-|.. =
Croenting Distribnatiodd Enterpmise Appifceations

DiRElLLY' Richard Monsor-Haafel & David A, o s ol

Java M essage Service

Richard Monson-Haefel
David A. Chappell

Publisher: O'Reilly
First Edition January 2001
ISBN: 0-596-00068-5, 238 pages
This book is a thorough introduction to Java Message Service (JIMS) from Sun
Microsystems. It shows how to build applications using the point-to-point and publish-and-
subscribe models;, use features like transactions and durable subscriptions to make

applications reliable; and use messaging within Enterprise JavaBeans. It also introduces a

new EJB type, the MessageDrivenBean, that is part of EJB 2.0, and discusses integration
of messaging into J2EE.

Team[0OR]

Table of Contents

PIEIACE ...t bbb enree s 1
What 1S the JaVa MESSAgE SEIVICE?.......eiiiieieieeiee ettt 1
Who Should Read ThiS BOOK?..........coiiiiiiiiiiesiie et 1
(@ 070 2= 1 Lo o FERT TP RSPRTOPRPP 2
SOftWArE€ @NA VEISIONS......ceiiiiiieeiie sttt sttt be et saneenbeeebeesaeee e 3
(@00] 0117 011T0] = ST RTOPORPTR PP 4
CommENtS aNd QUESHIONSceeieieeeiieeeiteeeerteeeseee st e e s e e s aaeeensaeeenseeeessseeensseeennnnnennnes 4
ACKNOWIEAGIMENTS. ...t sttt sn e naee s 5

Chapter 1. Understanding the Messaging Paradigmcccceeveiieiiieniieenie e 6
1.1 ENterpriSe MESSAgING. .. cecuveerueeeteeiteesieeeieesiteesteesbeessseesbeesbeesaseebeesabeesseesneesnneennnens 7
1.2 The JavaMeSssage SErVICE (JIMS)ooiii ittt 9
1.3 APPIICALION SCENAIOS.c.eeiiuieeiieeeitie ettt sttt be e sbe e s snne e 11
1.4 RPC Versus AsynchronOUS MESSAgINGccoueeereerreerieeaieesreesieeassessneesseesnseesnneenes 15

Chapter 2. Developing a Simple EXampleooiiiieeeeeee e 19
2.1 The Chat APPIICAITION.oiieiiiieiee et naee s 19

Chapter 3. Anatomy of @ IM S MESSAJE.......cccuiiiiiiiieiie e 33
S L HEAEIS. ...ttt bt be e snn e naee s 34
B2 PrOPEITIES. ... ettt sttt ettt ettt et et s b e et e be e snn e nnee s 38
3.3 MESSAGE SEIECIONS. ... eeeiie ettt sttt st e beesnneennee s 40
B4 MESSAGE TYPES ...ttt eeitee ettt ettt ettt e e b e e be e e e s e e e nn e e e e e e e e nn e e e nnne e e 42

Chapter 4. Publish-and-Subscribe Messaging.........cccovvveieeiieeniienee e 53
4.1 Getting Started with the B2B AppliCationcocceeviieiiiiiieniere e 53
4.2 TEMPOTAY TOPICS. ..eeuveeeeieteeaieesiseesieeaseessseesteeabeessseesseesbeesnseessseenbeesnseessreenseeannes 60
4.3 DUrable SUDSCIIPLIONS.coiueiiiieiie e 61
4.4 Publishing the Message PerSiStentlycoovvoiiiieniiese e 63
4.5 IMSCOITEEHONID.......ceeieiiiieeeie ettt ee e enes 64
4.6 ReQUESE AN REDIY ...t 65
4.7 UNSUDSCITDING ...ttt 68

Chapter 5. Point-t0-PoiNt M ESSAGING.......cccuieiiiiiiiiiiesie et ee e 69
5.1 Point-to-Point and Publish-and-SUDSCIDE ..o 69
5.2 The QWholesaler and QRELAIESoeeiiieeiiie e 71
5.3 Creating a Queue DYNamiCallyccoocuiiiiiiiiicieee e 78
5.4 Load Balancing Using Multiple QUEUESESSIONS.........ccceerueerieiriiesieesiee e seeenieens 79
5.5 EXaMINING @ QUEUE.........coiiiiiiiieieeeiee sttt sttt et e s e e sbeesbeesneeenaeeas 80

Chapter 6. Guaranteed Messaging, Transactions, Acknowledgments & Failures......84
6.1 GUAraNtEEd MESSAGINGveeeeeeiee it siieetee sttt st e bt sbe e saeeenneesane e 84
6.2 Message ACKNOWIEAGMENES.........ooiiiiii e 85
6.3 Message Groups and ACKNOWIEAgMENT..........c.coiiirierrieeree e 91
6.4 TranSACIEO IMESSAgEScoiuvieiie ettt ettt sttt e bt et e b e e beesnne e 95
6.5 LOSE CONMNECLIONS ..ottt sttt b e e b e enns 104

6.6 Dead MESSAJE QUELIEScoiuiieiee ettt ettt ettt et b e e neeenns 106

Chapter 7. Deployment ConSider atiONS..........uoiueerieeieeniiesie e 108

7.1 Performance, Scalability, and Reliabilitycocoveiiieeiiie e 108
7.2 ToMulticast Of NOt 1O MUITICESEocveeiiiiiieciie s 112
7.3 SECUITY ettt ettt ettt ettt e et e e b e e be e s b e e snneebeeenns 116
7.4 Connecting to the OUtSIAE WOTTccueiiiiiiiiiie e 118
7.5 Bridging to Other Messaging SYSIEMScovviiiieiiierie et 120
Chapter 8. J2EE, EJB, and JMS........ooooiieeie ettt e e 122
8L J2EE OVEIVIEW ...ttt sttt ettt ettt ettt e s e et e et e e naneenneeenns 122
8.2 J2EE: A United PlatfOrMcc.eiiiiiiiieee et 125
8.3 The IMS RESOUICE IN J2EEccciiiieee e 126
8.4 The New Message-Driven Bean in EJB 2.0.......cccooviviiiiiiiniieeeeeeee e 128
Chapter 9. IM S PrOVIOENS.....couieieieiieeiie sttt sttt ne e s nee s 133
0.1 IBM: MQSENIES ..ottt ettt ettt ettt et e et aneenbeeenns 133
9.2 Progress; SONICM Q)coueeiiiieiie ettt ettt neeenns 134
9.3 Fioran0: FIOranOMQeeeiuieeiiieeeiieesriee e e seee e e stee e e saee e e ssee e e snaeeesneeeeenseeesnsneennnnnens 135
0.4 SOfWITEA: TBUS......eeitiiiiieiiie ettt nbeeenns 136
9.5 Sun Microsystems: JavaMeSSage QUEUEcocueeeieerieenieeeiee e 138
9.6 BEA: WEDLOGIC SEIVES ...ttt 139
0.7 EXOL@AD: OPENIMS... ..ottt ettt et b et enns 140
Appendix A. The Java M essage SErviCe APooiiiiiiiiieeee e 141
A1 ComMMON FACHTTIES.......eeeiiiiiee et 141
A2 POINE-TO-POINT AP ...ttt 150
A.3 Publish-and-SUBSCIiDE APooiieee e 153
Appendix B. Message HEAAEN'S..........ooiiiiiieieceeeee e 156
AppendiX C. MeSSage PropErti€S.......coui ittt 167
C.L Property NAIMES.ceeiiiieeeiiee et e et e e s be e e s ssn e e s snne e e snneeennnneens 167
C.2 Property VAIUBS.........ooiiiiiieeie sttt 167
C.3 READ-ONIY PrOPEITIES.ccvieiiiesiie ettt nne e 169
C.4 Property Value CONVEISIONccc.uieiiieiiiesiieesiee ettt tee sttt ssee s e s e enns 169
C.5 NONEXISIENT PrOPEITIESc.veeiiieeiiee ettt 171
C.6 Property [TEIaHiONcccueeeeieeiie sttt b e ne e 171
C.7 IMS-DEfINEI PrOPEItiES......coiieiieieiiee ettt 171
C.8 Provider-SpecifiC PrOpertiES.coiiiiiieiiiesiee et 173
AppendixX D. MeSSage SElECLONS........uiiieiiiiesie et 174
DL TABNETIEIS ..ttt et s e e b e e neesnneennee s 174
D .2 LIBI@AIS. ettt aaeennee s 174
D.3 COMPAIiSON OPEIAIOISeeiueieieeeiiesiteesieeaieesteesteesseeseeesseesbeessreesseeeseesaneenseeas 175
D.4 ArithMELIC OPEIaIONS.....ccveeiieieiiee ettt ettt ettt san e sae e s e saneennee s 177
D.5 Declaring aMeSsage SEIECIONcoiiiiiiiiie et 178
D.6 NOt DEliVEred SEMEANTICS........coiiiiiiiiiieriee et 179

[©01[e] o] (o] o FO TP RPROPR PRSP 180

Java Message Service

Preface

What Is the Java Message Service?

When Java™ was first introduced, most of the IT industry focused on its graphical user
interface characteristics and the competitive advantage it offered in terms of distribution
and platform independence. Today, the focus has broadened considerably: Java has been
recognized as an excellent platform for creating enterprise solutions, specifically for
developing distributed server-side applications. This shift has much to do with Javas
emerging role as a universal language for producing implementation-independent
abstractions for common enterprise technologies. The JIDBC™ API is the first and most
familiar example. JDBC provides a vendor-independent Java interface for accessing SQL
relational databases. This abstraction has been so successful that it's difficult to find a
relational database vendor that doesn't support JDBC. Java abstractions for enterprise
technologies have expanded considerably to include JNDI (Java Naming and Directory
Interface™) for abstracting directory services, IMX (Java Management Extensions) for
abstracting access to computer devices on a network, and IMS™ (Java Message Service)
for abstracting access to different Message-Oriented Middleware products.

JMS has quickly become a de facto industry standard. In its second version, most
enterprise messaging vendors now support the JMS specification, making for a large
selection of JIM S providers to choose from.

The Java Message Service is a Java APl implemented by enterprise messaging vendors to
provide Java applications with a common and elegant programming model that is portable
across messaging systems. Enterprise messaging systems are used to send notification of
events and data between software applications. There are two common programming
models supported by the IMS API: publish-and-subscribe and point-to-point. Each model
provides benefits and either or both may be implemented by JMS providers.

JMS and enterprise messaging systems provide Java developers with an asynchronous
messaging system that allows systems to interact without requiring them to be tightly
coupled. Messages can be delivered to systems that are not currently running and
processed when it's convenient. The decoupled, asynchronous characteristics of enterprise
messaging make JMS an extremely powerful and critical enterprise API. IMS is used by
Java developers in Enterprise Application Integration, Business-to-Business (B2B)
projects, and distributed computing in general.

As IMS quickly moves into the forefront as one of the most important J2EE technologies,
understanding how JMS works and when to use it will become the hallmark of the most
successful distributed computing professionals. Choosing to read this book to learn about
JMS may be one of the smartest career moves you ever make.

Who Should Read This Book?

This book explains and demonstrates the fundamentals of the Java Message Service. This
book provides a straightforward, no-nonsense explanation of the underlying technology,
Java classes and interfaces, programming models, and various implemenations of the IMS
specification.

Java Message Service

Although this book focuses on the fundamentals, it's no "dummy's" book. While the IMS
APl is easy to learn, the API abstracts fairly complex enterprise technology. Before
reading this book, you should be fluent with the Java language and have some practical
experience developing business solutions. Experience with messaging systems is not
required, but you must have a working knowledge of the Java language. If you are
unfamiliar with the Java language, we recommend that you pick up a copy of Learning
Java™ by Patrick Neimeyer and Jonathan Knudsen (O'Reilly). If you need a stronger
background in distributed computing, we recommend Java™ Distributed Computing by
Jim Farley (O'Rellly).

Organization

Here's how the book is structured. The first chapter explains messaging systems,
centralized and distributed architectures, and how and why JMS is important. Chapter 2
through Chapter 5 go into detail about developing JMS clients using the two messaging
models, publish-and-subscribe and point-to-point. Chapter 6 and Chapter 7 should be
considered "advanced topics," covering deployment and administration of messaging
systems. Chapter 8is an overview of the Java™ 2, Enterprise Edition (J2EE) with regard
to IMS, including coverage of the new message-driven bean in Enterprise JavaBeans 2.0.
Finally, Chapter 9 provides a summary of several IM S vendors and their products.

Chapter 1
Defines enterprise messaging and common architectures used by messaging vendors.
JMS is defined and explained, as are its two programming models, publish-and-
subscribe and point-to-point.

Chapter 2

Walks the reader through the development of a ssmple publish-and-subscribe IMS
client.

Chapter 3

Provides a detailed examination of the JIMS message, the most important part of the
JMS API.

Chapter 4

Examines the publish-and-subscribe programming model through the devel opment
of aB2B JMS application.

Chapter 5

Examines the point-to-point programming models through the enhancement of the
B2B JM S application developed in Chapter 4.

Java Message Service

Chapter 6

Provides an in-depth explanation of advanced topics, including guaranteed
messaging, transactions, acknowledgments, and failures.

Chapter 7

Provides an in-depth examination of features and issues that should be considered
when choosing vendors and deploying JM S applications.

Chapter 8

Provides an overview of the Java™ 2, Enterprise Edition (J2EE) with regard to IMS,
and also includes coverage of the new JVIS-based bean in Enterprise JavaBeans 2.0.

Chapter 9
Provides a summary of severa JMS vendors and their products, including: IBM's
MQSeries, Progress SonicMQ, Fiorano's FioranoMQ, Softwired's iBus, Sun's IMQ,
BEA's WebL ogic, and Exolab's OpenJMS.
Appendix A
Provides a quick reference to the classes and interfaces defined in the JIMS package.
Appendix B
Provides detailed information about message headers.
Appendix C
Provides detailed information about message properties.
Appendix D
Provides detailed information about message selectors.
Software and Versions
This book covers the Java Message Service Version 1.0.2. It uses Java language features
from the Java 1.1 platform. Because the focus of this book is to develop vendor-
independent JMS clients and applications, we have stayed away from proprietary
extensions and vendor-dependent idioms. Any JMS-compliant provider can be used with
this book; you should be familiar with that provider's specific installation, deployment, and
runtime management procedures to work with the examples. To find out the details of

installing and running JM S clients for a specific JIMS provider, consult your JM S vendor's
documentation; these details aren't covered by the IM S specification.

Java Message Service

Examples developed in this book are available through the book's catalog page at
http://www.oreilly.com/catal og/javmesser/examples. The examples are organized by
chapter. Special source code modified for specific vendors is also provided. These vendor-
specific examples include a readme.txt file that points to documentation for downloading
and installing the IM S provider, as well as specific instructions on setting up the provider
for each example.

Conventions

Italic is used for filenames, pathnames, hostnames, domain names, URLSs, email addresses,
and new terms where they are defined.

Constant width iS used for code examples and fragments, class, variable, and method
names, Java keywords used within the text, SQL commands, table names, column names,
and XML elements and tags.

Constant wi dth bol d isused for emphasisin some code examples.
Constant width italicisusedtoindicate text that is replaceable.

The term "JMS provider” is used to refer to a vendor that implements the IMS API to
provide connectivity to their enterprise messaging service. The term "IJMS client” refersto
Java components or applications that use the IMS APl and a JMS provider to send and
receive messages. "JMS application” refers to any combination of JMS clients that work
together to provide a software solution.

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you
may find that features have changed (or even that we have made mistakes!). Please let us
know about any errors you find, as well as your suggestions for future editions, by writing
to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. Y ou can access this page at:

http://www.oreilly.com/catal og/javmesser/
To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

Java Message Service

For more information about our books, conferences, software, Resource Centers, and the
O'Reilly Network, see our web site at:

http://www.oreilly.com

Richard Monson-Haefel maintains a web site for the discussion of JIMS and related
distributed computing technologies (http://www.jMiddleware.com). jMiddleware.com
provides news about this book as well as code tips, articles, and an extensive list of links to
JMS resources.

David Chappell hosts a similar site, the SonicMQ Developers Exchange, which can be
found at http://www.sonicmg.com/devel opers.

Acknowledgments

While there are only two names on the cover of this book, the credit for its development
and delivery is shared by many individuals. Michael Loukides, our editor, was pivotal to
the success of this book. Without his experience, craft, and guidance, this book would not
have been possible.

Many expert technical reviewers helped ensure that the material was technically accurate
and true to the spirit of the Java Message Service. Of special note are Joseph Fiali, Anne
Thomas Manes, and Chris Kasso of Sun Microsystems, Andrew Neumann and Giovanni
Boschi of Progress, Thomas Haas of Softwired, Mikhail Rizkin of International Systems
Group, and Jim Alateras of ExoLab. The contributions of these technical experts are
critical to the technical and conceptual accuracy of this book. They brought a combination
of industry and real-world experience to bear, and helped to make this the best book on
JMSS published today.

Thanks also to Mark Hapner of Sun Microsystems, the primary architect of Java 2,
Enterprise Edition, who answered several of our most complex questions. Thanks to al the
participants in the IMS-INTEREST mailing list hosted by Sun Microsystems for their
interesting and informative postings.

Java Message Service

Chapter 1. Understanding the Messaging Paradigm

Computers and people can communicate by using messaging systems to exchange
messages over electronic networks. The most ubiquitous messaging system today is email,
which facilitates communication among people. While email is an important human-to-
human messaging system, this book is not about email. Instead, this book is concerned
with messaging systems that allow different software applications to communicate with
each other. These application-to-application messaging systems, when used in business
systems, are generically referred to as enterprise messaging systems, or Message-Oriented
Middleware (MOM).

Enterprise messaging systems allow two or more applications to exchange information in
the form of messages. A message, in this case, is a self-contained package of business data
and network routing headers. The business data contained in a message can be anything -
depending on the business scenario - and usually contains information about some
business transaction. In enterprise messaging systems, messages inform an application of
some event or occurrence in another system.

Using Message-Oriented Middleware, messages are transmitted from one application to
another across a network. MOM products ensure that messages are properly distributed
among applications. In addition, MOMs usually provide fault tolerance, load balancing,
scalability, and transactional support for enterprises that need to reliably exchange large
quantities of messages.

MOM vendors use different message formats and network protocols for exchanging
messages, but the basic semantics are the same. An API is used to create a message, give it
a payload (application data), assign it routing information, and then send the message. The
same APl is used to receive messages produced by other applications.

In all modern enterprise messaging systems, applications exchange messages through
virtual channels called destinations. When a message is sent, it's addressed to a destination,
not a specific application. Any application that subscribes or registers an interest in that
destination may receive that message. In this way, the applications that receive messages
and those that send messages are decoupled. Senders and receivers are not bound to each
other in any way and may send and receive messages as they see fit.

All MOM vendors provide application developers with an API for sending and receiving
messages. While a MOM vendor implements its own networking protocols, routing, and
administration facilities, the basic semantics of the developer API provided by different
MOMs are the same. This similarity in APIs makes the Java Message Service possible.

The Java Message Service (JMYS) is a vendor-agnostic Java APl that can be used with
many different MOM vendors. IMS is analogous to JDBC in that application developers
reuse the same API to access many different systems. If a vendor provides a compliant
service provider for IMS, then the IMS API can be used to send and receive messages to
that vendor. For example, you can use the same JMS API to send messages using Progress
SonicMQ as you do IBM's MQSeries. It is the purpose of this book to explain how
enterprise messaging systems work and in particular how the Java Message Serviceis used

Java Message Service

with these systems. This book focuses on JMS 1.0.2, the most recent version of the
specification, which was introduced in November 1999.

The rest of this chapter explores enterprise messaging and JMS in more detail, so that you
have a solid foundation with which to learn about the IMS API and messaging conceptsin
the rest of this book. We assume that you are aready familiar with the Java programming
language - other than that, everything is explained.

1.1 Enterprise Messaging

Enterprise messaging is not a new concept. Messaging products such as IBM MQSeries,
Microsoft MSMQ, TIBCO Rendevous, Open Horizon Ambrosia, and Modulus InterAgent
have been in existence for many years. Newer messaging products such as Progress
SonicMQ, Softwired iBus, and FioranoMQ have been built from the ground up, based on
the need for doing reliable Business-to-Business communications over the Internet.

A key concept of enterprise messaging is messages are delivered asynchronously from one
system to others over a network. To deliver a message asynchronously means the sender is
not required to wait for the message to be received or handled by the recipient; it is free to
send the message and continue processing. Asynchronous messages are treated as
autonomous units - each message is self-contained and carries all of the data and state
needed by the business logic that processes it.

In asynchronous messaging, applications use a smple API to construct a message, then
hand it off to the Message-Oriented Middleware for delivery to one or more intended
recipients (Figure 1.1). A message is a package of business data that is sent from one
application to another over the network. The message should be self-describing in that it
should contain all the necessary context to allow the recipients to carry out their work
independently.

Figure 1.1. Message-Oriented Middleware

Application A Application B
Messaging API Messaging AM
Message-

Oriented
Messaging Clients ot it Messaging Clients

Message-Oriented Middleware architectures of today vary in their implementation. The
spectrum ranges from a centralized architecture that depends on a message server to
perform routing, to a decentralized architecture that distributes the "server" processing out
to the client machines. A varied array of protocols including TCP/IP, HTTP, SSL, and IP
multicast are employed at the network transport layer. Some messaging products use a
hybrid of both approaches, depending on the usage model.

Java Message Service

Before we discuss the different architectures, it is important to explain what we mean by
the term client. Messaging systems are composed of messaging clients and some kind of
MOM. The clients send messages to the MOM, which then distributes those messages to
other clients. The client is a business application or component that is using the messaging
API (in our case IMS).

1.1.1 Centralized Architectures

Enterprise messaging systems that use a centralized architecture rely on a message server.
A message server, also called a message router or broker, is responsible for delivering
messages from one messaging client to other messaging clients. The message server
decouples a sending client from other receiving clients. Clients only see the messaging
server, not other clients, which allows clients to be added and removed without impacting
the system as awhole.

Typicaly, a centralized architecture uses a hub-and-spoke topology. In a simple case, there
is a centralized message server and all clients connect to it. As shown in Figure 1.2, the
hub-and-spoke architecture lends itself to a minimal amount of network connections while
still alowing any part of the system to communicate with any other part of the system.

Figure 1.2. Centralized hub-and-spoke architecture

Appiication A Applicalion 8
JMS JMS
Client Client
Message
Server
JMS JMS
Client Client
Application 0 Application C

In practice, the centralized message server may be a cluster of distributed servers operating
asalogical unit.

1.1.2 Decentralized Architectures

All decentralized architectures currently use IP multicast at the network level. A
messaging system based on multicasting has no centralized server. Some of the server
functionality (persistence, transactions, security) is embedded as a local part of the client,
while message routing is delegated to the network layer by using the IP multicast protocol.

Java Message Service

IP multicast allows applications to join one or more IP multicast groups; each group uses
an IP network address that will redistribute any messages it receives to all membersin its
group. In this way, applications can send messages to an IP multicast address and expect
the network layer to redistribute the messages appropriately (see Figure 1.3). Unlike a
centralized architecture, a distributed architecture doesn't require a server for the purposes
of routing messages - the network handles routing automatically. However, other server-
like functionality is still required to be included with each client, such as message
persistence and message delivery semantics like once-and-only-once delivery.

Figure 1.3. Decentralized IP multicast architecture

Application A
JMS
Client 'ZZ'ZZZ..Z'Z'.IZZ..Z'Z'ZZZ..Z'Z'.ZZI..I'Z'.ZZZ.TZ Ruuter
Local “Server” T T T
Local “Server™ Local *Server™ Local “Server”
JMS JMS JMS
Client Client Client

Application ¢ Application & Application ¢
1.1.3 Hybrid Architectures

A decentralized architecture usually implies that an 1P multicast protocol is being used. A
centralized architecture usually implies that the TCP/IP protocol is the basis for
communication between the various components. A messaging vendor's architecture may
also combine the two approaches. Clients may connect to a daemon process using TCP/IP,
which in turn communicate with other daemon processes using |P multicast groups.

1.1.4 Centralized Architecture as a Model

Both ends of the decentralized and centralized architecture spectrum have their place in
enterprise messaging. The advantages and disadvantages of distributed versus centralized
architectures are discussed in more detail in Chapter 7. In the meantime we need a
common model for discussing other aspects of enterprise messaging. In order to smplify
discussions, this book uses a centralized architecture as a logical view of enterprise
messaging. This is for convenience only and is not an endorsement of centralized over
decentralized architectures. The term "message server” is frequently used in this book to
refer to the underlying architecture that is responsible for routing and distributing
messages. In centralized architectures, the message server is amiddleware server or cluster
of servers. In decentralized architectures, the server refers to the local server-like facilities
of the client.

1.2 The Java Message Service (JMS)

The Java Message Service (JMS) is an API for enterprise messaging created by Sun
Microsystems. JMS is not a messaging system itself; it's an abstraction of the interfaces
and classes needed by messaging clients when communicating with messaging systems. In
the same way that JDBC abstracts access to relational databases and JNDI abstracts access

Java Message Service

to naming and directory services, M S abstracts access to MOMs. Using JMS, a messaging
application's messaging clients are portable across MOM products.

The creation of IMS was an industry effort. JavaSoft took the lead on the spec and worked
very closely with the messaging vendors throughout the process. The initial objective was
to provide a Java API for connectivity to MOM systems. However, this changed to the
wider objective of supporting messaging as a first-class Java distributed computing
paradigm equally with Remote Procedure Call (RPC) based systems like CORBA and
Enterprise JavaBeans:

There were a number of MOM vendors that participated in the creation of
JMS. It was an industry effort rather than a Sun effort. Sun was the spec
lead and did shepherd the work but it would not have been successful
without the direct involvement of the messaging vendors. Although our
original objective was to provide a Java APl for connectivity to MOM
systems, this changed over the course of the work to a broader objective of
supporting messaging as a first class Java distributed computing paradigm
on equal footing with RPC.

- Mark Hapner, IM S spec lead, Sun Microsystems

The result is a best-of-breed, robust specification that includes a rich set of message
delivery semantics, combined with a simple yet flexible API for incorporating messaging
into applications. The intent was that in addition to new vendors, existing messaging
vendors would support the IMS API.

1.2.1 JMS Messaging Models: Publish-and-Subscribe and Point-to-Point

JMS provides for two types of messaging models, publish-and-subscribe and point-to-
point queuing. The JMS specification refers to these as messaging domains. In JMS
terminology, publish-and-subscribe and point-to-point are frequently shortened to pub/sub
and p2p (or PTP), respectively. This book uses both the long and short forms throughoui.

In the simplest sense, publish-and-subscribe is intended for a one-to-many broadcast of
messages, while point-to-point is intended for one-to-one delivery of messages (see Figure
1.4).

Figure 1.4. JIMS messaging domains

Publish and Subscribe (1-=Many)

v Subscriber
¥ "'--ﬂ—-f
Publisher —— Topic —
& Subscriber
Paoint-ta-Point (1-»1) Potential
Receiver
Sender —— Quewe
. Potential
Receiver

JMS messaging domaing

10

Java Message Service

Messaging clientsin JMS are called JMS clients, and the messaging system - the MOM - is
called the IMS provider. A IMS application is a business system composed of many JMS
clients and, generaly, one JIMS provider.

In addition, a IMS client that produces a message is called a producer, while a IMS client
that receives a message is called a consumer. A JMS client can be both a producer and a
consumer. When we use the term consumer or producer, we mean a JMS client that
consumes messages or produces messages, respectively. We use this terminology
throughout the book.

1.2.1.1 Publish-and-subscribe

In pub/sub, one producer can send a message to many consumers through avirtual channel
called a topic. Consumers, which receive messages, can choose to subscribe to a topic.
Any messages addressed to a topic are delivered to al the topic's consumers. Every
consumer receives a copy of each message. The pub/sub messaging model is by and large
a push-based model, where messages are automatically broadcast to consumers without
them having to request or poll the topic for new messages.

In the pub/sub messaging model the producer sending the message is not dependent on the
consumers receiving the message. Optionally, JMS clients that use pub/sub can establish
durable subscriptions that allow consumers to disconnect and later reconnect and collect
messages that were published while they were disconnected. The pub/sub JMS messaging
model is discussed in greater detail in Chapter 2, and Chapter 4.

1.2.1.2 Point-to-point

The point-to-point messaging model allows JM S clients to send and receive messages both
synchronously and asynchronously via virtual channels known as queues. The p2p
messaging model has traditionally been a pull- or polling-based model, where messages
are requested from the queue instead of being pushed to the client automatically. In IMS,
however, an option exists that allows p2p clients to use a push model similar to pub/sub.

A given queue may have multiple receivers, but only one receiver may consume each
message. As shown in Figure 1.4, the JMS provider takes care of doling out the work,
insuring that each message is consumed once and only once by the next available receiver
in the group. The JMS specification does not dictate the rules for distributing messages
among multiple receivers, although some JMS vendors have chosen to implement this as a
load balancing capability. P2p also offers other features, such as a queue browser that
allows a client to view the contents of a queue prior to consuming its messages - this
browser concept is not available in the pub/sub model. The p2p messaging model is
covered in more detail in Chapter 5.

1.3 Application Scenarios
Until now, our discussion of enterprise messaging has been somewhat abstract. This

section attempts to give some real-world scenarios to provide you with a better idea of the
types of problems that enterprise messaging systems can solve.

11

Java Message Service

1.3.1 Enterprise Application Integration

Most mature organizations have both legacy and new applications that are implemented
independently and cannot interoperate. In many cases, organizations have a strong desire
to integrate these applications so they can share information and cooperate in larger
enterprise-wide operations. The integration of these applications is generaly called
Enterprise Application Integration (EALI).

A variety of vendor and home-grown solutions are used for EAI, but enterprise messaging
systems are central to most of them. Enterprise messaging systems allow stovepipe
applications to communicate events and to exchange data while remaining physically
independent. Data and events can be exchanged in the form of messages via topics or
queues, which provide an abstraction that decouples participating applications.

As an example, a messaging system might be used to integrate an Internet order processing
system with an Enterprise Resource Planning (ERP) system like SAP. The Internet system
uses JMS to deliver business data about new orders to a topic. An ERP gateway
application, which accesses a SAP application viaits native API, can subscribe to the order
topic. As new orders are broadcast to the topic, the gateway receives the orders and enters
them into the SAP application.

1.3.2 Business-to-Business

Historically, businesses exchanged data using Electronic Data Interchange (EDI) systems.
Data was exchanged using rigid, fixed formats over proprietary Value-Added Networks
(VANS). Cost of entry was high and data was usually exchanged in batch processes - not
as real-time business events.

The Internet, XML, and modern messaging systems have radically changed how
businesses exchange data and interact in what is now called Business-to-Business (B2B).
The use of messaging systems is centra to modern B2B solutions because it allows
organizations to cooperate without requiring them to tightly integrate their business
systems. In addition, it lowers the barriers to entry since finer-grained participation is
possible. Businesses can join in B2B and disengage depending on the queues and topics
with which they interact.

A manufacturer, for example, can set up atopic for broadcasting requests for bids on raw
materials. Suppliers can subscribe to the topic and respond by producing messages back to
the manufacturer's queue. Suppliers can be added and removed at will, and new topics and
queues for different types of inventory and raw materials can be used to partition the
systems appropriately.

1.3.3 Geographic Dispersion

These days many companies are geographically dispersed. Brick-and-mortar, click-and-
mortar, and dot-coms all face problems associated with geographic dispersion of enterprise
systems. Inventory systems in remote warehouses need to communicate with centralized
back-office ERP systems at corporate headquarters. Sensitive employee data that is
administered locally at each subsidiary needs to be synchronized with the main office.

12

Java Message Service

JMS messaging systems can ensure the safe and secure exchange of data across a
geographically distributed business.

1.3.3.1 One-to-many, push-model applications

Auction sites, stock quote services, and securities exchanges all have to push data out to
huge populations of recipients in a one-to-many fashion. In many cases, the broadcast of
information needs to be selectively routed and filtered on a per recipient basis. While the
outgoing information needs to be delivered in a one-to-many fashion, often the response to
such information needs to be sent back to the broadcaster. This is another situation in
which enterprise messaging is extremely useful, since pub/sub can be used to distribute the
messages and p2p can be used for responses.

Choices in reliability of delivery are key in these situations. In the case of broadcasting
stock quotes, for example, absolutely guaranteeing the delivery of information may not be
critical, since another broadcast of the same ticker symbol will likely happen in another
short interval of time. In the case where a trader is responding to a price quote with a buy
order, however, it is crucia that the response is returned in a guaranteed fashion. In this
case, you mix reliability of messaging so that the pub/sub distribution is fast but unreliable
while the use of p2p for buy orders from traders is very reliable. IMS and enterprise
messaging provides these varying degrees of reliability for both the pub/sub and p2p
models.

1.3.4 Building Dynamic Systems with Messaging and JMS

In IMS, pub/sub topics and p2p queues are centrally administered and are referred to as
JMS administered objects. Y our application does not need to know the network location of
topics or queues to communicate with other applications; it just uses topic and queue
objects as identifiers. Using topics and queues provides JMS applications with a certain
level of location transparency and flexibility that makes it possible to add and remove
participants in an enterprise system.

For example, a system administrator can dynamically add subscribers to specific topics on
an as-needed basis. A common scenario might be if you discover a need to add an audit-
trail mechanism for certain messages and not others. Figure 1.5 shows you how to plug in
a specialized auditing and logging JIM S client whose only job is to track specific messages,
just by subscribing to the topics you are interested in.

The ability to add and remove producers and consumers allows enterprise systems to
dynamically alter the routing and re-routing of messages in an aready deployed
environment.

As another example, we can build on the EAl scenario discussed previoudy. In this
example, a gateway accepts incoming purchase orders, converts them to the format
appropriate for a legacy ERP system, and calls into the ERP system for processing (see
Figure 1.6).

13

Java Message Service

Figure 1.5. Dynamically adding auditing and logging using publish-and-subscribe

Application A Apnlication B
JM3S JMS
Client Client
Publish
Subscribe
JMS
Publish Server(s) thip
JMs ‘E:n‘s:r; JWS
Client Client
Application D Subscribe Application ¢
JMS
Client
Auditing
& Logging

Dyramically Add Auiiting and Lagging Using PublishSubscribe

Figure 1.6. Integration of purchase order system with an ERP system

internet
FPurchase Order Application &
Js JMS
Client Client
RO Publish
fay, “PO Message”
“a
JMS
Server(s)
/ Subscribe “PO Message”
i,
Jms JMS
Client Client
Application 4 ERP
Gateway

In Figure 1.6, other IM S applications (A and B) also subscribe to the purchase order topic
and do their own independent processing. Application A might be a legacy application in
the company, while application B may be another company's business system, representing
aB2B integration.

Using IMS, it's fairly easy to add and remove applications from this process. For example,
if purchase orders need to be processed from two different sources, such as an Internet-
based system and a legacy EDI system, you can simply add the legacy purchase order
system to the mix (see Figure 1.7).

14

Java Message Service

Figure 1.7. Integrating two different purchase order systems with an ERP system

Iifernet

Puiretase Order Application 8
JMS JM3
Client Client
. Fublish
" “P0 Mazsage” /
4
JMS
Server(s) Subscriba “PO Massape”
JMS TR Ims
Client Client
A
Application A : Eqe
! Publigh PO Massage” Gataway
JMS
Client
Legacy EDI
Purchase Order

What is interesting about this example is that the ERP Gateway is unaware that it is
receiving purchase order messages from two completely different sources. The legacy EDI
system may be an older in-house system or it could be the main system for a business
partner or a recently acquired subsidiary. In addition, the legacy EDI system would have
been added dynamically without requiring the shutdown and retooling of the entire system.
Enterprise messaging systems make this kind of flexibility possible, and IMS alows Java
clients to access many different MOMs using the same Java programming model.

1.4 RPC Versus Asynchronous Messaging

RPC (Remote Procedure Call) is a term commonly used to describe a distributed
computing model that is used today by middleware technologies such as CORBA, Java
RMI, and Microsoft's DCOM. Component-based architectures such as Enterprise
JavaBeans are built on top of this model. RPC-based technologies have been, and will
continue to be, a viable solution for many applications. However, the enterprise messaging
model is superior in certain types of distributed applications. In this section we will discuss
the pros and cons of each model. In Chapter 8, J2EE, EJB, and JMS we will discuss a
means of combining the two.

1.4.1 Tightly Coupled RPC

One of the most successful areas of the tightly coupled RPC model has been in building 3-
tier, or n -tier applications. In this model, a presentation layer (1% tier), communicates
using RPC with business logic on the middle tier (2™ tier), which accesses data housed on
the back end (3¢ tier). Sun Microsystems J2EE platform and Microsoft's DNA are the
most modern examples of this architecture.

15

Java Message Service

With J2EE, JSP and Servlets represent the presentation tier while Enterprise JavaBeans is
the middle tier. Microsoft's DNA is architecturally similar to J2EE, relying on ASP for
presentation and COM+ for the middle tier. Regardless of the platform, the core
technology used in these systems is RPC-based middleware. Whether it's the EJB or
COM+, RPC is the defining communication paradigm.

RPC attempts to mimic the behavior of a system that runs in one process. When a remote
procedure is invoked, the caller is blocked until the procedure completes and returns
control to the caller. This synchronized model allows the developer to view the system as
if it runsin one process. Work is performed sequentially, ensuring that tasks are completed
in a predefined order. The synchronized nature of RPC tightly couples the client (the
software making the call) to the server (the software servicing the call). The client cannot
proceed - it is blocked - until the server responds.

The tightly coupled nature of RPC creates highly interdependent systems where a failure
on one system has an immediate and debilitating impact on other systems. In J2EE, for
example, the EJB server must be functioning properly if the servlets that use enterprise
beans are expected to function.

RPC works well in many scenarios, but its synchronous, tightly coupled nature is a severe
handicap in systemto-system processing where vertica applications are integrated
together. In system-to-system scenarios, the lines of communication between vertical
systems are many and multidirectional, as Figure 1.8 illustrates.

Figure 1.8. Tightly coupled with synchronous RPC

Accounts
Receivable

CRM |
Application
E:-.:!E:'.m '

&

:'-t_ﬂ__
Sales Order

HelpDesk

Consider the chalenge of implementing this infrastructure using a tightly coupled RPC
mechanism. There is the many-to-many problem of managing the connections between
these systems. When you add another application to the mix, you have to go back and let
all the other systems know about it. Also, systems can crash. Scheduled downtimes need to
happen. Object interfaces need to be upgraded.

16

Java Message Service

When one part of the system goes down, everything halts. When you post an order to an
order entry system, it needs to make a synchronous call to each of the other systems. This
causes the order entry system to block and wait until each system is finished processing the
order.™

I Multithreading and looser RPC mechanisms like CORBA's one-way call are options, but these
solutions have their own complexities and require very sophisticated development. Threads are
expensive when not used wisely, and CORBA one-way calls still require application-level error
handling for failure conditions.

It is the synchronized, tightly coupled, interdependent nature of RPC systems that cause
entire systems to fail as aresult of failures in subsystems. When the tightly coupled nature
of RPC is not appropriate, as in system-to-system scenarios, messaging provides an
aternative.

1.4.2 Enterprise Messaging

Problems with the availability of subsystems are not an issue with Message-Oriented
Middleware. A fundamental concept of MOM is that communication between applications
isintended to be asynchronous. Code that is written to connect the pieces together assumes
there is a one-way message that requires no immediate response from another application.
In other words, there is no blocking. Once a message is sent, the messaging client can
move on to other tasks; it doesn't have to wait for a response. This is the mgor difference
between RPC and asynchronous messaging, and is critical to understanding the advantages
offered by MOM systems.

In an asynchronous messaging system, each subsystem (Accounts Receivable, Inventory,
etc.) is decoupled from the other systems (see Figure 1.9). They communicate through the
messaging server, so that afailure in one does not impede the operation of the others.

Figure 1.9. JMS provides a loosely coupled environment where partial failure of system
components does not impede overall system availability

Accounts
Receivable

CRM

Application Inventory
JMS IS
Client f_,,»—’ Client
/ JM5
ﬁjl?gﬁr Client
Sales Order HelpDesk

Partial failure in a networked system is a fact of life. One of the systems may have an
unpredictable failure or need to be shut down at some time during its continuous operation.
This can be further magnified by geographic dispersion of in-house and partner systems. In

17

Java Message Service

recognition of this, JIMS provides guaranteed delivery, which ensures that intended
consumers will eventually receive a message even if partial failure occurs.

Guaranteed delivery uses a store-and-forward mechanism, which means that the
underlying message server will write the incoming messages out to a persistent store if the
intended consumers are not currently available. When the receiving applications become
available at a later time, the store-and-forward mechanism will deliver al of the messages
that the consumers missed while unavailable (see Figure 1.10).

Figure 1.10. Underlying store-and-forward mechanism guarantees delivery of messages

Guaranteed Delivery Through
Store & Forward
Messaging
Application A Application B
Meszage
§ Server _
Messaging APl Messaging APl
Store & -'-"FS:U[.'E’
Messaging Client Forward Messaping Client
- TRT— SRS

Massape

Message Oriented Middleware

To summarize, IMS is not just another event service. It was designed to cover a broad
range of enterprise applications, including EAI, B2B, push models, etc. Through
asynchronous processing, store-and-forward, and guaranteed delivery, it provides high
availability capabilities to keep business applications in continuous operation with
uninterrupted service. It offers flexibility of integration by providing publish-and-subscribe
and point-to-point functionality. Through location transparency and administrative control,
it allows for a robust, service-based architecture. And most importantly, it is extremely
easy to learn and use. In the next chapter we will take a look at how simple it is by
building our first IMS application.

18

Java Message Service

Chapter 2. Developing a Simple Example

Now that you understand Message-Oriented Middleware and some JM'S concepts, you are
ready to write your first IMS application. This chapter provides a gentle introduction to
JMS using the publish-and-subscribe messaging model. You will get your feet wet with
JMS and learn some of the basic classes and interfaces. Chapter 4, covers publish-and-
subscribe in detail, and Chapter 5, covers the point-to-point message model.

As with all examples in this book, example code and instructions specific to several
vendors is provided in the book download at O'Reilly's web site (see Preface for details).
You will need to install and configure your JMS provider according to the instructions
provided by your vendor.

2.1 The Chat Application

Internet chat provides an interesting application for learning about the JMS pub/sub
messaging model. Used mostly for entertainment, web-based chat applications can be
found on thousands of web sites. In a chat application, people join virtual chat rooms
where they can "chat" with a group of other people.

To illustrate how JMS works, we will use the IMS pub/sub API to build a simple chat
application. The requirements of Internet chat map nesatly onto the publish-and-subscribe
messaging model. In this model, a producer can send a message to many consumers by
delivering the message to a single topic. A message producer is also called a publisher and
amessage consumer is also called a subscriber. In reality, using JIMS for a chat application
would be overkill, since chat systems don't require enterprise quality service.

The following source code is a IMS-based chat client. Every participant in a chat session
uses this chat program to join a specific chat room (topic), and deliver and receive
messages to and from that room:

package chap2. chat;

i mport javax.jmns.*;

i mport javax.nam ng.*;

import java.io.*;

i mport java.io.lnputStreanReader;
i mport java.util.Properties;

public class Chat inplenents javax.]ns. MessagelLi stener{
private Topi cSessi on pubSessi on;
private Topi cSessi on subSessi on;
private Topi cPublisher publisher;
private Topi cConnection connecti on;
private String usernane;

/* Constructor. Establish JMS publisher and subscriber */
public Chat(String topicNanme, String usernane, String password)
throws Exception {

/] Obtain a JNDI connection

Properties env = new Properties();

Il ... specify the JNDI properties specific to the vendor

Initial Context jndi = new Initial Context(env);

/'l Look up a JMS connection factory

19

Java Message Service

Topi cConnecti onFactory conFactory =
(Topi cConnecti onFact ory)j ndi .| ookup(" Topi cConnecti onFactory");

/'l Create a JMS connection
Topi cConnecti on connection =
conFact ory. creat eTopi cConnecti on(user nane, password) ;

/1l Create two JMS session objects
Topi cSessi on pubSessi on =
connecti on. creat eTopi cSessi on(fal se
Sessi on. AUTO_ACKNOW.EDCGE)
Topi cSessi on subSessi on =
connecti on. creat eTopi cSessi on(fal se
Sessi on. AUTO_ACKNOW_EDCGE)

/1 Look up a JMS topic
Topi ¢ chat Topi ¢ = (Topic)jndi.|ookup(topicNane);

/1l Create a JM5 publisher and subscri ber
Topi cPubl i sher publisher =

pubSessi on. cr eat ePubl i sher (chat Topi c) ;
Topi cSubscri ber subscriber =

subSessi on. cr eat eSubscri ber (chat Topi ¢) ;

/1 Set a JM5S nmessage |istener
subscri ber. set Messageli stener (this);

/'l Intialize the Chat application
set (connecti on, pubSession, subSession, publisher, usernane);

/1 Start the JVMB connection; allows nessages to be delivered
connection.start();

/* Initialize the instance variables */

public void set(Topi cConnection con, Topi cSessi on pubSess,
Topi cSessi on subSess, Topi cPublisher pub,
String usernane) {

t his. connection = con;
thi s. pubSessi on = pubSess;
this. subSessi on = subSess;

t hi s. publisher = pub
thi s.usernane = usernane;
}
/* Receive nessage fromtopic subscriber */
public void onMessage(Message nessage) {
try {
Text Message text Message = (Text Message) nessage;
String text = textMessage. get Text();
Systemout. println(text);
} catch (JMSException jnse){ jnse.printStackTrace(); }

/* Create and send nessage using topic publisher */

protected void witeMessage(String text) throws JMSException {
Text Message nessage = pubSessi on. creat eText Message();
nessage. set Text (user name+" : "+text);
publ i sher. publ i sh(message) ;

[* Close the JMB connection */

public void close() throws JMSException {
connection. cl ose();

}

/* Run the Chat client */
public static void main(String [] args){

try{
if (args.|ength!=3)
Systemout.println("Topic or usernane m ssing");

20

Java Message Service

/1 args[0] =t opi cNane; args[1]=usernane; args[2]=password
Chat chat = new Chat (args[0],args[1],args[2]);

/! Read from command |ine
Buf f er edReader commandLi ne = new
java.i o. Buf f eredReader (new | nput St r eanReader (Systemin));

/1 Loop until the word "exit" is typed
whi | e(true){
String s = conmandLi ne. readLi ne();
if (s.equal slgnoreCase("exit")){
chat.close(); // close down connection
Systemexit(0);// exit program
} else
chat.witeMessage(s);

}
} catch (Exception e){ e.printStackTrace(); }

}

2.1.1 Getting Started with the Chat Example

To put this client to use, compile it like any other Java program. Then start your JMS
server, setting up whatever topics, usernames, and passwords you want. Configuration of a
JMS server is vendor-dependent, and won't be discussed here.

The chat class includes a nai n() method so that it can be run as a standalone Java
application. It's executed from the command line as follows:

java chap2. chat. Chat topic usernane password

The topic is the destination that we want to publish-and-subscribe to; username and
password make up the authentication information for the client. Run at least two chat
clients in separate command windows and try typing into one; you should see the text you
type displayed by the other client.

Figure 2.1. The Chat application

chat Chat
JM3 JMS
Client Client
JMS
Chat 4,/' Server(s) \ Chat
JMS Jms
Client Client
JME
Client
Chat

21

Java Message Service

Before examining the source code in detail, a quick explanation will be helpful. The chat
client creates a IM S publisher and subscriber for a specific topic. The topic represents the
chat room. The IMS server registers al the IMS clients that want to publish or subscribe to
a specific topic. When text is entered at the command line of one of the chat clients, it is
published to the messaging server. The messaging server identifies the topic associated
with the publisher and delivers the message to all the IMS clients that have subscribed to
that topic. As Figure 2.1 illustrates, messages published by any one of the IMS clients are
delivered to all the IMS subscribers for that topic.

2.1.2 Examining the Source Code

Running the chat example in a couple of command windows demonstrates what the chat
application does. The rest of this chapter examines the source code for the chat application
so that you can see how the chat application works.

