() : Image consumers (EXJ)
setHours()
Date class : Date (JFC)
setHumanPresentableName()
DataFlavor Methods (AWT)
(Reference page) (NUT)
setIconImage()
Frame Methods (AWT)
(Reference page) (NUT)
setID()
TimeZone class : TimeZone (JFC)
setIfModifiedSince()
URLConnection (JFC)
(Reference page) (NUT)
setIn()
System (JFC)
System (JLR)
setInDefaultEventSet() : (Reference page) (NUT)
setIndex()
CharacterIterator interface
CharacterIterator (JFC)
(Reference page) (NUT)
ParsePosition class
ParsePosition (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch16_16.htm#JFC-CH-16-REF-PARSEPOSITION

(Reference page) (NUT)
StringCharacterIterator class : StringCharacterIterator (JFC)
setInfinity() : DecimalFormatSymbols (JFC)
setInput()
Deflater class
Deflater (JFC)
(Reference page) (NUT)
Inflater class
Inflater (JFC)
(Reference page) (NUT)
setInt()
Array class : Array (JFC)
Field class : Field (JFC)
setInterface() : MulticastSocket (JFC)
setjmp() statements in C : Exceptions (EXJ)
setKeyCode() : KeyEvent (AWT)
setLabel()
Button class : Button Methods (AWT)
Checkbox component : Checkbox Methods (AWT)
MenuItem class : MenuItem Methods (AWT)
setLayout()
Container : The java.awt Package (NUT)
Container class
Container Methods (AWT)
(Reference page) (NUT)
Dialog class : (Reference page) (NUT)
ScrollPane container : ScrollPane Methods (AWT)
setLayout()
Layout managers (EXJ)
Layout Managers (EXJ)
setLength() : StringBuffer (JLR)
DatagramPacket class : DatagramPacket (JFC)
StringBuffer class : StringBuffer (JFC)
setLenient()
DateFormat (JFC)
Calendar (JFC)
setLevel() : (Reference page) (NUT)
Deflater class : Deflater (JFC)
ZipOutputStream class : ZipOutputStream (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

setLineIncrement() : Scrollbar Methods (AWT)
setLineNumber() : LineNumberReader and LineNumberInputStream (JFC)
LineNumberInputStream class
LineNumberInputStream (JFC)
(Reference page) (NUT)
LineNumberReader class
LineNumberReader (JFC)
(Reference page) (NUT)
setLocale() : Component Methods (AWT)
MessageFormat class
MessageFormat (JFC)
(Reference page) (NUT)
setLocation()
Component class : Component Methods (AWT)
Point class : Point Methods (AWT)
Rectangle class : Rectangle Methods (AWT)
setLong()
Array class : Array (JFC)
Field class : Field (JFC)
setMaximum()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Scrollbar class : Scrollbar Methods (AWT)
setMaximumFractionDigits()
NumberFormat (JFC)
(Reference page) (NUT)
setMaximumIntegerDigits() : NumberFormat (JFC)
setMaxPriority()
ThreadGroup (JFC)
ThreadGroup (JLR)
setMenuBar()
Frame Methods (AWT)
(Reference page) (NUT)
setMenuBar() : Menus and Choices (EXJ)
setMethod() : (Reference page) (NUT)
ZIPEntry class : ZipEntry (JFC)
ZipOutputStream class : ZipOutputStream (JFC)
setMinimalDaysInFirstWeek() : Calendar (JFC)
setMinimum()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Scrollbar class : Scrollbar Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

setMinimumFractionDigits() : NumberFormat (JFC)
setMinimumIntegerDigits() : NumberFormat (JFC)
setMinusSign() : DecimalFormatSymbols (JFC)
setMinutes()
Date class : Date (JFC)
setModal() : Dialog Constructors and Methods (AWT)
setMode() : FileDialog Methods (AWT)
setModifiers() : KeyEvent (AWT)
setMonth()
Date class : Date (JFC)
setMonths() : DateFormatSymbols (JFC)
setMultipleMode() : List Methods (AWT)
setMultipleSelections() : List Methods (AWT)
setMultiplier()
DecimalFormat class : DecimalFormat (JFC)
setName()
Component Methods (AWT)
(Reference page) (NUT)
Thread (JLR)
Thread class : Thread (JFC)
setNaN() : DecimalFormatSymbols (JFC)
setNegativePrefix() : DecimalFormat (JFC)
setNegativeSuffix() : DecimalFormat (JFC)
setObject() : (Reference page) (NUT)
setOrientation()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Scrollbar class : Scrollbar Methods (AWT)
setOut()
System (JFC)
System (JLR)
setPageIncrement() : Scrollbar Methods (AWT)
setPaintMode() : Graphics Methods (AWT)
setParseIntegerOnly() : NumberFormat (JFC)
setPatternSeparator()
DecimalFormatSymbols class : DecimalFormatSymbols (JFC)
setPercent() : DecimalFormatSymbols (JFC)
setPerMill() : DecimalFormatSymbols (JFC)
setPixels()
AreaAveragingScaleFilter class : AreaAveragingScaleFilter (AWT)

CropImageFilter class : CropImageFilter (AWT)
ImageConsumer interface : ImageConsumer Interface (AWT)
ImageFilter class : ImageFilter Methods (AWT)
PixelGrabber class : PixelGrabber (AWT)
ReplicateScaleFilter class : ReplicateScaleFilter (AWT)
RGBImageFilter class : RGBImageFilter (AWT)
setPixels()
Producing Image Data (EXJ)
Color models (EXJ)
setPort()
DatagramPacket class : DatagramPacket (JFC)
setPositivePrefix() : DecimalFormat (JFC)
setPositiveSuffix() : DecimalFormat (JFC)
setPriority()
Thread priority (JFC)
Thread (JFC)
Thread priority (JLR)
Thread (JLR)
setProperties()
System Properties (JFC)
System (JLR)
CropImageFilter class : CropImageFilter (AWT)
ImageConsumer interface : ImageConsumer Interface (AWT)
ImageFilter class : ImageFilter Methods (AWT)
PixelGrabber class : PixelGrabber (AWT)
ReplicateScaleFilter class : ReplicateScaleFilter (AWT)
System class : System (JFC)
setProperties() : Image consumers (EXJ)
setProperty() : (Reference page) (NUT)
setPropertyEditorClass() : (Reference page) (NUT)
setRawOffset()
SimpleTimeZone class : SimpleTimeZone (JFC)
TimeZone class : TimeZone (JFC)
setRequestMethod()
HttpURLConnection (JFC)
(Reference page) (NUT)
setRequestProperty() : URLConnection (JFC)
setResizable()
Dialog class : Dialog Constructors and Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2

Frame classM : Frame Methods (AWT)
setRowFraction() : VariableGridLayout (AWT)
setRows()
GridLayout layout : GridLayout Methods (AWT)
TextArea class : TextArea Methods (AWT)
setScale() : BigDecimal (JFC)
setScrollPosition()
ScrollPane Methods (AWT)
(Reference page) (NUT)
setSeconds() : Date (JFC)
setSecurityManager()
SecurityManager (JFC)
System (JFC)
System (JLR)
setSecurityManager() : The Security Manager (EXJ)
setSeed()
Random (JFC)
(Reference page) (NUT)
setSelectedCheckbox() : CheckboxGroup Methods (AWT)
setSelectionEnd() : TextComponent Methods (AWT)
setSelectionStart() : TextComponent Methods (AWT)
setShort()
Array class : Array (JFC)
Field class : Field (JFC)
setShortcut()
MenuItem Methods (AWT)
(Reference page) (NUT)
setShortDescription() : (Reference page) (NUT)
setShortMonths() : DateFormatSymbols (JFC)
setShortWeekdays() : DateFormatSymbols (JFC)
setSigners()
ClassLoader (JFC)
ClassLoader (JLR)
setSize()
ZipEntry (JFC)
(Reference page) (NUT)
Component class : Component Methods (AWT)
Dimension class : Dimension Methods (AWT)
Rectangle class : Rectangle Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_19.htm#JFC-CH-17-REF-RANDOM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD

setSize() : Layout Managers (EXJ)
setSocketFacrory() : ServerSocket (JFC)
setSocketImplFactory() : Socket (JFC)
setSoLinger()
Socket class : Socket (JFC)
setSoTimeout()
DatagramSocket class : DatagramSocket (JFC)
ServerSocket class : ServerSocket (JFC)
Socket class : Socket (JFC)
setStartRule() : (Reference page) (NUT)
SimpleTimeZone class : SimpleTimeZone (JFC)
setStartYear()
SimpleTimeZone class : SimpleTimeZone (JFC)
setState()
Checkbox component : Checkbox Methods (AWT)
CheckboxMenuItem class : CheckboxMenuItem Methods (AWT)
setStrategy() : Deflater (JFC)
setStrength() : (Reference page) (NUT)
Collator class : Collator (JFC)
setStub() : Applet Methods (AWT)
setTcpNoDelay() : Socket (JFC)
setText()
Label Methods (AWT)
BreakIterator (JFC)
(Reference page) (NUT)
TextComponent class : TextComponent Methods (AWT)
setText() : A TextEntryBox
setTime()
Date (JFC)
(Reference page) (NUT)
Calendar class : Calendar (JFC)
ZIPEntry class : ZipEntry (JFC)
setTimeInMillis() : Calendar (JFC)
setTimeZone() : (Reference page) (NUT)
Calendar class : Calendar (JFC)
setTitle()
Frame Methods (AWT)
(Reference page) (NUT)
Dialog class : Dialog Constructors and Methods (AWT)

setTitle() : Menus and Choices (EXJ)
setTTL()
MulticastSocket (JFC)
(Reference page) (NUT)
setUnicast() : (Reference page) (NUT)
setUnitIncrement() : Scrollbar Methods (AWT)
Adjustable interface : Methods of the Adjustable Interface (AWT)
setURL() : URLStreamHandler (JFC)
setURL() : The URLStreamHandler (EXJ)
setURLStreamHandlerFactory() : URL (JFC)
setUseCaches()
URLConnection (JFC)
(Reference page) (NUT)
setValue()
Adjustable interface : Methods of the Adjustable Interface (AWT)
FeatureDescriptor class : (Reference page) (NUT)
PropertyEditor interface : Defining a Simple Property Editor (NUT)
Scrollbar class
Scrollbar Methods (AWT)
(Reference page) (NUT)
setValues()
Scrollbar Methods (AWT)
(Reference page) (NUT)
setVgap()
BorderLayout layout : BorderLayout Methods (AWT)
CardLayout layout : CardLayout Methods (AWT)
FlowLayout layout : FlowLayout Methods (AWT)
GridLayout layout : GridLayout Methods (AWT)
setVisible() : Component Methods (AWT)
setVisibleAmount()
Adjustable interface : Methods of the Adjustable Interface (AWT)
Scrollbar class : Scrollbar Methods (AWT)
setWeekdays() : DateFormatSymbols (JFC)
setXORMode() : Graphics Methods (AWT)
setYear() : Date (JFC)
setZeroDigit() : DecimalFormatSymbols (JFC)
shadow colors
Color Methods (AWT)
SystemColor Methods (AWT)

Displaying Colors (AWT)
shadowed methods : Shadowed Methods? (NUT)
shadowed variables
Shadowed Variables (NUT)
Variable name (JLR)
overridden methods versus : Overriding Is Not Shadowing (NUT)
shadowing variables
Shadowing (EXJ)
Shadowed Variables (EXJ)
Glossary (EXJ)
Shape interface : (Reference page) (NUT)
shapes : Graphics Methods (AWT)
checkboxes : Checkbox Methods (AWT)
of cursors
Cursor Constants (AWT)
Frame Constants (AWT)
polygons
Graphics Methods (AWT)
Polygon (AWT)
Polygon (AWT)
rectangles (see rectangles)
Shape interface
Shape (AWT)

Shape (AWT)
shift (>>>) operator
Operators (NUT)
Operators (NUT)
shift (>>) operator : Operators (NUT)
Shift key (see modifiers)
shift operators : Shift Operators (JLR)
Shift-Tab keys : Keyboard Focus Traversal (NUT)
shiftDown()
Event Methods (AWT)
Key and Modifier Constants (NUT)
shiftLeft() : BigInteger (JFC)
shiftRight() : BigInteger (JFC)
Short() : Short (JFC)
short (type)
Primitive Types (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch03_05.htm#JAWT-CH-3-SECT-5
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_48.htm#JAWT-CH-19-REF-POLYGON
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch02_04.htm#JAWT-CH-2-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_55.htm#JAWT-CH-19-REF-SHAPE
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_55.htm#JAWT-CH-19-REF-SHAPE
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_55.htm#JAWT-CH-19-REF-SHAPE

Glossary (EXJ)
Short class
The java.lang Package (JFC)
Short (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
Short (JLR)
short data type
(Reference page) (NUT)
Integer types (JLR)
shortcuts() : MenuBar Methods (AWT)
shortcuts, menu
MenuShortcut (AWT)
MenuBar Methods (AWT)

MenuShortcut (AWT)
Popup Menus and Menu Shortcuts (NUT)
Popup Menus and Menu Shortcuts (NUT)
(Reference page) (NUT)
shortValue() : Byte (JFC)
Byte class : Byte (JLR)
Double class
Double (JFC)
Double (JLR)
Float class
Float (JFC)
Float (JLR)
Integer class
Integer (JFC)
Integer (JLR)
Long class
Long (JFC)
Long (JLR)
Number class
Number (JFC)
Number (JLR)
Short class
Short (JFC)
Short (JLR)
show()