2.1.2.1 Bootstrapping the JMS client

The mei n() method bootstraps the chat client and provides a command-line interface.
Once an instance of the chat classis created, the nei n() method spends the rest of itstime
reading text typed at the command line and passing it to the chat instance using the
instance'swr i t eMessage() method.

The chat instance connects to the topic and receives and delivers messages. The chat
instance starts its life in the constructor, which does all the work to connect to the topic
and set up the TopicPublisher and TopicSubscribers for delivering and receiving

messages.
2.1.2.2 Obtaining a JNDI connection

The chat client starts by obtaining a JINDI connection to the JIMS messaging server. JNDI
is an implementation-independent API for directory and naming systems. A directory
service provides JMS clients with access to Connecti onFact ory and Desti nati ons (topics
and queues) objects. ConnectionFactory and Destination objects are the only things in
JMS that cannot be obtained using the IMS API - unlike connections, sessions, producers,
consumers, and messages, which are manufactured using the IMS API. JNDI provides a
convenient, location-transparent, configurable, and portable mechanism for obtaining
Connect i onFact ory and Dest i nati on objects, also called IMS administered objects because
they are established and configured by a system administrator.

Using JNDI, a JMS client can obtain access to a JMS provider by first looking up a
Connect i onFact ory. The Connect i onFact ory 1S used to create IMS connections, which can
then be used for sending and receiving messages. Dest i nati on objects, which represent
virtual channels (topics and queues) in IMS, are also obtained via JNDI and are used by
the JMS client. The directory service can be configured by the system administrator to
provide JMS administered objects so that the IMS clients don't need to use proprietary
code to access a JM S provider.

JMS servers will either work with a separate directory service (e.g., LDAP) or provide

their own directory service that supports the INDI API. For more details on JNDI, see the
sidebar Understanding JNDI.

22

Java Message Service

The constructor of the chat class starts by obtaining a connection to the JNDI naming
service used by the IM S server:

/1 Cbtain a JNDI connection

Properties env = new Properties();

Il ... specify the JNDI properties specific to the vendor
Initial Context jndi = new Initial Context(env);

Creating a connection to a JNDI naming service requires that a
j avax. naming. I nitial Context object be created. An Initial Context is the starting point
for any JINDI lookup - it's similar in concept to the root of a filesystem. The
Initial Context provides a network connection to the directory service that acts as a root
for accessing JIMS administered objects. The properties used to create an | ni ti al Cont ext
depend on which JMS directory service you are using. The code used to create a JNDI
Initial Context in BEA's Weblogic naming service, for example, would look something
likethis:

Properties env = new Properties();
env. put (Cont ext . SECURI TY_PRI NCl PAL, "guest");
env. put (Cont ext . SECURI TY_CREDENTI ALS, "guest");
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"webl ogi c.j ndi . W.I ni tial Cont ext Factory");
env. put (Cont ext. PROVI DER_URL, "t3://l ocal host: 7001");
Initial Context jndi = new Initial Context(env);

When SonicMQ is used in combination with a third party LDAP directory service, the
connection properties would be very different. For example, the following shows how a
SonicMQ JMS client would use JNDI to access IMS administered objects stored in a
LDAP directory server:

Properties env = new Properties();
env. put (Cont ext . SECURI TY_PRI NCl PAL, "guest");
env. put (Cont ext . SECURI TY_CREDENTI ALS, "guest");
env. put (Context. | NI TI AL_CONTEXT_FACTORY,
"com sun. j ndi .| dap. LdapCt xFact ory");
env. put (Cont ext . PROVI DER_URL,
"l dap:/ /1 ocal host: 389/ o=acne. conl') ;

Initial Context jndi = new Initial Context(env);
s Alternatively, the initial context() can be created without
a2, properties (no-arg constructor). In this case JNDI will read the

ol
L]

ey

vendor-specific INDI properties from a specia file in the classpath
named jndi.properties. This eliminates provider-specific code in IMS
clients, making them more portable.

23

Java Message Service

Understanding JNDI

JNDI is a standard Java extension that provides a uniform API for accessing a
variety of directory and naming services. In this respect, it is somewhat similar to
JDBC. JDBC lets you write code that can access different relational databases such
as Oracle, SQL Server, or Sybase; JNDI lets you write code that can access different
directory and naming services, such as LDAP, Novell Netware NDS, CORBA
Naming Service, and proprietary naming services provided by JM S servers.

In IMS, INDI is used mostly as a haming service to locate administered objects.
Administered objects are IM S objects that are created and configured by the system
administrator. Administered objects include JMS ConnectionFactory and
Dest i nat i on Objects like topics and queues.

Administered objects are bound to a name in a naming service. A naming service
associates names with distributed objects, files, and devices so that they can be
located on the network using smple names instead of cryptic network addresses. An
example of a naming service is the DNS, which converts an Internet hostname like
www.oreilly.com into a network address that browsers use to connect to web
servers. There are many other naming services, such as COSNaming in CORBA
and the Java RMI registry. Naming services allow printers, distributed objects, and
JMS administered objects to be bound to names and organized in a hierarchy similar
to afilesystem. A directory service is a more sophisticated kind of naming service.

JNDI provides an abstraction that hides the specifics of the naming service, making
client applications more portable. Using JNDI, JMS clients can browse a naming
service and obtain references to administered objects without knowing the details of
the naming service or how it is implemented. JMS servers are usually be used in
combination with a standard JNDI driver (ak.a. service provider) and directory
service like LDAP, or provide a proprietary JNDI service provider and directory
service.

JNDI is both virtual and dynamic. It is virtual because it allows one naming service
to be linked to another. Using JNDI, you can drill down through directories to files,
printers, JIMS administered objects, and other resources following virtual links
between naming services. The user doesn't know or care where the directories are
actually located. As an administrator, you can create virtual directories that span a
variety of different services over many different physical locations.

JNDI is dynamic because it alows the JNDI drivers for specific types of naming
and directory services to be loaded dynamically at runtime. A driver maps a specific
kind of naming or directory service into the standard JNDI class interfaces. Drivers
have been created for LDAP, Novell NetWare NDS, Sun Solaris NIS+, CORBA
COSNaming, and many other types of naming and directroy services, including
proprietary ones. Dynamically loading JNDI drivers (service providers) makes it
possible for a client to navigate across arbitrary directory services without knowing
in advance what kinds of servicesit islikely to find.

24

Java Message Service

2.1.2.3 The TopicConnectionFactory

Once a JNDI 1nitial context oObject is instantiated, it can be used to look up the
Topi cConnect i onFact ory 1N the messaging server's naming service:

Topi cConnecti onFactory conFactory =
(Topi cConnecti onFactory)j ndi .| ookup(" Topi cConnecti onFactory");

Thej avax. j ns. Topi cConnecti onFact ory IS used to manufacture connections to a message
server. A Topi cConnectionFactory IS atype of administered object, which means that its
attributes and behavior are configured by the system administrator responsible for the
messaging server. The Topi cConnectionFactory IS implemented differently by each
vendor, so configuration options available to system administrators vary from product to
product. A connection factory might, for example, be configured to manufacture
connections that use a particular protocol, security scheme, clustering strategy, etc. A
system administrator might choose to deploy several different Topi cConnecti onFactory
objects, each configured with its own JNDI lookup name.

The TopicConnectionFactory provides two overloaded versions of the
creat eTopi cConnection() method:

package javax.]j ns;

public interface Topi cConnectionFactory extends ConnectionFactory {
public Topi cConnecti on createTopi cConnection()
t hrows JMSException, JMSSecurityException;
public Topi cConnection createTopi cConnection(String usernang,
String password) throws JMSException, JMSSecurityException;
}

These methods are used to create Topi cConnect i on Objects. The behavior of the no-arg
method depends on the JMS provider. Some JMS providers will assume that the IMS
client is connecting under anonymous security context, while other providers may assume
that the credentials can be obtained from JNDI or the current thread.™ The second method
provides the client with a username-password authentication credential, which can be used
to authenticate the connection. In our code, we choose to authenticate the connection
explicitly with a username and password.

(4 Thread-specific storage is used with the Java Authentication and Authorization Service (JAAS) to
allow security credentials to transparently propagate between resources and applications.

2.1.2.4 The TopicConnection

The Topi cConnect i on is created by the Topi cConnect i onFact ory :

/'l Look up a JMS connection factory
Topi cConnect i onFactory conFactory =
(Topi cConnecti onFactory)j ndi .| ookup(" Topi cConnecti onFactory");

/[l Create a JM5 connection

Topi cConnecti on connection =
conFact ory. creat eTopi cConnecti on(user nane, password);

25

Java Message Service

The Topi cConnect i on represents a connection to the message server. Each Topi cConnecti on
that is created from a Topi cConnecti onFact ory IS @ unique connection to the server.? A
JMS client might choose to create multiple connections from the same connection factory,
but thisis rare as connections are relatively expensive (each connection requires a network
socket, 1/0 streams, memory, etc.). Creating multiple Session objects (discussed later in
this chapter) from the same connection is considered more efficient, because sessions share
access to the same connection. The Topi cConnection IS an interface that extends
javax. jms. Connection interface. It defines several general-purpose methods used by
clients of the Topi cConnection. Among these methods are the start(), stop(), and
cl ose() methods:

(2 The actual physical network connection may or may not be unique depending on the vendor.
However, the connection is considered to be logically unique so authentication and connection
control can be managed separately from other connections.

/1 javax.jms.Connection the super interface
public interface Connection {
public void start() throws JMSException;
public void stop() throws JMSException;
public void close() throws JMSExcepti on;

}
/'l javax.jms. Topi cConnection extends javax.jns. Connection
public interface Topi cConnection extends Connection {
public Topi cSessi on createTopi cSessi on(bool ean transact ed,
i nt acknow edgeMbde)
t hrows JVMSExcepti on;

}

The start(), stop(), and close() methods alow a client to manage the connection
directly. The start() method turns the inbound flow of messages "on,” alowing
messages to be received by the client. This method is used at the end of the constructor in
Chat class.

/'l Intialize the Chat application
set (connection, pubSession, subSession, publisher, usernane);

connection.start();

}

It isagood idea to start the connection after the subscribers have been set up, because the
messages start to flow in from the topic as soon as st art () isinvoked.

The stop() method blocks the flow of inbound messages until the start() method is
invoked again. The cl ose() method is used to close the Topi cConnect i on to the message
server. This should be done when a client is finished using the Topi cConnect i on; closing
the connection conserves resources on the client and server. In the chat class, the nai n()
method calls chat . cl ose() when "exit" istyped at the command line. The chat . cl ose()
method in turn calls the Topi cConnecti on. cl ose() method:

public void close() throws JMSException {
connection.close();

}

26

Java Message Service

Closing a Topi cconnect i on closes all the objects associated with the connection including
the Topi cSessi on, Topi cPubl i sher, and Topi cSubscri ber.

2.1.2.5 The TopicSession

After the Topi cConnect i on iSobtained, it's used to create Topi cSessi on Objects:

/'l Create a JMS connection
Topi cConnecti on connection =
conFact ory. creat eTopi cConnecti on(user nane, passwor d) ;

/'l Create two JMS session objects
Topi cSessi on pubSession =

connecti on. creat eTopi cSessi on(fal se, Session. AUTO ACKNOALEDGE) ;
Topi cSessi on subSession =

connecti on. creat eTopi cSessi on(fal se, Session. AUTO ACKNOALEDGE) ;

A TopicSession Object is a factory for creating Message, TopicPublisher, and
Topi cSubscri ber objects. A client can create multiple Topi cSessi on Objects to provide
more granular control over publishers, subscribers, and their associated transactions. In
this case we create two Topi cSessi on Objects, pubSessi on and subsSessi on. We need two
objects because of threading restrictions in IMS, which are discussed in Section 2.1.3 later
in the chapter.

The bool ean parameter in the createTopi cSession() method indicates whether the
Sessi on object will be transacted. A transacted sessi on automatically manages outgoing
and incoming messages within a transaction. Transactions are important but not critical to
our discussion at this time, so the parameter is set to f al se, which means the Topi cSessi on
will not be transacted. Transactions are discussed in more detail in Chapter 6.

The second parameter indicates the acknowledgment mode used by the JMS client. An
acknowledgment is a notification to the message server that the client has received the
message. In this case we chose AUTO ACKNOW EDGE, which means that the message is
automatically acknowledged after it is received by the client.

The Topi csessi on objects are used to create the Topi cPubl i sher and Topi cSubscri ber. The
Topi cPubl i sher and Topi cSubscri ber Objects are created with a Topi ¢ identifier and are
dedicated to the Topi cSession that created them; they operate under the control of a
specific Topi cSessi on:

Topi cPubl i sher publisher =

pubSessi on. cr eat ePubl i sher (chat Topi ¢) ;
Topi cSubscri ber subscriber =

subSessi on. cr eat eSubscri ber (chat Topi c);

The Topi cSessi on is also used to create the vessage oObjects that are delivered to the topic.
The pubsessi on is used to create vessage Objects in the writ evessage() method. When
you type text at the command line, the nei n() method reads the text and passes it to the
Chat instance by invoking writ evessage(). The witeMessage() method (shown in the
following example) uses the pubsessi on Object to generate a Text Message object that can
be used to deliver the text to the topic:

27

Java Message Service

protected void witeMessage(String text) throws JMSExcepti on{

Text Message message = pubSessi on. creat eText Message();
nmessage. set Text (user nane+" : "+text);
publ i sher. publ i sh(message);

}

Several Message types can be created by a Topi cSessi on. The most commonly used typeis
the Text Message.

2.1.2.6 The Topic

JNDI is used to locate a Topic object, which is an administered object like the
Topi cConnecti onFactory .

Initial Context jndi = new Initial Context(env);

)/ Look up a JM5 topic
Topi ¢ chat Topi ¢ = (Topi c)j ndi .| ookup(topi cNane);

A Topi ¢ object is a handle or identifier for an actual topic, called a physical topic, on the
messaging server. A physical topic is an electronic channel to which many clients can
subscribe and publish. A topic is analogous to a news group or list server: when a message
is sent to anews group or list server, it isdelivered to al the subscribers. Similarly, when a
JMS client delivers a vessage object to a topic, al the clients subscribed to that topic
recelve the vessage.

The Topi ¢ object encapsulates a vendor-specific name for identifying a physical topic in
the messaging server. The Topi ¢ object has one method, get Nane(), which returns the
name identifier for the physical topic it represents. The name encapsulated by a Topic
object is vendor-specific and varies from product to product. For example, one vendor
might use dot (".") separated topic names, like "orei | 1y.jms. chat ", while another vendor
might use a completely different naming system, similar to LDAP naming,
"o=oreilly, cn=chat". Using topic names directly will result in client applications that are
not portable across brands of IMS servers. The Topi ¢ object hides the topic name from the
client, making the client more portable.

As a convention, we'll refer to a physical topic as a topic and only use the term "physical
topic" when it'simportant to stress its difference from a Topi ¢ object.

2.1.2.7 The TopicPublisher

A Topi cPubl i sher was created using the pubsessi on and the chat Topi c:

/'l Look up a JMS topic
Topi ¢ chat Topi ¢ = (Topi c)j ndi .| ookup(topi cNane);

/'l Create a JMS publisher and subscriber
Topi cPubl i sher publisher =
pubSessi on. cr eat ePubl i sher (chat Topi c¢) ;

A Topi cPubl i sher IS used to deliver messages to a specific topic on a message server. The

Topi c Object used in the creat epubl i sher () method identifies the topic that will receive
messages from the Topi cPubl i sher. In the chat example, any text typed on the command

28

Java Message Service

line is passed to the chat classs writeMessage() method. This method uses the
Topi cPubl i sher to deliver a message to the topic:

protected void witeMessage(String text) throws JMSExcepti on{
Text Message nmessage = pubSessi on. creat eText Message();
nmessage. set Text (user nane+" : "+text);
publ i sher. publ i sh(nmessage);

}

The Topi cPubl i sher Objects deliver messages to the topic asynchronously. Asynchronous
delivery and consumption of messages is a key characteristic of Message-Oriented
Middleware; the Topi cPubl i sher doesn't block or wait until al the subscribers receive the
message. Instead, it returns from the publ i sh() method as soon as the message server
receives the message. It's up to the message server to deliver the nessage to al the
subscribers for that topic.

2.1.2.8 The TopicSubscriber

The Topi cSubscri ber is created using the subsessi on and the chat Topi ¢

/'l Look up a JMS topic
Topi ¢ chat Topi ¢ = (Topi c)j ndi .| ookup(topi cNane);

Il Create a JMS publisher and subscri ber
Topi cPubl i sher publisher =

pubSessi on. cr eat ePubl i sher (chat Topi c¢) ;
Topi cSubscri ber subscriber =

subSessi on. cr eat eSubscri ber (chat Topi c) ;

A Topi cSubscri ber receives messages from a specific topic. The Topi ¢ object argument
used in the createsubscriber() method identifies the topic from which the
Topi cSubscri ber Will receive messages.

The Topi cSubscri ber receives messages from the message server one at a time (serialy).
These messages are pushed from the message server to the TopicSubscriber
asynchronously, which means that the Topi cSubscri ber does not have to poll the message
server for messages. In our example, each chat client will receive any message published
by any of the other chat clients. When a user enters text at the command line, the text
message is delivered to all other chat clients that subscribe to the same topic.

The pub/sub messaging model in JMS includes an in-process Java event model for
handling incoming messages. This is similar to the event-driven model used by Java
beans® An object simply implements the listener interface, in this case the
Messageli st ener, and then is registered with the Topi cSubscri ber . A Topi cSubscri ber may
have only one nessagelistener object. Here is the definition of the nessageli stener
interface used in IMS:

(31 Although the in-process event model used by Topi cSubscri ber issimilar to the one used in
Java beans, IMSitself isan APl and the interfaces it defines are not Java beans.

package javax.j ns;

public interface Messagelistener {
public void onMessage(Message nessage);
}

29

Java Message Service

When the Topi cSubscri ber receives a message from its topic, it invokes the onvessage()
method of its Messagelistener objects. The chat class itself implements the
Messageli st ener interface and implements the onvessage() method:

public class Chat inplenents javax.ns. Messageli stener{

publ ic void onMessage(Message nessage) {
try{
Text Message text Message = (Text Message) nessage;
String text = textMessage. getText();
Systemout. println(text);
} catch (JMBSException jnse){jnse.printStackTrace();}

}

The chat class is a Messagelistener type, and therefore registers itself with the
Topi cSubscri ber inits constructor:

Topi cSubscri ber subscri ber = subSession. createSubscri ber (chat Topic);
subscri ber. set Messageli st ener (this);

When the message server pushes a message to the Topi cSubscri ber, the Topi cSubscri ber
invokes the chat object's onvessage() method.

s It's fairly easy to confuse the Java Message Service with its use of a
s | Java event moddl. JMS is an APl for asynchronous distributed
" i enterprise messaging that spans processes and machines across a

network. The Java event mode is used to synchronously deliver
events by invoking methods on one or more objects in the same
process that have registered as listeners. The IM S pub/sub model uses
the Java event model so that a Topi cSubscriber can notify its
Messageli stener object in the same process that a message has
arrived from the message server.

2.1.2.9 The Message

In the chat example, the Text Message class is used to encapsulate the messages we send
and receive. A Text Message contains a java.lang. String as its body and is the most
commonly used message type. The onMessage() method receives Text Message Objects
from the Topi cSubscri ber. Likewise, the writeMessage() method creates and publishes
Text Message oObjects using the Topi cPubl i sher:

public void onMessage(Message nessage) {
try{
Text Message text Message = (Text Message) nessage;
String text = textMessage. get Text();
Systemout. println(text);
} catch (JMSException jnse){jnse.printStackTrace();}

protected void witeMessage(String text) throws JMSExcepti on{
Text Message message = pubSessi on. creat eText Message();
nmessage. set Text (usernane+" : "+text);
publ i sher. publ i sh(nessage);

30

Java Message Service

A message basicaly has two parts. a header and payload. The header is comprised of
special fields that are used to identify the message, declare attributes of the message, and
provide information for routing. The difference between message types is determined
largely by their payload, i.e., the type of application data the message contains. The
Message class, which is the superclass of all message objects, has no payload. It is a
lightweight message that delivers no payload but can serve as a simple event notification.
The other message types have special payloads that determine their type and use:

Message

This type has no payload. It is useful for ssmple event notification.

Text Message

This type carries a java. lang. String as its payload. It is useful for exchanging
simple text messages and also for more complex character data, such as XML
documents.

hj ect Message

This type carries a serializable Java object as its payload. It's useful for exchanging
Java objects.

Byt esMessage

This type carries an array of primitive bytes as its payload. It's useful for exchanging
data in an application's native format, which may not be compatible with other
existing MVessage types. It is aso useful where JMS is used purely as a transport
between two systems, and the message payload is opaque to the IM S client.

St reanmVessage

This type carries a stream of primitive Java types (int, double, char, etc.) as its
payload. It provides a set of convenience methods for mapping a formatted stream of
bytes to Java primitives. It's an easy programming model when exchanging primitive
application datain afixed order.

MapMessage

This type carries a set of name-value pairs as its payload. The payload is similar to a
java.util.Properties object, except the values must be Java primitives or their
wrappers. The vapivessage is useful for delivering keyed data.

2.1.3 Sessions and Threading

The chat application uses a separate session for the publisher and subscriber, pubsessi on
and subsSessi on, respectively. This is due to a threading restriction imposed by JMS.
According to the IMS specification, a session may not be operated on by more than one
thread at atime. In our example, two threads of control are active: the default main thread
of the chat application and the thread that invokes the onvessage() handler. The thread
that invokes the onvessage() handler is owned by the IM S provider. Since the invocation
of the onvessage() handler is asynchronous, it could be called while the main thread is

31

Java Message Service

publishing a message in the wri t evessage() method. If both the publisher and subscriber
had been created by the same session, the two threads could operate on these methods at
the same time; in effect, they could operate on the same Topi cSessi on concurrently - a
condition that is prohibited.

A goa of the IMS specification was to avoid imposing an internal architecture on the IMS
provider. Requiring a JMS provider's implementation of a sessi on object to be capable of
safely handling multiple threads was specifically avoided. Thisis mostly due to one of the
intended uses of JMS - that the IMS API be a wrapper around an existing messaging
system, which may not have multithreaded delivery capabilities on the client.

The requirement imposed on the JMS provider is that the sending of messages and the
asynchronous receiving of messages be processed serialy. It is possible to publish-and-
subscribe using the same session, but only if the application is publishing from within the
onMessage() handler. An example of thiswill be covered in Chapter 4.

32

Java Message Service

Chapter 3. Anatomy of a JIMS Message

This chapter focuses on the anatomy of a message: the individual parts that make up a
message (headers, properties, and the different kinds of message payloads). Appendix B,
Appendix C, and Appendix D cover additional information that will prove invaluable as a
reference when developing JM S applications. Appendix B, provides in-depth information
on the purpose and application of IMS headers; Appendix C, covers the rules governing
the use of JMS properties, and Appendix D, covers the syntax of message selectors.
Although you do not need to read these appendixes to understand subsequent chaptersin
this book, you will need them as a reference when implementing real IMS applications.
After you finish reading this chapter, take alook at Appendixes Appendix B, Appendix C,
and Appendix D so you're familiar with their content.

The vessage is the most important part of the entire IMS specification. All data and events
in a JIMS application are communicated with messages, while the rest of JMS exists to
facilitate the transfer of messages. They are the lifeblood of the system.

A JMS message both carries application data and provides event notification. Its role is
unique to distributed computing. In RPC-based systems (CORBA, Java RMI, DCOM), a
message is a command to execute a method or procedure, which blocks the sender until a
reply has been received. A JMS message is not a command; it transfers data and tells the
receiver that something has happened. A message doesn't dictate what the recipient should
do and the sender doesn't wait for a response. This decouples the sender from the receiver,
making messaging systems and their messages far more dynamic and flexible than request-
reply paradigms.

A \essage object has two parts. the message data itself, called the payload or message
body, and the message headers and properties (see Figure 3.1).

Figure 3.1. Anatomy of a message

Headers

JMSDestination
JMEDeliveryMode
JMEMessagelD
JMETimestamp
JMSExpiration
JMSRedelivered
JMSPriori
JWMSReplyTo
JMSCorrelationlD
JMSCorrelationiD
JMSType

Properiies

Payload

33

Java Message Service

Messages come in various types that are defined by the payload they carry. The payload
itself might be very structured, as with st reanmvessage and vapivessage objects, or fairly
unstructured, as with Text Message, Chj ect Message, and Byt esMessage types. Messages can
carry important data or smply serve as notifications of eventsin the system. In most cases,
messages are both notifications and vehicles for carrying data.

The nessage headers provide metadata about the message describing who or what created
the message, when it was created, how long the datais valid, etc. The headers also contain
routing information that describes the destination of the message (topic or queue), how a
message should be acknowledged, and a lot more. In addition to headers, messages can
carry properties that can be defined and set by the IMS client. IMS consumers can choose
to receive messages based on the values of certain headers and properties, using a special
filtering mechanism called message selectors.

3.1 Headers

Every JMS message has a set of standard headers. Each header is identified by a set of
accessor and mutator methods that follow the idiom set JVB<HEADER>(), get JVB<HEADER>(
). Here is a partial definition of the mvessage interface that shows al the IMS header
methods:

public interface Message {

public Destination getJMSDestination() throws JMSException;
public void setJMSDestination(Destination destination)
t hrows JMSExcepti on;

public int getJVsDeliveryMde() throws JMSException;
public void setJVsDel iveryMode(int deliveryMde)
t hrows JNMSExcepti on;

public String getJMSMessagel D() throws JVSExcepti on;
public void setJVMBMessagel D(String id) throws JMSExcepti on;

public |ong getJMSTi nestanp() throws JVSExcepti on;
public void set JVSTI nestanp(l ong tinmestanp) throws JVMSException;

public [ong getJVMBExpiration() throws JVMSException;
public void set JMSExpiration(long expiration) throws JMSExcepti on;

public bool ean get JIMSRedel i vered() throws JVMSExcepti on;
public void setJVSRedel i vered(bool ean redelivered)
t hrows JMSExcepti on;

public int getJMSPriority() throws JMSException;
public void setJMSPriority(int priority) throws JMSException;

public Destination getJVSRepl yTo() throws JMSExcepti on;
public void set JMSRepl yTo(Destination replyTo) throws JMSException;

public String getJMsCorrelationlD() throws JMSExcepti on;

public void setJMSCorrelationl D(String correl ationl D)

t hrows JNMSExcepti on;

public byte[] getJMSCorrel ationl DAsBytes() throws JMSExcepti on;
public void setJMSCorrel ationl DAsByt es(byte[] correl ationl D)

t hrows JNMSExcepti on;

public String getJMSType() throws JNMSException;
public void setJVMSType(String type) throws JMSExcepti on;

Java Message Service

JMS headers are divided into two large groups. automatically assigned headers and
developer-assigned headers. The next two sections discuss these two types.

3.1.1 Automatically Assigned Headers

Most IMS headers are automatically assigned; their value is set by the IMS provider when
the message is delivered, so that values assigned by the developer using the
set JMB<HEADER>() methods are ignored. In other words, for headers that are automatically
assigned, using the mutator methods explicitly is fruitless.™ This doesn't mean, however,
that the developer has no control over the value of these headers. Some automatically
assigned headers depend on declarations made by the developer when creating the sessi on
and wessageProducer (i.€., Topi cPublisher). These cases are clearly illustrated in the
header definitions that follow.

(4" According to the specification authors, the set JVB<HEADER>() methods were left in the
Message interface for "general orthogonality,” or to keep it semantically symmetrical to balance
the get JMS<HEADER>() methods - a fairly strange but established justification.

3.1.1.1 JIMSDestination

The Jwvepest i nati on header identifies the destination with either a Topi ¢ or Queue object,
both of which are pestination types. Identifying the message's destination is valuable to
JMS clients that consume messages from more than one topic or queue:

Topi ¢ destination = (Topic) nessage.getJNMSDestination();
3.1.1.2 JMSDeliveryMode

There are two types of delivery modes in IMS: persistent and nonpersistent. A persistent
message should be delivered once-and-only-once, which means that if the JMS provider
fails, the message is not lost; it will be delivered after the server recovers. A nonpersistent
message is delivered at-most-once, which means that it can be lost permanently if the IMS
provider fails. In both persistent and nonpersistent delivery modes the message server
should not send a message to the same consumer more then once, but it is possible (see the
section on JvsRedel i ver ed for more details):

int deliverynode
if (deliverynode

= nessage. get IMSDel i veryMode();
= javax.j ns. Del i ver yMode. PERSI STENT) {

} else { // equals DeliveryNbde. NON _PERS| STENT

}

The delivery mode can be set using the set JvsDel i ver yvode() method on the producer
(i.e., Topi cPubl i sher). Once the delivery mode is set on the Messagepr oducer, it IS applied
to all messages delivered using that producer. The default setting is PERSI STENT

/'l Set the JMS delivery node on the nessage producer
Topi cPubl i sher topi cPublisher = topicSession. createPublisher(topic);
t opi cPubl i sher. set Del i veryMode(Del i ver yMbde. NON_PERSI STENT) ;

35

Java Message Service

3.1.1.3 JMSMessagelD

The JvsMessagel D is a string value that uniquely identifies a message. How unique the
identifier is depends on the vendor. The Jwvswvessagel D can be useful for historical
repositories in IMS consumer applications where messages need to be uniquely indexed.
Used in conjunction with the Jwvscorrel ationl D, the JvsMessagel D IS also useful for
correlating messages.

String messagei d = nessage. get JMSMessagel D() ;

3.1.1.4 JMSTimestamp

The JvsTinestanp is set automatically by the message producer when the send()
operation is invoked. The timestamp is along value that measures time in milliseconds:

I ong tinestanp = nmessage. get JIMSTi nestanp() ;

3.1.1.5 JMSEXxpiration

A \Message Object's expiration date prevents the message from being delivered to
consumers after it has expired. This is useful for messages whose data is only valid for a
period of time:

I ong tineToLi ve = nmessage. get IMSExpiration();

The expiration time for messages is set in millissconds on the producer (i.e,
Topi cPubl i sher) using the set Ti meToLi ve() method:

Topi cPubl i sher topicPublisher = topicSession.createPublisher(topic);
/1 Set tine to live as 1 hour (1000 nmillis x 60 sec x 60 min)
t opi cPubl i sher. set Ti neToLi ve(3600000) ;

By default the tineToLi ve IS zero (0), which indicates that the message doesn't expire.
Calling set Ti neToLi ve() with a zero argument ensures that a message is created without
an expiration date.

3.1.1.6 IMSRedelivered

The JvsRedel i ver ed header indicates that the message was redelivered to the consumer.
The JvsRedel i vered header istrue if the message is redelivered, and f al se if it's not. A
message may be marked redelivered if a consumer failed to acknowledge previous delivery
of the message, or when the JIM S provider is not certain whether the consumer has already
received the message:

bool ean i sRedel i vered = nessage. get JMSRedel i vered()

Message redelivery is covered in more detail in Chapter 6.
3.1.1.7 IMSPriority

The message producer may assign a priority to a message when it is delivered. There are
two categories of message priorities: levels 0-4 are gradations of normal priority; levels 5

36

Java Message Service

9 are gradations of expedited priority. The message servers may use a message's priority to
prioritize delivery of messages to consumers - messages with an expedited priority are
delivered ahead of normal priority messages:

int priority = nmessage.getJMSPriority();

The priority of messages can be declared by the JMS client using the setPriority()
method on the producer:

Topi cPubl i sher topi cPublisher = Topi cSessi on. creat ePublisher(sonmeTopic);
t opi cPubl i sher.setPriority(9);

3.1.2 Developer-Assigned Headers

While many of the IMS headers are set automatically when the message is delivered,
several others must be set explicitly on the vessage object before it is delivered by the
producer.

3.1.2.1 JMSReplyTo

In some cases, a JIMS message producer may want the consumers to reply to a message.
The Jvsrepl yTo header, which contains a j avax. j ns. Dest i nat i on, indicates which address
aJMS consumer should reply to. A IMS consumer is not required to send areply:

nessage. set IMSRepl yTo(t opi c);

;I'.obi c topic = (Topic) nessage.get IMSRepl yTo();
3.1.2.2 JMSCorrelationID

The Jvscorrel ati onl D provides a header for associating the current message with some
previous message or application-specific ID. In most cases the Jvscorrel ati onl D will be
used to tag a message as a reply to a previous message identified by a JvsMessagel D, but
the Jvscor rel at i onl D can be any value, not just a Jvs\essagel D

nessage. set JMSCorrel ationl D(identifier);

String correlationid = nessage. get JMSCorrel ationl D);

3.1.2.3 IMSType

JVBType IS an optional header that is set by the IMS client. I1ts main purpose is to identify
the message structure and type of payload; it is currently supported by only afew vendors.
Some MOM systems (IBM's MQSeries, for example) treat the message body as
uninterpreted bytes. These systems often provide a message type as a simple way for
applications to label the message body. So a message type can be useful when exchanging
messages with non-JMS clients that require this type of information to process the

payload.

Other MOM systems (e.g., Sun's JMQ) and EAI systems (e.g., SagaVista and
MQIntegrator) directly tie each message to some form of external message schema, with
the message type as the link. These MOM systems require a message type because they
provide metadata services bound to it.

37

Java Message Service

3.2 Properties

Properties act like additional headers that can be assigned to a message. They provide the
developer with more information about the message. The nessage interface provides
severa accessor and mutator methods for reading and writing properties. The value of a
property canbeastri ng, bool ean, byt e, doubl e, int, | ong, OF fl oat .

There are three basic categories of message properties. application-specific properties,
JMS-defined properties, and provider-specific properties. Application properties are
defined and applied to vessage objects by the application developer; the JMS extension
and provider-specific properties are additional headers that are, for the most part,
automatically added by the IMS provider.

3.2.1 Application-Specific Properties

Any property defined by the application developer can be an application-specific property.
Application properties are set before the message is delivered. There are no predefined
application properties; developers are free to define any properties that fit their needs. For
example, in the chat example developed in Chapter 2, a specia property could be added
that identifies the user sending the message:

Text Message nessage = pubSession. creat eText Message();
nessage. set Text (text);

nessage. set Stri ngProperty("usernane", usernane);

publ i sher. publ i sh(message) ;

As an application specific-property, usernane IS not meaningful outside the chat
application; it is used exclusively by the application to filter messages based on the
identity of the publisher.

Property values can be any bool ean, byte, short, int, | ong, float, doubl e, OF String. The
javax. jns. Message interface provides accessor and mutator methods for each of these
property value types. Here is a subset of the vessage interface definition that shows these
methods:

package javax. | Ims;
public interface Message {

public String getStringProperty(String nane)
t hrows JMSException, MessageFor mat Excepti on;
public void setStringProperty(String name, String val ue)
t hrows JMBException, MessageNot Wit eabl eExcepti on;
public int getlntProperty(String name)
throws JVMSException, MessageFor mat Excepti on;
public void setlntProperty(String name, int val ue)
throws JMBException, MessageNot Witeabl eExcepti on;
publ i ¢ bool ean get Bool eanProperty(String nane)
t hrows JMBException, MessageFor mat Excepti on;
public void setBool eanProperty(String nanme, bool ean val ue)
throws JMBException, MessageNot Wit eabl eExcepti on;
publ i ¢ doubl e get Doubl eProperty(String nane)
t hrows JMBException, MessageFor mat Excepti on;
public void setDoubl eProperty(String name, double val ue)
throws JMBException, MessageNot Wit eabl eExcepti on;
public float getFloatProperty(String nane)
t hrows JMBException, MessageFor mat Excepti on;

38

}

public void setFloatProperty(String name, float val ue)
t hrows JVBException, MessageNot Wit eabl eExcepti on;
public byte getByteProperty(String name)
t hrows JMBException, MessageFor mat Excepti on;
public void setByteProperty(String nane, byte val ue)
t hrows JMBException, MessageNot Wit eabl eExcepti on;
public | ong getlLongProperty(String name)
t hrows JMBException, MessageFor mat Excepti on;
public void setLongProperty(String nane, |ong val ue)
t hrows JMBException, MessageNot Wit eabl eExcepti on;
public short getShortProperty(String nane)
t hrows JNMSExcepti on, MessageFor mat Excepti on;
public void setShortProperty(String nane, short val ue)
t hrows JMBException, MessageNot Wit eabl eExcepti on;
public Object getObjectProperty(String nane)
throws JVBSException, MessageFor mat Excepti on;
public void setbjectProperty(String nane, Object val ue)
t hrows JMBException, MessageNot Wit eabl eExcepti on;

public void clearProperties()
t hrows JMSExcepti on;

public Enuneration getPropertyNanmes()
throws JMSExcepti on;

publ i ¢ bool ean propertyExi sts(String nane)
t hrows JMSExcepti on;

Java Message Service

The object property methods (which are set Obj ect Property() and get Obj ect Propert y(
)) can be used with object wrappers that correspond to the alowed primitive types
(ava.lang. I nteger,java. | ang.Doubl e, €tc.) and the st ri ng type.

Once a message is produced (sent), its properties become read-only; the properties cannot
be changed. If the consumer attempts to set a property, the method throws a
javax. | ms. MessageNot Wi t eabl eExcept i on. The properties can, however, be changed on
that message by calling the cl ear Properties() method, which removes all the properties
from the message so that new ones can be added.

The get Propert yNanes(

)y method in the message interface can be used to obtain an

Enurer ati on Of all the property names contained in the message. These names can then be
used to obtain property values using the property accessor methods; for example:

public void onMessage(Message nessage) {

}

Enunerati on propertyNanmes = nessage. get PropertyNanmes();
whi | e(propertyNanes. hasMor eEl enents()){

String name = (String)propertyNanes. nextEl ement();
oj ect val ue = get vj ect Property(nane);
Systemout. println("\nname+" = "+val ue);

3.2.2 JMS-Defined Properties

JMS-defined properties have the same characteristics as application properties, except that
most of them are set by the JMS provider when the message is sent. JMS-defined
properties act as optional IM S headers; vendors can choose to support none, some, or all of
them.

39

Java Message Service

The following is a list of the nine IMS-defined properties, which are described in more
detail in Appendix C:

- JMBXUser | D

- JMBXAppl D

- JMBXProducer TXI D
- JVMBXConsuner TXI D
- JMBXRevTi nmest anp
- JMBXDel i ver yCount
- JVMBXSt at e

- JMBXG oupl D

- JVMBXG oupSeq

3.2.3 Provider-Specific Properties

Every JMS provider can define a set of proprietary properties that can be set by the client
or the provider automatically. Provider-specific properties must start with the prefix
"JMS " followed by the property name (Jvs_<vendor - proper t y- nane>). The purpose of the
provider-specific properties is to support proprietary vendor features.

3.3 Message Selectors

A message selector allows a JMS consumer to be more selective about the messages it
receives from a particular destination (topic or queue). Message selectors use message
properties and headers as criteriain conditional expressions. These conditional expressions
use boolean logic to declare which messages should be delivered to a JM'S consumer.

For example, in the chat client developed in Chapter 2, message selectors could be used to
filter out messages from specific people. To accomplish this we would first declare a new
property in the message that identifies the username of the JMS client publishing the

message:

protected void witeMessage(String text) throws JMSExcepti on{
Text Message nmessage = session. creat eText Message();
nessage. set Text (text);
nessage. set Stri ngProperty("usernanme", user nane) ;
publ i sher. publ i sh(nessage);

}

JMS clients can now use that property to filter messages. Message selectors are declared
when the message consumer is created:

Topi cSubscri ber subscriber =
sessi on. creat eSubscri ber(chat Topic, " usernane !="'WIlliam ", false);

In this code, the message selector (shown in bold) tells the message server to deliver to the
consumer only those messages that do not have auser nane property equal to" wiliam .

The message selectors are based on a subset of the SQL-92 conditional expression syntax,
which is used in the WHERE clauses of SQL statements. If you are familiar with SQL 92,
the conditional expressions used in message selectors will be familiar to you. The syntax
used for conditional expressions is covered in detail in Appendix D.

40

Java Message Service

When a JMS consumer declares a message selector for a particular
destination, the selector is applied only to messages delivered to that
g consumer. Every JMS client can have a different selector specified
for each of its consumers.

What happens to messages that are not selected for delivery to the consumer by its
message selector? This depends on the message model used. In the pub/sub model, the
message is simply not delivered to that consumer, but it is delivered to other consumers.
This is true of both nondurable and durable subscriptions. In the p2p model, the messages
remain in the queue, so other consumers of the queue can see them, but they are not visible
to the consumer that used the message selector.

3.3.1 Message Selector Examples

Here are three complex selectors used in hypothetical environments. Although you will
have to use your imagination alittle, the purpose of these examplesisto convey the power
of the message selectors. When a selector is declared, the identifier always refers to a
property name or JMS header name in the message. For example, the selector ™ user nane
'="WIliam " assumes that thereis a property in the message named user nane, which can
be compared to thevalue w1 iani .

Managing claimsin an HMO

Due to some fraudulent claims, an automatic process is implemented that will audit
al claims submitted by patients who are employees of the ACME manufacturing
company with visits to chiropractors, psychologists, and dermatol ogists:

String selector =
"Physi ci anType IN (' Chiropractor', 'Psychologist', 'Dermatologist') "
+ "AND Patient Groupl D LI KE " ACVE% ";

Topi cSubscri ber subscriber =
sessi on. creat eSubscri ber (topic, selector, fal se);

SHlecting recipients for a catalog mailing

An online retailer wants to deliver a special catalog to any customer that orders more
then $500.00 worth of merchandise where the average price per item ordered is
greater than $75.00 and the customer resides in one of severa states. The retailer
creates a special application that subscribes to the order processing topic and
processes catalog deliveries for only those customers that meet the defined criteria:

String selector =
"Tot al Charge > 500.00 AND ((Total Charge / ItenmCount) >= 75.00) "
+ "AND State IN("MWN, "W', "M"', "OH)";

Topi cSubscri ber subscriber =
sessi on. creat eSubscri ber (topic, selector, fal se);

41

Java Message Service

Notification of certain bids on inventory

A supplier wants notification of requests for bids on specific inventory items at
specific quantities:

String selector =
"I nventoryl D = ' S93740283-02' AND Quantity BETWEEN 1000 AND 13000";

Topi cSubscri ber subscriber =
sessi on. creat eSubscri ber (topic, selector,fal se);

3.4 Message Types

The Java Message Service defines six MVessage interface types that must be supported by
JMS providers. Although JMS defines the nessage interfaces, it doesn't define their
implementation. This allows vendors to implement and transport messages in their own
way, while maintaining a consistent and standard interface for the JMS application
developer. The six message interfaces are vessage and its five sub-interfaces. Text Message,
St r eanmVessage, MapMessage, Obj ect Message, and Byt esMessage.

The vessage interfaces are defined according to the kind of payload they are designed to
carry. In some cases, Message types were included in IM S to support legacy payloads that
are common and useful, which is the case with the t ext , byt es, and st r eammessage types.
In other cases, the vessage types were defined to facilitate emerging needs; for example,
bj ect Message Can transport serializable Java objects. Some vendors may provide other
proprietary message types. Progress SonicMQ and SoftWired's iBus, for example, provide
an xM.\essage type that extends the Text Message, allowing developers to deal with the
message directly through DOM or SAX interfaces. The xm.vessage type may become a
standard message type in a future version of the specification. At the time of this writing,
Sun Microsystems was starting discussions about adding an xv.\essage type.

3.4.1 Message

The simplest type of message isthe j avax. j ms. Message, Which serves as the base interface
to the other message types. As shown below, the vessage type can be created and used as a
JMS message with no payload:

Il Create and deliver a Message
Message nmessage = session.createMessage();
publ i sher. publ i sh(nessage);

/'l Receive a message on the consuner
public void onMessage(Message nessage){

/'l No payl oad, process event notification
}

This type of message contains only JMS headers and properties, and is used in event
notification. An event notification is a broadcast, warning, or notice of some occurrence. If
the business scenario requires a simple notification without a payload, then the lightweight
Message typeis the most efficient way to implement it.

42

Java Message Service

3.4.2 TextMessage

Thistype carriesaj ava. | ang. String as its payload. It's useful for exchanging simple text
messages and more complex character data like XML documents:

package javax. | Ims;

public interface Text Message extends Message {
public String getText()
t hrows JVMSExcepti on;
public void setText(String payl oad)
t hrows JVBException, MessageNot Wit eabl eExcepti on;

}

Text messages can be created with one of two factory methods defined in the session
interface. One factory method takes no arguments, resulting in a Text Message oObject with
an empty payload - the payload is added using the set Text () method defined in the
Text Message interface. The other factory method takes a string type payload as an
argument, producing a ready-to-deliver Text Message object:

Text Message text Message = session. createText Message();
t ext Message. set Text ("Hel l o!'");
t opi cPubl i sher. publ i sh(text Message);

Text Message text Message = session. creat eText Message("Hel l o!");
gueueSender . send(t ext Message) ;

When a consumer receives a Text Message Object it can extract the st ri ng payload using the
get Text () method. If the Text vessage was delivered without a payload, the get Text ()
method returnsanul | value or an empty st ring (") depending on the IMS provider.

3.4.3 ObjectMessage

This type carries a serializable Java object as its payload. It's useful for exchanging Java
objects:

package javax. | Ims;
public interface Object Message extends Message {
public java.io.Serializable getOQject()
t hrows JVMSExcepti on;
public void setoject(java.io.Serializable payl oad)
throws JVMSException, MessageNot Wit eabl eExcepti on;

}

Object messages can be created with one of two factory methods defined in the sessi on
interface. One factory method takes no arguments, so the serializable object must be added
using the set tbj ect (). The other factory method takes the seri al i zabl e payload as an
argument, producing a ready-to-deliver oj ect Message:

/1l Order is a serializable object
O der order = new Order();

CbJ ect Message obj ect Message = session. createoject Message();
obj ect Message. set bj ect (order);
gueueSender . send(obj ect Message) ;

CbJ ect Message obj ect Message = sessi on. creat eObj ect Message(order);
t opi cPubl i sher. publ i sh(obj ect Message) ;

43

Java Message Service

When a consumer receives an vj ect Message it can extract the payload using the
get wject () method. If the jectvessage was delivered without a payload, the
get Chj ect () method returnsanul | value:

public void onMessage(Message nessage) {

try {
hj ect Message obj ect Message = (Obj ect Message) nessage;
O der order = (O der)object Message. getQbject();

catch (JMSException jnse){

}

The oj ect Message 1S the most modern of message types. In order for this message type to
be useful, however, the consumers and producers of the message must be Java programs.
In other words, mj ect Message IS only useful between Java clients and probably will not
work with non-JM S clients.?

(2 |t's possible that a JMS provider could use CORBA 2.3 IOP protocol, which can handle
hj ect Message types consumed by non-Java, non-JMS clients.

The class definition of the object payload has to be available to both the IMS producer and
JMS consumer. If the o der class used in the previous example is not available to the IMS
consumer's VM, an attempt to access the o der object from the message's payload would
resultinaj ava. | ang. d assNot FoundExcept i on. Some JM S providers may provide dynamic
class loading capabilities, but that would be a vendor-specific quality of service. Most of
the time the class must be placed on the IMS consumer's class path manually by the
developer.

3.4.4 BytesMessage

This type carries an array of primitive bytes as its payload. It's useful for exchanging data
in an application's native format, which may not be compatible with other existing vessage
types. It is also useful where MS is used purely as a transport between two systems, and
the message payload is opague to the IMS client:

package javax.]j ns;
public interface BytesMessage extends Message {

public byte readByte() throws JMSExcepti on;
public void witeByte(byte value) throws JMSExcepti on;
public int readUnsi gnedByte() throws JMSException;

public int readBytes(byte[] value) throws JMSExcepti on;
public void witeBytes(byte[] value) throws JMSExcepti on;
public int readBytes(byte[] value, int |ength)
t hrows JVMSExcepti on;
public void witeBytes(byte[] value, int offset, int |ength)
t hrows JVMSExcepti on;

publ i c bool ean readBool ean() throws JMSExcepti on;
public void witeBool ean(bool ean val ue) throws JMSExcepti on;

public char readChar() throws JMSExcepti on;
public void witeChar(char value) throws JMSExcepti on;

Java Message Service

public short readShort() throws JNMSException;
public void witeShort(short value) throws JMSExcepti on;
public int readUnsignedShort() throws JMSException;

public void witelnt(int value) throws JMSException;
public int readlnt() throws JVMSException;

public void witelLong(long val ue) throws JNMSExcepti on;
public long readLong() throws JNMSException;

public float readFloat() throws JNMSException;
public void witeFl oat(float value) throws JMSExcepti on;

publi ¢ doubl e readDoubl e() throws JMSExcepti on;
public void witeDoubl e(doubl e val ue) throws JMSExcepti on;

public String readUTF() throws JNMSExcepti on;
public void witeUTF(String val ue) throws JNMSException;

public void witeObject(Object value) throws JMSException;

public void reset() throws JNMSException;
}

If youve worked with the java.io. DatalnputStream and java.io. Dat aCut put Stream
classes, then the methods of the Byt esivessage interface, which are loosely based on these
I/0O classes, will look familiar to you. Most of the methods defined in Byt esiMessage
interface allow the application developer to read and write data to a byte stream using
Javas primitive data types. When a Java primitive is written to the Byt eshvessage, using
one of the set<TyPe>() methods, the primitive value is converted to its byte
representation and appended to the stream. Here's how a Byt esMessage is created and how
values are written to its byte stream:

Byt esMessage byt esMessage = session. creat eByt esMessage() ;

byt esMessage. witeChar('R);

byt esMessage. writel nt(10);

byt esMessage. witeUTF("ORei l 1 y");
gueueSender . send(byt esMessage) ;

When a Byt esMessage isreceived by a IMS consumer, the payload is araw byte stream, so
it is possible to read the stream using arbitrary types, but this will probably result in
erroneous data. It's best to read the Byt esMessage's payload in the same order, and with the
same types, with which it was written:

public void onMessage(Message nessage) {
try {
Byt esMessage byt esMessage = (Byt esMessage) nessage;
char ¢ = bytesMessage.readChar();
i nt i byt esMessage.readlnt();
String s = bytesMessage. readUTF();
} catch (JMSException jnse){

}
In order to read and write string values, the Byt esvessage uses methods based on the

UTF-8 format, which is a standard format for transferring and storing Unicode text data
efficiently.

45

Java Message Service

UTF-8

UTF-8 encodes Unicode characters as one to four bytes. The encoding is designed
for processing efficiency, ease of implementation in most existing software, and
compatibility with ASCII. That is, the encoding of any character in the ASCII
character set has the same encoding in UTF-8. So the letter "A" (0x41 in ASCII) is
also a one-byte character with the same value, 0x41, in UTF-8. The characters in
ISO 8859-1 that are above the ASCII range (i.e., above 127), when converted to
Unicode and encoded in UTF-8, are two-byte characters.

Every character in the Unicode character set can be expressed in UTF-8, and there is
an algorithmic conversion between the 16-bit (4-byte) form of Unicode and UTF-8
that ensures lossless transformations.

One of the key benefits of using the UTF8 encoding is that null bytes are only used
as string terminators. Some mail systems and network protocols cannot tolerate null
bytes in the input stream, so the 16-bit encoding of Unicode, which might have a
null value in either byte, is unacceptable for these purposes.

The methods for accessing the short and byte primitives include unsigned methods
(readUnsi gnedShort (), readunsignedByte()). These methods are something of a
surprise, since the short and byt e data types in Java are almost always signed. The values
that can be taken by unsigned byt e and shor t data are what you'd expect: to 255 for abyt e,
and to 65535 for a short. Because these values can't be represented by the (signed) byt e
and short datatypes, r eadunsi gnedByte() andreadunsi gnedshort() bothreturnanint.

In addition to the methods for accessing primitive data types, the Byt esvessage includes a
singlewritetject () method. Thisisused for st ring objects and the primitive wrappers:
Byt e, Bool ean, Character, Short, Integer, Long, Float, Double. When written to the
Byt esMessage, these values are converted to the byte form of their primitive counterparts.
The writemject() method is provided as a convenience when the types to be written
aren't known until runtime.

If an exception is thrown while reading the Byt esvessage, the pointer in the stream must be
reset to the position it had just prior to the read operation that caused the exception. This
allowsthe IMS client to recover from read errors without losing its place in the stream.

Thereset () method returns the stream pointer to the beginning of the stream and puts the
Byt esMessage in read-only mode so that the contents of its byte stream cannot be further
modified. This method can be called explicitly by the IMS client if needed, but it's always
caled implicitly when the Byt es\vessage IS delivered.

In most cases, one of the other message types is a better option then the Byt esivessage.
Byt esMessage should only be used if the data needs to be delivered in the consumer's native
format. In some cases, a IMS client may be a kind of router, consuming messages from
one source and delivering them to a destination. Routing applications may not need to
know the contents of the data they transport and so may choose to transfer payloads as
binary data, using a Byt esivessage, from one location to another.

46

Java Message Service

3.4.5 StreamMessage

The st ream\essage carries a stream of primitive Java types (i nt, doubl e, char, €tc.) asits
payload. It provides a set of convenience methods for mapping a formatted stream of bytes
to Java primitives. Primitive types are read from the vessage in the same order they were
written. Here's the definition of the st r eanvessage interface:

public interface StreamVessage extends Message {

public bool ean readBool ean() throws JMSException;
public void witeBool ean(bool ean val ue) throws JVMSExcepti on;

public byte readByte() throws JNMSException;

public int readBytes(byte[] value) throws JMSExcepti on;

public void witeByte(byte value) throws JMSException;

public void witeBytes(byte[] value) throws JVMSExcepti on;

public void witeBytes(byte[] value, int offset, int |ength)
t hrows JMSExcepti on;

public short readShort() throws JMSExcepti on;
public void witeShort(short value) throws JMSException;

public char readChar() throws JNMSException;
public void witeChar(char value) throws JNMSException;

public int readlnt() throws JVMSException;
public void witelnt(int value) throws JVMSException;

public long readLong() throws JMSException;
public void witelLong(long val ue) throws JNMSExcepti on;

public float readFloat() throws JMSException;
public void witeFloat(float value) throws JVMSException;

publ i c doubl e readDouble() throws JMSExcepti on;
public void witeDouble(double value) throws JNMSExcepti on;

public String readString() throws JNMSException;
public void witeString(String value) throws JMSException;

public Object readObject() throws JMSException;
public void witeObject(Object value) throws JMSException;
public void reset() throws JNMSException;

On the surface, the st reanessage strongly resembles the Byt esMvessage, but they are not
the same. The st reamvessage keeps track of the order and types of primitives written to the
stream, so formal conversion rules apply. For example, an exception would be thrown if
you triedtoread al ong valueasashort :

Streaniessage streanVessage = session. createStreamvessage();
st reamvessage. witeLong(2938302);

/'l The next line throws a JMSException

short val ue = stream\essage. readShort();

While this would work fine with a Byt esMessage, it won't work with a st r eamvessage. A
Byt esMessage would write the | ong as 64 bits (8 bytes) of raw data, so that you could later
read some of the data as a short, which is only 16 bits (the first 2 bytes of the long). The
st reamvessage, 0N the other hand, writes the type information as well as the value of the
| ong primitive, and enforces a strict set of conversion rules that prevent reading the | ong as
ashort.

47

Java Message Service

Table 3.1 shows the conversion rules for each type. The left column shows the type
written, and the right column shows how that type may be read. A Jvsexcept i on iSthrown
by the accessor methods to indicate that the original type could not be converted to the
type requested. Thisis the exception that would be thrown if you attempted to read | ong as
ashort.

Table 3.1. Type Conversion Rules

Write<TYPE>() | read<TYPE>()

bool ean bool ean, String |
byt e byte, short, int, long, String |
short short, int, long, String |
char char, String |
Long long, String |
I nt int, long, String |
fl oat float, double, String |
doubl e doubl e, String |
String String, boolean, byte, short, int, long, float, double |
byte [] byte [] |

st ri ng values can be converted to any primitive datatype if they are formatted correctly. If
the siring value cannot be converted to the primitive type requested, a
j ava. | ang. Nunber For mat Exception IS thrown. However, most primitive values can be
accessed asastring using the readstri ng() method. The only exceptions to thisrule are
char valuesand byt e arrays, which cannot be read as st ri ng values.

The witemject() method follows the rules outlined for the similar method in the
Byt esMessage Class. Primitive wrappers are converted to their primitive counterparts. The
readChj ect () method returns the appropriate object wrapper for primitive values, or a
String Or abyte array, depending on the type that was written to the stream. For example,
if avalue was written asa primitivei nt, it can beread asaj ava. | ang. | nt eger Object.

The st reanm\essage also allows nul | values to be written to the stream. If a IMS client
attemptsto read anul | value using the readthj ect () method, nul | isreturned. The rest of
the primitive accessor methods attempt to convert the nul | value to the requested type
using the val uecr () operations. The readBool ean() method returns fal se for nul |

values, while the other primitive property methods throw the
j ava. | ang. Nunber For mat Except i on. ThereadSt ri ng() method returns nul | or possibly an
empty string (") depending on the implementation. The readcChar () method throws a
Nul | Poi nt er Except i on.

If an exception is thrown while reading the st r eamessage, the pointer in the stream is
reset to the position it had just prior to the read operation that caused the exception. This
allows the JMS client to recover gracefully from exceptions without losing the pointer's
position in the stream.

48

Java Message Service

Thereset () method returns the stream pointer to the beginning of the stream and puts the
message in a read-only mode. It is called automatically when the message is delivered to
the client. However, it may need to be called directly by the consuming client when a
message is redelivered:

if (strmvsg. get IMSRedel i vered())
strmvsg.reset();

3.4.6 MapMessage

This type carries a set of name-value pairs as its payload. The payload is smilar to a
java.util.Properties object, except the values can be Java primitives (or their wrappers)
in addition to strings. The vaphvessage class is useful for delivering keyed data that may
change from one message to the next:

public interface MapMessage extends Message {

publ i ¢ bool ean get Bool ean(String nane) throws JMSExcepti on;
public void setBool ean(String nane, bool ean val ue)
t hrows JMSExcepti on;

public byte getByte(String nanme) throws JMSException;
public void setByte(String name, byte value) throws JVMSException;
public byte[] getBytes(String nanme) throws JNMSException;
public void setBytes(String nane, byte[] val ue)
t hrows JMSExcepti on;
public void setBytes(String nane, byte[] value, int offset, int |ength)
t hrows JMSExcepti on;

public short getShort(String nane) throws JMSException;
public void setShort(String name, short value) throws JMSException;

public char getChar(String nanme) throws JMSExcepti on;
public void setChar(String name, char value) throws JVMSException;

public int getlnt(String nane) throws JMSException;
public void setInt(String nane, int value) throws JNMSException;

public long getLong(String nanme) throws JMSExcepti on;
public void setLong(String name, |ong value) throws JVSExcepti on;

public float getFloat(String nane) throws JMSExcepti on;
public void setFloat(String nanme, float val ue)
t hrows JMSExcepti on;

publ i c doubl e get Doubl e(String nane) throws JVMSExcepti on;
public void setDoubl e(String nane, double val ue)
t hrows JMSExcepti on;

public String getString(String nane) throws JMSExcepti on;
public void setString(String nane, String val ue)
t hrows JMSExcepti on;

public Ooject getObject(String nane) throws JVMSExcepti on;
public void setoject(String nane, Object val ue)
t hrows JMSExcepti on;

public Enuneration get MapNanmes() throws JMSExcepti on;
public bool ean itenkxists(String nane) throws JMSException;

49

Java Message Service

Essentially, vaphvessage works similarly to JMS properties. any name-value pair can be
written to the payload. The name must be a st ri ng object, and the value may be a st ri ng
or a primitive type. The values written to the vapvessage can then be read by a IMS
consumer using the name as a key:

MapMessage mapMessage = session. creat eMapMessage();
mapMessage. set | nt (" Age", 88);

nmapMessage. set Fl oat ("Wei ght", 234);

mapMessage. set String("Nane", "Smth");

mapMessage. set Obj ect (" Hei ght", new Doubl e(150. 32));

int age = mapMessage. getlnt (" Age");

fl oat wei ght = mapMessage. get Fl oat (" Wi ght");

String name = nmapMessage. get String("Nane");

Doubl e hei ght = (Doubl e) mapMessage. get Obj ect (" Hei ght");

The set avj ect () method writes a Java primitive wrapper type, string object, or byte
array. The primitive wrappers are converted to their corresponding primitive types when
set. The get hject () method reads st rings, byte arrays, or any primitive type as its
corresponding primitive wrapper.

The conversion rules defined for the st r eanvessage apply to the vapvessage. See Table 3.1
inthe st r eamvessage Section.

A JvsExcept i on IS thrown by the accessor methods to indicate that the original type could
not be converted to the type requested. In addition, st ri ng values can be converted to any
primitive value type if they are formatted correctly; the accessor will throw a
j ava. | ang. Nunber For mat Except i on if they aren't.

If aJMS client attempts to read a name-value pair that doesn't exist, the value is treated as
if it was nul | . Although the get j ect () method returns nul I for nonexistent mappings,
the other types behave differently. While most primitive accessors throw the
j ava. | ang. Nunber For mat Except i on if @ nul | value or nonexistent mapping is read, other
accessors behave as follows: the get Bool ean() method returns al se for nul | values; the
getString() returns anul | value or possibly an empty siring ('), depending on the
implementation; and the get char () method throws a nul | Poi nt er Except i on.

To avoid reading nonexistent name-value pairs, the vapivessage providesan i t enexi sts()
test method. In addition, the get vapNanes() method lets a IMS client enumerate the
names and use them to obtain all the values in the message. For example:

public void onMessage(Message nessage) {
MapMessage nmapMessage = (MapMessage) message;
Enunerati on names = napMessage. get MapNanes() ;
whi | e(nanes. hasMoreEl ements()){
String name = (String)nanes. nextEl ement();
Obj ect val ue = nmapMessage. get bj ect (nane) ;
Systemout. println("Name = "+nane+", Value = "+val ue);

}

50

Java Message Service

3.4.7 Read-Only Messages

When messages are delivered, the body of the message is made read-only. Any attempt to
ater a message body after it has been delivered results in a
javax. j ms. MessageNot Wi t eabl eExcept i on. The only way to change the body of a message
after it has been delivered is to invoke the cl ear Body() method, which is defined in the
Message interface. The cl ear Body() method empties the message's payload so that a new
payload can be added.

Properties are also read-only after a message is delivered. Why are both the body and
properties made read-only after delivery? It alows the JMS provider more flexibility in
implementing the vessage object. For example, a IMS provider may choose to stream a
Byt esMessage OF Streanessage as it is read, rather than all at once. Another vendor may
choose to keep properties or body data in an internal buffer so that it can be read directly
without the need to make a copy, which is especially useful with multiple consumers on
the same client.

3.4.8 Client-Acknowledged Messages

The acknowl edge() method, defined in the vessage interface, is used when the consumer
has chosen cLIENT_ACKNOWEDGE as its acknowledgment mode. There are three
acknowledgment modes that may be set by the IMS consumer when its session is created:
AUTO_ACKNOW.EDGE, DUPS_OK_ACKNOALEDGE, and CLI ENT_ACKNOW.EDGE. Here is how a pub/sub
consumer sets one of the three acknowledgment modes:

Topi cSession topic =
t opi cConnecti on. creat eTopi cSessi on(fal se, Session. CLI ENT_ACKNOALEDCE) ;

In cL1 enT_Acknow EDGE mode, the IM S client explicitly acknowledges each message asit is
received. The acknow edge() method on the vessage interface is used for this purpose. For
example:

public void onMessage(Message nessage) {
nessage. acknowl edge();

}

The other acknowledgment modes do not require the use of this method and are covered in
more detail in Chapter 6 and Appendix B.

s Any acknowledgment mode specified for a transacted session is
. ignored. When a session is transacted, the acknowledgment is part of
" 4 the transaction and is executed automatically prior to the commit of

the transaction. If the transaction is rolled back, no acknowledgment
is given. Transactions are covered in more detail in Chapter 6.

51

Java Message Service

3.4.9 Interoperability and Portability of Messages

A message delivered by a IMS client may be converted to a JM S provider's native format
and delivered to non-JMS clients, but it must still be consumable as its origina Vessage
type by JMS clients. Messages delivered from non-JMS clients to a JMS provider may be
consumable by JMS clients - the IMS provider should attempt to map the message to its
closest IMS type, or if that's not possible, to the Byt esivessage.

JMS providers are not required to be interoperable. A message published to one JMS
provider's server is not consumable by another JMS provider's consumer. In addition, a
JMS provider usually can't publish or read messages from destinations (topic and queues)
implemented by another JMS provider. Most JMS providers have, or will have in the
future, bridges or connectors to address this issue.

Although interoperability is not required, limited message portability is required. A
message consumed or created using JMS provider A can be delivered using JIM S provider
B. JMS provider B will simply use the accessor methods of the message to read its
headers, properties, and payload and convert them to its own native format: not a fast
process, but portable. This portability is limited to interactions of the JMS client, which
takes a message from one provider and passes it to another.

52

Java Message Service

Chapter 4. Publish-and-Subscribe Messaging

This chapter focuses on the publish-and-subscribe (pub/sub) messaging model that was
introduced in Chapter 2. The pub/sub messaging model allows a message producer (also
called a publisher) to broadcast a message to one or more consumers (called subscribers).
There are three important aspects of the pub/sub mode!:

Messages are pushed to consumers, which means that consumers are delivered
messages without having to request them. Messages are exchanged through a
virtual channel called atopic. A topic is a destination where producers can publish,
and subscribers can consume, messages. Messages delivered to a topic are
automatically pushed to all qualified consumers.

Asin enterprise messaging in general, there is no coupling of the producers to the
consumers. Subscribers and publishers can be added dynamically at runtime,
which alows the system to grow or shrink in complexity over time.

Every client that subscribes to atopic receives its own copy of messages published
to that topic. A single message produced by one publisher may be copied and
distributed to hundreds, or even thousands of subscribers.

In Chapter 2 you learned the basics of the pub/sub model by developing a simple chat
client. In this chapter we will build on those lessons and examine more advanced features
of this mode, including guaranteed messaging, topic-based addressing, durable
subscriptions, request-reply, and temporary topics.

4.1 Getting Started with the B2B Application

In this chapter we abandon the simple chat example for a more complex and real-world
Business-to-Business (B2B) scenario. In our new example, a wholesaler wants to distribute
price information to retailers, and the retailers want to respond by generating orders. Wel'll
implement this scenario using the publish-and-subscribe model: the wholesaler will
publish messages containing new prices and hot deals, and the retailers will respond by
creating their own messages to order stock.

This scenario is typical of many Business-to-Business operations. We call the clients
retailers and wholesalers, but these names are really only for convenience. There's little
difference between our wholesaler/retailer scenario and a stock broker broadcasting stock
prices to investors, or a manufacturer broadcasting bid requests to multiple suppliers. The
fact that we use aretailer and awholesaler to illustrate our example is much less important
than the way we apply JMS.

Our simple trading system is implemented by two classes, both of which are IMS clients:

Wiol esal er and Ret ai | er . In the interest of keeping the code simple, we won't implement
afancy user interface; our application has a rudimentary command-line user interface.

53

Java Message Service

4.1.1 Running the B2B Application

Before looking at the code, let's look at how the application works. As with the chat
application, the ol esal er class includes a main() method so it can be run as a
standalone Java application. It's executed from the command line as follows:

java chap4. B2B. Whol esal er | ocal host usernane password

username and password are the authentication information for the client. The Ret ai | er
class can be executed in the same manner:

java chap4. B2B. Retai | er | ocal host usernanme password

Start your JIMS server, then run one instance of a ol esal er client and aret ai | er clientin
separate command windows. In the whol esal er client you are prompted to enter an item
description, an old price, and a new price. Enter the following as shown:

Bowl i ng Shoes, 100.00, 55.00

Upon hitting the Enter key, you should see the ret ai | er application display information on
the screen indicating that it has received a price change notice. You should then see the
Whol esal er indicating that it has received a "buy" order from the retailer. Here's the
complete interaction with the wiol esal er and the ret ai | er ;™

I \\HOLESALER and RETAI LER are usernames you have set up when configuring your JMS
server. passwdl and passwd?2 are the passwords you've assigned to those usernames. If you are
using an evaluation version of a JMS provider, it may not be necessary to set up usernames and
passwords; check your vendor's documentation for more information.

java chap4. B2B. Whol esal er | ocal host WHOLESALER passwdl
Enter: Item Od Price, New Price

e.g., Bowing Shoes, 100.00, 55.00

Bowl i ng Shoes, 100.00, 55.00

Order received - 1000 Bow i ng Shoes from Durabl eRet ai | er

java chap4. B2B. Retai |l er | ocal host RETAI LER passwd?2
Retai | er application started.

Recei ved Hot Buy: Bow i ng Shoes, 100.00, 55.00
Buyi ng 1000 Bow i ng Shoes

Here's what happened. The whol esal er publishes a price quotation on atopic, "Hot Deals,"
which is intended for one or more Ret ai | er S. The Ret ai | er S subscribe to the "Hot Deals’
topic in order to receive price quotes. The ret ai | er application has no interaction with a
live user. Instead, it has an aut oBuy() method that examines the old price and the new
price. If the new price represents a reduction of greater than ten percent, the Retail er
sends a message back to the whol esal er on the "Buy Order" topic, telling it to purchase
1,000 items. In IMS terms, the wol esal er is a producer of the "Hot Deals" topic and a
consumer of the "Buy Order" topic. Conversely, the ret ai | er is a consumer of the "Hot
Deals' topic and a producer of the "Buy Order" topic, asillustrated in Figure 4.1.

Java Message Service

Figure 4.1. Producers and consumers in the B2B example

Producers and Consumers

Suhzeribe fo
@ “Buy Ordler™ topie

publish() message

~ Subscribe 1o
@ “Hor Deals” topic

-

Wholesaler @un Hot Deals™ topic -

Repeive message on
JNS ® "Hot Deals” topic .
Sarver o »| Retailer
full message
_// ® n “Buy Orger” topic

sl

Receive massage on -
® “Buy Order” fopic

il

4.1.2 The B2B Source Code

The rest of this chapter examines the source code for the wiol esal er and Ret ai | er classes,
and covers several advanced subjects related to the pub/sub messaging model.

4.1.2.1 The Wholesaler class

After the listing, we will take a brief tour of the methods in this class, and discuss their
responsibilities. We will go into detail about the implementation later in this chapter. Now,
here is the complete definition of the wol esal er class, which is responsible for publishing
items to the "Hot Deals" topic and receiving "Buy Orders' on those deals from retailers:

public class Wol esal er inplenents javax.jns. Messageli st ener{

private javax.ms. Topi cConnection connect = null;
private javax.jmnms. Topi cSessi on pubSession = null;
private javax.jmnms. Topi cSessi on subSession = null;
private javax.jmns. Topi cPublisher publisher = null;
private javax.jmns. Topi cSubscri ber subscriber = null;
private javax.jns. Topi c hot Deal sTopic = null;

private javax.jmns. TenporaryTopi ¢ buyOrdersTopic = null;

public Wol esal er(String broker,
try {
Properties env = new Properties();
I specify the JNDI properties specific to the vendor

String usernane, String password){

Initial Context jndi new | nitial Context(env);
Topi cConnectionFactory factory =
(Topi cConnecti onFact ory)j ndi .| ookup(broker);
connect = factory. createTopi cConnection (usernane, password);

pubSessi on =

connect . creat eTopi cSessi on(fal se, Sessi on. AUTO_ACKNOALEDCE) ;
subSession =

connect . creat eTopi cSessi on(fal se, Sessi on. AUTO_ACKNOALEDCE) ;

hot Deal sTopi ¢ = (Topic)jndi.|ookup("Hot Deal s");
publ i sher = pubSessi on. creat ePubl i sher (hot Deal sTopi c¢) ;

buyOrdersTopi ¢ = subSessi on. creat eTenporaryTopic();

subscri ber subSessi on. creat eSubscri ber (buyOrder sTopi c);
subscri ber. set Messageli st ener (this);

connect.start();
} catch (javax.]jns.JVSException jnse){

jmse. printStackTrace(); Systemexit(1);
} catch (javax.nam ng. Nam ngException jne){

55

Java Message Service

jne.printStackTrace(); Systemexit(1);
}
}
private void publishPriceQuotes(String deal Desc, String usernang,
String itenDesc, float ol dPrice,
float newPrice){
try {
javax.j ns. St reamVessage nessage =
pubSessi on. creat eSt r eamvessage();
nessage. witeString(deal Desc);
nessage. witeString(itenDesc);
nessage. wit eFl oat (ol dPrice);
nessage. wi t eFl oat (newPri ce);

nmessage. set Stri ngProperty("Usernane", usernane);
nmessage. set Stri ngProperty("Itendesc", itenDesc);

nmessage. set IMSRepl yTo(buyOr der sTopi c) ;

publ i sher. publ i sh(
nessage,
javax.j ns. Del i ver yMode. PERSI STENT,
j avax. j ms. Message. DEFAULT_PRI ORI TY,
1800000) ;

} catch (javax.jms.JMSException jnse){
jmse. printStackTrace();

public void onMessage(javax.jnms.Message nessage){
try {
Text Message text Message = (Text Message) nessage;
String text = textMessage.get Text();
Systemout.println("\nOrder received - "+text+
" from" + nessage.getJMsCorrelationlD());
} catch (java.lang. Exception rte){
rte.printStackTrace();
}

}
public void exit(){
try {
connect. cl ose();
} catch (javax.jns.JVSException jnse){
jmse. printStackTrace();

}
System exit(0);

public static void main(String argv[]) {
String broker, usernane, password;
if (argv.length == 3){
broker = argv[O0];

usernane = argv[1];
password = argv[2];
} else {

Systemout.printIn("Invalid arguments. Should be: ");
Systemout. println("java Wol esal er broker username password");
return;

}

Whol esal er whol esal er = new \Wol esal er (br oker, user nane, passwor d) ;

try {
/1l Read all standard input and send it as a nessage.
java.io. BufferedReader stdin = new java.io. BufferedReader
(new java.io. | nput StreanReader (Systemin));
Systemout.println ("Enter: Item Od Price, New Price");
Systemout.printin("\ne.g., Bowing Shoes, 100.00, 55.00");

56

Java Message Service

while (true){
String deal Desc = stdin.readLine();
if (dealDesc !'= null && deal Desc.length() > 0){
/| Parse the deal description
StringTokeni zer tokenizer =
new StringTokeni zer (deal Desc,",") ;
String itenDesc = tokenizer. next Token();
String tenp = tokenizer. next Token();
float ol dPrice =
Fl oat. val ueO (tenp.trin()).fl oatVal ue();
tenp = tokenizer.next Token();
float newPrice =
Fl oat. val ueO' (tenp.trin()).fl oatValue();

whol esal er. publ i shPri ceQuot es(deal Desc, user nane,
i tenDesc, ol dPri ce, newPri ce);
} else {
whol esal er.exit();
}

} catch (java.io.|Oexception ioe){
i oe. printStackTrace();
}

}
}

The nei n() method creates an instance of the wol esal er class, passing it the information
it needs to set up its publishers and subscribers.

In the wiol esal er classs constructor, JNDI is used to obtain the "Hot Deals' topic
identifier, which is then used to create a publisher. Most of this should look familiar to
you; it's similar in many ways to the chat application, except for the creation of a
temporary topic, which is discussed in more detail later in this section.

Once the whol esal er IS instantiated, the nain() method continues to monitor the
command line for new "Hot Deals." When a"Hot Deal" is entered at the command prompt,
the mai n() method parses the information and passes it to the ol esal er instance viathe
publ i shPri ceQuot es() method.

The publishpPricequotes() method is responsible for publishing messages containing
information about price quotes to the "Hot Deals" topic.

The onvessage() method receives messages from clients responding to deals published on
the "Hot Deals" topic. The contents of these messages are simply printed to the command
line.

4.1.2.2 The Retailer class

Here is the complete definition of the ret ai | er class, which subscribes to the "Hot Deals"
topic and responds with "Buy Orders’ on attractive deals:

public class Retailer inplenments javax.|ns. Messageli stener{
private javax.]jns. Topi cConnection connect = null;
private javax.ns. Topi cSession session = null;
private javax.]jns. Topi cPubli sher publisher = null;
private javax.jns. Topi c hotDeal sTopic = null;

public Retailer(String broker, String usernane, String password){

57

Java Message Service

try {
Properties env = new Properties();

/1l ... specify the JNDI properties specific to the vendor
Initial Context jndi = new Initial Context(env);

Topi cConnecti onFactory factory =
(Topi cConnecti onFact ory)j ndi .| ookup(broker);

connect = factory. createTopi cConnection(usernanme, password);
connect.setCientl D("Durabl eRetailer");

session =
connect . creat eTopi cSessi on(fal se, Sessi on. AUTO_ACKNOALEDCGE) ;

hot Deal sTopi ¢ = (Topic)jndi.lookup("Hot Deal s");

j avax. j ms. Topi cSubscri ber subscriber =
sessi on. cr eat ebDur abl eSubscri ber (hot Deal sTopi c,
"Hot Deal s Subscription");
subscri ber. set Messageli st ener (this);
connect.start();

} catch (javax.]jns.JVSException jnse){
jmse. printStackTrace();
Systemexit(1);
} catch (javax.nam ng. Nam ngException jne){
jne.printStackTrace(); Systemexit(1l);

}
public void onMessage(j avax.jnms. Message aMessage) {
try {
aut oBuy(aMessage) ;
} catch (java.lang. Runti meException rte){
rte.printStackTrace();
}
}

private void autoBuy (javax.mnms. Message nmessage){

int count = 1000;

try {
Streamvessage strnivsg = (Streamvessage) nessage;
String deal Desc = strmMvsg.readString();
String itenDesc = strmMvsg.readString();
float oldPrice = strmvsg.readFloat();
float newPrice = strnisg. readFl oat();
Systemout. println("Recei ved Hot Buy :"+deal Desc);

/'l If price reduction is greater than 10 percent, buy
if (newPrice == 0 || oldPrice / newPrice > 1.1){
Systemout. println("\nBuying " + count +" "+ itenDesc);

Text Message text Msg = session. creat eText Message();
t ext Msg. set Text (count + " " + itenDesc);

javax.j ns. Topi ¢ buytopic =
(javax.jms. Topi ¢) nessage. get IMSRepl yTo();

publ i sher = session. creat ePubl i sher (buyt opic);
t ext Msg. set IMsCorrel ati onl D("Durabl eRetai l er");

publ i sher. publ i sh(
t ext Msg,
j avax. j ms. Del i ver yMode. PERSI STENT,
j avax. j nms. Message. DEFAULT_PRI ORI TY,
1800000) ;
} else {

58

Java Message Service

Systemout.println ("\nBad Deal - Not buying.");

} catch (javax.]jns.JVsSException jnse){
jmee. printStackTrace();

}
private void exit(String s){
try {
if (s!=null &&
s. equal sl gnoreCase("unsubscri be"))
{

subscri ber. cl ose();
sessi on. unsubscri be("Hot Deal s Subscription");

connect. cl ose();

} catch (javax.]jns.JVSException jnse){
jmse. printStackTrace();

}

System exit(0);

public static void main(String argv[]) {

String broker, username, password;

if (argv.length == 3){
broker = argv[0];
usernane = argv[1];
password = argv[2];

} else {
Systemout.println("Invalid argunents. Should be: ");
Systemout.println
("java Retailer broker username password");
return;

}

Retailer retailer = new Retailer(broker, usernanme, password);

try {
Systemout.println("\nRetailer application started.\n");
/1 Read all standard input and send it as a nessage.
java.io.BufferedReader stdin =
new j ava. i o. Buf f er edReader

(new java.io.lnputStreanReader(Systemin));
while (true){
String s = stdin.readLine();
if (s ==null)retailer.exit(null);
else if (s.equal slgnoreCase("unsubscribe"))
retailer.exit (s);

} catch (java.io.lCOException ioe){
i oe.printStackTrace();
}

}

The mai n() method of Ret ai | er ismuch like the mai n() method of wiol esal er. It creates
an instance of the Rretailer class and passes it the information it needs to set up its
publishers and subscribers.

The constructor of the ret ai | er classisaso similar to that of the whol esal er class, except
that it creates a durable subscription using the "Hot Deals" topic. Durable subscriptions
will be discussed in more detail later in this section.

59

Java Message Service

Once the Ret ai | er is instantiated, the mai n() method uses the readLi ne() method as a
way of blocking program execution in order to monitor for message inpuit.

The publishpPricequotes() method is responsible for publishing messages containing
information about price quotes to the "Hot Deals" topic.

The onvessage() method receives messages from the ol esal er client, then delegates its
work to the autoBuy() method. The autoBuy() method examines the message,
determines whether the price change is significant, and arbitrarily orders 1000 items. It
orders the items by publishing a persistent message back to the whol esal er client's
temporary topic, using the Jvscorrel ationlD as a way of identifying itself. We will
examine persistent publishing and temporary topics in the next section.

4.2 Temporary Topics

In the chat example we explored in Chapter 2, we assumed that JMS clients would
communicate with each other using established topics on which messages are
asynchronously produced and consumed. In the next sections, well explore ways to
augment this basic mechanism. Well start by looking at temporary topics, which is a
mechanism for IM S clients to create topics dynamically.

The constructor of the wiol esal er class creates a temporary topic. This topic is used as a
JVvBRepl yTo destination for messages published to the "Hot Deals' topic in the
publ i shPri ceQuot es() method:

public \Wol esaler(String broker, String usernanme, String password){
try {

session =
connect . creat eTopi cSessi on(fal se, Sessi on. AUTO_ACKNOALEDCGE) ;
buyOrdersTopi ¢ = session. createTenporaryTopic();

}

private void publishPriceQuotes(String deal Desc, String usernane,
String itenDesc, float ol dPrice,
float newPrice)({

try {
javax.jns. Streamvessage nessage = session. createStreanmvessage();

ﬁéésage. set JVMSRepl yTo(buyOr der sTopi ¢) ;

publ i sher. publ i sh(
nessage,
javax.] ns. Del i ver yMode. PERSI STENT,
javax.j ms. Message. DEFAULT_PRI ORI TY,
600000) ;

}

When the ret ai | er client decides to respond to a "Hot Deals' message with a buy order, it
uses the Jvsrepl yTo destination, which is the temporary topic created by Vol esal er
application:

private void aut oBuy (javax.jns. Message nessage){

int count = 1000;

60

Java Message Service

try {
Streamvessage strnivsg = (Streamvessage) nessage;

/1 If price reduction is greater than 10 percent, buy
if (newPrice == 0 || oldPrice / newPrice > 1.1){

j ;a;/ax.j ns. Topi ¢ buytopic =
(javax.jms. Topi c) message. get IMSRepl yTo();

publ i sher = session. creat ePubl i sher (buyt opic);

}

A temporary topic is a topic that is dynamically created by the IMS provider, using the
creat eTenporaryTopi ¢() method of the Topi cSession oObject. A temporary topic is
associated with the connection that belongs to the Topi cSessi on that created it. It is only
active for the duration of the connection, and it is guaranteed to be unique across all
connections. Since it is temporary, it can't be durable: it lasts only as long as its associated
client connection is active. In al other respectsit isjust like a"regular” topic.

Since atemporary topic is unique across al client connections - -it is obtained dynamically
through a method call on a client's session object - it is unavailable to other IMS clients
unless the topic identity is transferred using the Jvsrepl yTo header. While any client may
publish messages on another client's temporary topic, only the sessions that are associated
with the JIMS client connection that created the temporary topic may subscribe to it. IMS
clients can also, of course, publish messages to their own temporary topics.

In the interest of exploring concepts like temporary topics we have designed our B2B
example so that the consumer responds directly to the producer. In larger real-world
applications, however, there may be many publishers and subscribers exchanging
messages across many topics. A message may represent a workflow, which may take
multiple hops through various stages of a business process. In that type of scenario the
consumer of a message may never respond directly to the producer that originated the
message. It is more likely that the response to the message will be forwarded to some other
process. Thus, the Jvsrepl yTo header can be used as a place to specify a forwarding
address, rather than the destination address of the original sender.

JMS provides a set of design patterns and helper classes for performing a direct request-
reply conversation, which we will get into later in Section 4.6 of this chapter.

4.3 Durable Subscriptions

A durable subscription is one that outlasts a client's connection with a message server.
While a durable subscriber is disconnected from the IMS server, it is the responsibility of
the server to store messages the subscriber misses. When the durable subscriber
reconnects, the message server sendsit all the unexpired messages that accumulated. This
behavior is commonly referred to as store-and-forward messaging. Store-and-forward
messaging is a key component of the guaranteed messaging solution. Durable
subscriptions make a JMS consumer tolerant of disconnections, whether they are
intentional or the result of a partial failure

61

Java Message Service

We can demonstrate durable subscriptions with the B2B example. If you still have the
Ret ai | er @pplication up and running, try simulating an abnormal shutdown by typing Ctrl-
C in the command window. Leave the ol esal er running. In the command window for
the wholesaler application, type:

Sur f boards, 500. 00, 299.99
Hockey Sticks, 20.00, 9.99

Once the deals have been entered, restart the ret ai | er application:

java chap4.B2B. Retai | er | ocal host usernane password

The first time you ran the ret ai | er application, a topic was registered as durable. When
you abnormally terminated the application, the subscription information was retained by
the JMS provider. When the retai | er application comes back up, the surfboards and
hockey sticks messages are received, processed, and responded to. Because the Ret ai | er
had a durable subscription to the "Hot Deals" topic, the IMS server saved the messages
that arrived while the ret ai | er was down. The messages were then delivered when the
Ret ai | er resubscribed to the topic.

Here's how we set up the durable subscription. A durable subscription is created by a
Topi cSessi on Object, the same as with a nondurable subscription. The Rretailer class
obtains a durable subscription in its constructor:

public Retailer(String broker, String usernane, String password){
try {

hot Deal sTopi ¢ = (Topic)jndi.|ookup("Hot Deal s");
javax. j ns. Topi cSubscri ber subscriber =
sessi on. creat eDur abl eSubscri ber (hot Deal sTopi c,
"Hot Deal s Subscription");
subscri ber. set MessagelLi st ener (thi s);
connect.start();

}

The creat eburabl eSubscriber () method takes two parameters. a topic name, and a
subscription name. In our example we are using the st ri ng "Hot Deals Subscription” to
identify the subscription name. While topic names are specified as being supported as IMS
administered objects, subscription names are not. While not required by JMS, it is good
practice for a JMS provider to provide an administration tool that monitors active
subscription names, asillustrated in Figure 4.2.

A durable subscription's uniqueness is defined by the client ID and the subscription name.
In the event that the client disconnects without unsubscribing, a IMS provider will store
these messages until they can be delivered later. Upon reconnecting and resubscribing, the
JMS provider will match up the messages based on these two identifiers, and deliver them
to the subscriber.

You might think that the client ID and the topic would be enough for the provider to
uniquely identify a durable subscription. However, a client may have multiple
subscriptions on the same topic; for example, a client may want to use different message
selectors to sort the incoming messages. (Message selectors are discussed in detail in

62

Java Message Service

Appendix D.) Therefore, durable subscriptions must be identified by their own name;
simply using the topic name and the client ID will not suffice.

Figure 4.2. Managing active durable subscriptions

I A e - |11) ~ |
Explorer Help
{1 Roat Durable Subscriphions E

WS Administered Ohject Slores S e T _ s ————:
=4 Messape Brokars | LMST. L
=4 Iocalhostfoo Dave (Sonicha) | | T
& Topics |RETAILER!
& Queues |RETAILERZ
& Beenls |RETAILERY
= 1 localhostadmin chappel (Sonick
L
& Queles : Chent 1D | Subscrption Marme Tapic
& Melics |RETAILER Hol Deals Subscrip..|Hol Deals
& Ewenls |

d | ol o |

Manage Durable Subscriplions

The IMS specification is intentionally vague about how the JMS provider determines the
uniqueness of aclient ID. Various provider implementations are allowed to have their own
internal rules for what constitutes a unique client. The setdientiD() method on the
connection object is provided in the APl as a hint. The client ID is set in the constructor of
our Ret ai | er example:

public Retailer(String broker, String usernane, String password){
try {

connect = factory. createTopi cConnection (usernanme, password);
connect.setCl i entl D(usernane);

}
4.4 Publishing the Message Persistently

Both the wiol esal er and Ret ai | er classes publish messages using the persistent delivery
mode:

publ i sher. publ i sh(
nessage,
j avax.j ns. Del i ver yMode. PERSI STENT,
j avax.j ns. Message. DEFAULT_PRI ORI TY,
1800000) ;

Note the use of the overloaded publ i sh() method, with parameters that specify delivery
mode, priority, and message expiration. This method provides an aternative to using the
Message. set JVSDel i veryMode() and Topi cPubl i sher. set Ti neToLi ve() oOperations, as
discussed in Chapter 3. In IMS, the delivery mode (persistent, nonpersistent) is a Quality
of Service (QoS) setting on the message itself. Marking the message as persistent ensures
that the message will be saved to areliable persistent store by the IMS provider before the

63

Java Message Service

publ i sh() method returns, and allows client execution to continue. More on how and why
this works reliably can be found in Chapter 6.

4.4.1 Persistent Messages and Temporary Topics

When you are using a temporary topic as a way of posting a reply to a message, you
should realize that the total round trip (the initial message and the reply) isn't guaranteed to
survive a certain failure condition, even if you use persistent messages. The problem is that
temporary topics cannot be used for durable subscriptions. Consider the following
scenario:

1. A IJMSclient (producer) creates atemporary topic, putsit in the Jvsrepl yTo header
of amessage, marks the message as persistent, and publishesit.

2. The subscriber gets the message and publishes a response on the temporary topic
using a persistent message.

3. The original producer expects a reply on the temporary topic, but disconnects or
crashes before it is received.

4. The original producer restarts, and is no longer able to subscribe to the original
temporary topic that it had established in its previous life. It can't resubscribe
because the temporary topic was only valid for the duration of the previous
connection. Calling creat eTenporaryTopi ¢() in the new session returns a new
temporary topic, not the previous one.

Thisis asubtle point, since any client with a nondurable subscription will not get messages
during a failure. In other scenarios it may be acceptable to lose messages for a time, yet
still be able to start receiving newly published "responses’ when the original producer of
the message starts up again. In the B2B example, a failure of the wiol esal er means that
the reply messages sent to the temporary topic will be lost. An alternative and superior
design would use the JvsRrepl yTo header, with an established topic instead of a temporary
one. Chapter 6 provides more detail on message delivery semantics, Quality of Service,
and failure conditions.

4.5 JMSCorrelationID

In the B2B example, we are using the JvsCorrel ationl D as a way for the Retailer to
associate its identity with its reply message, as illustrated by the following code in

Ret ai | er. aut oBuy() -

private void autoBuy (javax.jns. Message nessage){

publ i sher = session. creat ePubl i sher (buytopic);
t ext Msg. set JMsCorrel ationl D("Durabl eRetail er");

publ i sher. publ i sh(
t ext Msg,
javax.j ns. Del i ver yMode. PERSI STENT,
j avax.j ms. Message. DEFAULT_PRI ORI TY,
1800000) ;

Java Message Service

IN Whol esal er, the JvsCor rel at i onl D is extracted in the onvessage() handler, and simply
printed on the command line:

public void onMessage(javax.jnms. Message nessage) {

Systemout.println("Order received - "+text+
" from" + nessage.getJMsCorrelationl D());

}

Another way to associate the ret ai | er 's identity with the reply message would be to store
something unigque in a message property, or in the message body itself.

A more common use of the Jvscor rel at i onl D is not for the sake of establishing identity; it
is for correlating the asynchronous reception of a message with a message that had been
previously sent. A message consumer wishing to create a message to be used as a response
may place the JvsMessagel D Of the original message in the JvsCorrel ationl D of the

response message.
4.6 Request and Reply

JMS provides design patterns and helper classes to make it easier to write applications that
need a direct request-reply between two end points. We have aready shown two JMS
features that can be used as part of a request-reply solution: temporary topics and the
JVBRepl yTo header. These features can be used independently or in combination to create
an asynchronous request-reply conversation. On occasion you may want to creste a
synchronous request-reply conversation. There are two ways of doing this. You may call
the TopicSubscriber.receive() method directly, or you may make use of the
Topi cRequest or Class.

4.6.1 TopicSubscriber.receive()

Thereceive() method is defined in the vessageConsuner class, which is the superclass of
Topi cSubscri ber. The recei ve() method is a way of proactively asking for the message
rather than passively receiving it through the onvessage() callback. In fact, the use of the
recei ve() method negates the use of the onvessage() callback. The default behavior of
therecei ve() method isto block program execution until a message is retrieved from the
message server. The receive() method effectively changes the pub/sub model from a
"push” to a "pull" model. From the client's perspective, you can think of this as a polling
mechanism; although that's not necessarily how it isimplemented by the IMS provider.

There are three flavors of therecei ve() method:

package javax. | Ims;
public interface MessageConsuner{

Message receive();

Message receive(long tinmeout);
Message recei veNoWai t();

65

Java Message Service

The receive() method with no parameters blocks indefinitely, until a message is
received. The recei ve(l ong timeout) method blocks until a message is received, or until
the timeout period expires, whichever comesfirst. Therecei ve() method will return nul |

if the session is closed while the method is blocking. The recei veNowai t () method does
not block at all. It either returns a message if one is available, or it returns nul 1, if thereis
nothing currently pending to be delivered. Here is a dightly modified version of
Wiol esal er. publ i shPri ceQuot es() that makes use of therecei ve() method:

private void publishPriceQuotes(String deal Desc, String usernane,
String itenDesc, float ol dPrice,
float newPrice)({

Systemout.printin("\nlnitiating Synchronous Request");

/'l Publish the nessage persistently
publ i sher. publ i sh(
nsg, /I nessage
javax.j ns. Del i ver yMode. PERSI STENT, //publish persistently
javax. j ms. Message. DEFAULT_PRIORITY, //priority
MESSACE_LI FESPAN) ; [/ Time to Live

j avax.j ns. Message aMessage = subscri ber.receive();

Systemout. println("\nRequest Sent, Reply Received!");
if (aMessage != null)

onMessage(aMessage) ;

}

In this example the subscriber, which subscribes to the "Buy Order" temporary topic, has
itsrecei ve() method called. The recei ve() method blocks until a message is published
by the Ret ai | er to the "Buy Order" topic. The whol esal er client becomes a synchronous
client waiting for the ret ai | er to respond. When the recei ve() method returns with a
message, the Wiol esal er Simply calls onvessage() directly to process the message.

Due to threading restrictions imposed on a JMS session object, it is impractical to have
both synchronous and asynchronous operations on a session. Hence the whol esal er's
constructor does not make a call to set Messageli st ener (this). The onvessage() handler
will never get called automatically.

The recipient side of the conversation still looks the same as in our previous example. The
Retailer.autoBuy() method receives the message, gets the return address from the
JVBRepl yTo header, and publishes a response using that topic.

It is erroneous for a session to be operated by more than one thread of control at any given
time. In our example, there appears to be only one thread of control: the main thread of the
application. However, when the onvessage() handler is invoked, it is being called by
another thread that is owned by the JMS provider. Due to the asynchronous nature of the
onMessage() callback, it could possibly be invoked while the main thread is blocking on a
synchronous r ecei ve() .

66

Java Message Service

4.6.2 TopicRequestor

The Topi cRequest or class is distributed in source code form as a part of the IMS 1.0.2
distribution package. The class is very simple. Its constructor takes two parameters. a
session and atopic. The constructor creates atemporary topic to be used for the duration of
the session. Its most important method isrequest (), which looks like this:

public Message request (Message message) throws JMSException {
nessage. set JMSRepl yTo(t enpTopi) ;
publ i sher. publ i sh(nmessage);
return(subscriber.receive());

}

The use of the Topi cRequest or iSSiMilar to our recei ve() example, except that the calls
to publ i sh() andreceive() arereplaced with one call to request (). Hereis amodified
excerpt from whol esal er. publ i shPriceQuot es() illustrating how to use a Topi cRequest or :

private void publishPriceQuotes(String deal Desc, String usernane,
String itemesc, float ol dPrice,
float newPrice)({

%/st emout.printIn("\'nlnitiating Synchronous Request");

javax. | ns. Topi cRequest or requestor =
new j avax. j ms. Topi cRequest or (sessi on, pricetopic);

javax.]j ns. Message aMessage = requestor.request(nsg);

Systemout. println("\nRequest Sent, Reply Received!");
if (aMessage != null)

{
onMessage(aMessage) ;
}

}

As in our previous recei ve() example, the recipient side of the conversation remains
unchanged. Ret ai | er. aut oBuy() receives the message, gets the return address from the
JVBRepl yTo header, and publishes a response using that topic.