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_45.htm#JAWT-CH-19-REF-MENUSHORTCUT
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_45.htm#JAWT-CH-19-REF-MENUSHORTCUT
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_45.htm#JAWT-CH-19-REF-MENUSHORTCUT
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch08_02.htm#JNUT2-CH-8-SECT-2

(Reference page) (NUT)
File Selection Dialog (EXJ)
CardLayout (EXJ)
CardLayout class : (Reference page) (NUT)
CardLayout layout : CardLayout Methods (AWT)
Component class
Component Methods (AWT)
(Reference page) (NUT)
Dialog class
Dialog Constructors and Methods (AWT)
(Reference page) (NUT)
FileDialog class : (Reference page) (NUT)
PopupMenu class
PopupMenu Methods (AWT)
(Reference page) (NUT)
Window class
Window Methods (AWT)
(Reference page) (NUT)
showDocument()
AppletContext Interface (AWT)
(Reference page) (NUT)
showDocument() : Driving the Browser (EXJ)
showing, component : Component Methods (AWT)
showStatus()
Introduction to Applets (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
Applet class : Applet Methods (AWT)
AppletContext interface : AppletContext Interface (AWT)
showStatus() : Driving the Browser (EXJ)
sign
The char Type (NUT)
Integral Types (NUT)
signature (see method signature)
digital (see digital signature)
method (see method signature)
signed applets (see digital signatures)
signum()
BigDecimal class : BigDecimal (JFC)

BigInteger class : BigInteger (JFC)
SimpleBeanInfo class : (Reference page) (NUT)
SimpleDateFormat class
SimpleDateFormat (JFC)
The java.text Package (NUT)
(Reference page) (NUT)
SimpleTimeZone class
SimpleTimeZone (JFC)
(Reference page) (NUT)
sin()
Math (JFC)
Math (JLR)
java.lang.Math (EXJ)
Since: doc comment tag : Java Documentation Comment Syntax (NUT)
sine
java.lang.Math (EXJ)
single inheritance : Subclassing and Inheritance (EXJ)
single-line comments (see comments)
single-line input (see text, TextField class)
single-precision numbers (see floating-point data types)
single-threaded execution
Single-Threaded Execution (JFC)
Single-Threaded Execution
SINGLEFRAME constant : ImageConsumer Interface (AWT)
SINGLEFRAME property : Image consumers (EXJ)
SINGLEFRAMEDONE constant : ImageConsumer Interface (AWT)
SINGLEFRAMEDONE property : Image consumers (EXJ)
SINGLEPASS constant : ImageConsumer Interface (AWT)
SINGLEPASS property : Image consumers (EXJ)
size
applet
Attributes (EXJ)
The Complete Applet Tag (EXJ)
applets
Applet Methods (AWT)
AppletStub Interface (AWT)
arranging GUI components by : FlowLayout (EXJ)
audio data length : AudioStream (AWT)
BitSet class : BitSet (JFC)

ByteArrayOutputStream class : ByteArrayOutputStream (JFC)
CharArrayWriter class
CharArrayWriter (JFC)
(Reference page) (NUT)
color map : IndexColorModel (AWT)
components
Container Methods (AWT)
Methods of the LayoutManager Interface (AWT)
cropping images : CropImageFilter (AWT)
DataOutputStream class
DataOutputStream (JFC)
(Reference page) (NUT)
Dictionary class : Dictionary (JFC)
Dimension class for : Dimension Methods (AWT)
file
File (JFC)
RandomAccessFile (JFC)
File methods (EXJ)
font
Fonts (AWT)
The Font Class (AWT)
Fonts (EXJ)
character width : The FontMetrics Class (AWT)
font height : The FontMetrics Class (AWT)
GUI components : Layout Managers (EXJ)
Hashtable class : Hashtable (JFC)
HEIGHT, WIDTH parameters (<APPLET> tag) : The Applet Tag (AWT)
image
Image Methods (AWT)
ImageObserver Interface (AWT)
ImageConsumer Interface (AWT)
Scaling and Size (EXJ)
image data : PixelGrabber (AWT)
line width : Graphics Methods (AWT)
monitor (screen) : Toolkit Methods (AWT)
objects, components for : Component Methods (AWT)
pixel : ColorModel Methods (AWT)
rectangle
Rectangle Methods (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.3

scrollbars : ScrollPane Methods (AWT)
string length in pixels : The FontMetrics Class (AWT)
text input objects : TextField Methods (AWT)
Vector class
Vectors (JFC)
(Reference page) (NUT)
ZIP files
ZipEntry (JFC)
size operator in C : Operators (EXJ)
size() : java.util.Vector (EXJ)
SizedTextField class (example) : Extending TextField (AWT)
sizeof operator : Operators (NUT)
skip()
BufferedInputStream class : BufferedInputStream (JFC)
BufferedReader class : BufferedReader (JFC)
ByteArrayInputStream class : ByteArrayInputStream (JFC)
CharArrayReader class : CharArrayReader (JFC)
CheckedInputStream class
CheckedInputStream (JFC)
(Reference page) (NUT)
FileInputStream class : FileInputStream (JFC)
FilterInputStream class : FilterInputStream (JFC)
FilterReader class : FilterReader (JFC)
InflaterInputStream class
InflaterInputStream (JFC)
(Reference page) (NUT)
InputStream class
InputStream (JFC)
InputStream (JFC)
(Reference page) (NUT)
LineNumberInputStream class : LineNumberInputStream (JFC)
LineNumberReader class : LineNumberReader (JFC)
ObjectInput interface : ObjectInput (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
Reader class
Reader (JFC)
(Reference page) (NUT)
StringBufferInputStream class : StringBufferInputStream (JFC)
StringReader class : StringReader (JFC)

ZipInputStream class
ZipInputStream (JFC)
(Reference page) (NUT)
skip() : Terminal I/O (EXJ)
skipBytes()
ObjectInputStream (JFC)
(Reference page) (NUT)
DataInput interface : DataInput (JFC)
DataInputStream class : DataInputStream (JFC)
slash (/) : Java Filenames and Directory Structure (NUT)
slash (/) in paths : Path localization (EXJ)
slashSlashComments()
StreamTokenizer (JFC)
(Reference page) (NUT)
slashStarComments()
StreamTokenizer (JFC)
(Reference page) (NUT)
sleep()
Yielding (JFC)
(Reference page) (NUT)
Yielding (JLR)
Thread (JLR)
Thread class : Thread (JFC)
sleep()
run() (EXJ)
The Message Passer (EXJ)
Smalltalk
Java Compared (EXJ)
Type Safety and Method Binding (EXJ)
SocketImpl class : SocketImpl (JFC)
sockets
Sockets (JFC)
Network Programming (EXJ)
Sockets (EXJ)
Glossary (EXJ)
BindException
BindException (JFC)
(Reference page) (NUT)
ConnectException
ConnectException (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_10.htm#JFC-CH-11-REF-DATAINPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_11.htm#JFC-CH-11-REF-DATAINPUTSTREAM

(Reference page) (NUT)
for connection-oriented protocols : Sockets for Connection-Oriented Protocols (JFC)
for connectionless protocols : Sockets for Connectionless Protocols (JFC)
datagram : Datagram Sockets (EXJ)
DatagramSocket class
The java.net Package (NUT)
(Reference page) (NUT)
DatagramSocketImpl class : (Reference page) (NUT)
MulticastSocket class
The java.net Package (NUT)
(Reference page) (NUT)
security and : Sockets and security (EXJ)
ServerSocket class
ServerSocket (JFC)
(Reference page) (NUT)
Socket class
Socket (JFC)
The java.net Package (NUT)
(Reference page) (NUT)
SocketException
SocketException (JFC)
(Reference page) (NUT)
SocketImpl class : (Reference page) (NUT)
SocketImplFactory interface : (Reference page) (NUT)
SOMEBITS (variable) : Implementing an ImageObserver (EXJ)
SOMEBITS constant : ImageObserver Interface (AWT)
sound (see audio)
sound files
Applet Resources
Working with Audio (EXJ)
source code (see code, source)
compilation units : Glossary (EXJ)
source files
Compiling a Java Source File (JLR)
Compilation Units (JLR)
Packages (JLR)
source files, generating (see javah)
sources, image : A Brief Tour of sun.awt.image (AWT)
speed (see performance)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2

Yet Another Language? (EXJ)
The Verifier (EXJ)
sqrt()
Math (JFC)
Math (JLR)
sqrt() : java.lang.Math (EXJ)
stack traces
Printing Stack Traces (JFC)
Printing Stack Traces (JLR)
stack-of-cards configuration (see CardLayout)
StackOverflowError
StackOverflowError (JFC)
(Reference page) (NUT)
Errors (JLR)
stacks : Stacks (JFC)
EmptyStackException
EmptyStackException (JFC)
(Reference page) (NUT)
setting size of : java (NUT)
Stack class
Stack (JFC)
The java.util Package (NUT)
(Reference page) (NUT)
standard error : I/O (JFC)
start()
The Thread Class (EXJ)
start() and stop() (EXJ)
Creating and starting threads (EXJ)
Applet Control (EXJ)
start() : Sockets for Connection-Oriented Protocols (JFC)
Applet class
Applet Methods (AWT)
Introduction to Applets (NUT)
(Reference page) (NUT)
Applets (JLR)
AudioPlayer class : AudioPlayer (AWT)
Thread class
Associating a Method with a Thread (JFC)
Thread (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_03.htm#JFC-CH-4-SECT-2.1
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm#JLR2-CH-9-SECT-2.1
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_03.htm#JFC-CH-5-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_05.htm#JFC-CH-17-REF-EMPTYSTACKEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_22.htm#JFC-CH-17-REF-STACK
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_01.htm#JFC-CH-10-SECT-1
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.1.1

(Reference page) (NUT)
Associating a Method with a Thread (JLR)
Thread (JLR)
startGrabbing() : PixelGrabber (AWT)
startProduction()
FilteredImageSource class : FilteredImageSource (AWT)
ImageProducer interface : ImageProducer Interface (AWT)
MemoryImageSource class : MemoryImageSource (AWT)
startProduction() : Producing Image Data (EXJ)
startsWith()
String (JFC)
String (JFC)
(Reference page) (NUT)
String (JLR)
startsWith() : Searching (EXJ)
state
checkbox : Checkbox Methods (AWT)
checkbox menu items : CheckboxMenuItem Methods (AWT)
component : Component Methods (AWT)
statements
Statements (NUT)
Statements and Expressions (EXJ)
Statements (EXJ)
blocks of
Lexical Scope of Declarations (JLR)
Blocks (JLR)
conditional : The if Statement (JLR)
empty : The Empty Statement (JLR)
iteration : Iteration Statements (JLR)
labeled : Labeled Statements (JLR)
target
The break Statement (JLR)
The continue Statement (JLR)
unreachable : Statements (EXJ)
static
final variables : Defining Constants (NUT)
initializers : Static Initializers (NUT)
members and member classes : Restrictions on Member Classes (NUT)
methods (see class methods)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_03.htm#JLR2-CH-6-SECT-3

variables (see class variables)
static (modifier)
Static Members (EXJ)
Glossary (EXJ)
code blocks : Static and Nonstatic Code Blocks (EXJ)
final color values : Colors
members : Static Members (EXJ)
methods
Static Methods (EXJ)
Static method binding (EXJ)
Glossary (EXJ)
types : Types (EXJ)
variables : Glossary (EXJ)
static modifier
Class Variables (NUT)
Modifiers (NUT)
Static Initializers (JLR)
Inner class modifiers (JLR)
Inner interface modifiers (JLR)
methods and
A "Hello World" Program (JLR)
Method Call Expression (JLR)
Method modifiers (JLR)
variables and
Variable modifiers (JLR)
Variable initializers (JLR)
STATICIMAGEDONE constant : ImageConsumer Interface (AWT)
STATICIMAGEDONE property : Image consumers (EXJ)
status
applet
Applet Methods (AWT)
AppletStub Interface (AWT)
browser status line
Applet Methods (AWT)
AppletContext Interface (AWT)
image grabbing : PixelGrabber (AWT)
loading
MediaTracker Methods (AWT)
ImageObserver Interface (AWT)

Toolkit Methods (AWT)
status()
PixelGrabber (AWT)
(Reference page) (NUT)
statusAll()
MediaTracker Methods (AWT)
(Reference page) (NUT)
statusID()
MediaTracker Methods (AWT)
(Reference page) (NUT)
stop()
The Thread Class (EXJ)
start() and stop() (EXJ)
Creating and starting threads (EXJ)
Controlling Threads (EXJ)
Applet Control (EXJ)
Working with Audio (EXJ)
suspend() versus : Threading Applets (EXJ)
stop()
Applet class
Applet Methods (AWT)
Introduction to Applets (NUT)
(Reference page) (NUT)
Applets (JLR)
AudioClip interface : AudioClip Interface (AWT)
AudioPlayer class : AudioPlayer (AWT)
Thread class
Stopping a thread (JFC)
Thread (JFC)
(Reference page) (NUT)
Stopping a thread (JLR)
Thread (JLR)
ThreadGroup class
ThreadGroup (JFC)
ThreadGroup (JLR)
storing class files : javac (NUT)
StreamCorruptedException : (Reference page) (NUT)
streams
The java.io Package (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.1.1
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.2