As you can see, the Topi cRequest or Object is a higher-level abstraction built on top of the
Topi cSubscri ber. recei ve() mechanism. It isvery handy if you are willing to live with its
limitations. Here are some reasons why you may want to call recei ve() yourself instead
of using the Topi cRequest or:

Y ou may want to set time-to-live or persistent properties on the message.

You may not want to use a temporary topiC. Topi cRequest or Creates its own
temporary topic as its way of getting a response back.

Y ou want to use the alternate r ecei ve(l ong ti meout) OF recei veNoVi t () Options.
Y ou may want to publish on atopic, and receive responses on a p2p gqueue.

Y ou may want to receive more than one message in response to a request.

Topi cRequest or. close() Will arbitrarily close the session. It may not be the
behavior you are looking for.

You may want to receive the responses using a transaction. (More on JMS
transactions can be found in Chapter 6.)

67

Java Message Service

4.7 Unsubscribing

Upon closing the session, the JMS provider should automatically take care of
unsubscribing any nondurable subscriptions that were created by the session. But there
may be cases where you want to explicitly unsubscribe a durable subscriber in a client
application. Here is how that is accomplished in Retai ler.exit() :

private void exit(String s){

try {
if (s!=nul &&

s. equal sl gnor eCase("unsubscri be"))
{

subscri ber.close();
sessi on. unsubscri be("Hot Deal s Subscription");

connect . cl ose();

} catch (javax.jnms.JVsException jnse){
jmse. printStackTrace();

}

System exit(0);
}

For nondurable subscriptions, calling the cl ose() method on the Topi cSubscri ber classis
sufficient. For durable subscriptions, there is a unsubscri be(String nane) method on the
Topi cSessi on Object, which takes the subscription name as its parameter. This informs the
JMS provider that it should no longer store messages on behalf of this client. It is an error
to call the unsubscribe() method without first closing the subscription. Hence both
methods need to be called for durable subscriptions.

68

Java Message Service

Chapter 5. Point-to-Point Messaging

This chapter focuses on the point-to-point (p2p) messaging domain. Many of the concepts
of p2p messaging are similar to those we learned in Chapter 4. To avoid redundancy, this
chapter highlights the areas where the two models are the same, and focuses on the areas
where the two models differ.

In the p2p model, the producer is called a sender and the consumer is caled a receiver.
The most important characteristics of the point-to-point model are:

Messages are exchanged through a virtual channel called a queue. A queue is a
destination to which producers send messages, and a source from which receivers
consume messages.

Each message is delivered only to one receiver. Multiple receivers may connect to
a queue, but each message in the queue may only be consumed by one of the
gueue's receivers.

Messages are ordered. A gueue delivers messages to consumers in the order they
were placed in the queue by the message server. As messages are consumed they
are removed from the head of the queue.

There is no coupling of the producers to the consumers. Receivers and senders can
be added dynamically at runtime, alowing the system to grow or shrink in
complexity over time. (Thisis a characteristic of messaging systemsin general.)

In this chapter, we introduce new versions of our Wol esal er and Ret ai | er classes, called
Quhol esal er and Qret ai | er. Qihol esal er still uses pub/sub to broadcast price quotes, while
Qretailer USES a p2p queue to respond with "buy" orders instead of publishing to a
temporary topic.

The rest of the chapter focuses on the unique capabilities offered by p2p: examining a
queue using the QueueBr owser interface, and load balancing among multiple recipients of a
queue.

5.1 Point-to-Point and Publish-and-Subscribe

Like publish/subscribe messaging, point-to-point messaging is based on the concept of
sending a message to a named destination. The actual network location of the destination is
transparent to the sender, because the p2p client works with a Queue identifier obtained
from a INDI namespace, the same way that a pub/sub client uses a Topi ¢ identifier.

The pub/sub model is based on a push model, which means that consumers are delivered
messages without having to regquest them. Messages are exchanged through a virtual
channel called a topic. From the viewpoint of the receiver, a p2p queue can either push or
pull messages, depending on whether it uses the asynchronous onivessage() callback, or a
synchronousrecei ve() method. Both of these methods are explained in more detail later.

In the p2p model, as in the pub/sub model, there is no direct coupling of the producers to
the consumers. The destination queue provides a virtual channel that decouples consumers
from producers. In the pub/sub model, multiple consumers that subscribe to the same topic
each receive their own copy of every message addressed to that topic. In the p2p model,

69

Java Message Service

multiple consumers can use the same queue, but each message delivered to the queue can
only be received by one of the queue's consumers. How messages delivered to a queue are
distributed to the queue's consumers depends on the policies of the JMS provider. Some
JMS providers use load-balancing techniques to distribute messages evenly among
consumers, while others will use more arbitrary policies.

Messages intended for a p2p queue can be either persistent or nonpersistent. Persistent
messages survive JMS provider failures, while nonpersistent messages do not. Messages
may have a priority and an expiration time. One important difference between point-to-
point and publish/subscribe messaging is that p2p messages are always delivered,
regardless of the current connection status of the receiver. Once a message is delivered to a
gueue, it stays there even if there is no consumer currently connected. More details on
failure scenarios can be found in Chapter 6.

The interfaces for connecting, creating, sending and receiving are similar to the interfaces
for topics, as shown in Table 5.1.

Table 5.1. Interfaces for Topics and Queues

Topic Queue

Topi cConnect i onFact ory QueueConnecti onFact ory
Topi cSessi on QueueSessi on

Topi cPubl i sher QueueSender

Topi cSubscri ber QueueRecei ver

creat eTopi cConnection() creat eQueueConnection()
creat eTopi cSession() creat eQueueSessi on()
creat eTenporaryTopi c() creat eTenpor aryQueue()

5.1.1 When to Use Point-to-Point Messaging

First, let's talk about why two distinct models exist. The rationale behind the two models
lies in the origin of the JMS specification. JMS started out as a way of providing a
common API for accessing existing messaging systems. At the time of its conception,
some messaging vendors had a p2p model, and some had a pub/sub model. Hence IMS
needed to provide an API for both models to gain wide industry support. The JIMS 1.0.2
specification does not require a IMS provider to support both models, athough most IMS
vendors do.

Almost anything that can be done with the pub/sub model can be done with point-to-point,
and vice versa. An analogy can be drawn to developers programming language
preferences. In theory, any application that can be written with Pascal can also be written
with C. Anything that can be written in C++ can also be written in Java. In some cases it
comes down to a matter of preference, or which model you are already familiar with.

In most cases, the decision about which model to use depends on the distinct merits of

each model. With pub/sub, any number of subscribers can be listening on a topic, all
receiving copies of the same message. The publisher may not care if everybody is

70

Java Message Service

listening, or even if nobody is listening. For example, consider a publisher that broadcasts
stock quotes. If any particular subscriber is not currently connected and misses out on a
great quote, the publisher is not concerned. Likewise, our wol esal er class didn't care
whether there were any subscribers when it sent price quotes: if a Ret ai | er missed a great
price, that wasn't the wiol esal er's problem. In contrast, a point-to-point session is likely to
be intended for a one-on-one conversation with a specific application at the other end. In
this scenario, every message really matters.

The range and variety of the data that the messages represent can be a factor as well. Using
pub/sub, messages are dispatched to the consumers based on filtering that is provided
through the use of specific topics. Even when messaging is being used to establish a one-
on-one conversation with another known application, it can be advantageous to use
pub/sub with multiple topics to segregate different kinds of messages. Each kind of
message can be dealt with separately through its own unique consumer and onvessage()
handler.

Point-to-point is more convenient when you want one receiver to process any given
message once-and-only-once. This is perhaps the most critical difference between the two
models: point-to-point guarantees that only one consumer processes a given message. This
is extremely important when messages need to be processed separately but in tandem,
balancing the load of message processing across many JMS clients. Another advantage is
that the point-to-point model provides a QueueBrowser that allows the JIMS client to peek
ahead on the queue to see messages waiting to be consumed. Pub/sub does not include a
browsing feature. We'll talk more about the QueueBr owser later in this chapter.

5.2 The QWholesaler and QRetailer

Let's rethink our wholesaler/retailer scenario in terms of the distinction between the two
message models. The pub/sub model is well suited for sending price quotes, since that is
naturally a one-to-many broadcast. However, when the retailer responds with a "buy"
order, it is more appropriate to use a point-to-point queue. In the real world, retailers
naturally deal with many wholesalers, and you would only send a purchase order to the
wholesaler that offered the quote.

From the user's perspective, the Qmol esal er and Qret ai | er examples that we'll develop
now are functionaly equivalent to the wol esal er and Retai | er examples introduced in
Chapter 4. The difference lies in the use of the point-to-point queue for responses to price
guotes. If you wish to see these classes in action, start your JMS provider and execute the
following commands, each in a separate command window:

j ava chap5. B2B. Q Whol esal er | ocal host usernane password
java chap5.B2B. Q Retail er |ocal host usernane password

5.2.1 The QRetailer Class

Hereis the listing for the Qret ai | er classin its entirety. Later, we will examine this class
in detail:

i mport java.util.StringTokenizer;
i mport java.util.Properties;
i mport javax. nam ng. | nitial Context;

71

j avax. j
j avax. j
j avax. j
j avax. j
j avax. j
j avax. j
j avax. j

. Topi cConnect i onFact ory;
. QueueConnecti onFact ory;
. Topi c;

. Queue;

. Sessi on;

. St reanmVessage

. Text Message;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
public class
vat e
vat e
vat e

j avax.
j avax.
j avax.

jns.
j ms.
jms.

pri
pri
pri

QueueSessi on gSessi on

vat e
vat e

j avax.
j avax.

jms.
j ms.

pri
pri Topi cSessi on t Sessi on
private
private
private
private

javax.j ns.
javax.j ns.
static bool ean useJND
static String unane =

= fal se;
nul | ;

public QRetailer(String broker,
try {
Topi cConnecti onFactory tFactory
QueueConnecti onFactory qgFactory
Initial Context jndi = null
uname = user nane;

String

Properties env =

QRetai l er inplenents javax.jms.
QueueConnecti on gqConnect =
QueueSender qSender =
Topi cConnection t Connect =

Topi ¢ hot Deal sTopic =
Topi cSubscri ber tsubscriber =

Java Message Service

MessagelLi st ener {
nul |

= null;

nul | ;

nul | ;
= null;

nul | ;
nul |

usernane, String password){

nul | ;
nul | ;

new Properties();

/1 specify the JNDI properties specific to the vendor
jndi = new Initial Context(env);
tFactory =

(Topi cConnecti onFact ory)j ndi .| ookup(broker);
qFactory =

(QueueConnecti onFact ory)j ndi .| ookup(broker);
t Connect =

t Factory. creat eTopi cConnecti on (usernane, password);
gConnect =

gFact ory. cr eat eQueueConnecti on (usernane, password);

t Connect . setC i ent| D(usernane);
gConnect . setd i ent| D(user nane) ;

t Session =

t Connect . cr eat eTopi cSessi on(f al se,
Sessi on. AUTO_ACKNOWL.EDGE)

gSessi on =

gConnect . cr eat eQueueSessi on(f al se,
javax. j ns. Sessi on. AUTO_ACKNOW.EDGE)

hot Deal sTopi ¢ = (Topic)jndi.|ookup("Hot Deal s");

t subscri ber =

t Sessi on. creat eDur abl eSubscri ber (hot Deal sTopi c,

"Hot Deal s Subscription");

t subscri ber. set Messageli st ener (t hi s);

t Connect.start();

} catch
jmse. printStackTrace();
Systemexit(1)

(javax.jnms. JVMSException jnse){

} catch (javax.nam ng. Nam ngException jne){

jne.printStackTrace();
}

public void onMessage(j avax.j ns. Message

try |
aut oBuy(aMessage) ;

System exit (1)

aMessage) {

72

Java Message Service

} catch (java.lang. Runti neException rte){
rte.printStackTrace();

}
}
private void autoBuy (javax.jns. Message nmessage){
try {
StreanVessage strnvsg = (Streanmvessage) nessage;
String deal Desc = strmMvsg.readString();
String itenDesc = strmMvsg.readString();
float oldPrice = strnisg. readFl oat();
float newPrice = strmvsg. readFl oat();
Systemout. println("Received Hot Buy: "+deal Desc);
/'l If price reduction is greater than 10 percent, buy
if (newPrice == 0 || oldPrice / newPrice > 1.1)
int count = (int)(java.lang. Math.random)*(doubl e)1000);
Systemout. println("\nBuying " + count +" "+ itenDesc);
Text Message text Msg = t Sessi on. creat eText Message();
t ext Msg. set Text (count + " " + itenDesc);
t ext Msg. set | nt Property("Qry", count);
t ext Msg. set IMsCorrel ati onl D(unane) ;
Queue buyQueue = (Queue) nessage. get IMSRepl yTo();
gSender = gSessi on. cr eat eSender (buyQueue) ;
gSender. send(textMsg,
j avax. j ms. Del i ver yMode. PERSI STENT,
j avax. j ms. Message. DEFAULT_PRI ORI TV,
1800000) ;
} else {
Systemout.println ("\nBad Deal. Not buying");
} catch (javax.jnms.JVMSException jnse){
jmse. printStackTrace();
}
}
private void exit(String s){
try {

if (s!=null &&
s. equal sl gnor eCase("unsubscri be"))
{

tsubscri ber.close();
t Sessi on. unsubscri be("Hot Deal s Subscription");
}
t Connect . cl ose();
gConnect . cl ose();
} catch (javax.jnms.JVMSException jnse){
jmse. printStackTrace();
}

System exit(0);

public static void main(String argv[]) {

String broker, usernane, password;

if (argv.length == 3){
broker = argv[O0];
username = argv[1];
passwor d argv[2] ;

} else {
Systemout.println("Invalid argunents. Should be: ");
Systemout.println
("java QRetail er broker usernane password");
return;

}

QRetailer retailer = new QRetailer(broker, usernane, password);

73

Java Message Service

try {
Systemout.printin("\nRetailer application started.\n");
/1 Read all standard input and send it as a nessage
java.io.BufferedReader stdin =
new j ava. i o. Buf f er edReader

(new java.io.lnputStreanReader(Systemin));
while (true){

String s = stdin.readLine();

if (s ==null)retailer.exit(null);

else if (s.equal slgnoreCase("unsubscribe"))
retailer.exit (s);

}

} catch (java.io.|lCException ioe){
i oe.printStackTrace();

}

Now let's ook at the code in detail. A session can either be a QueueSessi on (point-to-point)
or a Topi cSessi on (publish/subscribe). It cannot be both at the same time. Similarly, a
gueue can be either a QueueConnection OF & Topi cConnection. Therefore we create a
connection and a session for each model in the Qret ai | er 's constructor:

public QrRetailer(String broker, String usernane, String password){

tFactory =

(Topi cConnecti onFact ory)j ndi .| ookup(broker);
gFactory =

(QueueConnecti onFact ory)j ndi .| ookup(broker);
t Connect =

tfactory. createTopi cConnection (usernanme, password);
gConnect =

gf actory. cr eat eQueueConnecti on (usernanme, password);

t Connect . setd i entl| D(usernane);
gConnect . set d i ent| D(usernane) ;

t Session =
t Connect . creat eTopi cSessi on(fal se,
Sessi on. AUTO_ACKNOWLEDGE) ;
gSession =
gConnect . cr eat eQueueSessi on(f al se,
javax. j ms. Sessi on. AUTO_ ACKNOW.EDGE) ;

The aut oBuy() method is responsible for sending the "Buy Order" messages. This method
isinvoked by the onvessage() handler for the "Hot Deals" topic:

private void autoBuy (javax.jns. Message nessage){
fé;d Msg. set IMSCorrel ati onl D(" Durabl eRetail er");
Queue buyQueue = (Queue) nessage. get IMSRepl yTo();
gSender = gSessi on. cr eat eSender (buyQueue) ;
gSender. send(text Mg,
j avax. j ms. Del i ver yMode. PERSI STENT,

j avax. j nms. Message. DEFAULT_PRI ORI TY,
1800000) ;

74

Java Message Service

The vessage object itself is independent of the domain being used to transport it. All of the
same headers and properties apply to each. Therefore, we can set a correlation 1D, extract
an object to reply to (this time, it's a Queue), and use the Queue to create a sender. The
QueueSender . send() method is identical in form to the Topi cPublisher. publish()
method. Here is the interface definition for the Queuesender object:

public interface QueueSender
Ext ends MessagePr oducer
{

Queue get Queue() throws JMSException;
voi d send(Message nessage) throws JMSExcepti on,
MessageFor mat Excepti on, |nvalidDestinati onExcepti on;

voi d send(Message nessage, int deliveryMde,
int priority, long tinmeToLive) throws JNMSException,
MessageFor mat Excepti on, |nvali dDestinati onExcepti on;

voi d send(Queue queue, Message nessage) throws JMSException,
MessageFor mat Excepti on, |nvalidDestinati onExcepti on;

voi d send(Queue queue, Message nessage, int deliveryMde,
int priority, long tineToLive) throws JVSException,
MessageFor mat Excepti on, InvalidDestinati onExcepti on;

The Queuesender object is created as part of the onvessage() handler, using the call to the
creat eSender () method. As an alternative, we could have created the QueueSender oncein
the Qretailer's constructor using nul | as a parameter, then specified buyQueue as a
parameter to the send() operation each time the onvessage() method is invoked. For
most applications, this would be more efficient; the example recreates the Quevesender for
clarity.

5.2.2 The QWholesaler Class

Here is the complete listing for the Qwhol esal er class:

import java.util.StringTokeni zer;

i mport java.util.Properties;

i mport javax.nam ng. I nitial Context;

i mport javax.]j ns. Topi cConnecti onFactory;
i mport javax.]j ns. QueueConnecti onFactory;
i mport javax.jms. Topi c;

i mport javax.j nms. Queue;

i mport javax.] ns. QueueRecei ver;

i mport javax.j nms. Sessi on;

i mport javax.] ns. Text Message;

public class QMol esal er inplenents javax.jns. Messageli st ener{

private javax.|ms. Topi cConnection tConnect = null;
private javax.jns. Topi cSession tSession = null;

private javax.jms. Topi cPublisher tPublisher = null;
private javax.jms. QieueConnecti on gqConnect = null;
private javax.ns. QieueSessi on gqSession = null;
private javax.ns. Queue recei veQueue = null;

private javax.jmnms. Topi ¢ hotDeal sTopic = null;
private javax.jmns. TenporaryTopi ¢ buyOrdersTopic = null;

public Qnol esaler(String broker, String usernane, String password){
try {

75

Java Message Service

nul | ;
nul | ;

Topi cConnecti onFactory tFactory
QueueConnecti onFactory gFactory
Initial Context jndi = null;

Properties env = new Properties();

[l ... specify the JNDI properties specific to the vendor
jndi = new Initial Context(env);
t Factory =
(Topi cConnecti onFact ory)j ndi .| ookup(broker);
qFactory =

(QueueConnecti onFact ory)j ndi .| ookup(broker);
t Connect = tFactory.createTopi cConnection (usernanme, password);
gConnect = gFactory. creat eQueueConnection (usernanme, password);
t Session =

t Connect . cr eat eTopi cSessi on(f al se, Sessi on. AUTO_ACKNOALEDGE) ;
gSession =

gConnect . cr eat eQueueSessi on(f al se, Sessi on. AUTO_ACKNOANLEDGE) ;

hot Deal sTopi ¢ = (Topic)jndi.|ookup("Hot Deal s");
recei veQueue = (Queue)j ndi .| ookup(" Sanpl eQL");

t Publ i sher = t Sessi on. creat ePubl i sher (hot Deal sTopi c);

QueueRecei ver gRecei ver = gSession. creat eRecei ver (recei veQueue);
gRecei ver. set MessagelLi stener(this);

/1 Now that setup is conplete, start the Connection
gConnect.start();
t Connect.start();
} catch (javax.jms.JNMSException jnse){
jmse.printStackTrace(); Systemexit(1);
} catch (javax.nam ng. Nam ngException jne){
jne.printStackTrace(); Systemexit(1);

}
private void publishPriceQuotes(String deal Desc, String usernang,
String itenDesc, float ol dPrice,
float newPrice){
try {
javax.j ns. St reamVessage nessage =
t Sessi on. creat eSt reanVessage();
nessage. witeString(deal Desc);
nessage. witeString(itenDesc);
nessage. wit eFl oat (ol dPrice);
nessage. wi t eFl oat (newPrice);

nmessage. set Stri ngProperty("Usernane", usernane);
nmessage. set Stri ngProperty("itenDesc", itenDesc);

nessage. set JMSRepl yTo(r ecei veQueue) ;

t Publ i sher. publ i sh(
nessage,
j avax.j ns. Del i ver yMode. PERSI STENT,
javax. j ms. Message. DEFAULT_PRI ORI TY,
1800000) ;
} catch (javax.jnms.JVMBException jnmse){
jmse. printStackTrace();

}
public void onMessage(javax.jns.Message nessage){
try {
Text Message text Message = (Text Message) nessage;
String text = textMessage. getText();
Systemout.println("Order received - "+text+
" from" + nessage.getJMsCorrelationlD());
} catch (java.lang. Exception rte){

76

Java Message Service

rte.printStackTrace();
}

public void exit(){
try {
t Connect . cl ose();
gConnect . cl ose();
} catch (javax.jns.JVSException jnse){
jmse. printStackTrace();

System exit (0);
}
public static void main(String argv[]) {
String broker, username, password;
if (argv.length == 3){
broker = argv[O0];
usernane = argv[1];
password = argv[2];
} else {
Systemout.printin("lnvalid arguments. Should be: ");
Systemout.println
("java Qnol esal er broker usernane password");
return;

}

Qnhol esal er whol esal er = new QMol esal er (broker, usernane, password);

try
/'l Read all standard input and send it as a nessage
java.io.BufferedReader stdin = new java.io. BufferedReader
(new java.io. | nput StreanReader (Systemin));
Systemout.println ("Enter: Item Od Price, New Price");
Systemout.println("\ne.g. Bowing Shoes, 100.00, 55.00");

while (true){
String deal Desc = stdin.readLine();
if (deal Desc != null && deal Desc.length() > 0){
/'l Parse the deal description
StringTokeni zer tokenizer =
new StringTokeni zer (deal Desc, ", ")
String itenDesc = tokenizer. next Token();
String tenp = tokenizer. next Token();
float ol dPrice =
Fl oat . val ueO (tenmp.trin()).floatVal ue();
tenp = tokenizer. next Token();
float newPrice =
Fl oat . val ueO (tenmp.trin()).floatVal ue();

whol esal er. publ i shPri ceQuot es(deal Desc, user nane,
i tenDesc, ol dPrice, newPrice);
} else {
whol esal er.exit();
}

} catch (java.io.|l CException ioe){
i oe. printStackTrace();
}

The job of Qwiol esal er iSsto establish apubl i sher for broadcasting the price quotes, and to
establish a Queuerecei ver for consuming the "Buy Order" messages. These objects are
created in the constructor:

7

Java Message Service

public QMol esal er(String broker, String usernane, String password){

t Session =

t Connect . cr eat eTopi cSessi on(f al se, Sessi on. AUTO_ ACKNOALEDGE) ;
gSession =

gConnect . cr eat eQueueSessi on(f al se, Sessi on. AUTO_ACKNOWN_EDGE) ;

hot Deal sTopi ¢ = (Topic)jndi.|ookup("Hot Deal s");
recei veQueue = (Queue)j ndi. | ookup("Sanpl eQL"); // Buy O der

t Publ i sher = t Sessi on. creat ePubl i sher (hot Deal sTopi c¢);

QueueRecei ver gRecei ver = (Sessi on. creat eRecei ver (recei veQueue) ;
gRecei ver. set Messageli st ener (this);
gConnect.start();

.

Here we are creating a QueueSessi on using the creat eQueueSessi on() method on the
QueueConnect i on Object. We are creating a receiver using the creat eRecei ver () method
on the Queuesession object. These methods are identical to their counterparts in the
pub/sub domain.

Thereisvery little left to explain. The publ i shPricesQuotes() method works exactly asit
did in Chapter 4, with the exception that it now places a Queue in the Jvsrepl yTo header:

private void publishPriceQuotes(String deal Desc, String usernane,
String itenDesc, float ol dPrice,
float newPrice)({

nessage. set JMSRepl yTo(r ecei veQueue) ;

t Publ i sher . publ i sh(
nessage,
javax.j ns. Del i ver yMode. PERSI STENT,
javax. j ns. Message. DEFAULT_PRI ORI TY,
1800000) ;

}

The onMvessage() method also works exactly as it did before. The programming model is
the same whether we use a Queue or a Topi c. Likewise we could have used the aternate
QueueRecei ver. recei ve() method to do a synchronous receive. This method is the same
asthe Topi csubscri ber. reci eve() method discussed in Chapter 4.

The similarity between this code and the code in Chapter 4 is the beauty of JMS. Even
though there are two separate messaging domains, the interfaces follow the same idiom,
making it easier to remember and easy to change from one domain to the other.

5.3 Creating a Queue Dynamically

The setup and configuration of queues tends to be vendor-specific. A queue may be used
exclusively by one consumer, or shared by multiple consumers. It may have a size limit
(limiting the number of unconsumed messages held in the queue) with options for in-
memory storage versus overflow to disk. In addition, a queue may be configured with a
vendor-specific addressing syntax, or special routing capabilities.

78

Java Message Service

JMS doesn't attempt to define a set of APIs for all the possible options on a queue. It
should be possible to set these options administratively, using the vendor-specific
administration capabilities. Figure 5.1 shows what a graphica administration tool for
gueues would look like. Most vendors supply a command-line administration tool, a
graphical administration tool, or an APl for administering queues at runtime. Some
vendors supply all three.

Figure 5.1. Queues are created and administered using vendor-specific administration tools

i3 SenioM) Exploro [O] =]
Esplorar View Help
Roo cugues | Gueus Security| Messages |
& JME Administered Objsct E4
Wassage Brokers Chsdui Globdl | Extlusive | Retime | Savé Wax
O o e R T B A e Mot ast Eakes in
s Clustars A e Soulwest Salesin 1200 14080 1000
R SOnicHR deadkessage d V200 1400 10000
Groups
® Topice
= LN
& Rouling
& Mainics
® Evenls
0055 - e300 A0
Topics
Cusues
& Roifing
¥ Matics
[Evaiils
p _ﬂ W Ity dé System Qusues E Calela |
[Wanage Gueuss, Gueus GOF, Grouptbser ACLS and Queis Messages

Using vendor-specific administration APIs to create and configure a queue may be
convenient at times. However, it is not very portable, and may require that the application
have administrator privileges.

JMS provides a QueueSession. creat eQueue(String queueNane) method, but this is not
intended to define a new queue in the messaging system. It is intended to return a Queue
object that represents an existing queue. There is aso a JM S-defined method for creating a
temporary queue that can only be consumed by the JMS client that created it:
QueueSessi on. creat eTenporaryQueue(). A temporary queue is similar to a temporary
topic, and could have been used in our example just like the Terpor ar yTopi ¢ was used in
Chapter 4.

5.4 Load Balancing Using Multiple QueueSessions

A queue may have multiple receivers attached to it for the purpose of distributing the
workload of message processing. The JM S specification states that this capability must be
implemented by a JMS provider, athough it does not define the rules for how the
messages are distributed among consumers. A sender could use this feature to distribute
messages to multiple instances of an application, each of which would provide its own
receiver.

When multiple receivers are attached to a queue, each message in the queue is delivered to
one receiver. The absolute order of messages cannot be guaranteed, since one receiver may
process messages faster than another. From the receiver's perspective, the messages it
consumes should be in relative order; messages delivered to the queue earlier are
consumed first. However, if a message needs to be redelivered due to an acknowledgment
failure, it is possible that it could be delivered to another receiver. The other receiver may

79

Java Message Service

have already processed more recently delivered messages, which would place the
redelivered message out of the original order.

If you would like to see multiple recipients in action, try starting two instances of
Quhol esal er and three or more instances of Qretailer, €ach in a separate command
window:

java chap5. B2B. QMol esal er | ocal host WHOLESALER1 password
j ava chap5. B2B. QMol esal er | ocal host WHOLESALER2 password
java chap5. B2B. Qret ai | er | ocal host RETAI LERL password
java chap5. B2B. QRet ai | er | ocal host RETAI LER2 password
java chap5. B2B. QRet ai | er | ocal host RETAI LER3 password

In the command window for one of the Quol esal er applications, type the following
command:

Sur f boards, 999.99, 499. 99

Upon hitting the enter key, each instance of Qretailer will get the price quote, and
respond with a"Buy" order. If you have three Qret ai | ers up and running, you should see
two of the messages going to one of the Qmol esal er s, and one going to the other.

s If you don't see this behavior, load balancing may not be broken. It
as may mean that vendor-specific queue settings are preventing load
W . .

“ 4 balancing; you may need to send more than three messages

simultaneously to populate the queue enough to cause the messages
to be delivered to more than one consumer. For example, in SonicMQ
there is a configurable pre-fetch count that determines how many
messages may be batched together as they are delivered to a
consumer. The default is three messages, so the messages get
delivered to each consumer three at a time. The SonicMQ version of
these samples has some code that sets the value to one, which makes
load balancing work properly with only three clients:

gRecei ver. set Pref et chThreshol d(0);
gRecei ver. set Pref et chCount (1);

It is likely that other vendors have the same kind of optimization, so
you should check that possibility if you are using a vendor other than
SonicMQ and don't see the proper behavior.

5.5 Examining a Queue

A QueueBrowser IS a specialized object that allows you to peek ahead at pending messages
on a Qeue without actualy consuming them. This feature is unique to point-to-point
messaging. Queue browsing can be useful for monitoring the contents of a queue from an
administration tool, or for browsing through multiple messages to locate a message that is

80

Java Message Service

more important than the one that is at the head of the queue. The latter scenario is what we
chose to explore in our new version the wholesaler application, the Qer owser .

QBrowser Sends out price quotes to multiple instances of Qret ai | er, which respond with
"Buy" orders. To make this more interesting, we'll modify the retailer so that each order
requests a random number of items. The Querowser may not be able to fulfill all of the
orders from its on-hand inventory.

In order to sell as many items from inventory as possible without going into backorder,
Qerowser examines all of the responses that are pending in the queue, then finds the one
order with a quantity that most closely fits the amount it has in inventory. It then
synchronously consumes all of the messages using QueueRecei ver . recei ve(l ong ti neout),
fulfills the desired order, and places the rest of them in a back-order status.

If you would like to see this in action, shut down all the other wholesalers and retailers you
may have running. Start one instance of Querowser and four or more instances of
QRret ai | er, each in a separate command window:

java chap5. B2B. Q\Br owser | ocal host WHOLESALERL passwor d

java chap5. B2B. QRet ai | er | ocal host RETAI LERL password
java chap5. B2B. QRet ai | er | ocal host RETAI LER2 password
java chap5. B2B. QRet ai | er | ocal host RETAI LER3 password
java chap5. B2B. QRet ai | er | ocal host RETAI LER3 password

In the command window for the /& ovser , type the following command:

Sur f boards, 999.99, 499.99

When you press Enter, each instance of Qretail er will get the price quote, and respond
with a"Buy Order." Each order will request a different quantity. Y ou should see output in
the Quer onser window indicating that it is browsing the queue, placing the order for one of
the messages, and placing the rest on back-order status.

5.5.1 The QWBrowser Source Code

The QueueBrowser object is simple to use. We will examine this listing from
QWBr owser . exam neQueue() in detail:

private int exam neQueue(int inStockQy)
{
int cnt = O;
int bestQy = 0;
try {
Systemout.printIn("In Stock Qry: " + inStockQy);
Systemout.print ("Creating QueueBrowser...");
j avax. j ns. QueueBrowser browser
= (Sessi on. creat eBrowser (recei veQueue) ;
Systemout.println ("[done]");

java.util.Enuneration e = browser.get Enuneration();
whi | e(e. hasMor eEl enent s()){
Systemout.print(" --> getting nessage "
+ String.valueO(++cnt) + "...");
j avax.]j ns. Text Message nessage =
(javax.jms. Text Message) e.nextEl ement();
Systemout.println("[" + nessage.getText() + "1");

81

Java Message Service

if (message !'= null){
int orderQy = message.getlntProperty("Qry");
if (orderQy > bestQy &% orderQy <= inStockQy)
best @y = orderQy;
}
}
/1l Free any resources in the browser
br owser. cl ose();
} catch (javax.jmnms.JMSException jnse){
jmee. printStackTrace();

Systemout.printin("\nBestQy: " + bestQy);
return bestQy;

}
First, note the call to create the QueueBr owser :

Systemout.print ("Creating QueueBrowser...");
j avax.] nms. QueueBr owser browser
= (gSessi on. creat eBrowser (recei veQueue) ;
Systemout.println ("[done]l™);

The method creat eQueueBrowser () is a session method. It takes a Queue oObject as a
parameter and returns a QueueBrowser Object. The creat eQueueBrowser () method, in
additon, allows you to set a message selector using an overloaded method signature.

The QueueBrowser Object containsa j ava. uti| . Enunerati on that holds the messages in the
gueue. Here's how to useit:

java.util.Enuneration e = browser. get Enuneration();
whi | e(e. hasMor eEl enent s()){
j avax.] ns. Text Message nessage =
(javax.jms. Text Message) e.nextEl ement();
Systemout.println("[" + nmessage.getText() + "1");

When the browser has served its purpose, it must be closed. Thisinforms the IMS provider
that it is no longer needed, thus alowing the provider to clean up any resources it may
have alocated on the browser's behalf:

/1l Free any resources in the browser
browser. cl ose();

Now let's look at the main input loop, which publishes the prices quotes, browses the
gueue, then uses a synchronous QueueRecei ver t0 consume the messages after it has
browsed them:

public void processlnput(){
try {

Sy.st.ém out.println ("Enter: Item Od Price, New Price");
Systemout.println("\ne.g. Bowing Shoes, 100.00, 55.00");
String deal Desc = stdin.readLine();

publ i shPri ceQuot es(deal Desc, unarne,
i tenDesc, ol dPrice, newPrice);

int inStockQy =

(int)(java.lang. Math.randon() * (double)1000);
int bestQy = exam neQueue(inStockQy);

82

Java Message Service

gConnect.start(); // Start the connection
j avax.] ns. Text Message text Message = nul | ;
while(true){
t ext Message =
(j avax.j ms. Text Message) qRecei ver. recei ve(1000);
if (textMessage == null){
gConnect . stop();
break; // No nore nessages to get
}
String text = textMessage. getText();
int gty = textMessage. getlntProperty("Qry");
Systemout. println("\nOrder received - "+text+
" from" + textMessage.getJMSCorrelationl D());

if (qty == bestQy){

Systemout.printin("Fulfilling order");
/1 Do sonme processing to fulfill order
} else {

Systemout. println("Placing i n BACK- ORDER st at us");
/1 Do sone processing to create BACK- ORDER st at us

}

Messages obtained from a QueueBr owser are copies of messages contained in the queue and
are not considered to be consumed - they are merely for browsing.

It is important to note that the QueueBrowser IS not guaranteed to have a definitive list of
messages in the queue. The JMS specification allows the QueueBrowser to contain a
snapshot, or a copy of, the queue as it appears at the time the QueueBr owser IS created. The
behavior may vary depending on vendor implementation, since the contents of the queue
may change between the time the browser is created and the time you examine its contents.
No matter how small that window of timeis, new messages may arrive and other messages
may be consumed by other IMS clients. Some JM S providers will update QueueBr owser Sas
the status of the queue changes while others will not.

83

Java Message Service

Chapter 6. Guaranteed Messaging, Transactions,
Acknowledgments, and Failures

We have been introducing the notion of guaranteed messaging in bits and pieces
throughout the book. Until now, we have assumed that you would take our word that
guaranteed messaging ensures that messages are faithfully delivered once-and-only-once
to their intended consumers.

This chapter examines why guaranteed messaging works, and provides a thorough
discussion of the subject. We will examine the message acknowledgment protocols that are
part of guaranteed messaging, and how to use client acknowledgments in applications. We
will explore the design patterns of JM S that enable you to build guaranteed messaging into
applications, and discuss failure scenarios, the rules that apply to recovery, and how to deal
with recovery semanticsin a JM S application.

6.1 Guaranteed Messaging

Guaranteed messaging is more than just a mechanism for handling disconnected
consumers. It is acrucial part of the messaging paradigm, and is the key to understanding
the design of a distributed messaging system. There are three main parts to guaranteed
messaging: message autonomy, store-and-forward, and the underlying message
acknowledgment semantics.

Before we discuss the parts of guaranteed messaging, we need to review and define some
new terms. A JMS client application uses the IMS API. Each JMS vendor provides an
implementation of the IMS API on the client, which we call the client runtime. In addition
to the client runtime, the JMS vendor also provides some kind of message "server" that
implements the routing and delivery of messages. The client runtime and the message
server are collectively referred to as the IMS provider. Regardless of the architecture used
by a JMS provider, the logical parts of a JMS system are the same. The number of
processes and their location on the network is unimportant for this discussion. (In Chapter
7, we'll see that some providers use a multicast architecture in which there is no central
server.) The upcoming sections make use of diagrams that describe the logical pieces, and
do not necessarily reflect the process architecture of any particular IMS provider.

A provider failure refers to any failure condition that is outside of the domain of the
application code. It could mean a hardware failure that occurs while the provider is
entrusted with the processing of a message, or an unexpected exception, or the abnormal
end of a process due to a software defect, or network failures.

6.1.1 Message Autonomy

Messages are self-contained autonomous entities. This fact needs to be foremost in your
mind when designing a distributed messaging application. A message may be sent and
resent many times across multiple processes throughout its lifetime. Each IMS client along
the way will consume the message, examine it, execute business logic, modify it, or create
new messages in order to accomplish the task at hand.

Java Message Service

In a sense, a IMS client has a contract with the rest of the system: when it receives a
message, it does its part of the processing, and may deliver the message (or new message)
to another topic or queue. When a JMS client sends a message, it has done its job. The
messaging server guarantees that any other interested parties will receive the messages.
This contract between the sender and the message server is much like the contract between
a JDBC client and a database. Once the data is delivered, it is considered "safe" and out of
the hands of the client.

6.1.2 Store-and-Forward Messaging

When messages are marked persistent, it is the responsibility of the IMS provider to utilize
a store-and-forward mechanism to fulfill its contract with the sender. The storage
mechanism is used for persisting messages to disk (or some other reliable medium) in
order to ensure that the message can be recovered in the event of a provider failure or a
failure of the consuming client. The implementation of the storage mechanism is up to the
JMS provider. The messages may be stored centrally (as is the case with centralized
architectures), or locally, with each sending or receiving client (the solution used by
decentralized architectures). Some vendors use a flat-file storage mechanism, while others
use a database. Some use an intelligent combination of both. The forwarding mechanismis
responsible for retrieving messages from storage, and subsequently routing and delivering
them.

6.1.3 Message Acknowledgments and Failure Conditions

JMS specifies a number of acknowledgment modes. These acknowledgments are a key
part of guaranteed messaging. A message acknowledgment is part of the protocol that is
established between the client runtime portion of the IMS provider and the server. Servers
acknowledge the receipt of messages from JMS producers and JMS consumers
acknowledge the receipt of messages from servers. The acknowledgment protocol allows
the JMS provider to monitor the progress of a message so that it knows whether the
message was successfully produced and consumed. With this information, the JMS
provider can manage the distribution of messages and guarantee their delivery.

6.2 Message Acknowledgments

The message acknowledgment protocol is the key to guaranteed messaging, and support
for acknowledgment is required by the semantics of the IMS API. This section provides an
in-depth explanation of how the acknowledgment protocol works and its role in guaranteed

messaging.

We will begin by examining the Auto acknow EDGE mode. We will revisit this discussion
later as it pertains to CLI ENT_ACKNOW.EDGE, DUPS OK_ACKNOW.EDGE, and JMS transacted
messages. An understanding of the basic concepts of Auto Acknow EDGE will make it easy
to grasp the fundamental concepts of the other modes.

The acknowledgment mode is set on a JIMS provider when a sessi on is created:

t Sessi on = t Connect. creat eTopi cSessi on(fal se, Session. CLI ENT_ACKNOA_EDCGE) ;

gSessi on = gConnect . creat eQueueSessi on(fal se, Sessi on. DUPS_OK_ACKNOWN_EDGE) ;

85

Java Message Service

6.2.1 AUTO_ACKNOWLEDGE

WE'l look at the Auto acknow EDGE mode from the perspective of a message producer, the
message server, and the message consumer.

6.2.1.1 The producer's perspective

Under the covers, the Topi cPubl i sher. publish() OF QueueSender.send() methods are
synchronous. These methods are responsible for sending the message and blocking until an
acknowledgment is received from the message server. Once an acknowledgment has been
received, the thread of execution resumes and the method returns; processing continues as
normal. The underlying acknowledgment is not visible to the client programming model. If
afailure condition occurs during this operation, an exception is thrown and the message is
considered undelivered.

6.2.1.2 The server's perspective

The acknowledgment sent to the producer (sender) from the server means that the server
has received the message and has accepted responsibility for delivering it. From the IMS
server's perspective, the acknowledgment sent to the producer is not tied directly to the
delivery of the message. They are logically two separate steps. For persistent messages,
the server writes the message out to disk (the store part of store-and-forward), then
acknowledges to the producer that the message was received (see Figure 6.1). For
nonpersistent messages, this means the server may acknowledge the sender as soon as it
has received the message and has the message in memory. If there are no subscribers for
the message's topic, the message may be discarded depending on the vendor.

' |n reality, these two operations may likely happen in parallel, but that depends on the vendor.

Figure 6.1. Send and receive are separate operations

Persistent Messages
(Normal Operation)

Send

Jms @sen
Producer /-

@ Ack

(@) publishi) method returns

& Persist

Persistent
Store

In a publish-and-subscribe model, the message server delivers a copy of a message to each
of the subscribers. For durable subscribers, the message server does not consider a
message fully delivered until it receives an acknowledgment from all of the message's
intended recipients. It knows on a per-consumer basis which clients have received each
message and which have not.

86

Java Message Service

Once the message server has delivered the message to all of its known subscribers and has
received acknowledgments from each of them, the message is removed from its persistent
store (see Figure 6.2).

Figure 6.2. A message is removed when the last known subscriber has acknowledged

Persistent Messages
{Normal Operation)

fAecel
IMs ® fecalve =®
Server o Consumer

@ Remove from persistent storg

Persistent
Store

If the subscriptions are durable and the subscribers are not currently connected, then the
message will be held by the message server until either the subscriber becomes available,
or the message expires. This is true even for nonpersistent messages. If a nonpersistent
message is intended for a disconnected durable subscriber, the message server saves the
message to disk as though it were a persistent message. In this case, the difference between
persistent and nonpersistent messages is subtle, but very important. For nonpersistent
messages, there may be a window of time after the message server has acknowledged the
message to the sender and before it has had a chance to write the message out to disk on
behalf of the disconnected durable subscribers. If the JMS provider fails during this
window of time the message may be lost (see Figure 6.3).2

(2 In practice the IMS provider may not allow this condition to happen. However, the JMS
specification doesinfer that this failure condition can occur.

Figure 6.3. Nonpersistent messages with durable subscribers may be lost

Senid
HJMS] (D sen
oducer /=

@ack

(3) pubilish) method returis

Monpersistent Messages
(Provider Failure)

Diirabie Subschber

@ Provider Fails

®) Message is Lost!

With persistent messages, a provider may fail and recover gracefully, as illustrated in
Figure 6.4 and Figure 6.5. Since the messages are held in persistent storage, they are not
lost, and will be delivered to consumers when the provider starts up again. If the messages
are sent using a p2p queue, they are guaranteed to be delivered. If the messages were sent

87

Java Message Service

via publish-and-subscribe, they are only guaranteed to be delivered if the consumers
subscriptions are durable. The delivery behavior for nondurable subscribers may vary from
vendor to vendor.

Figure 6.4. Persistent messages will NOT be lost in the event of a provider failure

JMS
Producer

@ publish() method retums @ Persist ® Provider Fails

Persistent Messages
(Provider Failure)

Persistent
Store

() Message retained in persistent store
Figure 6.5. Persistent messages are delivered upon recovery of the provider

Persistent Massages
(Provider Recavers)

facaive
@ - JMS
@ Aok Consumer

{‘Dﬁecw&r from persistent store @ Remeave from persistent store

JWs
Praducer

Persistent
Store

6.2.1.3 The consumer's perspective

There are also rules governing acknowledgments and failure conditions from the
consumer's perspective. If the session is in AurO AckNOwEDGE mode, the IMS provider's
client runtime must automatically send an acknowledgment to the server as each consumer
gets the message. If the server doesn't receive this acknowledgment, it considers the
message undelivered and may attempt redelivery.

6.2.1.4 Message redelivery

The message may be lost if the provider fails while delivering a message to a consumer
with a nondurable subscription. If a durable subscriber receives a message, and a failure
occurs before the acknowledgment is returned to the provider (see Figure 6.6), then the
JMS provider considers the message undelivered and will attempt to redeliver it (see
Figure 6.7). In this case the once-and-only-once requirement is in doubt. The consumer
may receive the message again, because when delivery is guaranteed, it's better to risk
delivering a message twice than to risk losing the message entirely. A redelivered message
will have the Jvsredel i vered flag set. A client application can check this flag by calling

88

Java Message Service

the get JVBRedel i vered() method on the vessage object. Only the most recent message
received is subject to this ambiguity.

Figure 6.6. Failure occurs during the delivery of a message to a durable subscriber

Durahle Subscriber

(Gonsumer Fails)
JME @ Sang
Pmdur:ar

(@ publish() method retums

Durabie Subiscriber

(B) Recsive

Consumer fails
& Persist

Persistent
Store

(@ Message still in persistent store
Figure 6.7. Durable subscriber recovers

Durable Subscribar

{Gonsumer Recovers) Paraita Suscriber

JNS @Eﬂﬁ'ﬁ'ﬁl"ﬁr
Producer

@ﬁ‘eggvgr from pfr&.l'_-gfgn_r stare I @Hﬁ'mﬂvg from Dﬂ.rs'_l'sw.'?ll siore

Persistent
Store

To guard against duplicate messages while in Auto Acknow EDGE mode, an application must
check whether a redelivered message was already processed. One common technique for
checking is to use a database table that is keyed on the JvsMessagel D header. A
JMBMessagel D IS unique for all messages and is intended for historical monitoring of
messages in arepository. The Jvsivessagel D IS therefore guaranteed to retain its uniqueness
across provider failures. An aternate approach would be to use the cLi ENT_ACKNOW EDGE
mode, or to use a transacted message, which we will discussin detail shortly.

6.2.1.5 Point-to-point queues

For point-to-point queues, messages are marked by the producer as either persistent or
nonpersistent. If they are persistent, they are written to disk and subject to the same
acknowledgment rules, failure conditions, and recovery as persistent messages in the
publish-and-subscribe model.

From the receiver's perspective the rules are somewhat simpler, since only one consumer
can receive a particular instance of a message. A message stays in a queue until it is either
delivered to a consumer or it expires. This is analogous to a durable subscriber in that a
receiver can be disconnected while the message is being produced without losing the

89

Java Message Service

message. If the messages are nonpersistent they are not guaranteed to survive a provider
failure.

6.2.2 DUPS_OK_ACKNOWLEDGE

Specifying the bups_ok_AckNOW EDGE mode on a session instructs the IM S provider that it is
OK to send a message more than once to the same destination. This is different from the
once-and-only-once or the at-most-once delivery semantics of AUTO ACKNOAEDGE. The
DUPS_OK_ACKNOW.EDGE delivery mode is based on the assumption that the processing
necessary to ensure once-and-only-once delivery incurs extra overhead and hinders
performance and throughput of messages at the provider level. An application that is
tolerant of receiving duplicate messages can use the bups_ox_ACKNOWLEDGE mode to avoid
incurring this overhead.

In practice, the performance improvement that you gain from puPs_OK_ACKNOALEDGE may be
insignificant or even nonexistent, depending on the IMS vendor. It is even conceivable that
a JMS provider could perform better in Auto Acknow DEGE mode because it would receive
its acknowledgments sooner rather than later. This could allow it to clean up resources
more quickly, or reduce the size of persistent storage and in-memory queues. At first
glance it seems reasonable that fewer acknowledgments result in less network traffic.
However, the network may not be the bottleneck under heavy load conditions with large
numbers of clients. In summary, the benefits of bups o< AcknOw EDGE are something you
may want to measure before designing your application around it.

6.2.3 CLIENT_ACKNOWLEDGE

With auto acknow EDGE mode, the acknowledgment is always the last thing to happen
implicitly after the onvessage() handler returns. The client receiving the messages can get
finer-grained control over the delivery of guaranteed messages by specifying the
CLI ENT_ACKNOALEDGE mode on the consuming session.

The use of cuLient acknowepce alows the application to control when the
acknowledgment is sent. For example, an application can acknowledge a message -
thereby relieving the IMS provider of its duty - and perform further processing of the data
represented by the message. The key to thisis the acknow edge() method on the vessage
object, as shown in the following example:

public void onMessage(javax. | nms. Message nessage) {
int count = 1000;

try {
/'l Performsonme business logic with the nmessage

ﬁéésage. acknowl edge();
/1 Performnore business logic with the nessage

} ca'.[;:.h (javax.jnms. JMSException jnse){

/| Catch the exception thrown and undo the results
/'l of partial processing

90

Java Message Service

The acknow edge() method informs the JMS provider that the message has been
successfully received by the consumer. This method throws an exception to the client if a
provider failure occurs during the acknowledgment process. The provider failure resultsin
the message being retained by the JIMS server for redelivery. Therefore, the exception
handling code should undo the results of any partialy processed business logic in
preparation for receiving the message again, or it should log the message as processed so
that the redelivered message can be ignored. The acknow ege() method should only be
used with the cLieEnT acknowEDGE mode;, if used with the AUTO ACKNOALEDGE oOF
DUPS_OK_ACKNONEDGE mode, the call isignored by the IM S provider.

6.2.3.1 Grouping multiple messages

The cLi ent_AcknonwEDGE mode also gives you the ability to batch together multiple
message receipts and consume them in an all-or-nothing fashion. A consuming client may
receive several messages in a sequence and treat them as a group. CLI ENT_ACKNOW EDGE
does not provide the capability to consume messages selectively. A single
acknowledgment for the last message in the group implicitly acknowledges all previously
unacknowledged messages for the current session. This means that if the client application
fails before the last message is acknowledged, it may recover when it comes back up. All
of the unacknowledged messages will be resent with the Jvsredel i ver ed flag set on each
of the unacknowledged messages. A JMS client may also call the recover () method on a
Sessi on Object, to force the redelivery of all previously unacknowledged messages, even if
there hasn't been afailure.

JMS also provides a transaction model for grouping multiple sends and receives. We cover
thisin detail later in the Section 6.4 of this chapter.

6.3 Message Groups and Acknowledgment

When multiple messages need to be dealt with as a group, the application needs to be able
to store or cache interim messages until the entire group has been delivered. This
requirement typically means that the asynchronous invocation of the onvessage() handler
would result in business logic getting executed, and data would be placed temporarily in a
database table in preparation for processing the group of messages as a whole. When the
last message of the group arrives, the application can then go to the database to retrieve the
data from the previous messages to establish any context it may need.

6.3.1 Handling Redelivery of Messages in an Application

JMS provides strict rules that govern when the redelivered flag is set. In AUTO ACKNOW EDGE
mode, only the most recently consumed message is subject to ambiguous redelivery. In
other modes, multiple messages may have the redelivered flag set. It is up to the
application designer to isolate the conditions under which ambiguity can occur, and to
account for it in the application.

6.3.2 Message Groups in QRetailer

A message that has been redelivered should be reconciled against any application state to
resolve ambiguities related to the reason for redelivery. To see this in action, run the

91

Java Message Service

Qhol esal er and Qretailer applications in separate command windows using the
following command-line options:

java chap6. B2B. QMol esal er | ocal host usernanme password
java chap6. B2B. QRet ai | er | ocal host usernane password

In the Qmol esal er application, enter the following two lines at the prompt (Item
description, Old Price, New Price):

Sur f boards, 999.99, 499.99
Wetsuits, 299.99, 149.99

The Qret ai | er application does not respond with a"Buy Order” until you hit the Enter key
on the second line-item, because QRretailer knows that it can't buy 1000 surfboards
without also buying 1000 wetsuits to go with them. Here is the code for the aut oBuy()
method, which contains this logic:

private void autoBuy (javax.jns. Message nessage){

int count = 1000;

try {
Streamvessage strnivsg = (Streamvessage) nessage;
String deal Desc = strmMvsg.readString();
String itenDesc = strmMvsg.readString();
float ol dPrice = strnisg. readFl oat ();
float newPrice = strmvsg.readFloat();
Systemout.println("Received Hot Buy: "+deal Desc);

/1 "saveDesc" is our "saved" data
if (saveDesc == null)
{
i f (nmessage. get JIMSRedel i vered())
pr ocessConpensat i ngTransaction();
processlnteri mvkessages(itenDesc);
return;

}

/1 |If price reduction is greater than 10 percent, buy
if ((newPrice == 0 || oldPrice / newPrice > 1.1)){
Text Message text Msg = tsession. createText Message();
t ext Msg. set Text (count + " " + saveDesc + ", "
+ count + " " + itenDesc);

t ext Msg. set JMsCorrel ati onl D("Durabl eRetai l er");
Queue buyQueue = (Queue) nessage. get IMSRepl yTo();

Systemout.println ("\nBuying " + count + " "
+ saveDesc + " " + count + " " + itenDesc);

gsender = gsessi on. creat eSender (buyQueue) ;
gsender. send(textMsg,
j avax. j ms. Del i ver yMode. PERSI STENT,
javax.j ns. Message. DEFAULT_PRI ORI TY,
1800000) ;
/1 Acknow edge the original nessage
try {
System out . println("\nAcknow edgi ng nessages");
nmessage. acknow edge();
Systemout. println("\nMessage acknow edged");
saveDesc = null;
} catch (javax.jns. JNMSException jnse)({
System out. println("\nAcknow edgnent failed." +
"\ nProcessi ng conpensating transaction for "+

92

Java Message Service

"interimnessages");
processConpensati ngTransaction();

} else {
Systemout.println ("\nBad Deal. Not buying");
}

} catch (javax.]jns.JVSException jnse){
jmee. printStackTrace();

}

The first message (surfboards) is processed by the call to a very simple helper method,
process| nterimvessages(), that exists only to simulate the processing of the initial
message:

private void autoBuy (javax.jns. Message nmessage){
int count = 1000;

try {
|f . (saveDesc == nul |'){
i f (message. get IMSRedel i vered())
processConpensati ngTransaction();
processlnterimvessages(itenDesc);
return;
}
}

}
private String saveDesc = nul|;
private void processlnterimvkssages(String itenDesc)

{
}

saveDesc = itenDesc;

processl nteri messages() Saves the item description, which will be used later when the
second message arrives. In a real application, you can envision that the call to
process| nteri mvessages() would perform some real work, executing some business logic
and placing data in a database table in preparation for the next message. We will get to the
redelivered case shortly.

The next important piece to examine is the placement of the cal to the acknow edge()
method. It is called once, after both messages have been received:

private void autoBuy (javax.jns. Message nessage){
int count = 1000;

try {
try {
Systemout. println("\nAcknow edgi ng nessages");
nmessage. acknow edge();
Systemout. println("\nMessage acknow edged");

saveDesc = null;
} catch (javax.]jns.JVSException jnse){

}
Calling the acknow edge() method on a message acknowledges the current message and
all previously unacknowledged messages. Because the aut oBuy() logic does not respond

with a buy order until it sees the second message, it also does not explicitly acknowledge
the receipt of the message until it knows it can process both at the same time. This logic

93

Java Message Service

avoids processing the first message if the second message fails to be delivered. If the
messages were to be separately acknowledged, the client could fail after the first message
was acknowledged, but before the second message was fully processed. If this occurred,
the first message would be considered delivered by the JMS provider, yet not fully
processed by the client. It would be effectively lost. Delaying acknowledgment provides a
way to write the application so that it behaves correctly when failures occur. If you still
have your B2B application up and running, try typing the request for surfboards in the
command window for the Quol esal er application:

Sur f boards, 999.99, 499. 99

Notice that some output appears in the Qret ai | er window to indicate that the message was
received. Kill the Qretai | er application by hitting Ctrl-C in its command window. Next,
type in the second line item in the Qwiol esal er application:

Wetsuits, 299.99, 149.99

Now restart the Qret ai | er a@pplication. You should see output in the Qret ai | er window
indicating that both the sur f boar d message and the vt sui t s message have been received.
This new instance of the Qret ai | er receives both messages because the earlier instance of
Qretai l er never sent an acknowledgment for the first message. Therefore, when we
restarted the Qretai | er, the IMS provider redelivered the surfboard message, and then
sent the vetsui ts message. A single acknowledgment is now sent, acknowledging both
messages. The JMS provider has now fullfilled its part of the contract with the receiving
application, and can remove the messages from its persistent store.

6.3.2.1 Compensating transactions

In the code that deals with the redelivered flag, we introduced a cal to

processConpensati ngTransaction().

private void autoBuy (javax.jns. Message nessage){
int count = 1000;

try {
|f(saveDesc == null)
if (message. get JMSRedel ivered())
pr ocessConpensati ngTransaction();

processlnteri mvessages(itenDesc);
return;

}

This code is executed when the client restarts and receives redelivered messages, as was
the case in the client failure exercise we just went through. The first message of the
sequence will have the redelivered flag set on the message, causing the
processConpensat i ngTransacti ons() method to be invoked:

private void processConpensati ngTransaction()

saveDesc = null; // null out "saved" work

94

Java Message Service

In our case, this method really doesn't do anything. In a real application, you can envision
that the initial call to processinterimvessages() would execute some business logic, and
place data in a database table in preparation for the next message. Upon failure of the
client, restart, and subsequent redelivery of the first = message,
processConpensat i ngTransaction() would clean up or reinitialize any application
specific data that may have been left in an unclean state.

Another place we have used this technique is in the exception handler for the call to the
acknow edge() method. This situation is harder to deal with programmatically. The
exception is caught for the failed acknowledgment, but the "Buy Order" message has
already been sent. Historically, some messaging solutions have dealt with this problem by
requiring the initiation of a compensating transaction at the application level, as we have
done in this example. In our case, a compensating transaction would involve sending
another message back to the Qwiol esal er to cancel the "Buy Order" message. However, if
the exception was thrown because of a critical provider failure, then sending another
message to cancel an order might not be possible for the time being.

We could have acknowledged the messages first, then sent the buy order. This would
avoid the problem, but then the send could fail for the buy order, or the application could
fail before sending it. This would leave us back in a situation where the messages have
been acknowledged by the consumer but not really dealt with by the application.

This is a good argument for message autonomy. Each message should be self-contained.
When multiple messages need to depend on each other, the application should be written
like afinite state machine where the results of the processing of one message are saved so
that the application’s state can be re-established at a later time. The next message can then
independently re-establish all of the context it needs to do its work. This is a perfectly
viable and valid application design and should be considered in lieu of, or in conjunction
with, other approaches.

6.4 Transacted Messages

Our discussion of message acknowledgment shows that producers and consumers have
different perspectives on the messages they exchange. The producer has a contract with the
message server that ensures the message will be delivered as far as the server. The server
has a contract with the consumer that ensures the message will be delivered to it. The two
operations are separate, which is a key benefit of asynchronous messaging. It is the role of
the JM'S provider to ensure that messages get to where they are supposed to go. Having all
producers and all consumers participate in one global transaction would defeat the purpose
of using aloosely coupled asynchronous messaging environment.

JMS transactions follow the convention of separating the send operations from the receive
operations. Figure 6.8 shows a transactional send, in which a group of messages are
guaranteed to get to the message server, or none of them will. From the sender's
perspective, the messages are cached by the IMS provider until a cormi t () isissued. If a
failure occurs, or arol | back() isissued, the messages are discarded. Messages delivered
to the message server in a transaction are not forwarded to the consumers until the
producer commits the transaction.

95

Java Message Service

Figure 6.8. Transactional messages are sent in an all-or-nothing fashion

Transactional Sends
(Producer's Perspective)

(D Send _
IS {g} Send - JMS
Producer commit() Server

The JMS provider will not start delivery of the messages to its consumers until the
producer has issued a comit() on the session. The scope of a JMS transaction can
include any number of messages.

It should be no surprise that IM S also supports transactional receives, in which a group of
transacted messages are received by the consumer on an al-or-nothing basis (see Figure
6.9). From the transacted receiver's perspective, the messages are delivered to it as
expeditiously as possible, yet they are held by the IMS provider until the receiver issues a
commi t () on the session object. If a failure occurs or arol | back() isissued, then the

provider will attempt to redeliver the messages, in which case the messages will have the
redelivered flag set.

Figure 6.9. Transactional messages are received by a consumer in an all-or-nothing fashion

Transactional Receives
{Consumer's Parspective)

@ Recaive o
JMS N\ @Recore /7 ms
Server ® commu |\ _Consumer

Transacted producers and consumers can exchange messages with non-transacted
consumers and producers. The scope of the transaction is limited to the producer's or
consumer's session with the message server. Transacted producers and transacted
consumers can, however, be grouped together in a single transaction, provided that they
are created from the same session object, as shown in Figure 6.10. This alows a IMS
client to produce and consume messages as a single unit of work. If the transaction is
rolled back, the messages produced within the transaction will not be delivered by the IMS

provider. The messages consumed within the same transaction will not be acknowledged
and will be redelivered.

Figure 6.10. Sends and receives may be grouped together in one transactional session

Transactional Messadges
)

{Receive and Sen
@'Hﬁ'ﬂ'ﬁ:‘lﬂ.‘? o JVS
— A\ Consumer

Unless you are doing a synchronous request-reply, you should avoid grouping a send
followed by an asynchronous receive within a transaction. There could be a long interval
between the time that a message is sent and the related message is asynchronously

(D) Recaiva

JMS
Producer

96

Java Message Service

received, depending on failures or downtime of other processes that are involved. It is
more practical to group the receipt of a message with the send of another message.

6.4.1 Creating and Using a JMS Transaction

Now that you understand the concepts of transactional sends and receives, we can take a
look at some code. The first step in creating a transactional message is the initialization of
the sessi on object:

/'l pub/sub connection creates a transacted Topi cSessi on
j avax. j ms. Topi cSessi on session =
connect . creat eTopi cSessi on(true, Sessi on. AUTO_ACKNOALEDCE) ;
/'l p2p connection creates a transacted QueueSessi on
javax. j ms. QueueSessi on =
connect . creat eQueueSessi on(true, Sessi on. AUTO_ACKNOALEDCE) ;

}

The first parameter of a creat eTopi cSession() Or creat eQueueSession() method is a
bool ean indicating whether this is a transacted session. That is al we need to create a
transactional session. There is no explicit begi n() method. When a session is transacted,
all messages sent or received using that session are automatically grouped in a transaction.
The transaction remains open until either a sessi on. rol | back() OF @ sessi on. conmit()
happens, at which point a new transaction is started.® An additiona sessi on method,
i sTransacted(), returns true or fal se indicating whether or not the current session is
transactional.

(3 Thisis called "transaction chaining,” which means that the end of one transaction automatically
starts another.

6.4.2 The Transacted Retailer Example

To demonstrate how to use transactions, we will develop a modified version of our
publish-and-subscribe wiol esal er and Retailer from Chapter 4. The use of JMS
transactions for sending or receiving just one message is only mildly interesting. You get
one message, then decide whether it should be committed or rolled back. In this new
example we will show:

A new technique for grouping multiple messages together

Multiple receives and sends grouped in one transaction

Handling of message redelivery, and how to distinguish between redelivery due to
failure and redelivery due to atransaction rollback

In this scenario, the wholesaler broadcasts a group of "special deals' that can only be
purchased together. The separate items are each contained in their own messages, yet are
related to each other. Today's special deals are surfboards and wetsuits. The retailer has
logic that looks at the messages individually as they arrive. If the price is acceptable, the
orders are placed for each item on a per-message basis. When the retailer sees that all of
the messages in the group have an acceptable price discount, the orders are placed. If any
one of the prices in the group is unacceptable, all the orders are cancelled. All this takes
place without the knowledge of the wholesaler. The wholesaler never sees a thing unless
the retailer decides that it is OK to place al of the orders. To accomplish this, the retailer

97

Java Message Service

uses a JMS transaction either to place all of the orders (commit) or to cancel them
(rollback).

Before getting into the details of the example, run the version of the wholesaler and retailer
applications in this chapter. Start the whol esal er and Retai | er applications in separate
command windows:

java chap6. Wol esal er | ocal host usernane password
java chap6. Retail er | ocal host usernanme password

First, we will study the case in which all the prices are acceptable. We start with acceptable
price reductions for both items. When prompted by the wol esal er application, enter:

Sur f boards, 999.99, 499.99
Wetsuits, 299.99, 149.99

When you enter these new prices, the ret ai | er should indicate that it is purchasing 1000
surfboards. You shouldn't see anything in the whol esal er window to indicate that it
received the order, because the ret ai | er is using a transacted session to send the "Buy
Order" messages. The Wholesaler won't receive the message until the Rret ai | er commits
the session. Now go back to the wiol esal er and type "end".

Whilethe ret ai | er isusing transactions in this example, the wol esal er is not. When you
type in the word "end" on the command line, wol esal er sends a message to Ret ai | er
indicating that it is finished with its group of messages, as shown in this excerpt from
Vihol esal er 's command-line processing loop:

while (true){
String deal Desc = stdin.readLine();
if (dealDesc !'= null && deal Desc.length() > 0){
if (deal Desc. substring(0, 3).equal sl gnoreCase("END')){
whol esal er. sendSequenceMar ker (" END_SEQUENCE") ;
} else {

Wiol esal er. sendSequenceMar ker () SImply creates a message, sets a property on it, and
publishesit:

private void sendSequenceMarker (String sequenceMarker){
try {
javax.] ns. StreamVessage nessage = session. createStreanvessage();
nessage. set Stri ngProperty(" SEQJENCE_MARKER', sequenceMar ker) ;

publ i sher. publ i sh(
nessage,
javax.] ns. Del i ver yMode. PERSI| STENT,
javax. j nms. Message. DEFAULT_PRI ORI TY,
1800000) ;
} catch (javax.jns.JNMSException jnse){
jmse. printStackTrace();

}

This message has no body. We set the user-defined property " SEQUENCE_MARKER', which the
receiving application uses to know when the group of "Hot Deals" messages is compl eted.

98

Java Message Service

In this example, we are using a message as an event, instead of transporting meaningful
business data.

The ret ai | er now indicates in its output window that it has received the second "Hot Buy”
message and is placing an order. You will now see the messages for both the sur f boar ds
and the vet sui t s in the wol esal er window. The messages appear now because the order
was placed using a transactional session. The Rret ai | er published each message separately
as it saw the "Hot Deals' coming in. However, since these messages were part of a
transaction, the messages were held by the JMS provider, and not delivered. When
Retai | er Saw the " SEQUENCE_MARKER' message, it performed acommi t () on the transaction,
causing the IM S provider to deliver both messages to vhol esal er .

The basic logic that makes thiswork isin the aut oBuy() method of Ret ai | er :

private void autoBuy (javax.jns. Message nessage){

i. f . (strmVeg. propertyExi st s(" SEQUENCE_MARKER')){
String sequence = strniVsg. getStringProperty("SEQUENCE MARKER');
if (sequence. equal sl gnoreCase("END_SEQUENCE")){

session.comit();
}

return;

If you peeked ahead at the full example, note that the logic is more complex than this. The
rest of the logic handles the rollback and redelivered conditions.

Now let's ook at the other case, in which one of the items doesn't have an acceptable price.
Enter the following in the wiol esal er command window:

Sur f boards, 999.99, 499.99
Wet suits, 299.99, 299.99
end

This time, the new price for the wetsuits is the same as the old price - hence a "bad deal."
Y ou should see a "bad deal" message in the Ret ai | er command window, with a number of
indicators that messages are being redelivered. Let's review the part of Ret ai | er 'Saut oBuy(
) that makes al this happen. It's alittle complex, but we will walk through it step by step:

private void autoBuy (javax.jns. Message nessage){
int count = 1000;
try {
bool ean redelivered = nessage. get JMSRedel i vered();
StreamVessage strnvsg = (StreamVessage) nessage;
if (redelivered){
Systemout. println("\nMessage redelivered, inRollback: "
+ inRol I back + " rollbackOnly: " + rollbackOnly);
strmveg.reset();

}

if (strmvsg. propertyExi sts("SEQUENCE MARKER')){
String sequence = strmvsg. get StringProperty("SEQUENCE NMARKER');
i f (sequence. equal sl gnoreCase("END_SEQUENCE"))
{

if (redelivered & inRollback){ // At the end, start fresh

i nRol | back = fal se;
rol | backOnly = fal se;

99

Java Message Service

session.commit();

}

else if (rollbackOnly){
i nRol | back = true;
session. rol | back();

}
el se
session.comit();
}
return;

}
if (rollbackOnly)
return; // lgnore all other nessages while in rollback node

/'}'If price reduction is greater than 10 percent, buy
if (newPrice == 0 || oldPrice / newPrice > 1.1){

Systemout.println ("\nBuying " + count + " " + jtenDesc);
publ i sher . publ i sh(

buyTopi c,

t ext Msg,

javax.j ns. Del i ver yMode. PERSI STENT,
javax.j ns. Message. DEFAULT_PRI ORI TY,
1800000) ;
} else {
Systemout.println ("\nBad Deal. Not buying");
rol | backOnly = true;

}

First we will examine what makes the rollback happen:

/1 If price reduction is greater than 10 percent, buy
if (newPrice == 0 || oldPrice / newPrice > 1.1){

}- él se {
Systemout.println ("\nBad Deal. Not buying");
rol | backOnly = true;

}

The rol | backonl y variable is a bool ean used by the application to signal that a rollback
needs to occur. If you are familiar with the EJB transaction model, thisis similar to calling
the set Rol | backonl y() method on an EJB entity bean. The messages in the transaction are
either al commited, or they are al rolled back. Setting the rollback-only flag indicates a
deferred rollback. The processing of any message in the group can set the rol | backonly
flag. Since the "Buy Order" messages are all part of the same transaction, they will be
retained by the JMS provider and will go no further. When the "END_SEQUENCE" message
arrives, therol | backonl y flag is examined:

i f (sequence. equal sl gnoreCase(" END_SEQUENCE"))
{

if (redelivered & inRollback){ // at the end, start fresh
i nRol | back = fal se;
rol | backOnly = fal se;
session.commit();

}

else if (rollbackOnly){
i nRol | back = true;
session. rol | back();

}
el se
session.commit();
}
return;

100

Java Message Service

The logic is fairly simple: if the message is NOT redelivered AND it is NOT aready in a
rollback, AND the rol | backonly flag istrue, THEN roll back the transaction. Otherwise
commit the transaction.

The inrol I back flag is needed because of the behavior of the session.rollback()
method. It causes all of the messages to be redelivered. In our case, that includes the
" SEQUENCE_MARKER' message, which will aways be the last message that is redelivered as a
result of the rollback.” Without this flag, it would be impossible to tell whether the
messages are being redelivered as a result of the transaction rollback, or for some other
reason.

[This illustrates the importance of the JMS provider's role in maintaining proper delivery order,
especially in the redelivery case.

Now you can see the reason for using the delayed rollback. This allows us to isolate the
commit(), rollback(), and message redelivery logic in the handling of the
" SEQUENCE_MARKER' message. Dealing with the rollback individually as each message
arrives can quickly become unwieldy.

Finally, let's try this redelivery logic out by smulating a falure. In the whol esal er
window, type:

Sur f boards, 999.99, 499. 99
Wetsuits, 299.99, 149.99

Before you type end, simulate an abnormal shut down of the Rretailer application by
typing Citrl-C in the Rretailer command window. Then type "end" in the wiol esal er
window.

Now restart the ret ai | er application. When the retailer app comes back up, it shows that it
is receiving the surfboard and wetsuit messages as redelivered messages and is placing the
order again. The JMS provider knew that the retailer had failed in the middle of a
transaction. When the Rretailer came back up and reconnected, the JMS provider
redelivered the messages to it. The Rretailer logic knew that the message was being
redelivered as a result of a failure, as shown in the following section of aut oBuy(). The
logic isfairly smple. If we are at the end marker:

if (sequence. equal sl gnoreCase("END_SEQUENCE"))

AND we are both redelivered AND in arollback (we aren't in arollback):

if (redelivered & inRollback){ // At the end, start fresh
i nRol | back = fal se;
rol | backOnly = fal se;
session.commit();

}

Elseif weareinrol | backonl y mode (we aren't, but we could be and it would still work):

else if (rollbackOnly){
i nRol | back = true;
session. rol | back();

101

Java Message Service

Else, commit (that's what just happened):

el se
session.commit();

}

return;
Otherwise, just continue on and process the message.

Point-to-point queues have the same transactional capabilities as publish-and-subscribe,
with one caveat: when arol | back() OCCUrS On a QueueSessi on, the messages are placed
back on the queue. Because a queue may have multiple recipients, the messages could now
go to another consuming client. This may result in messages being processed out of order,
since the other client could have processed newer messages while the older messages were
being rolled back. This is an area where behavior may vary, depending on how your
vendor interprets the standard.

Finaly, you may have noticed that we used wiol esal er and Retai | er for this example
instead of their "Q" counterparts. This is because a publish-and-subscribe session and
point-to-point session cannot jointly particpate in a JMS transaction. JMS transactions
cannot span multiple sessions without the use of a JTA-compliant transaction manager (see
the next section, Section 6.4.3). We wanted to show the use of JMS as first-class
middleware in its own right, without using a supporting application server just to provide a
shared transaction between a p2p and a pub/sub session. The inability of p2p and pub/sub
sessions to share a transaction is a weakness in JMS that may be addressed in a future
version of the specification.

6.4.3 Distributed Transactions

Distributed systems sometimes use a two-phase commit (2PC) process that allows multiple
distributed resources to participate in one transaction. This typically involves an
underlying transaction manager that takes care of coordinating the prepare, commit, or
rollback of each resource participating in the transaction. In most cases, the resources
involved in the transaction are databases, but they can be other things, like IMS providers.

Transactions can be either local transactions or global transactions. Local transactions
involve work performed on a single resource: one database or JMS provider. Global
transactions involve work performed across severa different resources, i.e., some
combination of databases and JM S providers. JIMS provides transaction facilities for both
local and global transactions. The transacted sessions discussed previously are local
transactions in IMS; they involve asingle IM S provider.

The 2PC protocol is designed to facilitate global transactions, transactions that span
multiple resources. As an example, an enterprise application may need to process
(consume and produce) messages as well as make changes to a database. In some cases,
the processing of messages and database updates needs to be treated as a single unit of
work, so that a failure to update the database or consume a message will cause the entire
unit of work to fail. This is the basic premise behind a transaction: all the tasks must
complete or fail together. To create a unit of work that spans different resources, the
resources must be able to cooperate with a transaction manager in a 2PC.

102

Java Message Service

The 2PC protocol is used by a transaction manager to coordinate the interactions of
resources in a global transaction. A resource can only participate in a global transaction if
it supports the 2PC protocol, which is usualy implemented using the XA interface
developed by The Open Group. In the Java enterprise technologies, the XA interface is
implemented by the Java Transaction APl and XA interfaces (j avax. transaction and
javax. transaction. xa). Any resource that implements these interfaces can be enrolled in a
global transaction by a transaction manager that supports these interfaces.

JMS providers that implement the JTA XA APIs can therefore participate as a resource in
two-phase commit. The JMS specification provides XA versions of the following JMS
objects: XAConnect i onFact ory, XAQueueConnect i on, XAQueueConnect i onFact ory,
XAQueueSessi on, XASessi on, XATopi cConnect i on, XATopi cConnect i onFact ory, and
XATopi cSessi on.

Each of these objects works like its corresponding norn-XA-compliant object. The
XATopi cSessi on, for example, provides the same methods as the Topi cSession. An
application server's transaction manager uses these XA interfaces directly, but aJMS client
only sees the nontransactional versions. The following code shows a JMS client that uses
JDBC and JMS together in one transaction managed by an external transaction manager.
JNDI is used to obtain al the resources including the JTA Transact i onvanager, the JDBC
XADat aSour ce, and the IMS xATopi cConnect i onFact ory:

Initial Context jndiContext = new Initial Context(env);

/1 Obtain the JTA Transacti onManager a JNDI nanespace
Transact i onManager txMigr =jndi Context.|ookup("../../tx/txmgr");

/1 Start the dobal Transaction
t xMhgr. begin();

/1 CGet the transaction object that represents the new gl obal transaction
Transaction transacti on = txMger. getTransaction();

/1 Cbtain the JDBC DataSource froma JNDI nanespace
XADat aSour ce dataSrc = jndi Context.|lookup("../../jdbc/data");

/1 Obtain an XA-conpliant Connection
XAConnection jdbcCon = dataSrc. get Connection();

/1 Obtain the XAResource fromthe connection
XAResour ce jdbcXA = jdbcCon. get XAResource();

/*

* Enlist the XAResource in the transaction. This adds the JDBC
* resource to the global transaction.

*/

transaction. enli st (j dbcXA);

//... do sone JDBC work

/1 Obtain an XA-conpliant Topi cConnectionFactory froma JNDI nanespace
XATopi cConnecti onFactory factory = jndi Context.|ookup("../.../jms/factory");

/1 Obtain an XA-conpliant Topi cConnecti on
XATopi cConnection jnsCon = factory. creat eXATopi cConnection();

/1 Obtain an XA-conpliant Session
XATopi cSessi on session = jnsCon. creat eXATopi cSessi on();

/] Qbtain the XAResource fromthe session

103

Java Message Service

XAResour ce j msXA = sessi on. get XAResource();

/*

* Enlist the XAResource in the transaction. This adds the JMS
* resource to the global transaction.

*/

transaction. enlist(jnmsXA);

[l ... do sone JMS work

/
Conmitting the global transaction will allow both the JDBC

work (all updates and inserts) as well as the JMS work

(all the nessage sends and receives) to be commited as a single
* unit of work. They all succeed or fail together.

*/

transaction.conmt();

* F F ¥

All XA-compliant resources (JDBC or JMS) provide an xAresource object that is an
interface to the underlying resource (in IMS, the JMS provider). The xAResour ce Object is
used by the Transacti onvanager to coordinate the 2PC commit. In the previous example,
the application associates the xaresour ce for the JIDBC driver and the JMS provider with
the current transaction so that all the work performed using those resources is bound
together in one transaction. When the transaction is committed, all the work performed by
the JDBC connection and JMS session is committed. If the transaction had been rolled
back, all the work performed by the JDBC connection and JM S session would have been
rolled back. All the work performed across these two resources either succeeds together or
fails together.

An application server, such as an EJB server, may itself be a JMS client. In this case,
whether the interfaces are exposed depends on how the JMS server and the application
server are integrated. If the integration is hidden within the implementation, as is the case
with EJB, then the container may use the XA-compliant version of these objects directly.
Since the XA interfaces in JMS are not intended for application developers - they are
intended to be implemented by vendors - we will not go into them in detail in this book.
The important thing to understand is that JIM S providers that implement the XA interfaces
properly can be used in a 2PC transaction. If your application server (i.e., EJB server)
supports 2PC, then these kinds of JMS providers can be used with other resources in
global transactions.

6.5 Lost Connections

When the network connection between the client and server is lost, a IMS provider must
make every reasonable attempt to re-establish the connection. In the event that the IMS
provider cannot automatically reconnect, the provider must notify the client of this
condition by throwing an exception when the client invokes a method that would cause
network traffic to occur. However, it is reasonable to expect that a IMS client may only be
a receiver using the Messagelistener interface, and not a producer that makes any
outbound publ i sh() or send() calls. Inthis case, the client is not invoking JMS methods
- itisjust listening for messages - so a dropped connection won't be detected.

104

Java Message Service

JMS provides an Except i onLi st ener interface for trapping a lost connection and notifying
the client of this condition. The ExceptionLi st ener is bound to the connection - unlike
Messageli st eners, wWhich are bound to sessions. The definition of the Excepti onLi st ener
is

public interface ExceptionLi stener{
voi d onExcepti on(JMSExcepti on exception);
}

It is the responsibility of the IMS provider to call the onexception() method of al
registered ExceptionListenersS after making reasonable attempts to reestablish the
connection automatically. The JMS client can implement the Except i onLi st ener SO that it
can be alerted to a lost connection, and possibly attempt to reestablish the connection
manually.

How can the JM S provider call an Except i onLi st ener if the client has been disconnected?
Every JMS provider has some amount of functionality that resides in the client application.
We have been referring to this as the client runtime portion of the IMS provider. It is the
responsibility of the client runtime to detect the loss of connection and call the
Excepti onLi st ener.

6.5.1 The Wholesaler Becomes an ExceptionListener

To make our wiol esal er iNt0 an ExceptionLi st ener, We start by changing the formal
declaration of the classto implement the j avax. j ns. Excepti onLi st ener interface:

public class \Wol esal er inplenments
j avax.j ns. Messageli st ener,
j avax.] ns. Excepti onLi st ener

Next, we remove the connection setup information from the constructor and isolate it in its
own method, est abl i shConnection():

public Wol esaler(String broker, String usernane, String password){
nBr oker = broker;
nser nane = user naneg;
nPassword = password;

est abl i shConnecti on(broker, usernane, password);

}

establ i shConnection() Setsup the connection, the publisher, and the subscriber. The new
addition is the retry logic on the Topi cConnecti onFact ory'S creat eTopi cConnection()
method, which continually retries the connection every ten seconds until it is established:

private void establishConnection(String broker, String usernane,
String password)

{
whil e (connect == null)
try {
connect =

factory. creat eTopi cConnecti on (usernane, password);
} catch (javax.jnms.JVSException jnse)

105

Java Message Service

{

try {
Thr ead. sl eep(10000) ;

} catch (java.lang.|nterruptedException ie) { }
conti nue;

}
}
Systemout. println("\nConnection established");

The establishConnection() method then registers the ExceptionListener with the
connection viathe set Except i onLi st ener () method:

connect . set Excepti onLi stener ((j avax.j ns. ExceptionLi stener) this);

Last, but not least, is the implementation of the onException() listener method. Itstask is
to call the establishconnection() method again to re-establish a connection with the
JMS provider:

public void onException (javax.jns.JMSException jnse)

{

/1 Tell the user that there is a problem
Systemerr.println ("\n\nThere is a problemw th the connection.");
Systemerr.printlin (" JMBException: " + jnse.get Message());

Systemerr.println ("Please wait while the application tries to "+
"reestablish the connection...");

connect = null;

est abl i shConnecti on(nBroker, msername, nPassword);

}

When a connection is dropped and reestablished, al of the sessions, queues, publishers,
and subscribers need to be reestablished in order for the application to continue normal
processing. Thisiswhy we isolated all the connection logic in the est abl i shConnecti on()
method, so that it can be used during startup and reused if the connection is lost.

JMS does not define any reason codes for a dropped connection. However, a JMS provider
may provide a finer level of granularity by defining reason codes. Depending on the host
operating system's network settings, it may take a while for the provider to notice that a
connection has been dropped. Some providers implement a ping capability as a
configurable setting to detect a network loss.

6.6 Dead Message Queues

JMS provides mechanisms for guaranteed delivery of messages between clients, utilizing
the mechanisms we have discussed in this chapter. However, there are cases where
guaranteed delivery, acknowledgments, and transactional semantics are just not enough.
Many conditions may cause a message to be undeliverable. Messages may expire before
they reach their intended destination, or messages are viewed by the provider as
undeliverable due to some other reason such as a deployment configuration problem. A
message need not have an expiration associated with it, which means it would never
expire. Forever is along time. Redligtically, it would be more prudent if the IMS provider
could notify an application if a message cannot be delivered within a reasonable amount of
time.

106

Java Message Service

Although these issues are not specifically addressed by the JMS specification, some
messaging vendors have the notion of a"Dead Letter Queue" or "Dead Message Queue” to
deal with messages that are deemed undeliverable.

The extent of Dead Message Queue (DM Q) support varies from vendor to vendor. In the
simplest case, it is the responsibility of the messaging system to put al undeliverable
messages in the DMQ, and it is the responsibility of the application to monitor its contents.
In addition, a IMS provider may support administrative events that notify the application
when something is placed in the DMQ. The notification may go to the sender, or it may go
to a centralized management tool. A specialized JMS client may be written to receive all
DMQ notifications.

A DMQ can be treated just like a normal queue in most respects; it can be consumed, or it
can be browsed. There is one respect in which a DMQ behaves differently from other
gueues: the destination of a message, as obtained via vessage. get JVBDest i nation(),
would be the original destination the message was intended for, not the DMQ. The
message may also contain additional properties, such as a vendor-defined reason code
indicating why the message was placed in the DMQ.

It's important to know whether the JMS provider you are using supports Dead Message
Queues. If it does, and you don't provide the application support to monitor it and peel
things from the DMQ in a timely fashion, then the DMQ may fill up over time without
your knowledge.

107

Java Message Service

Chapter 7. Deployment Considerations

An enterprise application's performance, scalability, and reliability should be among the
foremost concerns in a real deployment environment. The underlying messaging
middleware is critical to that environment.

7.1 Performance, Scalability, and Reliability

Every JMS vendor claims to be the fastest in the marketplace. Some claim to be fast and
scalable to thousands of clients. It is hard to take any one vendor's word for having the
fastest and most scalable product. Different application architectures have different
demands. The industry has no accepted messaging benchmark. Thus, the proof of any
vendor's claims lies in your own testing and measurement.

Performance and scalability are terms commonly used together, but they are not
interchangeable. Performance refers to the speed at which the JIMS provider can process a
message through the system from the producer to the consumer. Scalability refers to the
number of concurrently connected clients that a JMS provider can support. When used
together, the terms refer to the effective rate at which a JMS provider can concurrently
process a large volume of messages on behalf of a large number of simultaneously
connected producers and consumers. The distinction between performance and scalability,
as well as the implications of what it means to combine them, is very important, as you
will soon see. A simple test using one or two clients will differ drastically from atest using
hundreds or thousands of clients. The following section is intended to be used as a guide to
help with performance and scalability testing.

7.1.1 Determining Message Throughput Requirements

Before you embark on your performance and scalability testing effort, consider what you
are trying to accomplish. Since any particular vendor may do well with one scenario and
not so well in others, the makeup of your application is important to define. Here are some
key thingsto consider:

The potential size of the user community for your application. While this may be
hard to project, it isimportant to try to predict how it will grow over time.

The average load required by the application. Given a tota size of the user
community for your application, how many are going to be actively using it at any
given time?

The peak load required by the application. Are there certain times of the day, or
certain days in a month, when the number of concurrent users will surge?

The number of IMS client connections used by the application. In some cases, the
number of JMS clients does not correspond to the number of application users.
Middleware products, such as EJB servers, share JMS connections across
application clients, requiring far fewer JMS client connections than other
applications. On the other hand, some applications use multiple IMS connections
per client application, requiring more JM S client connections than users. Knowing
the ratio of usersto JM S clients helps you determine the number of messages being
processed per client.

108

Java Message Service

The amount of data to be processed through the messaging system over a given
period of time. This can be measured in messages per second, bytes per second,
messages per month, etc.

The typical size of the messages being processed. Performance data will vary
depending on the message size.

Any atypical message sizes being produced. If 90% of the messages being
processed through the system are 100 bytes in size, and the other 10% are 10
megabytes, it would be important to know how well the system can handle either
scenario.

The messaging domain to be used, and how it will be used. Does the entire
application use one p2p queue? Are there many queues? Is it pub/sub with 1,000
topics? One-to-many, many-to-one, or many-to-many?

The message delivery modes to be used. Persistent? Nonpersistent? Durable
subscribers? Transacted messages? A mixture? What is the mixture?

7.1.2 Testing the Real-World Scenario

Any vendor can make any software product run faster, provided the company has the right
amount of time, proper staffing, commitment, and enough hardware to analyze and test a
real-world deployment environment.

The simplest scenario for a vendor to optimize is the fastest performance throughput
possible with one or two clients connected. This is aso the easiest scenario to test, but is
not the kind of testing we recommend; for one thing, it's difficult to imagine a realistic
application that only has one or two clients. More complex testing scenarios that better
match your system'’s real-world environment are preferable.

It is important to know ahead of time if the vendor you have chosen will support the
requirements of your application when it is deployed. Because IMS is a standard, you may
switch JMS vendors at any time. However, you may soon find yourself building vendor-
specific extensions and configurations into your application. It's always possible to change
vendors, if you're willing to expend some effort. However, if you wait to find out whether
or not your application scales, you may no longer be able to afford the time to switch to
another vendor.

This is not intended to imply that using JMS is a risky proposition. These same issues
apply to any distributed infrastructure, whether third-party or home-grown, whether it is
based on aMOM or based on CORBA, COM, EJB, or RMI, and whether it is based on an
established vendor or an emerging one. Everything should be sized and tested prior to
deployment.

7.1.2.1 Testing with one client
The most important thing to realize isthis:
per formanceWthOneC ient != performanceWthManyd ients;

Many issues come into play once a message server starts to scale up to a large number of
clients. New bottlenecks appear under heavy load that would never have occurred
otherwise. Examples include thread contention, overuse of object alocation, garbage
collection, and overflow of shared internal buffers and queues.

109

Java Message Service

A vendor may have chosen to optimize message throughput with hundreds or thousands of
concurrent clients at the expense of optimizing for throughput with one client. Likewise, a
vendor may have optimized for a small number of clients at the expense of scalability with
larger client populations.

The best approach is to start with something small and build up the number of clients and
the number of messages in increments. For example, run a test with 10 senders and 10
receivers, and 100,000 messages. Next try 100 senders and 100 receivers, and run a test
with 1,000,000 messages. Try as many clients as you can, within the limitations of the
hardware you have available, and watch for trends.

7.1.2.2 Send rate versus receive rate

It is extremely important to measure both the send rates and the receive rates of the
messages being pumped through the messaging system. If the send rate far exceeds the
receive rate, what is happening to the messages? They are being buffered at the IMS
provider level. That's OK, right? That is what a messaging product does - it queues things.
In some cases that may be acceptable based on the predetermined throughput requirements
of your application, and the predictable size and duration of the surges and spikes in the
usage of the application. If these factors are not extremely predictable, it is important to
measure the long-term effects of unbalanced send and receive rates.

In reality everything has a limit. If the send rate far exceeds the receive rate, the messages
are filling up in-memory queues and eventually overflowing the memory limits of the
system, or perhaps the in-memory queues are overflowing to disk storage, which also has a
limit. The closer the system gets to its hardware limits, the more the JVM and the
operating system thrash to try to compensate, further limiting the JMS provider's ability to
deliver messages to its consumers.

7.1.2.3 Determining hardware requirements

The hardware required to perform testing varies from vendor to vendor. You should have
the hardware necessary to do a full-scale test, or be prepared to purchase the hardware as
soon as possible. If the IMS provider's deployment architecture uses one or more server
processes (as in a hub and spoke model), then a powerful server (like a quad-processor)
and lightweight clients are appropriate. If the vendor's architecture requires that the
persistence and routing functionality be located on the client machine, then many
workstations may be required.

If you have limited hardware for testing, do the best you can to run a multi-client load test
within the limitations of your hardware. Y ou typically won't see any reasonably indicative
results until you have at least 20 IM S clients. Y ou must therefore be able to find a machine
or a set of machines that can handle at least that much.

Assuming your client population will be large, truly indicative results start showing up
with over 100 JMS clients. Your goa should be to use as many clients as possible within
the limits of the testing hardware and to see whether the message throughput gets better or
gets worse. A good guideline is to stop adding clients when the average resource
utilization on each test machine (both clients and servers) approaches 80 percent CPU or
memory use. At 80 percent, you realistically measure the throughput capacity of the IMS

110

Java Message Service

provider for a given class of machine and eliminate the possibility of having exceeded the
limits of your hardware.

If the CPU or memory utilization does not approach its maximum, and the message
throughput does not continue to improve as you add clients, then the bottleneck is probably
disk 1/0O or network throughput. Disk /O is most likely to be the bottleneck if you are
using persistent messaging.

7.1.2.4 Finding or building a test bed

Building atest bed suitable for simulating a proper deployment environment itself can be a
moderately sized effort. Most IM S vendors provide a performance test environment freely
downloadable from their web site. In most cases, they provide a test bed sufficient for
testing with one client.™

(3 As of publication, SonicMQ is the only vendor providing a multiclient test bed.

7.1.2.5 Long duration reliability

Testing your application over a long period of time is very important. After all, it is
expected to perform continuously once deployed. Verifying that the middleware behaves
reliably isthe first step toward ensuring long-term application reliability.

Once you have a multi-client test bed in place, try running it for an extended period of time
to ensure that the performance throughput is consistent. Start out by running the test bed
while you can be there to monitor the behavior. Any long-term trends are likely to be
detected in the first few hours. Things to watch for are drops in performance throughput,
increase in memory usage, CPU usage, and disk usage. When you feel comfortable with
the results you see, you may progressively start running tests overnight, over the weekend,
or over aweek.

7.1.2.6 Memory leaks

The term "memory leak" refers to a condition that can happen when new memory gets
allocated and never freed over a period of time, usually through a repeated operation, such
as repeatedly pumping messages through a messaging system. Eventually, the system runs
out of available memory; as aresult, it will perform badly and may eventually crash.

Although Java has built-in memory management through garbage collection, it is an
oversimplification to think that garbage collection permanently solves the problem of
memory links. Garbage collection works effectively only when the developer follows
explicit rules for the scoping of Java objects. A Java object can be garbage collected only
if it has gone out of scope and there are no other objects currently referencing it. Even the
best code can contain memory leaks, if the developer has mistakenly overlooked an object
reference in a collection class that never goes out of scope.

Therefore, you need to monitor for memory leaks during testing. Memory that leaks in
small increments may be not be noticable at first, but eventually these leaks could
seriously impact performance. To detect them quickly, it helps to use a memory leak
detection tool like Optimizelt! or Jorobe. Even if the JIMS provider and other third-party
Java products you are using contain obfuscated classes, tools like these still help you prove

111

Java Message Service

that your memory requirements are growing (possibly the result of a memory leak), which
isagood start.

7.2 To Multicast or Not to Multicast

An increasing number of vendors are releasing products based on IP multicasting. To
understand the tradeoffs involved in these products, you need a basic understanding of
how the TCP/IP protocol family works, and how multicasting fits into the bigger picture.®
We won't discuss any particular IMS implementations, or suggest that one vendor might
be better than another; our goa is to give you the tools that you need to ask intelligent
guestions, evaluate different products, and map out a deployment strategy.

[l This is not the place for a comprehensive discussion of TCP/IP networking. If you want detailed
treatment of these protocols, see Internet Core Protocols, by Eric Hall (O'Reilly). If you're interested
in network programming in Java, see Java Network Programming, by Elliotte Rusty Harold
(O'Rellly).

7.2.1 TCP/IP

TCP/IP is the name for a family of protocols that includes TCP (Transmission Control
Protocol), UDP (User Datagram Protocol), and IP (Internet Protocol). The protocols are
layered: IP provides low-level services; both TCP and UDP sit "on top of " IP.