I/O (JFC)
The java.io Package (JFC)
Streams (EXJ)
Glossary (EXJ)
created from strings : Strings to Streams and Back (EXJ)
file : File Streams (EXJ)
input streams (see input streams)
output streams (see output streams)
StreamCorruptedException : StreamCorruptedException (JFC)
StreamTokenizer class : StreamTokenizer (JFC)
URLs and : Stream Data (EXJ)
wrappers for : Stream Wrappers (EXJ)
StreamTokenizer class : (Reference page) (NUT)
String()
String (JFC)
String (JLR)
String (class/object) (see strings)
string concatenation (+) operator
null (JLR)
String Concatenation Operator + (JLR)
Syntactic Sweet 'n Low (EXJ)
A Word About Strings (EXJ)
Operators (EXJ)
String Constructors (EXJ)
java.lang.StringBuffer (EXJ)
StringBuffer (class)
Editing (EXJ)
java.lang.StringBuffer (EXJ)
StringCharacterIterator class : StringCharacterIterator (JFC)
StringReader (class) : Strings to Streams and Back (EXJ)
strings
Graphics Methods (AWT)
Strings and Related Classes (JFC)
String Literals (NUT)
Creating Objects (NUT)
Strings (NUT)
The New Operator (EXJ)
A Word About Strings (EXJ)
Strings (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_60.htm#JFC-CH-11-REF-STREAMCORRUPTEDEXCEPTION

Glossary (EXJ)
alphabetizing, internationalization and : Handling Local Customs (NUT)
backslashes in : Path localization (EXJ)
charAt() : Things from Strings (EXJ)
comparing
String (JFC)
Comparisons (EXJ)
concatenating
String (JFC)
String Concatenation (JFC)
concatenation
Unicode and Character Escapes (NUT)
Operators (NUT)
Operators (NUT)
constructors for : String Constructors (EXJ)
converting to and from : Strings from Things (EXJ)
creating streams from : Strings to Streams and Back (EXJ)
date/time (see date and time)
editing : Editing (EXJ)
equality of : Equality (EXJ)
hashtable for : Properties (EXJ)
List class : (Reference page) (NUT)
parsing into words : java.util.StringTokenizer (EXJ)
pixel length of : The FontMetrics Class (AWT)
PrintStream class
PrintWriter and PrintStream (JFC)
I/O (JFC)
PrintStream (JFC)
PrintWriter class : PrintWriter and PrintStream (JFC)
searching for substrings in : Searching (EXJ)
StreamReader class : StringReader and StringBufferInputStream (JFC)
streams for reading/writing : Data streams (EXJ)
String class
The java.lang Package (JFC)
String (JFC)
String (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
Specially supported classes (JLR)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_01.htm#JFC-CH-10-SECT-1

String (JLR)
string literals
String literals (JLR)
Specially supported classes (JLR)
StringBuffer class
StringBuffer (JFC)
StringBuffer (JFC)
Strings (NUT)
The java.lang Package (NUT)
(Reference page) (NUT)
Specially supported classes (JLR)
StringBuffer (JLR)
StringBufferInputStream class
StringBufferInputStream (JFC)
(Reference page) (NUT)
StringCharacterIterator class : (Reference page) (NUT)
StringIndexOutOfBoundsException
StringIndexOutOfBoundsException (JFC)
(Reference page) (NUT)
Runtime exceptions (JLR)
StringReader class
StringReader (JFC)
(Reference page) (NUT)
StringSelection class
StringSelection (AWT)

StringSelection (AWT)
(Reference page) (NUT)
StringTokenizer class
StringTokenizer (JFC)
StringTokenizer (JFC)
The java.util Package (NUT)
(Reference page) (NUT)
StringWriter class
StringWriter (JFC)
StringWriter (JFC)
(Reference page) (NUT)
toCharArray() : Things from Strings (EXJ)
toString() (see toString())
UTF (see UTF-8 encoding)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_02.htm#JFC-CH-2-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch02_04.htm#JFC-CH-2-SECT-4

valueOf() : Strings from Things (EXJ)
StringSelection class : (Reference page) (NUT)
StringTokenizer (class) : java.util.StringTokenizer (EXJ)
stringWidth() : The FontMetrics Class (AWT)
stringWidth()
Font Metrics (EXJ)
StringWriter (class)
Strings to Streams and Back (EXJ)
strtok() in C : java.util.StringTokenizer (EXJ)
struct (keyword) in C : Glossary (EXJ)
structures in C : No Structures or Unions (NUT)
style, font (see fonts)
sub-interfaces (see interfaces)
subclasses (see classes)
Inheritance (EXJ)
Subclassing and Subtypes (EXJ)
Subclassing and Inheritance (EXJ)
Glossary (EXJ)
of Thread class : A natural born thread (EXJ)
visibility and : Subclasses and Visibility (EXJ)
subinterfaces : Subinterfaces (EXJ)
substituteColorModel() : RGBImageFilter (AWT)
substring()
String (JFC)
String (JFC)
(Reference page) (NUT)
String (JLR)
Editing (EXJ)
substrings (see strings)
subtract()
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
subtraction (-) operator : Operators (EXJ)
subtraction (-) operator, arithmetic : Arithmetic Subtraction Operator - (JLR)
Sun's HotJava (see HotJava Web browser)
sun.awt package, layouts from : The sun.awt Layout Collection (AWT)
super() : Using superclass constructors (EXJ)
super (keyword)
Shadowed Variables (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.1.2
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm#EXJ-CH-5-SECT-7.2

this and super
Glossary (EXJ)
super keyword
Subclass Constructors (NUT)
New Syntax for Member Classes (NUT)
super (JLR)
Variable name (JLR)
Constructor implementation (JLR)
for invoking overridden methods : Invoking an Overridden Method (NUT)
with this keyword : Constructor Chaining (NUT)
superclasses (see classes; overridden methods)
Inheritance (EXJ)
suspend() : (Reference page) (NUT)
Thread class
Explicit Synchronization (JFC)
Thread (JFC)
Explicit Synchronization (JLR)
Thread (JLR)
ThreadGroup class
ThreadGroup (JFC)
ThreadGroup (JLR)
suspend() : Controlling Threads (EXJ)
stop() versus : Threading Applets (EXJ)
switch statement
The switch Statement (NUT)
The switch Statement (JLR)
switch statements : Statements (EXJ)
sync()
Toolkit Methods (AWT)
(Reference page) (NUT)
FileDescriptor class : FileDescriptor (JFC)
SyncFailedException : (Reference page) (NUT)
synchronization
Synchronizing Multiple Threads (JFC)
containers and : Container Methods (AWT)
image grabbing and : PixelGrabber (AWT)
SyncFailedException : SyncFailedException (JFC)
synchronized modifier : Single-Threaded Execution (JFC)
synchronized statement : Single-Threaded Execution (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_17.htm#JFC-CH-11-REF-FILEDESCRIPTOR
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_65.htm#JFC-CH-11-REF-SYNCFAILEDEXCEPTION

synchronized (modifier)
Our Color Methods (EXJ)
A Word About Synchronization (EXJ)
Statements (EXJ)
Constructors (EXJ)
Serializing Methods (EXJ)
Glossary (EXJ)
synchronized modifier
Multithreaded (NUT)
Modifiers (NUT)
Modifiers (NUT)
Method modifiers (JLR)
Single-Threaded Execution
synchronized statement
The synchronized Statement (NUT)
The synchronized Statement (JLR)
Single-Threaded Execution
synchronizing threads
(Reference page) (NUT)
Synchronizing Multiple Threads (JLR)
syntax, Java
Notational Conventions (JLR)
Syntactic Sweet 'n Low (EXJ)
System (class) : System Properties (EXJ)
System class
Accessing the Environment (JFC)
System (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
System (JLR)
system properties
System Properties (JFC)
Environment (NUT)
System Properties (NUT)
System.err
Terminal I/O (EXJ)
Print streams (EXJ)
System.err variable
System (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_13.htm#JLR2-CH-6-SECT-13
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_01.htm#JFC-CH-10
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_02.htm#JFC-CH-10-SECT-2

A "Hello World" Program (JLR)
System (JLR)
System.gc() : Garbage Collection (EXJ)
System.in : Terminal I/O (EXJ)
System.in variable
System (JFC)
A "Hello World" Program (JLR)
System (JLR)
System.out
Method Overloading (EXJ)
Loading and Storing (EXJ)
Terminal I/O (EXJ)
Print streams (EXJ)
System.out variable
System (JFC)
A "Hello World" Program (JLR)
System (JLR)
System.out.println()
java.lang.StringBuffer (EXJ)
Print streams (EXJ)
SystemColor class
SystemColor (AWT)

SystemColor (AWT)
Miscellaneous Improvements (NUT)
(Reference page) (NUT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_04.htm#EXJ-CH-5-SECT-4.1

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

T
Tab key : Keyboard Focus Traversal (NUT)
tabs (see whitespace)
tan()
Math (JFC)
Math (JLR)
tan() : java.lang.Math (EXJ)
tangent : java.lang.Math (EXJ)
tar files : The application/x-tar Handler (EXJ)
target statements
The break Statement (JLR)
The continue Statement (JLR)
target, event
Identifying the Target (AWT)
Variables (AWT)
The Java 1.0 Event Model (NUT)
Tcl scripting language : Java Compared (EXJ)
TCP (Transmission Control Protocol) : Glossary (EXJ)
terminal input/output : Terminal I/O (EXJ)
terms : Primary Expressions (JLR)
tertiary operator (?:) : Conditional Operator (JLR)
tertiaryOrder() : CollationElementIterator (JFC)
testBit() : BigInteger (JFC)
text
alternate for browsers : The Complete Applet Tag (EXJ)
color of
SystemColor Methods (AWT)
echo : (Reference page) (NUT)
encoding : Text Encoding (EXJ)
fonts : Fonts (EXJ)
inserting with carets : TextComponent Methods (AWT)

Label class : (Reference page) (NUT)
read-only : TextComponent Methods (AWT)
representation (see character encodings)
selecting with mouse : TextComponent Methods (AWT)
style of (see fonts)
text strings : Graphics Methods (AWT)
TextArea class
The TextField and TextArea classes (AWT)
TextArea (AWT)
TextArea (AWT)
(Reference page) (NUT)
TextAreaPeer interface
TextAreaPeer (AWT)
(Reference page) (NUT)
TextComponent class
Text Component (AWT)
TextComponent (AWT)
(Reference page) (NUT)
TextComponentPeer interface
TextComponentPeer (AWT)
(Reference page) (NUT)
TextEvent class
TextEvent (AWT)

TextEvent (AWT)
(Reference page) (NUT)
TextField class
The TextField and TextArea classes (AWT)
TextField (AWT)
Extending TextField (AWT)
TextField (AWT)
(Reference page) (NUT)
TextFieldPeer interface
TextFieldPeer (AWT)
(Reference page) (NUT)
TextListener interface
TextListener (AWT)

TextListener (AWT)
(Reference page) (NUT)
TEXT_ constants : TextEvent (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_57.htm#JAWT-CH-19-REF-TEXTAREA
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_58.htm#JAWT-CH-19-REF-TEXTCOMPONENT
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_59.htm#JAWT-CH-19-REF-TEXTFIELD

text GUI components : Text Components (EXJ)
TextArea
Focus, please
Text Components (EXJ)
A TextEntryBox
TextField
Focus, please
Text Components (EXJ)
A TextEntryBox
textHighlight color : SystemColor Methods (AWT)
textHighlightText color : SystemColor Methods (AWT)
textInactiveText color : SystemColor Methods (AWT)
textText color : SystemColor Methods (AWT)
textValueChanged() : TextListener (AWT)
themes, color : SystemColor (AWT)
this (keyword)
Methods (EXJ)
this
this and super
Image Observers (EXJ)
Glossary (EXJ)
this keyword
How It Works (NUT)
Defining a Constructor (NUT)
this Again (NUT)
No this (NUT)
this (JLR)
Constructor implementation (JLR)
Local variable name (JLR)
finalizers and : Object Finalization (NUT)
with super keyword : Constructor Chaining (NUT)
this() : Working with Overloaded Constructors (EXJ)
Thread()
Associating a Method with a Thread (JFC)
Thread (JFC)
Associating a Method with a Thread (JLR)
Thread (JLR)
Thread (class)
The Thread Class (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch13_04.htm#EXJ-CH-13-SECT-3.2
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch03_05.htm#JNUT2-CH-3-SECT-5.3