TCP is a reliable, connection-oriented protocol. A process wishing to establish
communication with one or more processes across a hetwork creates a connection to each
of the other processes and sends and receives data using those connections. The network
software, rather than the application, is responsible for making sure that all the data
arrives, and that it arrives in the correct order. It takes care of acknowledging that data has
been received, automatically discards duplicate data, and performs many other services for
the application. If something happens with the connection, the process on either side of the
connection will know almost immediately that the connection has been permanently
broken.®

(3 |f a connection is not sending or receiving any data, it could take a while before the owning
processis signaled about a problem, depending on the network settings.

Most high-level network protocols (and most JIMS implementations) are built on top of
TCP, for obvious reasons. it's alot easier to use a protocol that takes care of reliability for
you. However, reliability comes with a cost: a lot of work is involved in setting up and
tearing down connections, and additional overhead is required to acknowledge data that's
sent and received. Therefore, TCP is slower than its unreliable relative, UDP.

7.2.2 UDP

UDP (User Datagram Protocol) is an unreliable protocol: you send data to a destination,
but there's no guarantee that the data will arrive. If it doesn't arrive, you'll never find out;
furthermore, the process receiving the data will never know that you sent anything.

This sounds like a bad basis for reliable software, but it really only means that applications

using UDP have to take reliability into their own hands: they need to come up with their
own mechanism for verifying that data was received, and for retransmitting data that went

112

Java Message Service

astray. In practice, applications that need reliability guarantees can either use TCP, or can
incorporate software to build reliability on top of UDP. Most applications have taken the
easier route, but a few important applications (like DNS and the early versions of NFS)
make extensive use of UDP.

7.2.3 IP Multicast

The simplicity of UDP makes possible a kind of service that's completely different from
anything in the TCP world. Because it is connection-oriented, TCP is fundamentally
limited to point-to-point communications. UDP offers the notion of a"multicast,” in which
an application can send data to a group of recipients. Multicasting is based on a specia
class of addresses, known as Class D addresses.”” Class D addresses are not assigned to
individual hosts; they're assigned to multicast groups. Hosts can join and leave groups that
they have an interest in. Data sent to a multicast address will only be received by the hosts
in the multicast group. At least from the network’s standpoint, multicast is much more
efficient when you need to send a message to many recipients.

4 A Class D network address is one defined as having the range of 224.0.0.0 through
239.255.255.255. Class D network addresses are reserved for |P multicast.

Multicasting maps naturally into the sorts of things we want messaging systems to do.
Many messaging products use multicasting for one-to-many pub/sub broadcast of
messages. Most have built some level of reliability on top of UDP. If this issue is
important to you, it would be in your interest to delve deeper and find out exactly what
your JMS vendor has, or has not, implemented. Multicast has its drawbacks as well. UDP
traffic is usually not alowed through a firewall, so you may have to negotiate with your
network administrators or find some workaround if you need to get multicast traffic
through your company's firewalls. Furthermore, multicast relies heavily on specia routing
software. Most modern routers support multicast, but lots of old routers are still in service.
Even if you have up-to-date routers within your corporate network, and your network
administrators know how to configure multicast routing, there's still the Internet;
multicasting does not realistically work across the Internet (see the section Section 7.2.4.3
later in this chapter). As a configuration and maintenance consideration, multicast
addresses must be coordinated across the network to avoid collisions. These drawbacks are
especially important if you are building an application that you want to sell to others, who
in turn expect to deploy it easily.

7.2.4 Messaging Over IP Multicast

In the following section we will explore the tradeoffs of using messaging over an IP
multicast architecture. It is important for you to understand the issues as you map out your
deployment strategy.

7.2.4.1 Duplication, ordering, and reliability of messages

If a messaging vendor wishes to provide full reliability for IP multicast and UDP it must
build TCP-like semantics into the JMS provider layer to compensate for duplicate
datagrams, out of order datagrams, and datagrams that could never possibly get to the
intended destination. Either the JIMS provider has to incur the overhead of detecting and
compensating for duplicate datagrams, or the application needs to be tolerant of duplicate
messages. If the duplication of datagrams is not dealt with at the IMS provider level, it is

113

Java Message Service

only really viable for bups_ok_acknow EDGE. NO matter what, a messaging vendor has to
implement the reliability necessary to ensure guaranteed ordering, since UDP doesn't
ensure that packets are received in the same order that they are sent.

A messaging vendor should support some sort of error detection to know when a UDP
datagram is lost. Ideally it should know that a client can't be reached due to a network
boundary across an unsupported network router (see Section 7.2.4.3 later in this chapter).
The JMS specification allows for a nondurable JIMS subscriber to miss messages, but is
intentionally vague about this since it is not a goal of the specification to impose an
architecture on a JMS provider. However, for all practica purposes, nonguaranteed
messaging means that messages may be lost, and that should mean they may only be lost
once in awhile. For both cases, some sort of acknowledgment semantics are required.

7.2.4.2 Centralized and decentralized architectures

A TCP-based messaging system generally uses a hub-and-spoke architecture whereby a
centralized message server, or cluster of message servers, communicates with IMS clients
using TCP/IP, SSL, or HTTP connections. The centralized server is responsible for
knowing who is publishing and who is subscribing at any given time. Message servers may
operate in a cluster spread across multiple machines, but to the clients there only appears
to be a single logical server. Message servers operating in a cluster can intelligently route
messages to other servers. Clustering may provide load balancing, and may help to
optimize network traffic by selectively filtering and routing only the messages that need to
get to a particular node. The servers are also responsible for persistence of guaranteed
messages, and for Access Control Lists (ACLS) that grant permissions to subscribers on a
per-topic basis. The messages are only delivered to the subscribers that are interested in a
particular topic, and only to those that have the permissions to get them. A centralized
server also makes it easier to add subscribers: when a new subscriber comes online; only
the message server needs to know about it.

At the same time, a centralized architecture may introduce a single point of falure: if the
main server in acluster (the server to which clientsinitially connect) goes down, the entire
cluster may become unavailable. A IMS provider may solve this problem by distributing
the connections across multiple servers in the cluster. If one server goes down, the other
servers can continue to operate, thus minimizing the impact of the failure. Reconnect logic
may also be built into the client, enabling it to find another server if itsinitial server goes
down.

Multicasting implies a drastically different architecture, in which there usually is no
centralized server. Because there is no centra server, there is no single point of failure;
each JMS client broadcasts directly to all other IMS clients. One consequence of this
architecture is that every publisher and every subscriber may have local configuration
information about every other JMS client on the system. This can be an extremely
important consideration for deployment administration. In the absence of a higher-level
administrative framework, local configurations have to be updated on every client
whenever anew client or anew topic is added.

114

Java Message Service

A decentralized architecture may also mean that the persistence mechanism for guaranteed
messaging is pushed out to the client machines. No matter how efficient the storage
algorithm, disk 1/0 is aways going to be the biggest bottleneck. Choosing to use such an
architecture would require that the client machines have disk storage that is both fast and
large.

There is disagreement as to whether guaranteed messaging (storing persistent messages)
benefits from a decentralized architecture. Proponents of a decentralized architecture argue
that the 1/0 load is distributed among the clients and is therefore faster. On the other hand,
client 1/0 is not nearly as reliable, nor isit as fast as a centralized server with a powerful
disk system.

7.2.4.3 Network routers and firewalls

Although technically possible, it is unlikely that a firewall administrator will allow UDP
traffic to pass through a firewall. Firewalls typically disalow all traffic, except for traffic
to or from specific hosts, using specific protocols. UDP traffic is rarely allowed through a
firewall for various reasons.

In recognition of the problems with IP multicast (lack of support, and firewall blocking),
messaging vendors that use IP multicast provide software bridge processes to carry
messaging traffic across routers and firewalls. The bridges may consist of one or more
processes connected together by HTTP, SSL, or TCF/IP.

If you're considering a vendor that supports multicasting, it is worth considering what
percentage of your message traffic is going through one of these bridges. If all of your
messages are going through the firewall over an SSL or HTTP connection, there will be
little point in using multicasting behind the firewall for performance reasons. If the routers
in your deployment environment require that a number of TCP/IP-based bridges be put in
place, the performance benefits of multicast are diminished, depending on how many of
these you have to put in place and administer. The messaging system is only as fast as its
slowest link.

If most of the message traffic is confined to your corporate LAN or a VPN and you have
full control over it, IP multicasting is a very attractive option.

7.2.4.4 Some vendors support both centralized and decentralized architectures

In recognition of these issues, the vendors who support IP multicast also provide
centralized servers using TCP/IP socket connections. This could mean you have two
different architectures to configure and support: one configuration for the nonguaranteed
one-to-many pub/sub multicast of messages within a subnet on your corporate LAN, and
another for everything else. It is important to consider what it will mean to choose one of
these architectures at deployment time, or how you will switch from one mode to the other
after your application is deployed.

115

Java Message Service

7.2.5 The Bottom Line

IP multicast has significant network throughput benefits in a one-to-many broadcast of
information. A single multicast message to multiple recipients will always cause less
network traffic than sending the message to each recipient via a TCP connection. A
messaging vendor picks and chooses how much reliability to build on top of UDP based on
the quality of service required for the message as defined by JMS.

However, the choice is not that ssmple when it is applied to a deployment environment in a
messaging product. The performance advantages of IP multicasting are only viable for a
certain deployment environment. These advantages can diminish depending on the types
of messages in your application, the networking hardware at your site, the deployment
environment (intranet, extranet, internet), and the complexity of administration.

Make sure to benchmark your application carefully before making a final decision, using
the guidelines we discussed earlier in this chapter. You may be surprised at what you see.
When a JMS provider is put under heavy stress with lots of clients, there are so many other
factorsinvolved that the speed at which network packets go across the wire is not usualy a
significant factor. You may see that one vendor's implementation of messaging over IP
multicast will perform vastly differently from another's - even with the use of
nonguaranteed messaging. You may even find that one vendor's TCP-based
implementation performs better than another vendor's multicast implementation.

7.3 Security

In this section, we are only going to concern ourselves with those aspects of security that
are commonly supported by JMS providers. You need to think about three aspects of
security: authentication, authorization, and secure communication. How these aspects of
security are implemented is vendor-specific, and each vendor uses its own combination of
available technologies to authenticate, authorize, and secure communication between IMS
clients.

We will aso discuss firewalls and HTTP tunneling as a solution to restrictions placed on
JMS applications by organizations.

7.3.1 Authentication

Simply put, authentication verifies the identity of the user to the messaging system; it may
also verify the identity of the server to the JMS client. The most common kind of
authentication is alogin screen that requires a username and a password. This is supported
explicitly in the IMS APl when a connect i on is created, as well asin the INDI APl when
an Initial Context IS created. JIMS providers that use username/password authentication
may support either of these solutions:

Properties env = new Properties()

env. put (Cont ext . SECURI TY_PRI NCl PAL, "usernane")

env. put (Cont ext . SECURI TY_CREDENTI ALS, "password");
Topi cFactory topi cFactory = jndi Context.|ookup("...")

Topi cConnection con =
t opi cFact ory. creat eTopi cConnecti on("usernane", "password");

116

Java Message Service

JMS providers may also use more sophisticated mechanisms for authentication, such as
secret or public key authentication. Secret key authentication, most commonly used in
Kerberos, requires the participation of a Kerberos server."® Public key authentication, most
commonly used in SSL, is based on a chain of certifying authorities. Each of these systems
has its supporters and detractors, but the end result is the same: the connecting client is
given permission to access the system.

I Although a system may use Kerberos to authenticate a user, the system will probably use SSL for
secure communications.

7.3.2 Authorization

Authentication is only the first step in the security process, but it's the basis for what
follows. Once you have verified the identify of the user, you can make intelligent decisions
about what that user is allowed to do. That's where authorization comes in. Authorization
(ak.a. access control) applies security policies that regulate what a user can and cannot do
within a system. Authorization policies are usually set up as access control lists by the
system administrators. Authorized users are given an identity in the system and assigned to
user groups, which may themselves be a part of a larger group. Groups and individual
users (identities) are assigned permissions dictating which topics, queues, or connection
factories they are allowed to access. Permissions may be configured to grant all members
of a group access except for some specified members, or deny all members of a group
except some specified members. Some JM S providers may choose to check access control
lists on every message delivered, while others simply control the destinations or
connection factory that a JMS client can obtain from the JNDI namespace. Generaly,
authorization policies work better in a centralized messaging system, since it can be
centrally managed.

Most JMS providers provide hierarchical topic trees that allow consumers to subscribe to
different levels of topics using wildcard substitution. For example, topics could be divided
iNto "ACVE. SALES. SOUTHWEST. ANVI LS" and "ACVE. SALES. NORTHEAST. ANVI LS". A subscriber
can subscribe to "Acve. saLEs. *" and see all the messages published for all the sales of
ACME, though that may not be the desire of the system administrator. A companion
security feature allows permissions to be set at each level in the topic tree, thus making
access control much easier to manage by providing more finely grained access control.

7.3.3 Secure Communication

Communication channels between a client and a server are frequently the focus of security
concerns. A channel of communication can be secured by physical isolation (like a
dedicated network connection) or by encrypting the communication between the client and
the server. Physically securing communication is expensive, limiting, and pretty much
impossible on the Internet, so we will focus on encryption. When communication is
secured by encryption, the messages passed are encoded so that they cannot be read or
manipulated while in transit. This normally involves the exchange of cryptographic keys
between the client and the server. The keys allow the receiver of the message to decode
and read the message.

117

Java Message Service

There are two basic ways that messages are encrypted by JMS providers today: SSL and
Payload Encryption. SSL (Secure Socket Layer) is an industry-standard specification for
secure communication used extensively in Internet applications. With SSL, the JMS
provider's protocol is encrypted, protecting every aspect of the JMS client's exchanges
with the message service. Payload Encryption allows messages to be encrypted on a per-
topic, per-queue basis. This unusua variance minimizes overhead by encrypting only the
messages that need it, rather than everything on the whole connection.'® For example,
Wiol esal er may not need to encrypt the broadcast of price quotes since that same
information is being replicated to every retai |l er with an authenticated connection. The
response message with the "Buy Order” would more likely be encrypted since that is
sensitive data that is unique to each ret ai | er . Payload Encryption can also ensure end-to-
end security between a producer and a consumer. Without it, there may be nothing
preventing a sender from connecting to the message server using a SSL connection and
receiving an unencrypted message using a non-SSL connection.

(6 At the time of this writing only SonicMQ supports Payload Encryption in addition to S3L
encryption.

7.3.4 Firewalls and HTTP Tunneling

Firewalls are systems that serve as the gateway between an organization and a broader
network such as the Internet. These gateways filter all incoming and outgoing messages.
Firewalls only allow packets of a predetermined type and protocol to pass between
computers within the organization and those in the broader network. Firewalls help to stop
malicious attacks against an organization's information systems by outside parties.

In most cases, firewalls alow HTTP traffic to flow without restriction. Since HTTP is not
the native protocol of most IMS providers, IMS providers must piggy-back their protocol
on top of HTTP to penetrate afirewall and exchange messages. Thisis commonly referred
to as HTTP tunneling. HTTP tunneling is not really complicated. It involves nestingaJMS
provider's native protocol inside HTTP requests and responses. Because the JMS
provider's protocol is nested in HTTP, it's hidden from the firewall and effectively tunnels
through unnoticed.

In any JM'S application that must communicate across a variety of firewalls with large user
populations, HTTP tunneling is a necessity. This is especially true when the clients are not
centrally managed and may be added and removed at will, which is often the case in B2B
applications.

The level of support for tunneling varies, depending on the JMS provider. In addition to
tunneling through server-side firewalls, it isimportant to know if the JIMS client can tunnel
through a client-side firewall, and if HTTP proxies are supported. It is aso important to
know if the vendor supports HTTP 1.1 Persistent Connections, HTTP 1.0 Keep-Alive
Connections, or smple HTTP 1.0 Connections.

7.4 Connecting to the Outside World
There are often entities outside your corporation that you need to interact with. You may

have trading partners, financial institutions, and vertical business portals to connect to and
communicate with. These outside entities usually have established protocols that they

118

Java Message Service

already use for electronic communication. An Electronic Data Interchange (EDI) system
may have nightly batch jobs that export flat files to an FTP site. A trading partner may
expect to send and receive HTTP transmissions as its way of communicating with the
outside world. A supply chain portal may require that you install one of their clients on
your site in order to communicate with them through whatever protocol they dictate.
Sometimes email isrequired as away of sending a"Thank you for your order" message.

Ideally each of these outside entities would have a close working relationship with you,
and would allow you to install a JIMS client at each site. That would make communication
very easy - but it's not how the world works. These other communication mechanisms may
have been in place for a number of years, and their users aren't about to rip them out just
because you want them to. They may not be capable of changing the way their systems
work just to accommodate your JMS provider. These are "legacy systems'; in the future,
they may gradually disappear, but for the time being, we have to figure out how to work
with them.

Someday JMS may provide on-the-wire interoperability, and be ubiquitous. Until then, we
are left to building bridges, or connectors to those other protocols. As illustrated in Figure
7.1, aconnector issimply aJMS client. Its sole purpose is to receive data using the foreign
protocol, create a JMS message, and send it along through your JMS-based system.
Likewise an outbound connector would listen for messages from your M S-based system
and transmit the message out into the world using the protocol expected by the entity at the
other end.

Figure 7.1. JMS clients can be dedicated as protocol connectors to the outside world

Gateways to the Outside World

Email

The JMS specification does not suggest this notion of connectors.” However, legacy
systems are a fact of life. In recognition of this, most IMS vendors are starting to provide
connectors to legacy systems as a way to provide added value. If your IMS provider does
not support the connector you are looking for, it is typically easy enough to write your
own. In fact, thisis an ideal situation for using cLi1 ENT_AckNOAEDGE mode. Asillustrated in
Figure 7.2, aJM S consumer can explicitly acknowledge the receipt of the message once its
data transmission has been successfully completed.

[The use of the term "connector” in this discussion should not be confused with "connectors' as
defined by the J2EE connector specification - a different thing altogether.

119

Java Message Service

Figure 7.2. Using CLIENT_ACKNOWLEDGE, a JMS consumer can still ensure reliability
when bridging to other protocols

CLIENT _ACKNOWLEDGE
(@ onMessage()

-

ms @ Send() JMS ms @HTTPSEM
F'ﬂﬂuﬂe' Server acknowledge() Ennsumer

It is important to know that end-to-end quality of service may not be guaranteed when
using bridges to other protocols. In Figure 7.2, the HTTP send may succeed, yet the
acknow edge() may fail.

7.5 Bridging to Other Messaging Systems

JMS does not provide for interoperability between JIMS providers. A IMS client from one
vendor cannot talk directly to a IMS server from another vendor. Interoperability between
vendors was not a goal of the specification's creators, since the architecture of messaging
vendors can be so vastly different. One solution to this problem is to build a connector
process that is a client of both providers. Its sole purpose is to act as a pass-through
mechanism between the two providers, as shown in Figure 7.3. This is one of the reasons
why the message itself is required to be interoperable between vendors, as explained in
Chapter 3. The message need not be recreated as it is passed along to the other IMS client.

Figure 7.3. Connecting from one JMS provider to another is a simple pass-through process
that is a client of both

JMS to JMS Connectors
Vandor A Vendor 8
Vendor fo Vendor
]
o Connector il
Jng
k‘. Client ﬂllenl f
b | ‘//1 "\"l
JMS JMS JM3 JMS
IE:JImI ; Server * ClientA ClientB ™ > Server - BJI?:‘SH
f‘ Jns \
[Client I:Ilanl
Jms IS
Cllent Client

End-to-end quality of service should be a consideration when building or using such a
bridge. The robustness of JMS vendor-provided bridges may vary in this respect.

Since IMS is a standard, and it is easy enough to remove one vendor's implementation and
swap in another one, you may ask "Why would anyone want to do this?' The main reason
today isto bridge an IBM MQSeries legacy application with an application that is based on
amore modern JMS provider.

120

Java Message Service

In recognition of this need, most JIMS vendors are providing bridges to MQSeries. It's in
their best interest to do so, since MQSeries is a strong established player in the messaging
market.

121

Java Message Service

Chapter 8. J2EE, EJB, and JMS

8.1 J2EE Overview

Java 2, Enterprise Edition (J2EE) is a specification that unites severa other Java
enterprise technologies, including IMS, into one complete platform. J2EE is built on three
main components. Enterprise JavaBeans, Servlets, and JavaServer Pages (JSP). Many
other technologies, such as IMS, JDBC, JavaMail, JTA, CORBA, and JNDI. are also
included as services in J2EE. The Java Message Service actually has two roles in J2EE: it
is both a service and the basis for a new enterprise bean type.

To get a better understanding of what J2EE is, and why it is important, we need to discuss
the three main components and explain how they are drawn together to form the unified
J2EE platform. It is important to keep in mind that all the technologies discussed here are
paper specifications licensed and implemented by vendors - a central theme in Sun
Microsystems' enterprise technologies.

8.1.1 Enterprise JavaBeans

Enterprise JavaBeans (EJB) 2.0 defines a Java component model for component
transaction monitors (CTMs). A CTM is a marriage of two technologies: distributed
objects and transaction processing monitors (TPMs). Distributed object technologies such
as CORBA, Java RMI-JRMP, and DCOM provide a networking and routing infrastructure
that allows applications to access objects hosted on other processes or computers. A TPM,
such as CICS or TUXEDO, provides a robust, secure, and scalable environment for
running transactional applications. A CTM combines these technologies into transactional
distributed objects that run in a robust, secure, and scalable environment. There are three
main CTM technologies today: Sun's Enterprise JavaBeans, Microsoft's COM+ (ak.a.
MTS), and the Object Management Group's CORBA Component Model (CCM). J2EE is
built on EJB, which provides it with powerful transactional components that can be used to
model and run an organization's business logic.

Enterprise JavaBeans are not at al like Java Beans. Enterprise
JavaBeans are nonvisual components that run on an application
J& server. Java beans are used as visual widgets (buttons, graphs, etc.).
Other than the common name "Bean" and the fact that they are both
Java component technologies from Sun Microsystems, EJB and Java
Beans have very little in common.

In Enterprise JavaBeans 2.0, bean components come in three main flavors. session, entity,
and message-driven beans. Session beans model processes and act as server-side
extensions of their clients (they can manage a client's session state). Entity beans model
persistent business objects; and combine business logic and database data. Message-driven
beans, the newest bean type, are IMS clients that can consume messages concurrently in a
robust and scalable EJB environment. The EJB 2.0 bean components are shown in Figure
8.1

122

Java Message Service

Figure 8.1. The EJB 2.0 bean components

EJB Server
-~» | Entity Beans
Java BMI -OP
Client - Entity Container
Java RMI -HOP

‘... |Sesszion Beans

J

Bession Container

= Message Semnver

... JMS Profocol

Message-Driven| ,
Beans

Message-Driven Container

Application developers create custom enterprise beans by implementing one of the main
bean interfaces and developing the bean according to conventions and policies dictated by
the EJB specification. Entity beans are usually used for modeling business concepts that
have persistent data and may be accessed by many clients concurrently. Entity beans might
be used to model customers, orders, vehicles, locations, and similar objects. Session beans
model business processes that may or may not have session state. Session beans might be
used to model business concepts like a securities broker, an online shopping cart, loan
calculation, medical claim processor - any process or mediator-type business concept.
Message-driven beans are used to model stateless JIMS consumers. A message-driven bean
will have a pool of instances at runtime, each of which is a vessagelLi st ener. The bean
instances can concurrently consume hundreds of messages delivered to the message-driven
bean, which makes the message-driven bean scalable. Similar to session beans, message-
driven beans model business processes by coordinating the interaction of other beans and
resources according to the messages received and their payloads.

In addition to the Java classes that define a bean, every bean has an XML configuration
file called a deployment descriptor. The deployment descriptor alows the bean developer
to declare many of a bean's runtime behaviors including transaction policies, access control
policies, and the resources (services) available. Resources (IMS, JDBC, JavaMail, etc.)
that are declared in the deployment descriptor are accessed via JNDI from the bean's
environment naming context (ENC). The ENC is simply a default read-only JNDI
namespace that is available to every bean at runtime. Each bean deployment has its own

123

Java Message Service

JNDI ENC. In addition to providing a bean with access to resources such as JDBC,
JavaMail, JTA, and URL and JM'S connection factories, the INDI ENC is used to access
properties and other enterprise beans. Resources accessed from the JNDI ENC are
managed implicitly by the EJB server so that they are pooled and then are automatically
enrolled in transactions as needed.

All enterprise beans (session, entity, and message-driven) can be developed separately,
packaged in a JAR file and distributed. As components, packaged beans can be reused and
combined with various other beans to solve any number of application requirements. In
addition, enterprise beans are portable so that they can be combined and deployed on any
application server that is EJB-compliant.

Session and entity beans are accessed as distributed objects via Java RMI-110P, which
provides some level of location transparency; clients can access the beans on the server
somewhat like local objects. Entity and session beans are based on the RPC distributed
computing paradigm. Message-driven beans are JMS clients that process IMS messages;
they are not accessed as distributed objects. Message-driven beans are based on the
asynchronous enterprise messaging paradigm.

There is alot more to Enterprise JavaBeans than is provided in this ssimple overview. You
can learn more about EJB by reading Enterprise JavaBeans, by Richard Monson-Haefel
(O'Reilly).

8.1.2 Servlets

The servlet specification defines a server-side component model that can be implemented
by web server vendors. Servlets provide a simple but powerful API for generating web
pages dynamically. (Although servlets can be used for many different request-reply
protocols, they are predominantly used to process HTTP requests for web pages.)

Servlets are developed in the same fashion as enterprise beans; they are Java classes that
extend a base component class and may have a deployment descriptor. Servlets do not
implicitly support transactions and are not accessed as distributed objects. Servlets respond
to requests recieved from an input stream, usualy HTTP, and respond by writing to an
output stream. Once a servlet is developed and packaged in a JAR file, it can be deployed
in aweb server. When a servlet is deployed, it is assigned to handle requests for a specific
web page or assist other servlets in handling page requests.

The servlet specification is smple and elegant. It's a powerful server-side component
model. You can learn more about servlets in Java™ Serviet Programming, by Jason
Hunter and William Crawford (O'Reilly).

8.1.3 JavaServer Pages

JavaServer Pages (JSP) is an extension of the servlet component model that simplifies the
process of generating HTML dynamically. JSP essentially allows you to incorporate Java
directly into an HTML page as a scripting language. JSP pages (text documents) are
trandlated and compiled into Java servlets, which are then run in aweb server just like any
other servlet - some servers do the compilation automatically at runtime. JSP can aso be
used to generate XML documents dynamically.

124

Java Message Service

8.2 J2EE: A United Platform

Servlets and JSP, collectively called web components, provide a powerful technology for
dynamically generating HMTL using server side components. As EJB matured it became
obvious that a synergy existed between EJB and web components. EJB provides scalable,
secure, transactional access to business logic and data, while web components provide a
flexible model for dynamically generating HTML user interfaces. Together these
technologies strike a nice balance between the need for a robust infrastructure and a
lightweight, web-based, and easily distributed user interface.

To create a united platform, J2EE standardizes the use of XML deployment descriptors
and the JNDI ENC across both enterprise beans and web components. In J2EE, both
servlets and JSP scripts can access resources like JDBC, JavaMail, and JMS connection
factories via their own JNDI ENC. The ability to consistently access a JMS connection
factory from a servlet, JSP script, or enterprise bean enables any of these components to
become a JMS client.

In addition to web components and enterprise bean components, J2EE introduces the
application client component. The application client component runs on the client machine
in its own container (see Figure 8.2). It is simply a Java application that has a deployment
descriptor and a INDI ENC that allows it the same ease of access to resources that other
components enjoy. The application client can access IM S through its INDI ENC, so it too
can become a JMS client.

Figure 8.2. The J2EE platform

Client Application

=

EJB Weh Application
Conlainer Container Client
7 okl J2EE Platform
r L 3
i A"
JMS
JOBE
Server Database

The J2EE specification ensures a certain amount of portability between vendors. A J2EE
application that runs on Vendor A's platform should, with a little work, be able to run on
Vendor B's J2EE platform. Aslong as proprietary extensions are not used, web, enterprise
bean, and application client components developed to the J2EE specification will run on
any J2EE platform.

125

Java Message Service

8.3 The JMS Resource in J2EE

The INDI Environment Naming Context (ENC) is central to the J2EE platform. The JNDI
ENC specifies that JMS connection factories (Topic- ConnectionFactory and
QueueConnect i onFact ory) can be bound within a INDI namespace and made available to
any J2EE component at runtime. This allows any J2EE component to become a JMS
client.

For example, the wiol esal er IMS client developed in Chapter 4, could be modeled as a
J2EE application client, which would allow it to access a IMS connection factory through
the INDI ENC:

public class \Wol esal er inplenments javax.jns. Messageli stener{
public Wol esal er(String username, String password){
try{

Initial Context jndi Enc = new Initial Context();

Topi cConnecti onFactory factory = (Topi cConnecti onFactory)
j ndi Enc. | ookup("java: conp/ env/j ns/ br oker");
connect = factory. createTopi cConnection (usernane, password);

session =
connect . creat eTopi cSessi on(fal se, Sessi on. AUTO_ACKNOALEDCE) ;

hot Deal sTopi c=(Topi ¢)
j ndi Enc. | ookup("j ava: conp/ env/j s/ Hot Deal s");
publ i sher = session. creat ePubli sher (hot Deal sTopi c) ;

} catch (javax.jns.JNMSException jnse){
jmse. printStackTrace(); Systemexit(1);

} catch (javax.nam ng. Nam ngException jne){
jne.printStackTrace(); Systemexit(1);

Notice that the | ni ti al cont ext did not need a set of vendor specific properties and that the
| ookup() operations referenced a special namespace, "j ava: conp/ env/ j ms/ ", 10 access the
connection factories. The INDI ENC allows the J2EE component to remain ignorant of the
actual network location of the administered objects, and even of the vendor that
implements them. This allows the J2EE components to be portable across JIMS providers
as well as J2EE platforms. In addition, the INDI names used to locate objects are logical
bindings, so the topics or queues bound to these names can change independently of the
actual bindings used by the IMS provider.

In the XML deployment descriptor for the whol esal er application client, the component
developer declares that a JIMS connection factory and destination need to be bound within
the INDI ENC:

<application-client>
<di spl ay- nanme>Wol esal er Appli cat on</di spl ay- nane>
<resource-ref>
<descri pti on>Hot Deal s Broker</description>
<res-ref-name>j ns/ br oker </ res-ref - name>
<res-type>j avax. j nms. Topi cConnecti onFact ory</res-type>
<res-aut h>Cont ai ner </ res- aut h>

126

Java Message Service

</resource-ref>

<resour ce-env-ref>
<descri ption>Hot Deal s Topi c</description>
<resour ce- env-r ef - nane>j ns/ Hot Deal s</ r esour ce-env-r ef - nane>
<resource-env-ref-type> avax. j nms. Topi c</resource-env-ref-type>
</resource-env-ref>

When the component is deployed, the J2EE vendor tools generate code to trandate the
JNDI ENC resource references into JMS-administered objects. This trandlation is done
when the bean is deployed using administration tools.

Any J2EE component can access JMS connection factories and destinations using the
JNDI ENC. As an example, the wiol esal er client can be rewritten as a stateless session
bean that uses the INDI ENC to obtain a JIMS connection factory and destination:

public class Wol esal erBean i npl enments javax. ej b. Sessi onBean{

public void set Sessi onCont ext (Sessi onCont ext cnt x) {
try {

Initial Context jndi Enc = new Initial Context();

Topi cConnectionFactory factory = (Topi cConnecti onFact ory)
j ndi Enc. | ookup("j ava: conp/ env/j ns/ broker");
connect = factory. createTopi cConnection (usernane, password)

session =
connect . creat eTopi cSessi on(fal se, Sessi on. AUTO_ACKNOW.EDCE)

hot Deal sTopi c=(Topi c)
j ndi Enc. | ookup("] ava: conp/ env/j ns/ Hot Deal s") ;
publ i sher = session. creat ePubl i sher (hot Deal sTopi c) ;

}
public void publishPriceQuotes(String deal Desc, String usernang,
String itenDesc, float ol dPrice
float newPrice)({
try {
javax.j ns. St reanmVessage nessage =
sessi on. creat eStreanmvessage();
nessage. witeString(deal Desc);

publ i sher. publ i sh(
nessage,
j avax.j ns. Del i ver yMode. PERSI STENT,
j avax. j ms. Message. DEFAULT_PRI ORI TY
1800000) ;

} catch (javax.jmnms. JMSException jnse){
jmse. printStackTrace();

127

Java Message Service

Although session, entity, and web components can all act as JMS producers, these
components can only consume JMS messages synchronously wusing the
MessageConsuner . recei ve() methods. Calling one of the recei ve() methods causes the
JMS client to pole the queue or topic and wait for a message.™ These methods are used to
consume messages synchronously, while vessagelLi stener objects are used to consume
messages asynchronously.

[1t's recommended that the component developer use the nonblocking method, r ecei veNoWi t (
), to conserve resources and avoid blocking. Unrestricted blocking is not limited to any length of
time, and is therefore risky.

Only the message-driven bean and application client components can both produce and
consume asynchronous messages. The web, session, and entity components cannot act as
asynchronous JMS consumers because they are driven by synchronous request-reply
protocols, not asynchronous messages. Web components respond to HTTP requests while
entity and session beans respond to Java RMI-110P requests.

The fact that neither web components nor session and entity beans can asynchronously
consume JMS messages was one of the things that led to development of the message-
driven bean. The message-driven bean provides J2EE developers with a server-side IMS
consumer that can consume asynchronous messages, something they didn't have before
EJB 2.0.

8.4 The New Message-Driven Bean in EJB 2.0

While most JIMS vendors provide the message-brokering facilities for routing messages
from producers to consumers, the responsibility for implementing JMS clients is |eft to the
application developer. In many cases the JMS clients that consume and process messages
need a lot of infrastructure in order to be robust, secure, fault-tolerant, and scalable. IMS
clients may access databases and other resources, use local and distributed transactions,
require authentication and authorization security, or need to process a large load of
concurrent messages. Fulfilling these needs is a tall order, requiring that a significant
amount of work be done by the application developer. In the end, the kind of infrastructure
needed to support powerful IMS consumers is not unlike the infrastructure needed for
session and entity beans, which can produce but not consume messages asynchronously.?

(2 Entity and session beans can technically consume JMS messages synchronously by polling the
destination using the MessageConsuner . r ecei ve() methods.

In recognition of this need, EJB 2.0 now includes the vessageDri venBean type, which can
consume JMS messages, and process them in the same robust component-based
infrastructure that session and entity beans enjoy. The vessageDri venBean type (message-
driven bean) is a first-class enterprise bean component that is designed to consume
asynchronous JMS messages. Like stateless session beans, message-driven beans don't
maintain state between requests; they may also have instance variables that are maintained
throughout the bean instance's life, but that may not store conversational state. Unlike all
other bean types, a message-driven bean does not have a remote or home interface,
because the message-driven bean is not an RPC component. It does not have business
methods that are invoked by EJB clients. A message-driven bean consumes messages
delivered by other IM S clients through a message server.

128

Java Message Service

In addition to providing the container infrastructure for message-driven beans, EJB 2.0
provides another important advantage: concurrent processing. In EJB 2.0, a message-
driven bean is deployed as a IMS consumer. It subscribes to atopic or connects to a queue
and waits to receive messages. At runtime, the EJB container actually instantiates many
instances of the same message-driven bean and keeps those instances in pool. When a
message is delivered to a message-driven bean, one instance of that bean is selected from a
pool to handle the message. If several messages are delivered at the same time, the
container can select a different bean instance to process each message; the messages can be
processed concurrently. Because a message-driven bean can consume messages
concurrently in a robust server environment, it is capable of much higher throughput and
better scalability than most traditional JIMS clients.

Message-driven beans are composed of a bean class and an XML deployment descriptor.
The bean class must implement both the j avax. ej b. MessageDri venBean interface and the
javax.jms. Messageli stener interface. The MessageDrivenBean interface defines three
methods:

package javax. ej b;
i mport javax.]j nms. Message;

public interface MessageDrivenBean {
public void ejbCreate();
public void ej bRemove();
public void set MessageDri venCont ext (MessageDri venCont ext ndc);

}

The Messageli st ener interface definesthe onvessage() method:

package javax. | Ims;

public interface Messageli stener {
public void onMessage();

}

The set MessageDri venContext () IS called on each instance right after it is instantiated. It
provides the instance with a vessageDr i venCont ext , which is based on a standard container
interface, EiBcontext. The ejbcreate() method is invoked on each instance after the
set MessageDr i venCont ext () method, but before the bean instance is added to the pool for
a particular message-driven bean. Once the message-driven bean has been added to the
pool, it's ready to process messages. WWhen a message arrives, the instance is removed from
the pool and its onvessage() method isinvoked. When the onMessage() method returns,
the bean instance is returned to the pool and is ready to process another message. The
ej bremove() method isinvoked on an instance when it is discarded. This might happen if
the container needs to reduce the size of the pool. The lifecycle of a message-driven bean
is shown in Figure 8.3.

129

Java Message Service

Figure 8.3. Lifecycle of a message-driven bean

does not
exist
&

1. newlinstance()

2. setMessageDrivenContext(mdc))
3. ejbCreate() gjbRemove()

Y

onMessage) mEﬂll;ngEa dy

The Rretail er JMS client developed in Chapter 4 can easily be converted to a message-
driven bean. When messages are received from the wholesalers, ret ai | er MessageBean can
process them quickly and efficiently, providing a more scalable option then the IMS
clients we developed in Chapter 4:

public class Retail er MessageBean

i npl ement s j avax.

private javax
private javax
private javax
private javax

public void s

}

ej b. MessageDri venBean, javax.]jns. Messagelistener {

. j ms. QueueConnection connect = null;
. j ms. QueueSessi on session = null

.j ms. QueueSender sender = null;

.j ms. Queue buyQueue = nul |

et MessageDri venCont ext (MessageDri venCont ext ndc) {

public void ejbCreate(){

try {

Initial Context jndi Enc = new Initial Context();

QueueConnectionFactory factory = (QueueConnecti onFact ory)

j nd

i Enc. | ookup("j ava: conp/ env/ j ms/ broker");

connect = factory.createQueueConnection();

sessi

on = connect. creat eQueueSessi on
(fal se, Sessi on. AUTO_ACKNOWNLEDGE) ;

buyQueue = (Queue)

j nd

sende
conne

i Enc. | ookup("] ava: conp/ env/j ns/ BuyQueue");

r = session.createSender (buyQueue);
ct.start();

} catch (javax.]jns.JVsException jnse){
throw new j avax. ej b. EJBException();

} catch (javax. nami ng. Nam ngException jne){
throw new j avax. ej b. EJBException();

}

}
public void ej bRemove(){

try {

connect . cl ose();

130

Java Message Service

} catch (javax.]jns.JVSException jnse){
throw new j avax. ej b. EJBException();
}

public void onMessage(j avax.jnms. Message aMessage) {
try{
aut oBuy(aMessage) ;
} catch (java.lang. RuntinmeException rte){
throw new j avax. ej b. EJBException();
}

}

private void autoBuy (javax.]ns. Message nmessage) {

int count = 1000;

try{
Streamvessage strnivsg = (Streamvessage) nessage;
String deal Desc = strmvsg.readString();
String itenmDesc strmveg. readString();
float ol dPrice = strmvsg. readFl oat();
float newPrice = strmvsg. readFl oat();
System out. println("Received Hot Buy :"+deal Desc);

/1 |If price reduction is greater than 10 percent, buy
if (newPrice == 0 || oldPrice / newPrice > 1.1){
Systemout. println
("\'nBuying " + count + " " + itenDesc);

Text Message text Msg = session. creat eText Message();
t ext Msg. set Text (count + " " + itendesc);

sender . send(
t ext Msg,
j avax. j ms. Del i ver yMode. PERSI STENT,
j avax.j nms. Message. DEFAULT_PRI ORI TY,
1800000) ;
} else {
Systemout.println ("\nBad Deal. Not buying");
}

} catch (javax.]jns.JVsSException jnse){
jmee. printStackTrace();

}

The RetailerMessageBean USeS the BuyQueue to publish buy orders. The
QueueConnect i onFact ory and BuyQueue destination are obtained from the INDI ENC. The
Ret ai | er MessageBean USeS the factory and queue to create a QueueSender, but how does the
bean subscribe to the HotDeal s topic? Where is the code to set up the Hot Deal s
subscription?

A message-driven bean is, by definition, aJMS consumer. The EJB container in which the
bean is deployed takes care of subscribing the bean to the desired topic or connecting it to
the desired queue, based on JM S configuration information provided by the deployer. Like
any other enterprise bean, message-driven beans have an XML deployment descriptor,
which is used as areference by the deployer. The deployment descriptor includes elements
for describing the type of destination (topic or queue), whether to use durable or
nondurable subscriptions with topics, the acknowledgment mode, and even the message
selector used. In addition, the message-driven bean's deployment descriptor contains
elements common to al beans, like those for specifying environment entries, bean
references, resource connections, etc. This makes the beans very portable across vendors,
aswell as simplifying configuration.

131

Java Message Service

With the message-driven bean, it is important to understand that messages do not have to
be produced by other beans in order for them to consumed by a message-driven bean.
Message-driven beans can consume messages from any topic or queue administered by a
JMS provider.®! Messages consumed by message-driven beans may have come from other
beans (session, entity, or message-driven beans), web components, application client
components, normal non-J2EE JMS clients, or even legacy messaging systems supported
by a JMS provider. A legacy application might, for example, use IBM's MQSeries to
deliver messages to a queue, which is consumed by other legacy applications as well as
message-driven beans.

[In most cases the EJB vendor will also be the JMS provider, but it's possible some EJB vendors
will provide hooks that allow third-party JMS providers to manage delivery of messages to an EJB
container's message-driven beans.

The vessageDri venBean interface is not specific to JIM S-based messaging. While EJB 2.0
requires support for IMS-based messaging, the specification also alows vendors to
support other protocols and messaging systems (e.g., HTTP, ebXML, SMTP) using
proprietary message-driven beans. And this is why the message-driven bean in EJB 2.0
implements both the wessageDrivenBean interface, as well as the wessagelistener
interface, to distinguish it as a message-driven bean.

132

Java Message Service

Chapter 9. JMS Providers

This chapter provides an overview of the top six IMS providers today (IBM's MQSeries,
Progresss SonicMQ, Fiorano's FioranoMQ, Softwired's iBus, Sun's JMQ, BEA's
Weblogic), as well as one open source IMS provider (OpendMS). It is important to note
that not all enterprise messaging systems support IMS. Some of the largest MOM products
still do not support IMS, namely Microsoft Message Queue (MSMQ) and Tibco. While the
authors expect that Tibco will eventually support IMS, MSMQ is not expected to do so -
Microsoft has never supported Java enterprise APIs.

Each product summary addresses the following five topics:

- Product history

- JMS version and operating systems supported

- Architecture (centralized or distributed) and administration tools
- Persistence mechanism and transactional support

- Security (firewall tunneling, authentication, access control)

We have attempted to provide the version number for each product we discussed. Since
new releases of these products will have additional features, we have aso included a
section on features expected for new versions along with all the product summaries.

The term "IM S-compliant” is used throughout this chapter to indicate
which version of JMS specification each provider clams to
g+ implement. It is important to note that Sun does not have any
compatibility tests for JIMS at this time, so there is no standard for
verifying vendor's claims of compatibility.

Most vendors do not support two-phase commit. This is
understandable, since support for the IMS XA interfaces and two-
phase commit is purely optional.

9.1 IBM: MQSeries
9.1.1 Version 5.1

IBM's MQSeries leads the enterprise messaging market. It was introduced in 1993, so it
predates IMS and even Java as we know it. MQSeries was originally based on a point-to-
point model, and recently introduced support for the publish-and-subscribe messaging in
Version 5.

MQSeries provides a JIMS 1.0.2-compliant provider that supports both the pub/sub and p2p
JMS messaging models. The MQSeries IMS provider is supported on AlIX, HP-UX,
Windows 95, 98, 2000, NT, and Sun Solaris.

The server, MQSeries Queue Manager, is supported on a cornucopia of IBM platforms
including AIX, MVSESA, 0OS/2 Warp, 05390, AS/400 (IMPI & RISC), and VSE/ESA.

133

Java Message Service

It's aso supported on a large number of Compaqg platforms, including Tru64 UNIX,
OpenVMS AXP, OpenVMS VAX, and Non-Stop Kernel. In addition, its server is
supported on Linux (technology release), Microsoft Windows 2000 and NT, NCR (AT&T
GIS) Unix, Siemens Nixdorf SINIX and DC/OSx, SCO OpenServer & UnixWare, SGlI,
Solaris, and HP-UX.

The MQSeries architecture is both centralized and distributed. It includes a hub-and-spoke
model. A network can be made up of numerous interconnected MQSeries servers. It
supports several network protocols in addition to TCP/IP, including LU 6.2, NetBIOS, and
SPX. MQSeries provides a clustering architecture with fault-tolerance, fail-over, and load-
balancing among servers in the cluster across different platforms. MQSeries provides a
command-line tool and an administrative API for configuring and managing administered
objects.

Persistence in MQSeries is based on a proprietary mechanism using the actual MQSeries
gueues. This allows messages to be exchanged directly with other MQSeries applications,
without the need for a bridge program. Only local transactions are supported by MQSeries
JMS provider, so the IMS provider cannot participate as a resource in a two-phase commit.

MQSeries provides support for HTTP firewall tunneling through both client and server-
side firewalls. It controls access to queues and topics via access control lists, based on
operating system principals (on Windows NT this includes the Windows SID). Sender
identification is included in MQSeries messages. Secure communications can be provided
by user-written exit code, or third-party security products. Code to interface with the
Entrust PKI isavailable.

9.1.2 Next Version

Future plans for IBM's JMS implementation include further integration with IBM's
WebSphere software platform, an ASF and XA capability, enhanced performance, and a
route to coexistence of messaging and object technologies.

9.2 Progress: SonicMQ
9.2.1 Version 3.0

SonicMQ is compliant with IMS 1.0.2 specification and provides support for both the
publish-and-subscribe and the point-to-point JIMS messaging models. The server and
clients are written in Java and are therefore supported on any platform with a Java Virtual
Machine (JDK 1.1.8 and above).

SonicMQ uses a centralized architecture based on the hub-and-spoke model. It provides
GUI and command-line tools for configuring and monitoring administered objects.

Persistence uses a high performance file-based solution for optimized throughput of
messages in-transit, and uses JDBC to an embedded, pure Java relationa database for
longer-term storage. This can be replaced with JDBC connections to Oracle or SQL
Server.

134

Java Message Service

The most important new feature in Version 3.0 is SonicMQ's Dynamic Routing
Architecture (DRA), which is targeted at large-scale B2B infrastructures. DRA provides
fault-tolerant shared queues within a cluster, allowing paralel queue access, load
balancing and failover, and the ability to share queues across application domains.

An XML message type extends the Text Message, alowing a message to be dedt with as
either straight text or as a DOM tree. Lazy parsing means the built-in XML parser is only
invoked if you ask for the message in DOM format.

SonicMQ provides support for HTTP firewall tunneling ans SSL. The HTTP tunneling
supports client-side proxy servers as well as server-side reverse-proxy servers. HTTP 1.1,
HTTP 1.0 Keep-Alive, and vanilla HTTP 1.0 connections are automatically negotiated at
connection time based on the best available protocol. Authentication is supported with
simple usernames and passwords; PKI server authentication using digital certificates is
also supported. Access control for administered objects is also provided. Using
hierarchical topic trees, ACLs may be administratively defined at any level of the topic
tree. Both positive and negative permissions may be granted for groups of users and
individual users. SonicMQ also includes a unique Vvessage-level payload encryption.

Clustered message servers are configured through centralized management tools. Message
traffic is routed across geographically dispersed message servers using TCP, SSL, or
HTTP,

Automatic Flow Control allows for smooth delivery of messages under heavy load. There
are aso client APIsfor C/C++ and ActiveX/COM+ for integration with non-Java systems.

Also available is a multiclient performance and scalability test harness, which allows you
to do your own vendor-to-vendor comparisons. Currently SonicMQ is the only JMS
vendor offering a performance comparison tool that scales beyond a handful of clients.

9.2.2 Next Version

The next version will include the IMS XA interfaces and two-phase commit, and a new
deployment option based on an IP multicast architecture. In addition, the next version of
SonicMQ will include support for the EJB message-driven bean discussed in Chapter 8. As
aways, each new version will include continued performance and scalability
enhancements.

9.3 Fiorano: FioranoMQ

Fiorano's product was originally the Fiorano Middleware Platform. It was completely
rewritten in Java and renamed FioranoMQ, which first shipped in 1998. Fiorano now
offers two different IM S products. FioranoMQ Multicast and FioranoMQ Enterprise.

9.3.1 FioranoMQ Multicast 4.5

FioranoMQ Multicast is compliant with JMS 1.0.2 and supports the pub/sub JIMS

messaging model. The server and clients are written in Java and therefore run on any
platform with aJDK 1.1 or higher Virtual Machine.

135

Java Message Service

The FioranoMQ Multicast product offers a distributed architecture based on IP multicast.
As adistributed architecture, it doesn't require clustering. FioranoMQ Multicast provides a
command-line tool for configuring administered objects as well as a administration and
monitoring API.

FioranoMQ Multicast does not provide any persistence mechanism for its IMS clients (1P
multicast products frequently do not). Only local transactions are supported, so
FioranoMQ Multicast cannot participate as a resource in a two-phase commit.

9.3.2 FioranoMQ Enterprise 4.5

FioranoMQ Enterprise is compliant with IMS 1.0.2 and supports both p2p and the pub/sub
JMS messaging models. The server and clients are written in Java and therefore run on any
platform with aJDK 1.1 or higher Virtual Machine.

FioranoMQ Enterprise is based on a centralized messaging architecture that uses the hub-
and-spoke model. FioranoMQ Enterprise provides a clustering architecture with fault-
tolerance, fail-over, and load balancing among servers in the cluster. FioranoMQ
Enterprise provides command-line and GUI tools for configuring administered objects as
well as an API for administration and monitoring.

Persistence in FioranoMQ is achieved using a proprietary file-based storage system. Only
local transactions are supported, so FioranoMQ Enterprise cannot participate as a resource
in atwo-phase commit.

FioranoMQ products provide HTTP firewall tunneling via SOCKS or HTTP proxies. SSL
is supported, including support for client certificates. Additionally, FioranoMQ provides
access control for destinations, users, and servers.

9.3.3 Next Version
The next versions of FioranoMQ products will support the IMS XA interfaces and two-

phase commit, XML content-based routing, failover via replicated databases, integration
with MSMQ and IBM's MQSeries, and support for Microsoft's SOAP standard.

9.4 Softwired: iBus

SoftWired AG offers three IMS products. iBus//MessageBus, iBus//MessageServer, and
iBus//Mobile. These products can be used separately or in combination.

9.4.1 iBus//MessageBus 3.1

iBus//MessageBus is based on a distributed architecture. It predates JMS and was
originaly shipped with a proprietary Java API. After JMS was introduced,
iBus//MessageBus changed to support the IM S publish-and-subscribe messaging model.
iBus//MessageBus is compliant with the JIMS 1.0.1 specification. The JMS clients for

iBus//MessageBus are written in Java and can be run on any platform with a JDK 1.1 or
1.2 (Java2) Virtua Machine.

136

Java Message Service

iBus//MessageBus uses IP multicast, so clustering is not applicable; JMS clients in
iBus/MessageBus are peer-to-peer. iBus/MessageBus also provides a protocol
composition framework that allows other protocols to be implemented and integrated by
third parties. iBus//MessageBus doesn't provide any administration or configuration tools -
configuration for each JMS client is based on a local text file conforming to the
java.util.Properties format.

iBus//MessageBus doesn't provide persistence. Only local transactions are supported, so
iBus//MessageBus can't participate as a resource in a two-phase commit.

iBus//MessageBus provides support for HTTP tunneling, but only between two dedicated
JMS clients. Client authorization (access control) is supported by a plug-in, which can be
replaced by the customer to integrate the IMS application into existing systems. SSL is
supported, including authorization using certificates, which can be made available to the
authorization plug-in.

9.4.2 iBus//MessageServer 4.1

The iBus//MessageServer product is based on a centralized message server that uses a hub-
and-spoke model. It was developed for IMS and supports both the pub/sub and p2p
messaging models.

iBus//MessageServer is compliant with the IMS 1.0.2 specification. The JMS clients for
iBus//MessageServer are written in Java and can be run on JDK 1.1 or 1.2 (Java 2) Virtua
Machines. The iBus//MessageServer is also written in Java and can be run on any platform
with aJDK 1.2 (Java 2) Virtual Machine.

iBus//MessageServer does not support clustering or fail-over, although it is fault tolerant,
allowing the client to reconnect transparently after a timeout is reached. It supports
firewall tunnelling using SSL and HTTP. iBus//MessageServer is also built on top of a
protocol composition framework that allows other protocols to be implemented and
integrated by third parties. The iBus/MessageServer provides a proprietary xv.Message
type that takes either XML text or a DOM tree as a payload. It offers an administration
APl aswell as command-line and GUI administration and configuration tools.

This product uses a proprietary file-based storage or, optionally, JDBC for persistence.
Only local transactions are supported, so iBus/MessageServer cannot participate as a
resource in a two-phase commit.

iBus//MessageServer provides HTTP 1.0 and HTTPS client- and server-side firewall
tunneling. Access control and SSL are supported.

9.4.3 iBus//Mobile 1.0
Softwired AG also offers support for wireless IMS clients with its iBus/Mobile product.
iBus//Mobile is used by JMS clients on hand-held devices like cell phones and pocket

organizers that work with iBus//MessageServer. iBus//Mobile can run on wireless devices
running PalmOS, EPOC, Symbian, or Windows CE.

137

Java Message Service

The iBus//Mobile product uses a Java API for its client that is similar to IMS, but much
lighter to accommodate smaller palm and mobile phone platforms. iBus/Mobile also
supports nonprogrammable mobile devices, such as current generation pagers and cellular
phones.

iBus//Mobile supports several protocols, including the WAP protocol stack (notably WAP-
Push, WDP, and WTLS), IrDA, Bluetooth, SMS, GPRS, TCP/IP, and HTTP. The Mobile
product is specially designed to handle frequent disconnection, which is the norm in a
wireless environment.

The iBus//Mobile clients connect to an iBus//MessageServer via a special proxy that
tranglates between WAP and SMS (used by the clients) and the native protocol used by
iBus//MessageServer.

9.4.4 Next Versions

The next versions of the SoftWired JIMS providers will support IMS 1.0.2, including the
JMS XA interfaces for two-phase commit. In addition, the next versions will support
hierarchical topics and clustering (MessageServer). SoftWired products will be offered in
Standard, Business, and Enterprise editions.

9.5 Sun Microsystems: Java Message Queue

Although Sun is primarily responsible for defining the IMS AP, it also provides a IMS
product.

9.5.1 Version 1.1

Version 1.1 of the Java Message Queue product is based on InterAgent, a product that was
initially developed by Modulus Inc., which was later acquired by Enron Corp. InterAgent
is written in C and originally had a proprietary Java API. This proprietary APl was
replaced with the JMS API. Sun licensed InterAgent from Enron to create the Java
Message Queue (IMQ) 1.1 product.

JMQ is compliant with the IMS 1.0.2 specification. The JMS clients are written in Java
and can be run on JDK 1.1.8 and JDK 1.2.2 Virtual Machines. The server is written in C
and is supported on Solaris-Sparc and WinNT/Win2000-Intel machines.

JMQ uses a centralized architecture base on the hub-and-spoke model and the TCP/IP.
Although clustering is not supported, message routing to other servers is supported. This
allows clients to consume messages from and produce messages to destinations connected
to another server while maintaining a connection to a single server. The servers (called
routers) must be connected together to support this kind of forwarding. IMQ offers both a
GUI console and command-line utilities for administration and configuration.

Persistence is achieved using a proprietary file-based storage system. Only local

transactions are supported, so JMS clients cannot participate as a resource in a two-phase
commit.

138

Java Message Service

JMQ does not support firewall tunneling. JMQ provides a username/password
authentication support, but doesn't provide any authorization (access control) for
administered objects.

9.5.2 Next Version

Version 2.0 of IMQ will be a complete rewrite and will no longer be based on Enron's
InterAgent product. IMQ will be written in Java, which will increase the number of
platforms the server can run on. IMQ 2.0 will support the optional IMS Application Server
Facilities, JDBC for persistence, JIMS XA interfaces for two-phase commit, server
clustering, HTTP/HTTPS firewall tunneling, authentication, some access control, and
improved Admin GUI console.

9.6 BEA: WebLogic Server

BEA was one of the first (and most important) companies to introduce a full-fledged EJB
container. Their approach to JMS has been to add a IMS server to their existing product,
WebL ogic Server.

9.6.1 Version 5.1

WebL ogic Server is an application server that includes an EJB container, servlet, and JSP
container and other facilities. In addition, WebL ogic includes a JIMS service provider that
was introduced in version 4.5.1. In earlier versions, WebLogic provided a proprietary
messaging system called WebL ogic Events, which is still supported but is not the basis of
their IMS implementation.

WebL ogic's IMS service is compliant with IMS 1.0 and provides support for both the
pub/sub and the p2p JM S messaging models. The server and clients are written in Java and
therefore run on any platform with a Java Virtual Machine (JDK 1.1 or higher).

WebL ogic uses a centralized architecture based on the hub-and-spoke model. Clustering of
JMS services is not currently supported, so load balancing and scalability are limited to a
single server instance. The WebL ogic server provides administrators with a GUI console
that includes support for configuring JIM S administered objects.

Persistent messages are supported through any relational database that can be accessed
with JDBC. WebL ogic does not support 2PC, but it does support coordinated transactions
between their EJB container and JMS clients, provided that the database used for IMS
persistence is the same database used by the enterprise beans.

WebLogic supports HTTP 1.1 tunneling (as well as HTTPS) which can be used to tunnel
through both client-side and server-side firewalls. Support for tunneling is one of the core
services provided by the WebLogic server. For authentication and access control,
WebLogic supplies a pluggable "realm” Service-Provider Interface and a set of default
realms (LDAP, NT, Unix, and a simple file-based ream). WebLogic supports SSL,
including client-side certificates. WebL ogic aso supports access control lists on topics and
gueues; access lists control who may send or receive messages to a particular destination.
Access control is used on message delivery, and when establishing consumers. It can also
be used in their INDI naming service to prevent access to administered objects.

139

Java Message Service

9.6.2 Next Version

The next version of WebL ogic server will support IMS 1.0.2, clustering of IMS services, a
web console based on the Java Management Extension (JIMX), and 2PC. In addition, the
next version of WebL ogic will include support for the EJB message-driven bean discussed
in Chapter 7. The next version requires that JMS clients run on the JDK 1.2 or JDK 1.3
Virtual Machine, while the servers must run on the JDK 1.3 Virtual Machine.

9.7 ExoLab: OpenJMS

The ExoLab Group is a maor contributor of open source J2EE servers. OpenJMS is their
JMS server.

9.7.1 Beta Version 0.4

The OpenIJMS project was started by Jm Alateras and Jim Mourikis. It is sponsored by
The ExoLab Group. OpenJM S was developed to the IMS 1.0.2 specification and supports
both the pub/sub and p2p JMS messaging models. OpendMS is currently in development
but its source code is freely available and can be used in testing and learning about JIMS.
Obvioudly, the final version will be more complete. The server and clients are written in
Java and can run on any platform with a Java 2 Virtual Machine. OpenJMS is based on a
centralized hub-and-spoke messaging architecture. Clustering is not currently supported,
so scalability and load balancing are limited to a single server instance.

Persistent messages are supported through any relational database that can be accessed
with JDBC. Only local transactions are supported, so OpenJMS cannot participate as a
resource in a two-phase commit. OpenJM S does not currently support firewall tunneling or
any level of authentication or access control.

9.7.2 Version 1.0
In the final release, clustering will be supported through a server-to-server communication
protocol. OpendM S will aso support IP multicast and the HTTP 1.1 protocol, two-phase

commit (as a XA resource), firewall tunneling, and security services such as authentication
and access control.

140

Java Message Service

Appendix A. The Java Message Service API

This appendix is a quick reference guide to the Java Message Service API. It is organized
into three sections. common facilities, publish-and-subscribe, and point-to-point. Each
section provides a summary of its interfaces and is organized aphabetically. Section A.1
covers al the common base interfaces of the p2p and pub/sub programming APIs, as well
as the six message types. Section A.2 covers the queue-based API, and Section A.3 covers
the topic-based API.

The XA-compliant interfaces are not included in this section because they are essentially
the same as their non-XA interfaces. In addition, the Application Server AP
(Connect i onConsuner, Server Sessi on, and Ser ver Sessi onPool) IS NOt covered because this
APl is not supported by most vendors and therefore is not covered in this book.

A.1 Common Facilities

This section covers al the common base interfaces of the p2p and pub/sub programming
APIs, aswell as the six message types.

A.1.1 BytesMessage

This Mvessage type carries an array of primitive bytes as its payload. It's useful for
exchanging data in an application's native format, which may not be compatible with other
existing MVessage types. It is also useful where IMS is used purely as a transport between
two systems, and the message payload is opaque to the IM S client:

public interface BytesMessage extends Message {

public byte readByte() throws JNMSException;
public void witeByte(byte value) throws JNMSException;
public int readUnsi gnedByte() throws JNMSException;
public int readBytes(byte[] value) throws JMSExcepti on;
public void witeBytes(byte[] value) throws JMSException;
public int readBytes(byte[] value, int |ength)
t hrows JVMBExcepti on;
public void witeBytes(byte[] value, int offset, int |ength)
t hrows JMBExcepti on;
public bool ean readBool ean() throws JVMSExcepti on;
public void witeBool ean(bool ean val ue) throws JMSExcepti on;
public char readChar() throws JMSException;
public void witeChar(char val ue) throws JMSExcepti on;
public short readShort() throws JNMSException;
public void witeShort(short value) throws JMSExcepti on;
public int readUnsi gnedShort() throws JMSExcepti on;
public void witelnt(int value) throws JMSException;
public int readint() throws JMSExcepti on;
public void witeLong(long value) throws JMSExcepti on;
public long readLong() throws JMSException;
public float readFloat() throws JVMSException;
public void witeFl oat(float value) throws JMSExcepti on;

publi ¢ doubl e readDoubl e() throws JMSExcepti on;

public void witeDoubl e(doubl e val ue) throws JMSExcepti on;
public String readUTF() throws JMSExcepti on;

public void witeUTF(String val ue) throws JMSException;
public void witeObject(Object value) throws JMSExcepti on;
public void reset() throws JNMSException;

141

Java Message Service

A.1.2 Connection

The connecti on is the base interface for the Topi cConnect i on and the QueueConnecti on. It
defines several general-purpose methods used by clients of the messaging system in
managing a JMS connection. Among these methods are the get Vet abata(), start(),
stop(), andclose() methods:

public interface Connection {
public void close() throws JMSException;
public String getClientID() throws JMSExcepti on;
publ i c ExceptionLi stener getExceptionListener() throws JMSException;
public ConnectionMetabData get MetaData() throws JMSExcepti on;
public void setCientlD(java.lang.String clientlD)
t hrows JMBExcepti on;
public void set ExceptionLi stener(ExceptionListener |istener)
t hrows JMBExcepti on;
public void start() throws JMSExcepti on;
public void stop() throws JNMSExcepti on;
}

A connect i on object represents a physical connection to a JM S provider for either point-to-
point (QueueConnection) or publish-and-subscribe (Topi cConnect i on) messaging. A JMS
client might choose to create multiple connections from the same connection factory, but
this is rare as connections are relatively expensive (each connection requires a network
socket, 1/0O streams, memory, etc.). Creating multiple session objects from the same
Connect i on object is considered more efficient, because sessions share access to the same
connection.

A.1.3 ConnectionFactory

The connectionfFactory is the base type for the TopicConnectionFactory and the
QueueConnect i onFact ory, Which are used in the publish-and-subscribe and point-to-point
messaging models, respectively.

The connectionFactory IS implemented differently by each vendor, so configuration
options available vary from product to product. A connection factory might, for example,
be configured to manufacture connections that use a particular protocol, security scheme,
clustering strategy, etc.:

public interface ConnectionFactory {

}

A.1.4 ConnectionMetaData

This type of object is obtained from a Connection object (TopicConnection oOr
QueueConnection). It provides information describing the JMS connection and the JMS
provider. Information available includes the identity of the IMS provider, the IMS version
supported by the provider, JMS provider version numbers, and the JMS properties
supported:

public interface ConnectionMetabData {
public int getJVMSMaj orVersion() throws JMSExcepti on;
public int getJVMSM norVersion() throws JMSException;
public String getJMSProvi derName() throws JMSExcepti on;
public String getJMSVersion() throws JMSExcepti on;

142

Java Message Service

public Enuneration get JMSXPropertyNames() throws JMSExcepti on;
public int getProviderMjorVersion() throws JMSException;
public int getProviderMnorVersion() throws JMSException;
public String getProviderVersion() throws JMSException;

}

A.1.5 DeliveryMode

This class contains two final static variables, PERSI STENT and NON PERSI STENT. These
variables are used when establishing the delivery mode of a MessageProducer
(Topi cPubl i sher OF QueueSender).

There are two types of delivery modes in IMS: persistent and nonpersistent. A persistent
message should be delivered once-and-only-once, which means that a message is not lost
if the IMS provider fails; it will be delivered after the server recovers. A nonpersistent
message is delivered at-most-once, which means that it can be lost and never delivered if
the IM S provider fails:

public interface DeliveryMde {
public static final int NON_PERSI STENT = 1;
public static final int PERSISTENT = 2;

}

A.1.6 Destination

This interface is the base interface for the Topi ¢ and Queue interfaces, which represent
destinations in the pub/sub and p2p domains respectively.

In all modern enterprise messaging systems, applications exchange messages through
virtual channels called destinations. When sending a message, the message is addressed to
a destination, not a specific application. Any application that subscribes or registers an
interest in that destination may receive that message. In this way, the applications that
receive messages and those that send messages are decoupled. Senders and receivers are
not bound to each other in any way and may send and receive messages as they see fit:

public interface Destination {

}

A.1.7 ExceptionListener

JMS provides an Excepti onlLi st ener interface for trapping a lost connection and notifying
the client of this condition. The ExceptionListener is bound to the connection. The
ExceptionListener IS very useful to JIMS clients that wait passively for messages to be
delivered and otherwise have no way of knowing that a connection has been lost.

It is the responsibility of the JMS provider to call the onexception() method of al
registered ExceptionListeners after making reasonable attempts to reestablish the
connection automatically. The JIMS client can implement the Except i onLi st ener SO that it
can be alerted to a lost connection, and possibly attempt to reestablish the connection
manually:

public interface ExceptionListener {
public void onExcepti on(JMSExcepti on exception);
}

143

Java Message Service

A.1.8 IMSException

The JvsExcept i on IS the base exception type for al exceptions thrown by the IMS API. It
may provide an error message describing the cause of the exception, a provider-specific
error code, and possibly a reference to the exception that caused the IM S exception:

public class JVSException extends java.l ang. Exception {
publ i c JMSException(java.lang.String reason) { .. }
public JMSException(java.lang. String reason,
java.lang. String errorCode) { .. }
public String getErrorCode() { .. }
public Exception getLinkedException() { .. }
public void setLinkedException(java.lang. Exception ex) { .. }

}

While the Jvsexcept i on is usually declared as the exception type thrown from methods in
the IMS AP, the actual exception thrown may be one of a dozen subtypes, which are
enumerated below. The descriptions of these exception types are derived from Sun
Microsystems JMS API documentation and they implement the methods defined by the
JVBExcept i on SUPEr type:

I'l'l egal St at eExcepti on

Thrown when a method is invoked illegally or inappropriately, or if the provider is
not in an appropriate state when the method is caled. For example, this exception
should be thrown if sessi on. commi t () iscaled on a non-transacted session.

I nval i dC i ent | DExcepti on

Thrown when a client attempts to set a connection's client ID to a value that the
provider rejects.

I nval i dDest i nati onExcepti on

Thrown when the provider doesn't understand the destination, or the destination is no
longer valid.

I nval i dSel ect or Excepti on

Thrown when the syntax of a message selector isinvalid.

JMBSecuri t yExcepti on

Thrown when a provider regjects a username/password. Also thrown when a security
restriction prevents a method from compl eting.

MessageEOFExcepti on

Thrown if a stream ends unexpectedly when a streanessage Or Byt esMessage IS
being read.

144

Java Message Service

MessageFor mat Excepti on

Thrown when a JM S client attempts to use a data type not supported by a message,
or attempts to read data in a message as the wrong type. Also thrown when type
errors are made with message property values. Note that this exception should not be
thrown when attempting to read improperly formatted st ri ng data as numeric values.
java. | ang. Nurber For nat Except i on should be used in this case.

MessageNot Readabl eExcepti on

Thrown when a JM S client tries to read a write-only message.

MessageNot Wi t eabl eExcepti on

Thrown when aJM S client tries to write to a read-only message.

Resour ceAl | ocat i onExcepti on

Thrown when a provider is unable to allocate the resources required by a method.
This exception should be thrown when a call to creat eTopi cConnection() fails
because the IM S provider has insufficient resources.

Transact i onl nProgressExcepti on

Thrown when an operation is invalid because a transaction is in progress. For
instance, it should be thrown if you call sessi on. commit () when asession is part of
adistributed transaction.

Transact i onRol | edBackExcepti on
Thrown when calling Sessi on. conmi t () resultsin atransaction rollback.
A.1.9 MapMessage

This Message type carries a set of name-value pairs as its payload. The payload is similar to
a java.util.Properties oObject, except the vaues must be Java primitives or their
wrappers. The vapMessage is useful for delivering keyed data:

public interface MapMessage extends Message {

publ i ¢ bool ean get Bool ean(String nane) throws JMSExcepti on;
public void setBool ean(String nane, bool ean val ue)

t hrows JVSExcepti on;
public byte getByte(String nane) throws JMSExcepti on;
public void setByte(String name, byte value) throws JVMSException;
public byte[] getBytes(String nane) throws JMSExcepti on;
public void setBytes(String nane, byte[] val ue)

t hrows JVBSExcepti on;
public void setBytes(String nane, byte[] val ue,

int offset, int |ength)

throws JMSExcepti on;
public short getShort(String name) throws JMSException;
public void setShort(String name, short value) throws JNMSException;
public char getChar(String nane) throws JMSExcepti on;
public void setChar(String name, char value) throws JVMSExcepti on;
public int getInt(String nanme) throws JMSExcepti on;

145

Java Message Service

public void setlnt(String nane, int value)throws JNMSException;
public | ong getLong(String nanme) throws JMSException;
public void setLong(String name, |ong value) throws JVMSException;
public float getFloat(String nane) throws JNMSException;
public void setFloat(String nanme, float val ue)

t hrows JMSExcepti on;
publ i c doubl e get Doubl e(String nane) throws JVMSExcepti on;
public void setDoubl e(String nane, double val ue)

t hrows JMBExcepti on;
public String getString(String nane) throws JVMSExcepti on;
public void setString(String nane, String val ue)

t hrows JMBSExcepti on;
public Ooject getObject(String nane) throws JVSExcepti on;
public void setject(String nane, Object val ue)

t hrows JMBSExcepti on;
public Enuneration get MapNanes() throws JMSExcepti on;
public bool ean itenkxists(String nane) throws JMSException;

A.1.10 Message

The nvessage interface is the super interface for all message types. There are six messages
types including: Vessage, Text Message, Obj ect Message, St reanlessage, Byt esMessage, and
MapMessage. The Message type has no payload. It is useful for ssimple event notification.

A message basicaly has two parts. a header and payload. The header is comprised of
specia fields that are used to identify the message, declare attributes of the message, and
provide information for routing. The difference between message types is determined
largely by their payload, which determines the type of application data the message
contains:

public interface Message {
public void acknowl edge() throws JMSException;
public void clearBody() throws JVMSException;

public Destination getJVMsDestination() throws JMSExcepti on;
public void setJMsDestination(Destination destination)
throws JMSExcepti on;
public int getJMsSDeliveryMdde() throws JNMSException;
public void setJMSDel i veryMode(int deliveryMde)
throws JMSExcepti on;
public String getJVMSMessagel D() throws JVSExcepti on;

public void setJMBMessagel D(String id) throws JMSExcepti on;

public [ong get JMSTi nestanp() throws JNMSException;

public void set JMSTi nestanp(long tinestanp) throws JVMSException
public | ong getJMBExpiration() throws JMSException;

public void set JMBExpiration(long expiration) throws JNMSException;
public bool ean get JMSRedel i vered() throws JMSException;

public void set JMBRedel i ver ed(bool ean redelivered)
throws JMSExcepti on;
public int getJMSPriority() throws JMSException;
public void setJMBPriority(int priority) throws JNMSException;
public Destination getJVSRepl yTo() throws JMSException;
public void setJVSRepl yTo(Destination replyTo) throws JVSException;
public String getJMSCorrelationlD() throws JVSExcepti on;
public void setJMSCorrel ationlD(String correl ationl D)
throws JMSExcepti on;
public byte[] getJMSCorrel ationl DAsBytes() throws JNMSExcepti on;
public void setJVsCorrel ati onl DAsByt es(byte[] correl ationl D)
throws JMSExcepti on;
public String getJMSType() throws JNMSExcepti on;
public void setJMSType(String type) throws JMSException;

146

Java Message Service

public String getStringProperty(String nane)

t hrows JMBException, MessageFor mat Excepti on;
public void setStringProperty(String nane, String val ue)

t hrows JVSException, MessageNot Wit eabl eExcepti on;
public int getlntProperty(String namne)

throws JVMSException, MessageFor mat Excepti on;
public void setlntProperty(String name, int val ue)

t hrows JVSException, MessageNot Wit eabl eExcepti on;
publ i ¢ bool ean get Bool eanProperty(String nane)

throws JVMSException, MessageFor mat Excepti on;
public void setBool eanProperty(String nane, bool ean val ue)

t hrows JVSException, MessageNot Wit eabl eExcepti on;
publi ¢ doubl e get Doubl eProperty(String nane)

throws JVMSException, MessageFor mat Excepti on;
public void setDoubl eProperty(String nanme, doubl e val ue)

t hrows JVMSException, MessageNot Wit eabl eException;
public float getFl oatProperty(String nane)

throws JVMSException, MessageFor mat Excepti on;
public void setFloatProperty(String nane, float val ue)

t hrows JVBSException, MessageNot Wit eabl eExcepti on;
public byte getByteProperty(String nane)

throws JVMSException, MessageFor mat Excepti on;
public void setByteProperty(String nane, byte val ue)

t hrows JVBSException, MessageNot Wit eabl eExcepti on;
public | ong getLongProperty(String nane)

throws JVMSException, MessageFor mat Excepti on;
public void setLongPreperty(String nane, |ong val ue)

t hrows JVBSException, MessageNot Wit eabl eExcepti on;
public short get ShortProperty(String nane)

throws JVBException, MessageFor mat Excepti on;
public void setShortProperty(String nane, short val ue)

t hrows JVSException, MessageNot Wit eabl eExcepti on;
public Object getbjectProperty(String nane)

throws JVMSException, MessageFor mat Excepti on;
public void setObjectProperty(String nane, Object val ue)

t hrows JVBSException, MessageNot Wit eabl eExcepti on;
public void clearProperties()

t hrows JMBSExcepti on;
public Enuneration getPropertyNanmes()

t hrows JMBSExcepti on;
publ i c bool ean propertyExists(String nane)

t hrows JMBSExcepti on;

A.1.11 MessageConsumer

The MessageConsuner 1S the base interface for the Topi cSubscri ber and the QueueRecei ver .
It defines several general-purpose methods used by clients when using a consumer. Among
these methods are the set VessageListener()and cl ose() methods, and three types of
recei ve() methods.

MessageConsuner Can consume messages asynchronously or synchronously. To consume
messages asynchronously, the JMS client must provide the nessageConsuner with a
Messageli st ener object, which will then receive the messages as they arrive. To consume
messages synchronously, the JMS client may call one of three receive methods: recei ve(
), receive(longti maout),and recei veNoWai t ().

public interface MessageConsuner {
public void close() throws JNMSException;
publ i c Messageli stener getMessagelListener() throws JNMSExcepti on;
public String get MessageSel ector() throws JMSException;
public Message receive() throws JMSExcepti on;
public Message receive(long tineout) throws JMSException;

147

Java Message Service

public Message receiveNoVWait() throws JMSExcepti on;
public void set Messageli st ener (MessagelLi stener |istener)
t hrows JVMSExcepti on;

}

A.1.12 MessageListener

The wMessagelistener IS implemented by the JMS client. It receives messages
asynchronously from one or more Consurer s (Topi cSubscri ber OF QueueRecei ver).

The sessi on (Topi cSessi on OF QueueSessi on) Must ensure that messages are passed to the
Messageli stener serially, so that the messages can be processed separately. A
Messageli st ener Object may be registered with many consumers, but serial delivery isonly
guaranteed if all of its consumers were created by the same session:

public interface Messagelistener {
public void onMessage(Message nessage);
}

A.1.13 MessageProducer

The vessageProducer 1S the base interface for the Topi cPubl i sher and the QueueSender. It
defines several general-purpose methods used by clients. Among these methods are
setDel i veryMode(),close(),setPriority(), and set Ti neTolLi ve(long tineToLive).

MessagePr oducer Sends messages to a specified destination (Topi ¢ or Queue). The default
destination can be determined when the vessagePr oducer is created by its session, or the
destination can be set each time a message is sent - in this case there is no default
destination:

public interface MessageProducer ({
public void setDi sabl eMessagel D(bool ean val ue) throws JVSExcepti on;
publ i c bool ean get Di sabl eMessagel D() throws JMSExcepti on;
public void setD sabl eMessageTi nest anp(bool ean val ue)
t hrows JMBExcepti on;
publ i c bool ean get Di sabl eMessageTi nestanp() throws JNMSExcepti on;
public void setDeliveryMde(int deliveryMde) throws JMSExcepti on;
public void setPriority(int defaultPriority) int getDeliveryMde()
t hrows JVMSExcepti on;
public int getPriority() throws JMSException;
public void setTineToLi ve(long tineToLive) throws JVSExcepti on;
public long getTi meToLive() throws JMSException;
public void close() throws JNMSException;

A.1.14 ObjectMessage

This vessage type carries a seridlizable Java object as its payload. It is useful for
exchanging Java objects:

public interface Object Message extends Message {
public java.io.Serializable getQject()
t hrows JVBSExcepti on;
public void setoject(java.io.Serializable payl oad)
t hrows JVBException, MessageNot Wit eabl eExcepti on;

148

Java Message Service

A.1.15 Session

The sessi on is the base interface for the Topi cSessi on and the QueueSessi on. It defines
several general-purpose methods used by JMS clients for managing a JMS Sessi on.
Among these methods are the six creat evessage() methods (one for each type of Vessage
object), set MessagelLi stener (), close(), andtransacti on methods.

A session is a single-threaded context for producing and consuming messages. It creates
message consumers, producers, and messages for a specific JIMS provider. The Sessi on
manages the scope of transactions across send and receive operations, tracks message
acknowledgment for consumers, and serializes delivery of messages to MVessageli st ener
objects:

public interface Session extends java.lang. Runnabl e {
public static final int AUTO ACKNOALEDGE = 1,
public static final int CLI ENT_ACKNOALEDGE = 2;
public static final int DUPS_OK ACKNOALEDCE = 3;

publ i c BytesMessage createBytesMessage() throws JVMSExcepti on;
public MapMessage createMapMessage() throws JMSExcepti on;
public Message createMessage() throws JMSExcepti on;
public Object Message createCbj ect Message() throws JNMSExcepti on;
public Object Message creat eCbj ect Message(Seri alizabl e object)
throws JMSExcepti on;
public Streamvessage createStreanmvessage() throws JNMSException;
publ i c Text Message createText Message() throws JMSExcepti on;
publ i c Text Message createText Message(j ava.lang. String text)
throws JMSExcepti on;
publi c bool ean get Transacted() throws JMSExcepti on;
public void commit() throws JMSException;
public void roll back() throws JVSExcepti on;
public void close() throws JVSExcepti on;
public void recover() throws JVSExcepti on;
publ i c Messageli stener getMessagelListener() throws JNMSException;
public void set Messageli st ener (MessagelLi stener |istener)
throws JMSExcepti on;
public void run();

A.1.16 StreamMessage

This vessage type carries a stream of primitive Java types (i nt, doubl e, char, €fC.) as its
payload. It provides a set of convenience methods for mapping a formatted stream of bytes
to Java primitives. It provides an easy programming model for exchanging primitive
application datain afixed order:

public interface StreamVessage extends Message {

public bool ean readBool ean() throws JNMSExcepti on;

public void witeBool ean(bool ean val ue) throws JVMSExcepti on;

public byte readByte() throws JMSException;

public int readBytes(byte[] value) throws JMSExcepti on;

public void witeByte(byte value) throws JMSException;

public void witeBytes(byte[] value) throws JMSException;

public void witeBytes(byte[] value, int offset, int |ength)
t hrows JMBSExcepti on;

public short readShort() throws JMSExcepti on;

public void witeShort(short value) throws JMSException;

public char readChar() throws JNMSException;

public void witeChar(char val ue) throws JMSException;

public int readlnt() throws JVSException;

149

Java Message Service

public void witelnt(int value) throws JMSException;
public long readLong() throws JNMSExcepti on;

public void witeLong(long value) throws JNMSException;
public float readFloat() throws JMSException;

public void witeFl oat(float value) throws JMSExcepti on;
publi ¢ doubl e readDoubl e() throws JNMSExcepti on;

public void witeDouble(double value) throws JMSExcepti on;
public String readString() throws JVSException;

public void witeString(String value) throws JMSExcepti on;
public Object readOoject() throws JNMSExcepti on;

public void witeObject(Object value) throws JMSExcepti on;

public void reset() throws JNMSException;

A.1.17 TextMessage

This vessage type carries a j ava. | ang. String as its payload. It is useful for exchanging
simple text messages and for more complex character data, such as XML documents:

public interface Text Message extends Message {
public String getText()
t hrows JVBSExcepti on;
public void setText(String payl oad)
t hrows JVBException, MessageNot Wit eabl eExcepti on;
}

A.2 Point-to-Point API
This section covers the queue-based API.
A.2.1 Queue

The queue is an administered object that acts as a handle or identifier for an actual queue,
called a physical queue, on the messaging server. A physical queue is a channel through
which many clients can receive and send messages. The Queue iSs a subtype of the
Dest i nati on interface.

Multiple receivers may connect to a queue, but each message in the queue may only be
consumed by one of the queue's receivers. Messages in the queue are ordered so that
consumers receive messages in the order the message server placed them in the queue:

public interface Queue extends Destination {
public String get QeueNanme() throws JNMSException;
public String toString();

}

A.2.2 QueueBrowser

A QueueBrowser IS a specialized object that allows you to peek ahead at pending messages
on a Queue without actually consuming them. This feature is unique to point-to-point
messaging. Queue browsing can be useful for monitoring the contents of a queue from an
administration tool, or for browsing through multiple messages to locate a message that is
more important than the one that is at the head of the queue:

public interface QueueBrowser {
public Queue get Queue() throws JNMSExcepti on;
public String get MessageSel ector() throws JMSException;

150

Java Message Service

public Enuneration getEnuneration() throws JMSExcepti on;
public void close() throws JNMSException;

A.2.3 QueueConnection

The QueueConnection is created by the QueueConnectionFact ory. Each QueueConnecti on
represents a unique connection to the server.” The QueueConnection is a subtype of the
Connect i on interface:

W The actual physical network connection may or may not be unique, depending on the vendor.
However, the connection is considered to be logically unique so authentication and connection
control can be managed separately from other connections.

public interface QueueConnection extends Connection {
publ i c QueueSessi on creat eQueueSessi on(bool ean transact ed,
i nt acknow edgeMbde)
t hrows JMBExcepti on;
publ i ¢ Connecti onConsuner createConnecti onConsuner
(Queue queue,
String messageSel ector,
Server Sessi onPool sessi onPool ,
i nt maxMessages)
t hrows JVSExcepti on;

}

A.2.4 QueueConnectionFactory

The QueueConnectionFactory is an administered object that is used to manufacture
QueueConnectionFactory oObjects. The QueueConnection IS a subtype of the
Connect i onFact ory interface:

public interface QueueConnectionFactory extends ConnectionFactory {
publ i c QueueConnection createQueueConnection() throws JVMSException;
publ i c QueueConnection createQueueConnection(String usernane, String
passwor d)
t hrows JMBSExcepti on;
}

A.2.5 QueueReceiver

The QueueRecei ver iscreated by a QueueSessi on for a specific queue. The IMS client uses
the QueueRecei ver 10 receive messages delivered to its assigned queue. The QueueRecei ver
is a subtype of the vessageConsuner interface.

Each message in a queue is delivered to only one QueueRecei ver . Multiple receivers may
connect to a queue, but each message in the queue may only be consumed by one of the
gueue's receivers.

public interface QueueRecei ver extends MessageConsuner {
public Queue get Queue() throws JNMSExcepti on;
}

151

Java Message Service

A.2.6 QueueSender

A Queuesender is created by a QueueSessi on, usualy for a specific queue. Messages sent
by the Queuesender to a queue are delivered to a client connected to that queue. The
QueueSender iSasubtype of the vessagePr oducer interface:

public interface QueueSender extends MessageProducer {
public Queue get Queue() throws JMSExcepti on;
public void send(Message nessage) throws JVSExcepti on;
public void send(Message nmessage, int deliveryMdde, int priority,
| ong tineToLive)
t hrows JMBExcepti on;
public void send(Qeue queue, Message nessage) throws JVSExcepti on;
public void send(Qeue queue, Message nessage,int deliveryMde,
int priority,long tineToLive)
t hrows JVBSExcepti on;
}

A.2.7 QueueSession

The Queuesessi on is created by the QueueConnection. A QueueSessi on Object is a factory
for creating vessage, QueueSender , and QueueRecei ver objects. A client can create multiple
QueueSessi on Objects to provide more granular control over senders, receivers, and their
associated transactions. The QueueSessi on is asubtype of the sessi on interface:

public interface QueueSessi on extends Session {
public Queue createQueue(java.lang. String queueNane)
t hrows JMBSExcepti on;
publi ¢ QueueRecei ver createRecei ver(Qeue queue)
t hrows JMBSExcepti on;
publ i ¢ QueueRecei ver createReceiver(Qeue queue, String nmessageSel ector)
t hrows JNMSExcepti on;
publ i ¢ QueueSender createSender(Queue queue) throws JNMSExcepti on;
publ i c QueueBrowser createBrowser(Qeue queue) throws JVSException;
publ i ¢ QueueBrowser createBrowser(Qeue queue, String nessageSel ector)
t hrows JVMSException;
publi ¢ TenporaryQueue createTenporaryQueue() throws JNMSExcepti on;
}

A.2.8 TemporaryQueue

A Tenpor aryQueue is created by a QueueSessi on. A temporary gqueue is associated with the
connection that belongs to the Queuesessi on that created it. It is only active for the duration
of the session's connection, and is guaranteed to be unique across all connections. It lasts
only as long as its associated client connection is active. In al other respects, a temporary
gueue is just like a "regular” queue. The TenporaryQueue IS a subtype of the Queue
interface.

Since a temporary queue is created by a JIMS client, it is unavailable to other IMS clients
unless the queue identity is transferred using the Jvsrepl yTo header. While any client may
send messages on another client's temporary queue, only the sessions that are associated
with the JMS client connection that created the temporary queue may receive messages
fromit. IMS clients can also, of course, send messages to their own temporary queues.

public interface TenporaryQueue extends Queue {
public void delete() throws JVMSException;
}

152

Java Message Service

A.3 Publish-and-Subscribe API
This section covers the topic-based API.
A.3.1 TemporaryTopic

A Terpor aryTopi ¢ IS created by a Topi cSessi on. A temporary topic is associated with the
connection that belongs to the Topi cSessi on that created it. It isonly active for the duration
of the session’s connection, and it is guaranteed to be unique across all connections. Since
itistemporary it can't be durable - it lasts only as long as its associated client connection is
active. In al other respectsit isjust like a"regular” topic. The Tenpor ar yTopi ¢ IS a subtype
of the Topi ¢ interface.

Since a temporary topic is created by a JMS client, it is unavailable to other IMS clients
unless the topic identity is transferred using the Jvsrepl yTo header. While any client may
publish messages on another client's temporary topic, only the sessions that are associated
with the IMS client connection that created the temporary topic may subscribe to it. IMS
clients can also, of course, publish messages to their own temporary topics:

public interface TenporaryTopi c extends Topic {
public void delete() throws JMSExcepti on;
}

A.3.2 Topic

The Topi ¢ is an administered object that acts as a handle or identifier for an actual topic,
called a physical topic, on the messaging server. A physical topic is a channel to which
many clients can subscribe and publish. When a IMS client delivers a vessage object to a
topic, al the clients subscribed to that topic receive the vessage. The Topi ¢ is a subtype of
the Dest i nat i on interface:

public interface Topic extends Destination {
public String getTopi cName() throws JMSException;
public String toString();

}

A.3.3 TopicConnection

The Topi cConnection is created by the Topi cConnecti onFact ory. The Topi cConnection
represents a connection to the message server. Each Topi cConnection created from a
Topi cConnect i onFact ory IS @ unique connection to the server.® The Topi cConnection isa
subtype of the connect i on interface:

B The actual physical network connection may or may not be unique, depending on the vendor.
However, the connection is considered to be logically unique so authentication and connection
control can be managed separately from other connections.

public interface Topi cConnection extends Connection {
public Topi cSessi on createTopi cSessi on(bool ean transacted,
int acknow edgeMode)
t hrows JMSExcepti on;
publ i c ConnectionConsumner createConnecti onConsuner
(Topic topic, String nessageSel ector,

Ser ver Sessi onPool sessi onPool ,
i nt naxMessages)

153

Java Message Service

t hrows JMBExcepti on;
publ i ¢ Connecti onConsumner createDurabl eConnecti onConsuner
(Topic topic, String subscriptionNane,

String nessageSel ector,
Server Sessi onPool sessi onPool ,
i nt maxMessages)

t hrows JMBSExcepti on;

}

A.3.4 TopicConnectionFactory

The Topi cConnectionFactory IS an administered object that is used to manufacture
Topi cConnection oObjects. The TopicConnectionFactory IS a subtype of the
Connect i onFact ory interface:

public interface Topi cConnectionFactory extends ConnectionFactory {
publ i ¢ Topi cConnection createTopi cConnection() throws JMSExcepti on;
publ i ¢ Topi cConnection createTopi cConnection(String usernane,
String password)
throws JMSExcepti on;

}

A.3.5 TopicPublisher

A Topi cPubl i sher iscreated by a Topi cSessi on, usually for a specific Topi c. Messages that
are sent by the Topi cPubl i sher are copied and delivered to each client subscribed to that
topic. The Topi cPubl i sher iSasubtype of the vessagePr oducer interface:

public interface Topi cPublisher extends MessageProducer {
public Topic getTopic() throws JVSExcepti on;
public void publish(Mssage nessage) throws JVMSExcepti on;
public void publish(Message nessage, int deliveryMde,int priority,
| ong tineToLive)
t hrows JMSExcepti on;
public void publish(Topic topic, Message nmessage)
t hrows JMSExcepti on;
public void publish(Topic topic, Message nessage, int deliveryMde,
int priority,long tineTolLive)
t hrows JMBSExcepti on;

A.3.6 TopicSession

The Topi cSessi on is created by the Topi cConnect i on. A Topi cSessi on Object is a factory
for creating Message, Topi cPublisher, and Topi cSubscriber objects. A client can create
multiple Topi cSessi on oObjects to provide more granular control over publishers,
subscribers, and their associated transactions. The Topi cSession IS a subtype of the
Sessi on interface:

public interface TopicSession extends Session {
public Topic createTopic(java.lang. String topi cNane)
throws JMSExcepti on;
publ i ¢ Topi cSubscriber createSubscriber(Topic topic)
throws JMSExcepti on;
publ i ¢ Topi cSubscri ber createSubscriber(Topic topic,
String nmessageSel ect or,
bool ean nolLocal)
throws JMSExcepti on;
publi ¢ Topi cSubscri ber createDurabl eSubscri ber(Topic topic,
String nane)

154

}

Java Message Service

throws JMSExcepti on;
publ i ¢ Topi cSubscri ber createDurabl eSubscri ber
(Topi ¢ topic,
String nane,
String nessageSel ector,
bool ean noLocal)
throws JMSExcepti on;
publ i ¢ Topi cPublisher createPublisher(Topic topic)
t hrows JMBSExcepti on;
publ i c TenporaryTopi c createTenporaryTopic() throws JVSException;
public void unsubscribe(java.lang. String nanme) throws JMSException

A.3.7 TopicSubscriber

The Topi cSubscri ber is created by a Topi cSessi on for a specific topic. The messages are
delivered to the Topi csubscri ber as they become available, avoiding the need to poll the
topic for new messages. The Topi cSubscriber IS a subtype of the MessageConsuner
interface:

public interface Topi cSubscriber extends MessageConsurmer

public Topic getTopic() throws JVSException
publi ¢ bool ean get NoLocal () throws JVMSExcepti on;

155

Java Message Service

Appendix B. Message Headers

The message headers provide metadata describing who or what created the message, when
it was created, how long its data is valid, etc. The headers also contain routing information
that describes the destination of the message (topic or queue), how a message should be
acknowledged, and alot more.

The vessage interface provides mutator ("set") methods for each of the IMS headers, but
only the JvsRrepl yTo, JVMBCor rel at i onl D, and JvsType headers can be modified using these
methods. Calls to the mutator methods for any of the other IMS headers will be ignored
when the message is sent. According to the authors of the specification, the mutator
methods were left in the vessage interface for "general orthogonality”; to balance the
accessor methods - afairly strange but well-established justification.

The accessor ("get") methods always provide the IMS client with information about the

JMS headers. However, some JMS headers (i.e., JVSTi mest anp, JVSRedel i ver ed, €fC.) are
not available until after the message is sent or even received.

JMSDestination Purpose: Routing

Message objects are always sent to some kind of destination. In the pub/sub modd,
Message Objects are delivered to a topic, identified by a Topi ¢ object. In Chapter 2, you
learned that the destination of a Message object is established when the Topi cPubl i sher IS
created:

Topi ¢ chat Topi ¢ = (Topi c)j ndi .| ookup(topi cNane);
Topi cPubl i sher publisher = session. createPublisher(chat Topic);

Text Message nessage = session. creat eText Message();
nessage. set Text (username+" : "+text);
publ i sher. publ i sh(nessage);

The JwvsDestination header identifies the destination of a message oObject using a
javax.jns. Destination Object. The Destination class is the superclass of both Topic
(pub/sub) and Queue (p2p). The JmsDestination header is obtained using the
Message. get JMBDest i nation() method.

Identifying the destination to which a message was delivered is valuable to JMS clients
that consume messages from more than one topic or queue. Messageli st ener Objects
might, for example, listen to multiple consumers (Topi cSubscriber Of QueueRecei ver
types) so that they receive messages from more than one topic or queue. For example, the
chat client from Chapter 2 could be modified to subscribe to more than one chat topic at a
time. In this scenario, the onvessage() method of the vessageLi st ener would use the
JMBDest i nat i on header to identify which chat topic a message came from:

public void onMessage(Message nessage) {

try {
Text Message text Message = (Text Message) nessage,;

String text = textMessage.getText();

156

Java Message Service

Topic topic = (Topic)text Message. get IMSDestination();
Systemout. println(topic.getTopi cName()+" : "+text);
} catch (JVBException jnse){jnse.printStackTrace();}

The JvsDest i nati on header is set automatically by the IMS provider when the message is
delivered. The Destination used in the Jvsbestination is typicaly specified when the
publisher is created, as shown here:

Queue queue = (Queue)j ndi .| ookup(queueNane);
QueueSender queueSender = session. creat eSender (queue);
Message nessage = session. createMessage();
queueSender . send(nessage) ;

Topic topic = (Topic)jndi.lookup(topi cNane);

Topi cPubl i sher topicPublisher = session.createPublisher(topic);
Message nessage = session. createMessage();

t opi cPubl i sher. publ i sh(nessage);

An unspecified message producer - one created without a Dest i nati on - will require that a
Dest i nati on be supplied with each send() operation:

QueueSender queueSender = session.createSender(null);
Message nessage = session. createMessage();

Queue queue = (Queue)j ndi .| ookup(queueNane);
gueueSender . send(queue, nessage);

;I'cl).pi cPubl i sher topicPublisher = session.createPublisher(null);
Message nessage = session. createMessage();

Topic topic = (Topic)jndi.lookup(topi cNane);
t opi cPubl i sher. publish(topic, nessage);

In this case, the JvsDestination header becomes the Destination used in the send()
operation.