The Thread Class and the Runnable Interface (EXJ)
threads
Threads (JFC)
Multithreaded (NUT)
The synchronized Statement (JLR)
Threads (JLR)
Threads (EXJ)
Threads (EXJ)
Glossary (EXJ)
communicating between : Pipes (EXJ)
daemon threads
Daemon threads (JFC)
Daemon threads (JLR)
IllegalThreadStateException
IllegalThreadStateException (JFC)
(Reference page) (NUT)
InterruptedException
InterruptedException (JFC)
(Reference page) (NUT)
joining
Rendezvous (JFC)
Rendezvous (JLR)
multithreading
Multithreading (EXJ)
Threads (EXJ)
PipedInputStream class : PipedInputStream and PipedReader (JFC)
PipedOutputStream class : PipedInputStream and PipedReader (JFC)
priority
Thread priority (JFC)
Thread priority (JLR)
Scheduling and Priority (EXJ)
producer and consumer : The Message Passer (EXJ)
synchronization
Multithreading (EXJ)
Our Color Methods (EXJ)
Threads (EXJ)
A Word About Synchronization (EXJ)
Synchronization (EXJ)
Glossary (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6-SECT-1.1
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch06_13.htm#JLR2-CH-6-SECT-13
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm#EXJ-CH-6
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm#EXJ-CH-6-SECT-4

versus concurrency : Multithreading (EXJ)
wait() and notify() : wait() and notify() (EXJ)
synchronizing
Synchronizing Multiple Threads (JFC)
(Reference page) (NUT)
Synchronizing Multiple Threads (JLR)
Thread class
The java.lang Package (JFC)
Using Thread Objects (JFC)
Thread (JFC)
The java.lang Package (NUT)
(Reference page) (NUT)
Using Thread Objects (JLR)
Thread (JLR)
ThreadDeath class
Stopping a thread (JFC)
ThreadDeath (JFC)
Stopping a thread (JLR)
Errors (JLR)
ThreadDeath error : (Reference page) (NUT)
ThreadGroup class
Thread priority (JFC)
Controlling groups of threads (JFC)
ThreadGroup (JFC)
(Reference page) (NUT)
Thread priority (JLR)
Controlling groups of threads (JLR)
ThreadGroup (JLR)
yield() with : Yielding (EXJ)
threads, animation and : Simple Animation (AWT)
throw statement
Generating Exceptions (JFC)
Defining and Generating Exceptions (NUT)
Specially supported classes (JLR)
Data Type of an Expression (JLR)
The throw Statement (JLR)
Generating Exceptions (JLR)
throw statements (see also errors and exceptions)
Throwing Exceptions (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm#EXJ-CH-6-SECT-4.2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_03.htm#JFC-CH-4-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch04_15.htm#JLR2-CH-4-SECT-15
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm#JLR2-CH-9-SECT-3

Glossary (EXJ)
Throwable class
The java.lang Package (JFC)
Generating Exceptions (JFC)
Throwable (JFC)
Generating Exceptions (JLR)
The Exception Hierarchy (JLR)
Throwable (JLR)
Throwable interface
Exception Objects (NUT)
catch (NUT)
The java.lang Package (NUT)
(Reference page) (NUT)
throwing errors/exceptions (see errors; exceptions)
throwing exceptions (see exceptions)
throws clause
Declaring Exceptions (JFC)
Declaring Exceptions (NUT)
Method throws clause (JLR)
Constructor throws clause (JLR)
Interface method throws clause (JLR)
Declaring Exceptions (JLR)
throws clauses
The throws Clause and checked Exceptions
Glossary (EXJ)
Throws: doc comment tag : Java Documentation Comment Syntax (NUT)
time (see date and time)
time and date
of events
Variables (AWT)
InputEvent (AWT)
pause between image repaints : Component Methods (AWT)
time zones (see date and time)
time-to-live (TTL) values : (Reference page) (NUT)
TimeZone class
TimeZone (JFC)
The java.util Package (NUT)
(Reference page) (NUT)
toBack()

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_03.htm#JFC-CH-4-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_03.htm#JLR2-CH-9-SECT-3
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm#JLR2-CH-10-SECT-25
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch04_02.htm#JFC-CH-4-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch09_02.htm#JLR2-CH-9-SECT-2

Window Methods (AWT)
(Reference page) (NUT)
toBigInteger() : BigDecimal (JFC)
toBinaryString()
Integer class
Integer (JFC)
(Reference page) (NUT)
Integer (JLR)
Long class
Long (JFC)
(Reference page) (NUT)
Long (JLR)
toByteArray() : (Reference page) (NUT)
BigInteger class : BigInteger (JFC)
ByteArrayOutputStream class
CharArrayWriter and ByteArrayOutputStream (JFC)
ByteArrayOutputStream (JFC)
CollationKey class : CollationKey (JFC)
toCharArray() : String (JLR)
CharArrayWriter class
CharArrayWriter and ByteArrayOutputStream (JFC)
CharArrayWriter (JFC)
(Reference page) (NUT)
String class
String (JFC)
String (JFC)
(Reference page) (NUT)
toCharArray() : Things from Strings (EXJ)
toExternalForm()
URL (JFC)
URLStreamHandler (JFC)
toFront()
Window Methods (AWT)
(Reference page) (NUT)
toGMTString() : Date (JFC)
toHexString()
Integer class
Integer (JFC)
(Reference page) (NUT)
Integer (JLR)

Long class
Long (JFC)
(Reference page) (NUT)
Long (JLR)
tokenization : Tokenization (JLR)
toLocaleString()
Date class : Date (JFC)
toLocalizedPattern() : DecimalFormat (JFC)
toLocatlizedPattern()
SimpleDateFormat class : SimpleDateFormat (JFC)
toLowerCase()
String (JFC)
Character (JFC)
(Reference page) (NUT)
Character (JLR)
String (JLR)
String class : String (JFC)
toOctalString()
Integer class
Integer (JFC)
(Reference page) (NUT)
Integer (JLR)
Long class
Long (JFC)
(Reference page) (NUT)
Long (JLR)
Toolkit (see AWT)
Glossary (EXJ)
Toolkit() : Toolkit Methods (AWT)
Toolkit class
Toolkit (AWT)
Toolkit (AWT)
(Reference page) (NUT)
TooManyListenersException
TooManyListenersException (JFC)
(Reference page) (NUT)
top-level classes/interfaces
An Overview of Inner Classes (NUT)
Nested Top-Level Classes and Interfaces (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_60.htm#JAWT-CH-19-REF-TOOLKIT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_5F25.htm#JFC-CH-17-REF-TOOMANYLISTENERSEXCEPTION

Nested top-level classes and interfaces (JLR)
toPattern() : (Reference page) (NUT)
ChoiceFormat class : ChoiceFormat (JFC)
DecimalFormat class : DecimalFormat (JFC)
MessageFormat class : MessageFormat (JFC)
SimpleDateFormat class : SimpleDateFormat (JFC)
TOPDOWNLEFTRIGHT constant : ImageConsumer Interface (AWT)
TOPDOWNLEFTRIGHT property : Image consumers (EXJ)
TOP_ALIGNMENT constant : Component Methods (AWT)
toString()
Byte (JFC)
AWTEvent class : AWTEvent (AWT)
BigDecimal class : BigDecimal (JFC)
BigInteger class : BigInteger (JFC)
BitSet class : BitSet (JFC)
Boolean class
Boolean (JFC)
Boolean (JLR)
BorderLayout layout : BorderLayout Methods (AWT)
Byte class
Byte (JFC)
(Reference page) (NUT)
Byte (JLR)
ByteArrayOutputStream class
CharArrayWriter and ByteArrayOutputStream (JFC)
ByteArrayOutputStream (JFC)
(Reference page) (NUT)
CardLayout layout : CardLayout Methods (AWT)
Character class
Character (JFC)
Character (JLR)
CharArrayWriter class
CharArrayWriter and ByteArrayOutputStream (JFC)
CharArrayWriter (JFC)
(Reference page) (NUT)
CheckboxGroup class : CheckboxGroup Methods (AWT)
Class class
Class (JFC)
Class (JLR)

Color class : Color Methods (AWT)
Component class : Component Methods (AWT)
Constructor class : Constructor (JFC)
Date class : Date (JFC)
Dimension class : Dimension Methods (AWT)
Double class
Double (JFC)
Double (JLR)
Event method : Event Methods (AWT)
EventObject class : EventObject (JFC)
Field class : Field (JFC)
File class : File (JFC)
Float class
Float (JFC)
Float (JLR)
FlowLayout layout : FlowLayout Methods (AWT)
Font class : The Font Class (AWT)
FontMetrics class : The FontMetrics Class (AWT)
Graphics class : Graphics Methods (AWT)
GridBagLayout layout : GridBagLayout Methods (AWT)
GridLayout layout : GridLayout Methods (AWT)
Hashtable class : Hashtable (JFC)
HorizBagLayout layout : HorizBagLayout (AWT)
InetAddress class : InetAddress (JFC)
Insets class : Insets Methods (AWT)
Integer class
Integer (JFC)
(Reference page) (NUT)
Integer (JLR)
isVolatile() : Modifier (JFC)
Locale class : Locale (JFC)
Long class
Long (JFC)
(Reference page) (NUT)
Long (JLR)
MenuComponent class : MenuComponent Methods (AWT)
MenuShortcut class : MenuShortcut Methods (AWT)
MessageFormat class : (Reference page) (NUT)
Method class : Method (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_08.htm#JFC-CH-17-REF-EVENTOBJECT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_03.htm#JFC-CH-13-REF-FIELD
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_07.htm#JFC-CH-13-REF-MODIFIER
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch13_06.htm#JFC-CH-13-REF-METHOD

Object class
Object (JFC)
(Reference page) (NUT)
Object (JLR)
ObjectStreamClass class : ObjectStreamClass (JFC)
OrientableFlowLayout layout : OrientableFlowLayout (AWT)
Point class : Point Methods (AWT)
PrintStream class : (Reference page) (NUT)
Rectangle class : Rectangle Methods (AWT)
ServerSocket class : ServerSocket (JFC)
Short class
Short (JFC)
(Reference page) (NUT)
Short (JLR)
Socket class : Socket (JFC)
SocketImpl class : SocketImpl (JFC)
StreamTokenizer class : StreamTokenizer (JFC)
String class
String (JFC)
String (JLR)
StringBuffer class
StringBuffer (JFC)
(Reference page) (NUT)
StringBuffer (JLR)
StringWrinter class : (Reference page) (NUT)
StringWriter class : StringWriter (JFC)
SystemColor class : SystemColor Methods (AWT)
Thread class
Thread (JFC)
Thread (JLR)
ThreadGroup class
ThreadGroup (JFC)
ThreadGroup (JLR)
Throwable class
Throwable (JFC)
Throwable (JLR)
URL class : URL (JFC)
URLConnection class : URLConnection (JFC)
VariableGridLayout layout : VariableGridLayout (AWT)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_5F25.htm#JLR2-CH-10-SECT-25

VerticalBagLayout layout : VerticalBagLayout (AWT)
ZIPEntry class : ZipEntry (JFC)
toString()
The Object and Class Classes (EXJ)
Strings from Things (EXJ)
java.lang.StringBuffer (EXJ)
Strings to Streams and Back (EXJ)
totalMemory()
Runtime (JFC)
(Reference page) (NUT)
Runtime (JLR)
toTitleCase()
Character (JFC)
Character (JLR)
toUpperCase()
String (JFC)
Character (JFC)
(Reference page) (NUT)
Character (JLR)
String (JLR)
String class : String (JFC)
traceInstructions()
Runtime (JFC)
(Reference page) (NUT)
Runtime (JLR)
traceMethodCalls()
Runtime (JFC)
(Reference page) (NUT)
Runtime (JLR)
TRACK constant : AdjustmentEvent (AWT)
Transferable interface
Transferable Interface (AWT)

Transferable (AWT)
Cut-and-Paste (NUT)
Data Transfer with Cut-and-Paste (NUT)
(Reference page) (NUT)
transferFocus() : Component Methods (AWT)
transformation formats (see UTF-8)
transient modifier

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_02.htm#JAWT-CH-16-SECT-2

Modifiers (NUT)
Object Serialization (NUT)
Custom Serialization (NUT)
Modifiers (NUT)
transient variables : Variable modifiers (JLR)
translate() : (Reference page) (NUT)
Event method : Event Methods (AWT)
Graphics class : Graphics Methods (AWT)
Point class : Point Methods (AWT)
Rectangle class
Rectangle Methods (AWT)
Polygon Methods (AWT)
translate() : Drawing Methods (EXJ)
translatePoint() : MouseEvent (AWT)
transparency
Graphics Methods (AWT)
trapping exceptions (see exceptions)
triangular arrays : Multidimensional Arrays (EXJ)
trim()
String (JFC)
String (JFC)
(Reference page) (NUT)
String (JLR)
trim() : Editing (EXJ)
true (value) (see boolean)
TRUE value
Boolean (JFC)
Boolean Type (JLR)
Boolean (JLR)
try statement
Handling Exceptions (JFC)
Labelled break and continue Statements (NUT)
Exception Handling (NUT)
The throw Statement (JLR)
Handling Exceptions (JLR)
break statement and : The break Statement (JLR)
continue statement and : The continue Statement (JLR)
return statement and : The return Statement (JLR)
try statements

file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch09_02.htm#JNUT2-CH-9-SECT-2

Exceptions (EXJ)
Statements (EXJ)
Exception Handling (EXJ)
Try Creep (EXJ)
Glossary (EXJ)
TTL values : (Reference page) (NUT)
two's complement notation : Integer types (JLR)
type casts : Integer types (JLR)
typedef keyword : No typedef (NUT)
types (see data types)
Variables (EXJ)
Types (EXJ)
array : Array Types (EXJ)
casting and
Casting (EXJ)
Glossary (EXJ)
checking : Type Safety and Method Binding (EXJ)
primitive
Primitive Types (EXJ)
Argument Passing and References (EXJ)
boolean
Instance Variables (EXJ)
Primitive Types (EXJ)
Glossary (EXJ)
byte
Primitive Types (EXJ)
Glossary (EXJ)
char
Text Encoding (EXJ)
Primitive Types (EXJ)
Character literals (EXJ)
Glossary (EXJ)
double
Primitive Types (EXJ)
Floating-point literals (EXJ)
Glossary (EXJ)
float
Primitive Types (EXJ)
Floating-point literals (EXJ)

Glossary (EXJ)
int
Primitive Types (EXJ)
Integer literals (EXJ)
Glossary (EXJ)
long
Primitive Types (EXJ)
Integer literals (EXJ)
Glossary (EXJ)
short
Primitive Types (EXJ)
Glossary (EXJ)
streams for reading/writing : Data streams (EXJ)
reference : Reference Types (EXJ)
state of : The Verifier (EXJ)
void : Expressions (EXJ)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

U
UCS (universal character set)
Unicode (NUT)
Glossary (EXJ)
UTF-8 encoding : The UTF-8 Encoding (NUT)
UDP (User Datagram Protocol)
Datagram Sockets (EXJ)
Glossary (EXJ)
unary minus (+) operator : Unary Minus Operator - (JLR)
unary minus (-) operator : Operators (EXJ)
unary operators : Unary Operators (JLR)
unary plus (+) operator
Unary Plus Operator + (JLR)
Operators (EXJ)
uncaughtException()
Stopping a thread (JFC)
ThreadGroup (JFC)
Stopping a thread (JLR)
ThreadGroup (JLR)
UndefinedProperty constant : Image Methods (AWT)
underlining : The Font Class (AWT)
Unicode character encoding
Text Encoding (EXJ)
Glossary (EXJ)
Unicode character set : Unicode (NUT)
escape sequences : Unicode and Character Escapes (NUT)
PrintStream class and : (Reference page) (NUT)
UTFDataFormatException : (Reference page) (NUT)
Unicode characters
The Unicode 2.0 Character Set (JFC)
Character (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2

Pre-Processing (JLR)
Conversion to Unicode (JLR)
Packages (JLR)
Character (JLR)
Unicode 2.0 character set : The Unicode 2.0 Character Set (JLR)
UnicodeDigit character : Identifiers (JLR)
UnicodeLetter character : Identifiers (JLR)
uniform resource locators (see URLs)
Uniform Resource Names (URNs)
Packages (EXJ)
Working with URLs (EXJ)
union() : Rectangle Methods (AWT)
unions in C : No Structures or Unions (NUT)
UNIT_ constants : AdjustmentEvent (AWT)
UniversalActionListener class : Invoking a Named Method (NUT)
UnknownError
UnknownError (JFC)
(Reference page) (NUT)
Errors (JLR)
UnknownHostException
UnknownHostException (JFC)
(Reference page) (NUT)
Clients (EXJ)
HeartBeat (EXJ)
UnknownServiceException
UnknownServiceException (JFC)
(Reference page) (NUT)
Stream Data (EXJ)
unnamed packages : The Unnamed Package (EXJ)
unreachable statements : Statements (EXJ)
unread()
PushbackInputStream class
PushbackInputStream (JFC)
(Reference page) (NUT)
PushbackReader class
PushbackReader (JFC)
(Reference page) (NUT)
unreliable datagram packets : (Reference page) (NUT)
UnsatisfiedLinkError

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2.1.1

UnsatisfiedLinkError (JFC)
(Reference page) (NUT)
Errors (JLR)
unsigned keyword (C) : Integral Types (NUT)
unsigned right shift (>>>) operator : Unsigned Right Shift Operator >>> (JLR)
UnsupportedEncodingException
UnsupportedEncodingException (JFC)
(Reference page) (NUT)
UnsupportedFlavorException : (Reference page) (NUT)
UnsupportedFlavorException exception
UnsupportedFlavorException (AWT)

UnsupportedFlavorException (AWT)
update() : Simple Animation (AWT)
Adler32 class : Adler32 (JFC)
Checksum interface
Checksum (JFC)
(Reference page) (NUT)
Component class
Graphics (AWT)
Component Methods (AWT)
CRC32 class : CRC32 (JFC)
Observer interface
Observer (JFC)
(Reference page) (NUT)
PaintEvent class : (Reference page) (NUT)
UPDATE constant : PaintEvent (AWT)
update()
Painting and Updating (EXJ)
Basic Drawing (EXJ)
using effectively : Drawing Techniques (EXJ)
updating
GUI components : Painting and Updating (EXJ)
image data : Image Producers and Consumers (EXJ)
uppercase (see Character class; case sensitivity)
URLConnection (class)
Web Browsers and Handlers (EXJ)
The URLConnection (EXJ)
URLs, Stream Handlers, and Connections (EXJ)
The URLConnection (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_66.htm#JFC-CH-11-REF-UNSUPPORTEDENCODINGEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch16_06.htm#JAWT-CH-16-SECT-6
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch17_16.htm#JFC-CH-17-REF-OBSERVER

URLContentHandler (class) : Web Browsers and Handlers (EXJ)
URLEncoder class : (Reference page) (NUT)
URLImageSource class : A Brief Tour of sun.awt.image (AWT)
URLs (uniform resource locators)
The java.net Package (JFC)
URL Objects (JFC)
HttpURLConnection class : (Reference page) (NUT)
MalformedURLException
MalformedURLException (JFC)
(Reference page) (NUT)
URL class
The java.net Package (JFC)
URL Objects (JFC)
URL (JFC)
The java.net Package (NUT)
(Reference page) (NUT)
URLConnection class
The java.net Package (JFC)
URLConnection Objects (JFC)
URLConnection (JFC)
The java.net Package (NUT)
(Reference page) (NUT)
URLEncoder class : URLEncoder (JFC)
URLStreamHandler class : (Reference page) (NUT)
URLStreamHandlerFactory interface
URLStreamHandlerFactory (JFC)
(Reference page) (NUT)
URLs (Uniform Resource Locators)
Network Programming (EXJ)
Working with URLs (EXJ)
base versus relative : Working with URLs (EXJ)
parsing : java.util.StringTokenizer (EXJ)
streams and : Stream Data (EXJ)
URL class : The URL class (EXJ)
of vendor : System Properties (EXJ)
URLs (uniform resourcelocators)
URLStreamHandler class : URLStreamHandler (JFC)
URLs, special : AppletContext Interface (AWT)
URLStreamHandler (class) : Writing a Protocol Handler (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_04.htm#JFC-CH-1-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_04.htm#JFC-CH-1-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_04.htm#JFC-CH-1-SECT-4

URLStreamHandlerFactory (object) : Writing a Protocol Handler (EXJ)
URNs (Uniform Resource Names)
Packages (EXJ)
Working with URLs (EXJ)
useDaylightTime()
SimpleTimeZone class : SimpleTimeZone (JFC)
TimeZone class : TimeZone (JFC)
User Datagram Protocol (UDP)
Datagram Sockets (EXJ)
Glossary (EXJ)
user groups, Java : Other Java Books and Resources (AWT)
user-level security : Application and User Level Security (EXJ)
user.dir property
System Properties (EXJ)
File constructors (EXJ)
user.home : System Properties (EXJ)
user.name : System Properties (EXJ)
useShiftModifier() : MenuShortcut Methods (AWT)
usingProxy() : HttpURLConnection (JFC)
UTC()
Date class : Date (JFC)
UTF-8 encoding
The UTF-8 Encoding (JFC)
The UTF-8 Encoding (NUT)
Data streams (EXJ)
Glossary (EXJ)
UTFDataFormatException : UTFDataFormatException (JFC)
UTFDataFormatException : (Reference page) (NUT)
UUCP, obtaining examples by : UUCP (AWT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch09_02.htm#EXJ-CH-9-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/appb_01.htm#JFC-APP-B
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_67.htm#JFC-CH-11-REF-UTFDATAFORMATEXCEPTION

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

V
valid()
FileDescriptor class : FileDescriptor (JFC)
validate()
Component class : Component Methods (AWT)
Container class : Container Methods (AWT)
validate()
validate() and layout() (EXJ)
Layout Managers (EXJ)
validateObject()
Writing Classes to Work with Serialization (JFC)
Advanced Serialization (NUT)
(Reference page) (NUT)
ObjectInputValidation interface : ObjectInputValidation (JFC)
validateTree() : Container Methods (AWT)
validation
InvalidObjectException : (Reference page) (NUT)
object : Advanced Serialization (NUT)
ObjectInputValidation class : (Reference page) (NUT)
ObjectInputValidation interface : ObjectInputValidation (JFC)
validity, component : Component Methods (AWT)
VALUE attribute (<PARAM> tag) : The <PARAM> Tag (NUT)
VALUE parameter (<PARAM> tag) : The Applet Tag (AWT)
valueOf()
BigDecimal class : BigDecimal (JFC)
Boolean class
Boolean (JFC)
(Reference page) (NUT)
Boolean (JLR)
Byte class
Byte (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_17.htm#JFC-CH-11-REF-FILEDESCRIPTOR
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_5F40.htm#JFC-CH-11-REF-OBJECTINPUTVALIDATION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_5F40.htm#JFC-CH-11-REF-OBJECTINPUTVALIDATION
file:///C|/download/ftp.selab.org/ebook/javaref/javanut/ch15_02.htm#JNUT2-CH-15-SECT-2

(Reference page) (NUT)
Byte (JLR)
Double class
Double (JFC)
Double (JLR)
Float class
Float (JFC)
(Reference page) (NUT)
Float (JLR)
Integer class
Integer (JFC)
(Reference page) (NUT)
Integer (JLR)
Long class
Long (JFC)
(Reference page) (NUT)
Long (JLR)
Short class
Short (JFC)
(Reference page) (NUT)
Short (JLR)
String class
String (JFC)
String (JFC)
(Reference page) (NUT)
String (JLR)
varargs function : No Variable-Length Argument Lists (NUT)
variable-length arrays (see vectors)
VariableGridLayout (layout manager) : Nonstandard Layout Managers (EXJ)
VariableGridLayout layout : VariableGridLayout (AWT)
variables
Reference Types (JLR)
Object-Orientation Java Style (JLR)
Classes (EXJ)
Variables (EXJ)
array (see arrays)
arrays (see arrays)
assigning : Assignment (EXJ)
assigning to (see assignment operators)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch12_06.htm#EXJ-CH-12-SECT-5

class : Glossary (EXJ)
class, declaring : Variables (JLR)
in classes : Class Variables (NUT)
converting to/from strings : Strings from Things (EXJ)
declaring
Objects Are Instances of a Class (NUT)
Variables (EXJ)
Declaration and initialization (EXJ)
Statements (EXJ)
Classes (EXJ)
default values for
Primitive Data Types (NUT)
Declaration and initialization (EXJ)
dot (.) notation
Variable access (EXJ)
Accessing Members (EXJ)
encapsulation (see encapsulation)
environment : Environment Variables (JFC)
final local
New Language Features in Java 1.1 (JLR)
Final local variables (JLR)
forward references : Forward References (NUT)
fully qualified names of : No Global Variables (NUT)
global
No Global Variables (NUT)
Global Variables? (NUT)
IllegalAccessError : (Reference page) (NUT)
inheritance : Extending a Class (NUT)
initializers and : Static Initializers (NUT)
initializing (see initializers)
instance
Instance Variables (EXJ)
Classes (EXJ)
Glossary (EXJ)
interface
Interface Variables (JLR)
Interface Variables (EXJ)
local
Local Variables (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_03.htm#JFC-CH-10-SECT-3

Local Variable Declarations (NUT)
Local Variables (JLR)
Instance Variables (EXJ)
Local Variables (EXJ)
Local Variable Initialization (EXJ)
Glossary (EXJ)
modifiers for : Modifiers (NUT)
naming : Local variable name (JLR)
serialization and : Versioning of Classes (JFC)
shadowed
Shadowed Variables (NUT)
Overriding Is Not Shadowing (NUT)
Variable name (JLR)
shadowing
Shadowing (EXJ)
Shadowed Variables (EXJ)
Glossary (EXJ)
static
Static Members (EXJ)
Static Members (EXJ)
type checking : Type Safety and Method Binding (EXJ)
visibility (see visibility modifiers)
Vector class
Vector (JFC)
The java.util Package (NUT)
(Reference page) (NUT)
vectors
Wrappers for Primitive Types (EXJ)
Vectors and Hashtables (EXJ)
Glossary (EXJ)
stacks : Stacks (JFC)
Vector class : Vectors (JFC)
vendor information : System Properties (EXJ)
verification
VerifyError error : VerifyError (JFC)
verification of byte-code
Secure (NUT)
Byte-Code Verification (NUT)
java (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_03.htm#JFC-CH-5-SECT-3

verifiers, byte-code
Safety of Implementation (EXJ)
The Java Interpreter (EXJ)
Glossary (EXJ)
-verify option (java) : The Java Interpreter (EXJ)
VerifyError
(Reference page) (NUT)
Errors (JLR)
-verifyremote option (java) : The Java Interpreter (EXJ)
@version tag (javadoc) : Documentation Comments (JLR)
version (Applet information) : Reading Applet Parameters (NUT)
version information
Java : System Properties (EXJ)
operating system : System Properties (EXJ)
version numbers : serialver (NUT)
@version tag : Comments (EXJ)
Version: doc comment tag : Java Documentation Comment Syntax (NUT)
versioning classes
Versioning of Classes (JFC)
Serialization and Class Versioning (NUT)
versions
AWT
Preface (AWT)
Abstract Window Toolkit Overview (AWT)
Java : Preface (AWT)
vertical
alignment (see alignment)
font height : The FontMetrics Class (AWT)
gaps (see gap settings)
scrollbars (see scrolling)
size (see size)
VerticalBagLayout layout : VerticalBagLayout (AWT)
VerticalBagLayout (layout manager) : Nonstandard Layout Managers (EXJ)
vetableChange() : (Reference page) (NUT)
VetoableChangeListener interface : (Reference page) (NUT)
VetoableChangeSupport class : (Reference page) (NUT)
viewing applets
Viewing Applets (EXJ)
Getting Applet Resources (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch12_06.htm#EXJ-CH-12-SECT-5