JMSDeliveryMode Purpose: Routing

There are two types of delivery modes in IMS: persistent and nonpersistent. A persistent
message should be delivered once-and-only-once, which means that a message is not lost
if the IMS provider fails; it will be delivered after the server recovers. A nonpersistent
message is delivered at-most-once, which means that it can be lost and never delivered if
the JMS provider fails. In both persistent and nonpersistent delivery modes the message
server should not send a message to the same consumer more than once, but it is possible;
see the section on JvsRedel i ver ed for more details.

Persistent messages are intended to survive system failures of the JMS provider (the
message server). Persistent messages are written to disk as soon as the message server
receives them from the JMS client. After the message is persisted to disk the message
server can then attempt to deliver the message to its intended consumer. As the messaging
server delivers the message to the consumers it keeps track of which consumers
successfully receive the message. If the IMS provider fails while delivering the message,
the message server will pick up where it |eft off following a recovery. Persistent messages

157

Java Message Service

are delivered once-and-only-once. The mechanics of this are covered in greater detail in
Chapter 6.

The vendor-supplied client runtime and the server functionality are
collectively referred to as the JMS provider. A "provider failure"
g+ generically describes any failure condition that is outside of the
domain of the application code. It could mean a hardware failure that
occurs while the provider is entrusted with the processing of a
message, or it could mean an unexpected exception or halting of a
process due to a software defect. It could also mean a network failure
that occurs between two processes that are part of the IMS vendor's
internal architecture.

Nonpersistent messages are not written to disk when they are received by the message
server, so if the IMS provider fails, the message will be lost. In general nonpersistent
messages perform better than persistent messages. They are delivered more quickly and
require less system resources on the message server. However, nonpersistent messages
should only be used when a loss of messages due to a JM S provider failuresis not an issue.
The chat example used in Chapter 2 is a good example of a system that doesn't require
persistent delivery. It's not critical that every message be delivered to all consumersin a
chat application. In most business systems, however, messages are delivered using the
persistent mode, because it's important that they be successfully delivered.

The delivery mode can be set using the set Del i veryMode() method defined in both the
Topi cPubl i sher and QueueSender message producers. The j avax. j ms. Del i ver yMode class
defines the two constants used to declare the delivery mode: pPersi sTENT and
NON_PERSI STENT :

/'l Publish-and-subscribe
Topi cPubl i sher topi cPublisher = topicSession.createPublisher(topic);
t opi cPubl i sher. setDel i ver yMode(Del i ver yMbde. NON_PERS| STENT) ;

/'l Point -t o-point
QueueSender queueSender = queueSessi on. creat eSender (queue);
queueSender . set Del i ver Mode(Del i ver yMode. PERSI STENT) ;

Once the delivery mode has been set on the message producer, it will be applied to all the
messages delivered by that producer. The delivery mode can be changed at any time using
the set Del i veryMode() method; the new mode will be applied to subsequent messages.
The default delivery mode of a message producer is always PERS| STENT.

The delivery mode of a message producer can be overridden for an individua message
during the send operation, which alows a message producer to deliver a mixture of
persistent and nonpersistent messages to the same destination (topic or queue):

/'l Publish-and-subscribe
Message nmessage = topi cSession. creat eMessage(;
t opi cPubl i sher. publ i sh(nessage, DeliveryMde. PERSI STENT, 5, 0);

/'l Point -t o- poi nt

Message nmessage = queueSessi on. cr eat eMessage(;
queueSender . send(message, DeliveryMde. NON_PERSI STENT, 5, 0);

158

Java Message Service

The JwvsDeliverymode can be obtained from the wessage object using the
get JVBDel i ver yMode() method:

public void onMessage(Message nessage) {

try {
i f (message. get JIMSDel i veryMode() == DeliveryMode. PERSI STENT) {

/1 Do sonething
} else {
/'l Do sonething el se

}
} catch (JMSException jnse){jnse.printStackTrace();}

JMSMessagelD Purpose: Routing

The JvBMessagel D is a string value that uniquely identifies a message. How unique the
identifier is depends on the vendor. It may only be unique for that installation of the
message server, or it may be universally unique.

The Jvs\vessagel D can be useful for historical repositories in applications where messages
need to be uniquely indexed. The Jvs\vessagel D IS aso useful for correlating messages,
which is done using the JvsCor r el at i onl D header.

The message provider generates the JvsMessagel D automatically when the message is
received from a JMS client. The JvB\vessagel D must start with 1D, but the rest of
JVBMessagel D can be any collection of characters that uniquely identifies the message to
the IMS provider. Here is an example of a Jvs\vessagel D generated by Progress SonicMQ:

/'l JVMsMessagel D generated by Soni cMQ
| D: 6¢867f 96: 20001: DF59525514

If aunique message ID is not needed by the IM S application, the IMS client can provide a
hint to the message server that an ID is not necessary by using the set bi sabl evessagel D()
method (as shown in the following code). Vendors that heed this hint can reduce message
processing time by not generating unique I1Ds for each message. If a Jvs\essagel D iS not
generated, the get Jvs\vessagel D() method returns nul | :

/'l Publish-and-subscribe
Topi cPubl i sher topicPublisher = topicSession.createPublisher(topic);
t opi cPubl i sher . set Di sabl eMessagel D(true);

/1 Point -t o- poi nt

QueueSender queueSender = queueSessi on. creat eSender (topic);
queueSender . set Di sabl eMessagel D(true);

159

Java Message Service

JMSTimestamp Purpose: Identification

The JnvesTi nest anp 1S set automatically by the message producer when the send operation is
invoked. The value of the JnvsTi mest anp IS the approximate time that the send operation
was invoked. Sometimes messages are not transmitted to the message server immediately.
A message can be delayed for many reasons, depending on the JMS provider and
configuration of the message producer: whether it's a transacted session, the
acknowledgement mode, etc. When the send() operation returns, the message object will
have its timestamp:

Message nmessage = topi cSession. createMessage();
t opi cPubl i sher. publ i sh(nessage);
long tine = nmessage. get IMSTi nestanmp() ;

The timestamp is set automatically, thus any value set explicitly by the IMS client will be
ignored and discarded when the send() operation is invoked. The value of the timestamp
is the amount of time, measured in milliseconds, that has elapsed since midnight, January
1, 1970, UTC (see UTC later in this chapter for more information).

Timestamps can be used by message consumers as indicators of the approximate time that
the message was delivered by the message producer. The timestamp can be useful when
ordering messages or for historical repositories.

The JnvsTi nest anp IS set during the send operation and may be calculated locally by the
producer (Topi cPublisher OF QueueSender) on the client or it may be obtained from the
message server. In the first case, when the producer calculates the timestamp, the
timestamps can vary from JMS client to client. This is because the timestamp is obtained
from the IMS client's local system clock, which may not be synchronized with other IMS
client machines. Timestamps acquired from the message server are more consistent across
JMS clients using the same JMS provider, since all the times are acquired from the same
source, the common message server. It's possible to disable timestamps - or at least hint
that they are not needed - by invoking the set Di sabl evessageTi mestanp() method,
available on both Topi cPubl i sher and QueueSender Objects:

/'l Publish-and-subscribe
Topi cPubl i sher topi cPublisher = topicSession. createPublisher(topic);
t opi cPubl i sher. set Di sabl eMessageTi nest anp(true);

/'l Point -t o- point
QueueSender queueSender = queueSessi on. creat eSender (topic);
gueueSender . set Di sabl eMessageTi nest anp(true);

If the IMS provider heeds the hint to disable the timestamp, the JvsTi nest anp is set to O,
indicating that no timestamp was set. Disabling the timestamp can reduce the workload for
JMS providers that use the message server to generate timestamps (instead of the JMS
client), and can reduce the size of a message by at least 8 bytes (the size of along value),
which reduces the amount of network traffic. Support for disabling the timestamp is
optional, which means that some vendors will set the timestamp whether you need it or
not.

160

Java Message Service

JMSExpiration Purpose: Routing

A Message object can have an expiration date, the same as on a carton of milk. The
expiration date is useful for messages that are only relevant for a fixed amount of time. For
example, the B2B example developed in Chapter 4, and Chapter 5, might use expiration
dates on messages representing "Hot Deals' that a wholesaler extends to retailers. The
"Hot Deal" is only valid for a short time, so the vessage that represents a deal expires after
that deadline.

The expiration time for messages is set in milliseconds by the producer using the
set Ti meToLi ve() method on either the QueueSender Or Topi cPubl i sher as shown below:

/'l Publish-and-subscribe

Topi cPubl i sher topi cPublisher = topicSession. createPublisher(topic);
/'l Set tinme to live as 1 hour (1000 nmillis x 60 sec x 60 min)

t opi cPubl i sher. set Ti neToLi ve(3600000) ;

/'l Point -t o- point

QueueSender queueSender = queueSessi on. creat eSender (topic);

/1 Set tine to live as 2 days (1000 nmillis x 60 sec x 60 min x 48 hours)
gueueSender . set Ti meTolLi ve(172800000) ;

By default the ti neToLi ve is zero, which indicates that the message doesn't expire. Calling
set TimeToLi ve() With a zero value as the argument ensures that message is created
without an expiration date.

The JvsExpi rat i on date itsalf is calculated as:

JVMBExpiration = currenttime + tinmeToLive.

The value of the currenttine is the amount of time, measured in milliseconds, that has
elapsed since the Java epoch (midnight, January 1, 1970, UTC).

The JMS specification doesn't state whether the current time is calculated by the client
computer or the message server, so consistency is dependent on either the accuracy of
every client machine or the message server. We can certainly empathize with the IMS spec
producers for remaining agnostic on this issue. Whether or not timestamps are
synchronized across clients depends on the application. There is nothing preventing a JMS
vendor from providing a configuration setting to control this behavior.

The Jvsexpi rat i on isthe date and time that the message will expire. IMS clients should be
written to discard any unprocessed messages that have expired, because the data and event
communicated by the message is no longer valid. Message providers (servers) are also
expected to discard any undelivered messages that expire while in their queues and topics.
Even persistent messages are supposed to be discarded if they expire before being
delivered.

161

Java Message Service

UTC

UTC (Universal Time Coordinated, ak.a. Coordinated Universa Time) is an
internationally accepted official standard time based on the coordination of hundreds of
atomic clocks worldwide. The IMS specification states that the time used to calculate
the Jvsexpi rati on and JvsTi mest anp are based on UTC time, but in redlity thisis rarely
the case. Ordinarily, there is a discrepancy between the current time reported by the Java
Virtual Machine and the true UTC. This is because the system clocks on desktop
computers and business servers are usualy not synchronized with UTC, and are not
accurate enough to keep UTC time. System clocks can be coordinated with the UTC
through an Internet protocol called NTP (Network Time Protocol), which periodically
gueries for the actual UTC from a network time service and resynchronizes the system
clock with the UTC.

You can get the system clock's time from any Java Virtual Machine using the system
class as shown here:

long currentTime = SystemcurrentTimeMIlis();

The system clock's time, as reported by the JVM, is calculated as the number of
milliseconds (1000 milliseconds = 1 second) that have elapsed since January 1st, 1970,
assuming that the system clock is reasonably accurate.

JMSRedelivered Purpose: Routing

The Jveredel i ver ed header indicates if the message was redelivered to the consumer. The
JVBRedel i ver ed header ist rue if the message has been redelivered, and 1 al se if has not. A
message may be marked as redelivered if a consumer failed to acknowledge delivery, or if
the IMS provider is otherwise uncertain whether the consumer received the message.

When a message is delivered to a consumer, the consumer must acknowledge receipt of
the message. If it doesn't, the message server may attempt to redeliver the message.
Consumers can acknowledge messages automatically or manually, depending on how the
consumer was created. A consumer created with an acknowledgment mode of
AUTO_ACKNOW.EDGE OF DUPS_OK_ACKNOW.EDGE automatically informs the message server that
the message was received. When the consumer is created with cLi ENT_ACKNOALEDGE mode,
the IM S client must manually acknowledge the messages.

In general, when a message has a J\vsRredel i vered value of fal se, the consumer should
assume that there is no chance it has seen this message before. If the redelivered flag is
true, the client may have been given this message before so it may need to take some
precautions it would not otherwise take. Redelivery can occur under a variety of
conditions, and a JMS provider may mark a message as redelivered when it's in doubt due
to failures, error conditions, and other anomal ous conditions.

162

Java Message Service

JMSPriority Purpose: Routing

Messages may be assigned a priority by the message producer when they are delivered.
The message servers may use message's priority to order delivery of messages to
consumers; messages with a higher priority are delivered ahead of lower priority messages.

The message's priority is contained in the Jvspriori ty header, which is set automatically
by the IMS provider. The priority of messages can be declared by the IM S client using the
setPriority() method on the producer. The following code shows how this method is
used by both the p2p and pub/sub message models:

/'l p2p setting the nessage priority to 9
QueueSender queueSender = QueueSessi on. creat eSender (soneQueue);
queueSender . setPriority(9);

/'l pub/sub setting the nessage priority to 9
Topi cPubl i sher topicPublisher = Topi cSessi on. creat ePubl i sher (sonmeTopi c)
t opi cPubl i sher.setPriority(9)

Once apriority is established on a producer (QueueSender Or Topi cPubl i sher), that priority
will be used for all messages delivered from that producer, unless it is explicitly
overridden. The priority of a specific message can be overridden during the send operation.
The following code shows how to override the priority of a message during the send
operation. In both cases, the priority is set to 3:

/'l p2p setting the priority on the send operation
QueueSender queueSender = QueueSessi on. creat eSender (sonmeQueue) ;

queueSender . send(nessage, Del i ver yMode. PERSI STENT, 3, 0);

/'l pub/sub setting the priority on the send operation
Topi cPubl i sher topicPublisher = Topi cSession. createPublisher(soneTopic);
t opi cPubl i sher. publ i sh(nmessage, Del i ver yMbde. PERSI STENT, 3, 0)

There are two basic categories of message priorities: levels 0-4 are gradations of normal
priority; levels 5-9 are gradations of expedited priority. Message servers are not required to
enforce message ordering based on the Jvspriority header, but they should attempt to
deliver expedited messages before normal messages.

The avspriority header is set automatically when the message is delivered. It can be read

by JMS clients using the vessage. get IvsPriority() method, but it is mostly used by
message servers when routing messages.

163

Java Message Service

JMSReplyTo Purpose: Routing

In some cases, a message producer may want the consumers to reply to a message. The
JVBRepl yTo header indicates which address, if any, a IMS consumer should reply to. The
JVvBRepl yTo header is set explicitly by the JMS client; its contents will be a
j avax. j ms. Dest i nati on Object (either Topi ¢ Or Queue).

In some cases the IMS client will want the message consumers to reply to a temporary
topic or queue set up by the IMS client. Here is an example of a pub/sub JMS client that
creates a temporary topic and uses its Topi ¢ object identifier as a Jvsrepl yTo header:

Topi cSessi on session =
connecti on. creat eTopi cSessi on(fal se, Session. AUTO ACKNOALEDGE) ;

Topi ¢ tenpTopi ¢ = session.createTenporaryTopic();

Text Message message = session. creat eText Message();
nessage. set Text (text);

nessage. set JMSRepl yTo(t enpTopi) ;

publ i sher. publ i sh(nmessage) ;

When a JM' S message consumer receives a message that includes a Jvsrepl yTo destination,
it can reply using that destination. A JMS consumer is not required to send a reply, but in
some JMS applications clients are programmed to do so. Here is an example of a IMS
consumer that uses the Jvsrepl yTo header on a received message to send a reply. In this
case, the reply isa simple empty vessage object:

Topic chatTopic = ... get topic from sonewhere

/'l Publisher is created without a specified Topic
Topi cPubl i sher publisher = session.createPublisher(null);

public void onMessage(Message nessage) {

try {
Text Message text Message = (Text Message) message;

Topi c replyTopic = (Topic)text Message. get IMSRepl yTo();
Message repl yMessage = session. creat eMessage();
publ i sher. publish(replyTopic, replyMessage);
} catch (JMBException jnse){jnse.printStackTrace();}
}

The Jwvsrepl yTo destination set by the message producer can be any destination in the
messaging system. Using other established topics or queues allows the message producer
to express routing preferences for the message itself or for replies to that message.
Typically, thiskind of routing is used in workflow applications. In aworkflow application,
a message represents some task that is processed one step at atime by several IMS clients
- possibly over days. For example, an order message might be processed by sales first, then
inventory, then shipping, and finally accounts receivable. When each JMS client (sales,
inventory, shipping, or accounts receivable) is finished processing the order data, it could
use the JvsRepl yTo address to deliver the message to the next step.

164

Java Message Service

JMSCorrelationID Purpose: Routing

The Jvscorrel ationl D provides a header for associating the current message with some
previous message or application-specific ID. In most cases, the Jvscor rel ati onl D will be
used to tag a message as a reply to a previous message. The following code shows how the
JVBCorrel ationl D is set and used along with the JvsRrepl yTo and Jvsivessagel D headers to
send areply to a message:

public void onMessage(Message nessage) {

try {
Text Message text Message = (Text Message) message;
Topi c replyTopic = (Topic)text Message. get IMSRepl yTo();
Message repl yMessage = session. createMessage();
String messagel D = text Message. get JIMSMessagel D() ;
repl yMessage. set JIMSCorr el ati onl D(nessagel D) ;
publ i sher. publish(replyTopic, replyMessage);

} catch (JMSException jnse){jnse.printStackTrace();}

}

When the IM S client receives the reply message, it can match the Jvscor rel at i onl D Of the
new message with the corresponding Jvsivessagel D of the message it sent, so that it knows
which message received a reply. The Jvscorrel ationi D can be any value, not just a
JVBMessagel D. The JvsCorrel ationl D header is often used with application-specific
identifiers. Our example in Chapter 4 uses the JvscCorrel ati onl D as a way of identifying
the sender. The important thing to remember, however, is that the Jvscorrel ati onl D does
not have to be a JvsMessagel D, although it frequently is. If you decide to use your own 1D,
be aware that an application-specific Jvscor rel ati onl D must not start with |1 o: . That prefix
isreserved for ID generated by JMS providers.

The methods for accessing and mutating the Jvscorrel ationl D come in two forms. a
string form and an AsByt es form. The st ri ng-based header is the most common and must
be supported by IM S providers. The AsByt es method, which is based on a byte array, is an
optional feature that JIMS providers do not have to support. It's used for setting the
JVBCor rel at i onl D to some native JM S provider correlation ID:

Message nessage = topicSession.createMessage();
byte [] byteArray = ... set to sone JMS specific byte array

ﬁéésage. set JMSCorr el ati onl DAsByt es(byt eArray);
publ i sher. publ i sh(message) ;

If the IMS provider supports messaging exchanges with a legacy messaging system that
uses a native form of the correlation ID, the AsByt es method will be useful. If the AsByt es

form is not supported, set JMSCor r el at i onl DAsByt es() throws a
java. | ang. Unsupport edOper at i onExcept i on.

165

Java Message Service

JMSType Purpose: Identification

JVBType is an optional header set by the JMS client. Its name is somewhat misleading
because it has nothing to do with the type of message being sent (BytesMessage,
MapMessage, €tC.). Its main purposeis to identify the message structure and type of payload;
it isonly supported by a couple of vendors.

Some MOM systems (e.g., IBM's MQSeries) treat the message body as uninterpreted bytes
and provide applications with a simple way of |abeling the body (the message type). So the
message type header can be useful when exchanging messages with non-JMSS clients that
require this type of information to process the payload.

Other MOM systems (such as Sun's IMQ) and EAIl systems (such as SagaVista and
MQIntegrator) directly tie each message to some form of external message schema, and
the message type is the link. These MOM systems require the message type because they
provide metadata services bound to it.

In addition, the JvsType might be used on a application level. For example, a B2B

application that uses XML as its message payload might use the JvsType to keep track of
which XML DTD the message payload conforms to.

166

Java Message Service

Appendix C. Message Properties

Message properties are additional headers that can be assigned to a message. They provide
the application developer or IMS vendor with the ability to attach more information to a
message. The vessage interface provides several accessor and mutator methods for reading
and writing properties. Properties can have a string value, or one of severa primitive
(bool ean, byt e, short,int, | ong, float, doubl e) values. The naming of properties, together
with their values and conversion rules, are strictly defined by JMS.

C.1 Property Names

Properties are name-value pairs. The name, caled the identifier, can be just about any
string that isavalid identifier in the Java language. With a couple of exceptions, the rules
that apply to naming a property are the same as those that apply to the naming of variables.
One difference between a JIMS property name and a Java variable name is that a property
name can be any length. In addition, property names are prohibited from using one of the
message selector reserved words. These words include: NOT, AND, OR, BETVEEN, LI KE, | N, | S,
NULL, TRUE, and FALSE.

The property names used in IMS-defined properties and provider-specific properties use
predefined prefixes. These prefixes (svsx and Jvs_) may not be used for application
property names.

C.2 Property Values

Property values can be any bool ean, byte, short, int, | ong, float, doubl e, OF String. The
javax.jns. Message interface provides accessor and mutator methods for each of these
property value types. Here is the portion of the vessage interface definition that shows
these methods:

package javax. | Ims;
public interface Message {

public String getStringProperty(String nane)
t hrows JVBSExcepti on, MessageFor mat Excepti on;
public void setStringProperty(String nanme, String val ue)
throws JVSException, MessageNot Wit eabl eExcepti on;
public int getlntProperty(String name)
throws JVMSException, MessageFor mat Excepti on;
public void setlntProperty(String name, int val ue)
throws JVSException, MessageNot Wit eabl eExcepti on;
publ i ¢ bool ean get Bool eanProperty(String nane)
throws JVMSException, MessageFor mat Excepti on;
public void setBool eanProperty(String name, bool ean val ue)
throws JVSException, MessageNot Wit eabl eExcepti on;
publ i ¢ doubl e get Doubl eProperty(String nane)
throws JVMSException, MessageFor mat Excepti on;
public void setDoubl eProperty(String name, double val ue)
t hrows JMBException, MessageNot Wit eabl eExcepti on;
public float getFl oatProperty(String nane)
throws JVMSException, MessageFor mat Excepti on;
public void setFloatProperty(String name, float val ue)
throws JVSException, MessageNot Wit eabl eExcepti on;
public byte getByteProperty(String nane)
throws JVMSException, MessageFor mat Excepti on;

167

Java Message Service

public void setByteProperty(String nane, byte val ue)

t hrows JVBSException, MessageNot Wit eabl eExcepti on;
public [ong getLongProperty(String name)

throws JVMSException, MessageFor mat Excepti on;
public void setLongPreperty(String nanme, |ong val ue)

t hrows JVSException, MessageNot Wit eabl eExcepti on;
public short get ShortProperty(String namne)

t hrows JVBSException, MessageFor mat Excepti on;
public void setShortProperty(String nane, short val ue)

throws JVSException, MessageNot Wit eabl eExcepti on;
public Object getObjectProperty(String nane)

throws JVMSException, MessageFor mat Excepti on;
public void setQojectProperty(String nane, Object val ue)

t hrows JVSException, MessageNot Wit eabl eExcepti on;

public void clearProperties()
t hrows JMBSExcepti on;

public Enumeration getPropertyNanmes()
t hrows JVBExcepti on;

publ i ¢ bool ean propertyExists(String nane)
t hrows JMBSExcepti on;

}

The following code shows how a JIMS client might produce and consume messages with
properties that have primitive values:

/1 A message producer wites the properties
nessage. set Stri ngProperty("usernane","WIIlianm');
nmessage. set Doubl eProperty("Limt", 33456.72);
nessage. set Bool eanProperty ("I sApproved",true);

publ i sher. publ i sh(nessage);

/1 A message consuner reads the properties
String nane = nessage. get StringProperty("usernane");
double limt = nessage. get Doubl eProperty("Limt");

bool ean i sApproved = nessage. get Bool eanPr operty("1sApproved");

The ject property methods that are defined in the wessage interface
(set Obj ect Property() and get Ooj ect Property()) are also used for properties, but they
don't give you as much functionality as their names suggest. Only the primitive wrappers
that correspond to the allowed primitive types and the string type can be used by the
bj ect property methods. Attempting to use any other ject type will result in a
j avax. j ms. MessageFor nat Except i on.

Given that the oj ect methods don't really let you do anything new, why do they exist?
The mj ect property methods provide more flexibility, letting you write clients that don't
hard-code the property types into the application. IMS publishers can decide at runtime
what form properties should take, and JMS consumers can read the properties and use
reflection to determine the value types at runtime. Here is an example of how the oj ect
property methods are used to set and access properties in a message:

/1 A message producer wites the properties
String usernane = "WIliant;

Doubl e Iimt = new Doubl e(33456.72);

Bool ean i sApproved = new Bool ean(true);

nessage. set Obj ect Property("usernane", user nane) ;

nmessage. set hj ect Property("Limt", limt);
nessage. set Obj ect Property(" | sApproved", i sApproved);

168

Java Message Service

publ i sher. publ i sh(nessage);

/1 A message consuner reads the properties

String nane = (String)nessage. get Obj ect Property("usernane");

Double limt = (Doubl e)nmessage. set Cbj ect Property("Linmt");
Bool ean i sApproved = (Bool ean) message. set Obj ect Property(" | sApproved");

C.3 Read-Only Properties

Once a message is produced (sent), its properties become read-only; the properties cannot
be changed. While consumers can read the properties using the property accessor methods
(get <TYPE>Property()), they cannot modify the properties using any of the mutator
methods (set <TYPE>Property()). If the consumer attempts to set a property, the mutator
method throws aj avax. j ns. MessageNot Wi t eabl eExcept i on.

Once a message is received, the only way its properties can be changed is by clearing out
all the properties using the cl earProperties() method. This removes al the properties
from the message so that new ones can be added. Individual properties cannot be modified
or removed once a message is sent.

C.4 Property Value Conversion

The JMS specification defines rules for conversion of property values, so that, for
example, a property value of typei nt canberead asal ong:

Message nessage = topicSession. createMessage();
/1l Set the property "Age" as an int value
nessage. set | nt Property("Age", 72);

)).Read the property "Age" as a long is |egal
| ong age = nessage. get LongProperty("Age");

The conversion rules are fairly simple, as shown in Table C.1. A property value can be set
asone primitive type or st ri ng, and read as one of the other value types.

Table C.1. Property Type Conversions

M essage.set<TYPE>Property() |Message.get<TYPE>Property()
bool ean bool ean, String
byt e byte, short, int, long, String
short short, int, long, String
i nt int, long, String
| ong long, String
fl oat float, double, String
doubl e doubl e, String
) String, bool ean, byte, short, int, long, float,
String doubl e

169

Java Message Service

Each of the accessor methods (get<TYPE>Property()) can throw the
MessageFor mat Except i on. The MessageFor mat Except i on IS thrown by the accessor methods
in order to indicate that the original type could not be converted to the type requested. The
MessageFor mat Except i on might be thrown if, for example, a M S client attempted to read a
float property asanint.

string values can be converted to any primitive type, provided the string is formatted
correctly:

Message nmessage = topi cSession. creat eMessage();

/1 Set the property "Wight" as a String val ue
nessage. set Stri ngProperty("Wight","240.00");

/1l Set the property "IsProgramrer” as a String val ue
nessage. set Stri ngProperty("IsProgranmer”, "true");

/'l Read the property "Weight" as a flaot type

fl oat weight = nessage.getFl oat Property("Wight");

/1 Read the property "lsProgranmer" as a bool ean type

bool ean i sProgranmrer = nessage. get Bool eanProperty ("I sProgramer");

If the siring value cannot be converted to the primitive type requested, a
j ava. | ang. Nunber For mat Except i on 1S thrown. Any property can be accessed as a String
using the get StringpProperty() method; al the primitive types can be converted to a
String vaue.

The get Obj ect Property() returns the appropriate object wrapper for that property. For
example, an i nt can be retrieved by the message consumer asaj ava. | ang. | nt eger Object.
Any property that is set using the set thj ect Property() method can also be accessed
using the primitive property accessors; the conversion rules outlined in Table C.1 apply.
The following code shows two properties (Age and vei ght) that are set using primitive and
vj ect property methods. The properties are later accessed using the oj ect, primitive, and
String aCCESSOrS.

Message nessage = topi cSession. creat eMessage();

/1l Set the property "Wight" as a float value
nessage. set Fl oat Property(" Wi ght", 240. 00) ;

/1 Set the property "Age" as an |Integer val ue
I nteger age = new | nteger(72);
nessage. set vj ect Property("Age", age);

/'l Read the property "Wight" as a java.lang. Fl oat type

Fl oat wei ghtl = (Fl oat)nessage. get Cbj ect Property("Wight");
/'l Read the property "Weight" as a flaot type

fl oat weight2 = nessage. get Fl oat Property();

/'l Read the property "Age" as an bject type

I nt eger agel = (I nteger)nessage. get Obj ect Property("Age");
/1 Read the property "Age" as a long is |egal

| ong age2 = nessage. get LongProperty("Age");

170

Java Message Service

C.5 Nonexistent Properties

If a IMS client attempts to access a nonexistent property using get oj ect Property(),
nul | isreturned. The rest of the property methods attempt to convert the nul I value to the
requested type using the val ue () operations. This results in some interesting behavior.
The get StringProperty() returnsanul | or possibly anenpty String (") depending on
the implementation. The get Bool eanProperty() method returns f al se for nul | values,
while the other primitive property methods throw thej ava. | ang. Nunber For mat Except i on.

The propertyExi sts() method can be used to avoid erroneous values or exceptions for
properties that have not been set on the message. Here is an example of how it's used:

i f (message. propertyExists("Age"))
age = message. getlnt Property("Age");
}

C.6 Property Iteration

The get PropertyNanes() method in the vessage interface can be used to obtain an
Enurer ati on Of all the property names contained in the message. These names can then be
used to obtain the property values using the property accessor methods. The following
code shows how you might use this Enurer at i on to print al the property values:

public void onMessage(Message nessage) ({
Enuner ati on propertyNanes = nessage. get PropertyNanes();
whi | e(propertyNanes. hasMor eEl ements()) {
String name = (String)propertyNanes. next El enent();
Obj ect val ue = get bj ect Property(nane);
Systemout. println("\nname+" = "+val ue);

}
}

C.7 JMS-Defined Properties

JMS-defined properties have the same characteristics as application properties, except that
most of them are set automatically by the JIMS provider when the message is sent. IMS-
defined properties are basically optional IMS headers; vendors can choose to support none,
some, or al of them. There are nine IMS-defined properties, each of which starts with
"IMSX" in the property name.

C.7.1 Optional JMS-Defined Properties

Here are the optional IM S-defined properties and their descriptions:

JMBXUser | D
This property is a string that is set automatically by the JIMS provider when the

message is sent. Some JMS providers can assign a client a user 1D, which is the
value associated with this property.

171

Java Message Service

JMSXAppl D

This property is a string that is set automatically by the JIMS provider when the
message is sent. Some JMS providers can assign an identifier to a specific IMS
application, which is a set of consumers and subscribers that communicate using a
set of destinations.

JNBXPr oducer TXI D and JMBXConsuner TXI D

Messages can be produced and consumed within a transaction. Every transaction in a
system has a unique identity that can be obtained from the producer or consumer
using these properties. The Jvsxproducer TXI D IS set by the IMS provider when the
message is sent, and the Jvsxconsuner TxI D is set by the IMS provider when the
message is received.

JVBXRecvTi mest anp

This property is a primitive | ong value that is set automatically by the IMS provider
when the message is received. It represents the UTC time (see UTC in Appendix B)
that the message was received by the consumer.

JVBXDel i ver yCount

This property is an i nt that is set automatically by the JMS provider when the
message is received. If a message is not properly acknowledged by a consumer it
may be redelivered. This property keeps a tally of the number of times the message
server attempts to deliver the message to that particular consumer.

JVBXSt at e

This property isan i nt that is set automatically by the IMS provider. The property is
for use by repositories and JMS provider tools and is not available to either the
consumer or producer - as a developer, you will never have access to this property.
The property provides a standard way for a JMS provider to annotate the state of a
message. States can be one of the following: 1 (waiting), 2 (ready), 3 (expired), or 4
(retained). This property can be safely ignored by most JIMS developers, but an
explanation of its purpose is provided for completeness.

The JIMS-defined properties that are assigned when the message is received
(3VvBXConsumer TXI D, JVBXRevTi nest anp, and JVsxDel i ver yCount) are not available to the
message's producer, but only available to the message consumer.

C.7.2 Group JMS-Defined Properties
While the bulk of IMSX properties are optional, the group properties are not optional; they
must be supported by the IM S provider. The group properties alow a JMS client to group

messages together and assign each message in the group with a sequence ID. Here are the
group properties:

172

Java Message Service

JMSXG oupl D

Thisproperty isast ri ng that is set by the IMS client before the message is sent. Itis
the identity of the group to which the message belongs.

JMBXG oupSeq

This property isaprimitive i nt type that is set by the IMS client before the message
is sent. It is the sequence number of the message within a group of messages.

C.8 Provider-Specific Properties

Every JMS provider can define a set of proprietary properties of any type. These properties
can be set by the client or the provider automatically. Provider-specific properties must
start with the prefix "JMS " followed by the property name (Jvs_<vendor - property-
nanme>). The purpose of the provider-specific properties is to support proprietary vendor
features.

173

Java Message Service

Appendix D. Message Selectors

Message selectors alow a JMS consumer to be more selective about the messages it
receives from a particular topic or queue. Message selectors use Vessage properties and
headers as criteria in conditional expressions. These conditional expressions use boolean
logic to declare which messages should be delivered to a client.

The message selectors are based on a subset of the SQL-92 conditional expression syntax
that is used in the were clauses of SQL statements. This section is a detailed exploration
of the message selector syntax.

To illustrate how message selectors are applied, we will consider a hypothetical message
that contains three application properties: Age, Wi ght, and LNane. Age iSanint, Vi ght isa
doubl e, and LNane IS @ String property. The values of these properties depend on the
message. The message selector is used to obtain only those messages with property values
of interest to the consumer.

D.1 Identifiers

An identifier is the part of the expression that is being compared. For example, the
identifiersin the following expression are Age, Vi ght , and LNane:

Age < 30 AND Wei ght >= 100.00 AND LNane = 'Snith'

Identifiers can be any application-defined, JMS-defined, or provider-specific property, or
one of several IMS headers. Identifiers must match the property or JMS header name
exactly; identifiers are case sensitive. Identifiers have the same naming restrictions as
property names (see Appendix C).

The JMS headers that can be used as identifiers include Jvsbel i ver yMode, JVSPriority,
JVBMessagel D, JVSTi nest anp, JMSCorrel ationl D, and JMsType. The JMsDestination and
JVBRepl yTo headers cannot be used as identifiers because their corresponding values are
Dest i nat i on Objects whose underlying value is proprietary and therefore undefined.

The JvsRedel i ver ed value may be changed during delivery. If a consumer uses a message
selector where " JvsRedel i vered = FALSE', and there was a failure delivering a message,
the JveRedel i vered flag might be set to TRUE. JVBExpiration IS not supported as an
identifier because JMS providers may choose to implement this value differently. Some
may store it with the message, while others calculate it as needed.

D.2 Literals

Literals are expression values that are hard-coded into the message selector. In the message
selector shown here, 30, 100. 00, and ' sni th* are dl literas:

Age < 30 AND Wi ght >= 100.00 AND LNane = 'Smith'

String literals are enclosed in single quotes. An apostrophe or single quote can be included
inaString literal by using two single quotes (e.g., " Snith' 's").

174

Java Message Service

Numeric literals are expressed using exact numerical (+22, 30, -52134), approximate
numerical with decimal (- 33. 22, 100. 00, +7. 0), or scientific (- 9e4, 3. 5E6) notation.

Boolean literals are expressed as TRUE Of FALSE.

D.3 Comparison Operators

Comparison operators compare identifiers to literals in a boolean expression that evaluates
to TRUE or FALSE. Comparison operations can be combined into more complex expressions
using the logical operators AND and or. Expressions are evaluated from left to right:

Age < 30 AND Wi ght >= 100.00 OR LNanme = 'Smith'

In this example, the expression would be evaluated as if it had parentheses placed as
follows:

(Age < 30 AND Wi ght >= 100.00) OR (LName = 'Smith')

Either the Lnare must be equal to " snith' or the Lhare can be any val ue aslong as the Age
is less than 30 and the vei ght is greater than or equal to 100. Evaluating these kinds of
expressions should be second nature for most programmers.

The following message selector uses three of the six algebraic comparison operators,
whichare =, >, >=, <, <=, and <> (not equal):

Age < 30 AND Weight >= 100.00 OR LNane = 'Smith'

These algebraic comparison operators can be used on any of the primitive property types
except for bool ean. The bool ean and st ri ng property types are restricted to the = or the <>
algebraic operators.

String types can be compared using the L1 ke comparison operator. For example:

Age < 30 AND Wi ght >= 100.00 OR LNane LIKE ' Sn?4 h'

The LI ke comparison operator attempts to match each character in the literal with
characters of the property value. Two special wildcard characters, underscore () and
percent (%), can be used with the LI ke comparison. The underscore stands for any single
character. The percent symbol stands for any sequence of characters. All other characters
stand for themselves and are case sensitive. Table D.1 provides some examples of
successful and unsuccessful comparisons using the LI ke operator.

Table D.1. Comparisons Using the LIKE Operator

Expression Truefor Values Falsefor Values
LNane LIKE 'Smth’ Smith, Smeth, Smath Smooth, Snth, Sniths
LNane LIKE ' Smit_’ Smith, Snitt, Snit4 Smot h, Sniths

LNane LIKE ' Sn¥ h' Smith, Snoo3th, Smth Smott, Rnith, Smiths
LNanme LIKE '%th' Smith, Synoonith, ith Snmot h, Smiths

175

Java Message Service

The BETVEEN Operator can be used to specify arange (inclusive). For example:

Age BETWEEN 20 and 30

This expression is the same as:

(Age >= 20) AND (Age <=30)

The | N operator can be used to specify membership in a set:
LNane IN ('Smith', 'Jones', 'Brown')

This expression is the same as:

(LName = "Smith') OR (LNane = 'Jones') OR (LNanme = 'Brown')

The nor logical operator can be used in combination with the LI kg, BETVEEN, IN, and | S
NULL (discussed later) operators to reverse their evaluation. If the expression would have
evaluated to TRUE, it becomes FALSE, and vice versa.

When no property or header exists to match an identifier in a message selector, the value
of the identifier is assigned anul I value. Nonexistent properties evaluating to nul | present
some problems with message selectors. In some cases, the nul | vaue of the property
cannot be evaluated in a conditional expression. The result is an unknown evaluation - a
nice way of saying the result is not predictable across JMS providers. If, for example, a
particular message contains the Age = 20 and i ght = 90. 00 properties but does not have
an Lnane property, then the message selector following would evaluate as shown:

Age < 30 AND Wei ght >= 100.00 OR LNane = 'Snith'

TRUE AND FALSE R UNKNOWN

The results of evaluating unknown expressions with logical operators (AND, OR, NOT) are
shown in Table D.2, Table D.3, and Table D.4.

Table D.2. Definition of the AND Operator

Expression Result
TRUE AND TRUE TRUE
TRUE AND FALSE FALSE
TRUE AND Unknown Unknown
FALSE AND Unknown FALSE
Unknown AND Unknown Unknown

176

Java Message Service

Table D.3. Definition of the OR Operator

Expression Result

TRUE OR TRUE TRUE |
TRUE OR FALSE TRUE |
TRUE OR Unknown TRUE |
FALSE OR Unknown Unknown |
Unknown OR Unknown Unknown |

Table D.4. Definition of the NOT Operator

Expression Result

NOT TRUE FALSE |
NOT FALSE TRUE |
NOT Unknown Unknown |

To avoid problems, the 1s nuLL or 1's Nor NuLL comparison can be used to check for the

existence of a property:

Age |'S NULL AND Weight IS NOT NULL

The previous expression selects messages that do not have an Age property but do have a

Vi ght property.

D.4 Arithmetic Operators

In addition to normal comparison operators, message selectors can use arithmetic operators
to calculate values for evaluation dynamically at runtime. Table D.5 shows the arithmetic

operatorsin their order of precedence.

Table D.5. Arithmetic Operators

Type

Unary

Multiplication and division

Addition and subtraction

For example, the following expression applies arithmetic operations to the Age, Hei ght , and
Wi ght properties to select people who have a weight outside a certain range:

Wi ght NOT BETWEEN (Age * 5) AND (Hei ght/Age * 2.23)

177

Java Message Service

D.5 Declaring a Message Selector

When a consumer is created with a message selector, the IMS provider must validate that
the selector statement is syntactically correct. If the selector is not correct, the operation
throws a j avax.j ms. | nval i dSel ect or Exception. Here are the session methods used to
specify a message selector when creating a consumer:

/'l P2P Session's Message Consuner Methods
publ i c QueueSession extends Session{
QueueBrowser createBrowser (Queue queue, String nessageSel ector)
throws JMSException, InvalidSel ectorException,
I nval i dDest i nati onExcepti on;
QueueReci ever createRecei ver (Queue queue, String nmessageSel ector)
throws JMSException, |nvalidSel ectorException,
I nval i dDest i nati onExcepti on;

}

The QueueBrowser and QueueRecei ver types of the QueueSessi on interface are explored in
Chapter 5. The durable subscriber (shown here) is covered in Chapter 4

/1 Pub/ Sub Session's Message Consuner Methods
publ i ¢ Topi cSessi on extends Session {
Topi cSubscri ber createSubscriber (Topic topic,
String nmessageSel ector,
bool ean noLocal)
t hrows JMSExcepti on,
I nval i dSel ect or Excepti on,
I nval i dDest i nati onExcepti on;

Topi cSubscri ber creat eDurabl eSubscri ber (Queue queue,
String name,
String nessageSel ect or,
bool ean noLocal)
t hrows JMBSExcepti on,
I nval i dSel ect or Excepti on,
I nval i dDest i nati onExcepti on;

}

The message selector used for a consumer can aways be obtained by calling the
get MessageSel ector() method on a QueueRecei ver, QueueBr owser, OF Topi cSubscri ber.

The get MessageSel ect or () method returns the message selector for that consumer as a
String.

Once a consumer's message selector has been established, it cannot be changed. The

consumer must be closed or deleted (durable subscriber) and a new consumer created with
anew message selector.

178

Java Message Service

D.6 Not Delivered Semantics

What happens to messages that are not selected for delivery to the consumer by its
message sel ector? This depends on the message model used.

For the publish-and-subscribe model, the messages are not delivered to that consumer;
they are, however, delivered to other pub/sub consumers. This is true for both nondurable
and durable subscriptions.

For the p2p model, any messages that ae not selected by the consumer are not visible to
that consumer. They are, however, visible to other p2p consumers.

179

Java Message Service

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The image on the cover of Java Message Service is a passenger pigeon (Ectopistes
migratorius), an extinct species. Although these birds had some personality quirks that
might have doomed their existence anyway, it was humans who proved their ultimate
undoing.

In the mid-1800s, passenger pigeons were the most humerous birds in North America.
Several flocks, each numbering two billion or more birds, lived in various habitats east of
the Rocky Mountains. Flocks migrated en masse in search of food, without regard to
season, and a good food source might keep a flock in one place for years at atime. (In fact,
John James Audubon observed that nearly the entire passenger pigeon population once
stayed in Kentucky for several years and were seen nowhere else during thistime.)

Whole flocks roosted together in small areas, and the weight of so many birds - often up to
90 nests in a single tree - resulted in destruction of forests, as tree limbs and even entire
trees toppled. (The accumulated inches of bird dung on the ground probably didn't help,
either.) These roosting habits, combined with high infant mortality and the fact that female
passenger pigeons laid a single egg in a flimsy nest, didn't bode well for the long-term
survival of the species.

It was the harvesting of passenger pigeons for food, however, that drove them to
extinction. In 1855, a single operation was processing 18,000 birds per day! Although even
Audubon himself thought that the prodigious pace of passenger pigeon processing
wouldn't have an adverse effect on the birds population, he was wrong, because the last
passenger pigeon died in the Cincinnati Zoo in 1914.

Colleen Gorman was the production editor and the copyeditor, and Clairemarie Fisher
O'Leary was the proofreader, for Java Message Service . Catherine Morris and Rachel
Wheeler provided quality control. Matt Hutchinson and Rachel Wheeler provided
production support. John Bickelhaupt wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman.
The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma
Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond
font.

Melanie Wang designed the interior layout based on a series design by Nancy Priest. Mike
Sierra implemented the design in FrameMaker 5.5.6. The heading font is Bodoni BT, the
text font is New Baskerville, and the code font is Constant Willison. The illustrations that
appear in the book were produced by Robert Romano using Macromedia FreeHand 8 and
Adobe Photoshop 5. This colophon was written by Leanne Soylemez.

180

	Cover
	Table of Contents
	Preface
	1. Understanding the Messaging Paradigm
	1.1 Enterprise Messaging
	1.2 The Java Message Service (JMS)
	1.3 Application Scenarios
	1.4 RPC Versus Asynchronous Messaging

	2. Developing a Simple Example
	2.1 The Chat Application

	3. Anatomy of a JMS Message
	3.1 Headers
	3.2 Properties
	3.3 Message Selectors
	3.4 Message Types

	4. Publish-and-Subscribe Messaging
	4.1 Getting Started with the B2B Application
	4.2 Temporary Topics
	4.3 Durable Subscriptions
	4.4 Publishing the Message Persistently
	4.5 JMSCorrelationID
	4.6 Request and Reply
	4.7 Unsubscribing

	5. Point-to-Point Messaging
	5.1 Point-to-Point and Publish-and-Subscribe
	5.2 The QWholesaler and QRetailer
	5.3 Creating a Queue Dynamically
	5.4 Load Balancing Using Multiple QueueSessions
	5.5 Examining a Queue

	6. Guaranteed Messaging, Transactions, Acknowledgments & Failures
	6.1 Guaranteed Messaging
	6.2 Message Acknowledgments
	6.3 Message Groups and Acknowledgment
	6.4 Transacted Messages
	6.5 Lost Connections
	6.6 Dead Message Queues

	7. Deployment Considerations
	7.1 Performance, Scalability, and Reliability
	7.2 To Multicast or Not to Multicast
	7.3 Security
	7.4 Connecting to the Outside World
	7.5 Bridging to Other Messaging Systems

	8. J2EE, EJB, and JMS
	8.1 J2EE Overview
	8.2 J2EE: A United Platform
	8.3 The JMS Resource in J2EE
	8.4 The New Message-Driven Bean in EJB 2.0

	9. JMS Providers
	9.1 IBM: MQSeries
	9.2 Progress: SonicMQ
	9.3 Fiorano: FioranoMQ
	9.4 Softwired: iBus
	9.5 Sun Microsystems: Java Message Queue
	9.6 BEA: WebLogic Server
	9.7 ExoLab: OpenJMS

	A. The Java Message Service API
	A.1 Common Facilities
	A.2 Point-to-Point API
	A.3 Publish-and-Subscribe API

	B. Message Headers
	C. Message Properties
	C.1 Property Names
	C.2 Property Values
	C.3 Read-Only Propertie
	C.4 Property Value Conversion
	C.5 Nonexistent Properties
	C.6 Property Iteration
	C.7 JMS-Defined Properties
	C.8 Provider-Specific Properties

	D. Message Selectors
	D.1 Identifiers
	D.2 Literals
	D.3 Comparison Operators
	D.4 Arithmetic Operators
	D.5 Declaring a Message Selector
	D.6 Not Delivered Semantics#

	Colophon