Glossary (EXJ)
virtual
machines : A Virtual Machine (EXJ)
methods : Type Safety and Method Binding (EXJ)
virtual machine : Runtime (JLR)
InternalError : InternalError (JFC)
Runtime class : Runtime (JFC)
RuntimeException : RuntimeException (JFC)
StackOverflowError : StackOverflowError (JFC)
UnknownError : UnknownError (JFC)
VirtualMachineError : VirtualMachineError (JFC)
virtual machine, printing instructions for : javap (NUT)
VirtualMachineError
(Reference page) (NUT)
Errors (JLR)
visibility
component : Component Methods (AWT)
list items : List Methods (AWT)
scrollbar
TextArea Methods (AWT)
Scrollbar Methods (AWT)
Methods of the Adjustable Interface (AWT)
Visibility interface : (Reference page) (NUT)
visibility modifiers
Visibility Modifiers (NUT)
Modifiers (NUT)
Accessing Members (EXJ)
Basic Access Modifiers (EXJ)
classes and : Class Visibility (EXJ)
member classes and : Member Classes and Visibility Modifiers (NUT)
private
Safety of Implementation (EXJ)
The paint() Method (EXJ)
Our Color Methods (EXJ)
Subclassing and Inheritance (EXJ)
Glossary (EXJ)
protected : Glossary (EXJ)
public
The paint() Method (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_17.htm#JLR2-CH-10-SECT-17
file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm#EXJ-CH-5-SECT-7.1

The Java Compiler (EXJ)
Glossary (EXJ)
subclasses and : Subclasses and Visibility (EXJ)
Visual BASIC : Safety of Implementation (EXJ)
VK_ constants : KeyEvent (AWT)
void (type) : Expressions (EXJ)
Void class
Void (JFC)
(Reference page) (NUT)
Void (JLR)
void keyword
The void Keyword (NUT)
A "Hello World" Program (JLR)
Expressions (JLR)
Method return type (JLR)
volatile modifier
Modifiers (NUT)
Modifiers (NUT)
volatile variables : Variable modifiers (JLR)
VSPACE attribute (<APPLET> tag) : The <APPLET> Tag (NUT)
vspace attribute (<applet> tag)
Embedding an Applet in a Web Page (JLR)
The Complete Applet Tag (EXJ)
VSPACE parameter (<APPLET> tag) : The Applet Tag (AWT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch05_07.htm#EXJ-CH-5-SECT-7.2

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

W
wait()
(Reference page) (NUT)
Optimistic Single-Threaded Execution (JLR)
Object (JLR)
IllegalMonitorStateException and : IllegalMonitorStateException (JFC)
Object class
Optimistic Single-Threaded Execution (JFC)
Object (JFC)
wait()
wait() and notify() (EXJ)
Pipes (EXJ)
waitFor()
External Program Execution (JFC)
(Reference page) (NUT)
Process (JLR)
Process class : Process (JFC)
waitForAll() : MediaTracker Methods (AWT)
waitForID()
MediaTracker Methods (AWT)
(Reference page) (NUT)
warning messages : javac (NUT)
Web browsers (see browsers)
Web Browsers and Handlers (EXJ)
HotJava
New Kinds of Applications (EXJ)
Applets and Files (EXJ)
Web Browsers and Handlers (EXJ)
Glossary (EXJ)
Netscape Navigator
Applets and Files (EXJ)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch10_04.htm#JFC-CH-10-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch10_15.htm#JLR2-CH-10-SECT-15

Web Browsers and Handlers (EXJ)
responding to unknown tags
Hablo Applet? (EXJ)
The Complete Applet Tag (EXJ)
when variable : Variables (AWT)
while statement
The if/else, while, and do/while Statements (NUT)
The while Statement (JLR)
white space
Lexical Analysis (JLR)
White Space (JLR)
whitespace
trim() : Editing (EXJ)
as word delimiter : java.util.StringTokenizer (EXJ)
whitespaceChars()
StreamTokenizer (JFC)
(Reference page) (NUT)
width (see size)
WIDTH (variable) : Implementing an ImageObserver (EXJ)
WIDTH attribute (<APPLET> tag) : The <APPLET> Tag (NUT)
width attribute (<applet> tag)
Embedding an Applet in a Web Page (JLR)
Attributes (EXJ)
The Complete Applet Tag (EXJ)
WIDTH parameter (<APPLET> tag) : The Applet Tag (AWT)
Window() : Window Methods (AWT)
Window class : (Reference page) (NUT)
WINDOW_ constants : WindowEvent (AWT)
Window container : Windows (AWT)
windowActivated() : WindowListener and WindowAdapter (AWT)
windowBorder color : SystemColor Methods (AWT)
windowClosed() : WindowListener and WindowAdapter (AWT)
windowClosing()
Constants (AWT)
WindowListener and WindowAdapter (AWT)
windowDeactivated() : WindowListener and WindowAdapter (AWT)
windowDeiconified()
Constants (AWT)
WindowListener and WindowAdapter (AWT)

WindowEvent() : WindowEvent (AWT)
windowIconified()
Constants (AWT)
WindowListener and WindowAdapter (AWT)
windowOpened() : WindowListener and WindowAdapter (AWT)
windowOpening() : Constants (AWT)
windows
Windows (AWT)
Window (AWT)
Building a New Component from a Window (AWT)
BorderLayout layout for
BorderLayout (AWT)
BorderLayout (AWT)
BorderLayout (AWT)
colors for : SystemColor Methods (AWT)
java.awt package : The java.awt Package (NUT)
Window class
Window Methods (AWT)
Window (AWT)
window events : Constants (AWT)
WindowAdapter class

WindowAdapter (AWT)
(Reference page) (NUT)
WindowEvent class
WindowEvent (AWT)

WindowEvent (AWT)
(Reference page) (NUT)
WindowListener interface
WindowListener and WindowAdapter (AWT)

WindowListener (AWT)
(Reference page) (NUT)
WindowPeer interface
WindowPeer (AWT)
(Reference page) (NUT)
Wksh scripting language : Java Compared (EXJ)
wordChars()
StreamTokenizer (JFC)
(Reference page) (NUT)
words (see strings; tokens)

file:///C|/download/ftp.selab.org/ebook/javaref/awt/ch19_61.htm#JAWT-CH-19-REF-WINDOW

words, parsing strings into : java.util.StringTokenizer (EXJ)
working directory, user : System Properties (EXJ)
World Wide Web
embedding applets in : Embedding an Applet in a Web Page (JLR)
Java Web site : Online Resources (JLR)
World Wide Web (WWW) (see Web browsers) : Java and the World Wide Web (EXJ)
browsers (see Web browsers)
wrappers
classes for : Primitive Types (EXJ)
for primitive types : Wrappers for Primitive Types (EXJ)
stream : Stream Wrappers (EXJ)
writability, checking for : File methods (EXJ)
write() : Pipes (EXJ)
BufferedOutputStream class : BufferedOutputStream (JFC)
BufferedWriter class
BufferedWriter (JFC)
(Reference page) (NUT)
ByteArrayOutputStream class
CharArrayWriter and ByteArrayOutputStream (JFC)
ByteArrayOutputStream (JFC)
CharArrayWriter class
CharArrayWriter (JFC)
(Reference page) (NUT)
CheckedOutputStream class
CheckedOutputStream (JFC)
(Reference page) (NUT)
data buffer with : Buffered streams (EXJ)
DataOutput interface : DataOutput (JFC)
DataOutputStream class
DataOutputStream (JFC)
(Reference page) (NUT)
DeflaterOutputStream class
DeflaterOutputStream (JFC)
(Reference page) (NUT)
FileOutputStream class
FileOutputStream (JFC)
(Reference page) (NUT)
FilterOutputStream class
FilterOutputStream (JFC)
The java.io Package (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/langref/ch00_04.htm#JLR2-PREFACE-SECT-4
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM

FilterWriter class
FilterWriter (JFC)
(Reference page) (NUT)
GZIPOutputStream class
GZIPOutputStream (JFC)
(Reference page) (NUT)
ObjectOutput interface : ObjectOutput (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
OutputStream class
OutputStream (JFC)
OutputStream (JFC)
(Reference page) (NUT)
PipedOutputStream class : PipedOutputStream (JFC)
PipedWriter class : PipedWriter (JFC)
PrintStream class : PrintStream (JFC)
PrintWriter class
PrintWriter (JFC)
(Reference page) (NUT)
RandomAccessFile class
RandomAccessFile (JFC)
RandomAccessFile (JFC)
StringWrinter class : (Reference page) (NUT)
StringWriter class : StringWriter (JFC)
Writer class
Writer (JFC)
Writer (JFC)
(Reference page) (NUT)
ZipOutputStream class
ZipOutputStream (JFC)
(Reference page) (NUT)
WriteAbortedException
WriteAbortedException (JFC)
(Reference page) (NUT)
writeBoolean()
DataOutput interface : DataOutput (JFC)
DataOutputStream class : DataOutputStream (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
writeByte()

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_68.htm#JFC-CH-11-REF-WRITEABORTEDEXCEPTION
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM

DataOutput interface : DataOutput (JFC)
DataOutputStream class : DataOutputStream (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
writeBytes()
DataOutput interface : DataOutput (JFC)
DataOutputStream class : DataOutputStream (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
writeChar()
DataOutput interface : DataOutput (JFC)
DataOutputStream class : DataOutputStream (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
writeChars()
DataOutput interface : DataOutput (JFC)
DataOutputStream class : DataOutputStream (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
writeDouble()
DataOutput interface : DataOutput (JFC)
DataOutputStream class : DataOutputStream (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
writeExternal()
Advanced Serialization (NUT)
(Reference page) (NUT)
Externalizable interface : Externalizable (JFC)
writeFloat()
DataOutput interface : DataOutput (JFC)
DataOutputStream class : DataOutputStream (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
writeInt()
DataOutput interface : DataOutput (JFC)
DataOutputStream class : DataOutputStream (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
writeLong()

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_15.htm#JFC-CH-11-REF-EXTERNALIZABLE
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM

DataOutput interface : DataOutput (JFC)
DataOutputStream class : DataOutputStream (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
writeObject()
ObjectOutput interface : ObjectOutput (JFC)
ObjectOutputStream class
Object Serialization Basics (JFC)
Writing Classes to Work with Serialization (JFC)
Versioning of Classes (JFC)
ObjectOutputStream (JFC)
Object Serialization (NUT)
Simple Serialization (NUT)
(Reference page) (NUT)
(Reference page) (NUT)
Serializable interface : (Reference page) (NUT)
Writer (class) : Streams (EXJ)
writers
BufferedWriter class
BufferedWriter and BufferedOutputStream (JFC)
BufferedWriter (JFC)
(Reference page) (NUT)
CharArrayWriter class
CharArrayWriter and ByteArrayOutputStream (JFC)
CharArrayWriter (JFC)
(Reference page) (NUT)
FileWriter class
FileWriter and FileOutputStream (JFC)
FileWriter (JFC)
(Reference page) (NUT)
FilterWriter class
FilterOutputStream and FilterWriter (JFC)
FilterWriter (JFC)
(Reference page) (NUT)
OutputStreamWriter class
OutputStreamWriter (JFC)
The java.io Package (JFC)
OutputStreamWriter (JFC)
Character Encodings (NUT)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch07_02.htm#JFC-CH-7-SECT-2
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_23.htm#JFC-CH-11-REF-FILEWRITER

(Reference page) (NUT)
PipedWriter class
PipedOutputStream and PipedWriter (JFC)
PipedWriter (JFC)
(Reference page) (NUT)
PrintWriter class
PrintWriter and PrintStream (JFC)
PrintWriter (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
StringWrinter class : (Reference page) (NUT)
StringWriter class
StringWriter (JFC)
StringWriter (JFC)
Writer class
Output Streams and Writers (JFC)
Writer (JFC)
The java.io Package (JFC)
Writer (JFC)
The java.io Package (NUT)
(Reference page) (NUT)
writeShort()
DataOutput interface : DataOutput (JFC)
DataOutputStream class : DataOutputStream (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)
RandomAccessFile class : RandomAccessFile (JFC)
writeStreamHeader()
ObjectOutputStream class : ObjectOutputStream (JFC)
writeTo() : (Reference page) (NUT)
ByteArrayOutputStream class : ByteArrayOutputStream (JFC)
CharArrayWriter class
CharArrayWriter and ByteArrayOutputStream (JFC)
CharArrayWriter (JFC)
writeUTF()
The UTF-8 Encoding (NUT)
(Reference page) (NUT)
DataOutput interface : DataOutput (JFC)
DataOutputStream class : DataOutputStream (JFC)
ObjectOutputStream class : ObjectOutputStream (JFC)

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_12.htm#JFC-CH-11-REF-DATAOUTPUT
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch11_13.htm#JFC-CH-11-REF-DATAOUTPUTSTREAM

RandomAccessFile class : RandomAccessFile (JFC)
writeUTF() : Data streams (EXJ)
writing in Java (see programming in Java)
writing objects to byte stream : Object Serialization Basics (JFC)
wrtie()
OutputStreamWriter class : OutputStreamWriter (JFC)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

X
XOR (^) operator, bitwise : Operators (EXJ)
XOR (^) operator, boolean : Operators (EXJ)
XOR mode : Graphics Methods (AWT)
xor()
BigInteger class : BigInteger (JFC)
BitSet class : BitSet (JFC)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Y
yield()
Yielding (JFC)
Thread (JFC)
(Reference page) (NUT)
Yielding (JLR)
Thread (JLR)
yield() : Yielding (EXJ)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm#EXJ-CH-6-SECT-4.2

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Z
zero
division by : Integral Types (NUT)
negative : Floating-Point Types (NUT)
null versus : null (NUT)
zero value
dividing by : Division Operator / (JLR)
as floating-point number : Floating-point types (JLR)
ZIP classes : The java.util.zip Package (JFC)
ZIP files
The Class Path (EXJ)
The application/x-tar Handler (EXJ)
.zip files : Packages (JLR)
ZIP format
The java.util.zip Package (JFC)
ZIPEntry class
The java.util.zip Package (JFC)
ZipEntry (JFC)
ZipException : ZipException (JFC)
ZipFile class : ZipFile (JFC)
ZipInputStream class : ZipInputStream (JFC)
ZipOutputStream class : ZipOutputStream (JFC)
ZipEntry class : (Reference page) (NUT)
ZipException : (Reference page) (NUT)
ZipFile class : (Reference page) (NUT)
ZipInputStream class : (Reference page) (NUT)
ZipOutputStream class : (Reference page) (NUT)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch01_08.htm#JFC-CH-1-SECT-8

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

Chapter 6
Threads

6.3 Synchronization

Every thread has a life of its own. Normally, a thread goes about its business without any regard for what
other threads in the application are doing. Threads may be time-sliced, which means they can run in
arbitrary spurts and bursts as directed by the operating system. On a multiprocessor system, it is even
possible for many different threads to be running simultaneously on different CPUs. This section is about
coordinating the activities of two or more threads, so they can work together and not collide in their use
of the same address space.

Java provides a few simple structures for synchronizing the activities of threads. They are all based on
the concept of monitors, a widely used synchronization scheme developed by C.A.R. Hoare. You don't
have to know the details about how monitors work to be able to use them, but it may help you to have a
picture in mind.

A monitor is essentially a lock. The lock is attached to a resource that many threads may need to access,
but that should be accessed by only one thread at a time. It's not unlike a public restroom at a gas station.
If the resource is not being used, the thread can acquire the lock and access the resource. By the same
token, if the restroom is unlocked, you can enter and lock the door. When the thread is done, it
relinquishes the lock, just as you unlock the door and leave it open for the next person. However, if
another thread already has the lock for the resource, all other threads have to wait until the current thread
finishes and releases the lock, just as if the restroom is locked when you arrive, you have to wait until the
current occupant is done and unlocks the door.

Fortunately, Java makes the process of synchronizing access to resources quite easy. The language
handles setting up and acquiring locks; all you have to do is specify which resources require locks.

Serializing Methods

The most common need for synchronization among threads in Java is to serialize their access to some
resource, namely an object. In other words, synchronization makes sure only one thread at a time can
perform certain activities that manipulate an object. In Java, every object has a lock associated with it. To

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm

be more specific, every class and every instance of a class has its own lock. The synchronized
keyword marks places where a thread must acquire the lock before proceeding.

For example, say we implemented a SpeechSynthesizer class that contains a say() method. We
don't want multiple threads calling say() at the same time or we wouldn't be able to understand
anything being said. So we mark the say() method as synchronized, which means that a thread has to
acquire the lock on the SpeechSynthesizer object before it can speak:

class SpeechSynthesizer {

 synchronized void say(String words) {
 // Speak
 }
}

Because say() is an instance method, a thread has to acquire the lock on the particular
SpeechSynthesizer instance it is using before it can invoke the say() method. When say() has
completed, it gives up the lock, which allows the next waiting thread to acquire the lock and run the
method. Note that it doesn't matter whether the thread is owned by the SpeechSynthesizer itself or
some other object; every thread has to acquire the same lock, that of the SpeechSynthesizer
instance. If say() were a class (static) method instead of an instance method, we could still mark it as
synchronized. But in this case as there is no instance object involved, the lock would be on the class
object itself.

Often, you want to synchronize multiple methods of the same class, so that only one of the methods
modifies or examines parts of the class at a time. All static synchronized methods in a class use the same
class object lock. By the same token, all instance methods in a class use the same instance object lock. In
this way, Java can guarantee that only one of a set of synchronized methods is running at a time. For
example, a SpreadSheet class might contain a number of instance variables that represent cell values,
as well as some methods that manipulate the cells in a row:

class SpreadSheet {

 int cellA1, cellA2, cellA3;

 synchronized int sumRow() {
 return cellA1 + cellA2 + cellA3;
 }

 synchronized void setRow(int a1, int a2, int a3) {
 cellA1 = a1;
 cellA2 = a2;
 cellA3 = a3;

 }
...
}

In this example, both methods setRow() and sumRow() access the cell values. You can see that
problems might arise if one thread were changing the values of the variables in setRow() at the same
moment another thread was reading the values in sumRow(). To prevent this, we have marked both
methods as synchronized. When threads are synchronized, only one will be run at a time. If a thread is in
the middle of executing setRow() when another thread calls sumRow(), the second thread waits until
the first one is done executing setRow() before it gets to run sumRow(). This synchronization allows
us to preserve the consistency of the SpreadSheet. And the best part is that all of this locking and
waiting is handled by Java; it's transparent to the programmer.

In addition to synchronizing entire methods, the synchronized keyword can be used in a special
construct to guard arbitrary blocks of code. In this form it also takes an explicit argument that specifies
the object for which it is to acquire a lock:

synchronized (myObject) {
 // Functionality that needs to be synced
 ...
 }

The code block above can appear in any method. When it is reached, the thread has to acquire the lock on
myObject before proceeding. In this way, we can have methods (or parts of methods) in different
classes synchronized the same as methods in the same class.

A synchronized method is, therefore, equivalent to a method with its statements synchronized on the
current object. Thus:

synchronized void myMethod () {
 ...
}

is equivalent to:

void myMethod () {
 synchronized (this) {
 ...
 }
}

wait() and notify()

With the synchronized keyword, we can serialize the execution of complete methods and blocks of
code. The wait() and notify() methods of the Object class extend this capability. Every object in
Java is a subclass of Object, so every object inherits these methods. By using wait() and
notify(), a thread can give up its hold on a lock at an arbitrary point, and then wait for another thread
to give it back before continuing. All of the coordinated activity still happens inside of synchronized
blocks, and still only one thread is executing at a given time.

By executing wait() from a synchronized block, a thread gives up its hold on the lock and goes to
sleep. A thread might do this if it needs to wait for something to happen in another part of the
application, as you'll see shortly. Later, when the necessary event happens, the thread that is running it
calls notify() from a block synchronized on the same object. Now the first thread wakes up and
begins trying to acquire the lock again.

When the first thread manages to reacquire the lock, it continues from the point it left off. However, the
thread that waited may not get the lock immediately (or perhaps ever). It depends on when the second
thread eventually releases the lock, and which thread manages to snag it next. Note also, that the first
thread won't wake up from the wait() unless another thread calls notify(). There is an overloaded
version of wait(), however, that allows us to specify a timeout period. If another thread doesn't call
notify() in the specified period, the waiting thread automatically wakes up.

Let's look at a simple scenario to see what's going on. In the following example, we'll assume there are
three threads--one waiting to execute each of the three synchronized methods of the MyThing class.
We'll call them the waiter, notifier, and related threads, respectively. Here's a code fragment
to illustrate:

class MyThing {

 synchronized void waiterMethod() {
 // Do some stuff

 // Now we need to wait for notifier to do something
 wait();

 // Continue where we left off
 }

 synchronized void notifierMethod() {
 // Do some stuff

 // Notify waiter that we've done it
 notify();

 // Do more things
 }

 synchronized void relatedMethod() {
 // Do some related stuff
 }

Let's assume waiter gets through the gate first and begins executing waiterMethod(). The two
other threads are initially blocked, trying to acquire the lock for the MyThing object. When waiter
executes the wait() method, it relinquishes its hold on the lock and goes to sleep. Now there are now
two viable threads waiting for the lock. Which thread gets it depends on several factors, including chance
and the priorities of the threads. (We'll discuss thread scheduling in the next section.)

Let's say that notifier is the next thread to acquire the lock, so it begins to run. waiter continues to
sleep and related languishes, waiting for its turn. When notifier executes the call to notify(),
Java prods the waiter thread, effectively telling it something has changed. waiter then wakes up and
rejoins related in vying for the MyThing lock. Note that it doesn't actually receive the lock; it just
changes from saying "leave me alone" to "I want the lock."

At this point, notifier still owns the lock and continues to hold it until it leaves its synchronized
method (or perhaps executes a wait() itself). When it finally completes, the other two methods get to
fight over the lock. waiter would like to continue executing waiterMethod() from the point it left
off, while unrelated, which has been patient, would like to get started. We'll let you choose your own
ending for the story.

For each call to notify(), Java wakes up just one method that is asleep in a wait() call. If there are
multiple threads waiting, Java picks the first thread on a first-in, first-out basis. The Object class also
provides a notifyAll() call to wake up all waiting threads. In most cases, you'll probably want to use
notifyAll() rather than notify(). Keep in mind that notify() really means "Hey, something
related to this object has changed. The condition you are waiting for may have changed, so check it
again." In general, there is no reason to assume only one thread at a time is interested in the change or
able to act upon it. Different threads might look upon whatever has changed in different ways.

Often, our waiter thread is waiting for a particular condition to change and we will want to sit in a
loop like the following:

...
while (condition != true)
 wait();
...

Other synchronized threads call notify() or notifyAll() when they have modified the

environment so that waiter can check the condition again. This is the civilized alternative to polling
and sleeping, as you'll see the following example.

The Message Passer

Now we'll illustrate a classic interaction between two threads: a Producer and a Consumer. A
producer thread creates messages and places them into a queue, while a consumer reads them out and
displays them. To be realistic, we'll give the queue a maximum depth. And to make things really
interesting, we'll have our consumer thread be lazy and run much slower than the producer. This means
that Producer occasionally has to stop and wait for Consumer to catch up. The example below shows
the Producer and Consumer classes.

import java.util.Vector;

class Producer extends Thread {
 static final int MAXQUEUE = 5;
 private Vector messages = new Vector();

 public void run() {
 try {
 while (true) {
 putMessage();
 sleep(1000);
 }
 }
 catch(InterruptedException e) { }
 }

 private synchronized void putMessage()
 throws InterruptedException {

 while (messages.size() == MAXQUEUE)
 wait();
 messages.addElement(new java.util.Date().toString());
 notify();
 }

 // Called by Consumer
 public synchronized String getMessage()
 throws InterruptedException {
 notify();
 while (messages.size() == 0)
 wait();

 String message = (String)messages.firstElement();
 messages.removeElement(message);
 return message;
 }
}

class Consumer extends Thread {
 Producer producer;

 Consumer(Producer p) {
 producer = p;
 }

 public void run() {
 try {
 while (true) {
 String message = producer.getMessage();
 System.out.println("Got message: " + message);
 sleep(2000);
 }
 }
 catch(InterruptedException e) { }
 }

 public static void main(String args[]) {
 Producer producer = new Producer();
 producer.start();
 new Consumer(producer).start();
 }
}

For convenience, we have included a main() method that runs the complete example in the Consumer
class. It creates a Consumer that is tied to a Producer and starts the two classes. You can run the
example as follows:

% java Consumer

The output is the time-stamp messages created by the Producer:

Got message: Sun Dec 19 03:35:55 CST 1996
Got message: Sun Dec 19 03:35:56 CST 1996
Got message: Sun Dec 19 03:35:57 CST 1996
...

The time stamps initially show a spacing of one second, although they appear every two seconds. Our
Producer runs faster than our Consumer. Producer would like to generate a new message every
second, while Consumer gets around to reading and displaying a message only every two seconds. Can
you see how long it will take the message queue to fill up? What will happen when it does?

Let's look at the code. We are using a few new tools here. Producer and Consumer are subclasses of
Thread. It would have been a better design decision to have Producer and Consumer implement
the Runnable interface, but we took the slightly easier path and subclassed Thread. You should find
it fairly simple to use the other technique; you might try it as an exercise.

The Producer and Consumer classes pass messages through an instance of a java.util.Vector
object. We haven't discussed the Vector class yet, but you can think of this one as a queue where we
add and remove elements in first-in, first-out order. See Chapter 7, Basic Utility Classes for more
information about the Vector class.

The important activity is in the synchronized methods: putMessage() and getMessage().
Although one of the methods is used by the Producer thread and the other by the Consumer thread,
they both live in the Producer class because they have to be synchronized on the same object to work
together. Here they both implicitly use the Producer object's lock. If the queue is empty, the
Consumer blocks in a call in the Producer, waiting for another message.

Another design option would implement the getMessage() method in the Consumer class and use a
synchronized code block to explicitly synchronize on the Producer object. In either case,
synchronizing on the Producer is important because it allows us to have multiple Consumer objects
that feed on the same Producer.

putMessage()'s job is to add a new message to the queue. It can't do this if the queue is already full,
so it first checks the number of elements in messages. If there is room, it stuffs in another time stamp.
If the queue is at its limit however, putMessage() has to wait until there's space. In this situation,
putMessage() executes a wait() and relies on the consumer to call notify() to wake it up after
a message has been read. Here we have putMessage() testing the condition in a loop. In this simple
example, the test probably isn't necessary; we could assume that when putMessage() wakes up, there
is a free spot. However, this test is another example of good programming practice. Before it finishes,
putMessage() calls notify() itself to prod any Consumer that might be waiting on an empty
queue.

getMessage() retrieves a message for the Consumer. It enters a loop like the Producer's, waiting
for the queue to have at least one element before proceeding. If the queue is empty, it executes a
wait() and expects the producer to call notify() when more items are available. Notice that
getMessage() makes its own unconditional call to notify(). This is a somewhat lazy way of
keeping the Producer on its toes, so that the queue should generally be full. Alternatively,
getMessage() might test to see if the queue had fallen below a low water mark before waking up the

producer.

Now let's add another Consumer to the scenario, just to make things really interesting. Most of the
necessary changes are in the Consumer class; the example below shows the code for the modified class.

class Consumer extends Thread {
 Producer producer;
 String name;

 Consumer(String name, Producer producer) {
 this.producer = producer;
 this.name = name;
 }

 public void run() {
 try {
 while (true) {
 String message = producer.getMessage();
 System.out.println(name + " got message: " + message);
 sleep(2000);
 }
 }
 catch(InterruptedException e) { }
 }

 public static void main(String args[]) {
 Producer producer = new Producer();
 producer.start();

 // Start two this time
 new Consumer("One", producer).start();
 new Consumer("Two", producer).start();
 }
}

The Consumer constructor now takes a string name, to identify each consumer. The run() method
uses this name in the call to println() to identify which consumer received the message.

The only modification to make in the Producer code is to change the call to notify() in
putMessage() to a call to notifyAll(). Now, instead of the consumer and producer playing tag
with the queue, we can have many players waiting on the condition of the queue to change. We might
have a number of consumers waiting for a message, or we might have the producer waiting for a
consumer to take a message. Whenever the condition of the queue changes, we prod all of the waiting

methods to reevaluate the situation by calling notifyAll(). Note, however, that we don't need to
change the call to notify() in getMessage(). If a Consumer thread is waiting for a message to
appear in the queue, it's not possible for the Producer to be simultaneously waiting because the queue
is full.

Here is some sample output when there are two consumers running, as in the main() method shown
above:

One got message: Wed Mar 20 20:00:01 CST 1996
Two got message: Wed Mar 20 20:00:02 CST 1996
One got message: Wed Mar 20 20:00:03 CST 1996
Two got message: Wed Mar 20 20:00:04 CST 1996
One got message: Wed Mar 20 20:00:05 CST 1996
Two got message: Wed Mar 20 20:00:06 CST 1996
One got message: Wed Mar 20 20:00:07 CST 1996
Two got message: Wed Mar 20 20:00:08 CST 1996
...

We see nice, orderly alternation between the two consumers, as a result of the calls to sleep() in the
various methods. Interesting things would happen, however, if we were to remove all of the calls to
sleep() and let things run at full speed. The threads would compete and their behavior would depend
on whether or not the system is using time slicing. On a time-sliced system, there should be a fairly
random distribution between the two consumers, while on a nontime-sliced system, a single consumer
could monopolize the messages. And since you're probably wondering about time slicing, let's talk about
thread priority and scheduling.

Threading Applets Scheduling and Priority

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_04.htm

Chapter 6
Threads

6.2 Threading Applets

Applets are embeddable Java applications that are expected to be able to start and stop themselves on
command. Unlike threads, applets can be started and stopped any number of times. A Java-enabled Web
browser normally starts an applet when the applet is displayed and stops it when the user moves to
another page or scrolls the applet out of view. In general, we would like an applet to cease its
nonessential activity when it is stopped, and resume it when started again. (See Chapter 10, Understand
the Abstract Windowing Toolkit for a complete discussion of applets.)

In this section, we will build UpdateApplet, a simple base class for an Applet that maintains a
Thread to automatically update its display at regular intervals. UpdateApplet handles the basic
starting and stopping behavior for us, as shown below.

public class UpdateApplet extends java.applet.Applet
 implements Runnable {

 private Thread updateThread;
 int updateInterval = 1000;

 public void run() {
 while (true) {
 try {
 Thread.sleep(updateInterval);
 }
 catch (InterruptedException e) { }

 repaint();
 }
 }

 public void start() {
 if (updateThread == null) {

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm

 updateThread = new Thread(this);
 updateThread.start();
 }
 }

 public void stop() {
 if (updateThread != null) {
 updateThread.stop();
 updateThread = null;
 }
 }
}

UpdateApplet is a Runnable object that alternately sleeps and calls its repaint() method. It has
two other public methods: start() and stop(). These are methods of the Applet class we are
overriding; do not confuse them with the similarly named methods of the Thread class. These
start() and stop() methods are called by the Java environment to tell the applet when it should and
should not be running.

UpdateApplet illustrates an environmentally friendly way to deal with threads in a simple applet.
UpdateApplet kills its thread each time the applet is stopped and recreates it if the applet is restarted.
When UpdateApplet's start() method is called, we first check to make sure there is no currently
executing updateThread. We then create one to begin our execution. When our applet is
subsequently stopped, we kill the thread by invoking its stop() method and throw away the reference
by setting it to null. Setting updateThread to null serves both to allow the garbage collector to
clean up the dead Thread object, and to indicate to UpdateApplet's start() method that the
thread is gone.

In truth, an Applet's start() and stop() methods are guaranteed to be called in sequence. As a
result, we shouldn't have to check for the existence of updateThread in start() (it should always
be null). However, it's good programming practice to perform the test. If we didn't, and for some
reason stop() were to fail at its job, we might inadvertently start a lot of threads.

With UpdateApplet doing all of the work for us, we can now create the world's simplest clock applet
with just a few lines of code. Figure 6.3 shows our Clock. (This might be a good one to run on your
Java wrist watch.)

public class Clock extends UpdateApplet {
 public void paint(java.awt.Graphics g) {
 g.drawString(new java.util.Date().toString(), 10, 25);
 }
}

Figure 6.3: The clock applet

[Graphic: Figure 6-3]

The java.util.Date().toString() sequence simply creates a string that contains the current
time; we'll see where this code comes from in Chapter 7, Basic Utility Classes.

Our Clock applet provides a good example of a simple thread; we don't mind throwing it away and
subsequently rebuilding it if the user should happen to wander on and off of our Web page a few times.
But what if the task that our thread handles isn't so simple? What if, for instance, we have to open a
socket and establish a connection with another system? One solution is to use Thread's suspend()
and resume() methods, as I'll show you momentarily.

Now if you've been wondering why we've been using stop() to kill the thread, rather than using the
suspend() and resume() methods all along, here's the explanation you've been waiting for. The
problem with applets is that we have no control over how a user navigates Web pages. For example, say
a user scrolls our applet out of view, and we use suspend() to suspend the applet. Now we have no
way of ensuring that the user will bring the applet back into view before moving on to another page. And
actually, the same situation would occur if the user simply moves on to another page and never comes
back.

If we call suspend(), we'd really like to make sure we call resume() at a later date, or we'll end up
leaving the thread hanging in permanent suspense. But we have no way of knowing if the applet will ever
be restarted, so just putting a call to resume() in the applet's start() method won't work. Leaving
the suspended thread around forever might not hurt us, but it's not good programming practice to be
wasteful. What we need is a way to guarantee we can clean up our mess if the applet is never used again.
What to do?

There is a solution for this dilemma, but in many cases, like with our simple Clock, it's just easier to use
stop(), with a subsequent call to start() if necessary. In cases where it is expensive to set up and
tear down a thread, we could make the following modifications to UpdateApplet:

public void start() {
 if (updateThread == null) {
 updateThread = new Thread(this);
 updateThread.start();
 }

 else
 updateThread.resume();
}

public void stop() {
 updateThread.suspend();

public void destroy() {
 if (updateThread != null) {
 updateThread.stop();
 updateThread = null;
 }
}

These modifications change UpdateApplet so that it suspends and restarts its updateThread,
rather than killing and recreating it. The new start() method creates the thread and calls start() if
updateThread is null; otherwise it assumes that the thread has been suspended, so it calls
resume(). The applet's stop() method simply suspends the thread by calling suspend().

What's new here is the destroy() method. This is another method that UpdateApplet inherits from
the Applet class. The method is called by the Java environment when the applet is going to be removed
(often from a cache). It provides a place where we can free up any resources the applet is holding. This is
the perfect place to cut the suspense and clean up after our thread. In our destroy() method, we check
to see that the thread exists, and if it does, we call stop() to kill it and set its reference to null.

Introducing Threads Synchronization

file:///C|/download/ftp.selab.org/ebook/javaref/exp/ch06_01.htm

Chapter 5
Collections

5.2 Vectors

The Vector class implements a variable-length array that can hold any kind of object. Like an array,
the elements in a Vector are accessed with an integer index. However, unlike an array, the size of a
Vector can grow and shrink as needed to accommodate a changing number of objects. Vector
provides methods to add and remove elements, as well as ways to search for objects in a Vector and
iterate through all of the objects.

You can create a Vector object using the constructor that takes no arguments.

Vector v = new Vector()

This constructor creates an empty Vector with an initial capacity of 10. The capacity of a Vector
specifies how many objects it can contain before more space must be allocated. You can improve the
performance of a Vector by setting its initial capacity to a more appropriate value when you create it.
For example, if you know that you are going to be storing close to 100 objects in a Vector, you could
set the initial capacity as follows:

Vector v = new Vector(100)

It can be time-consuming for a Vector to increase its capacity, so it is better to set the initial capacity
based on a rough estimate of the number of objects a Vector will contain than to simply use the default
capacity.

The capacity increment of a Vector specifies how much more space is allocated each time the Vector
needs to increase its capacity. If you do not specify a capacity increment when you create a Vector, it
uses the default value of 0, which causes the Vector to double in size every time it needs to increase its
capacity. Doubling in size is a good way for a Vector to become large enough quickly when you have
no idea what size it needs to be. However, if you do have a rough idea of the final size of a Vector,
specifying a positive capacity increment is less wasteful of memory. For example, if you know that you
will be putting 100 or so objects in a Vector, you could create it as follows:

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_03.htm

Vector v = new Vector(110, 20)

Once you have created an empty Vector object, you can put object references in it using the
addElement() and insertElementAt() methods. The addElement() method adds an
element to the end of a Vector. The following code fragment shows the use of the addElement()
method:

Vector v = new Vector();
v.addElement("abc");
v.addElement("jkl");
v.addElement("xyz");

The insertElementAt() method inserts a new element into a Vector before a given position, so it
can be used to insert an element at any position in a Vector except the last. Like arrays, Vector
objects are indexed starting at 0. Here's how to insert an object at the beginning of the Vector object
created above:

v.insertElementAt("123", 0);

The size() method returns the number of elements in a Vector object.

After you have added some elements to a Vector object, you can retrieve elements with a number of
different methods. For example, the elementAt() method fetches the object at the specified position
in the Vector, while the firstElement() and lastElement() methods return the first and last
objects in the Vector, respectively. Finally, the elements() method returns an Enumeration
object that accesses the elements in the Vector object.

The setElementAt() method allows you to change the object stored at a specified position in the
Vector, while the removeElementAt() method removes the object at a specified position from the
Vector. The removeElement() method takes an object reference as an argument and removes the
first element in the Vector that refers to the given object, if there is such an element. You can also
remove all of the elements from the Vector using the removeAllElements() method.

The Vector class also provides some methods for searching the contents of a Vector object. For
example, the contains() method returns true if a Vector contains a reference to a specified
object. The indexOf() and lastIndexOf() methods return the positions of the first and last
elements, respectively, in a Vector that match a specified object.

Enumerations Stacks

file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_01.htm
file:///C|/download/ftp.selab.org/ebook/javaref/fclass/ch05_03.htm

Credits
The Books

Java in a Nutshell
By David Flanagan
1-56592-262-X, 628 pages.
2nd Edition, May 1997

Java Language Reference
By Mark Grand
1-56592-326-X, 450 pages (est.)
2nd Edition July 1997 (est.)

Java AWT Reference
By John Zukowski
1-56592-240-9, 1074 pages
1st Edition April 1997

Java Fundamental Classes Reference
By Mark Grand and Jonathan Knudsen
1-56592-241-7, 1136 pages (est.)
1st Edition June 1997 (est.)

Exploring Java
By Patrick Niemeyer & Joshua Peck
1-56592-184-271-9, 500 pages (est.)
2nd Edition July 1997 (est.)

The Java Reference Library CD-ROM

Product Manager
Lorrie LeJeune

Technical Development
Jessica Perry Hekman and Norman Walsh

Creative Director
Edie Freedman

Conversion Specialist
Erik Ray

Index

file:///C|/download/www.ora.com/catalog/javanut2/default.htm
file:///C|/download/www.ora.com/catalog/javalang2/default.htm
file:///C|/download/www.ora.com/catalog/javafund/default.htm
file:///C|/download/www.ora.com/catalog/javafund/default.htm
file:///C|/download/www.ora.com/catalog/expjava2/default.htm

Seth Maislin

	BOFKOKOEKFILKJPGNAHKJOEIGFDEFMDAIO:
	form1:
	f1:
	x:
	f2: [ch10_02.htm]

